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Resumen 

En la Industria de Proceso, como en otros ámbitos, la toma de decisiones se basa 

en la valoración de las consecuencias de dichas decisiones a través de modelos 

(implícitos o explícitos).  La escala y complejidad de los modelos necesarios dependen 

de la complejidad del proceso, del nivel jerárquico al que se toman las decisiones (p. 

ej.: gestión de la cadena de suministro, planificación de proceso, programación de 

operaciones, control,…) y del horizonte de tiempo considerado. El uso de modelos 

basados en principios básicos (First Principle Models – FPM) habitualmente permite 

predecir con precisión el comportamiento de un sistema y llevar así a decisiones 

fundamentadas y explicables. Sin embargo, su uso se ve obstaculizado por problemas 

prácticos, dado que en ocasiones requiere cálculos iterativos aún sin tener garantizada 

su convergencia a una solución factible. Estos problemas son más frecuentes a medida 

que se desciende en la jerarquía de toma de decisiones (p. ej.: control supervisor), 

especialmente si la resolución (optimización) del sistema implica muchos cálculos de 

simulación utilizando un FPM complejo (p. ej.: altamente no lineal, involucrando 

variables enteras, etc.). Una forma de superar estas dificultades consiste en aplicar 

técnicas basadas en “modelos subrogados” o sustitutos, construidos a partir de datos 

recopilados del proceso real, de datos previamente simulados (utilizando un FPM), o 

de una combinación de ambos. Aunque estos modelos se utilizan en muchas áreas, en 

el ámbito de la ingeniería química habitualmente se emplean solo para el diseño de 

procesos y en sistemas de optimización de estado estacionario. 

Esta tesis presenta un marco para el uso eficaz y eficiente de modelos 

subrogados, construidos mediante técnicas de aprendizaje automático, en la toma de 

decisiones en diferentes fases de la operación, el control y la optimización de un 

proceso. En este contexto, el Capítulo 3 presenta una metodología para la optimización 

de la operación en estado estacionario de procesos no lineales. El Capítulo 4 propone 

la utilización de metodologías basadas en el aprendizaje automático en problemas de 

optimización de operaciones sujetas a incertidumbre (optimización multiparamétrica). 

El Capítulo 5 extiende este planteamiento a la construcción de sistemas de control 

predictivo (MPC) explícito de procesos no lineales. El Capítulo 6 propone una 

metodología para la construcción sistemática de modelos subrogados en sistemas 

dinámicos no-lineales multi-variable, metodología que se aplica en el capítulo 7 a la 
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de optimización de procesos dinámicos (control óptimo de sistemas no lineales en 

estado no estacionario). Esta misma metodología se integra en el Capítulo 8 con 

técnicas de clasificación para su aplicación a la detección y diagnosis de fallos (Fault 

Detection and Diagnosis - FDD) de sistemas dinámicos multivariable. Finalmente, en 

el Capítulo 9 se presenta la aplicación de estas metodologías para el entrenamiento de 

sensores virtuales (“soft-sensors”) y su aplicación a procesos de producción por lotes 

que trabajan con condiciones iniciales cambiantes. Cada una de estas aplicaciones, y 

los prototipos resultantes, se han plateado después de una cuidadosa revisión de las 

aportaciones más recientes en estos campos, que ha permitido identificar las 

dificultades para la implementación de las técnicas existentes en sistemas prácticos de 

soporte a la toma de decisiones, y la forma de superar estas dificultades mediante la 

utilización de modelos alternativos, que se resumen en el Capítulo 1. 

La eficacia de las metodologías desarrolladas se ilustra a través del análisis de 

su aplicación a diferentes casos, tanto propuestos en esta Tesis como de referencia en 

los diferentes ámbitos de aplicación. Estos resultados han merecido su publicación en 

diferentes revistas científicas de primer nivel, así como su difusión a través de 

congresos internacionales, incluidas dos conferencias de invitadas.  
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Abstract 

In the chemical process industry, the decision-making hierarchy is inherently 

model-based. The scale and complexity of the considered models (e.g., enterprise, 

plant or unit model) depend on the decision-making level (e.g., supply-chain 

management, planning, scheduling, operation) and the allowable time slot (weeks, 

hours, seconds) within which model simulation runs must be performed and their 

output is analyzed to support the decision making. The use of high-fidelity models, 

which include detailed physics-based description of the process, is attracting wide 

interests of the process engineers. Since, these First Principle Model (FPMs) are able 

to accurately predict the real behavior of the process, leading to realistic optimal 

decisions. However, their use is hindered by practical challenges as the high 

computational time required for their simulation and the unguaranteed reliability of 

their consistent convergence. The challenges become prohibitive at lower levels of the 

decision-making hierarchy (i.e., operation), where decisions are required online within 

time slots of minutes or seconds entailing lots of simulation runs using such complex 

and highly nonlinear FPMs. Surrogate modelling techniques are potential solution for 

these challenges, which relies on developing simplified, but accurate, data-driven or 

machine learning models using data generated by FPM simulations, or collected from 

a real process. Although, there are progressive developments of surrogate-based 

methods in the chemical engineering area, they are concentrated in process design and 

steady-state optimization areas. 

This Thesis presents a framework for the proper and effective use of surrogate 

models and machine learning techniques in different phases of the process operation. 

The objective is to provide efficient methodologies, each supports the decision making 

in a specific phase of the process operation, namely; steady-state operation 

optimization, Model Predictive Control (MPC), multivariate system identification and 

multistep-ahead predictions, dynamic optimization, Fault Detection and Diagnosis 

(FDD) and soft-sensing. Each developed methodology is designated according to 

careful State-Of-Art (SOA) review that identifies the gaps and missing requirements 

to be covered. The SOA, identified gaps and the contributions of each methodology 

are summarized in Chapter 1 and detailed in the introduction of each of the following 

chapters. 
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 In this context, Chapter 3 presents a surrogate-based methodology for steady-

state operation optimization of complex nonlinear chemical processes modelled by 

black-box functions. Chapter 4 proposes machine learning-based methodologies for 

multiparametric solution of complex operation optimization problems subjected to 

uncertainty. Chapter 5 presents a data-based multiparametric MPC methodology that 

enables simple implementations of explicit MPC for nonlinear chemical processes. 

Chapter 6 proposes a data-driven methodology for multivariate dynamic modelling of 

nonlinear chemical processes and for multistep-ahead prediction. Chapter 7 suggests 

a dynamic optimization methodology for solving optimal control problems of complex 

nonlinear processes based on data-driven dynamic models. Chapter 8 shows a hybrid 

methodology to improve FDD of chemical processes run under time-varying inputs 

based on multivariate data-driven dynamic models and classification techniques. 

Chapter 9 presents data-driven soft-sensing methodologies for batch processes 

operated under changeable initial conditions. The effectiveness of the developed 

methodologies is proved by comparing their performances to those of classical 

solution procedures existing in the SOA, via their applications to different benchmark 

examples and case studies. The promising results and their sound analysis allowed to 

publish many papers in top-ranked journals and proceedings, and to present them at 

several top-ranked international conferences including two Keynote presentations. 
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Chapter 1: Introduction 1 

Chapter 1: Introduction 

Within the framework of Chemical Process Operations, computer-based simulation and 

optimization tools have become essential supports for any decision-making procedure. In 

many cases, these tools are based on First Principle Models (FPMs) of the process, which are 

used at the different operational levels to perform different functions. In order to address some 

of the main challenges that the use of these FPMs-based tools is currently facing, this thesis 

proposes alternative/complementary strategies based on the use of surrogate models and 

machine learning tools. 

This first chapter presents the context of the thesis (Section 1.1) and the specific 

challenges that have been addressed (Section 1.2); then, it summaries the stat-of-art available 

solutions for addressing these challenges in order to identify the gaps and the missing needs 

that will be covered by the thesis work (Section 1.3). After that, the chapter highlights the 

thesis objectives (Section 1.4.1) and contributions (Section 1.4.2), as well as the thesis 

structure (Section 1.5). 

1.1 CONTEXT: CHEMICAL PROCESS OPERATION OPTIMIZATION, ITS 

MAIN MODULES AND THEIR FUNCTIONS 

Process operation optimization is an important layer in the general decision-making 

hierarchy of chemical plants management. It receives, as inputs, the outcomes and decisions 

coming from higher level layers (i.e., supply chain optimization, planning and scheduling) 

(Marchetti, et al., 2014). These outcomes and decisions mostly include forecasts of prices and 

demands, production rate targets over long time periods (weeks/days), assignment of resources 

to activities (raw material allocation, tasks to units allocation, maintenance interventions, 

staffing), sequencing of activities and determination of starting and ending times for the 

execution over short periods of time (Muller, et al., 2017; Seborg, et al., 2016). Then, the 

process operation optimization layer provides as output: i) the real-time optimal values of the 

process variables (i.e., pressures, flow rates, cooling temperatures, etc.) at the which the plant 

and its units must operate to achieve the required performance, considering quality, capacity, 

safety and environmental restrictions and requirements and, more importantly, reacting to 

sudden and unexpected variations of the process or external parameters (e.g., equipment 

efficiencies, raw material characteristics, demand etc.), ii) detailed and timely orders to the 

basic equipment control systems to implement actions to maintain the plant units functioning 

at these set-points (or reference trajectories) against expected disturbances (e.g., small 
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fluctuation in the feed temperature) and iii) timely information about the process functionality 

state, i.e., if it is functioning under normal or abnormal conations, and about the possible type 

of fault that impacts the process leading to these abnormal  conditions.   

Figure 1.1 shows a schematic representation of the main modules/activities required for 

such a task, their usual activation sequence and the scales of the process models considered in 

each module, where each module and its associated model scale are highlighted with the same 

color. The following parts in this section discuss these main modules and the functions 

performed by each of them. 
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Figure 1.1. Process operation modules (right) and associated process model scales 

(left)). 
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1.1.1 Steady-state optimization and uncertainty handling 

The first module to be considered in the usual process operation decision-making 

sequence is the steady-state optimization, which aims at obtaining the optimal values of the 

process variables (temperatures, pressures, feed compositions, flowrates, valve opening, etc.) 

at which the plant and its units must operate in order to maximize certain performance criteria 

(e.g., efficiency, profit and/or operational cost) and to satisfy all the constraints (demand, 

resources availability, equipment capacities, environmental restriction, etc.) and requirements 

(product quality, production yields, safety, etc.) (Vaccari & Pannocchia, 2017; Biegler, 2010). 

This goal is achieved by solving, in real time, an optimization problem based on a detailed and 

rigorous steady-state model of the process (Shao, et al., 2019). Depending on the model 

characteristics, such as its structure, transparency (e.g., white, grey, black-box), availability of 

derivative information, and on the  formulations of the objective(s) and constraints of the 

optimization problem, different algorithms can be used, like derivative-free algorithms (e.g., 

Genetic Algorithms), where the explicit values of the objective(s) function are used to direct 

the optimization search, derivative-based algorithms (e.g., interior point algorithms), where 

the optimization search is directed based on the derivatives of the objective(s) with respect to 

the decision variables (Salback, 2004; Caballero & Grossmann, 2008), etc.  

On another hand, the presence of uncertainty sources in the system at different levels is 

unavoidable  (Acevedo & Pistikopoulos, 1997; Li, 2010; Jiao, et al., 2012), including model-

inherent uncertainty, related to the lack of knowledge about the exact values of  model physical 

parameters (e.g., kinetic rates, heat transfer coefficients) (Flemming, et al., 2007; Norbert, et 

al., 2017; Diangelakis, et al., 2017), process-inherent uncertainty, associated to fluctuations of 

the operating practices (e.g., feed stream concentrations, temperatures, pressures, recipes, 

processing time, equipment availability, equipment efficiencies) (Mesfin & Shuhaimi, 2010; 

Papathanasiou, et al., 2019), as well as  external  uncertainty (e.g.: resources characteristics, 

prices and demands).  

The first type of uncertainty (i.e., model-inherent) usually occurs in a slow and 

continuous/evolving manner, leading to the increase of the mismatch between the model 

predictions and the real process behavior along the time. To minimize the process-model 

mismatch, the values of the model parameters must be updated in a systematic manner at 

prescheduled periods of time (typically hour(s)) using reconciled estimates of the measured 

steady-state data of the plant variables (Fadda, 2017; Biegler, 2010). These reconciled 

estimates are obtained by applying data reconciliation and gross error detection techniques to 

the real data collected by the sensors in order to reduce, respectively, the effect of random 
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errors and sensor faults (bias, drifting, miscalibration, total failure, etc.) (Chaudhary, 2009). 

Other technologies allow to directly estimate the new values of the model parameters within 

the data reconciliation and gross error detection tasks  (Chaudhary, 2009).  

In contrast, the latter two types of uncertainty sources (i.e., process-inherent and 

external uncertainty) may occur in a sudden and unexpected way. Hence, many methods have 

been developed for handling these two types of uncertainty in optimization problems, most of 

them can be categorized into two main approaches: proactive and reactive (Medina-González, 

et al., 2020). The proactive approach aims at providing conservative optimal decisions 

minimizing the consequences of the uncertainty and variability on the performance measure(s) 

of the system (i.e., objective function(s)) (Jiao, et al., 2012). Stochastic programming and 

robust optimization are among the most popular methods in the proactive approach 

(Grossmann, et al., 2016). In stochastic programming methods, the uncertain parameters are 

dealt as stochastic variables with “a-priori” known probability distribution functions, whose 

parameters are estimated from historical data. In this context, the goal becomes to identify the 

optimal decision variables that maximize/minimize the expected value of the objective 

function(s) and achieve feasibility over the distribution of the uncertain parameters (Li, 2010). 

Robust optimization methods deal with unknown but bounded uncertain parameters and aim 

at finding the optimal solution that ensures the feasibility over the entire range of realizations 

of the uncertain parameters (Norbert, et al., 2017) 

On the other hand, the reactive approach is considered when it is necessary to, promptly, 

provide online update of the optimal values of the decision variables in response to real-time 

changes of the uncertain parameters value, which can be identified once unveiled. Since 

reactive approaches require providing the optimal solution for each specific realization of the 

uncertain parameters, they are preferred for the application in dynamic or online operation 

environments (Pistikopoulos, et al., 2007).  

Among the reactive methods, Multi-Parametric Programming (MPP) offers outstanding 

capabilities (Pistikopoulos, 2008): i) its solution provides simple mathematical expressions 

mapping the optimal decisions (variables and objective) over the entire space of the uncertain 

parameters, ii) once the uncertainty is unveiled, the optimal decisions can be easily and 

immediately calculated by these simple functions avoiding huge computational cost required 

by repetitive optimization procedure and iii) MPP is not only able to handle the uncertainty 

related to the process conditions, but also to the optimization problem parameters (e.g., relative 

weights or importance of different objectives). Therefore, MPP very well fits to the 

requirements of dynamic production and operations environment (i.e., the thesis context) 

(Pistikopoulos, et al., 2007).  
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1.1.2 Dynamic optimization 

Transient states can be experienced by continuous processes in situations like start-ups, 

shutdowns or transitions between different operational conditions that may be caused by many 

reasons. In these cases, as well as in batch processes, dynamic optimization (which is also 

called open-loop optimal control) is, instead, carried out, considering a dynamic model of the 

process (Banga, et al., 2005; Wang, et al., 2017). Dynamic optimization techniques allow the 

identification, in a fast and accurate way, of the optimal time-profiles of the process control 

variables that must be applied over a specific period of time (period of transition of a 

continuous process or period of a batch process) in order to drive the process to the required 

state at the end of this time period (Biegler, 2007). In case of continuous processes transitions, 

the required state is a steady-state, while in case of batch processes, it is typically the optimal 

batch performance at the end of batch time (e.g., to increase the production yield or to ensure 

product quality). 

1.1.3 Model predictive control 

After obtaining the optimal set-points of the plant, they are sent to the supervisory 

control module and, subsequently, to the distributed control module which are responsible of 

implementing them and holding the plant units operating at these set-points against expected 

process fluctuations, such as feed stream concentrations, temperatures and pressures (Mesfin 

& Shuhaimi, 2010; Papathanasiou, et al., 2019). In the case of batch processes/units or 

continuous processes in transient state, the optimal set-points become optimal reference 

trajectories, which the control system should track along pre-specified time horizons (i.e., 

batch time, transition time). Model Predictive Control (MPC) technologies are, nowadays, the 

backbone of the supervisory control modules in the chemical industries (Kouramas, et al., 

2011; Katz, et al., 2020), because they offer very efficient capabilities in front of other 

technologies, such as proportional integral derivative controllers or linearized quadratic 

regulators. MPC is capable of efficiently handling multivariable control problems that involve 

complicated interactions and relations between the process variables and treating constraints, 

e.g., bounds on the maximum and/or minimum values of the control inputs or output variables 

(Chaudhary, 2009). Additionally, MPC allows to incorporate economical and even 

environmental terms in the objective function of the involved optimization problem, such as 

the cost associated to the profiles of the control inputs to be applied (Chaudhary, 2009; Katz, 

et al., 2020). In other words, the objective function considered in the MPC numerical 

optimization problem is not just the error between the current state of the process and the 

required state (the optimal set-points or reference trajectories).  
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1.1.4 Fault detection and diagnosis 

Additional to the different sources of process/model uncertainties and fluctuations, 

whose undesired effects can be diminished by periodical parameter updating, repetitive steady-

stead optimization and control schemes, the process can be also affected by faults or 

malfunctions (Venkatasubramanian, et al., 2003a; Venkatasubramanian, et al., 2003b). A fault 

is an unexpected change of the process behavior with respect to its expected normal conditions, 

which hampers the process normal operation causing unacceptable deterioration of its 

performance that may even lead to dangerous operating conditions (Patton, et al., 1995; 

Calado, et al., 2001). Faults can be classified into three types (Venkatasubramanian, et al., 

2003a; Park, et al., 2020): i) sensor faults, which are, by terminology, related to the 

malfunction or failure of the sensors, such as drifting, miscalibration, biases, and freezing, ii) 

actuator faults that are associated to their inability to correctly interpret and convert the control 

signals, received from the controller, into appropriate forces (e.g., motor torque) needed to 

derive the system, such as control valve stuck-open and stuck-closed, and iii) process faults, 

related to malfunctions in the process/units, such tank leakage, equipment damage, sever 

unknown changes in feed streams characteristics, etc.  

The Fault Detection and Diagnosis (FDD) module plays an essential role in 

guaranteeing safety and reliability of industrial processes operation, due to its ability of early 

detecting faults occurrence and discovering their root cause (Park, et al., 2020). This 

contributes to avert sudden shutdowns, breakdowns or even catastrophic events, and 

eventually to avoid large economic losses due to production stop and/or replacement of spare 

parts (Amozeghar & Khorasani, 2016). A FDD system performs two main functions: first, 

detecting the occurrence of fault, as opposite to the process normal behavior and, second, 

diagnosing the fault type or characteristics (Patton, et al., 1995; Narasimhan, et al., 2008).  

1.1.5 Soft-sensing 

In order to perform the numerical analysis in most of the previously mentioned modules 

of the process operations (e.g., MPC, FDD) and to obtain realistically effective/optimal 

decisions, the availability of continuous and real-time measurements of the process variables 

(control/input and state/output) is a must.  These real-time measurements are used to 

continuously feed the model (e.g., values of the initial conditions of the real process state 

variables are required at each time step for the solution of the MPC problem, real time values 

of the process variables required to, continuously, feed the FDD system). But, for an important 

class of process variables, which are called Quality Indicator Variables (QIV), online and 

continuous measurements are not always attainable due to technological and/or economic 

limitations (Kadlec, et al., 2009; Lin, et al., 2007). On the contrary, in many cases QIV values 

are obtained through expensive and time-consuming offline sampling and laboratory analysis 
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(Zamprogna, et al., 2005; Desai, et al., 2006). As a result, large laboratory delay and human 

errors in the procedure may prevent reliable optimization, control, monitoring and supervision 

of the process (Liu et al., 2012).  

Soft-sensing techniques have been proposed as a promising solution that has proven its 

effectiveness in these situations (Kadlec, et al., 2009). Soft-sensors are computational 

techniques that provide online and continuous “estimations” of the process QIV values by 

exploiting the measurements of other variables of the process that are reliably and 

continuously recorded online with minimum cost by means of the physical sensors network 

(e.g., temperature, pressure, flowrate) (Hoskins & Himmelblau, 1988).  

1.2 IMPORTANCE AND CHALLENGES OF THE USE OF PROCESS 

FPMS IN CHEMICAL PROCESS OPERATION 

This section explores the importance of the process models in the previously mentioned 

process operation support modules, and highlights the challenges that frequently face and/or 

hinders their usage. 

1.2.1 Steady-state optimization and uncertainty handling 

Regarding the steady-state optimization module, there is a growing trend of using 

detailed and high-fidelity mathematical models of the process based on “first principles” 

(FPMs) (Kajero, et al., 2017). However, the development of such analytical models for most 

chemical, petrochemical and pharmaceutical processes is a challenging task due to the required 

deep knowledge, effort and time. As a result, specialized simulation software tools have been 

developed to model and simulate such complex processes, most of them appearing in black 

box modular style, e.g., Aspen and gPROMs (Quirante, et al., 2018). Their ease of usage for 

modeling comes with many practical drawbacks and computational obstacles when they are 

used for optimization, especially for large-scale systems (Norbert, et al., 2017; Kelly & 

Zyngier, 2017). For example, the optimization of a full-scale petrochemical plant (crude oil 

and gas treatment facility, refinery, etc.) based on its FPM could demand several hours to 

converge and, in many cases, it does not converge to an optimal solution (Salback, 2004; 

Kajero, et al., 2017). The aforementioned drawbacks and obstacles include: 

i) high nonlinearity due to the sophisticated phenomena typically involved in the FPM 

(thermodynamics, reactions kinetics, heat and mass transfer, etc.), 

ii) expensive computational cost required for their simulation due to the complexity of 

the solution procedure –e.g., iterative schemes and/or integration techniques- used to 

converge them (Garud, et al., 2017), and also to the huge number of equations 



 

Chapter 1: Introduction 9 

contained, e.g., a full-scale refinery model could contain millions of equations (Henao 

& Maravelias, 2011), 

iii) complex architectures, since most of them appear to the user in modular black box 

style involving intricate connections and recycles among the different units and, also, 

with no access to the embedded first principle equations (Caballero & Grossmann, 

2008), and  

iv) noisy calculations, which are introduced by these simulators (e.g., caused by the 

termination criteria) and hinders the efficient use of derivative-based optimizers, 

because of the bad estimates of the derivatives and, consequently, the poor 

optimization results (Quirante, et al., 2018).  

These obstacles and challenges can be easily magnified when optimization under 

uncertainty must be addressed in order to handle process-inherent and/or external uncertainty 

sources. In more detail, if stochastic programming or robust optimization (i.e., a proactive 

approach, see Section 1.1.1) are considered, additional challenges will include i) the large 

computational cost associated to the analysis of a large number of uncertainty scenarios, which 

significantly grows with the number of uncertain parameters, ii) the need of complete 

knowledge of the characteristics of the uncertain parameters to identify their types and 

probability distributions, which is unrealistic especially in dynamic environments and iii) the 

limitation that the provided solution becomes suboptimal for most of the realizations of 

uncertainties during the operation/production (Li, 2010; Pistikopoulos, 2008). On the other 

hand, the application of the most flexible and reliable reactive approach (i.e., MPP, which is 

preferred in dynamic or online operation environments as the ones targeted by this Thesis, see 

Section 1.1.1) requires a well-contracted white-box model of the process  (Pistikopoulos, et 

al., 2007). So, it cannot be applied when considering complex steady-state FPMs characterized 

by the aforementioned challenging attributes (high nonlinearity, black boxes, large number of 

equations, noisy, etc.). 

1.2.2 Model predictive control 

In the MPC scheme, an online dynamic optimization problem (i.e., open loop optimal 

control) is solved at each sampling period, based on a dynamic model of the process. Firstly, 

the dynamic model is fed/updated by the current real measurements of the state/output 

variables collected from the process, which represent the initial conditions of the model at this 

sampling period (Pistikopoulos, 2008). Secondly, the dynamic optimization problem is solved 

to find the optimal profile of the control input variables over the entire prediction horizon (an 

order of magnitude of sampling periods) (Rivotti, et al., 2012). Then, only the values of the 

calculated optimal control profile corresponding to the first sampling period are implemented 
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in the plant, and at its end, the state/output variables are measured and their values are used to 

set up the next open loop optimal control problem, and so on (Tenny & Rawlings, 2004). 

However, MPC technology faces a major challenge associated to the high computational effort 

required to repeatedly solve the online open loop control problem at each sampling period. 

And the solution of an open loop control problem requires the repetitive evaluation of the 

process dynamic model, which may become computationally unaffordable (Katz, et al., 2020). 

The situation becomes more challenging when a complex and highly nonlinear dynamic FPM 

of the process is to be considered, due to the complexity of the solution procedure –e.g., 

iterative schemes and/or integration techniques- required to solve such FPMs (Davis & 

Ierapetritou, 2008). 

Discretization techniques that transform dynamic FPMs from continuous-time (e.g., 

differential equations-based FPMs) to discrete-time representations and linearization 

techniques that linearize the nonlinear behavior, are used to reduce the complexity of such 

differential models allowing their smooth usage in MPC (Nagy, 2007). Even with the use of 

these auxiliary simplification methods (which typically implies additional effort, time and also 

deep mathematical knowledge and, also, leads to a decrease in the resulting model prediction 

accuracy in favor of its simplicity), the application of MPC to such linearized discrete state-

space FPMs can fail when dealing with large-scale and/or fast dynamic processes (Katz, et al., 

2018 ).  

1.2.3 Dynamic optimization 

As previously mentioned, dynamic optimization techniques, which are also referred to 

as open loop optimal control techniques, must be performed when dealing with continuous 

processes in transient state or batch processes (Diehl, et al., 2006; Wang, et al., 2017). 

Addressing a dynamic optimization problem requires an accurate dynamic FPM of the 

process/units, typically in the form of differential equations, which is able to predict the 

evolution of the proceed output or state variables in response to any given time-profile of the 

control input variables (Banga, et al., 2005). The problem typically involves a multifaceted 

objective, which is usually based on the final state of the system, but also on its evolution. 

Two types of methods are considered in the state-of-the-art for solving dynamic optimization 

problems  (Carrasco & Banga, 1997; Banga, et al., 2005). Indirect methods use the analytical 

necessary conditions from the calculus of variations to formulate a boundary value problem, 

which is usually very difficult to solve and requires a deep a priori knowledge of the nature of 

the problem (initialization, constraints structure, etc.), so they are usually inapplicable to the 

industrial practice (Srinivasana, et al., 2003). Alternatively, direct methods discretize the 

considered time domain, so as to transform the original infinite continuous optimal control 

problem into a finite constrained NonLinear Programming (NLP) problem, which is then 
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solved by appropriate numerical nonlinear optimization tools (e.g., Sequential Quadratic 

Programming (SQP), trust region search) (Banga, et al., 2005). In spite of their efficiency, 

practicality and popularity, direct methods can be hindered by the complexity of a dynamic 

FPM of the process, due to the demanding numerical techniques required for its solution (e.g., 

integration techniques) (Biegler, 2007).   

1.2.4 Fault detection and diagnosis 

Model-based FDD approaches have been widely used for chemical processes 

supervision (Venkatasubramanian, et al., 2003a), within which many FDD methods have been 

built on the basis of the dynamic state-space FPM of the process. Model-based FDD methods 

rely on what is named “analytical redundancy” (Patton, et al., 1994; Qin, 2012), through 

monitoring the extent of matching between the actual process measured features (e.g. 

state/outputs variables, coefficients or parameters) and the corresponding features calculated 

by means of a dynamic analytical model of the process, representing the normal or fault-free 

features. This results in error or residual signals between the model-estimated features and the 

actual process-measured features (Patan & Parisini, 2005; Isermann, 2005). The values of 

these errors indicate the extent of the process malfunctioning and, thus, they are used to detect 

and diagnose faults, by comparing them to threshold values for the errors, or using a more 

elaborated statistical analysis (Patton, et al., 1995; Narasimhan, et al., 2008; Caccavale, et al., 

2010; Elhsoumi, et al., 2011). Amongst model-based methods, observer-based, parity space-

based and parameter estimation-based methods are the most common. Model-based methods 

show great advantages when dealing with dynamic processes, where the monitored inputs and 

outputs variables are fed into a processor (i.e., diagnostic observer) that represents the 

knowledge about the process dynamics in order to generate a fault indicator /residual (Patton, 

et al., 1994; Elhsoumi, et al., 2011). However, they are associated with many shortcomings 

that complicate their implementation (Venkatasubramanian, et al., 2003a). First of all, the 

difficulties to create an accurate dynamic FPM of the process should be considered (Ardakani, 

et al., 2016a; Ardakani, et al., 2016c; Banu & Umab, 2011). Second, most of these methods 

are based on linear state-space models, whose effectiveness is reduced when applied to highly 

nonlinear complex processes, because they result in poor linear approximations 

(Venkatasubramanian, et al., 2003a; Serdio, et al., 2014). Finally, applications addressing 

large-scale processes would result in a high number of observers, which end up with solutions 

requiring an unaffordable computational effort if they must be used on-line 

(Venkatasubramanian, et al., 2003a).  
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1.2.5 Soft-sensing 

Finally, the early and traditional approach for soft-sensing in chemical processes rely 

on the use of dynamic FPMs that includes a detailed process description based on 

phenomenological knowledge  (Lin, et al., 2007; Jin, et al., 2014). These FPMs are used to 

predict/monitor the process behavior, either solely or using the information provided by 

physical sensors (e.g., for continuously adjusting their parameters). However, as previously 

mentioned, accurate and reliable FPMs of chemical processes are often unobtainable, 

especially for complex highly nonlinear ones because of the required deep knowledge about 

the process behavior (Jain, et al., 2007; Jin, et al., 2015).  

Furthermore, the available dynamic FPMs of the process/units are often developed 

under the assumption of favorable (i.e., ideal) working conditions, which are typically not 

encountered at industrial scale, which is characterized by uncontrolled disturbances, different 

operating conditions, continuously varying parameters (e.g. heat transfer coefficients) and, 

possibly, different  units/reactors geometries, etc. (Qin, 2012; Kajero, et al., 2017). Also, since 

the dynamic FPMs of the process/units typically do not consider the physical characteristics 

of mechanical and electrical components, connections and piping, which remarkably influence 

the real process, the accuracy of the FPMs-based soft-sensors predictions are reduced (Kadlec, 

et al., 2009; Jin, et al., 2014; Ali, et al., 2015).  

1.3 CHALLENGES TREATMENT METHODS, AND EXISTING GAPS 

This Section summarizes the State-Of-Art (SOA) methods and techniques used to 

minimize the drawbacks and challenges of the use of complex FPMs in each of the 

aforementioned process operation modules. Also, the section identifies some of the existing 

gaps with respect to the yet unresolved challenges of using complex FPMs in such applications 

or regarding other cases in which process real measurements are available without having a 

reliable FPM. Driven by these gaps, this Section also highlights the potential contributions of 

the thesis. 

1.3.1 Steady-state optimization and uncertainty handling 

In order to tackle the challenges associated to the use of complex FPMs in chemical 

processes operation optimization, the use of Surrogate Based Optimization (SBO) approaches 

have been proposed and received a big deal of attention (Quirante, et al., 2018). Roughly 

speaking, the basic idea of SBO is to use the original complex FPM for generating input-output 

data points (“computer experiments”) that are used to develop accurate, but simple and fast-

running, data-driven models (“surrogate models”), which are used instead of the complex FPM 
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in optimization problem (Ochoa-Estopier & Jobson, 2015). In most of the SBO methods 

proposed in the chemical process engineering area, two surrogate model types have been 

common choices, which are the Artificial Neural Networks (ANNs) and kriging models 

(Kajero, et al., 2017). ANNs offer universal and powerful approximation capabilities due to 

their flexible structure that can be adapted to capture complex nonlinear behaviors. On the 

other hand, kriging is able to provide high prediction accuracy with relatively smaller number 

of training data points, beside its outstanding capability of estimating an error or variance, 

which represents the uncertainty about the kriging model prediction. Nevertheless, in the SBO 

literature (Jones, et al., 1998; Jones, 2001; Zuhal, et al., 2019), it has been demonstrated that 

non-interpolating surrogate models (i.e., regression models, such as ANN) are unreliable in 

optimization, because they do not appropriately capture the shape of the function to be 

approximated, and it is usually better to use surfaces that interpolate the data with linear 

combinations of basic functions (e.g., kriging). 

In the chemical process engineering area, two main classes of SBO methods can be 

identified. The first class is based on partitioning the simulation model into different units or 

subgroups of units, for each of which a surrogate model is developed. The different surrogates 

are aggregated/linked to constitute the final approximate model of the process, based on which 

different optimization schemes have been designated  (Salback, 2004; Henao & Maravelias, 

2011; Quirante & Caballero, 2016; Quirante, et al., 2018). In most of these cases, the surrogate 

models must be retrained in each iteration with completely new datasets generated by the FPM 

simulation. This is because of the continuous modification of the surrogate models input 

domains during the optimization search as a consequence of shrinking the search area, each 

iteration, around the current/candidate optimal solution (i.e., refining the optimization search), 

in order to guarantee the accordance between the output domain of each surrogate model and 

the input domain of the subsequent/connected surrogate. The advantages of this class of SBO 

methods include i) the capability of handling large-scale systems by splitting them into small 

units/sections (i.e., surrogate models) and ii) the possibility to construct hybrid process models, 

which combines units or sections of the plant based on their simple and fast FPMs (e.g., 

splitters, pumps) with surrogate models of other complex units or sections (e.g., distillation 

columns, reactors).  Whereas their limitations are that they iteratively discard the previous 

training datasets and generate new sets for fitting new surrogate models, which can be 

computationally prohibitive in an online environment. Also, they do not consider the surrogate 

models uncertainty during the optimization search, and even when kriging surrogate models 

are used, they do not exploit the potential capabilities provided by their estimated variance.  

On the contrary, the second class of SBO methods (Palmer & Realef, 2002; Kempf, et 

al., 2012; Chia, et al., 2012; Ochoa-Estopier & Jobson, 2015; Ochoa-Estopier, et al., 2018) is 
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based on the development of a global surrogate model approximating the entire modular 

simulator or the flow-sheet of the process. In more details, the input and output variables of 

these global surrogate models are selected over the entire process flow-sheet as the variables 

of interest for the optimization problem formulation (i.e., variables representing the 

optimization decisions (input) and variables constituting the objectives and constraints 

(outputs)). During the optimization iterations, these global surrogate models are retrained with 

an updated dataset that includes the original training dataset and, in addition, very few points 

that represent information about the optimal solution obtained in the previous iteration. The 

advantages of this class of SBO methods are: i) they take into account the surrogate models 

prediction uncertainty (i.e., the predictors error), which is an essential need in SBO (Jones, 

2001; Zhang, et al., 2018), ii) they add efficient global exploration capabilities to the search 

mechanism by not only directing it to the minimum value of the objective predictor, but also 

to its maximum prediction error (Zuhal, et al., 2019), iii) the eventually obtained global 

surrogate model of the entire process/plant can be further exploited and used for different 

analysis (Kempf, et al., 2012) and iv) relatively few simulation runs of the original FPM are 

required for updating the surrogate models during the optimization search (Forrester & Keane, 

2009), which makes this SBO class more suitable for online application. Nevertheless, this 

class has some drawbacks such as the difficulty to construct global surrogate models that 

accurately capture the behavior of large-scale processes and, more importantly, the difficulty 

of handling constraints. 

In the SBO literature (Jones, et al., 1998; Jones, 2001; Zuhal, et al., 2019), it has been 

shown that even if an interpolating surrogate model is used (e.g., kriging), exploring the 

surrogate with an arbitrary optimizer can fail even to find local optima, because the surrogate 

model prediction uncertainty is not considered by the traditional optimizers (Zhang, et al., 

2018; Zuhal, et al., 2019). Consequently, there is a need for SBO methodologies that do not 

only consider the surrogate model prediction, but also consider the uncertainty about this 

prediction.   

On another side, the previously discussed sudden and uncertain variations of some 

process parameters poses more challenges to the steady-state operation optimization, and can 

harm the effectiveness of such SBO methods, because these surrogate models are trained by 

data generated from a FPM whose parameters are set at predefined specific values that lead to 

the best process-model match. So, any sudden change in the process parameters values makes 

the surrogate models are no longer valid and, consequently, the obtained optimal solution 

based on their analysis.  

Finally, up to the author’s knowledge, the literature, yet, doesn’t include proposals or 

studies for reducing the challenges that face the applications of MPP approaches for handling 
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uncertainty in the operation optimization of steady-state processes for which the available 

model is complex, highly nonlinear and/or black box. 

1.3.2 Model predictive control 

In order to overcome the limitations and challenges of the high computational burden 

required for solving the MPC problem when an expensive dynamic FPM of the process is 

considered, explicit MPC methods (also called MultiParametric-MPC (MP-MPC)) have been 

proposed (Pistikopoulos, 2008; Tian, et al., 2020).  

