
Journal of Parallel and Distributed Computing 158 (2021) 138–150

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Multi-GPU systems and Unified Virtual Memory for scientific 

applications: The case of the NAS multi-zone parallel benchmarks

Marc González ∗, Enric Morancho

Department of Computer Architecture, Universitat Politècnica de Catalunya - BarcelonaTECH, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 January 2021
Received in revised form 15 June 2021
Accepted 5 August 2021
Available online 13 August 2021

Keywords:
Multi-GPU
Unified Virtual Memory
Single address space
NAS parallel benchmarks

GPU-based computing systems have become a widely accepted solution for the high-performance-
computing (HPC) domain. GPUs have shown highly competitive performance-per-watt ratios and can 
exploit an astonishing level of parallelism. However, exploiting the peak performance of such devices is 
a challenge, mainly due to the combination of two essential aspects of multi-GPU execution: memory 
allocation and work distribution. Memory allocation determines the data mapping to GPUs, and therefore 
conditions all work distribution schemes and communication phases in the application. Unified Virtual 
Memory simplifies the codification of memory allocations, but its effects on performance depend on how 
data is used by the devices and how the devices’ driver is going to orchestrate the data transfers across 
the system.
In this paper we present a multi-GPU and Unified Virtual Memory (UM) implementation of the 
NAS Multi-Zone Parallel Benchmarks which alternate communication and computation phases offering 
opportunities to overlap these phases. We analyse the programmability and performance effects of the 
introduction of the UM support.
Our experience shows that the programming efforts for introducing UM are similar to those of having a 
memory allocation per GPU. On an evaluation environment composed of 2 x IBM Power9 8335-GTH and 
4 x GPU NVIDIA V100 (Volta), our UM-based parallelization outperforms the manual memory allocation 
versions by 1.10x to 1.85x. However, these improvements are highly sensitive to the information 
forwarded to the devices’ driver describing the most convenient location for specific memory regions. We 
analyse these improvements in terms of the relationship between the computational and communication 
phases of the applications.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

GPU-based computing systems have become the de facto stan-
dard High Performance Computing (HPC) solution for many com-
putational domains. Machine Learning, BioInformatics, Scientific 
Computing and many more are domains that have clear exam-
ples of representative applications like TensorFlow [1], Caffe [21], 
Smith-Waterman [17], Alya [10] that provide support for GPU-
based systems. One particular aspect of GPU-based systems is 
their programmability. Depending on the nature of the application, 
many changes have to be introduced, usually involving a partial 
redesign, implementation and tuning. These efforts have been ac-

* Corresponding author.
E-mail addresses: marc@ac.upc.edu (M. González), enricm@ac.upc.edu

(E. Morancho).
https://doi.org/10.1016/j.jpdc.2021.08.001
0743-7315/© 2021 The Author(s). Published by Elsevier Inc. This is an open access artic
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
cepted mainly due to the impressive performance levels that GPU-
based systems can deliver.

Some multi-GPU systems have incorporated a transparent man-
agement of the memory allocation across both the GPUs and CPUs. 
In particular, CUDA Unified Virtual Memory [19,20,26,27] allows 
the programmer to allocate memory and offload computations to 
the GPUs with no regard of where the memory has been phys-
ically allocated. In addition to a page fault mechanism, the GPU 
driver allocates memory and moves data based on computation 
demand. Programmability is greatly improved at the cost of some 
potential performance loss due to the interference of the driver ac-
tivity (e.g.: page faults, update of TLB structures) that might cause 
a serialization of computation and communication. CUDA includes 
support to guide the driver to help avoid some of these overheads. 
This support is based on run-time primitives that inform the run-
time about when and how the computation will use data and its 
associated memory. In general, the complexity of these primitives 
resides on knowing where to place them within the application 
le under the CC BY-NC-ND license 

https://doi.org/10.1016/j.jpdc.2021.08.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.08.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:marc@ac.upc.edu
mailto:enricm@ac.upc.edu
https://doi.org/10.1016/j.jpdc.2021.08.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150
Fig. 1. Flow graphs of single-zone and multi-zone BT, SP and LU.

sources. The programmer has to ensure that they get processed 
sufficiently in advance to generate the desired effect.

The main contribution of this work is the evaluation of the Uni-
fied Virtual Memory support for multi-GPU systems and scientific 
codes. We use the multi-zone NPB [6] benchmark suite, a stan-
dard for numerical applications and for evaluating parallel systems. 
Our evaluation analyzes both performance and programmability. 
Performance is evaluated mainly in terms of speedup. Programma-
bility is evaluated in terms of code complexity related to memory 
allocation and optimization of data transfers between the devices. 
In particular, we focus on the use of the Unified Virtual Memory 
primitives for memory allocation, guiding the placement of data 
structures and pre-fetch operations. The proposal has been imple-
mented with CUDA 10.0 and executed on a IBM Power9 8335-GTG 
and 4 GPUs NVIDIA V100 (Volta). We have observed speedup fac-
tors that range from 1.10x to 1.85x of our UM-based parallelization 
with respect to a multi-GPU parallelization that uses manual allo-
cation per GPU.

This paper is organized as follows: Section 2 describes the 
structure of the parallelism in the NPB-MZ suite, Section 3 de-
scribes the evaluation analysis of a Unified Virtual Memory version 
of the NPB-MZ benchmark suite, Section 4 discusses prior works 
related to this paper and, finally, Section 5 discusses the main con-
clusions.

2. GPU parallelization of NPB-MZ benchmarks

2.1. NPB-MZ benchmark suite

The Multi-Zone NPB (NPB-MZ) [6] re-implements the NAS Par-
allel Benchmarks (NPB) [4] to expose a coarse level of parallelism. 
In this work we focus just on the three pseudo applications of the 
suites: BT, SP and LU. Both suites define several input classes for 
each benchmark (classes S, W, A, B, ... determine a sequence of in-
creasing size of the input 3D volume) and include a verification 
mechanism for the results.

The flow graph of the original NPB applications is shown in 
Fig. 1-a). The benchmarks perform a time step loop where at 
each iteration the solver updates the input volume. They differ on 
the solver: Block Tri-diagonal (BT), Scalar Penta-diagonal (SP) or 
Lower-Upper Gauss-Seidel (LU).

NPB-MZ implementations (BT-MZ, SP-MZ and LU-MZ) divide 
the input 3D volume into a 2D tiling through x and y dimensions 
(Fig. 2). We refer to the tiles as zones; each zone has four adjacent 
zones (neighbourhood assumes a toroidal topology).
139
Fig. 2. a) NPB input volume. b) Tiling performed by NPB-MZ and neighbourhood 
relation between zones.

The flow graph of NPB-MZ benchmarks (Fig. 1-b) has an ad-
ditional loop level within the time step loop with respect to the 
single-zone flow graph. This additional loop traverses the zones 
and applies the solver to each zone; as these iterations are inde-
pendent, this loop exposes a coarse level of parallelism. However, 
before applying the solver on the next time step, the bound-
ary values of each zone must be exchanged with its neighbour 
zones.

Table 1 shows, for some input classes, the overall size of the 
3D volume (in terms of number of points and Gigabytes) for all 
benchmarks. The Table also shows the number of zones created 
by each NPB-MZ benchmark. We observe that LU-MZ always cre-
ates 16 zones; however, in SP-MZ and BT-MZ, the larger the class, 
the larger the number of zones. This difference impacts the perfor-
mance trends of the benchmarks in terms of scalability.

Table 1 shows the sizes of the zones created by each NPB-
MZ benchmark. For each input class, LU-MZ and SP-MZ creates 
equally-sized zones; however, BT-MZ creates zones with a wide 
variety of sizes (the ratio between the largest size and the small-
est size is about 20). This difference will impact the performance 
trends of the benchmarks in terms of load balancing.

Table 1 shows the number of time steps performed by each 
benchmark at each input class.

2.2. Execution periods and kernel execution order

As shown in Fig. 1-b, the flow graph of NPB-MZ benchmarks is 
the same. First, data structures are allocated and initialized. Next, 
the time-step loop solves the equations; the number of time-step 
iterations depends on both the benchmark and the input class (Ta-
ble 1). Each iteration is divided into two periods, Communication 
Period and Computation Period, that are executed sequentially. Fi-
nally, the correctness of the results is checked by a verification 
procedure.