Explicit MPC aims at avoiding the online computations, by solving the MPC problem 

offline by means of a MPP formulation, which provides the solution in the form of very simple 

and “explicit” mathematical expressions able of calculating the optimal values of the control 

inputs the should be applied the next sampling step, as a function of the current values of the 

process state variables (Pistikopoulos, 2008). The obtained explicit functions take, in most 

cases, piecewise affine form, and act as explicit control laws that are employed online to 

calculate, in a very simple and computationally cheap way, the optimal values of the control 

inputs.  

However, again, further to the complex mathematical knowledge required to develop 

the MPP analysis (Rivotti, et al., 2012), the availability of a dynamic discrete-time linear state-

space model of the process is usually a necessity for the practical application of the explicit 

MPC (Pistikopoulos, et al., 2002; Kouramas, et al., 2011). This, again, may hinder the MP-

MPC usage in cases where the available process dynamic FPM is highly nonlinear, high 

dimensional, with a complicated structure (e.g., sequential simulation models) and/or black 

box (Rivotti, et al., 2012; Medina-González, et al., 2020). Model approximation and order 

reduction techniques have been proposed (Rivotti, et al., 2012); however, this may 

oversimplify the processes behavior and, consequently, degrade the controller performance. 

Additionally, the effort dedicated to this model simplification step should be also considered.  

1.3.3 Data-driven dynamic modeling for supporting control applications 

In most control, monitoring and supervision systems (e.g., MPC, dynamic optimization, 

FDD, etc.), a reliable and accurate dynamic model of the process able to rapidly predict the 

future values of the process outputs is a must (Nelles, 2001; Ali, et al., 2015). As mentioned 

before (Section 1.2.2), discretization and linearization techniques may help to reduce the 

complexity of dynamic FPMs and to obtain simpler discrete-time state-space FPM, however, 

this may not resolve the computational challenges in cases of large-scale and/or fast dynamic 

processes (Nelles, 2001; Boukouvala, et al., 2011). In other cases, reliable dynamic FPMs for 
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complex processes are not available, due to the limited knowledge about the sophisticated 

behaviors and complex phenomena characterizing these processes (reaction kinetics, thermo-

dynamic, etc.), while only real data collected from the process is available  (Bradford, et al., 

2018; Ali, et al., 2015).  

In both cases, system identification or data-driven dynamic modeling methods can be 

used to construct empirical dynamic models for predicting the future values of the process 

outputs (Nelles, 2001; Baraldi, et al., 2013). The data used to build these empirical models can 

be either generated from complex FPM simulations or measured from the real process (Kajero, 

et al., 2017). 

Many methods have been developed for linear dynamic system identification, but their 

application to nonlinear processes provides unsatisfactory results (Nagy, 2007). As a 

consequence, advanced data-driven nonlinear modelling techniques, such as ANNs (and their 

derivatives, e.g., radial basis-ANNs, recurrent-ANNs) and recently Gaussian Process (GP) 

models (Zhou, et al., 2015; Mattosa, et al., 2017), have been widely proposed to capture 

nonlinear dynamic relations between the nonlinear process inputs and outputs.  

ANNs have become a popular choice due to their universal approximation abilities 

(Himmelblau, 2000; Poznyak, et al., 2019). A significant number of successful applications of 

ANNs to dynamic modelling are reported over a wide spectrum of fields (Nelles, 2001; 

Masters, 1993; Himmelblau, 2000). Especially in the chemical process engineering area, 

ANNs have been extensively used as Nonlinear AutoRegressive eXogenous (NARX) models 

for dynamic modelling and system identification of both univariate (single output) (Nagy, 

2007; Sadeghassadi, et al., 2018; Poznyak, et al., 2019) and multivariate (multi-output) 

systems  (Adebiyi & Corripio, 2003; Caccavale, et al., 2010; Li & Li, 2015; Lee, et al., 2018). 

But their usage has two main practical drawbacks: i) the large effort required to select a good 

network structure (Kajero, et al., 2017), and ii) the curse of dimensionality (Ažman & Kocijan, 

2011).  

Recently, GP models have shown promising performance in dynamic modelling and 

system identification in terms of high prediction accuracy and ease of their parameters tuning, 

besides, their abilities to reduce the previously mentioned limitations of ANNs (Deisenroth, et 

al., 2009; Ažman & Kocijan, 2011). This is due to their nonparametric nature: they do not 

approximate the system by fitting the parameters of a selected structure or functional shape 

but, instead, they search for relationships among the measured data through a correlation 

function/model (Boukouvala, et al., 2011). Therefore, the number of the metamodel 

parameters to be identified is significantly low compared to other parametric models (e.g., 

ANNs models) and, consequently, the size of the required set of training data is significantly 
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reduced (Ažman & Kocijan, 2011). Besides, GP models offer high tuning flexibility 

(Boukouvala, et al., 2011; Rasmussen & Williams, 2006).  

In most of the literature studies, GP models have been proposed for univariate dynamic 

modeling of nonlinear chemical processes (Ažman & Kocijan, 2011; Zhou, et al., 2015), where 

they are employed as NARX models to predict the future value - over one step-ahead - of an 

output of interest as a function of the process current inputs and output values. The developed 

model is, then, used to perform multistep-ahead prediction via recursive calculation, where the 

predicted output at the current time is fed-back to the model as a part of its input for the next 

time step prediction. Very few works have extended the GP and kriging capabilities to 

multivariate dynamic modeling of chemical processes: Hernandez and Grover (2010) 

Boukouvala, et al. (2011) and Bradford, et al. (2018). However, these works share common 

limitations: i) they have been validated considering processes characterized by very 

smooth/steady dynamics, without any influencing control/external inputs (Hernandez & 

Grover, 2010) or with very simple changes in them (Boukouvala, et al., 2011), ii) they 

provided simple Markovian state-space models and they have not illustrated the ability of their 

methodologies to develop dynamic models with delayed/lagged inputs, iii) they presumed that 

a FPM is always available, which is combined with Design Of Computer Experiments (DOCE) 

methods to optimally select the training datasets, and iv) the robustness of their methodologies 

to handle different case studies, and their flexibility to integrate different metamodel types are 

not explored.  

An efficient dynamic modelling methodology should be able to handle the challenges 

usually encountered in real processes, which are : i) the existence of  many external inputs that 

control or influence the process causing significant changes in its outputs behavior, ii) the 

possibility of incorporating lags in the model inputs in order to capture possible delayed 

behavior of the process itself, and/or to compensate for missing repressors (Espinosa & 

Vandewalle, 1998a; Espinosa & Vandewalle, 1998b), iii) handling practical situations, in 

which real data collected from the process is the only source of information available (i.e., no 

FPM).  

1.3.4 Dynamic optimization 

As previously mentioned in Section 1.2.3, direct methods are, in practice, the most 

common techniques for solving dynamic optimization problems. Direct methods are classified 

according to the variables to be discretized (Wang, et al., 2017). Sequential approaches (also 

known as Control Vector Parameterization (CVP)) discretize only the control variables in the 

form of piecewise low order polynomials, and then a NLP optimization problem is carried out 

in the space of the discretized control variables, which requires the successive evaluation 
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(simulation runs) of the dynamic FPM of the process during its solution. On the contrary, 

simultaneous approaches discretize both control and state variables by approximating them by 

a family of polynomials on finite elements  (Diehl, et al., 2006), so they avoid the inner 

evaluation of the differential FPM, although they result in a NLP problem of a very large-scale 

(due to the presence of state variables together with the control variables as optimization 

decisions (Banga, et al., 2005; Carrasco & Banga, 1997)). Besides, they require the 

introduction of extra constraints to enforce the continuity of the discretized state variables 

(Diehl, et al., 2006).   

The sequential strategy is straightforward and relatively easy to construct and to apply, 

and results in a NLP optimization problem of a much reduced size (Carrasco & Banga, 1997; 

Banga, et al., 2005; Diehl, et al., 2006; Biegler, 2007). However, a major challenge that faces 

the sequential approach is the huge computational effort associated to a large number of 

evaluations of the nonlinear process model. Since each evaluation implies the integration of 

this differential model using expensive integration techniques (Diehl, et al., 2006; Biegler, 

2007). This challenge is amplified in cases of complex, large-scale and/or highly nonlinear 

problems (Srinivasana, et al., 2003), and the computational cost may become unaffordable if 

a fast identification of the process control profiles is required, which is the case in many 

industrial applications (transitions between desired operating conditions, response to sudden 

disturbances or unexpected events, model based control, etc.) (Nagy, 2007).  

With respect to the simultaneous strategy, it is not facing direct complications regarding 

the default/classical use of FPMs (i.e., simulations and the required computational time), 

because they discretize both the control and the state variables. However, they face obstacles 

associated to the very large-scale of the NLP problem resulting from this discretization, which 

includes a large number of equality and inequalities constraints and a potentially large number 

of degrees of freedom (Biegler, 2007).  

Finally, it is worth highlighting that, in the chemical engineering area, the use of data-

driven techniques has been rarely proposed in the literature to support dynamic optimization 

tasks. 

1.3.5 Fault detection and diagnosis 

In order to cope with the challenges associate to the use of FPMs for FDD of chemical 

processes (Section 1.2.4), knowledge-based and data-based FDD approaches have been 

proposed and, also, widely used as powerful alternatives (Calado, et al., 2001; 

Venkatasubramanian, et al., 2003b).  
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Knowledge-based approaches rely on the development of some diagnostic rules and the 

establishment of rule-based expert systems, which necessitate a deep knowledge about process 

structure and components under the normal (fault-free) and the different possible faulty 

situations and scenarios (Calado, et al., 2001). However, knowledge acquisition is generally a 

challenging task (Calado, et al., 2001).  

The data-based FDD approaches rely on using data-driven Classification Techniques 

(CTs), e.g., Support Vector Machines (SVMs), Gaussian Naïve Bayes classifiers (GNBs), 

Decision Tree (DT), ANNs, etc. These approaches have shown a great flexibility and 

robustness for the FDD of nonlinear chemical processes without requiring any mathematical 

model of the process  (Askarian, et al., 2016; Ardakani, et al., 2016c). These CTs are trained 

based on pattern recognition principles from process historical data, including information 

about normal and different faulty situations (Patton, et al., 1994). Then, the trained CT can be 

used for the process supervision in order to detect and diagnose possible faults from the process 

output measurements.  

However, these CTs also suffer from serious limitations. The first one is that the 

classification of faults is based only on the measurements of the process outputs, disregarding 

any knowledge about the system dynamics  (Caccavale, et al., 2010). As a result, they are 

mostly used for FDD of steady-state processes, where the process is expected to operate under 

constant conditions/controls (Patton, et al., 1994; Amozeghar & Khorasani, 2016), while it is 

usually considered that, in dynamic systems, CTs could easily produce false alarms by 

diagnosing the changes in the processes outputs as faults. This is due to the lack of information 

about the dynamics governing the relation between the process inputs and outputs. The second 

limitation is the sensitivity of the CTs to the measurement noise, which makes the errors that 

very often contaminate the measurements to create false diagnosis and alarms. These usual 

errors may be random (e.g., sensors white noise) or not (e.g., outliers / biases due to 

instruments malfunctioning, miss-calibration or poor sampling) (Patton, et al., 1994; Ardakani, 

et al., 2016b).  

Therefore, some works have proposed the use of data-driven dynamic observers 

(mostly, based on ANNs) to mimic the system dynamic behavior, identifying the underlying 

dynamic mapping between the system inputs and outputs (Honggui, et al., 2014; Smarsly & 

Petryna, 2014; Serdio, et al., 2014; Tayarani-B. & Khorasani, 2015; Amozeghar & Khorasani, 

2016). These approaches generate a residual vector between the data-driven observer 

estimated outputs and the process measured outputs which are then used to detect and isolate 

faults using a threshold value for each residual component or applying some statistical 

analysis.  
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Few works (Amozeghar & Khorasani, 2016) have combined these data-based predictors 

(and the generated residuals) with CTs to automate and improve the FDD task. However, in 

most of these works, CTs are trained to isolate each fault type when the residual component 

of a specific output exceeds a specific threshold value. This approach neglects the basic and 

most important characteristic of any CT, which is its ability to identify a certain pattern in the 

features (i.e., residuals), regardless of the specific values of the pattern. Furthermore, the 

identification of a specific threshold value for each residual component as a fault indicator is 

not a trivial task, as it requires a prior knowledge about the process nominal behavior besides 

its behavior under the effects of the fault, and may be even infeasible if scenarios with time-

varying inputs are considered. 

1.3.6 Soft-sensing 

Data-driven soft-sensing methods have been proposed, also, to alleviate the 

complications encountered when using FPMs for soft-sensing in chemical processes. They are 

gaining wide interest in the process industry, because of their practicability, robustness and 

flexibility to be developed and applied to a wide range of processes, in addition to their 

independence from the need to a process mathematical model (Hoskins & Himmelblau, 1988). 

They are based on the construction of a data-driven model able to accurately approximate the 

relation between the QIV and other online variables  (Bonne & Jorgensen, 2004; Facco, et al., 

2009).  

In the literature, data-driven soft-sensors have been vastly applied to continuous 

processes, in order to predict the process steady-state behavior, although they have shown 

limitations dealing with the transient states of the process (e.g., start-up and shut-down)  

(Facco, et al., 2009; Wang, et al., 2016). Comparatively, the development and application of 

data-based soft-sensors to batch processes, which are always in transient state, have been 

found to be relatively more complicated  (Bonne & Jorgensen, 2004; Liu, et al., 2012).  

In this scope, the combination of principal component regression and partial least-

squares techniques is the most common method for building data-based soft-sensors for linear 

processes (Jin, et al., 2014; Zamprogna, et al., 2005).  

With respect to nonlinear processes, ANNs-based approaches (Masters, 1993) have 

been often adopted, due to their universal approximation and efficient generalization 

performance (Yan, et al., 2004; Kadlec, et al., 2009). Several types of ANNs have been 

efficiently applied for soft-sensing, as feedforward ANNs, radial basis ANNs and fuzzy ANNs  

(Nelles, 2001; Nagy, 2007). These applications, however, reported the ANNs problems such 

as the required laborious effort for selecting the network structure and configuration (e.g., 
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number of layers, number neurons in each layer, transfer function type, training method) 

(Azman & Kocijan, 2007; Davis & Ierapetritou, 2007).  

The Support Vector Regressions (SVR) model has been also proposed for soft-sensing 

in batch processes  (Yan, et al., 2004; Desai, et al., 2006; Kadlec, et al., 2009). SVR techniques 

have very good generalization properties and quickness of tuning (associated to the 

optimization problem solution time for the support vectors selection) (Jain, et al., 2007; 

Kadlec, et al., 2009). However, the effort and the time required to select the parameters of the 

SVR model –prior to the optimization-, as the penalty cost, the error margin and the variance 

become a major limitation (Forrester, et al., 2008).  

Recently, GP models are attracting huge attention in the soft-sensing of batch processes 

area, and have been applied either to continuous  (Grbić, et al., 2013; Wang, et al., 2016; Liu, 

et al., 2016) or to batch processes  (Jin, et al., 2015), offering high prediction accuracy and 

tuning flexibility while requiring a relatively small set of the training data. But the 

computational effort and capabilities required for the GP model parameters tuning could be a 

serious shortage, especially for high dimensional cases and/or large training datasets. The 

kriging models (Krige, 1951; Kleijnen, 2017), which are considered as specific 

forms/applications of the GP models, have never been introduced to the area of the soft-sensing 

of batch chemical processes yet.  

Most data-driven soft-sensing approaches for batch processes proposed in the literature 

have not considered the initial conditions of the batches in their design, since they have been 

tailored for batch processes operated under fixed initial conditions. These approaches have 

addressed the batch-to-batch data variability -due to a very slight change in the initial 

condition- from the uncertainty and noise perspectives: input-output training data from 

different batch runs are assumed to have random errors due to undesired disturbances, which 

are expected to be representative of a population of batches that are swarming around the mean 

behavior of the process or what is called the “reference batch” or the “golden batch” (Kadlec, 

et al., 2009). Then, the correct underlying process behavior can be identified, thanks to the 

regularization abilities of the employed machine learning techniques, which enable them to 

learn from this uncertain and perturbed data, and to filter out the assumed noise.  

1.4 OBJECTIVES AND CONTRIBUTIONS  

This Section states the general objectives of the Thesis (Section 1.4.1 ) and delineates 

the specific contributions (Section 1.4.2) that the thesis presents in order to realize/constitute 

these objectives. 



 

22 Chapter 1: Introduction 

1.4.1 Objectives 

Directed by the challenges and criticalities facing the use of FPMs in chemical processes 

optimization, supervision and control (Section 1.2) and the defined gaps in the SOA 

methodologies for treating these challenges (Section 1.3), this section delineates the main 

objectives of the thesis. 

➢ Objective 1: the implementation of different state-of-art techniques for DOCE and 

sequential sampling, data-driven models (also referred to as -depending on the usage 

context- machine learning models, metamodels or surrogate models) and model validation 

and assessment procedures.  

➢ Objective 2: the development of a framework for data-based modeling of steady-state 

processes, which integrates the previously implemented techniques and methods (in 

Objective 1). This framework is aimed at the flexible and robust construction of accurate 

machine learning or surrogate models of different types, and also the comparison between 

them, to select the best surrogate model type for the case study to be addressed. 

➢ Objective 3: the development of new methods for steady-state operation optimization of 

processes based on surrogate models, which enable the optimization of complex chemical 

processes that are difficult to be optimized through existing/classical optimization 

methods. These difficulties can be due to the complexity and high nonlinearly of the 

process model and/or the existence of uncertainty in some of the process model 

parameters. 

➢ Objective 4: the development of an efficient and generic framework for data-driven 

dynamic modelling and emulation of multiinput-multioutput, complex and nonlinear 

chemical processes. The framework should be aimed at providing dynamic models able to 

accurately and speedily predict the future behavior of the process outputs over large time 

horizons. 

➢ Objective 5: the integration of these data-driven dynamic models in efficient 

methodologies for the enhancement of the process monitoring (e.g., a soft-sensing 

methodology), control (e.g., a dynamic optimization methodology) and supervision (e.g., 

a FDD methodology). 

1.4.2 Thesis contributions  

This section defines the specific contributions that this thesis presents in order to cover 

the gaps and missing requirements highlighted in Section 1.3. Also, the relations between each 

contribution and the previously stated objectives are outlined.  
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Figure 1.2 illustrates the locations of each contribution with respect to the process 

operation modules and associated process model scales. 

 

Figure 1.2. Localization of the thesis contributions (red arrows) within the process 

operation modules and associated process modes scales. 

 

• Contribution I:  development of a SBO methodology for the constrained 

optimization of complex, nonlinear steady-state processes, in which the 

objective function and/or the constraints are represented by black-box models. 
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The methodology expands the capabilities of the second class of SBO methods 

by efficiently handling constraints, and is aimed to assist in the hour-to-hour or 

day-to-day operation optimization of complex chemical processes, 

guaranteeing the reliability of the computations and the quick convergence to 

the optimal solution. This contribution is related to Objectives 1, 2 and 3. 

• Contribution II: a novel, easy-applicable and generic data-driven 

methodology for the multiparametric solution of continuous and mixed integer 

optimization of chemical processes operation, influenced by traceable 

uncertainty sources, has been developed. The methodology is aimed at 

providing very accurate and fast-running data-based models (referred to as 

MultiParametric Metamodels (MPMs)) that approximate the multiparametric 

behavior of the optimal solution over the uncertain parameters space. The 

purpose is to overcome the obstacles that face classical MPP when applied to 

process operation optimization problems, where complex, highly nonlinear 

and/or black-box models are used.  This contribution is also related to 

Objectives 1, 2 and 3. 

• Contribution III: it consists in the development of a novel Data-Based 

MultiParametric -Model Predictive Control (DBMP-MPC) methodology, 

which enables simple implementations of explicit MPC in situations when the 

available dynamic FPM model of the process is complex, highly nonlinear 

and/or black-box, and/or when the deep mathematical knowledge required to 

develop traditional MP-MPC techniques is not obtainable. This contribution is 

related to Objectives 1, 2 and 5. 

• Contribution IV:  development of a data-driven methodology for multivariate 

dynamic modeling and multistep-ahead prediction of nonlinear chemical 

processes using machine learning models. The method overcomes the main 

limitations currently attributed to the existing approaches in terms of a) the 

ability to provide accurate data-driven dynamic models for general multi-

input/multi-output processes that may involve complex dynamic behaviors 

(complex control input profiles, delayed behaviors, etc.), b) the ability to 

simulate the process future outputs over large time horizons, c) the capability 

to accommodate different types of data modeling techniques and d) the ability 

of handling different situations, either when a limited set of input-output data 

signals are available, or when the training data can be optimally generated 

using a FPM and DOCE techniques. The methodology also introduces the use 

of the kriging model for the multivariate dynamic modeling in the chemical 
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process field in a robust and flexible manner. Finally, the methodology provides 

a novel DOCE procedure for dynamic modeling, considering the purpose of the 

simplification and complexity reduction of expensive dynamic FPMs. This 

contribution is related to Objectives 1, 2 and 4. 

• Contribution V: development of a data-driven CVP methodology based on 

multivariate dynamic data-driven models (contribution IV) and a sequential 

dynamic optimization strategy. The methodology is aimed at enhancing the 

solution of open-loop optimal control problems in situations where a complex 

FPMs of the process is to be used and also to assist in situations where a 

reliable dynamic FPM of the process is not available. This contribution is 

related to Objectives 1, 2 and 5. 

• Contribution VI:  involves the development of a novel hybrid FDD 

methodology that combines a dynamic observer based on data-driven 

multivariate dynamic models (contribution IV) and CTs. The purpose is to 

improve the data-driven FDD of nonlinear chemical processes operated under 

time-varying inputs and, subjected to different types, severities and styles 

(abrupt and incipient) of faults. This contribution is related to Objectives 1, 2, 

4 and 5. 

• Contribution VII: includes, first, the development of a soft-sensing 

methodology for a special type of batch processes that is rarely explored in the 

area of soft-sensing: those batch processes that show a characterized 

variability in their initial settings or conditions (processes aiming to manage 

raw materials whose specifications or properties differ from one batch to 

another, or when different product qualities/quantities are to be generated). 

Hence, the objective is to develop a soft-sensor able to estimate the QIVs along 

the batch run under any set of initial conditions in the expected operating range. 

Second, development of an efficient soft-sensor for a real batch pilot plant for 

waste water treatment, which involves an Advanced Oxidation Process (AOPs) 

based on the photo-Fenton reaction. Due to the complexity and high 

nonlinearity of these processes, the best way to address their analytical or 

phenomenological modeling is still under debate in the scientific and research 

community; while many data-based modelling studies of these processes have 

been accomplished from the point of view of experimental design in laboratory 

scale, their monitoring and control have been never addressed from a soft-

sensing perspective, i.e. at industrial or pilot plant scale. Third, exploring the 

advantages of the kriging technique –as a kind of GP metamodels- for soft-
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sensing in the chemical engineering area. This contribution is related to 

Objectives 1, 2, 4 and 5. 

1.5 THESIS STRUCTURE 

This section outlines the thesis structure, which is composed by additional nine 

Chapters. Excluding Chapter 2 (tools and techniques) and Chapter 10 (conclusions and future 

works), each of the remaining Chapters (from 3 to 9) addresses one of the contributions 

previously delineated in Section 1.4.2. Therefore, the Thesis structure is as follows: 

• Chapter 2 overviews the general basics of the tools and techniques used in this 

thesis for building and developing the novel methodologies. These techniques 

include DOCE, machine learning models for regression (i.e., surrogate model), 

machine learning models for pattern recognition (i.e., classifiers), clustering 

methods and optimization algorithms. 

• Chapter 3 (Contribution I) reviews in detail the literature of SBO of chemical 

processes and presents a new SBO methodology for the steady-state operation 

optimization of complex nonlinear chemical processes, in which the objective 

function and/or the constraints are represented by black-box functions. The 

proposed approach consists in replacing the complex, nonlinear, black-box 

model of the processes built based on first principles with global kriging 

surrogate models. Then, an active optimization strategy involving a sequential 

sampling procedure, based on the Expected Improvement (EI) (for 

unconstrained optimization) or the Constrained Expected Improvement (CEI) 

(for constrained optimization) techniques, is used to explore the search space of 

the decision variables and to adapt, accordingly, the surrogate models, so as to 

reach a global solution for problem. The methodology is tested and compared 

with classical optimization procedures based on sequential quadratic 

programming. Both have been applied to three benchmark mathematical 

examples and to two case studies of operation optimization of chemical 

processes modeled by modular black-box simulators. 

• Chapter 4 (Contribution II) presents a general overview on the existing 

methods for process operation optimization under uncertainty, and presents two 

novel machine learning-based methodologies for the multiparametric solution 

of such problems. The first method addresses continuous optimization 

problems, and aims at developing global MultiParametric Metamodels 

(MPMs), which are trained using input-output data (uncertain parameters-

optimal variables and objective), to approximate the multiparametric behavior 
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of the optimal solutions over the entire space of the uncertain parameters. The 

second method targets general Mixed-Integer optimization problems. The 

method models the multiparametric behavior of the continuous variables by 

using clustering techniques in order to isolate or highlight those potential local 

regions of the uncertain parameters space over which the optimal solution 

behaves significantly different. Then individual MPMs are trained to 

approximate the optimal solution behavior of each continuous decision variable 

over each of the identified local regions. For integer decision variables, the 

method harnesses classification techniques to predict the optimal values of 

these integer variables also as a function of the uncertain parameters. In both 

methods, the input-output data are generated through running the optimization 

problem based on the original process FPM using state-of-art optimizers several 

times and considering different values of the uncertain parameters that are 

selected by DOCE techniques. The effectiveness and capabilities of the 

proposed methods have been proven through their applications to different 

benchmark examples from the MPP literature and to three cases studies of 

process and unit operations optimization. 

• Chapter 5 (Contribution III) presents a Data-Based MultiParametric-Model 

Predictive Control methodology. The proposed methodology is based on the 

use of machine learning models which are trained offline using input-output 

data (initial state variables-optimal control variables) to obtain surrogate 

models, acting as control laws that approximate the values of the optimal 

control variables that must be applied along the future sampling period as a 

function of the current state variables values. Then, during the online 

application, the optimal control is calculated through simple interpolations 

using these surrogate models. The input-output training data are generated 

offline by solving the open loop optimal control problem several times, each 

using different combination of the initial state variables values selected by a 

DOCE technique. The method is tested with benchmark problems used in the 

MultiParametric-Model Predictive Control literature, involving a simple 

discrete state-space model and a differential FPM of a stirred tank reactor.  

• Chapter 6 (Contribution IV) reviews in detail the SOA of data-driven 

dynamic modelling in the chemical engineering area, and presents a novel 

methodology for data-driven multivariate dynamic modelling and multistep-

ahead prediction of nonlinear chemical processes using data-driven models. 

The proposed methodology utilizes machine learning techniques for building a 
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group of NARX models, each of them able to predict the evolution of one 

process output as a function of the other inputs and outputs of the process, over 

a suitable time lag. The set of multivariate dynamic models are, then, used to 

forecast the process outputs along larger time intervals (multistep-ahead 

prediction), through a recursive and inter-coordinated prediction scheme. The 

methodology also offers a new procedure for training data selection for dynamic 

modelling, based on the DOCE technique when a FPM of the process is 

available. The capabilities of the kriging technique are compared with those of 

one of the most popular techniques (i.e., ANNs). The application of the 

proposed methodology is illustrated through its application to three case-studies 

of nonlinear dynamic processes selected from the process industry presented in 

the literature, including a bioreactor, three-interconnected-tanks and an oil-

shale pyrolysis batch reactor. 

• Chapter 7 (Contribution V) reviews the current methodologies and techniques 

for the dynamic optimization of chemical processes based on dynamic FPMs. 

First, it introduces a novel data-driven methodology for the sequential dynamic 

optimization applicable to solve the open loop optimal control problem of 

complex highly nonlinear processes. The method is based on the construction 

of a set of multivariate dynamic surrogate models (Chapter 6), which are able 

to accurately and rapidly predict the process output behavior corresponding to 

any time-profile of the process control inputs. Second, a sequential dynamic 

optimization procedure is tuned to integrate this set of dynamic surrogate 

models representing a complex process FPM. The methodology is applied to 

three well-known problems from the process systems engineering area, 

including a plug-flow reactor, batch reactor, and a parallel reaction problem. 

• Chapter 8 (Contribution VI) presents a detailed literature review on the 

different approaches and methods for FDD in the chemical engineering area 

and, then, proposes a novel hybrid data-based methodology for FDD. The main 

modules of the novel methodology are also described, which are: i) a dynamic 

observer based on multivariate dynamic surrogate models (Chapter 6) capable 

to estimate the expected normal outputs of the process, ii) static kriging models 

smoothing the real measurements of the process outputs to reduce the noise 

effects and iii) data-based classification techniques, which are trained with 

patterns of residuals created from the comparison between the estimated outputs 

by the observer and the smoothed real outputs of the process. Different 

classification techniques such as ANN, SVM, GNB and DT, have been 
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developed and compared. The performance of the method is illustrated through 

its application to the well-known three-tank benchmark case study, considering 

different dynamic operating conditions and faulty situations, including 

scenarios with modified fault severities and fault styles. 

• Chapter 9 (Contribution VII) presents a new soft-sensing methodology based 

on machine learning models for the online prediction of QIV of batch processes 

operated under changeable initial conditions. The chapter reviews in detail the 

state-of-art of soft-sensing in the chemical process engineering area and, 

consequently, claims the contributed novelties. The chapter also compares, 

within the proposed methodology, the performance of the kriging technique to 

the most common data-based modelling techniques used for soft-sensing as 

SVR and ANN, in order to assess its capabilities. The effectiveness and the 

capabilities of the proposed method is proved by its application to two 

simulation benchmark case-studies, including a simple batch reactor and a fed-

batch fermenter for Penicillin Production. The application is also extended to a 

real photochemical pilot plant case-study built to investigate water treatment 

processes based on the photo-Fenton reaction, working in a batch mode and 

considering paracetamol as reference contaminant.  

• Chapter 10 concludes the Thesis contributions and presents possible future 

research lines that can be built on the basis of the Thesis. 
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Chapter 2: Tools and Techniques 

This chapter overviews the basics and general characteristics of the different tools and 

techniques used to build and develop the methodologies in this Thesis. These tools and 

techniques include design of computer experiment methods, machine learning models for 

regression (surrogate models or metamodels), machine learning models for classification, 

clustering techniques and optimization algorithms. 

2.1 DESIGN OF COMPUTER EXPERIMENTS  

In the area of physical experimentations and laboratory-based investigations, Design Of 

Experiments (DOE) techniques have been established (Fisher, 1971; Fisher, 1980) and 

extensively used to select specific combinations of input values (independent design variables) 

at which experiments must be run to obtain an optimal quantification of the effect of these 

input variables on the behavior of a certain observed output (dependent) variable. In this sense, 

different methods have been developed, as full-factorial, fractional-factorial designs for fitting 

linear regression models, central composite and Box-Behnken designs for fitting polynomial 

regression models (Fang, et al., 2005). The DOE considers three basic principles: 

randomization, blocking and replication, in order to avoid prediction bias, obtain homogenous 

response, and to minimize the experimental random error, respectively (Fang, et al., 2005).  

The rapid growth of computer capabilities has motivated huge interests of the 

engineering research community to study/analyze products and processes using high fidelity 

and detailed simulation models describing these products or processes. However, serious 

obstacles hinder the smooth use of such high-fidelity simulation models, such as their 

complexity, high nonlinearity, sophisticated structure and/or the computational burden 

required for their convergence (Fang, et al., 2005; Ibrahim, et al., 2019). The rise of advanced 

machine learning techniques (e.g., Artificial Neural Networks (ANNs), kriging) has inspired 

the construction of simplified data-driven models trained using input-output data generated by 

the simulation of the complex FPM (Garud, et al., 2017). Then, these simplified data-driven 

models (metamodels or surrogate models) take the place of the complex FPM in the targeted 

application (e.g., optimization, sensitivity analysis, uncertainty quantifications, etc.), 

providing accurate predictions with simple usage and much lower computational cost. 

Consequently, this has induced the development of the Design Of Computer Experiment 

(DOCE) techniques (Jurecka, 2007), which aim at selecting the best combinations of the input 

variables values -within specific domain or bounds- that can be used for the simulation of the 
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complex FPM providing the most representative information/knowledge about the output 

behavior (Garud, et al., 2017). The set of combinations of the input variables values is called 

a “sampling plan”, [𝑥𝑖]𝑛, 𝑥𝑖 ∈ 𝑅
𝑘, where 𝑛 is the number of sample points or instances and 𝑘 

is the number of input dimensions. The main objective is to collect as much information as 

possible about the output behavior over all the local sub-regions of the input space, assuming 

that most computer simulation models are deterministic. As a result, DOCE techniques 

consider samples selection criteria different from those of the DOE, which are, mainly, the 

space-fillingness and stratification of the sampling plan. While the space-fillingness criterion 

aims at spreading the sampling plan points over the whole input domain, the stratification 

ensures that the sampling plan points projection onto each input variable axis is uniform 

(Garud, et al., 2017; Forrester, et al., 2008). Both criteria ensure high uniformity of the 

sampling plan and better covering of all the local sub-regions of the input domain. 

Many DOCE techniques have been developed for static surrogate modeling. The most 

common techniques include Latin hypercube sampling (Forrester, et al., 2008), low 

discrepancy sequences as the Hammersley technique (Ibrahim, et al., 2019) and space-filling 

designs as max-min techniques and Space-filling Latin Hypercube Sampling (SLHS) design 

(Joseph, 2016). Alternatively, sequential or adaptive sampling are special type of DOCE 

techniques that are commonly related to the use of kriging/GP models (Kajero, et al., 2017). 

In these sequential techniques, the total number of training points are not selected at once, but: 

the surrogate model is, initially, fitted with a relatively small number of training points, and it 

is, iteratively, adapted by adding new training points of interest (infill or update points) to the 

initial training dataset and, then, the surrogate model is refitted so as to enhance a desired 

criterion or index of its performance. This criterion is highly dependent on the eventual use of 

the surrogate model (for global approximation, surrogate-based optimization, reliability 

analysis, etc.). The iterative procedure stops when the surrogate model performance index 

reaches a desired level. For example, when the surrogate model is to be used just for global 

approximation, the most common performance criterion is the maximization of the surrogate 

model global accuracy, which implies the selection of infill points that maximize the estimated 

prediction error of the kriging/GP model (Jurecka, 2007; Forrester, et al., 2008). Notice that 

the term “global” refers to the globality with respect to the entire input domain. 

Most of these DOCE techniques show both desired and limiting characteristics in terms 

of the uniformity of the generated sampling plan and the required computational cost. For 

example, Latin hypercube and low discrepancy sequence designs provide sampling plans of 

good uniformity with very low computational cost (Ibrahim, et al., 2019). Space-filling designs 

are able to provide sampling plans with very high uniformity, although the associated 

computational cost is relatively high (Joseph, 2016; Caballero & Grossmann, 2008). Because, 



 

Chapter 2: Tools and Techniques 33 

these techniques usually encompass a complex optimization problem, in which the locations 

of the input combinations (i.e., instances) within the 𝑘-dimensional input space of the model 

(i.e., the decision variables) are manipulated to maximize a certain space-filling criterion (i.e., 

objective function) (Forrester, et al., 2008). For instance, in the max-min space-filling designs, 

the objective function is to maximize the minimum distance between the sample points. The 

former criterion tends to distribute the sampling points uniformly across the k-dimensional 

input domain (Fang, et al., 2005). Sequential sampling designs have also shown very high 

uniformity and high efficiency, since they take maximum advantages of each point in the 

sampling plan, but the computational cost of such techniques is extremely high, since each 

iteration involves an optimization problem seeking for the point that optimally enhances the 

surrogate model accuracy, in addition to the subsequent fitting of the surrogate model with the 

updated training set (Jones, et al., 1998). For the previous reasons, the iterative DOCE 

procedures are favorable when dealing with very expensive FPM (e.g., computational fluid 

dynamic models) where the cost of one simulation run using the FPM is much higher than one 

iteration of the sequential sampling procedure. A more detailed analysis about the different 

DOCE techniques can be found in (Garud, et al., 2017; Fang, et al., 2005; Jurecka, 2007; 

Garud, et al., 2017) 

After designing an efficient sampling plan[𝑥𝑖]𝑛, 𝑥𝑖 ∈ 𝑅
𝑘, a computer experiment or a 

simulation run using the complex FPM is carried out at each point of the sampling plan, to 

obtain the response or output variable values [𝑦𝑖]𝑛, 𝑦𝑖 ∈ 𝑅.  

In general, most of the Thesis chapters/methodologies consider the Hammersley design 

technique, due to its ability to provide sampling plans of good uniformity and stratification 

properties with very low computational cost (Garud, et al., 2017; Ibrahim, et al., 2019). In 

particular, Chapter 3 employees sequential sampling techniques for building SBO methods.  

On another hand, number of sample points (𝑛) required to train the surrogate model in 

order to capture the output behavior with satisfactory accuracy is case-dependent. Because the 

selection of 𝑛 depends on the input dimensionality of the surrogate model (𝑘), the volume of 

the input space and, also, on the intricacy and nonlinearity of the considered output behavior. 

In general, as 𝑛 increases, the effort (time/cost) required not only for executing the 

experiments, but also for the surrogate model fitting increases. Then, the modeler should 

carefully balance the trade-offs between the required surrogate model accuracy, the 

computational cost and the eventual application benefits of the surrogate model. 
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2.2 MACHINE LEARNING FOR REGRESSION (SURROGATE MODELS) 

In the Thesis different machine learning models for regression have been considered. 

The main objective is not the detailed comparison of the machine learning models 

performance, but to assess the robustness, applicability and flexibility of the proposed 

methodologies (in which these machine learning models are employed, as well as other tools) 

by handling different data-based modelling techniques and software. 

2.2.1 Ordinary kriging  

The Ordinary Kriging (OK) model has emerged in the field of geo-statistics (Krige, 

1951; Cressi, 1993), and after the pioneer work of Sacks, et al. (Sacks, et al., 1989) and Jones 

(Jones, 2001), OK became popular for modeling and optimization of complex highly nonlinear 

static systems in various engineering areas. The OK is a nonparametric data-driven model that 

has shown potential capabilities to approximate highly nonlinear, multimodal and complex 

systems (Fang, et al., 2005; Queipo, et al., 2005). These capabilities stem from the ability of 

the OK to combine global modeling through estimating a general trend of the system to be 

approximated, and local modeling through a spatial correlation function. Besides, this model 

is able to estimate a prediction variance or error, which represents an uncertainty measure 

about its prediction (Forrester, et al., 2008).  

Given a set of 𝑛 input-output training data [𝑥𝑖, 𝑦𝑖]𝑛 , 𝑥𝑖 ∈ 𝑅
𝑘, 𝑦𝑖 ∈ 𝑅, 𝑖 = 1,2, . . 𝑛, , the 

OK assumes the predictor 𝑦̂(𝑥) =  𝜇𝑜𝑘 + 𝑍(𝑥), where the constant term 𝜇𝑜𝑘 represents the 

main trend of the system to be approximated, and 𝑍(𝑥) is a deviation/residual from that trend, 

which accounts for detailed complex behavior of the system that could not be captured via the 

main trend 𝜇𝑜𝑘. The residual 𝑍(𝑥) is modeled as a stochastic Gaussian process with expected 

value of 𝐸(𝑍(𝑥)) =  0, and a covariance between two residuals 𝑐𝑜𝑣(𝑍(𝑥𝑖), 𝑍(𝑥𝑗)) that only 

depends on their corresponding inputs locations 𝑥𝑖, 𝑥𝑗. Thus, it can be calculated as: 

𝑐𝑜𝑣 (𝑍(𝑥𝑖), 𝑍(𝑥𝑗))=𝜎𝑜𝑘
2  𝑅(𝑥𝑖 , 𝑥𝑗), being 𝜎𝑜𝑘

2  the process variance, and 𝑅(𝑥𝑖 , 𝑥𝑗)  a correlation 

function calculated as 𝑅(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(−∑ 𝜉𝑙|𝑥𝑖,𝑙−𝑥𝑗,𝑙−|
𝑝𝑙𝑘

𝑙=1 ) + 𝛿𝑖𝑗 𝜆,  where, 𝜉𝑙 , 𝑙 = 1,…𝑘 

are the model hyper-parameters, 𝑝𝑙 are smoothing parameters, 𝛿𝑖𝑗  is the Kronecker delta and 

𝜆 is a regularization constant that enables the kriging predictor to regress noisy data (Azman 

& Kocijan, 2007). The value of the parameter 𝜉𝑙 represents a measure of the degree of 

correlation among the data along the 𝑙 𝑡ℎinput dimension.  

The maximization of the likelihood function (Eq.(2.1)) of the observed data [𝑌]𝑛×1  

yields the closed form mathematical expressions for the optimal values of 𝜇𝑜𝑘 and 𝜎𝑜𝑘
2  that are 

shown in Eq.(2.2) and Eq.(2.3), respectively, where [𝑋]𝑛×𝑘 is the matrix of training inputs, 
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[𝑌]𝑛×1  is the corresponding vector of the training outputs, [𝑅]𝑛×𝑛  is the correlation matrix 

between the training inputs and [𝟏]𝑛×1 is the identity vector- it is highlighted with bold font 

to differentiate it from the normal number 1 in the equations- (Caballero & Grossmann, 2008). 

 

𝐿𝑖𝑘( 𝜇𝑜𝑘 , 𝜎𝑜𝑘
2 , 𝑋)

=
𝟏

(2 𝜋 𝜎𝑜𝑘
2 )(

𝑛
2
)|𝑅|

(
1
2
)
 𝑒𝑥𝑝(−

(𝑌 − 𝟏 𝜇𝑜𝑘)
𝑇 𝑅−1(𝑌 − 𝟏 𝜇𝑜𝑘) 

2 𝜎𝑜𝑘
2 ) 

(2.1) 

 𝜇𝑜𝑘 =
𝟏𝑻 𝑅−1𝑌

𝟏𝑻 𝑅−𝟏𝟏
 (2.2) 

 𝜎𝑜𝑘
2 =

(𝑌 − 𝟏 𝜇𝑜𝑘)
𝑇 𝑅−1 (𝑌 − 𝟏 𝜇𝑜𝑘)

𝑇

𝑛
 (2.3) 

The substitution of the optimal values of 𝜇𝑜𝑘 and 𝜎𝑜𝑘
2  in the likelihood function leads to 

the maximization of the concentrated log-likelihood function, which is given by Eq.(2.4). 

 
𝑀𝑎𝑥 (𝜉𝑙,𝑝𝑙) [−

𝑛

2
𝑙𝑛(𝜎𝑜𝑘

2 ) −
1

2
𝑙𝑛(|𝑅|)] (2.4) 

The kriging predictor (Eq.(2.5)) and its estimated error (Eq.(2.6)) are obtained by 

deriving the augmented likelihood function of the original training data set and a new 

interpolating point (𝑥∗, 𝑦∗). In Eq. (2.5), [𝑟]𝑛×1 is the vector of correlations between the point 

to be predicted 𝑥∗and the original training data points, and calculated as 𝑅 (𝑥𝑖 , 𝑥
∗) (Jones et 

al., 1998; Caballero & Grossmann, 2008; Forrester et al., 2008).  

 𝑦̂(𝑥∗) = 𝜇𝑜𝑘 + 𝑟
𝑇𝑅−1(𝑌 − 𝟏𝜇𝑜𝑘) (2.5) 

 𝑠̂2(𝑥∗) = 𝜎𝑜𝑘
2 (1 + 𝜆 − 𝑟𝑇𝑅−1𝑟 + (1 − 𝟏𝑇𝑅−1𝑟)−1 (𝟏𝑇𝑅−1𝟏)⁄ ) (2.6) 

The fitting of an OK model is achieved by obtaining the optimal parameters 

[𝜉𝑙 , 𝑝𝑙 , 𝜆] through the maximization of the concentrated log-likelihood function. In practice, 

this optimization problem is computationally challenging, because of the high computational 

cost associated to the repetitive calculation of the inverse of the correlation matrix 

[𝑅]𝑛×𝑛 during the optimization iterations. This effort quickly grows with the size of the 

training data set and/or the model input dimensionality. Besides, the nature of the concentrated 

log-likelihood function itself is quite complicated, because it is flat near the optimum (Fang, 

et al., 2005). More details about these computational challenges and the numerical methods 

and optimization techniques to overcome or reduce these obstacles can be found in (Forrester, 

et al., 2008). 

This Thesis considers the OK implementation developed by Forrester, et al. (2008), 

because of its high efficiency, generality and applicability. Besides, the “fmincon” algorithm 

included in the Matlab optimization toolbox is used for the maximization (nonlinear 



 

36 Chapter 2: Tools and Techniques 

optimization) of the concentrated likelihood function (Eq.(2.4)), considering different values 

of the initial solution, so as to avoid the entrapment in a local optimum (Matlab, 2018). The 

Cholesky factorization has been used to find the inverse of [𝑅]𝑛×𝑛  matrix to avoid ill-

conditioning, and the smoothness parameters 𝑝𝑙 are often kept to the value of 2, which provide 

smooth infinitely differentiable correlation functions (Forrester et al., 2008). 

The Thesis also considers (in some chapters) another different software implementation 

for the GP model, which is the GP-Regression (GPR) algorithm based on the function “fitrgp” 

included in the Matlab statistics and machine learning toolbox (Matlab, 2018).  

2.2.2 Artificial neural networks  

Artificial Neural Networks are a very well-known and widely-used efficient technique 

for nonlinear data-driven modelling. The technique is inspired from the biological neural 

networks of the brain nervous system (Masters, 1993; Himmelblau, 2000). An ANN is a lattice 

of nodes, termed as neurons, which are placed in this lattice through a certain number, 𝑛𝕃, of 

layers, 𝕃𝔩, 𝔩 = 1,2, . . 𝑛𝕃, and are interlinked together to be capable of the nonlinear processing 

of the information. Figure 2.1 shows a schematic representation of one-hidden layer ANN. 

The weight value 𝜛𝑖𝕃𝔩 ,𝑗𝕃𝔩+1  is assigned to the link connecting the 𝑖𝑡ℎ neuron in  the layer, 𝕃𝔩, 

to the 𝑗𝑡ℎneuron in the successive layer, 𝕃𝔩+1; additionally, a bias, 𝑏𝑖𝕃𝔩 , is considered as an 

independent input to the 𝑖𝑡ℎ neuron in each layer, 𝕃𝔩. Considering one-hidden layer ANN 

(Figure 2.1), the output 𝑎𝑗𝕃2  of the𝑗𝑡ℎ neuron in the hidden layer is computed as the weighted 

sum of its inputs received from the neurons in the previous layer plus the bias, see Eq.(2.7), 

where 𝑄𝕃1 and 𝑄𝕃2 are the numbers of neurons in the input and hidden layers, respectively. 

The computed value is, then, processed by a transfer function, 𝔣, and is sent to the output layer 

(Masters, 1993; Nagy, 2007) that calculates the ANN output, 𝑦̂, as in Eq.(2.8). Notice that the 

formulations for the multi-layer ANN is straightforward. 

The training of an ANN is accomplished relying on a set of input-output training 

patterns [𝑥𝑖 , 𝑦𝑖]𝑛, 𝑥𝑖 ∈ 𝑅
𝑘, 𝑦𝑖 ∈ 𝑅

𝑘, 𝑖 = 1,2, . . 𝑛, and through the solution of a nonlinear 

optimization problem, in which an objective or loss function is minimized by tuning the 

optimization variables values represented in the weights and the biases of the neurons 

(Masters, 1993; Nagy, 2007). With respect to ANNs models for regression, the loss/objective 

function of the training task is related to the sum of errors between the predicted outputs by 

the network, 𝑦̂𝑖, and the target outputs, 𝑦𝑖, being the Mean Squared Error (MSE) (given by 

Eq.(2.9)) the most common loss function. 
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Figure 2.1. Schematic illustration of a feedforward ANN structure: an input layer, at 

least one hidden layer and an output layer. 

 𝑎𝑗𝕃2 = 𝔣 (𝑏𝑗𝕃2 + 𝛴 𝑥𝑖𝑗  𝜛𝑖𝕃1,𝑗𝕃2),    𝑖 = 1,2, . . 𝑄
𝕃1, 𝑗 = 1,2, . . 𝑄𝕃2 (2.7) 

 𝑦̂ = 𝒻(𝑏1𝕃3 + 𝛴𝑎𝑗𝕃2  𝜛𝑗𝕃2,1𝕃3)      𝑗 = 1,2, . . 𝑄
𝕃2 (2.8) 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖

𝑛

𝑖=1

)2 (2.9) 

Amongst various kinds of ANNs, the feed-forward multi-layer perceptron is considered 

as the most popular kind used in engineering practices (Himmelblau, 2000), as it offers high 

efficiency, accuracy and straightforward applicability (Fang, et al., 2005; Nagy, 2007).  

The “feedforwardnet” function of the Matlab ANN toolbox is used in this Thesis to 

build multilayer ANNs for regression (Matlab, 2018). A trial and error procedure is employed 

for selecting the suitable number of layers, number of neurons and the training algorithm 

achieving a compromise between the structure simplicity and the prediction accuracy. Two 

training algorithms have been considered in the Thesis, depending on the different application 

cases, which are the Levenberg-Marquardt backpropagation based on the Matlab function 

“trainlm” and the Bayesian regularization backpropagation based on the Matlab function 

“trainbr”. The latter minimizes a combination of MSE and the network weights, which leads 

to very good generalization properties. The default “sigmoid” transfer function in the hidden 

layers, 𝔣, and “linear” transfer function in the output layer, 

𝒻, are maintained.  

2.2.3 Support vector regression  

Given a set of input-output training data [𝑥𝑖, 𝑦𝑖]𝑛, 𝑥𝑖 ∈ 𝑅
𝑘, 𝑦𝑖 ∈ 𝑅, 𝑖 = 1,2, . . 𝑛, a

 Support Vector Regression (SVR) model (Vapnik, 1995) maps the input data original 
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space into a high-dimensional feature space, often through a basis or kernel function 

Φ  (𝑥𝑖, 𝑥𝑗) that may be presented by different styles as linear, polynomial, Gaussian, etc. Then, 

the modeling problem becomes the determinations of the optimal (flattest) surface 𝑦̂(𝑥)  =

𝑏 + ∑ 𝑤𝑖Φ (𝑥𝑖, 𝑥𝑗)
𝑛
𝑖=1  in this feature space, which fits the data, where 𝑏 = 𝜇𝑠𝑣𝑟 is a base or 

bias (Forrester & Keane, 2009). This can be done through the minimization of the weights 

vector norm |𝑤|2, 𝑤 ∈ 𝑅𝑛. In order to ensure better generalization performance, SVR allows 

specifying margins or a tube around the training data with a radius ±𝜀, within which prediction 

errors in the training data are accepted or tolerable (constraints of the optimization problem). 

Additionally, to tolerate outliers, the data that presents a prediction error bigger than ±𝜀 is 

penalized using the so-called ε-sensitive loss function (Forrester, et al., 2008). Then the model 

fitting problem can be expressed as:  

 
𝑀𝑖𝑛 

1

2
|𝑤|2 +

𝐶𝑠𝑣𝑟
𝑛
∑(𝜉𝑖

+ + 𝜉𝑖
−

𝑛

𝑖=1

) (2.10) 

 

S.T.         

𝑦𝑖 − 𝜇𝑠𝑣𝑟 −𝑤 𝑥𝑖 ≤ 𝜀 + 𝜉𝑖
+

𝜇𝑠𝑣𝑟 +𝑤 𝑥𝑖 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
−

𝜉𝑖
+ ;  𝜉𝑖

−  ≥ 0

} (2.11) 

Where 𝜉𝑖
+ ;  𝜉𝑖

− are the slack variables that describe the size of the positive and negative 

violation or excess than the tube radius 𝜀 for each training data sample, and 𝐶𝑠𝑣𝑟 > 0 is a 

penalty factor that controls the trade-off between the model complexity (the flatness of  𝑦̂) and 

the degree to which errors larger than 𝜀 are tolerated (Forrester & Keane, 2009). A schematic 

representation of the problem is illustrated in Figure 2.2. 

 
Figure 2.2. Representation of the SVR model. 
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The constrained optimization problem can be reformulated into a dual problem form by 

introducing Lagrange multipliers 𝜂𝑖
+, 𝜂𝑖

−, 𝛼𝑖
+, 𝛼𝑖

− to the constraints in Eq.(2.11), in order to 

combine them with the objective forming at the end the Lagrangian function: 

 𝐿 = 𝑀𝑖𝑛 
1

2
|𝑤|2 +

𝐶𝑠𝑣𝑟

𝑛
∑ (𝜉𝑖

+ + 𝜉𝑖
−𝑛

𝑖=1 ) − ∑ 𝛼𝑖
+(𝜀 + 𝜉𝑖

+−𝑦𝑖 +
𝑛
𝑖=1

𝜇𝑠𝑣𝑟 +𝑤 𝑥𝑖) + ∑ 𝛼𝑖
−(𝜀 + 𝜉𝑖

− + 𝑦𝑖 − 𝜇𝑠𝑣𝑟 −𝑤 𝑥𝑖)
𝑛
𝑖=1 − ∑ (𝜂𝑖

+ 𝜉𝑖
+ +𝑛

𝑖=1

𝜂𝑖
− 𝜉𝑖

−)  

(2.12) 

The resulting objective 𝐿 is then minimized with respect to 𝑤,  𝜇𝑠𝑣𝑟 and the primal 

variables 𝜉𝑖
±, and also it is maximized with respect to the dual variables 𝜂𝑖

±, 𝛼𝑖
±, 

where 𝜂𝑖
±, 𝛼𝑖

± ≥ 0. For the active constraints (𝛼𝑖
+ + 𝛼𝑖

−) ≥ 0, the corresponding 𝑦𝑖 will 

become the support vectors, while for inactive constraints (𝛼𝑖
+ + 𝛼𝑖

−) = 0, the corresponding 

𝑦𝑖 will be excluded from the prediction (Forrester & Keane, 2009). 

The values of these Lagrange multipliers 𝛼𝑖
+, 𝛼𝑖

− are determined by solving the dual 

optimization problem. The training vectors (samples) with non-zero Lagrange multipliers are 

called support vectors, which represent/construct the margins or the borders of the tube. 

Finally, the optimal weights 𝑤 and the constant bias 𝜇𝑠𝑣𝑟 can be calculated from the relations 

in Eq.(2.13) and Eq.(2.14), and the final predictor is expressed by Eq.(2.15).  

 
𝑤 =∑(𝛼𝑖

+ −

𝑛

𝑖=1

𝛼𝑖
−)Φ(𝑥𝑖) (2.13) 

 
𝑏 = 𝜇𝑠𝑣𝑟 = 𝑦𝑖 −∑(𝛼𝑗

+ −

𝑛

𝑗=1

𝛼𝑗
−)Φ(𝑥𝑖 , 𝑥𝑗) (2.14) 

 
𝑦̂(𝑥∗) = 𝑏 +∑(𝛼𝑗

+ − 𝛼𝑗
−) Φ(𝑥∗, 𝑥𝑖)

𝑛

𝑖=1

 (2.15) 

A drawback of the SVR is the huge time and effort required to select the kernel function 

type and the values of its parameters (e.g., the value of the parameter 𝜎𝑠𝑣𝑟, in a Gaussian kernel 

Φ(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−‖𝑥𝑖, 𝑥𝑗‖
2
2𝜎𝑠𝑣𝑟

2⁄ )), which are case dependent. The detailed mathematical 

description and derivations can be found in (Vapnik, 1995; Forrester, et al., 2008; Forrester & 

Keane, 2009). This Thesis uses the SVR algorithm based on the function “fitrsvm” included 

in the Matlab statistics and machine learning toolbox (Matlab, 2018). 

2.3 MACHINE LEARNING FOR CLASSIFICATION  

Classification Techniques (CTs) are supervised machine learning models that perform 

pattern recognition tasks (Vapnik, 1995; Zhang, 2000). Given a set of input-output data 

[𝑥𝑖, 𝑦𝑖]𝑛, 𝑥𝑖 ∈ 𝑅
𝑘, 𝑖 = 1,2, . . 𝑛, 𝑦𝑖 ∈ {𝑙1, … , 𝑙𝑗, … , 𝑙𝑛𝑙}, 𝑛 ≫≫ 𝑛𝑙, a classifier is trained to 
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assign to a new observation, 𝑥𝑖,  a specific labels  𝑦𝑖 = 𝑙𝑗 among a predefined set of 𝑛𝑙 labels 

or categories (Zhang, 2000). Among many types of classification techniques available in the 

literature, this Thesis, consider ANN and Support Vectors machine (SVM) classifiers because 

of their widely reported high accuracy and application simplicity (García-Laencina, et al., 

2010). In the Thesis, classifiers are employed to model categorical output variables consisting 

of specific classes, for example, binary decision variables in optimization problems, and 

different faults types affecting the process. 

2.3.1 Support vectors machine 

In the literature, the SVM technique always shows very good classification capability 

(Rocco & Zio, 2007 ; Tao, et al., 2018) in terms of i) providing high classification accuracy, 

ii) requiring small computational effort for its training due to the relatively small number of 

parameters, which are optimized by solving a simple quadratic optimization problem; iii) 

managing imbalanced datasets thanks to its Cost-Sensitive SVM settings. Given a set of input-

output training data [𝑥𝑖, 𝑦𝑖]𝑛 , 𝑥𝑖 ∈ 𝑅
𝑘, 𝑖 = 1,2, . . 𝑛, 𝑦𝑖 ∈ {+1,−1}, a binary SVM model is 

built by solving the problem of identifying the optimal linear decision boundary separating the 

training instances into two classes (i.e., +1 ad -1) (Christianini & Shawe, 2000), see Figure 

2.3.  

      

Figure 2.3. Representation of the SVM model. 

This decision boundary is parametrized by (𝑤, 𝑏), where 𝑤 is the vector perpendicular 

to the boundary and 𝑏 is the distance from the point of origin (0,0), such that 〈𝑤, 𝑥𝑖〉 + 𝑏 ≥ 0 

when 𝑦𝑖 = +1 and 〈𝑤, 𝑥𝑖〉 + 𝑏 ≤ 0 when 𝑦𝑖 = −1, with 〈∙,∙〉 is the dot-product in 𝑅𝑘 (Vapnik, 

1995). The optimal decision boundary is the one with the maximum margin, which is the 

distance from the decision boundary to its closest positive and negative training instances 
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(which are the support vectors), and it geometrically equals to 
2

ԡ𝑤ԡ
 (Maldonado, et al., 2014). 

A perfect linear separation of all the 𝑛 training patterns is not always possible, therefore, in 

order to tolerate misclassified samples, a slack variable 𝜉𝑖 is introduced for each training 

pattern 𝑖 = 1,… , 𝑛 (Christianini & Shawe, 2000). Then problem can be formulated as in 

Eq.(2.16), where 𝐶 > 0 is a parameter that penalizes the misclassification. Then, the 

constrained optimization problem can be reformulated into a dual problem by introducing 

Lagrange multipliers, and then solved through quadratic optimization (Platt, 1999). 

 
𝑚𝑖𝑛
𝑤,𝑏,𝜉

 
1

2
ԡ𝑤ԡ2 +

𝐶

𝑛
∑𝜉𝑖

𝑛

𝑖=1

S. T.:  𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏 ) ≥ 1 − 𝜉𝑖 , 𝑖 = 1,… , 𝑛

𝜉𝑖 ≥ 0 }
 
 

 
 

 (2.16) 

The SVM algorithm can be generalized to non-linear classification, which is needed 

when data patterns cannot be separated by a linear hyperplane (Platt, 1999). This procedure is 

known as kernel trick, where the input data original space is mapped into a high-dimensional 

feature space through a kernel function that can be of different types, e.g., linear, polynomial, 

Gaussian, etc. (Xu, et al., 2018). On another side, the SVM classifier is binary in nature (i.e., 

able to manage two classes only, e.g., on/off), and its usage in multiclass classification 

problems requires elaborated employment strategies such as one-versus-all or one-versus-one 

(Xu, et al., 2018). 

This Thesis uses the support vector classification algorithm based on the function 

“fitcsvm” included in the Matlab statistics and machine learning toolbox (Matlab, 2018). 

2.3.2 ANN classifier  

A feedforward ANN for classification has the same structure as that of regression (see 

Section 2.2.2, Figure 2.1), except for the output layer structure, output transfer function and 

the training loss function (Li, et al., 2019; Kline & Berardi, 2005). Generally, the structure of 

the output layer of an ANN classifier consists in a number of neurons equals to the number of 

the considered classes (i.e., one neuron is associated to one class). The output values calculated 

by the neurons in the output layer are, then, processed by a Soft-Max transfer function (Li, et 

al., 2019), which provides the final output of the classifier in the form of a multinomial 

probability vector of length equals to the number of classes. Each value in this vector ranges 

between [0,1], representing the probability that the current observation belongs to the specific 

class (Li & Wang, 2020), and the summation of all the probabilities in the vector equals to 1 

(Kline & Berardi, 2005). Regarding the loss function for training an ANN classifier, the cross-
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entropy type is typically considered, which is a measure of goodness of separability of the 

distributions of classes.  

In this Thesis, the “patternnet” function of the Matlab ANN toolbox is used to construct 

multilayer ANNs for classification (Matlab, 2018). The ANN structure is also selected by a 

trial and error procedure, as in Section 2.2.2. The scaled conjugate gradient backpropagation 

algorithm based on the Matlab function “trainscg” is used to train the network, and the default 

“tan-sigmoid” transfer function in the hidden layers and “softmax” transfer function in the 

output layer, are used. 

In order to assess the performance of the classifiers (ANN, or SVM), the 𝑓1-score 

criterion is considered, which is calculated as in Eq.(2.17) (based on a test dataset) and 

represents the harmonic mean of classifier precision and recall. The 𝑓1-score ranges from 0.0 

(worst value) to 1.0 and (best value) (Tao, et al., 2018). 

 
𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.17) 

Where,  𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁),  𝑃𝑟𝑒𝑐𝑖𝑜𝑠𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and  𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 

are the numbers of true positive, true negative, false positive and false negative predictions, 

respectively, for a test dataset, (Rocco & Zio, 2007 ).  

2.4 CLUSTERING TECHNIQUES 

Clustering is an unsupervised data-driven technique, which aims at partitioning 

unlabeled dataset into smaller groups or subsets called clusters, in such a way that objects in 

the same cluster are more similar (in certain respects) to each other than to those in other 

clusters (Kaufman & Rousseeuw, 1990). They are very useful in discovering hidden structures 

in the data. There are different categories of clustering methods, including connectivity-based 

(e.g., hierarchical clustering), centroid-based (e.g., ₭-means clustering), distribution-based 

(e.g., Gaussian mixture models), density-based clustering and many others (Lloyd, 1982). The 

selection of the specific clustering method is highly dependent on the required function of the 

clustering analysis, the behavior/nature of the data and the affordable computational time. 

The ₭-means algorithm is one of the most used clustering techniques, because of its 

simplicity and low convergence time (Lloyd, 1982). It is an iterative data-partitioning 

algorithm that partitions a dataset of 𝑛 observations into a user-specified number of ₭ clusters. 

The algorithm provides as output, ₭ centroids for the ₭ clusters, besides a membership label 

for each data point associating it to one cluster, in such a way that the point is closest to the 

centroid of its cluster than to the centroids of the other clusters (Kaufman & Rousseeuw, 1990). 

The very basic steps of the algorithm are as follow:  
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i) Initialization: once the number ₭ of clusters has been specified, ₭ centroids are 

randomly (for instance) selected in the data space. 

ii) Assignment: each sample in the dataset is assigned to a cluster, in such a way 

that the sample is closer to the centroid of this cluster than the centroids of the 

other clusters. 

iii) Update: the positions of the centroids of the clusters are updated based on a 

proximity measure (i.e., objective function) calculated based on the samples 

that are already assigned to them. 

iv) Repeat ii) and iii) until no change in positions of the centroids or in the 

distribution of the samples over the ₭ clusters.  

The most common proximity measure for updating the centroids is the minimization of 

the Sum of Squared Error (𝑆𝑆𝐸), while the most popular distance measure is the squared 

Euclidian type (Kaufman & Rousseeuw, 1990). Assuming that, at the 𝑚𝑡ℎ iteration of the 

algorithm, the centroids of the ₭ clusters are [𝑐1
𝑚, … , 𝑐𝑖

𝑚, … , 𝑐₭
𝑚], the 𝑆𝑆𝐸 can be calculated 

as: 

 

𝑆𝑆𝐸 =∑ ∑ ‖𝑥𝑗 − 𝑐𝑖
𝑚‖

2

𝑥𝑗∈𝑐𝑖
𝑚

   

₭

𝑖=1

 (2.18) 

Hence, the centroids at the next iteration 𝑚 + 1𝑡ℎ can be obtained by minimizing the 

𝑆𝑆𝐸 measure, through setting its differentiations with respect to 𝑐𝑖
𝑚 to be equal to zero (Lloyd, 

1982), see Eq.(2.19).  

 
𝜕 𝑆𝑆𝐸

𝜕 𝑐𝑖
𝑚 
=
𝜕 ∑ ∑ ‖𝑥𝑗 − 𝑐𝑖

𝑚‖
2

𝑥𝑗∈𝑐𝑖
𝑚    ₭

𝑖=1

𝜕 𝑐𝑖
𝑚 

= 0 (2.19) 

This leads to the closed form expression for calculating the centroids at the next 

iteration, as: 

 
𝑐𝑖
𝑚+1 =

1

𝑛𝑐𝑖
𝑚
∑ 𝑥𝑗
𝑥𝑗∈𝑐𝑖

𝑚

 (2.20) 

The ₭-means algorithm based on the function “kmeans” included in the Matlab statistics 

and machine learning toolbox (Matlab, 2018), is considered. 

2.5 OPTIMIZATION ALGORITHMS 

In all the layers of the general decision-making hierarchy of chemical plants 

management, most of the decisions are made through solving different types and scales of 
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model-based optimization problems (superstructure optimization, supply chain optimization, 

planning, scheduling, steady-steady operation optimization, control, etc.) (Biegler, 2010). A 

very general formulation of an optimization problem can be represented as follows: 

 min𝑓(𝑥, 𝑦)

𝑆. 𝑇.:  𝑔𝑖(𝑥, 𝑦) ≤ 0,         𝑖 = 1,… ,𝑚,

ℎ𝑖(𝑥, 𝑦) = 0,         𝑖 = 1,… ,𝑚𝑒𝑞 ,

𝑥 ∈ 𝑅𝑘,   𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏,

𝑦 ∈ {0,1}𝕂 }
 
 

 
 

 (2.21) 

Where 𝑓(𝑥, 𝑦) is the objective function to be optimized (e.g., operational cost, profit, 

efficiency, etc.), which depends on a number of 𝑘 continuous variables 𝑥 (pressures, 

temperatures, quantity of raw materials) that can be modified within a specific domain 

contained by a lower and upper bound (𝑙𝑏 and 𝑢𝑏, respectively), as well as on 𝕂 integer 

variables 𝑦 (e.g., selection of units, technologies). The objective can be subject to a set of 

𝑚𝑒𝑞 equality constraints (e.g., mass and energy balances, product quality) and to a set of 

𝑚 inequality constraints (e.g., equipment capacities, environmental and safety restrictions) 

(Fletcher, 1987). 

     The objective and constraints may be explicit, and this occurs in situations when 

using a simplified model of the process that can be expressed in algebraic equations (Caballero 

& Grossmann, 2008). This is typically encountered in the upper level decision making layers, 

(e.g., supply-chain management, planning) where “managemental-like” decisions are to be 

made. In these situations, a model of the enterprise, in which the units and production 

processes are roughly represent by linear or slightly nonlinear shortcut models (e.g., 

fabrication of 1 kg of product requires 2 kg of raw materials and 3 liters of fuel/energy) 

(Medina-González, et al., 2020). Here the evaluation of the model may be cheap, but a large 

number of variables and constraints exist (e.g., to express the mass and energy balances of the 

system/process in the form of explicit optimization constraints). 

On the other hand, the objective and constraints may be also implicit, and this is usually 

encountered in the lower level decision making layers, (e.g., process operation and control) 

where complex and highly nonlinear simulation model are used to describe the process based 

on first principles (thermodynamics, reaction kinetics, heat and mass transfer, etc.) (Caballero 

& Grossmann, 2008). Here the number of variables and constraints are reduced but the 

evaluation of the models is expensive and consumes large computational time (Forrester, et 

al., 2008). 

The algorithms required to solve an optimization problem are dependent on the problem 

type, which is identified according to many factors, which include, mainly, the type of relation 

between the objective and/or constraints with the decision variables (linear, quadratic, 
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nonlinear), the nature of the decision variable them-selfies (continuous, integer) and the 

availability of the derivative information (Fletcher, 1987; Biegler, 2010). The following 

subsections overview the main types of optimization problems considered in this Thesis and 

the algorithms used for their solutions. 

2.5.1 Linear programming 

A Linear Programming (LP) problem is considered when all the decision variables are 

strictly continuous and the involved objective function and all constraints are described by 

linear relationships (Dantzig & Thapa, 1997). The general formulation of a LP problem is 

represented as follows: 

 min𝑓 = 𝑐𝑡𝑥
𝑆. 𝑇. :   𝐴 𝑥 ≤ 𝑏,
𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞 ,

𝑥 ∈ 𝑅𝑘,   𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏,}
 

 
 (2.22) 

Where 𝑐 is a 𝑘-dimensional vector of cost coefficients, 𝐴 is a 𝑚 × 𝑘 coefficients matrix 

of 𝑚 inequality constraint, 𝐴𝑒𝑞 is a 𝑚𝑒𝑞 × 𝑘 coefficients matrix of 𝑚𝑒𝑞 equality constraint, 𝑏 

is a 𝑚-dimensional vector of right-hand-side coefficients of the 𝑚 inequality constraint, 𝑏𝑒𝑞 is 

a 𝑚𝑒𝑞-dimensional vector of right-hand-side coefficients of the 𝑚𝑒𝑞 equality constraint, and 

𝑙𝑏, 𝑢𝑏 are 𝑘-dimensional vectors of lower and upper bounds for the decision variables, 

respectively. 

The linear behavior of the functions (objectives and constraints) associated to this 

problem generates a feasible solution space defined by the intersections of a set of hyperplanes, 

hence, the optimal solution is at one of the vertices of the feasible polytope (Fletcher, 1987). 

This, enormously, facilitates its solution and multiple searching methods have been developed 

including, but not limited to, the simplex method and the Interior-Point Method (IPM) 

(Dantzig & Thapa, 1997).  Both methods consist of an iterative searching approach that stops 

once the vertex with the best possible value is found. The main difference is that the simplex 

method moves from one vertex to the next through the boundaries of the feasible region, while 

the interior-point method searches inside the feasible space and never touches the boundaries 

before finding the optimal value (Medina-González, 2019).  

In this Thesis the solver “linprog”, included in the Matlab optimization toolbox, is used 

based on a dual simplex algorithm (Matlab, 2018). 
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2.5.2 Nonlinear programming 

    In cases when all the decision variables are continuous and at least one of the 

functions (objective and constraints) is nonlinear, the problem is considered as NonLinear 

Programing (NLP), for which the general formulation is as follows (Biegler, 2010): 

 min𝑓(𝑥)

𝑆. T.:   ℎ𝑖(𝑥) = 0,         𝑖 = 1,… ,𝑚𝑒𝑞 ,

𝑔𝑖(𝑥) ≤ 0,    𝑖 = 1,… ,𝑚,

𝑥 ∈ 𝑅𝑘,   𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 }
 

 

 (2.23) 

For differentiable objective function and constraints, a local optimum can be defined by 

the optimality conditions known as the Kuhn-Tucker conditions (Biegler, 2010). There are 

many algorithms capable of solving NLP optimization problems, including Generalized 

Reduced Gradient algorithm, sequential quadratic programming (SQP) (Fletcher, 1987) and 

IPM (Wright, 1996). The SQP is the mostly used and effective nonlinear optimization 

algorithm (Medina-González, 2019), which can be derived by applying Newton’s method to 

the Kuhn-Tucker conditions. It converts the non-linear optimization problem into a quadratic 

programming problem with linear constraints (Fletcher, 1987).  

Solving NLP problems is challenging due to the possibility of the presence of non-

convex feasible zones and multiple local optimal solutions (Biegler, 2010). In this Thesis, the 

solver “fmincon”, included in the Matlab optimization toolbox, is used based on either SQP or 

IPM (Matlab, 2018). 

2.5.3 Quadratic programming  

A special case of NLP problems when a quadratic objective function is subjected to 

linear constraints is classified as Quadratic Programming (QP) problem (Fletcher, 1987). It 

can be stated in a general form as follows: 

 
min𝑓 =

1

2
 𝑥′𝑄𝑥 + 𝑐𝑡𝑥

𝑆. T. :   𝐴 𝑥 ≤ 𝑏,
𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞 ,

𝑥 ∈ 𝑅𝑘,   𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 }
 
 

 
 

 (2.24) 

Where 𝑄 is a 𝑘 × 𝑘 positive definite matrix. The most common methods used to solve 

QP problems include IPM and augmented Lagrangian (Papageorgiou & Fraga, 2007). In this 

Thesis, the solver “quadprog”, included in the Matlab optimization toolbox, is used based on 

an interior-point-convex algorithm (Matlab, 2018). 

https://en.wikipedia.org/wiki/Interior_point_method
https://en.wikipedia.org/wiki/Augmented_Lagrangian_method
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2.5.4 Mixed-Integer programming  

Real-life optimization problems, commonly, imply the consideration of binary variables 

(e.g., on/off settings or logical decisions), which turns LP or NLP problems into a Mixed-

Integer LP (MILP) or Mixed-Integer NLP (MINLP) problems, respectively (Fletcher, 1987). 

Mixed-integer problems can be stated in a general form as in Eq.(2.21). 