Fig. 3 zooms into the time-step loop to show the sequence of 
functions (computational phases) called by each period. In NPB-MZ 
applications:



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150

Table 1
Characterization of NPB-MZ benchmarks: overall size (number of points and memory requirements) and, for each benchmark, number of zones, zone 
size and number of time steps.

Input 
class

3D volume 
x × y × z (points)

Memory 
(GB)

Num. zones (x × y) Zone size (points per zone) Time steps
LU SP & BT LU SP BT LU SP BT

B 304 × 208 × 17 ≈ 0.2 4 × 4 8 × 8 67.184 16.786 from 2.992 to 59.976 250 400 200
C 480 × 320 × 28 ≈ 0.8 4 × 4 16 × 16 268.800 16.800 from 2.912 to 60.648 250 400 200
D 1.632 × 1.216 × 34 ≈ 13 4 × 4 32 × 32 4.217.088 65.892 from 11.968 to 243.236 300 500 250
E 4.224 × 3.456 × 92 ≈ 250 4 × 4 64 × 64 83.939.328 327.888 from 59.248 to 1.203.452 300 500 250
Fig. 3. Time-step loop of NPB-MZ benchmarks. Sequence of functions, computational 
phases, called at each time-step iteration.

• The Communication Period propagates information from each 
zone to its neighbour zones (boundary exchange). Zones are 
processed sequentially. For each zone, its adjacent 2D surfaces 
must be retrieved from its neighbour zones in order to update 
the surfaces and to send them back.

• The Computation Period updates each zone’s contents by se-
quentially executing several functions. Each function processes 
all zones; inside each function, zones can be processed in par-
allel.

2.3. Sources of parallelism

The NPB-MZ suite exhibits several levels of parallelism. This 
section details the sources of the available parallelism at each pe-
riod.

2.3.1. Communication Period: intra-zone parallelism
Algorithm 1 depicts the pseudo-code of three versions of the 

boundary-exchange procedure.
1) The sequential CPU version, a), processes zones one after the 

other; no inter-zone parallelism is available. However, some intra-
zone parallelism is exposed; next versions will exploit it.

2) The single-GPU version, b), exploits the intra-zone paral-
lelism by the definition of CUDA kernels.

3) The multi-GPU version, c), must introduce data-transfer 
statements because neighbour zones may be mapped to different 
GPU’s. So, before a GPU starts processing a zone, if its neighbour 
zones are mapped to other GPU’s, their adjacent surfaces must be 
copied to the GPU. After the computation, the results must be sent 
back to the GPU’s where the zones are mapped.

2.3.2. Computation Period: inter-zone parallelism
At each iteration of the time-step loop, the Computation Period

calls a sequence of procedures (Fig. 3); each procedure performs 
a computational phase of the solver. The serial implementation 
of each computational phase traverses all zones. However, as the 
computational phase of each zone is independent from the other 
zones, this loop exposes parallelism: inter-zone parallelism.
140
This parallelism can be exploited by an OpenMP implemen-
tation (Algorithm 2-a). A parallel zone is created and a pool of 
threads (one for each GPU) competes to process the zones. The 
runtime procedures get-task() and commit-task() are in 
charge of assigning each zone to only one thread.

2.3.3. Computation Period: intra-zone parallelism
Each computational phase of the Computation Period (Fig. 3) 

is composed of several loop nests that traverse all zone points. 
These loops expose a new level of parallelism: intra-zone paral-
lelism. This parallelism can be exploited by several CUDA kernels, 
one for each loop nest. Each loop nest is transformed to a CUDA 
kernel implemented within C++; its iteration space is mapped into 
the block grid and GPU thread blocks. For this process, all CUDA 
kernels have been coded with special focus in avoiding warp diver-
gence and maximizing the memory coalesced accesses at the warp 
level. Both the block grid and thread blocks have been defined in 
accordance to the memory layout of matrix-based data structures. 
This corresponds to practices observed in previous works [2,7] and 
conforming to best CUDA practices applied to both the NPB and 
NPB-MZ benchmark suites. Algorithm 2-b depicts both the trans-
formation from the sequential code to the CUDA kernel and the 
CUDA kernel invocation.

2.4. Evaluated NPB-MZ implementations

2.4.1. Manual memory allocation
We have implemented a multi-GPU parallel version of the NPB-

MZ using manual memory allocation. Then, according to the zone-
to-GPU mapping, the data structures of each zone are allocated 
into a particular GPU during the Initialization Period. This map-
ping is constant; cannot be changed during the time-step loop. 
Therefore, this approach needs to know in advance what work 
distribution scheme is applied at the inter-zone parallel level. In 
addition, manual data transfers have to be implemented in the 
Communication Period to exchange boundary values according to 
the adjacencies of the zones.

2.4.2. Unified Virtual Memory (UM)
When UM is introduced, the restrictions observed in the man-

ual version are no longer applicable. It is not necessary to know in 
advance which GPU will process which zone during the Computa-
tion Period. Similarly, explicit data transfers during the Communica-
tion Period are no longer needed. The devices’ driver automatically 
moves the required data among the GPUs. When the Communica-
tion Period is executed, accessing adjacent zones residing on differ-
ent GPUs will cause the driver to migrate or replicate the memory 
pages containing border elements. Similarly, when the Computation 
Period is executed, pages that were moved in the previous Commu-
nication Period are transferred back to the device where the zone 
must be processed. In conclusion, programmability is greatly sim-
plified with respect to manual memory allocation.

We have designed two more UM-based versions, one making 
usage of the primitives referring to preferred page location, the 
other using primitives for data pre-fetch.



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150

Algorithm 1 Code scheme for the exchange of boundary values. a) depicts the sequential host version. b) depicts the single-GPU version 
where intra-zone parallelism is coded in the form of a kernel invocation. c) depicts the multi-GPU version with zone transfer statements.

a)
CP

U

! CPU version

do zone = 1, num_zones
east_zone = adjacency_east[zone]
north_zone = adjacency_north[zone]
copy_face(tmpEast, mesh[east_zone])
copy_face(tmpNorth, mesh[north_zone])
compute_border(mesh[zone], tmpEast, tmpNorth)
copy_face(mesh[east_zone, tmpEast)
copy_face(mesh[north_zone], tmpNorth)

b)
Si

ng
le

-G
PU

! Single-GPU version

do zone = 1, num_zones
east_zone = adjacency_east[zone]
north_zone = adjacency_north[zone]
CUDA::compute_border<<< grid, block, shared >>>
(mesh[zone], mesh[east_zone], mesh[north_zone])

c)
M

ul
ti

-G
PU

! Multi-GPU version

do zone = 1, num_zones
east_zone = adjacency_east[zone]
north_zone = adjacency_north[zone]
east_gpu = zone_gpu_mapping[east_zone]
north_gpu = zone_gpu_mapping[north_zone]
zone_gpu = zone_gpu_mapping[zone]
CUDA::copy_zone

(east_gpu, mesh[east_zone], zone_gpu, tmp1)
CUDA::copy_zone

(north_gpu, mesh[east_zone], zone_gpu, tmp2)
CUDA::compute_border<<<grid, block, shared>>>

(mesh[zone], tmp1, tmp2)
CUDA::copy_zone

(zone_gpu, tmp1, east_gpu, mesh[east_zone])
CUDA::copy_zone

(zone_gpu, tmp2, east_gpu, mesh[north_zone])

Algorithm 2 a) Inter-Zone Parallelism: The left side shows the code skeleton for the time-step loop. Its body is composed of as many 
loops (zone-phase loops) as the number of phases. Each zone-phase loop traverses the zones and applies a phase over a zone on each 
iteration. The right side shows the OpenMP implementation that distributes the iterations of the zone-phase loops (e.g.: the zones) to the 
GPUs. An OpenMP parallel region is defined and one thread controls one CPU, executing the body of the parallel region. The while loop 
invokes the runtime system to acquire work. b) Intra-Zone Parallelism: Each phase is coded as a subroutine where iterative structures 
implement a computation over the multi-dimensional matrices that represent one zone. Each iterative structure is converted into a CUDA 
kernel (Kernel Definition), and substituted by a kernel CUDA call (Kernel Invocation). Each kernel operates only over a single zone.
Unified Virtual Memory with Advises: The UM support is open 
to some guidance coming from the programmer. In particular, it is 
possible to advise the run-time system about access patterns and 
the placement of memory regions. In particular, the programmer 
can inform whether a memory region is going to be read, writ-
ten or both. Also, the programmer can advise the run-time about 
which device should host a memory region (e.g.: zone), thus spec-
ify which GPU has to allocate the physical memory associated to 
the memory region. We have generated versions of the NPB.MZ ap-
plications using this set of functionalities. Algorithm 2-b exposes 
the code structure to orchestrate the computation of a particular 
zone into a specific GPU. This code has been modified so that it in-
cludes the advises to the CUDA run-time system. We forward the 
type of access (read or write) and the preferred location, in this 
case the GPU that is going to process the zone (e.g.: we use the 
thread id in OpenMP to identify the GPU in charge of processing a 
zone).

Unified Virtual Memory with Data Pre-fetch: The UM run-time 
also supports Pre-fetching. We have adapted the Communication Pe-
riod to use this functionality so that pre-fetch is applied to transfer 
in advance adjacent zones, and also to transfer back these zones to 
where they originally have been mapped according to the schedul-
141
ing applied at the inter-zone level of parallelism. Pre-fetching ac-
tions have been inserted within the code exposed in Algorithm 1-c 
(e.g.: copy-zone calls become asynchronous, and the original loop 
has been unrolled to overlap border computation with communi-
cation).

2.5. Programmability assessment

This subsection points out some initial conclusions regarding 
the overall programmability improvements offered by the use of 
Unified Virtual Memory. In general, there are two main aspects 
that are directly affected by the introduction of Unified Virtual 
Memory. On the one hand, how the application is conditioned 
by the data structure placement across the different device mem-
ory subsystems. On the other hand, this placement determines the 
communication patterns. For the NPB-MZ benchmark suite, these 
two aspects correspond to the zone placement and the zone trans-
fers.

2.5.1. Zone placement
In non-UM versions, zone allocation is performed at a per-

device level. This means that the programmer has to design the 
GPU parallelization under a static and fixed zone-to-GPU mapping, 



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150
assigning the zone processing in advance and keeping it constant 
through the execution. In contrast, UM versions require a single 
and global zone allocation that immediately becomes visible to all 
devices including the host. Thus, the programmer is relieved of the 
burden of redesigning the application to support a dynamic zone-
to-GPU mapping. However, if UM advises are introduced (which 
is highly recommended) to guide the devices’ driver for memory 
placement issues, then programmability is again affected by cod-
ing efforts to explicitly define the zone-to-GPU mapping, type of 
accesses (e.g.: read/write, only read, only write) and forward this 
information to the devices’ driver. Consequently, only if UM advises 
are avoided, programmability is greatly improved but, in general, 
UM advises improve the performance of applications. In terms of 
coding efforts, the amount of new code lines introduced to acti-
vate the UM support is not significant. Complexity is related to 
memory advises, and becomes similar to that of a manual memory 
allocation per device. The reason for that is that in both cases the 
programmer needs to deploy an explicit description of the mem-
ory placement, whether in the form of memory allocation runtime 
calls or in the form of memory placement advises.

2.5.2. Zone transfers
During the Communication Period, adjacent zones have to be 

transferred to the GPU in charge of processing a particular zone. 
For non-UM versions, this translates to explicit data transfer op-
erations involving one or two entire zones. In addition, temporary 
buffers have to be allocated in all devices to store the zones trans-
ferred from other devices during the Communication Period. For UM 
versions this changes drastically. With UM, the programmer is re-
lieved of introducing explicit zone transfers. The devices’ driver 
moves data under computation demand. Therefore, as GPU kernels 
reference border data of adjacent zones, data is moved accordingly. 
This corresponds to a significant programmability improvement. 
We will see in the next section that it also introduces significant 
performance improvements. During the Communication Period and 
under UM, entire zones are no longer transferred. Instead, only 
memory pages containing border elements are transferred and this 
results in less data transfers and shorter communication times 
with respect to non-UM versions.

3. Evaluation

This section is divided into two parts. Firstly, we profile the ex-
ecution of NPB-MZ applications in terms of different metrics in 
order to understand and justify the observed performance. Sec-
ondly, we study overall performance in terms of strict speedup 
numbers with respect to a manual CUDA parallelization that does 
not rely on UM.

All experiments have been conducted on a system composed 
of 2 x IBM Power9 8335-GTH @ 2.4 GHz with 512 GB of main 
memory and 4 x GPU NVIDIA V100 (Volta) with 16 GB HBM2. All 
applications have been coded and compiled within the CUDA10.0 
framework [19,20,26,27].

3.1. Performance characterization

This subsection characterizes the three NPB-MZ applications 
in terms of execution-time distribution, number of data transfers 
between GPUs and amount of data transferred. We have imple-
mented four versions of each application. First, a non UM version 
where memory allocation, kernels and data transfers have been 
manually coded (labelled application name-man). Then, an initial 
UM version obtained from the man version where memory is al-
located using the UM interface (labelled app-name-um). Finally, 
two optimized versions that use advise and pre-fetch primitives: 
142
Table 2
Execution time distribution for SP-MZ-man. Input class D (1024 equally sized 
zones). Static scheduler over 4 GPUs.

app-name-um-advise (just uses CUDA advises) and app-name-um-
all (uses both CUDA advises and pre-fetch). All performance data 
has been collected using the profiling tool provided by NVIDIA 
[22,23].

3.1.1. SP-MZ
Table 2 depicts the contribution of the most time-consuming 

kernels to the execution time of SP-MZ-man application running 
input class D over 4 GPUs. For each kernel, the table shows its con-
tribution to the overall execution time (in terms of percentage and 
time), and the average, minimum and maximum execution times 
of its invocations. In this version, 4 kernels take almost 85% of to-
tal execution time: x_solve_kernel, y_solve_kernel, z_solve_kernel and 
compute_rhs_kernel_2; they belong to the Computation Period: The 
execution times of the kernels range from 97 μs to 143 μs for the 
solver kernels, and from 30 μs to 40 μs for the compute_rhs_ker-
nel_2. Observe that compute_rhs_kernel_1 kernel represents 2.74% 
of execution time with bursts that range from 8 μs to 14 μs, aver-
aging 12.08 μs.

The border-computation kernels (copy_north_south_face and 
copy_east_west_face, not shown in table) take 2.43%, a very small 
part of total execution; the execution bursts of both kernels range 
from 4.48 μs to 10.43 μs (averaging 6.05 μs and 4.91 μs re-
spectively). Regarding the communications, peer-to-peer transfers 
(CUDA_memcpy_PtoP kernel) take about 3.40% of total execution 
time. Consequently, the execution is totally dominated by the 
Computation Period, and in particular by the solver kernels. Also, 
we observe how the computational kernels do not present a sig-
nificant variance between their Min. Time, Max. Time and Avg. 
Time.

The data provided in the previous paragraph will be rele-
vant in our comparison versus the execution under UM support 
in order to understand the effects of UM in the execution of 
the SP-MZ application. Table 3 shows time distribution in the 
same manner as we have described it for the man version but 
now for the um version. The first thing to notice is the different 
time distribution among the kernels. The kernels compute_rhs_ker-
nel_1 and copy_north_south_face_kernel take almost 60% of total 
execution time with very different execution bursts with respect 
to the man version. These kernels now expose a Max. time in 
their execution bursts of 14,06 ms and 12,08 ms. These changes 
are due to the CUDA driver handling of the page faults occur-
ring during the execution of these kernels. Fig. 4 shows the list 
of kernels and their execution order for the SP-MZ application. 
The kernels are executed along the Initialization, Communica-
tion, Computation and Verification periods. This order is impor-
tant to understand the influence of UM support on the execu-
tion time distribution among the kernels. Notice that the com-
pute_rhs_kernel_1 is executed immediately after the Communica-
tion Period. This means that pages that were moved across the 



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150
Table 3
Execution time distribution for SP-MZ-um. Input class D (1024 equally sized zones). 
Static scheduler over 4 GPUs.

Fig. 4. Kernel along Initialization, Communication, Computation and Verification pe-
riods for SP-MZ.

different GPUs according to the zone adjacency during Commu-
nication Period, now have to be moved back to the GPU where 
the Computation Period will actually happen. This corresponds to 
the execution of the compute_rhs_kernel_1. The same happens with 
both copy_north_south_face_kernel and copy_east_west_face_kernel, 
but this time when switching between the computation and the 
communication periods. At this point, all pages associated to ad-
jacent zones but residing in different GPUs have to be moved 
where the border computation happens. These observations jus-
tify that the computational kernels x_solve_kernel, y_solve_kernel, 
z_solve_kernel and compute_rhs_2_kernel now only correspond to a 
25% of total execution time. For overall execution time compar-
ison, at the end of this section both the Computation Period and 
Communication Period as well as the total execution time are ad-
dressed and compared for all versions of the SP-MZ application 
(see Fig. 6).