MILP is one of the most extensively explored formulations due to its flexibility and 

extensive modeling capability (Medina-González, 2019). The methods to solve MILP 

problems are based on enumerative algorithms that discard the less efficient alternatives. 

Among the algorithms used to solve MILP problems Branch and Bound can be highlighted, 

which is based on decomposing the original MILP problem into 

continuous LP sub-problems and solving them sequentially. The optimal solution is obtained 

by solving a subset of LP subproblems while searching within a decision tree of the discrete 

variables (Duran, 1986). On the other hand, MINLP problems are commonly solved through 

generalized benders decomposition and outer-approximation methods (Duran, 1986). 

In this Thesis, the DICOPT solver integrated in the GAMS mathematical optimization 

environment is used to solve MINLP problems. The DICOPT solver combines solvers of the 

sub-problems nonlinear programming using CONOPT and Mixed Integer programming using 

CPLEX  (Medina-González, 2019). 

2.5.5 Derivative-free optimization  

In many real-world optimization problems, the derivative information is unavailable, 

unreliable, or impractical to obtain, for example, when the objective function is noisy, non-

smooth and/or undifferentiable (Rios & Sahinidis, 2013). This hinders the applications of most 

derivative-based optimization methods (like the previously overviewed techniques) (Forrester, 

et al., 2008). In these cases, derivative-free optimization algorithms represent a powerful 

alternative, where the values of the objective function are used to direct the optimization search 

(Rios & Sahinidis, 2013). Many derivative-free optimization algorithms are available in the 

literature, and most of them are population-based (Conn, et al., 2009). Evolutionary algorithms 

(e.g., genetic, differential evolution algorithms) and swarm-intelligence-based algorithms 

(e.g., particle-swarm, artificial bee-colony, bird flocking algorithms) are just examples of the 

most common derivative-free optimization algorithms (Slowik, 2020). 

Particularly, the Genetic Algorithm (GA) has a large number of successful applications 

to real-world optimization problems over a wide range of engineering fields (Mitchell, 1996). 

The GA optimization search simulates the biological process, in which successive 

generations/populations of candidate solutions are trying to adapt to their environment through 
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genetic inheritance from parents to children and through survival of the fittest (Schmitt, 2001). 

The stochastic search of the GA starts with a randomly generated initial population of 

individuals (chromosomes), each one of them is made by a string of the decision variables 

(genes), being each gene encodes one of the decision variables values. The individuals of the 

current population are ranked according to a fitness function based on the objective function 

value (Mitchell, 1996). A new (i.e., next) population of individuals is then generated by 

applying the genetic operators, which include the crossover, selection and mutation. The 

selection operator is applied to select and copy surviving members (parents) from the current 

population to the new one. Individuals with higher fitness function values have a higher chance 

to be chosen than those with lower fitness function values. The crossover operator aims to 

interchange the information and genes between chromosomes via combining two or more 

parents to reproduce new children, then, one of these children may, hopefully, collect all good 

features that exist in his parents (Mitchell, 1996). The mutation operator is applied to alter one 

or more genes of a probabilistically selected chromosome. This Thesis considered the GA 

algorithm and its implementation in the Matlab optimization toolbox based on the solver “ga” 

(Matlab, 2018). 
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Chapter 3: SBO of Chemical 

Process Operations 

This Chapter presents a methodology for operation optimization of complex nonlinear 

chemical processes, in which the objective function and/or the constraints are represented by 

black box functions. The proposed approach consists of replacing the complex, nonlinear, 

black box model of the processes built based on first principles with kriging metamodels. A 

sequential sampling strategy, based on the expected improvement (for unconstrained 

optimization problems) or the constrained expected improvement (for constrained 

optimization problems) techniques, is used to explore the search space of the decision variables 

and to adapt, accordingly, the metamodels, so as to reach a global solution for problem. The 

methodology has been tested and compared with classical optimization procedures based on 

sequential quadratic programming. Both have been applied to three mathematical examples 

and to two case studies of optimization of chemical process operation. The results show that 

the proposed methodology provides accurate solutions, significantly reduces the required 

computational time and guarantees high computational reliability, which make it very effective 

for hour-to-hour or day-to-day operation optimization of complex processes. 

3.1 INTRODUCTION 

In the decision-making hierarchy of chemical plants management, plant-wide 

optimization, or process operation optimization, is a principle layer that receives in inputs, the 

outcomes and decisions coming from the above layers (i.e., planning and scheduling) 

(Hauptman & Jovan, 2004; Roffel & Betlem, 2004). These inputs, basically, include forecasts 

of prices and demands, production rate targets over long time periods (weeks/days), 

assignment of resources to activities, (raw material allocation, tasks to units allocation, 

maintenance interventions, staffing), sequencing of activities and determination of starting and 

ending times for the execution over short periods of time (Muller, et al., 2017; Marchetti, et 

al., 2014).  

The goal of process operations optimization is to obtain the optimal values of the process 

variables (temperatures, pressures, compositions, flow rates, etc.) at which the plant and its 

units must operate to maximize  certain performance criteria (e.g., efficiency, profit, 

operational cost), while satisfying all the constraints (equipment capacities, environmental 

restrictions, etc.) and requirements (product quality, production yields, safety, etc.) (Vaccari 

& Pannocchia, 2017; Biegler, 2010). This is achieved by solving, in real time, an optimization 
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problem, which embeds a detailed and rigorous steady-state model of the process (Shao, et al., 

2019). Depending on the model characteristics, such as its structure, transparency (e.g., white, 

gray, black-box), availability of derivative information, and on the  formulations of the 

objective(s) and constraints of the optimization problem, different algorithms can be used, e.g., 

derivative-free algorithms (e.g., Genetic Algorithm), where the explicit values of the 

objective(s) function are used to direct the optimization search, or derivative-based algorithms 

(e.g., interior point algorithms), where the optimization search is directed based on the 

derivatives of the objective(s) with respect to the decision variables (Salback, 2004; Caballero 

& Grossmann, 2008).  

In order to maximize the credibility of the optimal set-points when they are implemented 

in the plant, the process-model mismatch is minimized by updating the process model 

parameters (e.g., heat transfer coefficients, catalyst activities, distillation column tray 

efficiencies) before performing the operation optimization, relying on reconciled estimates of 

the measured steady-state measurements of the plant variables (Fadda, 2017; Biegler, 2010). 

The reconciled estimates are often obtained by applying data reconciliation and gross error 

detection techniques to the real data collected by the sensors in order to reduce the effect of 

random errors and sensor faults (bias, drifting, miss-calibration, total failure, etc.), respectively  

(Chaudhary, 2009). In other technologies, the model parameters are estimated or updated 

within the data reconciliation and gross error detection task  (Chaudhary, 2009). Finally, after 

the optimal set-points are obtained, they are delivered to the supervisory control layer and, 

subsequently, to the distributed control layer in order to maintain the plant functioning at these 

reference points. As the plant operates, this computational scheme works periodically; usually 

in a frequency of hour(s) depending on the manufacturing system nature (Seborg, et al., 2016).  

Recently, there is growing interest to use complex and high-fidelity mathematical 

models of the process in the operation optimization task. However, the development of such 

analytical models for many chemical, petrochemical and pharmaceutical processes is a 

challenging task due to the required deep knowledge, cost, efforts and time (Quirante, et al., 

2018). As a result, specialized simulation software tools have been developed to model and 

simulate such complex processes most of them appear in black box modular style, e.g., Aspen 

and gPROMs  (Caballero & Grossmann, 2008). 

Although these First Principle Models (FPMs) are able to capture more detailed features 

and sophisticated characteristics of the process and, consequently, provide more accurate 

estimation of its behavior, they show many practical drawbacks and challenging characteristics 

(Flemming, et al., 2007; Norbert, et al., 2017; Quirante, et al., 2018), such as: 
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i) high nonlinearity and complexity, due to the sophisticated phenomena 

typically involved (thermodynamics, reactions kinetics, heat and mass transfer, 

etc.) and to the large number of equations contained in the analytical or FPMs. 

For example, a full-scale model of a refinery could contain more than a million 

of equations (Henao & Maravelias, 2011),  

ii) complex model architectures, since they appear to the user in modular black-

box style (e.g., Aspen Plus) involving intricate connections and recycles among 

the different units and, also, with no access to the embedded first principle 

equations (Caballero & Grossmann, 2008), 

iii) large computational cost required for the model simulation due to the 

complexity of the utilized numerical solution procedures –e.g., iterative 

schemes and/or integration techniques-  (Garud, et al., 2017).  

iv) noisy calculations introduced by these simulators (e.g., caused by the 

termination criteria), which hinder the efficient use of derivative-based 

optimizers due to the bad estimates of the derivatives and, consequently, the 

poor optimization results (Quirante, et al., 2018).  

These challenging characteristics inherent to the FPMs of chemical processes represent 

an obstacle to their use for the operation optimization, especially for large scale and/or fast 

dynamic processes (Kelly & Zyngier, 2017). For example, the optimization of a full-scale 

petrochemical plant (crude oil and gas treatment facilities, refineries, etc.) based on its FPM 

model requires several hours to obtain the optimal solution, and in many cases, the 

optimization process may fail to converge (Salback, 2004; Kajero, et al., 2017). 

To overcome the above drawbacks and cope with the above challenges, Surrogate Based 

Optimization (SBO) approaches have been proposed and have received significant attention 

in the chemical process industry area (Quirante, et al., 2018). The basic idea of SBO is to use 

the original complex FPM for generating input-output data points by “Computer 

Experiments”, and use them to develop accurate, but simple and fast-running, data-driven 

models (“metamodels” or “surrogate models”). Then, these data-driven models are used in 

replacement of the complex FPM in the addressed optimization problem (Ochoa-Estopier & 

Jobson, 2015). In this context, two types of machine learning or surrogate models have been 

common choices, which are Artificial Neural Networks (ANNs) and kriging (Kajero, et al., 

2017). ANNs offer universal and powerful approximation capabilities due to their flexible 

structure (of neurons) that can be modified to capture complex nonlinear behaviors. On the 

other hand, kriging also provides high prediction accuracy with relatively small number of 

training data points, besides an outstanding characteristic represented in its estimated variance, 
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which represents the uncertainty about the kriging model prediction. Nevertheless, in the SBO 

literature (Jones, et al., 1998; Jones, 2001; Zuhal, et al., 2019), it has been demonstrated that 

non-interpolating surrogate models (i.e., regression models, such as ANN) are unreliable in 

optimization, because they do not appropriately capture the shape of the function to be 

approximated, and it is usually better to use surfaces that interpolate the data with linear 

combinations of basis functions (e.g., kriging). 

In the chemical process engineering area, two main classes of SBO approaches can be 

identified. The first is based on the development of global surrogate models approximating the 

entire modular simulator or flow-sheet of the process (the FPM). In more details, the input and 

output variables of these global surrogate models are selected over the entire process flow-

sheet as the variables of interest for the optimization problem formulation (i.e., variables 

representing the optimization decisions (input) and variables constituting the objectives and 

constraints (outputs)) (Palmer & Realef, 2002; Kempf, et al., 2012; Chia, et al., 2012; Ochoa-

Estopier & Jobson, 2015; Ochoa-Estopier, et al., 2018; Davis & Ierapetritou, 2007). The 

second class of approaches is based on partitioning the simulation model into different units 

or subgroups of units, for each of which a dedicated surrogate model is developed; then, the 

different surrogates are aggregated to constitute the final approximate model of the process, 

based on which different optimization schemes can be designated (Salback, 2004; Henao & 

Maravelias, 2011; Quirante & Caballero, 2016; Quirante, et al., 2018; Caballero & Grossmann, 

2008).  

Regarding the first class, Slaback (2004) proposed a method for SBO of a refinery 

operation, where each unit-model based on first principles is substituted by a unit-model based 

on ANN. The refinery large-scale approximate model is obtained by coordinating/linking the 

ANN-based unit-models and, then, an iterative optimization procedure is performed: once the 

optimum operating conditions are determined, it is simulated by the FPM and then used to 

update the ANN models, and so on until no enhancement in two successive optimal solutions 

(i.e., iterations). Henao and Maravelias (2011) proposed a similar method, but for 

superstructure optimization, in which each unit in the modular simulator is replaced by an 

ANN model, then the superstructure is composed by aggregating all the ANN-based unit 

models. Then, an adaptive Mixed-Integer SBO optimization scheme is performed: in each 

iteration, the input domains of the surrogate models are updated according to the obtained 

optimal solution value and its feasibility (and, also, according to the overlapping between the 

output domain of each surrogate model and the input domain of the subsequent connected 

surrogate), which implies the generation of completely new training datasets and the refitting 

of all the surrogate models. 
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Caballero & Grossmann (2008), Quirante and Caballero (2016) and Quirante et al. 

(2018) developed hybrid SBO methods, in which kriging models replace only those units in 

the process modular simulator that introduce numerical noise and/or requiring  large CPU time 

for their convergence (e.g., distillation columns, reactors), while other noiseless and 

computationally affordable units are maintained (e.g., splitters, pumps). The optimization is 

carried out considering the hybrid model (units based on the modular process simulator and 

others based on kriging models): a trust region-like search mechanism is employed, which 

contracts and/or moves a trust region around the optimal solution obtained in each iteration, 

which implies contracting or shifting the surrogate models input domains and, consequently, 

requires generating new training datasets and refitting the surrogate models. Their methods 

have been applied to different applications, including the operation optimization of sour water 

stripping plant and the design optimization of distillation systems.  

The advantages of this class include: a) the capability of handling large-scale systems 

by splitting them to small units/sections (i.e., surrogate models) and b) the possibility to 

combine both accurate and fast FPM models of some units or sections in the plant with 

surrogate models of other problematic units or sections. Whereas their limitations are that it 

does not exploit the potentials capabilities provided by the kriging variance in order to account 

for the surrogate models uncertainty during the optimization search. Also, it iteratively 

discards the previous training datasets and generates new sets for fitting new surrogate models, 

which can be computationally prohibitive in an online environment. 

Considering the second class of SBO approaches, the early work of Palmer & Realef 

(2002) has presented guidelines for the optimal development of kriging and polynomial 

regression surrogate models from a complex steady-state simulator of ammonia synthesis 

plant. Davis & Ierapetritou (Davis & Ierapetritou, 2007) developed a SBO method based on 

fitting an initial kriging model that represents a global picture of the objective behavior over 

the entire feasible search space in order to identify promising local regions at which other local 

regression surrogate models (with completely new training datasets) are fitted to refine the 

search. The global optimum is, then, selected as the best solution obtained among the identified 

set of local optima. Ochoa-Estopier and Jobson (2015) and Ochoa-Estopier, et al. (2018) 

developed a SBO method for operation optimization of crude oil distillation systems, in which 

ANN models took the place of the complex FPM. The nonlinear optimization problem is 

solved, based on the ANNs models by a simulated annealing algorithm. Chia et al. (2012) have 

proposed a multi-objective SBO method for optimizing the operation of a batch reactor, in 

which two objectives are considered; the minimization of the kriging prediction and the 

maximization of the kriging estimated error. The optimal solution is, iteratively added to the 

original set of the training data, and the surrogate model is refitted again, and so on. Few works 
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has been proposed based on the EGO algorithm “Efficient Global Optimization” (Jones, et al., 

1998; Zuhal, et al., 2019), in which a global surrogate model representing the objective is 

initially fitted with few training points, and it is explored by a probabilistic search mechanism 

(“expected improvement” ) that considers both the kriging prediction and the uncertainty about 

this prediction. In each iteration, the surrogate model is updated with the obtained optimal 

solution (sampled from the FPM) and then refitted. Kempf et al. (2012) used an EGO-based 

method for the unconstrained design optimization of a nuclear reactor. The advantages of the 

second class are: 

i) it considers the surrogate model prediction uncertainty (i.e., error), which is an 

essential need for any reliable SBO method (Jones, et al., 1998; Jones, 2001; Zuhal, 

et al., 2019). Since it has been proven that exploring the surrogate model with an 

arbitrary optimizer can fail even to find local optima, because the surrogate model 

prediction uncertainty is not considered by the traditional optimizers (Zhang, et al., 

2018; Zuhal, et al., 2019).  

ii) it adds efficient global exploration capabilities to the search mechanism by not only 

directing it to the minimum value of the predictor (i.e., the surrogate model 

representing the objective), but also to its maximum estimated error (Zuhal, et al., 

2019), 

iii) the eventually obtained global surrogate models of the entire process/plant can be used 

for different analysis (Kempf, et al., 2012), 

iv) relatively few simulations run of the original FPM are required for updating the 

surrogate models during the optimization search (Forrester & Keane, 2009), which 

makes this SBO class more suitable for online application 

Nevertheless, this class of SBO approaches shows some drawbacks as the difficulty to 

construct global surrogate models that accurately capture the behavior of large-scale processes 

or plants, and, more importantly, the difficulty of handling constraints. 

This Chapter considers the second class of approaches for SBO of chemical processes 

and extends its capabilities by developing a methodology for the constrained SBO of complex 

nonlinear chemical processes. The proposed methodology consists of replacing the complex 

nonlinear black box model based on first principles with a set of kriging surrogate models 

representing the objective function and the constraints. A sequential sampling strategy, based 

on the constrained expected improvement techniques, is used to explore the search space of 

the decision variables (i.e., the surrogate models input) and to update the set of surrogate 
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models, so as to reach a global solution for the problem. The methodology has been compared 

with classical optimization procedures. Both have been applied to three mathematical 

examples and to two case studies of optimization of chemical process operation. 

3.2 PROPOSED FRAMEWORK 

The proposed framework consists of three main steps; 1) initial Design Of Computer 

Experiments (DOCE), 2) kriging models construction and validation, 3) surrogate-based 

optimization. 

3.2.1 Initial DOCE 

In this step, the original complex FPM of the process is explored in order to identify the 

output variables of interest 𝑦 ∈ 𝑅𝑀 (variables establishing the objective and constraints), the 

input variables 𝑥 ∈ 𝑅𝑘 (the degrees of freedom of the optimization) and their bounds or 

domain (surrogate models domain). Then, over the specified domain, a certain set of input 

values combinations (sample points) is selected, which is called “sampling plan” [𝑋]𝑛×𝑘, 

where 𝑛 is the number of sample points, and 𝑘 is the number of input variables. The design of 

a sampling plan includes two issues: first, specifying a reasonable number of sample points 𝑛, 

and, second, designing the locations or the distribution of these data points over the surrogate 

model input domain. Many DOCE techniques have been developed such as Latin hypercube 

sampling (LHS) (Garud, et al., 2017), Space-filling Latin Hypercube Sampling (SLHS) 

(Forrester, et al., 2008), low discrepancy sequences as the Hammersley technique (Ibrahim, et 

al., 2019) and sequential or adaptive sampling (Kajero, et al., 2017). Most of these DOCE 

techniques show both desired and limiting characteristics in terms of the uniformity of the 

generated sampling plan and the demanded computational cost (Ibrahim, et al., 2019). In this 

Chapter, the SLHS design is used, as it achieves high uniformity (Garud, et al., 2017). More 

details about DOCE techniques can be found in Section 2.1. 

After designing an efficient sampling plan [𝑋]𝑛×𝑘, a computer experiment or a 

simulation run is carried out using the complex FPM at each point of the sampling plan, so as 

to obtain the response or output variables values [𝑌]𝑛×𝑀. Where M is the number of output 

variables that includes the objective function and the 𝑀 − 1 constraints. Consequently, 𝑀 is 

also the number of kriging models to be fitted (a surrogate model for the objective, and a 

surrogate model for each of the 𝑀− 1 constraints). It is worth mentioning that the objective 

and the constraints do not need to be direct measures of the process variables, but they can be, 

also, combinations of the process variables, which finally lead to process performance 

indicators. 
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3.2.2 Kriging construction and validation 

The generated input ([𝑋]𝑛×𝑘) and output ([𝑌]𝑛×𝑀) data are used to train a number of 𝑀 

kriging models (one surrogate model for each one of the objective and constraints to be 

considered). 

For one output variable, 𝑦, the Ordinary Kriging (OK) (Forrester & Keane, 2009) 

assumes the predictor 𝑦̂(𝑥) =  𝜇𝑜𝑘  + ℤ(𝑥), where the constant term 𝜇𝑜𝑘 represents the main 

trend of the system to be approximated, and ℤ(𝑥) is a deviation/residual from that trend, which 

accounts for detailed complex behavior of the system that could not be captured via the main 

trend 𝜇𝑜𝑘 (Jones, et al., 1998). The residual ℤ(𝑥) is modeled as a stochastic Gaussian process 

with expected value 𝐸(ℤ(𝑥)) =  0, and a covariance between two residuals 𝑐𝑜𝑣(ℤ(𝑥𝑖), ℤ(𝑥𝑗)) 

that only depends on their corresponding input values 𝑥𝑖, 𝑥𝑗. Thus, it can be calculated as: 

𝑐𝑜𝑣(ℤ(𝑥), ℤ(𝑥𝑗)) =𝜎𝑜𝑘
2  𝑅(𝑥𝑖, 𝑥𝑗), being 𝜎𝑜𝑘

2  the process variance, and 𝑅(𝑥𝑖, 𝑥𝑗) a correlation 

function, 𝑅(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(−∑ 𝜉ℓ|𝑥𝑖,ℓ−𝑥𝑗,ℓ−|
𝑝ℓ𝑘

ℓ=1 ) + 𝛿𝑖𝑗 𝜆,  where, 𝜉ℓ, 𝑙 = 1,… , 𝑘 are the 

model hyper-parameters, 𝛿𝑖𝑗  is the Kronecker delta, 𝑝ℓ are smoothing parameters and 𝜆 is a 

regularization constant that enables the kriging predictor to regress noisy data (Forrester & 

Keane, 2009).    

In order to estimate the values of the parameters [𝜇𝑜𝑘 , 𝜎𝑜𝑘
2 , 𝜉ℓ, 𝑝ℒ , λ], the likelihood 

function of the observed data [𝑌]𝑛×1 is maximized. The kriging predictor (Eq.(3.1)) and its 

estimated error (Eq.(3.2)) are obtained by deriving the augmented likelihood function of both 

the original training data set and a new interpolating point (𝑥∗, 𝑦∗). In both equations, [𝑟]𝑛×1 

is the vector of correlations between the new point to be predicted 𝑥∗ and the original training 

data points and calculated as 𝑅 (𝑥𝑖, 𝑥
∗), and [𝟏]𝑛×1 is the identity vector (Jones, et al., 1998; 

Caballero & Grossmann, 2008).  

 𝑦̂( 𝑥∗) = 𝜇𝑜𝑘 + 𝑟
𝑇𝑅−1(𝑌 − 𝟏𝜇𝑜𝑘) (3.1) 

 𝑠̂2(𝑥∗) = 𝜎𝑜𝑘
2 (1 + 𝜆 − 𝑟𝑇𝑅−1𝑟 + (1 − 𝟏𝑇𝑅−1𝑟)−1 (𝟏𝑇𝑅−1𝟏)⁄ ) (3.2) 

In practice, this maximization of the concentrated log-likelihood function is 

computationally challenging because of the high effort associated to the repetitive calculation 

of the correlation matrix inverse [𝑅]𝑛 × 𝑛
−1  during the optimization iterations, which quickly 

grows with the size of the training data set and/or the model input dimensionality see Section 

2.2.1. Besides, the nature of the concentrated log-likelihood function itself is quite complicated 

because it is flat near the optimum (Fang, et al., 2005). More details about these computational 
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challenges and the numerical methods and optimization techniques to reduce these obstacles 

can be found in (Fang, et al., 2005; Forrester, et al., 2008). 

After fitting the 𝑀 kriging metamodels, they are validated to verify that they show a 

sufficient level of accuracy. Cross-validation techniques allow performing this task without 

any additional data generation rather than the original training set (Kohavi, 1995; 

Meckesheimer, et al., 2002). Several methods have been proposed, as the “K-fold cross-

validation”, “leave-p-out cross-validation”, and “leave-One-Out Cross-validation” (LOOCV). 

A detailed justification of the characteristics of these and other cross-validation techniques can 

be found in (Kohavi, 1995; Meckesheimer, et al., 2002). In this Chapter, the LOOCV method 

is used based on computing the Root Mean Square Error (RMSE) by Eq.(3.3), where 𝑦𝑖 is the 

real value of the left out point and 𝑦̂𝑖 is its corresponding estimated value.  

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2
𝑛
𝑖=1   (3.3) 

3.2.3 Optimization using surrogate models 

Once the kriging surrogate models have been fitted and validated, they take the place of 

the original complex process model. Hence, Eq.(3.4) and Eq.(3.5) represent the nonlinear 

constrained optimization problem, in which one kriging model represents the objective, and 

𝑀 − 1 kriging models represent the 𝑀 − 1 constraints. In this problem, the objective 𝑌𝑜𝑏𝑗(𝑥) 

and the constraints 𝑌𝑐𝑜𝑛𝑠𝑡(𝑚)(𝑥), 𝑚 = 1,2,… ,𝑀 − 1 are considered as normally distributed 

random variables with means equal to the kriging models predictions, 𝑦̂𝑜𝑏𝑗(𝑥), 𝑦̂𝑐𝑜𝑛𝑠𝑡(𝑚)(𝑥), 

and variances equal to the kriging models variances, 𝑠̂𝑜𝑏𝑗
2 (𝑥), 𝑠̂𝑐𝑜𝑛𝑠𝑡(𝑚)

2 (𝑥), where 𝑇𝑚 is the 

constraint limit.  

 𝑀𝑖𝑛 𝑌𝑜𝑏𝑗(𝑥) , 𝑌𝑜𝑏𝑗(𝑥)  ≈ 𝒩(𝑦̂𝑜𝑏𝑗(𝑥), 𝑠̂𝑜𝑏𝑗
2 (𝑥)) (3.4) 

 

𝑆. 𝑇.: 𝑌𝑐𝑜𝑛𝑠𝑡(𝑚)(𝑥) ≤  𝑇𝑚,

𝑌𝑐𝑜𝑛𝑠𝑡(𝑚)(𝑥) ≈ 𝒩 (𝑦̂𝑐𝑜𝑛𝑠𝑡(𝑚)(𝑥), 𝑠̂𝑐𝑜𝑛𝑠𝑡(𝑚)
2 (𝑥)), 

𝑚 = 1, . . , 𝑀 − 1 

(3.5) 

In the literature, the Expected Improvement (EI) criterion (Jones, 2001; Zuhal, et al., 

2019) is used for optimizing an unconstrained objective function represented by a kriging 

surrogate model (i.e., Eq. (3.4)) via sequential sampling. Assuming that the objective function 

is to be minimized and the current best value of this objective is 𝑓𝑚𝑖𝑛, hence, if a new point 𝑥∗ 
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is to be explored, the current best solution is expected to get improvement by an 

amount 𝐼 (𝑥∗) =  𝑚𝑎𝑥[0, 𝑓𝑚𝑖𝑛 − 𝑌𝑜𝑏𝑗(𝑥
∗)]. Hence, the likelihood of achieving this 

improvement is given by a normal density function. By integrating over this density function, 

the EI is obtained in Eq.(3.6), where 𝜙 is the normal cumulative distribution function and 𝜑 is 

the density function (Jones, et al., 1998; Regis, 2016). The approach works iteratively through 

sequential sampling. In each iteration, the EI criteria, Eq.(3.6), is maximized to find a 

potentially improved solution 𝑥∗, the original complex FPM is evaluated at this solution to 

obtain the real response 𝑦∗, the new input-output data point [𝑥∗, 𝑦∗] is added to the initial set 

of training data and, then, the surrogate model is refitted. The method has been widely tested 

and it has been proven that it usually converges to the global optimum (Zhang, et al., 2018; 

Forrester, et al., 2008). 

 𝐸[𝐼(𝑥∗)] = 𝑠̂𝑜𝑏𝑗
2 (𝑥∗) [𝑢 𝜙(𝑢) + 𝜑(𝑢)],     𝑢 =

𝑓𝑚𝑖𝑛 − 𝑦̂𝑜𝑏𝑗(𝑥
∗) 

𝑠̂𝑜𝑏𝑗
2 (𝑥∗)

 (3.6) 

However, the EI can manage only the optimization of the objective and its uncertainty 

(i.e., Eq.(3.4)). The existence of constraints and their uncertainties, in Eq.(3.5), requires the 

use of an additional technique to manage the feasibility of the search and the uncertainty about 

this feasibility, as well. A straightforward approach is to use the EI method coupled with a 

penalty function for the violation of the constraints. But this approach would neglect the 

uncertainty about the constraints (i.e., uncertainty about the feasibility), and could easily lead 

to a deceptive solution (Parr, et al., 2010; Parr, et al., 2012; Qian, et al., 2019). The kriging 

variance enables the use of an additional technique to account for the constraints uncertainty, 

which is the Probability of Improvement (PI) (Schonlau, et al., 1998; Jones, et al., 1998; 

Durantin, et al., 2016). This technique considers the expected value of a kriging surrogate 

model (that represents a constraint) at a certain untrained point as a random variable 𝑌𝑐𝑜𝑛𝑠𝑡(𝑥),  

which is normally distributed with a mean equal to the kriging prediction at this point, 

𝑦̂𝑐𝑜𝑛𝑠𝑡(𝑚)(𝑥), and a variance equal to the kriging variance, 𝑠̂𝑐𝑜𝑛𝑠𝑡
2 (𝑥). Assuming that the 

maximum acceptable value of the constraint is 𝑇 (the constraints limit) and its current value 

is 𝑓𝑐𝑜𝑛𝑠𝑡, when exploring a new point 𝑥∗, the probability of improving the current value 

 𝑓𝑐𝑜𝑛𝑠𝑡  beyond 𝑇 (the probability of feasibility) is modeled as the probability that 𝑌𝑐𝑜𝑛𝑠𝑡(𝑥
∗) ≤

𝑇 (Parr, et al., 2012; Durantin, et al., 2016). Assuming the random variable is normally 

distributed, this PI is given by Eq.(3.7). The PI is calculated for each one of the constraints 

surrogate models (Parr, et al., 2012), see Figure 3.1. 
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 𝑃𝐼(𝑥∗) = 𝑝(𝑌𝑐𝑜𝑛𝑠𝑡(𝑥
∗) ≤ 𝑇 ) = 𝜙 [

𝑇 − 𝑦̂𝑐𝑜𝑛𝑠𝑡(𝑥
∗)

𝑠̂𝑐𝑜𝑛𝑠𝑡
2 (𝑥∗)

] (3.7) 

 𝐶𝐸𝐼(𝑥∗) = 𝐸[𝐼(𝑥∗) ∩ 𝑃𝐼(𝑥∗)] = 𝐸[𝐼(𝑥∗)] 𝑝(𝑌𝑐𝑜𝑛𝑠𝑡(𝑥
∗) ≤ 𝑇 ) (3.8) 

 𝐶𝐸𝐼(𝑥∗) = log(𝐸[𝐼(𝑥∗)])  + ∑ log(𝑃𝐼𝑚(𝑥
∗))

𝑀−1

𝑚=1

 (3.9) 

Combining the EI criterion and the PI criterion of each constraint, we obtain the 

Constrained Expected Improvement (CEI) criterion or method (Eq.(3.9)) (Parr, et al., 2012), 

which minimizes an objective function subjected to constraints, all of them represented by 

kriging surrogate models. The considered SBO procedure works iteratively: in each iteration, 

it finds the point 𝑥∗ that maximizes the CEI criterion, evaluates the complex FPM of the 

process at 𝑥∗ to obtain the corresponding output 𝑦∗, adds the point [𝑥∗, 𝑦∗] to the original 

training dataset and, then, refits the kriging surrogate models. The point that maximizes the 

CEI criterion is the point in the surrogate models domain that has minimum predicted value of 

the objective surrogate model, maximum prediction variances and highest probability of 

satisfying the constraints (probability of feasibility). So, the CEI method does not only conduct 

the search to well suited solutions to the proposed optimization problem, but also improves 

the surrogate models accuracy during the optimization search to reduce the uncertainties 

(Rehman & Langelaar, 2017). The most straightforward stopping criterion for CEI 

optimization method is the number of iterations specified by the modeler. The maximization 

of the CEI criterion is accomplished by a genetic algorithm, and the boundaries of the 

optimization problem decision variables are represented by the limits of the surrogate models 

input domain.  
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Figure 3.1. Calculation procedure of the CEI criterion for an interpolation point 𝑥∗. 

3.3 METHODOLOGY STEPS 

In order to reach to a robust and efficient optimization methodology, the previously 

described techniques and tools are coordinated through the following steps: 

1. Explore the complex FPM to identify the 𝑀 variables of interest (objective function 

and constraints). Then, identify the set of 𝑘 independent variables 

(optimization/control variables) and their bounds (surrogate models domain), 

2. Over the surrogate models domain, design a sampling plan with a certain number of 

sample points 𝑛. ([𝑋]𝑛×𝑘), 

3. Evaluate the FPM at these sampling points [𝑋]𝑛×𝑘, and get the corresponding matrix 

of observations [𝑌]𝑛×𝑀. 

4. Fit 𝑀 kriging models by maximizing the likelihood of the observed data [𝑋]𝑛×𝑘 

, [𝑌]𝑛×1.  

5. Validate the kriging models (only in the first iteration). 

6. Maximize the CEI criterion and get the optimal solution point 𝑥∗. Maximization of 

the CEI criterion is carried out using a genetic algorithm. 

7. Evaluate the original FPM of the process at 𝑥∗ and get 𝑦∗. 

8. Add the new input-output point [𝑥∗, 𝑦∗] to the original matrix of observations [𝑋], [𝑌 ]. 

9. Stop if the stopping criterion is satisfied, otherwise return to step 4 and continue 

iterations. 

Calculate the 

optimization 

criterion (CEI) 𝑥∗ 

Objective function metamodel 

𝑦̂𝑜𝑏𝑗(𝑥
∗ ), 𝑠̂𝑜𝑏𝑗

2 (𝑥) 

 

Metamodel of constraint 1  

𝑦̂𝑐𝑜𝑛𝑠𝑡(1)(𝑥
∗ ), 𝑠̂𝑐𝑜𝑛𝑠𝑡(1)

2 (𝑥∗ ) 

 

Metamodel of constraint 2  

𝑦̂𝑐𝑜𝑛𝑠𝑡(2)(𝑥
∗ ), 𝑠̂𝑐𝑜𝑛𝑠𝑡(2)

2 (𝑥∗ ) 

 

………………………………

……...... 
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𝑦̂𝑐𝑜𝑛𝑠𝑡(𝑀−1)(𝑥
∗ ), 𝑠̂𝑐𝑜𝑛𝑠𝑡(𝑀−1)

2 (𝑥∗ ) 
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As shown in the methodology steps and in  Figure 3.2, the genetic algorithm plays an 

important role in the proposed SBO procedure: it is used for maximizing the CEI instead of 

classical derivative-based optimization techniques, which, if used, would face some obstacles 

resulting from the complex nature of the CEI criterion (i.e., entrapment in local optima) 

(Forrester, et al., 2008). 

                  

 Figure 3.2. Proposed framework. 
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3.4 APPLICATIONS 

3.4.1 Mathematical examples 

Example (1): Minimize the Peaks function (Eq.(3.10)), subjected to the constraint in 

Eq.(3.11). 

 

𝑀𝑖𝑛 𝑓𝑃𝑒𝑎𝑘𝑠 = 3(1 − 𝑥1)
2 𝑒𝑥𝑝 (−𝑥1

2 − (𝑥2 + 1)
2)) − 10(

𝑥1

5
− 𝑥1

3 − 𝑥2
5) 𝑒𝑥𝑝 (𝑥1

2 −

𝑥2
2) −

1

3
𝑒𝑥𝑝  (((𝑥2 + 1)

2 − 𝑥2
2)), 

(3.10) 

 

S.T.:        𝑥1
2 − 4𝑥2

2  < 1.7 , 

−2 ≤ 𝑥1, 𝑥2 ≤ −2 
(3.11) 

Example (2): Minimize the Branin function (Eq.(3.12)), subjected to the constraint in 

Eq.(3.13). 

 𝑀𝑖𝑛 𝑓𝐵𝑟𝑎𝑛𝑖𝑛 = (𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜋
𝑥1 − 6)

2 + 10 (1 −
1

8𝜋
) cos(𝑥1) + 10 (3.12) 

 

S.T.:        𝑓𝑃𝑒𝑎𝑘𝑠(𝑥1, 𝑥2) < −2, 

−5 ≤ 𝑥1 ≤ 10 ,  0 ≤ 𝑥2 ≤ 15 
(3.13) 

Example (3): Minimize the Six-hump Camel-back function (Eq.(3.14)), subjected to a 

constraint in Eq.(3.15). 