The introduction of the UM support also affects the Initialization 
Period. Notice how the kernels in Initialization Period have changed 
their behaviour: exact_rhs_kernel_init and initialize_kernel account 
for 8% of total execution time with Max. Time execution bursts of 
7 ms and 4 ms respectively. The reason for this change is the same 
as the one we have observed for the computational kernels. Mem-
ory is touched for the first time in the GPUs with the execution of 
these initializing kernels.
143
Fig. 5 details significant metrics regarding the execution under 
the UM support. The uppermost part of the figure details event 
counting for version SP-MZ-um. Memory thrashes refer to driver 
activity related to ping-pong page movements between GPUs. Re-
mote mappings from/to device refer to the action of page replica-
tion from and to a GPU, but with no redefinition of the preferred 
location of a page. Transfers from/to device, refer to actual data 
transfers that have occurred per GPU. These counters and the data 
on top of their series describe how much data has been transferred 
and how many driver bursts of execution were needed. All data 
corresponds to an aggregation of 40 iterations of the execution of 
the application. For SP-MZ-um, memory thrashes are present in all 
GPUs and in the range of a thousand for GPUs 0 and 1, and one 
hundred for GPUs 2 and 3 (the chart shows data in logarithmic 
scale). Remote mapping counters describe an imbalance between 
the GPUs: 0 and 1 account for most of these events. Given that 
work is scheduled under a static scheme where all GPUs receive 
the same number of zones to compute (including their borders), 
this is clearly a symptom of wrong page placement. The commu-
nications imposed by border computation mislead the driver in 
setting what should be the correct location for each zone: replicas 
are generated for pages that contain data belonging to the zone 
borders. Notice that data transfers will constantly occur while ex-
ecuting the Computation and Communication Period, as those two 
are entangled due to the movement and replication of pages con-
taining border data. These transfers are in the range 10.000 and 
30.000 and the total amount of data transferred per GPU is be-
tween 2 GB and 3 GB.

If advises are forwarded to the device driver, then the per-
formance of the UM support changes drastically. Table 4 shows 
time distribution for the SP-MZ-um-advise application. In general, 
we observe that we recover the time distribution seen for the SP-
MZ-man version. This implies that the interference of the driver to 
move data across the devices has been minimized up to a point 
so that communications happening inside the kernel executions 
do not alter the overall computational weight of each kernel. No-
tice also how the differences between Avg. Time, Min. Time and 
Max. Time is only significant for kernels in the Initialization Pe-
riod. All kernels in the Computation Period do not present signif-
icant interference coming from the device driver activity: notice 
the compute_rhs_kernel_1 which now is not in the 3 most heavy 
computational kernels and it does present some variance in its ex-
ecution bursts, but not in the range of what has been observed 
in version SP-MZ-um (see Table 3). The kernels in the Communi-
cation Period do present differences in their Avg. Time, Min. Time 
and Max. Time. This is reasonable as these kernels require driver 
activity to move the zone pages where the zone border resides. 
Regarding the UM profile, we observe how all data transfers now 
are in the range of one thousand (logarithmic scale in Fig. 5). No 
memory thrashes appear and remote mappings are in the range of 
one hundred per GPU. This indicates that the driver has distributed 
the zones over the GPUs according to the advises and the pattern 
of usage: pages containing border data are replicated without gen-
erating any thrashing.

Nevertheless, the SP-MZ-um benefits from the utilization of UM. 
Notice that in the SP-MZ-man version, peer-to-peer transfers ac-
count for 3,4% (see Table 2) of overall execution time. Now all 
these data transfers are automatically done by the driver accord-
ing to the memory footprint the GPUs define along the zone and 
border computation.

Fig. 6 shows the execution times for one iteration of both 
the Compute and the Communication periods (column graphs, left 
axis) and the total execution time (line graph, right axis). For the 
SP-MZ-man version, the partial execution time for Communication 
and Computation periods are 28.83 ms and 115.67 ms on each 
iteration of the application (for class D there are 300 iterations). 



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150

Fig. 5. Statistics of the driver activity related to UM events for SP-MZ (40 iterations). Input class D (1024 equally sized zones). Static scheduler over 4 GPUs. Memory thrashes 
refer to driver activity related to ping-pong page movements between GPUs. Remote mappings refer to the action of page replication from and to a GPU, but with no 
redefinition of the preferred location of a page. Transfers from and to, refer to actual data transfers that have occurred per GPU.
Table 4
Execution time distribution for SP-MZ-um-advise. Input class D (1024 equally sized 
zones). Static scheduler over 4 GPUs.

Total execution time is 72.64 s. For the SP-MZ-um version, the par-
tial execution time for Communication and Computation periods 
are 22.87 ms and 132.25 ms on each iteration of the applica-
tion. Total execution time is 77.57 s. So, the SP-MZ-um is slower 
than SP-MZ-man but Communication Period executes faster while 
the Computation Period slower. The reason for that is that the SP-
MZ application processes many zones (1024 in input class D) but 
of a small size. Therefore, the amount of communication needed to 
move an entire zone or just the memory pages that contain border 
elements is similar given the memory layout of zones (e.g.: 3D ma-
trices structured in contiguous memory). Yet, the total amount of 
communication to transfer an entire zone is larger than just trans-
144
Fig. 6. Execution time for SP-MZ versions man, um, um-advise and um-all. Input 
class D (1024 equally sized zones). Static scheduler over 4 GPUs. Left axis: partial 
execution time of an iteration of the Computation and the Communication Period. 
Right axis: total execution time.

ferring the border elements. The SP-MZ-man always transfers a 
whole zone whenever this zone is bordered by another residing in 
a different GPU. In contrast, the SP-MZ-um version moves less data, 
but induces more overhead from driver activity (e.g.: pages faults, 
update of TLB structures). The SP-MZ-um-advise version takes ad-
vantages of the fact that now only pages containing border data 
are moved and with much less driver activity. This explains the 
execution times observed in this version: 12.7 ms and 119.28 ms 
for Communication and Computation periods, and 66.35 s for total 
execution time.

The UM support includes pre-fetch advises to guide the driver. 
One option is to introduce them in the Communication Period to 
try to overlap the border computation with transfers containing 
border data of other zones. SP-MZ-um-all version includes this op-
timization. But the pre-fetch advises only accept a description of 



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150
Table 5
Execution time distribution for LU-MZ-man. Input class D (16 equally sized zones). 
Static scheduler over 4 GPUs.

Fig. 7. Kernel execution order along Communication and Computation periods for 
LU-MZ.

the data in terms of initial address and total amount of data to 
be pre-fetched. This is not suitable for the border layout as this 
one occupies many non-consecutive pages in memory. For this 
version, the partial execution time for Communication and Com-
putation periods are 25.59 ms and 129,64 ms on each iteration of 
the application. Total execution time is 79.65 s. Clearly the pre-
fetch advises are generating again too much communication and 
driver activity. The bottom graph of Fig. 5 details the amount of 
data and the driver activity. This version moves a similar amount 
of data as the SP-MZ-um version with similar remote mappings 
and data transfers. Therefore, the driver does not capture the com-
munication pattern given by the memory page usage that both 
the Computation and Communication period expose. Notice that in 
terms of programmability, it would significant increase complex-
ity for the programmer to identify the access patterns during the 
border computation and generate an accurate description of which 
data is going to be used at memory page level so that this can be 
translated at run-time into the appropriate calls to the pre-fetch 
CUDA primitives so we did not implement this.

3.1.2. LU-MZ
The LU-MZ application operates with a reduced set of zones 

(16) but of a greater size than the SP-MZ application (as detailed 
in Table 1). This is important as we will show that the relation be-
tween the total amount of data and the amount of border data 
is going to be an essential parameter to understand the effect 
of the UM support. Table 5 shows the execution time distribu-
tion among the most time consuming application kernels. Notice 
that peer-to-peer transfers (CUDA_memcpy_PtoP) take up to 22% of 
total execution time. This is related to the zone transfers during 
the Communication Period. The Computation Period is dominated by 
3 kernels (jacld_blts_kernel, jacu_buts_kernel and rhs_kernel_z) ac-
counting for about 56% of total execution time.

Fig. 7 shows the execution order between the computational 
kernels but only for those in the Computation Period and Commu-
nication Period. As in the previous section, this order as well as the 
repetition of the two periods along the iterative process of the ap-
145
Table 6
Execution time distribution for LU-MZ-um. Input class D (16 equally sized zones). 
Static scheduler over 4 GPUs.

Table 7
Execution time distribution for LU-MZ-um-advise. Input class D (16 equally sized 
zones). Static scheduler over 4 GPUs.

plication is essential to understand the changes caused by the use 
of UM. For LU-MZ, there are 10 initializing kernels and 2 verifying 
kernels that have been omitted in the list.

Table 6 shows the execution-time distribution for the LU-MZ-
um version. First, note the lack of peer-to-peer transfers be-
cause all data transfers are triggered automatically by the devices’ 
driver intervention. Second, the most time-consuming kernel is 
copy_north_south_face_kernel, a kernel that computes part of the 
border computation. This increase is justified by the fact that along 
its computation, the devices miss the data of the adjacent zones 
which reside in a different device. Thus, the relation between the 
original computation within the kernel and the amount of over-
head and data transfers changes completely as well as its overall 
execution time and computational weight. If we check for the ker-
nels that have greater disparities between their Avg. Time, Min. 
Time and Max. Time we see that this kernel has average execution 
times closer to its minimum value and far away from its maximum 
value. This indicates that the driver activity (e.g.: pages faults, up-
date of TLB structures) is huge compared to the actual amount of 
computation. Notice that the aggregate time for the other kernels 
remains very similar to those observed in the LU-MZ-man version. 
For overall execution time comparison, at the end of this section 
both the Computation Period and Communication Period as well as 
the total execution time are addressed and compared for all ver-
sions of the LU-MZ application (see Fig. 6).

If advises are introduced, then the problems observed in the 
previous paragraph disappear. Table 7 shows the new execution 
time distribution. In this version no kernel presents significant dis-
parities between the Avg. Time, Min. Time and Max. Time. Also 
the distribution of execution time and its aggregate value are the 



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150

Fig. 8. Statistics of the driver activity related to UM events for LU-MZ. Input class D (16 equally sized zones). Static scheduler over 4 GPUs. Memory thrashes refer to driver 
activity related to ping-pong page movements between GPUs. Remote mappings refer to the action of page replication from and to a GPU, but with no redefinition of the 
preferred location of a page. Transfers from and to, refer to actual data transfers that have occurred per GPU.
Fig. 9. Execution time for LU-MZ versions man, um, um-advise and um-all. Input class 
D (16 equally sized zones). Static scheduler over 4 GPUs. Left axis: partial execution 
time of an iteration of the Computation and the Communication Period. Right axis: 
total execution time.

same as in the LU-MZ-man version, indicating that the amount of 
overhead introduced by the driver is no longer significant. Fig. 8
shows the accounting for both LU-MZ-um and LU-MZ-um-advise
versions. For the LU-MZ-um version we observe memory thrashes 
in the range close to one hundred per GPU, that disappear in the 
LU-MZ-um-advise version and are substituted by remote memory 
mappings. This indicates that the driver avoids memory page faults 
and instead activates the replication of shared memory pages. No-
tice how the total amount of data transferred per GPU drops from 
500 MB-700 MB to 20 MB-30 MB (data on top of the transfers 
from and to the devices).

The effects of UM support in performance are shown in Fig. 9. 
For the LU-MZ-man version, the partial execution time for commu-
nication and computation periods are 121.50 ms and 105.11 ms 
on each iteration of the application (for class D there are 250 it-
erations); the total execution time is 68.09 s. For the LU-MZ-um
version, the partial execution time for communication and com-
putation periods are 0.18 ms and 124.05 ms on each iteration 
of the application; total execution time is 37.34 s. The impres-
sive improvements generated by the UM support are justified by 
one essential aspect of the LU-MZ application. In this applica-
tion there are just 16 zones but of huge size (in contrast, SP-MZ 
presents many zones but of much more smaller size). So, the ra-
tio between the data transfers associated to border elements and 
their computation is very favourable to the UM versions. While the 
LU-MZ-man version moves entire zones to perform border com-
146
putations, the LU-MZ-um version transfers just the memory pages 
that strictly contain the border elements. This explains the drop in 
the execution time for the Communication Period. Compared with 
the introduction of advises, the LU-MZ-um-advise version moves 
less data too with less overhead coming from the driver activity 
(e.g.: pages faults, update of TLB structures). This explains the ex-
ecution times observed in this version: 0.20 ms and 122.53 ms 
for Communication and Computation periods; total execution time 
is 36.25 s. We also include the numbers for the LU-MZ-um-all
version (includes pre-fetch operations) as it has been done with 
the SP-MZ application. The performance for this version is even 
worse than that observed with the LU-MZ-man version, mainly 
due to entire zones being moved by the pre-fetch operations, mis-
leading the driver and generating the same amount of communi-
cation as in the LU-MZ-man version plus additional driver over-
heads.

3.1.3. BT-MZ
The BT-MZ application presents very similar responses to the 

activation of the UM support, as those observed in the SP-MZ and 
LU-MZ applications. Therefore we skip the profiling results for this 
application. The conclusions are the same: the BT-MZ-um-advise
version runs faster mainly due to the fact that it requires less data 
transfers and does not incur significant driver interventions. Fig. 10
in its uppermost chart shows the execution time for the Compu-
tation and Communication periods as well as total execution time 
for all studied versions. For the BT-MZ-man version, the partial ex-
ecution time for the Communication and Computation periods are 
747.50 ms and 28.50 ms on each iteration of the application (for 
class D there are 500 iterations); total execution time is 194 s. For 
the BT-MZ-um version, the partial execution time for communica-
tion and computation periods are 762 ms and 25.50 ms on each 
iteration of the application; total execution time is 196.88 s. For 
the BT-MZ-um-advise version, the partial execution time for com-
munication and computation periods are 757 ms and 10.50 ms on 
each iteration of the application. Total execution time is 192 s. The 
introduction of advises reduces the execution time for the Commu-
nication Period, but introduces driver activity along the Computation 
Period. Combining both we explain why the UM versions perform 
similar to the manual version.



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150
Fig. 10. Execution time for BT-MZ versions man, um and um-advise. Input class D 
(1024 non-equally sized zones). Static scheduler (top graph) and Dynamic scheduler 
(bottom graph) over 4 GPUs. Left axis: partial execution time of an iteration of the 
Computation and the Communication Period. Right axis: total execution time.

However, BT-MZ is unique within the NPB-MZ suite: its input 
is composed of non equally sized zones, which leads to load un-
balance at its inter-zone parallelism level. If zones are distributed 
under a static scheduling, then GPUs receive a different amount 
of total work. UM allows for a straightforward implementation of 
other work scheduling schemes with no need of re-coding the ap-
plication. Changing the scheduler in the code in Algorithm 2-a for 
the inter-zone parallelism changes the zone distribution among 
GPUs without having to perform memory allocation operations and 
track where does each zone reside. We have implemented a dy-
namic scheduling which is applied to the Computation Period and 
tries to balance the Computation Period at the cost of introducing 
some synchronization overhead. Notice that the CPUs orchestrating 
the execution on the GPUs will eventually synchronize to obtain 
work (e.g.: zones) to offload it to the devices. We have imple-
mented a variant of this type of scheduling so that it memorizes 
the zone-to-GPU mapping after the first time the Computation Pe-
riod is executed. Every time after this initial step, the Computation 
Period is executed guided by the mapping obtained in its first iter-
ation. Fig. 10 in its lowermost chart depicts the execution time for 
the Computation and Communication periods as well as the total 
execution time for all studied versions under a dynamic sched-
ule with chunk equal to 1. We can see that the Computation Period
improves by 1.45x and 1.60x. Although, notice how the Commu-
nication Period for the manual version now performs worse. The 
reason for this is the dynamic scheduling completely changes the 
distribution of zones compared with static assignment. Adjacency 
is no longer maximized within the zone-to-GPU mapping (static 
scheduler does maximize adjacency [12]), so many more entire 
zone transfers have to be performed. In contrast, UM versions 
just move the memory pages that contain the border elements, 
not the entire zone. But the BT-MZ-um suffers from a significant 
driver intervention that is solved by the introduction of advises. 
In the BT-MZ-um-advise version the Communication Period recovers 
its original performance levels and the Computation Period is well 
balanced among GPUs.