 
𝑓𝐶𝑎𝑚𝑒𝑙 = (4 − 2.1 𝑥1

2 +
𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2 + (−4 + 4 𝑥2
2) 𝑥2

2, 

−2 ≤ 𝑥1 ≤ 2, −1 ≤ 𝑥2 ≤ 1 

(3.14) 

 

S.T.:           𝑓𝐺𝑜𝑚𝑒𝑠(𝑥1, 𝑥2) > 3 

𝑓𝐺𝑜𝑚𝑒𝑠 = (4 − 2.1 𝑥1
2 +

𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2 + (−4 + 4 𝑥2
2) 𝑥2

2 + 3 sin (6(1 − 𝑥2)), 

0 ≤ 𝑥1, 𝑥2 ≤ −1 

(3.15) 

Peaks, Branin, Six-hump Camel Back, and Gomez functions are well-known 

mathematical examples for global nonlinear optimization, because of their multimodality and 

high nonlinearity (Parr, et al., 2010; Durantin, et al., 2016; Qian, et al., 2019; Forrester & 

Keane, 2009). In this Chapter, scaled versions of those functions between [0 ,1] are used. In 

each example, a SLHS design technique is used to generate an initial sampling plan with 19 

sample points to fit the kriging models.  
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The proposed methodology has been applied to each example with two different values 

of the stopping criterion (no. of iterations) to assess the algorithm abilities. The methodology 

is also compared to a classical Sequential Quadratic Programming (SQP) optimizer. In each 

of the three examples, the objective is subjected to only one constraint, so the methodology 

fits two kriging surrogate models (one for the objective and the other for the constraint).  

The “scaled” results of the examples are summarized in Table 3.1, Table 3.2 and  

Table 3.3 and visualized in Figure 3.3. The Tables show how the methodology provides 

accurate results with a smaller number of function evaluations than the SQP traditional 

method. Although, since the function evaluation was almost costless, in these cases the higher 

number of evaluations required implied less effort than the fitting process overhead, so the 

proposed procedure required higher computational effort than the use of traditional methods 

over the mathematical “real” model.  

 Moreover, the results also indicate the capability of the methodology to search over the 

whole domain of the problem, even moving among separated feasible regions (Figure 3.3-

(b,c)), which facilitates not only the identification of the global optimum of the problem, but 

also to get information about alternative sub-optimal solutions. This fact is of essential 

importance in real engineering problems, where it is not always easy to fit all the information 

about the problem in the corresponding mathematical terms (objective function and/or 

constraints) and local optima may represent alternative solutions. So, human practical know-

how may be supported through this additional information to make a final decision. 

Additionally, this characteristic eliminates the need to repeat the optimization departing from 

different initial points, which is a drawback of other local optimization methods. 

Table 3.1. Results obtained for the constrained optimization of example (1). 

 FPM + SQP Kriging+ CEI 

Solution [objective (𝒙𝟏, 𝒙𝟐)] -2.977 (0.183, 0.539)* -2.886(0.200, 0.564) -2.95(0.192, 0.553) 

No. of kriging models 0 2 2 

No. of func. eval. (kriging)  0 19 19 

No. of func. eval. (optimization)   75+ 4 8 

Initial DOCE (sec) 0 10.632 10.632 

Computer experiment time (sec) 0 0.008 0.008 

Optimization time (sec) 0.131+ 30.762 68.122 

Computational reliability 50 % 100 % 100 % 

+ The function evaluations and the optimization time in the SQP case are average values, as the SQP of the 

real model was carried out 50 times with different randomly selected initial solutions (applicable to the three 

examples). 

* Only 50 % of the optimization trails using SQP found the global solution. 42% of the optimization trails 

converged to trivial solution 0.1297 (0.607, 0.3461), and 8% to -0.0649 (0.57, 0.58). 
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Table 3.2. Results obtained for the constrained optimization of example (2). 

 FPM + SQP Kriging+ CEI 

Solution [objective (𝒙𝟏, 𝒙𝟐)] 0.397 (0.542, 0.152)* 0.434(0.538, 0.163) 0.398 (0.543, 0.152) 

No. of kriging models 0 2 2 

No. of func. eval. (kriging)  0 19 19 

No. of func. eval. (optimization)   80+ 4 8 

Initial DOCE (sec) 0 10.490 10.490 

Computer experiment time (sec) 0 0.0145 0.0145 

Optimization time (sec) 0. 214+ 25.819 50.531 

Computational reliability 30 % 100 % 100 % 

* Only 30 % of the optimization trails with SQP found the global solution. 16% of the optimization trails 

found a local solution 2.47 (0.156, 0.677); 8% of the optimization trails found a local solution 18.60 (0.782,   

0.082); 46% of the optimization trails converged to infeasible solutions 

 

Table 3.3. Results obtained for the constrained optimization of example (3). 

 FPM + SQP Kriging+ CEI 

Solution [objective (𝒙𝟏, 𝒙𝟐)] -0.975(0.447, 0.864) * -0.667(0.397,0.877) -0.913 (0.439,0.831) 

No. of kriging models   0 2 2 

No. of func. eval. (kriging)  0 19 19 

No. of func. eval. (optimization)   35+ 4 8 

Initial DOCE (sec) 0 10.47 10.47 

Computer experiment time (sec) 0 0.017 0.017 

Optimization time (sec) 0.577+ 34.42 63.91 

Computational reliability 20 % 100 % 100 % 

* Only 20% of the optimization trails with SQP found the global solution. 40% of the 

optimization trails converged to infeasible solutions, and 40% local and trivial solutions. 

Finally, it is worth noting that the algorithm not only optimizes during iterations, but 

also improves the accuracy of the metamodels. So, it may explore infeasible regions - see 

Figure 3.3-(b) - if these regions show high prediction uncertainty; then, it smartly returns to 

search the feasible regions. Since, an area showing high prediction uncertainties will maximize 

the merit value (CEI in Eq.(3.9)) in spite of its eventual infeasibility, and will force the 

optimizer to explore it and add it to the set of sample points to reduce the uncertainties of 

surrogate models; in next iterations, the effect of the uncertainties on the merit value will be  

reduced, and the effect of the areas or points that have high probabilities of feasibility will 

dominate the merit and will force the optimizer to return to the feasible area. In this sense, the 

methodology is insensitive to the initial solution, simply because it does not need an initial 

solution to start the optimization. On the contrary, when optimizing examples 1, 2 and 3 with 

classical SQP optimizers, more than 50% of the optimization trials fail to find even feasible 

solutions, and a lot of effort was dedicated to find a feasible initial solution. Additionally, the 

methodology offers adjustable stopping criterion which allows the modeler to adjust the 

tradeoff between the required accuracy of the optimization results and the optimization time.   
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(a) 

 
(b) 

 
 (c) 

Figure 3.3. Constrained optimizations using the proposed SBO methodology; the colored 

areas are the feasible regions, ○ – original samples set, Δ – optimization samples 

(iterations), □- exact optimal solution. 
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3.4.2 Gas turbine case study 

 

 

Figure 3.4.  AspenPlus model of the Gas turbine case study. 

The methodology has been also applied to the optimization of the operating parameters 

of a Gas Turbine (GT) (Bojarski, et al., 2010). The GT cycle is composed of a system of 

compressor-combustion chamber-turbine that uses natural gas. A saturation column, before 

the clean gas combustion, saturates this stream with vapor and nitrogen. The GT air cooling 

has been modeled by taking into consideration four stages GT, thus the air compressor has 

been modeled as a four steps process, as well. The combustion chamber is considered to 

operate at 15 bars, while air is fed to the compressor at atmospheric pressure. The combustion 

chamber is modeled as a Gibbs reactor  (Bojarski, et al., 2010).  Each corresponding stage 

could have the same pressure loss or gain ratio, but in this case the intermediate pressures have 

been left unspecified and are subject of optimization. All the model units of the turbines and 

compressors are taken from the AspenPlus model library and are considered to be isentropic. 

AspenPlus is an engineering software package, used for modeling and simulation of complex 

chemical/industrial processes, and takes the form of black box models. 

The objective function pursued is the maximization of net power (𝑁𝑃) obtained 

(highlighted by blue circle in Figure 3.4), which is equal to the total work produced by the 

turbines minus the work consumed by the intermediate compressors. The optimization 

variables are: 
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• the cooling air split fractions 𝑆𝐹1, 𝑆𝐹2, 𝑆𝐹3, 𝑆𝐹4  (highlighted by yellow circles in Figure 

3.4) that can vary within the range  [0.0 −  0.1], and 

• the intermediate stage pressures of the compressors 𝑃𝐶2, 𝑃𝐶3 and of the turbines 

𝑃𝑇2, 𝑃𝑇3 (highlighted by red circles in Figure 3.4), which can vary within the ranges 

[2.5 −  7.5], [8.0 −  17], [2.0 −  4.0] and [0.5 −  2.0] bar, respectively. 

Table 3.4. Optimization results of the Gas Turbine case study. 

 Case 1 (Aspen model +SQP) Case 2 (Kriging+ CEI) 

𝑺𝑭𝟏  0.080 0.00 

𝑺𝑭𝟐 0.100 0.00 

𝑺𝑭𝟑 0.100 0.00 

𝑺𝑭𝟒 0.001 0.11 

𝑷𝑪𝟐 4.0 8.12 

𝑷𝑪𝟑 10 14.9 

𝑷𝑻𝟐  3.2 2.0 

𝑷𝑻𝟒 1.5 1.2 

𝑵𝑷   239610 239571 

No. of kriging models  0 1 

No. Func. eval. (kriging) 0 60 

No. Func. eval. (optimization) 293 7 

Initial DOCE time (sec) 0 71 

Experiment time (sec) 0 46 

Optimization time (sec) 234.4 58 

Total no. of function eval. 293 67 

Total time (sec) 334.4 175 

Computational reliability 70% 100% 

 

The case study has been solved with two different techniques summarized in Table 3.4:  

• in case (1), the optimization has been achieved using the original complex FPM 

of the process (Aspen Plus) and the “fmincon” solver, based on a SQP 

algorithm, integrated in the Matlab optimization toolbox, and 

• in case (2), the proposed SBO framework has been applied. Since, the addressed 

optimization problem is unconstrained, only one surrogate model is fitted, 

which approximates the objective (𝑁𝑃) as a function of the decision 

variables [𝑆𝐹1, 𝑆𝐹2, 𝑆𝐹3, 𝑆𝐹4, 𝐶2, 𝑃𝐶3, 𝑃𝑇2, 𝑃𝑇3]. The SLHS technique is 

used to generate a sampling plan of 60 points for the initial fitting of the 
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surrogate model. In this case, the proposed methodology is applied considering 

its unconstrained adjustment (see Figure 3.2), based on the maximization of the 

EI criterion (see, Eq.(3.6)).  

The results show that in the case (1), a significant number of function evaluations (293 

function evaluations) is required, whereas, in case (2), the number of function evaluations is 

significantly decreased (67 function evaluations) and the computational time as well (175 sec), 

achieving a solution with an objective function value that is very close to the optimal solution 

obtained in case (1). 

3.4.3 Utility plant case study 

This case study involves a utility plant, in Figure 3.5, which supplies the required energy 

to an industrial process, as electrical and thermal energy demands. The system is composed of 

a boiler that receives water and supplies high pressure steam, which is distributed to three 

steam turbines and to the low-pressure steam header that collects the outlet steam from the 

three steam turbines. The outlet steam is cooled and the water is taken to a deaerator to remove 

the dissolved gases from it. After that, demineralized water is added to compensate for plant 

losses and the water is pumped back to the boiler inlet. The process is modeled using the Aspen 

Hysys modeling environment. Aspen Hysys is an engineering software package, used for 

modeling and simulation of complex chemical/industrial processes, and takes the form of 

black box models. 

 

Figure 3.5. Aspen model of the utility plant case study. 

The objective is the minimization of the operational cost of the utility plant, which is 

the summation of the operational cost of these described units (boiler, turbines, deaerator and 

pump) plus the cost of the required resources (cooling water, demineralized water and energy). 

These costs were calculated using the correlations presented in (Bruno, et al., 1998). The 
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operational cost [𝑂𝑃𝑅𝑐𝑜𝑠𝑡] is modeled as a function of five optimization variables (i.e., input 

or control variables) which include: the boiler outlet steam temperature and flow rate 

[𝑆𝑇𝑀𝑡𝑒𝑚𝑝, 𝑆𝑇𝑀𝑓𝑙𝑟𝑡] that can be manipulated within the ranges [160 ,170] (𝐶𝑜) and [15-

17]×3600  (𝐾𝑔𝑚𝑜𝑙𝑒/ℎ), respectively, and the steam split fractions to the three turbines 

[𝑆𝐹𝑇𝑈𝑅1, 𝑆𝐹𝑇𝑈𝑅2, 𝑆𝐹𝑇𝑈𝑅3] that can be tuned within the ranges [0.4, 0.6], [0.5, 0.7]  and [0.8, 

1.0], respectively . There are power demand constraints at the three turbines, which is required 

to maintain a minimum efficiency [𝑊𝑜𝑟𝑘1 ≥  35000 𝑘𝑊,𝑊𝑜𝑟𝑘2 ≥

 25000 𝑘𝑊, 𝑎𝑛𝑑 𝑊𝑜𝑟𝑘3 ≥  15000 𝑘𝑊]. The case study has been solved with two different 

techniques summarized in Table 3.5:  

• in case (1), the optimization has been achieved using the original complex FPM 

of the process (Aspen Plus) and the “fmincon” solver, based on SQP algorithm, 

integrated in the Matlab optimization toolbox, and 

• in case (2), the proposed SBO framework with three different stopping criteria 

has been used. The process outputs in interest are four, which includes the 

objective and the three constraints [𝑂𝑃𝑅𝑐𝑜𝑠𝑡, 𝑊𝑜𝑟𝑘1,𝑊𝑜𝑟𝑘2,𝑊𝑜𝑟𝑘3]. So, in 

case (2), four kriging surrogate models were fitted (one for each of the outputs) 

using SLHS technique to generate a sampling plan of 45 points. 

Table 3.5. Optimization results of the utility plant case study. 

 
Case 1 (Aspen 

model +SQP) 

Case 2 (Kriging+ CEI) 

Max. no. of 

iter=3 

Max. no. of 

iter =5  

Max. no. of 

iter =9 

𝑺𝑻𝑴𝒇𝒍𝒓𝒕  16.57 16.94 16.80 16.68 

𝑺𝑻𝑴𝒕𝒆𝒎𝒑  160.3 165.9 162.5 163.7 

𝑺𝑭𝑻𝑼𝑹𝟏     0.464 0.460 0.465 0.462 

𝑺𝑭𝑻𝑼𝑹𝟐     0.623 0.608 0.620 0.615 

𝑺𝑭𝑻𝑼𝑹𝟑     1.00 0.940 0.980 0.990 

𝑶𝑷𝑹𝒄𝒐𝒔𝒕    ($/year) × 106 2.66 2.72 2.69 2.68 

No. of kriging models  0 4 4 4 

No. Func. eval. (kriging) 0 45 45 45 

No. Func. eval. (optimization) 270 3 5 9 

Initial DOCE time (sec) 0 49 49 49 

Experiment time (sec) 0 108 108 108 

Optimization time (sec) 993 64 106 226 

Total no. of function eval. 270 48 50 54 

Total time (sec) 993 221 263 383 

Computational reliability 60% 100% 
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When compared with case (1), the proposed SBO framework requires a significantly 

lower number of function evaluations, and the overall computational effort is also significantly 

reduced, leading to very similar operating set-points. The constraint violations of the SQP 

optimizer and the proposed optimization methodology were zeros for this case study, and also 

for the previous applications. The reduction of the computational effort is much greater in 

successive uses of the algorithm, which will make use of the already fitted surrogate models 

and so will avoid the computational load associated to the initial surrogate models generation. 

But the main advantage of the proposed procedure, especially when dealing with complex 

highly nonlinear systems, is its computational reliability, which is basic in the day-to-day 

optimization of the operating conditions in situations which require fast decision-making: 

further the computational load (case(1)) associated to the optimization itself, the evaluation of 

FPM during an optimization procedure may require a huge quantity of time and human effort 

to redress the computational system from eventual failures, inconsistencies and convergence 

problems caused by the evaluation of the model for incompatible input combinations the 

optimizer may try. And additionally, if specific simulation tools are used (e.g., Aspen), it is 

not easy to make them compatible with standard optimization software tools (e.g., Matlab). 

Finally, in the previous applications, the SQP optimizer failed many times to find the optimal 

solution, and it sometimes failed even to find a feasible solution. The proposed kriging-based 

methodology integrates the model with the optimization algorithm and uses the FPM just in a 

relatively few evaluations, reducing dramatically the problems associated to these 

computational issues. 

3.5 CONCLUSIONS 

In this Chapter, a SBO methodology for steady-state operation optimization of complex 

nonlinear chemical processes, which are modelled by black box functions, is presented. The 

method is based on replacing the entire complex FPM (e.g., modular process simulator) with 

a set of global surrogate models (based on the kriging technique) representing the objective 

function and the constraints, which are fitted and validated using input-output data generated 

by the simulation of the FPM at specific value combinations of the input variables selected by 

DOCE technique. The search space of the decision variables (i.e., the surrogate model input 

domain) is explored by means of an adaptive sampling procedure, based on the EI (for 

unconstrained problems) or the CEI (for constrained problems) criteria. During each iteration 

of this sequential search procedure, the surrogate models are updated with the obtained optimal 

solution point for refining the search around the candidate solution. 

The effectiveness of the methodology, with respect to the targeted objectives, has been 

proven by its application to benchmark mathematical examples for nonlinear constrained 
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optimization and two case studies including the operation optimization of a multi-stage gas 

turbine and a utility plant, both modeled by ASPEN simulation environment. The methodology 

performance has been compared to that of classical optimization procedures. The results 

clearly confirm the methodology capabilities in terms of:  

i) high accuracy of the provided optimal solutions (a normalized root mean square 

error less than 1%, in most cases),  

ii) overcoming many limitations of the traditional optimizers in complex process 

operation optimization, by significantly increasing the reliability of the numerical 

process (30 %, in the worst cases) associated to the frequent failure of obtaining the 

correct optimal solution due to reasons such as  failure to start from a good feasible 

initial solution, trapping in a local minima or failure of the calculations due to 

convergence problem of such complex FPM at specific combinations of the input 

variables values. This computational/numerical reliability is essential when online 

decisions are required. 

iii) reduction in the number of required function evaluations (77% reduction, in worst 

cases) and optimization time (48% reduction, in worst cases).  

The proven capabilities of the method satisfy the requirements of the hour-to-hour or 

day-to-day operation optimization of complex processes by providing accurate optimal 

solutions in a much quicker way and guaranteeing reliable computation. 
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Chapter 4: Machine Learning- 

based Multi-

Parametric Solution of 

Chemical Processes 

Operation 

Optimization under 

Uncertainty 

Chemical process operation optimization aims at obtaining the optimal operating set-

points of the process by real-time solution of an optimization problem that embeds a steady-

state model of the process. This task is challenged by unavoidable uncertainties and 

fluctuations. MultiParametric Programming (MPP) is an efficient approach for solving such 

kind of problems, where the optimal set-points must be updated, in real-time, in response to 

sudden changes in the Uncertain Parameters (UPs). MPP provides simple algebraic functions 

describing the optimal solution as a function of the UPs, which allows alleviating large 

computational cost required for solving the optimization problem each time the UPs values 

vary. However, MPP applicability requires a well-constructed mathematical model of the 

process, which is not suited for process operation optimization, where complex, highly 

nonlinear and/or black-box models are usually used. To overcome this issue, this chapter 

presents two novel machine learning-based methodologies for multiparametric solution of 

optimization problems. The first methodology, which targets general continuous optimization 

problems, is based on the offline development of machine learning models for regression 

(surrogate models) that approximate the multiparametric behavior of the optimal solution over 

the entire space of the UPs. The second method, which targets Mixed-Integer optimization 

problems, harnesses machine learning models for regression (surrogate models) and clustering 

techniques in order to approximate the relations between the optimal values of the continuous 

variables and the UPs, while machine learning models for classification are employed to 

identify the optimal values of the integer variables also as a function of the UPs. In both 

methodologies, the data-driven models are developed using data generated by running the 

optimization using the original complex process model under different UPs values. The trained 

models are, then used online to, quickly and accurately, predict the optimal solutions in 

response to UPs variation. The methodologies are tested on benchmark MPP mathematical 

examples and applied to three case studies of process operation optimization. The results 
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demonstrate the methodology effectiveness in terms of high prediction accuracy, robustness 

to deal with problems of different natures and significant reduction in the complexity of the 

solution procedure compared to the traditional MPP approach. 

4.1 INTRODUCTION 

Plant-wide optimization, or process operation optimization, is a principle layer in the 

decision-making hierarchy of chemical plants management. It receives, as inputs, the 

outcomes and decisions coming from the above layers (i.e., planning and scheduling), such as 

production rate targets over long time periods (weeks/days), assignment of resources to 

activities, sequencing of the activities. (Hauptman & Jovan, 2004; Roffel & Betlem, 2004). 

The goal of process operations optimization is to obtain the optimal values of the process 

variables (temperatures, pressures, concentrations, flow rates, etc.) at which the plant and its 

units must operate to maximize certain performance criteria (e.g., efficiency, profit, 

operational cost), while satisfying all the constraints (equipment capacities, environmental 

restrictions, etc.) and requirements (product quality, production yields, safety, etc.) (Vaccari 

& Pannocchia, 2017; Biegler, 2010). This is achieved by solving, in real time, an optimization 

problem, which embeds a detailed and rigorous steady-state model of the process (Shao, et al., 

2019). More, detailed description of the process operation optimization can be found in 

Chapters 1 and 3. 

Recently, there is growing interest to use complex and high-fidelity First Principle 

Models (FPMs) of the process in the operation optimization task. Although these models are 

able to capture more detailed features and sophisticated characteristics of the process and, 

consequently, provide more accurate estimation of its behavior, they show many practical 

drawbacks and challenging characteristics, such as the high nonlinearity, complexity, intricate 

architecture and large computational cost of simulation (Henao & Maravelias, 2011; Norbert, 

et al., 2017; Quirante, et al., 2018). These challenging characteristics inherent to the FPMs of 

chemical processes represent an obstacle to their use for the operation optimization, especially 

for large scale and/or fast dynamic processes (Salback, 2004; Kajero, et al., 2017). Chapter 3, 

also, presents detailed information about these drawbacks and challenging characteristics. 

To overcome the above drawbacks and cope with the above challenges, Surrogate Based 

Optimization (SBO) approaches (as the one presented in Chapter 3) have been proposed and 

have received significant attention in the chemical process industry area (Quirante, et al., 

2018). The basic idea of SBO is to use the original complex FPM for generating input-output 

data points by “Computer Experiments”, and use them to develop accurate, but simple and 

fast-running, data-driven models (“metamodels” or “surrogate models”). Then, these data-
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driven models are used in replacement of the complex FPM in the addressed optimization 

problem (Ochoa-Estopier & Jobson, 2015). More details about SBO methods developed in the 

chemical process engineering area is presented in Chapter 3, moreover, a comprehensive 

review about the same topic can be found in (Kajero, et al., 2017).  

One challenge for the applications of SBO approaches to process operation optimization 

comes from the fact that surrogate models are trained on data generated by FPMs with values 

of parameters and conditions predefined so as to match the real process behavior. So, any 

sudden and uncertain change in these parameters and conditions in the real process makes the 

surrogate models and, consequently, the obtained optimal solution based on their analysis, no 

longer valid/realistic.  

The presence of uncertainty in the process is unavoidable at various levels  (Jiao, et al., 

2012), including inherent physical properties (e.g., kinetic rates, heat transfer constants) 

(Flemming, et al., 2007; Norbert, et al., 2017; Diangelakis, et al., 2017) and process 

fluctuations (e.g., feed streams properties like temperatures, pressures and concentrations, 

recipe variations, processing time, equipment efficiencies) (Mesfin & Shuhaimi, 2010; 

Papathanasiou, et al., 2019), as well as external uncertainty (such as resources, prices, 

demands) (Li, 2010). Many methods have been developed for handling uncertainty in 

optimization problems, most of them can be categorized into two main approaches: proactive 

and reactive(Medina-González, et al., 2020). The proactive approach aims at providing 

conservative optimal decisions, which minimize the consequences of the uncertainty on the 

performance measures of the system (i.e., objective(s)) (Jiao, et al., 2012). Stochastic 

programming and robust optimization are among the most popular methods used of the 

proactive approach (Grossmann, et al., 2016). In stochastic programming methods, the UPs 

are treated as stochastic variables with “a-priori” known probability distribution functions, 

whose parameters are estimated from historical data. Then, the goal becomes to identify the 

optimal decision variables that maximize/minimize the expected value of the objective 

function(s) and achieve feasibility over the distribution of the UPs (Li, 2010). Robust 

optimization methods deal with unknown but bounded UPs and aim at finding robust optima 

that ensures the feasibility of the solution and the immunity of the performance measure over 

the entire range of realizations of the UPs (Norbert, et al., 2017). Nevertheless, two limitations 

associated to the use of these methods are: i) the large computational cost required, since 

obtaining the optimal solution using these methods implies the analysis of a large number of 

uncertain scenarios, which grows with the number of UPs, ii) the need of complete knowledge 

of the characteristics of the UPs to identify their types and probability distributions, which is 

unrealistic especially in dynamic environments and iii) the problem that the provided solution 
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becomes suboptimal for most of the realizations of the uncertainties during the 

operation/production (Li, 2010; Pistikopoulos, 2008). 

The reactive approach, instead, is considered when it is necessary to promptly provide 

online update of the optimal values of the decision variables in response to real-time changes 

of the UPs values, which can be measured once unveiled. Since the reactive approach is able 

to provide the optimal solution for each realization of the UPs, they are preferred for the 

application in dynamic production environments (Pistikopoulos, et al., 2007). Among the 

reactive methods, MPP offers outstanding capabilities (Pistikopoulos, 2008): i) its solution 

provides simple mathematical functions mapping the optimal decisions variables and 

objective(s) over the entire space of UPs, ii)  once uncertainty is unveiled, optimal decisions 

can be readily and immediately calculated by these simple functions, avoiding the large 

computational cost associated to repetitive optimization procedure, iii) MPP is not only able 

to handle uncertainty related to the process conditions, but also to the optimization problem 

parameters (e.g., relative weights or importances of different objectives). A review on the 

different MPP algorithms developed for problems of different natures (linear, quadratic, 

nonlinear, mixed, integer, convex, local, global, etc.) can be found in (Pistikopoulos, 2008; 

Pistikopoulos, et al., 2007).   

Despite the attractive characteristics of MPP, its successful application is conditioned 

by two main requirements: the first is the deep and complex mathematical programming 

knowledge required for the development of such formulations and the second is the availability 

of a well-constructed mathematical model of the process (Bemporad, et al., 2002; Kouramas, 

et al., 2011; Rivotti, et al., 2012). This hinders the smooth applications of MPP to process 

operation optimization in practice, where complex, highly nonlinear and black-box models 

need to be considered (e.g., modular process simulators).  

To tackle these limitations, the use of data-driven or Machine Learning (ML) techniques 

for the solution of MPP problems has recently emerged as a feasible alternative. This research 

direction has been considered by Katza, et al. (2020) and Katza, et al. (2020b), who have 

proposed the use of deep learning techniques for solving explicit MPC problems. Medina-

González, et al. (2020) have used kriging models for approximating the multiparametric 

solution of multiobjective optimization of a bio-based energy chain subjected to uncertainties 

including electricity demand, environmental conditions and social dynamics. Lupera, et al. 

(2016) have proposed a similar approach for supporting reactive scheduling in a multiproduct 

batch chemical plant: a kriging metamodel is used to approximate the optimal management 

decisions as a function of UPs including equipment starting times and task-unit assignment. 

Lupera, et al., (2018) have addressed the solution of mixed-integer optimization problems by 

using a combination of regression (kriging) and classification (ANN) techniques to 
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approximate the optimal continuous and integer variables, respectively, as a function of the 

UPs. They have applied the methodology to a simple example of a supply chain problem. 

Lupera, et al. (2018) have proceeded to apply the latter method to solve mixed-integer reactive 

scheduling problem.  

In the previous works, each of the developed ML-based method for the solution of MPP 

problems has been tailored and evaluated with respect to a particular application of interest, 

involving an optimization problem of specific nature, which, in most of the cases, is linear. 

Also, they have not addressed the optimization of the process and/or unit operations, where 

the benefits of such methodology, if successfully applied, would be significant. Because, the 

update of the optimal setpoints in response to UPs variations is typically required within very 

tight time slots (minutes or seconds), whereas, the models of the process are often complex, 

nonlinear and/or in the form of computationally expensive black-boxes.  

In this chapter two novel data-driven methodologies are developed for the solution of 

general MPP problems. The first method addresses continuous optimization problems and 

aims at developing global MultiParametric Metamodels (MPMs), which are trained using 

input-output data (UPs-optimal variables and objective) to approximate the multiparametric 

behavior of the optimal solutions over the entire space of the UPs. The second methodology 

targets general Mixed-Integer optimization problems. The method models the multiparametric 

behavior of a continuous variable by using clustering techniques in order to isolate those 

potential local regions of the UPs space over which the optimal solution behaves significantly 

different. Then a local MPM is trained to approximate the optimal solution behavior of this 

continuous decision variable over each of the identified local regions. For integer decision 

variables, the methodology harnesses Classification Techniques (CT) to predict the optimal 

values of the integer variables also as a function of the UPs. 

In both methodologies, the input-output data (i.e., UPs values-optimal variables and 

objective values) are generated through the repeated optimization of the original process model 

using state-of-art optimizers and considering different values of the UPs that are selected by 

DOCE techniques. The performance of the first methodology is assessed by its application to 

five MPP benchmark examples of different nature (linear, bilinear, quadratic and nonlinear 

optimization problems) and to two case studies, including the operation optimization of a 

utility plant modeled by a black-box modular process simulator and of a batch reactor. The 

second methodology is also validated by its application to benchmarks case study. 

The main novelties of the work are:  

i) the generality and applicability of the proposed methodologies which, unlike the 

reviewed data-driven method for the solution of MPP problems, is aimed at 
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solving different types of optimization problems (i.e., linear, bilinear, quadratic, 

nonlinear, black-box) in a systematic way, 

ii) the capacity of the proposed methodologies to address process and unit operation 

optimization problems, where highly nonlinear and/or black-box models are 

typically used, 

iii) a novel utilization of the kriging metamodel to approximate the “optimal” 

behavior of a system, unlike most of the chemical engineering literature, in which 

the kriging is used, as any machine learning technique, to approximate the 

response of a system. 

The rest of the chapter is organized as follows. Sections 4.2 and its subsections 

correspond to the first methodology, and they include the problem statement, the details of the 

proposed method, its application and the obtained results. Section 4.3 and its subsections show 

the same elements for the second methodology. Section 4.4 concludes the chapter work and 

highlights possible future directions of research. 

4.2 MPMS FOR CONTINUOUS OPTIMIZATION  

4.2.1 Problem statement 

The proposed methodology is aimed at overcoming the difficulty of solving the process 

operation optimization problem using classical MPP formulations. Generally speaking, the 

problem (Eq.(4.1)) is to find the optimal values of the decisions variables 𝑥 ∈ 𝑅𝐾 that 

maximize the objective function 𝑍(𝑥, 𝜃) representing a performance index of the process, for 

which the available FPM 𝑓 is complex, nonlinear and/or black-box. The problem is subjected 

to set of constraints 𝑔𝑙(𝑥, 𝜃), 𝑙 = 1, . . , 𝐿,  and is influenced by a set of bounded UPs 𝜃 ∈ 𝑅𝑘  

(Pistikopoulos, 1995; Pistikopoulos, et al., 2007; Caballero & Grossmann, 2008). 

 

𝑚𝑖𝑛
𝑥
 𝑍(𝑥, 𝜃)

𝑆. 𝑇.                    𝑓(𝑥, 𝜃) ,                    

            𝑔𝑙(𝑥, 𝜃) ≤ 0,      𝑙 = 1,2,… . 𝐿,

𝑥 ∈ 𝑅𝐾 , 𝜃 ∈ 𝑅𝑘 ,
   𝑙𝑏𝑥 ≤ 𝑥 ≤ 𝑢𝑏𝑥, 𝑙𝑏𝜃 ≤ 𝜃 ≤ 𝑢𝑏𝜃}

 
 

 
 

 (4.1) 

The MPP solution (Eq.(4.2)) is in the form of a number of 𝑃 simple mathematical 

relations describing each of the optimal decision variables  𝑥∗ and the objective 𝑍∗ as functions 

of the UPs 𝜃.  
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 𝑍𝑝
∗ = ℱ0,𝑝(𝜃)

𝑥𝑖𝑝
∗ = ℱ𝑖,𝑝(𝜃)

𝑙𝑏𝜃𝑝 ≤ 𝜃 ≤  𝑙𝑏𝜃𝑝  , 𝑖 = 1,2,… , 𝐾 ,    𝑝 = 1,2,…𝑃
} (4.2) 

The 𝑝 − 𝑡ℎ relation, 𝑝 = 1,2,… , 𝑃, is only valid for a certain partition of the UPs space, 

which is called “critical region”, where the  𝑃 critical regions are adjacent, non-intersecting 

subspaces and, hence, their union equals to the entire UPs space. So, as the UPs are unveiled, 

the optimal solution is simply and immediately calculated by evaluating these simple functions 

(Dua & Pistikopoulos, 1999). 

In this work, we consider situations, such as process and unit operation optimization, in 

which classical MPP approaches cannot be applied due to the high nonlinearity and complexity 

of the process model, and consequently, the exact solutions in Eq.(4.2) cannot be attained. The 

proposed methodology, alternatively, develops ML models that act as accurate data-driven 

multiparametric relations, which are referred to as “MultiParametric Metamodels (MPM)”, 

and expressed as follows: 

 𝑍̂∗ = 𝑓0(𝜃)

𝑥𝑖
∗ = 𝑓𝑖(𝜃)

𝑙𝑏𝜃𝑝 ≤ 𝜃 ≤ 𝑙𝑏𝜃𝑝  , 𝑖 = 1,2, … , 𝐾   
} (4.3) 

where, 𝑓0, 𝑓𝑖 , 𝑖 = 1,2, . . 𝐾 are supervised ML regression models efficiently built to 

approximate the optimal objective function, 𝑍̂∗, and the decision variables, 𝑥𝑖
∗ ,as functions of 

the UPs, 𝜃. 
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4.2.2 Methodology  

The steps of the proposed methodology are schematically illustrated in Figure 4.1, and are 

detailed in the subsequent sections. 

 

Figure 4.1. Schematic representation of the proposed methodology 

4.2.2.1 UPs sampling using DOCE  

In this step, the optimization problem and the involved FPM are explored in order to 

identify the influencing UPs, 𝜃 ∈ 𝑅𝑘, and estimate their bounds 𝑙𝑏𝜃 ≤ 𝜃 ≤ 𝑢𝑏𝜃 (MPM input 

domain). Then, the goal becomes the selection of a proper set of combinations of the UPs 

values, [𝜃]𝑛×𝑘, (i.e. the MPMs inputs) that uniformly cover the entire UPs space in order to 

collect information about the optimal solution behavior over all the sub-regions of the global 

domain.    

Many DOCE techniques are available in the literature such as Latin hypercube sampling 

(Garud, et al., 2017; Forrester, et al., 2008), low discrepancy sequences as Hammersley 

technique (Ibrahim, et al., 2019), space-filling designs and sequential or adaptive sampling 

(Kajero, et al., 2017). Most of these DOCE techniques show both desired characteristics and 

limitations in terms of the uniformity of the generated sampling plan and of the required 

computational cost (Garud, et al., 2017). More details about different DOCE techniques can 

be found in (Ibrahim, et al., 2019). In this work, a hybrid technique of Hammersley sequence 

and full factorial design is used, as it achieves high uniformity with low computational cost  

𝜃11, 𝜃21… . . , 𝜃𝑘1 
𝜃12, 𝜃22… . . , 𝜃𝑘2 
𝜃13, 𝜃23… . . , 𝜃𝑘3 
…………………. 
𝜃1𝑛, 𝜃2𝑛… . . , 𝜃𝑘𝑛 

 

𝐿𝑃𝜃2 

 

𝑈𝑃𝜃2 

 

𝐿𝑃𝜃1 

 

𝑈𝑃𝜃1 

𝜃2 

𝜃1 

1-UPs sampling using DOCE  

[𝜃]𝑛×𝑘 , 

[𝑍∗, 𝑥∗]𝑛×𝐾+1  

MPM 

𝑍̂∗ = 𝑓0(𝜃1,  . . , 𝜃𝑘) 

𝑥1
∗ = 𝑓1(𝜃1,  . . , 𝜃𝑘) 

………….. 
𝑥𝐾
∗ = 𝑓𝐾(𝜃1,  . . , 𝜃𝑘) 

3-Multiparametric metamodel development  

𝑍1
∗, 𝑥11

∗ , … . . , 𝑥𝐾1
∗  

𝑍2
∗, 𝑥12

∗ , … . . , 𝑥𝐾2
∗  

𝑍3
∗, 𝑥13

∗ , … . . , 𝑥𝐾3
∗  

……… 

𝑍𝑛
∗ , 𝑥1𝑛

∗ , … . . , 𝑥𝐾𝑛
∗  

 

𝑚𝑖𝑛
𝑥
 𝑍 = 𝑓(𝑥, 𝜃)

𝑆. 𝑇.   𝑔𝑙(𝑥, 𝜃) ≤ 0,      𝑙 = 1,2, … . 𝐿

𝑥 ∈ 𝑅𝐾 , 𝜃 ∈ 𝑅𝑘

   𝑙𝑏𝑥 ≤ 𝑥 ≤ 𝑢𝑏𝑥, 𝑙𝑏𝜃 ≤ 𝜃 ≤ 𝑢𝑏𝜃}
 
 

 
 

 

2-Optimization for Data Generation 
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(Ibrahim, et al., 2019). The idea behind this hybrid technique is to employ the factorial design 

to compensate the limited ability of the Hammersley sequence to select sample points near the 

bounds and vertices of the input space, while at the same time, exploiting the high uniformity 

of the samples set of the Hammersley sequence over the bulk of the input space.  