3.1.4. Qualitative conclusions
We have seen that UM support has a positive impact on per-

formance (almost a 1.10 speedup factor for SP-MZ, 1.85 for LU-MZ 
and 1.5 for BT-MZ), but requires the programmer to encode es-
147
Fig. 11. Overall performance for SP-MZ, LU-MZ and BT-MZ applications for versions 
man, um, um-advise. STATIC and DYNAMIC,1 schedulers over 4 GPUs. Input classes 
B, C, D.

sential information regarding the specific location and access type 
(read/write) to the data structures. This introduces programmabil-
ity issues as the programmer has to code the application so that 
work distribution schemes (in this case a static/dynamic scheduler) 
are translated into data placement events. Although, we observe 
that the original non UM multi-GPU code also has to deal with 
a similar problem, it is limited to the memory allocation stage, 
where for each GPU the programmer needs to manually code its 
memory allocation, therefore statically binding which GPU will 
process which zone. In addition, significant improvements come 
from the fact that with UM all data transfers happen automati-
cally with no intervention of the programmer. Moreover, with UM 
only the strictly necessary memory pages are moved across the 
system, improving the original manual versions where entire zones 
are transferred.

Finally, UM allows the introduction of more convenient schedul-
ing schemes that solve the work imbalance that appears at the 
inter-zone parallelism level. The efforts for implementing dynamic 
schedulers on the manual version are much harder than in the UM 
versions, giving much less performance in return.

3.2. Overall performance

In this subsection we address the overall performance within 
the NPB-MZ suite. We show the speedup achieved by the UM ver-
sions with respect to the manual version.

3.2.1. SP-MZ
The uppermost chart of Fig. 11 depicts the performance for SP-

MZ application with input classes B, C and D executed by 4 GPUs 
using a static scheduling. Three versions are compared: SP-MZ-
man, SP-MZ-um and SP-MZ-um-advise. The usage of UM produces 
an improvement of almost 10% only when advises are introduced. 
The version SP-MZ-um presents some slowdown mainly because 
the devices’ driver has insufficient information about the optimal 
location of the memory pages for each zone. As discussed in Sec-
tion 3.1, memory pages associated to border elements are repeat-
edly transferred between the GPUs due to the border computation. 
In particular for the SP-MZ application, the relation between the 



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150
total amount of zone elements and border elements explains the 
magnitude of the UM effect. If this relation implies that moving 
the memory pages containing border elements almost corresponds 
to transferring the entire zone, then the performance effects of UM 
are minimum. This is the case for the SP-MZ application where the 
zone dimensions generate this relation (in SP-MZ we have many 
zones but of small size, see Table 1).

3.2.2. LU-MZ
The middle chart of Fig. 11 depicts the performance for LU-

MZ application with input classes B, C and D executed by 4 GPUs 
using a static schedule. We observe that only the UM versions 
that use advises expose a significant improvement. As it has been 
mentioned in the previous section, the version LU-MZ-um presents 
some slowdown mainly because the devices’ driver has insufficient 
information about the most convenient location of the memory 
pages for each zone. For LU-MZ-um-advises speedups are in the 
range of 1.25, 1.45 and 1.85. We observe that the larger the input 
class the greater the effect of the UM support.

In general, the relation between the overall size of each zone 
and the size of its borders determines the impact of the UM sup-
port. The main advantage of the UM versions is that communi-
cation is limited to the border elements. While non-UM versions 
transfer the whole zones, UM versions avoid transferring the whole 
zones because they transfer just the memory pages strictly con-
taining border elements. If the memory layout of the whole zone 
and the memory layout of the border elements are such that to 
move the border elements at page level we are almost transferring 
the whole zone, then the benefits of UM are minimum. This ex-
plains why in smaller input classes we observe less improvement 
than in larger input classes.

3.2.3. BT-MZ
The BT-MZ application presents a significant load imbalance in 

its inter-zone level of parallelism. The mesh zones are of very 
different size, and this imbalance increases with the input class. 
UM allows for an immediate implementation of appropriate work-
distribution schemes without requiring explicit memory transfers 
between GPUs.

The bottom-most chart of Fig. 11 depicts the performance for 
BT-MZ application with input classes B, C and D executed by 4 
GPUs using a variant of a dynamic scheduling with chunk=1. The 
variant is based on a memorizing capability of the scheduler that 
retains the mapping of zones to devices for subsequent executions 
[5,25,28]. The speedup numbers are obtained comparing the fastest 
version of the BT-MZ-man execution under a static schedule ver-
sus executions of the BT-MZ-man, BT-MZ-um and BT-MZ-um-advise
versions under the dynamic schedule with the memorize capabil-
ity.

Notice that the dynamic execution of the BT-MZ-man version is 
not taking any advantage of the new scheduling. With the dynamic 
scheduling the zone adjacency is no longer maximized in terms of 
zone and GPU affinity. Thus, many more entire zone transfers oc-
cur during the Communication Period of the application. This has 
been studied in Section 3.1.3. In Fig. 10 and for input class D we 
observe how for this version the dynamic scheduler increases the 
Communication Period by almost a 12x factor. In contrast, for the 
same version, the dynamic scheduling reduces the time of the 
Computation Period by a factor of 1.60x (from 747 ms to 465 ms). 
Version BT-MZ-um behaves similarly but due to different reasons. 
Its Computation Period is reduced by similar factor (from 762 ms 
to 524 ms, 1.45x) given the new work distribution scheme, but its 
Communication Period is increased by almost 10x. This is explained 
by the driver activity that is not able to capture what should be 
the most appropriate location for zone memory pages, given the 
amount of page movements associated to the border computation. 
148
The BT-MZ-um-advise version solves this issue, exposing speedup 
factors of 1.19, 1.15 and 1.50 for classes B, C and D respectively. For 
this version the improvements are justified by the correct place-
ment of zones and by the more efficient load balance.

4. Related work

Several studies have analyzed both performance and pro-
grammability of applications using the Unified Virtual Memory 
model. In [16], the impact of UM in applications is generally 
studied in several applications of different domains. At the pro-
grammability level, there have been studies that translate high 
level constructs, such as OpenMP directives into CUDA code using 
UM: in [18] the programming model support for UM in OpenMP 
is evaluated through an extended LLVM compiler that translates 
OpenMP directives into CUDA code.

At the operating system level, there have been proposals to 
manage and guide the page placement and optimize overheads and 
communications. Heterogeneous Memory Management (HMM) for 
the Linux kernel [11,26] provides mechanisms to mirror the CPU 
page table on the devices and to integrate the device memory sub-
system into the virtual memory address space.

CPU to GPU interconnects are another factor that directly im-
pacts the performance of data movement. There have been evalua-
tions of the interconnect network on modern GPU systems [13,14]. 
In [24] a micro-benchmark framework is developed a to evaluate 
the raw bandwidth performance with UM.

Some works apply advanced features of UM in the scope of 
Deep-Learning frameworks. One example is OC-DNN [3], an ex-
tended Caffe framework that uses UM to support the training 
of out-of-core batch sizes. They use memory advises to trigger 
data evictions and prefetch directives to trigger migrations. In 
general these techniques are found useful in optimizing training 
performance but incorrect use can lead to performance degrada-
tion.

Memory over-subscription in GPU memory requires efficient 
page eviction to make space for newly requested pages. [9] pro-
posed two pre-eviction policies using a tree-based neighbourhood
pre-fetching technique to select candidate pages. [15] introduced a 
memory management framework named ETC (Eviction, Throttling 
and Compression) that includes eager page pre-eviction, memory-
aware throttling to avoid memory thrashing and data compression 
at page level. These optimization techniques target future GPU de-
signs that require hardware modifications to be effective.

Work balance and loop scheduling have been studied for many 
types of applications and for both shared and distributed memory 
architectures. Adaptive loop schedulers have been proposed based 
on information gathered at runtime. In [5,25,28] loop schedulers 
combine information gathering (e.g.: runtime execution times or 
actual sizes of data structures) with the ability to memorizing the 
work assignment produced by the scheduler itself. Specifically for 
NAS-MZ benchmarks, [8] describes a feedback scheduler based on 
execution times to determine thread distribution and work assign-
ment for NUMA shared memory architectures.

We conclude this section with works that have ported the NPB 
or NPB-MZ suites to GPU systems. Dümmler and Rünger [7] evalu-
ated NPB-MZ benchmarks on hybrid CPU+GPU architectures. They 
decomposed the workloads and, using a static scheduling, dis-
tributed them among the CPU’s or the GPU. Their evaluations show 
a significant performance improvement with respect to both pure 
GPU and pure CPU implementations. But this work does not in-
clude any study on the usage of Unified Virtual Memory.

In [2], the authors compare a CUDA implementation of the NPB 
benchmarks with implementations in OpenCL and OpenACC. This 
work outlines some good CUDA programming practices applied 
to the NPB benchmark suite. These practices have been used in 



M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150
our parallelization of the NPB-MZ suite. In particular, all CUDA 
kernels have been coded with special focus in avoiding warp di-
vergence and maximizing the memory coalesced accesses at the 
warp level. Loop nests have been transformed to CUDA kernels 
where both the block grid and thread blocks have been defined 
in accordance to the memory layout of matrix-based data struc-
tures.

In [12] a multi-GPU parallelization is described and evaluated 
but without making usage of the UM support. Instead, this work 
focus on the relation between the work schedulers, data mapping 
on the devices and the cost of communications between the de-
vices for the NPB-MZ benchmark suite.

5. Conclusions

In this paper we have shown how the Unified Virtual Memory 
support improves both programmability and performance of multi-
GPU applications. Programmability is significantly improved due to 
two main changes that come from the use of UM. First, memory 
allocation can be coded once for all GPUs, avoiding specific mem-
ory allocation on a per device manner. Second, all necessary data 
transfers among the devices can be left to the device driver, avoid-
ing manual data transfers for communication phases in the appli-
cation. For this specific aspect, programmability is affected as we 
have observed that best performance levels are achieved when the 
programmer forwards information to the run-time system about 
the most convenient location for application data structures. This 
requires similar efforts as to those of per-GPU memory allocation.

In terms of performance, the main improvements come from 
the communication optimization that UVM can introduce. For pro-
grammers, moving data structures between the devices is naturally 
performed with no regard of how these data structures will be 
used. So, sometimes, entire regions of memory are transferred be-
tween GPUs. In contrast, UM is able to select the memory pages 
that are strictly necessary for a computation to be performed. 
This can lead to more optimized communications. We have ob-
served another positive aspect of the UM support. For applications 
with significant load imbalance between the devices, UM allows 
for an immediate implementation of appropriate work distribution 
schemes with no regard on whether memory allocation has been 
performed on each device. In particular, we have implemented a 
dynamic scheduler that outperforms a static scheduler using the 
per-GPU memory allocation scheme.

The current GPU implementation of the NPB-MZ suite can be 
optimized with data halo regions for border computations. During 
the communication phases only fine grain parallelism is exploited 
and data transfers are interleaved with computational bursts. These 
data transfers can be optimized with packing/unpacking actions of 
border data so that the communication overheads are minimized. 
The study of the UM support over this type of computations re-
mains as future work.

For the NPB-MZ benchmark suite, we have observed speedup 
factors that range from 1.10x to 1.85x of our UM-based paralleliza-
tion relative to our non-UM manual memory allocation versions 
on a system composed of 2 x IBM Power9 8335-GTH and 4 x GPU 
NVIDIA V100 (Volta).

Declaration of competing interest

The authors declare having no conflict of interest of any kind.

Acknowledgments

This work was supported by the Spanish Ministry of Science 
and Technology (PID2019-107255GB).
149
References

[1] M. Abadi, et al., TensorFlow: large-scale machine learning on heterogeneous 
distributed systems, http://download .tensorflow.org /paper /whitepaper2015 .pdf, 
2015.

[2] G. Araujo, D. Griebler, M. Denelutto, L. Fernandes, Efficient NAS parallel bench-
mark kernels with CUDA, in: 28th Euromicro International Conference on Par-
allel, Distributed and Network-Based Processing, 2020.

[3] A.A. Awan, C.-H. Chu, H. Subramoni, X. Lu, D.K. Panda, OC-DNN: exploiting ad-
vanced unified memory capabilities in CUDA 9 and Volta GPUs for out-of-core 
DNN training, in: Proceedings of IEEE 25th International Conference on High 
Performance Computing (HiPC), IEEE, 2018, pp. 143–152.

[4] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, P. 
Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, S. Weer-
atunga, The NAS parallel benchmarks, Int. J. High Perform. Comput. Appl. 5 (3) 
(1991) 63–73, https://doi .org /10 .1177 /109434209100500306.

[5] J.M. Bull, Feedback guided dynamic loop scheduling: algorithms and experi-
ments, in: D. Pritchard, J. Reeve (Eds.), Euro-Par’98 Parallel Processing, 1998, 
pp. 377–382.

[6] R.F.V. der Wijngaart, H. Jin, NAS Parallel Benchmarks, Multi-Zone Versions, 
Tech. Rep. NAS-03-010, NASA Ames Research Center, Jul 2003.

[7] J. Dümmler, G. Rünger, Execution schemes for the NPB-MZ benchmarks on hy-
brid architectures: a comparative study, in: M. Bader, A. Bode, H. Bungartz, 
M. Gerndt, G.R. Joubert, F.J. Peters (Eds.), Procs. of the Intl. Conf. on Parallel 
Computing, ParCo 2013, in: Advances in Parallel Computing, vol. 25, IOS Press, 
2013, pp. 733–742.

[8] A. Duran, M. Gonzàlez, J. Corbalán, Automatic thread distribution for nested 
parallelism in OpenMP, in: Proceedings of the 19th Annual International Con-
ference on Supercomputing, 2005, pp. 121–130.

[9] D. Ganguly, Z. Zhang, J. Yang, R. Melhem, Interplay between hardware 
prefetcher and page eviction policy in CPU-GPU unified virtual memory, in: 
Proceedings of the 46th International Symposium on Computer Architecture 
(ISCA), ACM, 2019, pp. 224–235.

[10] G. Giuntoli, J. Grasset, A. Figueroa, C. Moulinec, M. Vázquez, G. Houzeaux, S. 
Longshaw, S. Oller, Hybrid CPU/GPU FE2 multi-scale implementation coupling 
Alya and Micropp, 2019.

[11] J. Glisse, Redhat heterogeneous memory management, in: Proceedings of Linux 
Plumbers Conference, 2018.

[12] M. Gonzalez, E. Morancho, Multi-GPU parallelization of the NAS multi-zone 
parallel benchmarks, in: IEEE Transactions on Parallel and Distributed Systems, 
vol. 32, IEEE, 2020, pp. 229–241.

[13] Z. Jia, M. Maggioni, B. Staiger, D.P. Scarpazza, Dissecting the NVIDIA Volta GPU 
architecture via microbenchmarking, arXiv preprint, arXiv:1804 .06826, 2018.

[14] A. Li, S.L. Song, J. Chen, X. Liu, N. Tallent, K. Barker, Tartan: evaluating mod-
ern GPU interconnect via a multi-GPU benchmark suite, in: IEEE International 
Symposium on Workload Characterization (IISWC), IEEE, 2018, pp. 191–202.

[15] C. Li, R. Ausavarungnirun, C.J. Rossbach, Y. Zhang, O. Mutlu, Y. Guo, J. Yang, 
A framework for memory oversubscription management in graphics process-
ing units, in: Proceedings of the Twenty-Fourth International Conference on 
Architectural Support for Programming Languages and Operating Systems (AS-
PLOS19), ACM, 2019, pp. 49–63.

[16] W. Li, G. Jin, X. Cui, S. See, An evaluation of unified memory technology on 
Nvidia GPUs, in: IEEE/ACM International Symposium on Cluster, Cloud and Grid 
Computing, IEEE, 2015, pp. 1092–1098.

[17] S. Manavski, G. Valle, CUDA compatible GPU cards as efficient hardware ac-
celerators for Smith-Waterman string alignment, BMC Bioinform. 9 (Suppl 2) 
(2008) S10, https://doi .org /10 .1186 /1471 -2105 -9 -S2 -S10.

[18] A. Mishra, L. Li, M. Kong, H. Finkel, B. Chapman, Benchmarking and evaluat-
ing unified memory for OpenMP GPU offloading, in: Proceedings of the Fourth 
Workshop on the LLVM Compiler Infrastructure in HPC, ACM, 2017, p. 6.