The number of required sample points, 𝑛, is proportional to the number of UPs, 𝑘, 

influencing the optimization problem and depends, also, on the complexity of the 

multiparametric behavior of the optimal solutions. On the other hand, as 𝑛 increases, more 

computational effort is required for performing optimization runs and for the MPM training. 

So, the modeler should carefully balance this trade-off. More details about DOCE techniques 

can be found in Section 2.1. 

4.2.2.2 Optimization for data generation 

Once a good sampling plan, [𝜃]𝑛×𝑘, is obtained, the optimization problem is solved 

𝑛 times, each time considering one of the UPs combinations, so as to obtain the matrix of the 

optimal values of the objective and decision variables [𝑍∗, 𝑥∗]𝑛×𝐾+1 . In general, state-of-art 

optimization algorithms can be used to solve the optimization problem depending on its 

characteristics (Biegler, 2010). Particularly, this work addresses continuous optimization 

problems, including linear, quadratic and nonlinear types, and we employ the Matlab 

optimization toolbox for their solutions. For linear problems, the solver “linprog” is used based 

on a dual simplex algorithm; for quadratic problems, the solver “quadprog” is used based on 

an interior-point-convex algorithm; for nonlinear problems, the optimizer “fmincon” is used 

based on a sequential quadratic programming algorithm. Default values for the optimization 

algorithms parameters (such as maximum number of function evaluations, tolerance on the 

constraint violation, termination tolerance on the first-order optimality, termination tolerance 

on decision variables) are used. 

4.2.2.3 MultiParametric metamodels development 

The generated input ([𝜃]𝑛×𝑘) and output ([𝑍∗, 𝑥∗]𝑛×𝐾+1) data are used to train a number 

of 𝐾 + 1 kriging-based MPM, 𝑓0, 𝑓1, … , 𝑓𝐾 (see Figure 4.1), each of them approximates the 

optimal behavior of each of the objective and decision variables as a function of all UPs. 

For one optimal decision variable 𝑥∗, the kriging technique assumes the 

predictor 𝑥∗(𝜃) =  𝜇𝑜𝑘  + ℤ(𝜃), where the constant term 𝜇𝑜𝑘 represents the main trend of the 

system to be approximated, and ℤ(𝜃) is a deviation/residual from that trend, which accounts 

for detailed complex behavior of the system that could not be captured via the main trend 𝜇𝑜𝑘 

(Jones, et al., 1998). The residual ℤ(𝜃) is modeled as a stochastic Gaussian process with 
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expected value 𝐸(ℤ(𝜃)) =  0 and covariance between two residuals 𝑐𝑜𝑣(ℤ(𝜃𝑖), ℤ(𝜃𝑗)) that 

only depends on their corresponding input values 𝜃𝑖, 𝜃𝑗. Thus, it can be calculated as: 

𝑐𝑜𝑣(ℤ(𝜃𝑖), ℤ(𝜃𝑗)) =𝜎𝑜𝑘
2  𝑅(𝜃𝑖, 𝜃𝑗), being 𝜎𝑜𝑘

2  the process variance and 𝑅(𝜃𝑖, 𝜃𝑗) a correlation 

function, 𝑅(𝜃𝑖, 𝜃𝑗) = 𝑒𝑥𝑝(−∑ 𝜉ℓ|𝜃𝑖,ℓ−𝜃𝑗,ℓ−|
𝑝ℓ𝑘

ℓ=1 ) + 𝛿𝑖𝑗 𝜆,  where 𝜉ℓ are the model hyper-

parameters, 𝛿𝑖𝑗  is the Kronecker delta, 𝑝ℓ are smoothing parameters and 𝜆 is a regularization 

constant that enables the kriging predictor to regress noisy data (Forrester & Keane, 2009).    

In order to estimate the values of the parameters [𝜇𝑜𝑘 , 𝜎𝑜𝑘
2 , 𝜉ℓ, 𝑝ℒ , λ], the likelihood 

function of the observed data [𝑥∗]𝑛×1 is maximized. The kriging predictor (Eq.(4.4)) and its 

estimated error (Eq.(4.5)) are obtained by deriving the augmented likelihood function of both 

the original training data set and a new interpolating point (𝜃𝑛𝑒𝑤, 𝑥𝑛𝑒𝑤
∗ ). In both equations, 

[𝑟]𝑛×1 is the vector of correlations between the new point to be predicted 𝜃𝑛𝑒𝑤 and the original 

training data points, and calculated as 𝑅 (𝜃𝑖, 𝜃𝑛𝑒𝑤), and [𝟏]𝑛×1 is the identity vector (Jones, et 

al., 1998; Caballero & Grossmann, 2008).  

 𝑥∗( 𝜃𝑛𝑒𝑤) = 𝜇𝑜𝑘 + 𝑟
𝑇𝑅−1(𝑥∗ − 𝟏𝜇𝑜𝑘) (4.4) 

 𝑠̂2(𝜃𝑛𝑒𝑤) = 𝜎𝑜𝑘
2 (1 + 𝜆 − 𝑟𝑇𝑅−1𝑟 + (1 − 𝟏𝑇𝑅−1𝑟)−1 (𝟏𝑇𝑅−1𝟏)⁄ ) (4.5) 

In practice, the maximization of the concentrated log-likelihood function is 

computationally challenging because of the high effort associated to the repetitive calculation 

of the correlation matrix inverse [𝑅]𝑛 × 𝑛
−1  during the optimization iterations, which quickly 

grows with the size of the training data set and/or the model input dimensionality. Besides, the 

nature of the concentrated log-likelihood function itself is quite complicated because it is flat 

near the optimum. More details about these computational challenges, and the numerical 

methods and optimization techniques to overcome or reduce these obstacles can be found in 

(Fang, et al., 2005; Forrester, et al., 2008). 

After the training of the MPMs, they are validated using a new and different validation 

dataset,  [𝜃𝑣]𝑛𝑣×𝑘  [𝑍∗,𝑣 , 𝑥∗,𝑣]𝑛𝑣×𝐾, where 𝑛𝑣 is the number of samples. The MPMs are used 

to estimate the values of the optimal decision variables and objective, [𝑍̂∗,𝑣, 𝑥∗,𝑣]𝑛𝑣×𝐾, which 

are compared to their exact counterparts  [𝑍∗,𝑣 , 𝑥∗,𝑣]𝑛𝑣×𝐾 in order to calculate an accuracy 

measure, such as the Normalized Root Mean Square Error (NRMSE) (Eq.(4.6)), for each of 

the 𝐾 + 1 MPMs. 

 

𝑁𝑅𝑀𝑆𝐸 = 100 ∗
𝑅𝑀𝑆𝐸

(𝑥∗,𝑣,𝑚𝑎𝑥−𝑥∗,𝑣,𝑚𝑖𝑛)
 , 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑣
∑ (𝑥∗,𝑣,𝑖 − 𝑥∗,𝑣,𝑖)2𝑛𝑣
𝑖=1   

(4.6) 
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4.2.3 Applications 

In this section, five benchmark examples with different characteristics selected from the 

MPP literature are used to assess the proposed methodology in terms of its accuracy of 

estimating the optimal solutions and its applicability to different types of continuous 

optimization problems, including linear, bilinear, quadratic and nonlinear. The methodology 

is, then, applied to two case studies regarding the operation optimization of a utility plant and 

a batch reactor. 

4.2.3.1 Linear optimization: refinery blending problem 

A refinery blending and production process (Pistikopoulos, et al., 2002; Pistikopoulos, 

et al., 2007) receives raw materials including two types of crude oils with flowrates 𝑥1 and 𝑥2 

(𝑏𝑏𝑙/𝑑𝑎𝑦), which are processed in order to produce four types of products, namely, Gasoline, 

Kerosene, Fuel-oil and Residuals. It is required to select the optimal flowrates 𝑥1 and 𝑥2 that 

maximize the profit 𝑍  ($/𝑑𝑎𝑦). The optimization problem (Eq.(4.7)) is subjected to three 

constraints associated to the maximum allowable production rates of the Gasoline, Kerosene 

and Fuel-oil from each crude oil type, and is affected by two UPs, 𝜃1 and 𝜃2, which are the 

maximum allowable production rates ((𝑏𝑏𝑙/𝑑𝑎𝑦)) of the Gasoline and Kerosene, respectively: 

 

𝑀𝑖𝑛
𝑥
 𝑍 =   8.1 𝑥1 +  10.8 𝑥2

𝑆. 𝑇:    0.80 𝑥1 + 0.44𝑥2 ≤ 24000 + 𝜃1
 0.05 𝑥1 +  0.10𝑥2   ≤ 2000 + 𝜃2
0.10 𝑥1 +  0.36𝑥2   ≤ 6000 

𝑥1 ≥ 0,        𝑥2 ≥ 0
0 ≥ 𝜃1 ≥ 6000,   0 ≥  𝜃2 ≥ 500 }

  
 

  
 

 (4.7) 

The methodology is applied following the steps described in Section 4.2.2. Only in this 

problem, different training sets of different sizes are used to build the MPMs in order to show 

the effect of the training set size on the MPMs accuracy, training time and prediction time.  

First, over the space of the UPs [0: 60000 𝑏𝑏𝑙/𝑑𝑎𝑦, 0: 500 𝑏𝑏𝑙/𝑑𝑎𝑦], five different sampling 

plans with different sizes, 

([𝜃1, 𝜃2]15×2 , [𝜃1, 𝜃2]30×2 , [𝜃1, 𝜃2]45×2, [𝜃1, 𝜃2]60×2 , [𝜃1, 𝜃2]75×2), are designed by means 

of the hybrid technique of Hammersley sequence and two-levels fractional factorial design 

(Figure 4.2). For each of the five sampling plans, the LP problem is solved several times to 

obtain the corresponding matrix of the optimal objective and variables values, 

[𝑍∗, 𝑥1
∗, 𝑥2

∗]15×3, … , … ,… . [𝑍
∗, 𝑥1

∗, 𝑥2
∗]75×3. The optimization problem is solved using the 

“linprog” optimizer of the Matlab optimization toolbox based on a dual simplex algorithm. 

Then, using each of the five input-output training datasets, e.g. [𝜃1, 𝜃2]15×2 − [𝑍
∗, 𝑥1

∗, 𝑥2
∗]15×3, 
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three metamodels are fitted, 𝑍̂∗ = 𝑓0(𝜃1, 𝜃2), 𝑥1
∗ = 𝑓1(𝜃1, 𝜃2), 𝑥2

∗ = 𝑓2(𝜃1, 𝜃2), one for each 

of the optimal objective and decision variables. 

 
Figure 4.2. Two of the five sampling plans of the UPs ((a) 𝑛 = 15 and (b) 𝑛 = 75): Blue 

circles indicate UPs combinations generated by the Hammersley techniques, whereas red 

circles refer to those generated by the two-levels full factorial design.. 

One validation data set [𝜃1
𝑣, 𝜃2

𝑣]400×2 − [𝑍
∗,𝑣 , 𝑥1

∗,𝑣 , 𝑥2
∗,𝑣]400×3 is generated and used to 

assess the performances of all the MPMs, 𝑓0, 𝑓1, 𝑓2, trained by the five different datasets. It is 

worth highlighting that the validation set is in the form of a uniform grid of 20×20 over the 

UPs space, so as to achieve a credible assessment of the MPMs predictions in all the local 

regions of the UPS. The NRMSE of the MPMs prediction is calculated by comparing their 

estimated outputs [𝑍̂∗,𝑣, 𝑥1
∗,𝑣 , 𝑥2

∗,𝑣]400×3 with the exact ones [𝑍∗,𝑣 , 𝑥1
∗,𝑣 , 𝑥2

∗,𝑣]400×3  provided by 

the rigorous optimization itself.  

 

Figure 4.3. (a) NRMSE and (b) computational time required for training data generation, 

MPMs training and prediction times as a function of the training dataset size. 

Figure 4.3 shows how the NRMSE of the MPMs decreases and how the training and 

prediction (of the validation set) times increase with increasing training dataset size. The 

Figure also indicates that even with few (i.e., 15) training patterns, the MPMs are able to 

achieve satisfactory accuracy (less than 3% of NRMSE). Table 4.1 illustrates the NRMSE, 

and the required training and validation times of the MPMs when the largest training dataset 

(75 patterns) is considered.  
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Figure 4.3 and Table 4.1 shows i) very high accuracy of the MPMs trained by the dataset 

containing 75 instances (NRMSE less than 0.5% of all the MPMs), ii) affordable “offline” 

computational time required for training 2.79 sec (0.86+0.80+1.13) and iii) very low 

computational time demanded in predicting the optimal solution of the validation set, 0.00127 

sec (0.51/400), that saves 75.7% ((2.1-0.51)/2.1) of the computational time of the real 

optimization. More importantly, one multiparametric relation (i.e., a MPM) is able to describe 

the optimal solution behavior over the entire space of the UPs.  In the literature (Pistikopoulos, 

et al., 2007), the classical MPP approach provides a solution for the same problem that divides 

the UPs space into two critical regions, consequently, two sets of mathematical parametric 

functions are obtained each of them is valid only for one of the two partitions of the UPs space. 

As an additional assessment of the performance of the developed MPMs (and also of 

the correctness of the solution of the optimization problems used to generate the training and 

validation data), the deterministic multiparametric solution provided in (Pistikopoulos, et al., 

2007) is used to calculate the optimal objective and decision variables values of the validation 

set (Figure 4.4). 

 
   (a)                                                      (b) 

Figure 4.4. Refinery blending problem: comparison between (a) the results obtained by the 

classical MPP solution provided in (Pistikopoulos, et al., 2007) and (b) the results 

provided by the proposed methodology. 
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4.2.3.2 Bilinear optimization 

In this mathematical example (Eq.(4.8)) (Ichihara & Anai, 2012), a bilinear objective 

function is to be minimized, subjected to two linear constraints which are affected by one 

uncertain parameter:  

 

𝑀𝑖𝑛
𝑥
 𝑍 = 𝑥1𝑥2

𝑆. 𝑇.: 2 𝑥1 + 𝑥2  ≥ 𝜃
𝑥1 + 3 𝑥2  ≥ 0.5 𝜃

−1 ≤ 𝑥1 , 𝑥2 ≤ 1,    0 ≤ 𝜃 ≤ 1}
 

 

 (4.8) 

The proposed method is applied starting by designing a sampling plan [𝜃]60×1 over the 

space [0: 1] of the UP (i.e., the MPMs input). The optimization problem is solved 60 times 

considering the values of the UP in the sampling plan, to obtain the corresponding optimal 

decision variables and objective values (i.e., the MPMs outputs) [𝑍∗, 𝑥1
∗, 𝑥2

∗]60×3. The 

“fmincon” optimizer of the Matlab optimization toolbox is used, based on a sequential 

quadratic programming algorithm. Using these input-output training data, three MPMs (𝑍̂∗ =

𝑓0(𝜃), 𝑥1
∗ = 𝑓1(𝜃), 𝑥2

∗ = 𝑓2(𝜃)) are fitted, one for each of the optimal objective and decision 

variables. A different validation dataset including a uniform grid of 150 sample is 

generated ([𝜃𝑣]150×1 − [𝑍
∗,𝑣 , 𝑥1

∗,𝑣 , 𝑥2
∗,𝑣]150×3), the MPMs are used to estimate the optimal 

solutions [𝑥1
∗,𝑣 , 𝑥2

∗,𝑣 , 𝑍̂∗,𝑣]150∗3 and the NRMSE of the prediction is calculated for each MPM. 

 

Figure 4.5. Bilinear optimization problem: comparison between the solutions obtained by 

the classical MPP provided in (Ichihara & Anai, 2012) (blue solid lines) and the solutions 

provided by the proposed methodology (red dashed lines). 

Table 4.1 reports the results obtained by the proposed methodology, that indicate the 

very high accuracy of the three MPMs (NRMSE of 0.01%, 0.8% and 0.4%) and also a 

significant reduction in the computational time required for calculating the optimal solutions 

with respect to the real optimization, that reached to 98.9% ((16.2-0.167)/16.2). Also, the 

deterministic MPP solution provided in (Ichihara & Anai, 2012) is used to calculate the 

optimal objective and variables of the validation set (Figure 4.5).  
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4.2.3.3 Quadratic optimization 

The second application (Dua, et al., 2002) involves the minimization of a quadratic 

objective function subjected to a set of six constraints, which are affected by two UPs in their 

right-hand side (Eq.(4.9)). 

 

𝑀𝑖𝑛
𝑥
 𝑍 = 𝑐𝑇[𝑥1 , 𝑥2]

𝑇 + 0.5[𝑥1 , 𝑥2]𝑄[𝑥1 , 𝑥2]
𝑇

𝑆. 𝑇. :  𝐴 [𝑥1 , 𝑥2]
𝑇 ≤ 𝑏 + 𝐹 [𝜃1 , 𝜃2]

𝑇

−1 ≤ 𝑥1 , 𝑥2 ≤ 1,    0 ≤ 𝜃1, 𝜃2 ≤ 1

} (4.9) 

𝑐 = [
0
0
] , 𝑄 [

0.0196 0.0063
0.0063 0.0199

], 

𝑏 =

[
 
 
 
 
 
0.417425
3.582575
0.413225
0.467075
1.090200
2.909800]

 
 
 
 
 

, 𝐴 =

[
 
 
 
 
             

      1    0
  −1     0

    −0.0609   0
   −0.0064     0
                 0     1
                 0 −1]

 
 
 
 
 

 ,   𝐹 =

[
 
 
 
 
 
   3.16515    3.7546
−3.16515 −3.7546
   0.17355
   0.06585 
  1.81960
−1.81960

−0.2717
    0.4714
−3.2841
   3.2841]

 
 
 
 
 

 

The same procedure is considered. A sampling plan [𝜃1, 𝜃2]80×2 is designed over the 

UPs space. The problem is solved 80 times to obtain the matrix [𝑍∗, 𝑥1
∗, 𝑥2

∗]80×3, using the 

“quadprog” optimizer of the Matlab optimization toolbox based on an interior-point-convex 

algorithm. Using these input-output data, three MPMs are fitted: 𝑍̂∗ = 𝑓0(𝜃1, 𝜃2), 𝑥1
∗ =

𝑓1(𝜃1, 𝜃2), 𝑥2
∗ = 𝑓2(𝜃1, 𝜃2). The validation is accomplished using a different dataset of size 

400 ([𝜃1
𝑣, 𝜃2

𝑣]400×2 − [𝑍
∗,𝑣 , 𝑥1

∗,𝑣 , 𝑥2
∗,𝑣]400×3), where the MPMs are used to estimate the outputs 

[𝑥1
∗,𝑣 , 𝑥2

∗,𝑣 , 𝑍̂∗,𝑣]400∗3  and the NRMSE of the MPMs predictions is calculated (Table 4.1). In 

this case, the accuracy of the MPMs (NRMSE of 0.0001%, 0.028 % and 0.018%) is 

significantly higher than that of the MPMs in the precious two examples, which can be 

explained by the smooth and continuous multiparametric behavior of the optimal solutions 

over the entire UPs space (Figure 4.6), which is relatively easy to capture by data-driven 

models. In contrast, the multiparametric behavior of the optimal solution in the previous two 

cases shows discrete features, which represent a challenge for the data-driven models.   

The MPMs were also able to save a considerable percentage (67%) of the time required 

to calculate the optimal solutions through real optimization, but the saving percentage is not 

as high as the previous two cases. This is, again, due to the relative simplicity of the 

optimization problem solution (i.e., a quadratic objective function subjected to linear 

constraints). 

The deterministic multiparametric solution obtained by (Dua, et al., 2002) for the same 

problem, divides the UPs space into four critical regions, over each of them a different set of 

mathematical parametric functions are used to calculate the optimal solutions. 
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   (a)                                                      (b) 

Figure 4.6. Quadratic optimization problem: comparison between (a) the results obtained by 

the classical MPP solution provided in (Dua, et al., 2002) and (b) the results provided by the 

proposed methodology. 

4.2.3.4 Quadratic optimization: milk surplus problem 

This application considers a Dutch agriculture cooperative company that produces four 

products including milk for direct consumption, butter, fat and cheese with prices 𝑥1, 𝑥2, 𝑥3 

and 𝑥4, respectively  (Pistikopoulos, et al., 2007). The consumer demand from each product is 

modelled as an inverse function of the product price. The cooperative company must decide 

the optimal prices (that indirectly set the optimal quantities of products) that maximize the 

profit, disregarding the production costs. The optimization problem is subjected to capacity 

constraints and an escalation of the price constraint, and is influenced by four UPs, 𝜃1, 𝜃2, 𝜃3 

and 𝜃4, related to the consumer demand, and another UP  𝜃5, associated to the escalation of 

the prices. Notice that, in this application, the UPs are affecting both of the constraints and the 

objective function:   
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𝑚𝑖𝑛
𝑥
𝑍 = – 1.2338 𝑥1

2–  0.0203 𝑥2
2–  0.0136 𝑥3

2–  0.0027 𝑥4
2 +  0.0031 𝑥3 𝑥4 + 2139 𝑥1

+  135 𝑥2  +  103 𝑥3 +  19 𝑥4 + 𝑥1θ1  + 𝑥2θ2   +  𝑥3θ3   +  𝑥4θ4  

S.T.: 

 – 0.0321 𝑥1 –  0.0162 𝑥2 –  0.0038 𝑥3 –  0.0002 𝑥4  
≤ – 80.5–0.026 θ1 –  0.800 θ2 –  0.306 θ3 –  0.245 θ4, 

– 0.1061 𝑥1 –  0.0004 𝑥2–  0.0034 𝑥3 –  0.0006 𝑥4  
≤  26.6–0.086 θ1 –  0.020 θ2 –  0.297θ3 –  0.371 θ4, 

1.2334 𝑥1  ≤  2139 + θ1, 

0.0203 𝑥2  ≤  135 + θ2, 

0.0136𝑥3 –  0.0015  𝑥4  ≤  103 +  θ3, 

– 0.0016𝑥3  +  0.0027 𝑥4  ≤  19 +  θ4, 

0.0163𝑥1 +  0.0003𝑥2  +  0.0006𝑥3  +  0.0002  𝑥4  ≤  10 +  θ5, 

– 150 ≤   θ1  ≤  150, 

– 5 ≤   θ2  ≤  5, 

– 6 ≤   θ3 ≤  6, 

– 2 ≤  θ4  ≤  2, 

– 1 ≤   θ5  ≤  1 

The methodology is, again, applied following the same procedure. A sampling plan, 

[𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5]80×5, is created including different combinations of the UPs values, which 

are selected by the hybrid DOCE method within the known bounds [-150:150, -5:5, -6:6, -2:2, 

-1:1]. The quadratic optimization problem is solved 80 times using the “quadprog” optimizer 

of the Matlab optimization toolbox, based on the interior-point-convex algorithm, to yield the 

matrix [𝑍∗, 𝑥1
∗, 𝑥2

∗, 𝑥3
∗, 𝑥4

∗]80×5. Five MPMs, 𝑍̂∗ = 𝑓0(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5), 𝑥𝑖
∗ =

𝑓𝑖(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5), 𝑖 = 1,…4, are fitted to approximate the optimal profit and prices as a 

function of the demand and the price escalation uncertainties. 

The MPMs performances are assessed relying on a new dataset, 

([𝜃1
𝑣, 𝜃2

𝑣, 𝜃3
𝑣, 𝜃4

𝑣, 𝜃5
𝑣]400×5 − [𝑍

∗,𝑣 , 𝑥1
∗,𝑣 , 𝑥2

∗,𝑣 , 𝑥3
∗,𝑣 , 𝑥4

∗,𝑣]400×5), and their accuracies, in terms of 

NRMSE, are reported in Table 4.1. As in the third case (Section 4.2.3.3), a significantly high 

prediction accuracy of the MPMs is obtained (a maximum NRMSE of 0.0035 %), which can 

be justified by similar reasons. This also is supported by the fact that despite the high 

dimensionality of the optimization problem (four decision variables) and the high number of 

the UPs (five) with respect to the other examples, the same order of magnitude of training data 

(80 points) was enough to achieve such high accuracy. 

Classical MPP approaches (Pistikopoulos, et al., 2007) provides a deterministic solution 

to this problem that is characterized by two critical regions over the UPs space. This 

deterministic solution is compared, using the validation set, to the approximate one provided 

by our methodology in Figure 4.7. 
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Figure 4.7. Milk surplus problem: comparison between the solutions obtained by the 

classical MPP provided in (Pistikopoulos, et al., 2007) and the solutions provided by the 

proposed methodology. 

4.2.3.5 Nonlinear optimization 

The last multiparametric optimization benchmark example (Eq.(4.10)) (Domínguez, et 

al., 2010) includes a nonlinear objective subjected to two constraints, each one involving an 

uncertain parameter in the right-hand side: 

 𝑀𝑖𝑛
𝑥
 𝑍 = 𝑥1

3 + 2 𝑥1
2 − 5 𝑥1 + 𝑥2

2 − 3 𝑥2 − 6

𝑆. 𝑇:    2.0 𝑥1 + 𝑥2 ≤ 2.5 + 𝜃1
0.5 𝑥1 + 𝑥2 ≤ 1.5 + 𝜃2
0.5 𝑥1 + 𝑥2 ≤ 1.5 + 𝜃2
0 ≥ 𝜃1 ≥ 1,   0 ≥ 𝜃2 ≥ 1 }

 
 

 
 

 (4.10) 

Three MPMs, 𝑍̂∗ = 𝑓0(𝜃1, 𝜃2), 𝑥1
∗ = 𝑓1(𝜃1, 𝜃2), 𝑥2

∗ = 𝑓2(𝜃1, 𝜃2), are fitted using the 

input-output training data,  [𝜃1, 𝜃2]140×2 − [𝑍
∗, 𝑥1

∗, 𝑥2
∗]140×3, generated as explained earlier 

for the other examples. The performance of the MPMs is evaluated using a new validation set, 

 [𝜃1
𝑣 , 𝜃2

𝑣]400×2 − [𝑍
∗,𝑣 , 𝑥1

∗,𝑣 , 𝑥2
∗,𝑣]400×3, and the result is shown in Table 4.1. Figure 4.8 

compares the approximated multiparametric solution obtained by the MPMs to the 

deterministic one obtained by (Pistikopoulos, et al., 2007; Domínguez, et al., 2010). In 

(Domínguez, et al., 2010) different classical MPP algorithms have been used to solve the 

problem, and the best one was the quadratic approximation algorithm that partitioned the UPs 

into four critical regions. 

In this application, a relatively high number of training data was required to fit the 

MPMs, and although the resulted accuracy (NRMSE of 0.62%, 1.5% and 1.9%) is very good, 
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but it is not as high as in the previous examples, where the NRMSE is in the worst cases less 

than 1%. Again, this is because of the challenging discrete or piecewise characteristics of the 

multiparametric solution, which can be clearly noticed in Figure 4.8-(a).  

 
   (a)                                                      (b) 

Figure 4.8. Nonlinear optimization problem: comparison between (a) the results obtained by 

the classical MPP solution provided in (Domínguez, et al., 2010) and (b) the results 

provided by the proposed methodology. 

4.2.3.6 Case Study 1: operational cost optimization of utility system 

A utility system (Figure 4.9) supplies mechanical energy to an industrial process is 

considered. The system is composed of a boiler (E-1) that receives water and supplies high 

pressure steam to a steam turbine (T1), whose outlet steam is condensated to water that is fed-

back to the boiler inlet by the pump (P-1). 

                          

Figure 4.9. Utility plan model. 
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The objective is to minimize the system operational cost, C, that includes the costs of 

energies, Q2, Q1 and Q5, consumed by the boiler, T1, and pumps, E-1 and E-2, respectively, 

and the cooling water cost. The operational cost is modeled as a function of the boiler outlet 

steam flowrate (SF) and temperature (ST). However, two UPs, 𝜃1 and 𝜃2, affect the system, 

which are: the power demand that must be satisfied by the turbine and varies between [53000, 

57000] kW, and the turbine efficiency that varies between [75, 95] %. Such case study 

represents a difficulty for the classical MPP approaches, as it is a simulation-based 

optimization case, in which the simulation model (Figure 4.9) is a black-box one (ASPEN 

HYSYS modeling and simulation environment) that includes complex thermodynamics 

relations. The problem is formulated as: 

 

𝑀𝑖𝑛
𝑆𝐹,𝑆𝑡

 𝐶 =  𝑓(𝑆𝐹 , 𝑆𝑡 , 𝜃1, 𝜃2)

𝑆. 𝑇:
𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙

𝑄𝑤 (𝑆𝐹 , 𝑆𝑡, 𝜃2) ≤ 𝜃1
36000 < 𝑆𝐹 < 79200 𝑘𝑔𝑀𝑜𝑙𝑒/ℎ𝑟 , 162 < 𝑆𝑡 < 360 𝑐 ∘}

 
 

 
 

 (4.11) 

A sampling plan [𝜃1, 𝜃2]70×2, is designed over the domain [53000:57000, 75:95]. The 

black-box simulation-based optimization problem (Eq.(4.11)) is solved 70 times (the 

“fmincon” Matlab optimizer is used) to obtain the optimal values of the objective and decision 

variables [𝐶∗, 𝑆𝐹
∗ , 𝑆𝑇

∗  ]70×3. Using this dataset, three MPMs are trained, which approximate the 

optimal behavior of the operational cost, steam flowrate and temperature as a function of the 

power demand and turbine efficiency: 𝐶̂∗ = 𝑓0(𝜃1, 𝜃2), 𝑆̂𝐹
∗ = 𝑓1(𝜃1, 𝜃2), 𝑆̂𝑇

∗ = 𝑓2(𝜃1, 𝜃2). 

The validation is accomplished using another dataset of size 400 samples, [𝜃1
𝑣 , 𝜃2

𝑣]400×2 −

[𝐶∗,𝑣 , 𝑆𝐹
∗,𝑣 , 𝑆𝑇

∗,𝑣]400×3, where the three MPMs are employed to predict the outputs 

[𝐶̂∗,𝑣 , 𝑆̂𝐹
∗,𝑣 , 𝑆̂𝑇

∗,𝑣]400×3  and the NRMSE is calculated (Table 4.1).  
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   (a)                                                      (b) 

Figure 4.10. (a) Exact versus (b) approximate multiparametric behavior of the utility system. 

Table 4.1shows the high potential of the method: the optimal decisions are accurately 

predicted via simple interpolations using the MPMs, in a very slight time (0.2 sec), saving a 

large amount of time consumed by the real simulation-based optimization (300.8 sec). Thus, 

the method represents a powerful tool to promptly manage the UPs variations during the 

process online operations.  

4.2.3.7 Case Study2: operational optimization of a batch reactor 

The second case study (Hale & Qin, 2004) considers a hypothetical scenario in which 

an engineer is charged with starting up a new chemical process based on the reactions: 

𝐴 → 𝐵,            𝑟1= 𝑘1𝐶𝐴,          𝑘1 = 0.05 𝑠
−1 

𝐵 → 𝐶,          𝑟2= 𝑘2𝐶𝐵,         𝑘2 =  𝜃1𝑘1 𝑠
−1 

𝐴 → 𝐶,          𝑟3= 𝑘3𝐶𝐴,          𝑘3 =  𝜃2𝑘1 𝑠
−1 

where 𝐴 is the reactant, 𝐵 is the desired product, 𝐶 is a secondary undesired 

product, 𝑟𝑖, 𝑖 = 1,2,3  are the respective reaction rates,  𝑘𝑖, 𝑖 = 1,2,3 are the reaction rate 

constants, 𝐶𝐴 is the reactant concentration and 𝐶𝐵 is the desired product concentration. It has 
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been assumed that the reaction constants, 𝑘2, 𝑘3 of the two side-reactions, are not precisely 

estimated with UPs 𝜃1 and 𝜃2. The process is to be run in a batch reactor with maximum 

capacity 𝑉𝑚𝑎𝑥  =  1000𝐿, on which an automatic feed and emptying system is installed, with 

flowrate 0 ≤ 𝐹 ≤ 𝐹𝑚𝑎𝑥 = 1 𝐿/𝑠. The process can be operated in two scenarios: 

• A complete batch mode, where the process starts with the reactor full of reactants, 

i.e., the initial volume equals to the reactor maximum capacity:  𝑉0  = 𝑉𝑚𝑎𝑥  =

 1000𝐿. 

• A hybrid mode of fed-batch then batch, according to which the process starts with 

initial volume, 𝑉0, of the reactant less than the maximum capacity, i.e., 𝑉0  <

𝑉𝑚𝑎𝑥. Then, the rest of the reactant volume (𝑉𝑚𝑎𝑥 − 𝑉0) is continuously fed into 

the batch with constant flowrate, 𝐹, until the time instance 𝜏 at which the reactor 

is full (𝑉(𝜏) = 𝑉𝑚𝑎𝑥), the flow is shut-off and, then, the process continues in a 

batch mode. 

Given that the duration of the batch is 𝑇, and the time instance 𝜏 = (𝑉𝑚𝑎𝑥 − 𝑉0)/𝐹 (i.e., 

for a full batch mode scenario 𝜏 = 0), the process can be modeled as: 

for the time period  0 ≤ 𝑡 < 𝜏 

𝑑𝐶𝐴
′

𝑑𝑡
= 𝐶𝐴0 𝐹 − (1 + 𝛼2)   𝑘1𝐶𝐴

′  ,               𝐶𝐴
′(0) =  𝐶𝐴0𝑉0     

𝑑𝐶𝐵
′

𝑑𝑡
= 𝑘1𝐶𝐴

′ − 𝛼1𝑘1𝐶𝐵
′ ,                                   𝐶𝐵

′ (0) = 0         

𝑑 𝑉′

𝑑𝑡
= 𝐹                                                              𝑉′(0) = 𝑉0      

 

for the time period  𝜏 ≤ 𝑡 ≤ 𝑇 

𝑑𝐶𝐴
𝑑𝑡

= −(1 + 𝛼2)   𝑘1𝐶𝐴 ,                                𝐶𝐴(𝜏) =  𝐶𝐴
′(𝜏)     

𝑑𝐶𝐵
𝑑𝑡

= 𝑘1𝐶𝐴 − 𝛼1𝑘1𝐶𝐵,                                     𝐶𝐵(𝜏) = 𝐶𝐵
′ (𝜏)         

𝑑𝑉

𝑑𝑡
= 0                                                              𝑉(𝜏) = 𝑉′(𝜏)      

 

where the dash superscript is used to distinguish the process variables during the fed-

batch period, and 𝐶𝐴0 = 2 𝑀 is the concentration of feed. The process total time, 𝑇𝑃, is the 

summation of the time required to fill the reactor with the initial volume of reactant, 𝑉0, plus 

the batch duration, 𝑇, plus the time to empty the batch, i.e., 𝑇𝑃 =
𝑉0

𝐹𝑚𝑎𝑥
+ 𝑇 +

𝑉𝑚𝑎𝑥

𝐹𝑚𝑎𝑥
 . The 

objective of the batch operation is to select the optimal values of the decision variables 𝑉0, 𝐹, 𝑇 

that maximize the amount of the desired product 𝐵 produced per unit time, considering 

bounded uncertain parameters 𝜃1 and 𝜃2. 
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Max 𝐶𝐵
𝑉0,𝑇,F      

(𝑉0 , F, 𝑇)/𝑇𝑃

𝑆. 𝑇. :
𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙
0 ≤ 𝐹 ≤ 𝐹𝑚𝑎𝑥
0 ≤ 𝑉0 ≤ 𝑚𝑎𝑥
0 ≤ 𝜏 ≤ 𝑇

0 ≤ 𝜃1 , 𝜃2 ≤ 5 }
 
 
 

 
 
 

 (4.12) 

Before the application of the proposed method, the correctness of the optimization 

procedure is checked by solving the problem considering the nominal values of the UPs 𝜃1 =

0.05 and 𝜃2 = 0, as in (Hale & Qin, 2004), and exactly the same solution of the nominal 

problem ( 𝑉0
∗ = 978.7 L , 𝐹∗ = 1 𝐿/𝑠 , 𝑇∗ = 27.7 𝑠) is obtained. 

The proposed method is straightforwardly applied with the same steps previously 

illustrated. A sampling of 150 points is designed, the optimization problem (Eq.(4.12)) is 

solved (using the Matlab “fmincon” algorithm) to obtain the input-output training data 

 [𝜃1, 𝜃2]150×2 −  [𝐶𝐵
∗ , 𝑉0

∗, 𝐹∗, 𝑇∗]150×4 and, finally, four MPMs, 𝐶𝐵
∗ = 𝑓0(𝜃1, 𝜃2), 𝑉0

∗ =

𝑓1(𝜃1, 𝜃2), 𝐹
∗ = 𝑓2(𝜃1, 𝜃2), 𝑇

∗ = 𝑓3(𝜃1, 𝜃2), are trained. The MPMs validation is 

accomplished in the same way as previously mentioned, considering a new input-output 

dataset  [𝜃1
𝑣, 𝜃2

𝑣]300×2 − [𝐶𝐵
∗,𝑣, 𝑉0

∗,𝑣, 𝐹∗,𝑣 , 𝑇∗,𝑣]300×4 different from the training one.   
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            (a)                                           (b)   

Figure 4.11. (a) Exact versus (b) approximate multiparametric behavior of the batch 

reactor. 

The performance, shown in Figure 4.11 and reported in Table 4.1, further emphasizes 

the methodology capabilities in terms of high prediction accuracy and significant reduction in 

the optimization time (99.92% = (4887-3.88)/4887). Notice that the optimal flowrate, 𝐹̂∗, is 

insensitive to the UPs variation (see Figure 4.11) and always takes the maximum allowable 

value, which make sense because using the maximum flowrate minimizes the time of filling 

and emptying the reactor and, consequently, maximizes the objective function (maximum 
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desired product 𝐵 produced per unit time). Also, since the variability range of  𝐹̂∗ is almost 

zero, the calculation of its NRMSE is meaningless (see Eq.(4.6)), as it will lead to an extremely 

high “numerical” value that is not expressing the actual performance of the MPM. Therefore, 

to evaluate the performance of the MPM of  𝐹̂∗, we consider the RMSE, which equals to 

0.0039. 

Table 4.1. NRMSE (%) of the MPMs and the computational time of their training and 

validation. 

 

Finally, the Table 4.1, as a whole, also shows that the method advantage increases as 

the optimization problem complexity increases: in examples 2 and 3, a quadratic optimization 

problem is quite easy to solve (single global optima), and the percentage of the time saved 

using the method is 67% (100 ×(4.5-1.49)/4.5) and 80% respectively. However, as the problem 

complexity increases in example 1 (bilinear objective function including  saddle behavior) and 

in example 5, the percentage of the time saved increases to 98.7% and 88.5% respectively. 

Finally, when the optimization problem involves a complex, nonlinear and/or black-box model 

(case studies) the amount of the saved time reaches 99.9%. 

Problem  MPMs Training Validation NRMSE 

No. of 
training 
samples 

Time(sec)* No. of 
validation 
samples 

Time (sec)* 

Ups 
Sampling 

 

Optimization 
for data 

generation 

Fitting Optimization 
for data 

generation 

Prediction 

Refinery blending 

problem 

𝑍̂∗ 

75 0.002 0.53 

0.86 

400 2.1 0.51 

0.44 

𝑥1
∗ 0.80 0.39 

𝑥2
∗ 1.13 0.44 

Bilinear objective 

with linear 

constraints 

𝑍̂∗ 

60 0.012 6.9 

0.53 

150 16.2 0.17 

0.01 

𝑥1
∗ 1.08 0.80 

𝑥2
∗ 1.56 0.40 

Quadratic 

optimization 

𝑍̂∗ 

80 0.015 0.815 

5.76 

400 4.51 1.49 

0.00011 

𝑥1
∗ 2.52 0.02813 

𝑥2
∗ 4.46 0.01853 

Quadratic 

optimization: milk 

surplus problem 

𝑍̂∗ 

80 0.023 

 
 

1.07 
 
 

1.47 

400 8.17 1.59 

0.00350 

𝑥1
∗ 1.52 0.00020 

𝑥2
∗ 1.42 0.00016 

𝑥1
∗ 1.39 0.00021 

𝑥2
∗ 155 0.00010 

Nonlinear 

optimization 

𝑍̂∗ 

140 0.039 4.67 

4.60 

400 13.85 1.60 

0.62 

𝑥1
∗ 4.00 1.5 

𝑥2
∗ 6.00 1.9 

Operational cost 

minimization of 

utility plant 

𝐶̂∗ 

70 0.015 48.4 

1.20 

400 300.8 0.20 

0.31   

𝑆̂𝐹
∗ 1.40 0.61 

𝑆̂𝑇
∗  1.07 0.77 

Operational cost 

minimization of 

batch reactor 

𝐶̂𝐵
∗    

150 0.038 861 

14.0 

300 4887 3.88 

0.08 

𝑉̂0
∗
 17.5 1.50 

𝐹̂∗ 0.66 NA 

𝑇̂∗ 11.1 1.45 
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4.3 MPMS FOR MIXED-INTEGER OPTIMIZATION 

4.3.1 Problem statements  

A general Mixed Integer optimization problem under uncertainty can be generally expressed 

as in Eq.(4.13), where 𝑍 is the objective function, 𝑔𝑙(𝑥), 𝑙 = 1,2,… , 𝐿 represents a set of 

constraints, 𝜃 ∈ 𝑅𝑘 is a set of the bounded UPs affecting the problem, 𝑦 ∈ {0 ,1}𝐾𝑖𝑛𝑡   is a 

vector of binary variables and 𝑥 ∈ 𝑅𝐾𝑐𝑛𝑡    is a vector of continuous variables (Dua & 

Pistikopoulos, 1999; Pistikopoulos, 1995).  

 

𝑚𝑖𝑛
𝑥,𝑦
 𝑍 = 𝑓(𝑥, 𝑦, 𝜃)

𝑆. 𝑇.   𝑔𝑙(𝑥, 𝑦, 𝜃) ≤ 0,      𝑙 = 1,2,… . 𝐿
𝑙𝑏𝑥 ≤ 𝑥 ≤ 𝑢𝑏𝑥, 𝑙𝑏𝜃 ≤ 𝜃 ≤ 𝑢𝑏𝜃

𝑥 ∈ 𝑅𝐾𝑐𝑛𝑡 , 𝑦 ∈ {0 ,1}𝐾𝑖𝑛𝑡 , 𝜃 ∈ 𝑅𝑘 }
 
 

 
 

 (4.13) 

The application of MPP approaches provides the optimal solution (𝑍∗,  𝑥∗,  𝑦∗) as P 

mathematical functions of the UPs (Eq.(4.14)), each one is valid for a certain partition of the 

UPs space which is called “critical region”. So, as the UPs vary, the optimal solution is 

calculated by evaluating these simple functions, and avoiding repeated optimization tasks 

(Pistikopoulos, et al., 2002).  

 
𝑍𝑝
∗   = 𝑓𝑝   (𝜃),         𝑥𝑖,𝑝

∗ = 𝑓𝑖,𝑝(𝜃) ,         𝑦𝑗,𝑝
∗ = 𝑓𝑗,𝑝(𝜃) 

𝑖 = 1,2,…𝐾𝑐𝑛𝑡 , 𝑗 = 1,2, . . 𝐾𝑖𝑛𝑡     ,      𝑝 = 1,2, . . 𝑃  ,   
       

𝑙𝑏𝜃𝑝 ≤ 𝜃 ≤  𝑙𝑏𝜃𝑝  

(4.14) 

The solution of this problem is beyond the capabilities of the first methodology, because of 

two reasons:  

1) Molding the multiparametric behavior of the optimal integer variables  𝑦 ∈

{0 ,1}𝐾𝑖𝑛𝑡 implies the use of a totally different tool (classification technique) rather 

than metamodels, which should be able to approximate binary or categorical 

outputs. 

2)  The existence of the integer variables  𝑦 ∈ {0 ,1}𝐾𝑖𝑛𝑡  adds extra discrete features 

to the multiparametric behavior of the optimal continuous variables 𝑥 ∈ 𝑅𝐾𝑐𝑛𝑡, so 

auxiliary techniques (clustering) should be used in order to assist the metamodels 

to capture this high discrete behavior. 

Therefore, this part is focused on extending the capabilities of the first method in order to be 

able to address Mixed-Integer optimization models. Before describing the methodology 

details, it is worth highlighting the basics of the classification and clustering techniques. 
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• Classification techniques allocate an observation into a specific class among a set of 

predefined classes. In this framework, they are used to construct pattern recognition 

models that characterize the optimal values of the binary/integer variables as a 

function of the UPs. The classifier should be trained using an input-output 

dataset [𝜃, 𝑦]𝑛  , 𝜃 ∈ 𝑅
𝑘, 𝑦 ∈ 𝑅𝑖𝑛𝑡  , where y is a categorized variable consisting of 

specific classes (e.g. 0 or 1). Artificial Neural Network (ANN) classifiers are used in 

this work (Matlab ANN toolbox) due to their high generalization properties and 

efficiency. 

• Clustering methods allow identifying groups (clusters) of data/results, associating into 

each single cluster similar samples according to some performance measure. The ₭-

means clustering method (Matlab “kmeans” function) is used due to its simplicity 

(Kaufman & Rousseeuw, 1990). 

4.3.2 Methodology  

4.3.2.1 UPs sampling using DOCE  

In order to obtain accurate predictions, the training data should include -as much as possible- 

information about the optimal solution behavior in every sub-region of the total input (UPs) 

space. So, DOCE methods are used to select an input sampling plan [𝜃]𝑛, 𝜃 ∈ 𝑅
𝑘 including 

sufficient combinations of the UPs values that uniformly span the whole input domain 𝑙𝑏𝜃 ≤

𝜃 ≤ 𝑢𝑏𝜃. A hybrid technique of Hammersley sequencing and full factorial design is proposed, 

due to its uniformity and simplicity (Ibrahim, et al., 2019).  

4.3.2.2 Data generation and feasibility modelling 

After designing a sampling plan [𝜃]𝑛×𝑘, the optimization problem in Eq.(4.13) is solved n 

times, each one using a different combination of the UPs values in order to obtain the 

corresponding optimal output [𝑍∗, 𝑥∗, 𝑦∗]𝑛, and additional Feasibility Information (FI): 𝑛 =

 𝑛𝑓  + 𝑛𝑖𝑛𝑓 , where 𝑛𝑓is the number of feasible samples and 𝑛𝑖𝑛𝑓 is the number of optimization 

runs leading to an unfeasible situation. The optimization model was written in GAMS 23.8.2 

and solved using the solver DICOPT, which combines solvers of the sub-problems nonlinear 

programming using CONOPT and Mixed Integer programming using CPLEX. Then, an ANN 

classifier 𝐹𝐼̂ = 𝑔𝐹𝐼(𝜃) is constructed using the UPs values and the feasibility labels [𝜃, 𝐹𝐼]𝑛 

in order to examine the optimization problem feasibility for new UPs values. 
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4.3.2.3 Integer variables modelling 

For each integer variable  𝑦𝑖
∗ , a classifier  𝑦̂𝑖

∗ = 𝑔𝑦𝑖(𝜃) is constructed and trained using the 

UPs feasible inputs, and the corresponding output data of the optimal solutions, i.e. [𝜃,   𝑦𝑖
∗]𝑛𝑓. 

Thus, the resulting set of  𝐾𝑖𝑛𝑡 classifiers can be used to identify the optimal values of the 

integer variables for any further change in the UPs.  

4.3.2.4 Continuous variables modelling 

The optimal values of the continuous variables 𝑥∗ are explored, processing them by the 

clustering algorithm, in order to identity the 𝑘𝑐𝑛𝑡′  continuous variables whose multiparametric 

behavior shows a continuous response over the UPs space ( 𝑥𝑖
∗, 𝑖 = 1, 2. . 𝑘𝑐𝑛𝑡′ ). Besides, 

additional 𝑘𝑐𝑛𝑡′′  continuous variables that show discrete/piecewise multiparametric behavior 

over the UPs domain are also identified, being 𝑘𝑐𝑛𝑡 = 𝑘𝑐𝑛𝑡′ + 𝑘𝑐𝑛𝑡′′  . 

The optimal values of each variable [𝑥𝑖
∗]𝑛𝑓 are processed by the ₭-means algorithm, specifying 

different values for the number of clusters ₭, as there is no prior knowledge about the number 

of distinct behaviors really present in the system. Each time (i.e.: for each feasible situation) 

the clustering quality is assessed via the average silhouette value measure (Kaufman & 

Rousseeuw, 1990): high values indicate high probabilities of distinct clusters existence, and 

also righteousness of the assumed number of clusters ₭, while lower values indicate no sharp 

piecewise behavior. 

For each one of the continuous variables with a continuous multiparametric behavior, a 

metamodel 𝑥𝑖
∗ = 𝑓𝑖

𝑐𝑛𝑡(𝜃) is trained, so as to obtain the set of 𝑘𝑐𝑛𝑡′ metamodels.  

Regarding each of the continuous variables with discrete multiparametric behavior, once the 

best clustering is identified (₭), a classifier  𝑗𝑥̂𝑖 = 𝑔
𝑥𝑖(𝜃) is constructed using the input 

information of the UPs [𝜃]𝑓 and the labels obtained from the clustering step as the output. In 

parallel, ₭ metamodels 𝑥𝑖𝑗
∗ = 𝑓𝑖𝑗

𝑐𝑛𝑡(𝜃), 𝑗 = 1,2, . . , ₭ are fitted, each one trained using the data 

of each cluster [𝜃𝑗, 𝑥𝑖𝑗
∗ ]𝑛𝑓,𝑗.  

Hence, the classifier-metamodels system is employed as follows: for a new value of a certain 

UPs combination, the classifier is used to decide to which one of the ₭ clusters or behaviors 

(i.e. metamodels) the UPs values belong to. And then, the specific metamodel associated to 

the identified cluster – i.e. the one that describes a distinct multiparametric behavior over a 

certain (local) area of the total UPs space- is used to estimate the optimal values of the 

continuous variable. The same procedure is also applied to explore the multiparametric 

behavior of the objective 𝑍∗. 
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4.3.3 Application 

A case study from the work by (Dua & Pistikopoulos, 1999) has been used to illustrate the 

application of the proposed method. In this case (Figure 4.12), a product C is manufactured 

from a chemical B, where the latter can either be purchased from the market or manufactured 

from a chemical A by two different alternatives. The supply of A and the demand of C are 

represented by UPs [𝜃1, 𝜃2] affecting the problem as illustrated in Figure 4.12. 

                                     
Figure 4.12. Case-study illustration. 

The optimization problem is formulated as follows: 

𝑍(𝜃) = 𝑚𝑖𝑛
𝑥,𝑦
(3.5𝑦1 + 𝑦2 + 1.5𝑦3 + 𝐵2 + 1.2𝐵3 + 1.8(𝐴2 + 𝐴3) + 7𝐵𝑃 − 11𝐶1)  

𝑆. 𝑇.: −0.9𝐵1  +  𝐶1
2  /15 ≤  0, 

−𝐴2  +  𝑒𝑥𝑝(𝐵2)  ≤  1, 

−𝐴3  +  𝑒𝑥𝑝(𝐵3/1.2)  ≤  1, 

−𝐴 + 𝐴2  +  𝐴3 =  0, 

−𝐵2  − 𝐵3  −  𝐵𝑃 + 𝐵1 =  0, 

𝐵𝑃 ≤  1.95, 

𝑦1  +  𝑦2  + 𝑦3  ≤  2, 

𝐶1  ≤ 20𝑦1,  𝐵2  ≤  20𝑦2,  𝐵3  ≤  20𝑦3, 𝐴2  ≤  20𝑦2, 𝐴3  ≤  20𝑦3 

0.50 ≤ (𝜃1 = 𝐴) ≤  0.75,    5.50 ≤  (𝜃2 = 𝐶1) ≤ 6.00 

         Over the inputs (UPs) domain [0.5: 0.75; 5.5: 6], a sampling plan [𝐴, 𝐶]250 is designed, 

and the optimization problem is solved 250 times, to obtain the optimal variables and objective 

[𝐴∗, 𝐵1∗, 𝐵𝑃∗, 𝐶1∗, 𝐴2∗, 𝐴3∗, 𝐵2∗, 𝐵3∗, 𝑍∗, 𝑦1∗, 𝑦2∗, 𝑦3∗]250 (outputs). From the 250 

optimization runs, 172 input-output samples are found feasible (Figure 4.13-(b)).  

Using the training data ([𝐴, 𝐶]250–[FI]250), an ANN classifier  𝐹𝐼̂ = 𝑔𝐹𝐼(𝐴, 𝐶) is trained which 

is used to check the problem feasibility for new values of A and C. And using the feasible 

samples ([𝐴, 𝐶]172 − [𝑦1
∗, 𝑦2∗, 𝑦3∗]172)  three ANN classifiers are trained (𝑦̂1∗ = 𝑔𝑦1(𝐴, 𝐶),

𝑦̂2∗ = 𝑔𝑦2(𝐴, 𝐶), 𝑦̂3∗ = 𝑔𝑦3(𝐴, 𝐶)), to define the optimal value of each integer variable as a 

function of the UPs (A and C).  

On the other side, the ₭-means algorithm is used to explore each of the continuous variables 

and the objective, in order to look for any eventual cluster -i.e. distinct local multiparametric 

B2 
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behaviors. For each variable, different values of ₭ are tested, and the obtained clustering 

qualities are assessed (Figure 4.13-(a)): variables [𝐴∗, 𝐵1∗, 𝐵𝑃∗, 𝐶1∗, 𝑍∗]  show relatively 

lower silhouette values, and the change of ₭ does not significantly affect their silhouette 

values. So, these variables (including the objective function values) do not show severe 

discrete multiparametric behavior over the UPs feasible domain. Thus, five OK models are 

fitted, one for each of these variables: [𝐴̂∗ = 𝑓1
𝑐𝑛𝑡′(𝐴, 𝐶), … ... 𝑍̂∗ = 𝑓5

𝑐𝑛𝑡′(𝐴, 𝐶)]. 

 

Figure 4.13. (a) Clustering analysis, (b) Feasibility information and (c) B3*clustering. 

 

In contrast, Figure 4.13 -(a) also shows how the variables [𝐴2∗, 𝐴3∗, 𝐵2∗, 𝐵3∗] exhibit higher 

silhouette values, which significantly depend on the value of ₭ dramatically. Thus two (₭=2) 

distinct clusters over the UPs feasible space are characterized. Figure 4.13-(c) shows the 

clustering results of 𝐵3∗. The multiparametric behaviors of the other variables [𝐴2∗, 𝐴3∗, 𝐵2∗] 

show similar cluster patterns, so finally, a classifier is trained for each of the four variables 

using the UPs and their corresponding labels obtained from the clustering step (𝑗𝐴̂2 =

𝑔𝐴2(𝐴, 𝐶), …, ([𝐴, 𝐶]172–[clustering labels]172).  

Besides, two additional metamodels are trained for each one of these variables, each using the 

data associated to the specific cluster, in order to approximate the multiparametric behavior at 

each UPs local area: [𝐴2̂1
∗ = 𝑓1,1

𝑐𝑛𝑡′′(𝐴, 𝐶),    𝐴2̂2
∗ = 𝑓1,2

𝑐𝑛𝑡′′(𝐴, 𝐶),…]. 

In order to validate the proposed system, a different dataset with 400 samples is generated, 

and the trained system of classifiers and metamodels is used to predict the optimal solutions 

of the validation set. Figure 4.14-(a) shows the estimated feasibility labels (crosses and 

triangles) using the feasibility classifier 𝑔𝐹𝐼compared to the exact ones (squares and circles). 

Additionally, Figure 4.14-(b) presents the estimated optimal solutions of 𝑦2̂∗ (crosses and 

triangles) using the classifier 𝑔𝑦2, compared to their exact values (squares and circles). Figure 

4.14-(c, d) displays the exact multiparametric behavior of B3* and the estimated one using the 

metamodels 𝐵3̂1
∗ = 𝑓4,1

𝑐𝑛𝑡′′(𝐴, 𝐶) , 𝐵3̂2
∗ = 𝑓4,2

𝑐𝑛𝑡′′(𝐴, 𝐶)  assisted by the classifier 𝑗𝐵̂3 =

𝑔𝐵3(𝐴, 𝐶).  
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Figure 4.14. Validation: (a) Feasibility classifier, (b) y2 classifier and (c) 𝐵3̂∗ 

multiparametric behavior.  

Table 4.2 reports the accuracy values of all the classifiers (feasibility and integer variables) in 

terms of their 𝑓1-score, and the accuracy of the predicted multiparametric behavior of the 

continuous variables (metamodels) in terms of the Normalized Root Mean Square Error 

(NRMSE). The metamodels of the variables that show continuous multiparametric behavior 

([𝐴̂∗, 𝐵1̂∗, 𝐵𝑃̂∗, 𝐶1̂∗, 𝑍̂∗]) are very accurate. However, some of the metamodels of the 

continuous variables behaving in a piecewise manner (𝐴2̂2
∗  𝐵2̂2

∗ , 𝐴3̂2
∗ , 𝐵3̂2

∗ ) show poor 

accuracies, although this is not evident in the visual comparison to the exact multiparametric 

behavior (Figure 4.14-(c,d)).  

Table 4.2. f1 score (%) of the classifiers and NRMSE (%) of the metamodels. 

Classifiers 

(ANN) 
𝑭𝑰̂ 𝒚𝟏̂∗ 𝒚𝟐̂∗ 𝒚𝟑̂∗ 

f1-score 

(%) 

99.0 100.0 98.5   97.0 

Metamodels 

(OK) 
𝑨̂∗ 𝑩𝟏̂∗ 𝑩𝑷̂∗ 𝑪𝟏̂∗ 𝒁̂∗ 𝑨𝟐̂𝟏

∗  𝑨𝟐̂𝟐
∗  𝑩𝟐̂𝟏

∗  𝑩𝟐̂𝟐
∗  𝑨𝟑̂𝟏

∗  𝑨𝟑̂𝟐
∗  𝑩𝟑̂𝟏

∗  𝑩𝟑̂𝟐
∗  

NRMSE 

(%) 

1.2    1.1 4.8 0.1  0.5 0.4 21.5 0.0 17.0 0.4 20.7 0.0 20.1 

 

Actually, this shortage is not directly related to the metamodels themselves, but to the critical 

regions classifiers 𝑔𝐴2, 𝑔𝐴3, 𝑔𝐵2, 𝑔𝐵3, which are not accurate enough at the limits between the 

identified clusters (UPs local regions). Thus, a classifier (e.g. 𝑔𝐵3) may incorrectly select a 

metamodel (e.g. 𝑓4,2
𝑐𝑛𝑡′′ instead of 𝑓4,1

𝑐𝑛𝑡′′), leading to a totally different estimated 

multiparametric behavior and, consequently, to a significant metamodel prediction error. Even 

when the misclassified points are few (7/271), the effect in the NRMSE is significant.  

Figure 4.15-(a) shows the estimated multiparametric response of 𝐵3∗, composed by the local 

behaviors 𝐵3̂1
∗  (red circles) and 𝐵3̂2

∗  (blue circles), and the effect of misclassification. In the 

same way, Figure 4.15-(b,c) shows the absolute error of the estimated values, including the 

very few points showing significant errors, again due to this mentioned misclassification. 
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Figure 4.15. Validation: (a)  𝐵3̂∗ versus 𝐵3∗, (b) and (c) absolute errors of 

 [𝐴2̂∗, 𝐴3̂∗, 𝐵2̂∗, 𝐵3̂∗]. 

Finally, Table 4.3 indicates the computational effort required in this case for data generation, 

training of the involved machine learning techniques (classification, clustering and 

metamodels), and the validation/prediction time. The table shows that the computational effort 

required for predicting the optimal solution corresponding to certain UPs using the proposed 

method is about 1/500 000 of the effort required to perform an optimization run. 

Table 4.3. Computational time (i5-6200U CPU@2.3GHz). 

4.4  CONCLUSIONS 

This chapter proposes two efficient machine learning-based methods for 

multiparametric solution of general optimization problems subjected to uncertainties, with 

special emphasis on chemical processes operation optimization problems. The first method 

addresses continuous optimization problems, while the second targets Mixed-Integer 

problems. The methods combine different tools and techniques as DOCE, state-of-art 

optimization algorithms, machine learning models for regression (i.e., surrogate models), 

clustering techniques and machine learning models for classification.   

The methods have been tested on several benchmark MPP examples including linear, 

bilinear, quadratic and nonlinear problems and applied to three case studies of process 

operation optimization. The results show that the methods are able to approximate the 

multiparametric solutions using a relatively small number of training data, with very good 

accuracy. More importantly, significant differences with the results of the standard MPP 

appear; 1) in all the tested cases, a single (or maximum two) MPMs was enough to correctly 

reproduce the multiparametric behavior of the optimal solution over the whole UPs domain, 

instead of several mathematical function (provided by classical MPP approaches) each is 

applicable to a certain partition of the UPs space, 2) the methods are able to solve problems of 

Problem  Training   Validation 

No. of 
training 

samples 

Time(sec)* No. of 
 

validation 

samples 

Time (sec)* 

UPs  

sampling 
 

Optimization 

for data  
generation 

Fitting Optimization 

for data  
generation 

Prediction 

classif
iers 

clust
erin

g 

metamod
els 

Case study 250 0.04 1250 1.52 10.0 107.5 400 4000 0.006 
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different types (linear, bilinear, quadratic, nonlinear) in a systematic and robust way, instead 

of many classical MPP algorithms each is able to solve one specific type and 3) the methods 

are capable of solving process operation optimization problems where complex, black-box 

and/or  highly nonlinear models are used, providing a huge reduction in the online optimization 

time. With respect to the second method, modeling the multiparametric behavior of the 

continuous variables that show severe changes over the UPs domain is  challenging: although 

clustering techniques help to define local metamodels, they suffer from poor approximation in 

the limits of the critical regions.  

Future research will investigate the extension of the methodology capabilities for 

improving the modeling of the multiparametric behavior of continuous variables that show 

significant/discrete changes over the UPs space (e.g., the example in Section 4.2.3.5), the 

quantification of uncertainty in the MPMs predictions and also the suitability of the methods 

for other problem types. 
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Chapter 5: Data-Driven Explicit 

MPC of Chemical 

Processes 

This Chapter proposes a Data-Based MultiParametric-Model Predictive Control 

(DBMP-MPC) methodology, which enables simple and efficient implementations of explicit 

MPC in situations when the deep mathematical knowledge required to develop traditional 

multiparametric MPC techniques is not available. Additionally, it represents a powerful 

alternative in cases when it is difficult to apply traditional multiparametric MPC due to the 

complexity and/or high nonlinearity of the process First Principle Model (FPM). The proposed 

method builds machine learning models (kriging, Support Vector Regression (SVR) or 

Artificial Neural Networks (ANNs)), which are trained offline using input-output information, 

to approximate the optimal values of the control variables that must be applied the next 

sampling period as a function of the state variables value at the current sampling period. Then, 

during the online application, the optimal control is calculated through simple interpolations 

using these machine learning models, avoiding the need for solving the open-loop optimal 

control problem. The method is tested on benchmark problems adopted from multiparametric 

MPC literature. The results show high accuracy and robustness using a simple method, 

bypassing complex mathematical formulations.  

5.1 INTRODUCTION 

MultiParametric Programming (MPP) is an efficient tool widely used to proactively 

manage the uncertainty in some of the process parameters, avoiding the need to re-run the 

optimization model when the uncertainty is unveiled (Pistikopoulos, et al., 2002). A 

remarkable millstone in the MPP development is its incorporation to MPC (Kouramas, et al., 

2011): a nominal process model (Eq.(5.2)) is used to control the process in a receding horizon 

fashion over a finite time horizon (sampling period). The optimal manipulated inputs u(t) that 

optimize the process (desired performance or economic criteria, Eq.(5.1)) are predicted 

through solving a dynamic optimization problem (open loop optimal control), using the values 

of the measured states of the previous sampling period as the initial values for the system. The 

calculated optimal inputs are implemented for the next sampling period, and at its end, the 

state variables x(t) are measured and their values are used to set up the next optimal control 

problem over the next sampling period, and so on (Tenny & Rawlings, 2004). 
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 𝑚𝑖𝑛
𝑢
𝐽(𝑢, 𝑥𝑡) =  𝑥𝑡+𝑁

′  𝑃 𝑥𝑡+𝑁 +∑[𝑥𝑡+𝑘
′  𝑄 𝑥𝑡+𝑘 + 𝑢𝑡+𝑘

′  𝑅 𝑢𝑡+𝑘]

𝑁−1

𝑘=0

 (5.1) 

 𝑆. 𝑇.:   𝑥(𝑡+1) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡) , 𝑥𝑗  ∈ 𝑅
𝑘, 𝑢𝑖 ∈ 𝑅

𝐾 (5.2) 

 𝑔𝑙( 𝑥(𝑡),  𝑢(𝑡)) ≤ 0 ,   𝑙 = 1,2,…𝐿 (5.3) 

But MPC technology faces a common obstacle associated to the time (computational 

effort) required to repeatedly solve the online open loop control problem at each sampling 

period, which may become infeasible for fast dynamic systems and/or when the optimization 

problem is complex (highly nonlinear / high size). The usage of the multiparametric MPC 

framework would provide a smooth solution, since it shall identify - offline - the optimal 

control strategy as P explicit simple mathematical functions of the state variables (Eq.(5.4)), 

each one is valid for a certain partition of the state variables space (“critical region”) (Katz, et 

al., 2020). During the online MPC application, the optimal control values are calculated via 

simple evaluation of these functions, avoiding the need for online optimization. 

 𝐽𝑝
∗ = 𝑓0𝑝(𝑥𝑗) , 𝑈𝑖𝑝

∗ = 𝑓𝑖𝑝(𝑥𝑗) , 𝑙𝑏𝑥𝑗𝑝 ≤ 𝑥𝑗 ≤ 𝑙𝑏𝑥𝑗𝑝, 𝑝 = 1,2, …𝑃 (5.4) 

However, further to the complex mathematical knowledge required to develop the MPP 

analysis; the availability of a clear discrete-time linear state-space model of the process is 

usually a necessity for the practical application of the multiparametric MPC (Pistikopoulos, et 

al., 2002; Pistikopoulos, et al., 2007) . This, again, may hinder the multiparametric MPC usage 

in cases where the available process model is highly nonlinear, high dimensional, with a 

complicated structure (sequential simulation models), and/or non-transparent (black box) 

(Rivotti, et al., 2012; Medina-González, 2019). Recently, model approximation and order 

reduction techniques have been proposed (Rivotti, et al., 2012); however, this may over 

simplify the processes behavior and, consequently, degrade the controller performance; 

additionally, the effort dedicated to this model simplification step should be also considered. 

Other works (Medina-González, 2019) have proposed data-based multiparametric analysis 

techniques that can be only used in such situations for design and steady state optimization 

problems.  

This Chapter proposes DBMP-MPC methodology aimed to achieve two goals: the first 

is to enable rapid and ease implantations of multiparametric MPC in situations when the deep 

mathematical knowledge required to develop it based on traditional approaches is not 

obtainable, even when a clear discrete-time linear state-space model is available. The second 

is the assistance in situations where it is difficult to apply traditional multiparametric MPC 

techniques, due to the complexity and/or nonlinearity of the available process dynamic FPM. 
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5.2 METHODOLOGY 

The proposed methodology is based on the use of machine learning techniques which 

are trained offline using input-output data (initial state variables vs. optimal control), to obtain 

metamodels that approximate the optimal control of the future sampling period as a function 

of the initial state variables (“MultiParametric Metamodels” (MPMs)). Then, during the online 

application, the optimal control is calculated through simple interpolations using these MPMs, 

avoiding the need for the dynamic optimization. The most significant elements of this general 

procedure and some application details corresponding to its implementation over the cases 

presented in Section 5.3, include the input-output data generation and the employed modeling 

techniques: 

The input-output data for the MPMs training are generated offline, by solving the open 

loop optimal control problem several times, each using different combination of the initial 

state variables values, to find the corresponding optimal control results. To obtain accurate 

metamodel predictions, these data should include -as much as possible- information about the 

output (the optimal control) behavior in every sub-region of the whole input (initial state 

variables) space. Consequently, a sampling plan [𝑥]𝑛 (𝑥 ∈ 𝑅𝐾), should be designed to 

uniformly cover/span the metamodel whole input domain (Ibrahim, et al., 2019). In this work, 

a hybrid technique combining Hammersley sequence and fractional factorial design is used, 

because it achieves high uniformity with low computational cost. More details about DOCE 

techniques can be found in Section 2.1. 

After designing the sampling plan, the open control problem is solved (𝑛 times), to 

obtain the outputs [𝐽∗,  𝑢∗]𝑛, (𝑢 ∈ 𝑅𝐾). 

5.2.1 Ordinary kriging 

Given a set of training data [𝑥𝑖, 𝑦𝑖], 𝑖 = 1,2, . . 𝑛,𝑥 ∈ 𝑅𝑘 , 𝑦 ∈ 𝑅, OK assumes a predictor 

𝑦̂(𝑥) =  𝜇𝑜𝑘 + 𝑍(𝑥), where 𝑍(𝑥) is  a deviation from the constant mean value 𝜇𝑜𝑘, and it is 

expressed as a stochastic Gaussian process with expected zero value, 𝐸(𝑍(𝑥)) =  0, and a 

covariance 𝑐𝑜𝑣(𝑍(𝑥𝑖), 𝑍(𝑥𝑗)) = 𝜎𝑜𝑘
2 𝑅(𝑥𝑖, 𝑥𝑗). Being 𝜎𝑜𝑘

2  the process variance and 𝑅(𝑥𝑖, 𝑥𝑗) a 

correlation function. The OK final predictor and estimated variance are given by Eq.(5.5) and 

Eq.(5.6), respectively. Where, [𝑟]𝑛×1  is the correlations vector between the point to be 

predicted 𝑥∗ and the training data. More details about the OK model can be found in Section 

2.2.1. 

 𝑦̂(𝑥∗) = 𝜇𝑜𝑘 + 𝑟
𝑇𝑅−1(𝑌 − 1 𝜇𝑜𝑘) (5.5) 

  𝑠̂2(𝑥∗) = 𝜎𝑜𝑘
2 (1 + 𝜆 − 𝑟𝑇𝑅−1𝑟 + (1 − 𝑟𝑇𝑅−1𝑟)2 (1𝑇𝑅−11)⁄ ) (5.6) 
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5.2.2 Support vector regressions 

Given a set of n input-output training data [𝑥𝑖 , 𝑦𝑖], 𝑖 = 1,2, . . 𝑛, 𝑥 ∈ 𝑅𝑘, 𝑦 ∈ 𝑅, SVR 

(Vapnik, 1995) maps the input data original space into a high-dimensional feature space, often 

through a basis or kernel function Φ(𝑥𝑖, 𝑥𝑗) that may be represented by different styles as 

linear, polynomial, Gaussian, etc. Then, the modeling problem becomes the determinations of 

the optimal (flattest) surface 𝑦̂(𝑥)  = 𝑏 + ∑ 𝑤𝑖Φ (𝑥𝑖, 𝑥𝑗)
𝑛
𝑖=1  in this feature space that fits the 

data, through the minimization of the weights vector norm |𝑤|2, 𝑤 ∈ 𝑅𝑛, where 𝑏 = 𝜇𝑠𝑣𝑟 is a 

base or bias (Forrester & Keane, 2009). The final predictor of the SVR is given by Eq.(5.7), 

where 𝛼𝑗
+, 𝛼𝑗

−are Lagrange multipliers resulting from the solution of the aforementioned 

minimization problem. The detailed mathematical description and derivations can be found in 

Section 2.2.3. This work uses the SVR algorithm based on the function “fitrsvm” included in 

the Matlab statistics and machine learning toolbox. 

 𝑦̂(𝑥∗) = 𝑏 +∑(𝛼𝑗
+ − 𝛼𝑗

−) Φ(𝑥∗, 𝑥𝑖)

𝑛

𝑖=1

 (5.7) 

5.2.3 Artificial neural networks 

The ANNs are very well-known efficient machine learning models, which are widely 

used for data-driven modelling of nonlinear systems. In this work, the Matlab ANN toolbox 

and the function “feedforwardnet” have been used to create multilayer feedforward ANNs. In 

each of the following application cases, the number of layers, number of neurons and the 

training algorithm were selected based on a trial and error procedure in order to balance the 

ANN structure simplicity and its prediction accuracy. More details about ANNs can be found 

in Section 2.2.2. 

5.3 APPLICATIONS 

The methodology is illustrated with a benchmark problem widely used in the 

multiparametric MPC literature, and also through its application to a simulation case study. It 

is worth to mention that, in all the examples, the Matlab “fmincon" function is used as the 

optimization algorithm, with the computer capacities illustrated at the bottom of Table 5.1. 