[19] NVIDIA, NVIDIA. Tesla P100 white paper, 2016.
[20] NVIDIA, NVIDIA. CUDA C Programming Guide, 2019.
[21] NVIDIA, GPU-accelerated Caffe, https://www.nvidia .com /en -gb /data -center /

gpu -accelerated -applications /caffe/, 2020.
[22] NVIDIA, CUDA profiler users guide, https://docs .nvidia .com /cuda /pdf /CUDA _

Profiler _Users _Guide .pdf, November 2020.
[23] NVIDIA, CUDA ToolKit documentation, https://docs .nvidia .com /cuda /profiler-

users -guide /index .html, November 2020.
[24] C. Pearson, A. Dakkak, S. Hashash, C. Li, H. Chung, J. Xiong, W.M. Hwu, Eval-

uating characteristics of CUDA communication primitives on high-bandwidth 
interconnects, in: Proceedings of the 2019 ACM/SPEC International Conference 
on Performance Engineering, ACM, 2019, pp. 209–218.

[25] C.D. Polychronopoulos, D.J. Kuck, Guided self-scheduling: a practical schedul-
ing scheme for parallel supercomputers, IEEE Trans. Comput. C-36 (12) (1987) 
1425–1439.

[26] N. Sakharnykh, Unified memory on Pascal and Volta, in: GPU Technology Con-
ference (GTC), 2017, http://on -demand .gputechconf .com /gtc /2017 /presentation /
s7285 -nikolay-sakharnykh -unified -memory-on -pascal -and -volta .pdf.

[27] N. Sakharnykh, Everything you need to know about unified memory, in: GPU 
Technology Conference (GTC), 2018.

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibA99D02407E92C6D6DBBBC25FF16F978Fs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibA99D02407E92C6D6DBBBC25FF16F978Fs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibA99D02407E92C6D6DBBBC25FF16F978Fs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibD12C2CFEDE97244BB5CFD3847B3D4C63s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibD12C2CFEDE97244BB5CFD3847B3D4C63s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibD12C2CFEDE97244BB5CFD3847B3D4C63s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibD12C2CFEDE97244BB5CFD3847B3D4C63s1
https://doi.org/10.1177/109434209100500306
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib321FB50FF100AE49DBC6C3B25AB71EE3s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib321FB50FF100AE49DBC6C3B25AB71EE3s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib321FB50FF100AE49DBC6C3B25AB71EE3s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibDB53EAA538D9265A89BA4C8C47DD2AF2s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibDB53EAA538D9265A89BA4C8C47DD2AF2s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibDAF5AD5771BF61802EA05FE512D0406Cs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibDAF5AD5771BF61802EA05FE512D0406Cs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibDAF5AD5771BF61802EA05FE512D0406Cs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibDAF5AD5771BF61802EA05FE512D0406Cs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibDAF5AD5771BF61802EA05FE512D0406Cs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib6B4F48FFA828747AB69DD1D184FA67B5s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib6B4F48FFA828747AB69DD1D184FA67B5s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib6B4F48FFA828747AB69DD1D184FA67B5s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib1CE57B03FD4D1400E8F3E0F4FBD44903s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib1CE57B03FD4D1400E8F3E0F4FBD44903s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib1CE57B03FD4D1400E8F3E0F4FBD44903s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib1CE57B03FD4D1400E8F3E0F4FBD44903s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib82E87CE0ABE1897036A72689D9FDBD5Ds1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib82E87CE0ABE1897036A72689D9FDBD5Ds1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibA10AFFE88C1E48295712B4BB4C70DAD9s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibA10AFFE88C1E48295712B4BB4C70DAD9s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibA10AFFE88C1E48295712B4BB4C70DAD9s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib1FF61799BC5F4411597A0BA596E0C4F6s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib1FF61799BC5F4411597A0BA596E0C4F6s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib79938B709B8141D4E01EE3642F6D2DF9s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib79938B709B8141D4E01EE3642F6D2DF9s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib79938B709B8141D4E01EE3642F6D2DF9s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib0B70F10E8C0BC8C56D0BFB41BDF8924Ds1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib0B70F10E8C0BC8C56D0BFB41BDF8924Ds1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib0B70F10E8C0BC8C56D0BFB41BDF8924Ds1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib0B70F10E8C0BC8C56D0BFB41BDF8924Ds1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib0B70F10E8C0BC8C56D0BFB41BDF8924Ds1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib6E1C3DF964BCA8A4F526F47D0EF22E9Bs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib6E1C3DF964BCA8A4F526F47D0EF22E9Bs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib6E1C3DF964BCA8A4F526F47D0EF22E9Bs1
https://doi.org/10.1186/1471-2105-9-S2-S10
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib2505FBD39890C1C77BA13691D0CA091Bs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib2505FBD39890C1C77BA13691D0CA091Bs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib2505FBD39890C1C77BA13691D0CA091Bs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib99AB97AA7D67A9E140C72CC2B0271411s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibEF0D29AEE3A7708838E2C627792DBF47s1
https://www.nvidia.com/en-gb/data-center/gpu-accelerated-applications/caffe/
https://www.nvidia.com/en-gb/data-center/gpu-accelerated-applications/caffe/
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib0919E74714EA01FE213BCD268687C9C7s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib0919E74714EA01FE213BCD268687C9C7s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib0919E74714EA01FE213BCD268687C9C7s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib0919E74714EA01FE213BCD268687C9C7s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib6CAAED4A171670221F71EF47B9EBEA1Bs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib6CAAED4A171670221F71EF47B9EBEA1Bs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib6CAAED4A171670221F71EF47B9EBEA1Bs1
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib80FB3D2F90126333FF34F05540B7867Fs1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bib80FB3D2F90126333FF34F05540B7867Fs1


M. González and E. Morancho Journal of Parallel and Distributed Computing 158 (2021) 138–150
[28] Yong Yan, Canming Jin, Xiaodong Zhang, Adaptively scheduling parallel loops 
in distributed shared-memory systems, IEEE Trans. Parallel Distrib. Syst. 8 (1) 
(1997) 70–81.

Marc Gonzalez Tallada received the degree in 
computer science in 1996 and the PhD degree in 
computer science in 2003, both from the Universi-
tat Politècnica de Catalunya (UPC), Spain. In 2001, he 
joined the Department of Computer Architecture at 
UPC, where he is currently an associate professor. His 
research interests are related to programming models 
and compilers for High Performance Computing tech-
nologies.

Enric Morancho received the degree in computer 
science in 1992 and the PhD degree in computer sci-
ence in 2002, both from the Universitat Politècnica de 
Catalunya (UPC), Spain. In 1993, he joined the Depart-
ment of Computer Architecture at UPC, where he is 
currently an associate professor. His research interests 
include processor micro-architecture, memory hierar-
chy, awareness of architecture in programming and 

operating systems.
150

http://refhub.elsevier.com/S0743-7315(21)00167-2/bibECF712C4ECB93BF6537812CBBB74B133s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibECF712C4ECB93BF6537812CBBB74B133s1
http://refhub.elsevier.com/S0743-7315(21)00167-2/bibECF712C4ECB93BF6537812CBBB74B133s1

	Multi-GPU systems and Unified Virtual Memory for scientific applications: The case of the NAS multi-zone parallel benchmarks
	1 Introduction
	2 GPU parallelization of NPB-MZ benchmarks
	2.1 NPB-MZ benchmark suite
	2.2 Execution periods and kernel execution order
	2.3 Sources of parallelism
	2.3.1 Communication Period: intra-zone parallelism
	2.3.2 Computation Period: inter-zone parallelism
	2.3.3 Computation Period: intra-zone parallelism

	2.4 Evaluated NPB-MZ implementations
	2.4.1 Manual memory allocation
	2.4.2 Unified Virtual Memory (UM)

	2.5 Programmability assessment
	2.5.1 Zone placement
	2.5.2 Zone transfers


	3 Evaluation
	3.1 Performance characterization
	3.1.1 SP-MZ
	3.1.2 LU-MZ
	3.1.3 BT-MZ
	3.1.4 Qualitative conclusions

	3.2 Overall performance
	3.2.1 SP-MZ
	3.2.2 LU-MZ
	3.2.3 BT-MZ


	4 Related work
	5 Conclusions
	Declaration of competing interest
	Acknowledgments
	References