5.3.1 MPC of a discrete time state-space Model 

The first application is an unconstrained MPC problem (Pistikopoulos, et al., 2002; 

Kouramas, et al., 2011) with the same formulations as Eq.(5.1) and Eq.(5.2), considering the 

state space model in Eq.(5.8). 
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 𝑥(𝑡 + 1) =  [
0.732 −0.0861
0.1722 0.9909

] 𝑥(𝑡) + [
0.0609
0.0064

] 𝑢(𝑡), −2 ≤ 𝑢(𝑡) ≤ 2 (5.8) 

Over an expected domain [-2: 2, -2:2] of the state variables (inputs) 𝑥1, 𝑥2, a sampling 

plan of 150 values is designed ([𝑥1, 𝑥2]150), and the open loop optimal control problem is 

solved 150 times (requiring a CPU time of 2.7 s) over one sampling period (for simplicity), in 

order to obtain the optimal objective and control values (output variables) [𝑗∗, 𝑢∗]150. After 

that, two MPMs are fitted: 𝑗̂∗ = 𝑓0(𝑥1, 𝑥2), 𝑢̂
∗ = 𝑓1(𝑥1, 𝑥2), each one to predict each output 

variable as a function of the initial state variables. The MPMs validation is carried out using a 

different input-output validation data set ([𝑥1𝑣 , 𝑥2𝑣]400, ([𝐽𝑣
∗, 𝑢𝑣

∗]400), generated in the same 

way (requiring a CPU time of 5.3 𝑠). The two MPMs are then harnessed to predict the 

outputs[𝑗𝑣̂
∗ , 𝑢̂𝑣

∗]400, which are then compared with the corresponding real ones [𝐽𝑣
∗, 𝑢𝑣

∗]400 

obtained from the real open loop optimal control problem (the Root Mean Square Error 

(RMSE) is calculated as the accuracy measure).  

                       

Figure 5.1. Open loop behavior of the optimal objective (a) and control (b) obtained from 

the OK-based MPMs (right) and the MPC (left).  

Figure 5.1 shows the accuracy of the MPMs of the objective (Figure 5.1-(a) right) and 

the optimal control (Figure 5.1-(b) right) compared to the exact ones obtained by the MPC 

scheme (Figure 5.1-(a),(b) left). Table 5.1 shows the MPMs fitting and the 

prediction/validation CPU times, and additionally the validation RMSE. It is clear that the 

three modeling techniques achieve high accuracy.   

(b) 

(a) 
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Figure 5.2. Closed loop behavior of the OK-based MPMs compared to MPC. 

After the validation of the MPMs, they are ready for the online application, so they are 

employed to predict the closed loop control action of the system via recursive interpolation; at 

each sampling period, the initial state variables values are used as the inputs for the MPMs 

interpolation. Figure 5.2 shows that the closed loop control of the MPMs (red dotted line) is 

too close to the real closed loop control (black solid line) obtained from solving the MPC 

optimization problem, resulting in approximately the same system state behavior (see also 

Table 5.2). But more importantly, the MPMs determine the online closed loop control behavior 

in a very small time, compared with the one obtained by the MPC problem online solution 

(Table 5.2), besides that the OK estimated error can provide an uncertainty measure (cyan 

dotted line) about the prediction, which is very useful to evaluate the confidence about the 

control action.  

5.3.2 MPC of a stirred tank reactor 

The second application (Tenny & Rawlings, 2004) corresponds to a continuously stirred 

tank reactor in which the irreversible reactions 𝐴 → 𝐵 → 𝐶 are taking place, where, 𝐶𝐴, 𝐶𝐵  and 

𝑇 represent the concentrations of 𝐴, 𝐵 (states) and the reactor temperature (manipulated 

variable) in the process model (Eq.(5.9)). The feed to the reactor is pure 𝐴, and the maximum 

conversion to 𝐵 is desired. 𝐴 mismatch between the model and the plant exists, as their 

activation energy values are slightly different, which makes their maximum yield of B different 

too (0.670 𝑚𝑜𝑙/𝐿 for the model, and 0.654 𝑚𝑜𝑙/𝐿 for the plant). The plant is to be operated 

at its point of maximum yield. Therefore, the output set point in the target calculation is defined 

as the maximum yield of the model. Traditional multiparametric MPC tools cannot be applied 

directly to this type of problem, since the process model is nonlinear differential and requires 

initial steps of model order reduction and approximation to obtain a discrete time model. 
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𝐶̇𝐴 =
𝐹

𝑉
(𝑐𝐴𝑓 − 𝑐𝐴) − 𝑘1𝑐𝐴 𝑒

−
𝐸1
𝑅𝑇 , 

  𝐶̇𝐵  = 𝑘1𝑐𝐴 𝑒
−
𝐸1
𝑅𝑇 − 𝑘2𝑐𝐵 𝑒

−
𝐸2
𝑅𝑇 −

𝐹

𝑉
𝑐𝐵 

(5.9) 

     

 

       
Figure 5.3 Validation of the open loop behavior of the OK MPMs compared to real 

MPC. 

The methodology is applied in the same procedure: over an expected domain [0: 1, 0: 1] of the 

state variables [𝐶𝐴, 𝐶𝐵], a sampling plan is designed [𝐶𝐴, 𝐶𝐵]65, and the open loop optimal 

control problem is solved (65 times, requiring a CPU time of 2.8 𝑠) to obtain the optimal 

objective and control values [𝑗∗, 𝑇∗]65. After that, two MPMs are fitted: 𝑗̂∗ = 𝑓0(𝐶𝐴, 𝐶𝐵), 𝑇̂
∗ =

𝑓1(𝐶𝐴, 𝐶𝐵). A different input-output data set ([𝐶𝐴𝑣 , 𝐶𝐵𝑣]400, [ 𝑗𝑣
∗, 𝑇𝑣

∗]400) is generated (11 𝑠 of  

CPU time was required) and used to validate the MPMs: the two MPMs are harnessed to 

predict the outputs [𝑇̂𝑣
∗, 𝑗𝑣̂
∗]400 using the corresponding inputs [𝐶𝐴𝑣 , 𝐶𝐵𝑣]400, the predicted 

outputs are then compared with the corresponding real outputs [ 𝑗𝑣
∗, 𝑇𝑣

∗]400 obtained from the 

real open loop control problem solution.  

Figure 5.3 shows the high accuracy of the predicted optimal objective (a) and the 

predicted optimal control strategy (b) using the MPMs, compared to the optimized ones (see 

also Table 5.1). Then these MPMs can be used online to estimate the closed loop optimal 

control with very high accuracy.  Figure 5.4 shows how the closed loop control proposed by 

the MPMs (red dotted line), and the resulting system states, are very close to the optimal closed 

loop control strategy (black solid line) obtained by solving the MPC problem. 

(a) 

(b) 



 

Chapter 5: Data-Driven Explicit MPC of Chemical Processes 113 

                                 

Figure 5.4. Online closed loop behavior of the OK MPMs compared to MPC 

Table 5.2 shows that the proposed method achieves a huge saving in the required 

computational effort ranging between 78% to 99%. Additionally, the results in Table 5.2 

illustrate that the methodology advantages increase as the complexity/nonlinearity of the 

process model increases. 

Table 5.1. Offline results: training and validation CPU times, and validation RMSE. 

Example MPM CPU Time (sec)* Validation RMSE 

Fitting Prediction  
OK ANN SVR OK ANN SVR OK ANN SVR 

 

1 

J 
5.30 2.50 0.06 0.30 5.00 0.28 

0.002 0.009 0.090 

u1 0.060 0.050 0.088 

 

2 

J 
0.80 2.30 0.14 0.14 4.90 0.28 

0.009 0.031 3.760 

u1 0.001 0.031 0.113 
                                             (*)Intel core (TM) i7-4790 CPU@ 3.6 GHz, 16 GB RAM. 

 

Table 5.2. Online results: RMSE of the MPMs, and CPU times of MPC and DBMP-MPC.  

On another side, the OK was able to achieve the highest accuracy in both applications 

(see Table 5.1). The SVR shows the least accuracy, but it requires the least computational 

effort for fitting, as the nature of the optimization problem solved for tuning its parameters is 

quite easy: unconstrained quadratic programming problem (one global optima). On the 

contrary, the optimization problem solved to adjust the OK (maximize the likelihood) or the 

Example MPMs RMSE Time per sampling period Time saved (%) 

u x1 x2 MPMs MPC  

 

1 

OK 0.03200 0.001800 0.003000 0.00029 0.0170 98.30 

ANN 0.03600 0.002600 0.007000 0.00361 78.75 

SVR 0.05200 0.003600 0.002500 0.00028 98.38 

 

2 

OK 0.00020 0.000001 0.000001 0.00125 0.0300 99.58 

ANN 0.02340 0.000230 0.000090 0.00758 97.47 

SVR 0.05760 0.057630 0.057630 0.00141 99.53 
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ANN (minimize the error function) parameters is relatively complex: nonlinear optimization 

problem with multiple local optima. Regarding the interpolation/prediction times (see Table 

5.1), the ANN requires the higher computational effort as the prediction is accomplished via 

series of multiplications of several weight matrices (depending on the number of layers and 

neurons), additional to the transfer function calculation at each node/neuron output. However, 

the interpolation via OK and SVR is relatively simple and similar as well: calculations of a 

simple weight vector, between the new point to be interpolated and the training data, see 

Eq.(5.5) and Eq.(5.7).  

5.4 CONCLUSIONS 

A DBMP-MPC is presented, which includes different techniques as sampling design for 

computer experiments, state of art optimization techniques and machine learning techniques. 

Its application results to benchmark problems show that the method has achieved the two 

initially stated goals. The method can approximate optimal control laws using relatively small 

number of training data, showing very high accuracy and robustness overpassing complex 

mathematical formulations of the traditional multiparametric MPC. More importantly, a 

significant difference with the results of the standard multiparametric MPC technique appears; 

in all the tested cases a single relation was enough to correctly reproduce the optimal control 

law over the whole initial state variables domain. So, it is not required to use several 

mathematical relations, each for a certain partition of the initial state variables space. Among 

the different tested techniques, kriging shows higher accuracy and higher flexibility and 

robustness to tune its parameters. Additionally, it provides error estimations which can be used 

as an uncertainty measure of the proposed control actions. The work is now progressing to 

develop advanced sampling techniques -during the offline MPMs construction-as the 

sequential sampling-, in order to be able to address more complex case studies. 
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Chapter 6: Dynamic Surrogate 

Modelling for 

Multistep-Ahead 

Prediction of 

Multivariate 

Nonlinear Chemical 

Processes 

This work proposes a methodology for multivariate dynamic modeling and multistep-

ahead prediction of nonlinear systems using surrogate models for the application to nonlinear 

chemical processes. The methodology provides a systematic and robust procedure for the 

development of data-driven dynamic models capable of predicting the process outputs over 

long time horizons. It is based on using surrogate models to construct several Nonlinear 

AutoRegressive eXogenous models (NARX), each one approximating the future behavior of 

one process output as a function of the current and previous process inputs and outputs. The 

developed dynamic models are employed in a recursive schema to predict the process future 

outputs over several time steps (multistep-ahead prediction). The methodology is able to 

manage two different scenarios: 1) one in which a set of input-output signals collected from 

the process is only available for training, and 2) another in which a mathematical model of the 

process is available and can be used to generate specific datasets for training. With respect to 

the latter, the proposed methodology includes a specific procedure for the selection of training 

data in dynamic modeling based on Design Of Computer Experiment (DOCE) techniques. The 

proposed methodology is applied to case studies from the process industry presented in the 

literature. The results show very high prediction accuracies over long time horizons. Also, 

thanks to the flexibility, robustness and computational efficiency of surrogate modeling, the 

methodology allows dealing with a wide range of situations, which would be difficult to 

address using first principle models. 

6.1 INTRODUCTION 

In the process engineering area, a reliable dynamic model of the process is necessary 

for its optimal operation, control and management. In particular, a dynamic model able to 

accurately predict the future values of the process outputs in reasonable computational times 
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is the base of most online applications, e.g. Real Time Optimization (RTO), Model Predictive 

Control (MPC), Dynamic Data Reconciliations, Fault Detection and Diagnosis. 

Although analytical models (hereafter also called “First Principle Models” – FPMs) are 

available to describe the dynamics of many chemical processes, practical limitations often 

hinder their usage, especially in applications, such as RTO and MPC, which require the online 

repetitive solution of an optimization problem which, in itself, requires the evaluation of the 

model several times (Nagy, 2007; Caballero & Grossmann, 2008). This may result in an 

unaffordable computational effort, especially for large-scale or fast dynamic systems (Ažman 

& Kocijan, 2011), due to the complexity of the solution procedure –e.g. iterative schemes 

and/or integration techniques- used to solve such mathematical models (Davis & Ierapetritou, 

2007; Davis & Ierapetritou, 2008).   

Furthermore, the available FPMs are often developed under the assumption of favorable 

(ideal) working conditions, which are typically not encountered at the industrial scale, that is 

characterized by uncontrolled disturbances, different operating conditions, continuously 

varying parameters (e.g. heat transfer coefficients) and, possibly, different  units/reactors 

geometries, etc. (Qin, 2012; Kajero, et al., 2017). Also, since process FPMs typically do not 

take into account the physical characteristics of mechanical and electrical components, 

connections and piping, which remarkably influence the real process, the accuracy of the 

FPMs predictions are reduced (Ali, et al., 2015). In other cases, the development of a detailed 

analytical FPM is conceptually difficult or even unaffordable, due to the limited knowledge 

about the nonlinear behaviors and complex phenomena characterizing the process, such as 

reaction kinetics, thermo-dynamic relationships, heat and mass transfer, etc. (Bradford, et al., 

2018; Ali, et al., 2015). In these situations, on another hand, real data collected from the 

process are available, but there is no support of a well-founded conceptual/mathematical 

model for describing the process based on first principles (Nelles, 2001; Boukouvala, et al., 

2011; Baraldi, et al., 2013).  

In all these cases, system identification or data-driven dynamic modeling methods can 

be used to construct empirical dynamic models for predicting the future values of the process 

outputs (Nelles, 2001). Many methods have been developed for linear dynamic system 

modelling, but their application to nonlinear processes provides unsatisfactory results (Nagy, 

2007). This is due to the fact that linear approximations severely simplify the nonlinear 

behavior of the process, resulting in poor prediction accuracy (Nagy, 2007; Amozeghar & 

Khorasani, 2016). Advanced data-driven nonlinear modelling techniques, such as Artificial 

Neural Networks (ANNs) (e.g. radial basis-ANNs, recurrent-ANNs etc.) (Tsai & Chang, 1995; 

Adebiyi & Corripio, 2003), Fuzzy models (Nelles, 2001), Neuro-fuzzy models (Banu & 

Umab, 2011) and recently Gaussian Process (GP) models (Zhou, et al., 2015; Mattosa, et al., 
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2017), have been widely proposed to capture nonlinear dynamic relations between the 

nonlinear process inputs and outputs. These techniques, which are also referred to as 

metamodels or surrogate models, establish nonlinear relationships between inputs and outputs 

variables, using input-output training data, which can be either generated from complex FPM 

simulations or measured from the real process (Kajero, et al., 2017).  

6.1.1 Review on data-driven dynamic modelling in chemical processes  

ANNs have become a popular choice for nonlinear dynamic modeling and identification 

(Adebiyi & Corripio, 2003; Himmelblau, 2000; Poznyak, et al., 2019), due to their universal 

approximation abilities (Dua, 2010; Amozeghar & Khorasani, 2016). Although they exhibit 

very powerful capabilities, their usage has two main practical drawbacks: i) large effort is 

required to select a good network structure (numbers of layers and the included neurons) and 

configurations (type of activation function, training algorithm, cost/error function, etc.) 

(Kajero, et al., 2017), and ii) the curse of dimensionality, i.e. the increase of the number of 

inputs causes the growth of the number of the ANN neurons, and consequently, of the number 

of parameters (weights and biases) to be set: then, the quantity of data needed for training the 

ANN grows exponentially with the number of inputs (Ažman & Kocijan, 2011).  

Although different algorithms have been developed to automatically select ANNs 

structures and configurations (Dua, 2010), their application requires additional computational 

effort, since they solve a complex optimization problem, in which the network configuration 

and its parameters are treated as decision variables to be tuned to minimize an objective 

associated to the output prediction error (Ludermir, et al., 2006; Benardos & Vosniako, 2007; 

Leperi, et al., 2019). As a result, their application to cases involving high dimensional systems, 

large-scale databases and/or online fitting and updating has been quite limited. 

In spite of these difficulties, a significant number of successful applications of ANNs 

for dynamic modelling are reported over a wide spectrum of fields (Nelles, 2001; Masters, 

1993; Himmelblau, 2000; Rigamonti, et al., 2018). Especially in the process engineering area, 

ANNs have been extensively used as Nonlinear AutoRegressive eXogenous (NARX) models 

for dynamic system identification of both univariate (single output) (Godarzi, et al., 2014; 

Nagy, 2007; Panapakidis & Dagoumas, 2016; Sadeghassadi, et al., 2018; Xu, et al., 2014; 

Poznyak, et al., 2019) and multivariate (multi-output) problems  (Adebiyi & Corripio, 2003; 

Caccavale, et al., 2010; Banu & Umab, 2011; Li & Li, 2015; Amozeghar & Khorasani, 2016; 

Lee, et al., 2018). In the literature, multivariate systems are usually approximated either using 

a multi-output ANN model or an ensemble of single-output ANNs models, where, in the latter 

case, a set of independent single-output ANN models, each approximating one output as a 

function of the inputs, is built.   
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On the other hand, Gaussian Process (GP) models have been proposed in the Bayesian 

inference area by O’Hagan et al. (1978; 1999) for the approximation of complex static 

computer codes, representing a generic class of non-parametric probabilistic models. GP 

models have shown promising accuracy and ability to reduce the previously mentioned 

problems of ANNs (Ažman & Kocijan, 2011; Deisenroth, et al., 2009). This is due to their 

nonparametric nature: they do not approximate the system by fitting the parameters of a 

selected structure or functional shape but, instead, they search for relationships among the 

measured data through a correlation function/model. Therefore, the number of the metamodel 

parameters to be identified is significantly low compared to other parametric models (e.g. 

ANNs models) and, consequently, the size of the required set of training data is significantly 

reduced, too (Azman & Kocijan, 2007). Besides, GP models offer high approximation 

accuracy, tuning flexibility and ability to estimate a measure of uncertainty about the 

prediction in the form of prediction error or variance (Boukouvala, et al., 2011; Rasmussen & 

Williams, 2006).  

Thanks to the pioneer works of Murray-Smith, et al. (2003), Kocijan, et al. (2005) 

Girard, et al. (2002), and Rasmussen & Deisenroth (2008), among others, GP models have 

gained a wide popularity for dynamic modeling and identification of nonlinear systems, and 

shown performances comparable and competitive to other state-of-art techniques. The main 

limitation of the GP models is the large computational cost for optimizing/fitting their 

parameters, especially when considering a large amount of training data and/or addressing a 

high dimensional system (Ažman & Kocijan, 2011). With respect to the problem of 

performing multi-step ahead predictions, some works have been able to successfully propagate 

the GP estimated error when it is used in recursive prediction (Girard, et al., 2002). But, again, 

the computational cost associated to the uncertainty propagation is still significant. 

The Ordinary Kriging (OK) techniques can be considered specific form of GP models 

(Boukouvala, et al., 2011) and share similar  advantages, such as accurate approximation 

capabilities, required small number of training data, flexible tuning of the model parameters 

(Forrester, et al., 2008) and ability of estimating a prediction error. Also, alike to the GP model, 

OK suffers from the high computational training effort. Thanks to the works of Davis and 

Ierapetritou (2007) and Caballero and Grossmann (2008), the OK surrogate models has been 

introduced to the chemical process engineering area and, since this time, it is attracting 

increasing attention for surrogate-based optimization and analysis of complex nonlinear static 

processes (Kajero, et al., 2017; Wang & Ierapetritou, 2017; Beck, et al., 2015; Egea, et al., 

2007).  
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Nowadays, the GP and OK models have been proposed for univariate dynamic 

modeling of nonlinear chemical processes  (Ažman & Kocijan, 2011; Zhou, et al., 2015), 

where they are employed as NARX models to estimate the future value - over one step-ahead 

- of an output of interest, as a function of the process current inputs and output values. The 

developed model is, then, used to perform multistep-ahead prediction via recursive calculation, 

where the predicted output at the current time is fed-back to the model as a part of its input for 

the next prediction step.  

To the best of the authors’ knowledge, few works have extended the GP and OK 

capabilities to multivariate dynamic modeling of chemical processes: Hernandez and Grover 

(2010) developed a method for multivariate dynamic modeling based on a set of GP models, 

each one representing a discrete-time state space model predicting the time evolution of one 

process output; they also proposed a sequential sampling technique to select the training data 

to be used for training the GP-based dynamic models; the method was successfully applied to 

approximate a stochastic zero-input/multi-output dynamic model describing  nanoparticle size 

evolution. In an area more related to process and system engineering, Boukouvala et al. (2011) 

proposed a similar approach based on a set of kriging metamodels, each one predicting the 

future values of one process output through recursive prediction over several time steps, and 

applied it to the simulation of a powder-roller-compaction pharmaceutical process. The 

approach has shown good accuracy in the identification of the dynamic behavior of the process 

outputs (ribbons density and roll gap) that are influenced by three control inputs (roll speed, 

roll pressure, feed speed); they proposed the use of a full factorial design for selecting the 

initial training dataset, and a sequential procedure to update the trained models during their 

online usage by adding to the initial training set the predicted instances for which the 

summation of the OKs estimated variances/errors was lower than a specific threshold.   

However, these two works share some common limitation: 1) they  have been validated 

considering processes characterized by very smooth/steady dynamics, without any influencing 

control/external inputs (Hernandez & Grover, 2010) or with very simple changes in them 

(Boukouvala, et al., 2011), 2) both works provided simple Markovian state-space models and 

they have not illustrated the ability of their methodologies to develop dynamic models with 

delayed/lagged inputs, 3) they presumed that a FPM is always available, which is combined 

with DOCE methods to produce optimized data for training, and 4) the robustness of their 

methodologies to handle different cases studies, and their flexibility to integrate different 

metamodel types are not explored. Finally, the methodology proposed by Boukouvala et al. 

(2011) has not been proven to provide one compact set of models able to simulate the future 

behavior of the system outputs corresponding to simultaneous changes in the process inputs, 
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since, in this method, a new set of dynamic models should be fitted several times, each time 

to approximate the system behavior corresponding to a simple step change in one of the control 

input variables, keeping the rest of the control input variables fixed.  

The aforementioned limitations obstacle the use of these methodologies for the dynamic 

modelling of real processes or systems, where remarkable challenges are posed: i) in real 

processes,  many external inputs exist, which control or disturb the process causing significant 

changes in its outputs behavior, ii) incorporating lags or delays in the model inputs is a basic 

requirement in data-driven dynamic modeling, in order to capture the possible delayed 

behavior of the process itself and/or to compensate for missing repressors of the model 

(Espinosa & Vandewalle, 1998a; Espinosa & Vandewalle, 1998b), iii) in many practical 

situations, data collected from the process can be the only source of information available (i.e. 

no FPM). 

More recently, Bradford et al., 2018 presented a method for multivariate dynamic 

modeling that relies on a set of GP-based NARX models. The method was applied to model 

the multivariate behavior of a real Algal lutein production batch process that involves two 

control inputs and three process outputs.  Although the method provided good prediction 

accuracy, the addressed case study is characterized by simple dynamics, since one control 

input is kept constant in all the different batches, while the second is allowed to vary from one 

batch to another, but its value within the same batch is kept constant. Hence, practically, the 

control inputs became constant parameters and, consequently, the set of dynamic models are 

validated by predicting the simple behavior of zero-input batches. Also, when the validated 

set of GP dynamic models is further used for dynamic optimization, the predicted optimal 

“offline” profiles of the process outputs are not compared to those of the real batch system.   

This Chapter presents a generic multivariate dynamic modeling and multi-step ahead 

prediction methodology. The methodology is based on training a set of OK-based NARX 

models; each model predicts the upcoming value of one process output over a constant time 

step as a function of the preceding values of the process inputs and outputs, over a suitable 

time lag. The obtained models represent discrete state-space models (also called single-step or 

one-step ahead simulators) that mimic the incremental evolution of the process outputs. The 

trained dynamic models interact through a recursive scheme to predict the system outputs over 

several time steps (multistep-ahead prediction),  

The main contributions of this work are:  

1) the development of a novel, generic and robust methodology for multivariate dynamic 

modeling and multi-step ahead prediction of complex nonlinear chemical processes 
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using surrogate models. The properties of generality and robustness are fundamental 

in order to address the main limitations currently attributed to the existing approaches 

in terms of a) the ability to provide accurate data-driven dynamic models for general 

multi-input/multi-output processes that may involve complex dynamic behaviors 

(complex control input profiles, delayed behaviors, etc.), b) the ability to simulate the 

process future outputs over large time horizons, c) the capability to accommodate 

different types of data modeling techniques and d) the ability of handling different 

situations, either when a limited set of input-output data signals are available, or when 

the training data can be optimally generated using a FPM and design for computer 

experiment techniques.  

2) the introduction of the use of OK models for the multivariate dynamic modeling in the 

chemical process field in a robust and flexible manner, and the comparison of its 

capabilities with most popular techniques (i.e. ANNs).  

3) the development of a novel Design Of Computer Experiments procedure for dynamic 

modeling, considering the purpose of the simplification and complexity reduction of 

expensive dynamic FPMs. 

The rest of the Chapter is structured as follows. Section 6.2 gives a general view over 

the considered DOCE and surrogate modeling techniques (i.e.: OK and ANN), including their 

mathematical/statistical basis and implementation details. Section 6.3 presents the proposed 

dynamic metamodeling method, and the new procedure proposed for the design of computer 

experiments in the case of dynamic modelling. Section 6.4 shows the method application to 

three different case studies (different natures, i.e. continuous and batch and, different areas, 

i.e. biochemical, industrial and petrochemical) and discusses the obtained results. Finally, 

Section 6.5 concludes the work, stresses its advantages and discusses its limitations, which 

would be further investigated in future works.   

6.2 SURROGATE MODELS BUILDING TECHNIQUES 

Surrogate models are data-driven techniques which are used to build empirical relations 

describing the mapping between input and response variable(s) (Forrester, et al., 2008; Wang, 

et al., 2019). Although this definition can involve a very wide range of data-based models, 

including the simplest types (e.g.: linear or polynomial regressions), the term is usually 

associated to nonlinear multivariate models, like ANNs, GPs, OK, Support Vector Regression  

(SVR), etc. (Fang, et al., 2005). Surrogate models can be trained using real data collected by 

sensors from the physical systems or using simulation data generated from a complex FPMs, 

for the purpose of its simplification. The following subsections review most common DOCE 
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techniques used for training data selection in cases where a FPM is available, highlight the 

basics of the two common nonlinear data-driven modeling techniques, namely OK and ANNs, 

which have been used in this work, and review basics of common DOCE methods.   

6.2.1 Design of computer experiments 

Design Of Computer Experiments (DOCE) techniques (Jurecka, 2007) aim at selecting 

the best combinations of the input variables values -within specific domain or bounds- that can 

be used for the simulation of the complex FPM providing the most representative 

information/knowledge about the output behavior (Garud, et al., 2017). The set of 

combinations of the input variables values is called “sampling plan”, [𝑋]𝑛, where 𝑛 is the 

number of sample points or instances. The objective of these techniques is to collect as much 

information as possible about the output behavior over all the local sub-regions in the input 

space. Therefore, DOCE techniques consider samples selection criteria including, mainly, the 

space-fillingness and the stratification of the sampling plan (Forrester, et al., 2008; Garud, et 

al., 2017), and both lead to increase the uniformity of the sampling plan over all the local sub-

regions of the input space to be covered. More details about DOCE techniques can be found 

in Section 2.1. 

Many DOCE techniques have been developed in the literature, basically, for “static” 

surrogate modeling. This work considers the Hammersley design technique, due to its ability 

to provide sampling plans of good uniformity and stratification properties with very low 

computational cost (Garud, et al., 2017; Ibrahim, et al., 2019). In each case, the optimal 

selection of the number of sample points (𝑛) required to capture the output behavior depends 

on the input dimensionality of the surrogate model (k), the size of the input space and, also, on 

the intricacy and nonlinearity of the considered output behavior. In general, as 𝑛 increases, the 

effort (time/cost) required not only for executing the experiments, but also to design the 

sampling plan and for the surrogate model fitting increases. Then, the modeler should carefully 

balance the trade-offs between the required surrogate model accuracy, the computational cost 

and the eventual application benefits of the surrogate model. 

6.2.2 Ordinary kriging  

Given a set of n input-output training data [𝑥𝑖 , 𝑤𝑖], 𝑖 = 1,2, . . 𝑛, 𝑥 ∈ 𝑅𝑘 , 𝑤 ∈ 𝑅, the OK 

assumes the predictor 𝑤̂(𝑥) =  𝜇𝑜𝑘  + 𝑍(𝑥), where the constant term 𝜇𝑜𝑘 represents the main 

trend of the system to be approximated, and 𝑍(𝑥) is a deviation from that trend. The deviation 

𝑍(𝑥) is modeled as a stochastic Gaussian process with expected value 𝐸(𝑍(𝑥)) =  0, and a 

covariance between two residuals 𝑐𝑜𝑣(𝑍(𝑥𝑖), 𝑍(𝑥𝑗)) that only depends on their corresponding 

inputs 𝑥𝑖, 𝑥𝑗. Thus it can be calculated as: 𝑐𝑜𝑣 (𝑍(𝑥𝑖), 𝑍(𝑥𝑗)) = 𝜎𝑜𝑘
2  𝑅(𝑥𝑖, 𝑥𝑗), being 𝜎𝑜𝑘

2  the 
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process variance and 𝑅 (𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−∑ 𝜉𝑙|𝑥𝑖,𝑙−𝑥𝑗,𝑙−|
𝑝𝑙𝑘

𝑙=1 ) + 𝛿𝑖𝑗 𝜆 a correlation function, 

where, 𝜉𝑙 , 𝑙 = 1,…𝑘 are the model hyper-parameters, 𝛿𝑖𝑗 is the Kronecker delta, 𝑝𝑙 are 

smoothing parameters and λ is a regularization constant that enables the kriging predictor to 

regress noisy data (Azman & Kocijan, 2007).  The kriging predictor and its estimated error are 

given by Eq.(6.1) and Eq.(6.2), respectively, where (𝑥∗) is a new interpolating point (different 

from the training data). In Eq.(6.1), [𝑟]𝑛×1 is the vector of correlations between the point to 

be predicted 𝑥∗ and the original training data points and calculated as 𝑅(𝑥𝑖, 𝑥
∗), [𝑅]𝑛×𝑛 is the 

correlation matrix between the training inputs, [𝑊]𝑛×1 is the vector of the training outputs and 

[𝟏]𝑛×1 is the identity vector. 

 𝑤̂(𝑥∗) = 𝜇𝑜𝑘 + 𝑟
𝑇𝑅−1(𝑊 − 𝟏𝜇𝑜𝑘) (6.1) 

 𝑠̂2(𝑥∗) = 𝜎𝑜𝑘
2 (1 + 𝜆 − 𝑟𝑇𝑅−1𝑟 + (1 − 𝟏𝑇𝑅−1𝑟)−1 (𝟏𝑇𝑅−1𝟏)⁄ ) (6.2) 

This work considers the OK implementation developed by Forrester, et al.,  (2008), 

because of its high efficiency and applicability. Besides, the “fmincon” algorithm included in 

the Matlab optimization toolbox is used for the maximization (nonlinear optimization) of the 

concentrated likelihood function, see Section 2.2.1. The work, also, considers another software 

implementation for the GP model construction: the GP-Regression (GPR) algorithm based on 

the function “fitrgp” included in the Matlab statistics and machine learning toolbox. Here, it 

is worthy to emphasize that the objective of this work is not to compare different specific 

implementations of the GP models but to explore the robustness and flexibility of the proposed 

methodology by handling different data-based modelling techniques and software. 

6.2.3 Artificial Neural Networks 

The ANNs are very well-known efficient machine learning models, which are widely 

used for data-driven modelling of nonlinear systems. In this work, the Matlab ANN toolbox 

and the function “feedforwardnet” have been used to create multilayer feedforward ANNs. In 

each of the following application cases, the number of layers, number of neurons and the 

training algorithm were selected based on a trial and error procedure in order to balance the 

ANN structure simplicity and its prediction accuracy. More details about ANNs can be found 

in Section 2.2.2. 

6.3 DYNAMIC MODELLING BASED ON SURROGATE MODELS 

This part presents i) an overview on the most common approaches considered in the 

literature (Conti, et al., 2009; Ažman & Kocijan, 2011) for the univariate dynamic modeling 

and multi-step ahead prediction using black box models (Section 6.3.1), ii) the proposed 

methodology for multivariate dynamic modeling and multi-step ahead prediction of chemical 
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processes based on surrogate models (Section 6.3.2), iii) the proposed DOCE procedure for 

training data generation in dynamic modeling in cases when the purpose is the simplification 

and complexity reduction of expensive dynamic FPMs (Section 6.3.3) and iv) the procedure 

for training data generation that mimics practical situations where a FPM of the process is not 

available and, only input-output signals, measured and collected from the process by the 

physical sensors network are available (Section 6.3.4).   

6.3.1 Univariate dynamic modelling and multi-step ahead prediction 

Let us consider a univariate dynamic system or process, characterized by Du control 

inputs 𝑼 ∈ 𝑅𝐷𝑢 and one process output 𝒀 ∈ 𝑅, where both can be real data collected from 

actual plant or simulated data generated by a FPM over discrete, successive and uniform time 

intervals or sampling periods ∆𝑡 = (𝑡𝑖 − 𝑡𝑖−1 ): [𝑡0, 𝑡1, 𝑡2, 𝑡3, . . . 𝑡𝑖, … 𝑡𝑓−1, 𝑡𝑓], where 𝑡0 and 𝑡𝑓 

are the first and the final time instances, respectively. Hence, the measured control input and 

process output signals become 𝑼 = [𝑈0, 𝑈1, 𝑈2, . . . 𝑈𝑖 , …𝑈𝑓−1, 𝑈𝑓] and 𝒀 =

[𝑌1, 𝑌2, 𝑌3, . . . 𝑌𝑖 , …𝑌𝑓−1, 𝑌𝑓]. 

Using this input-output training information, it is required to construct a data-driven or 

black-box model that is able to forecast the future values of the output over q time steps-ahead 

from the current generic time instance 𝑡, i.e., [𝑌̂𝑡+1, 𝑌̂𝑡+2, … 𝑌̂𝑡+𝑞]. For this purpose, three main 

dynamic modeling approaches have been usually considered (Conti, et al., 2009; Ažman & 

Kocijan, 2011):  

i) The first approach is the “Multi-Output” (MO) emulator that considers a q-output 

data-driven model, where each output of this model corresponds to the process 

output value at the j-th time step, 𝑗 = 1,2, 𝑞. In this case, the model input, x, must 

include the previously measured values of the process outputs and the 

corresponding control inputs over a specific time lag L, i.e. [𝑌̂𝑡+1, 𝑌̂𝑡+2, … 𝑌̂𝑡+𝑞] =

₣(𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿, 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿), where ₣ is the multi-output black-box model. 

In this case, a multi-output surrogate model must be used, e.g. multi-output ANN.    

ii) A second alternative is the “Ensemble of Single-Output” models (ESO) approach 

in which q single-output black box models are considered: each model predicts 

the single output at each of the q required times, hence 𝑌̂𝑡+1 =

𝕗1(𝑌𝑡, 𝑌𝑡−1, . . 𝑌𝑡−𝐿 , 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿),…,  𝑌̂𝑡+𝑞 =

𝕗𝑞(𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿, 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿),   where 𝕗1,… 𝕗𝑞  are single-output black-box 

models. 
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iii) The third approach is the recursive single-step emulator, which employs one black 

box model to approximate the evolution of the process output over a single time 

increment or step ∆𝑡, such that  𝑌̂𝑡+1 = 𝑓(𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿, 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿).  

The single-step emulator approximates the future value of the process output as a 

function of the process previous control input and output values, considering a specific time 

lag L. However, it is used in a recursive way for forecasting the output value along 𝑞 intervals 

of time. Hence, at every prediction step, the forecasted value of the process output is sent back 

to the model acting as a part of its input for the next time step prediction, jointly with the new 

values of the process control inputs.  

The single-step emulator is also known as autoregressive model, and it has proved to be 

much more efficient than the two previous approaches, because of its capability to predict the 

output variable values over any number of time steps through a recursive procedure. This 

capability is not obtainable when using the other two approaches (MO and ESO), because they 

are designed and trained to predict the output value over a fixed or rigid number of time steps. 

Thus, if it is required to change the prediction horizon (i.e. number of prediction time steps), 

a completely new model (MO case) or set of models (ESO case) must be constructed. 

Additionally, the single step emulator approach is simpler/more practical in terms of the 

computational effort required for its implementation, since only one single-output model is 

constructed and used, instead of the construction/training of a MO model or ESO models. And, 

finally, it is worth noting that, when considering a multivariate (i.e. multi-output) process, the 

effort and time required for the construction of data-driven dynamic models based on the MO 

or ESO approaches will be dramatically magnified. For all the aforementioned reasons, the 

single-step emulator scheme is considered in this study.  

6.3.2 Proposed multivariate dynamic modelling and multi-step ahead prediction 

methodology 

Assuming a general multivariate dynamic process involving the inputs 𝑼 ∈ 𝑅𝐷𝑢 and 

outputs 𝒀 ∈ 𝑅𝐷𝑦, and keeping the same assumption that all the process inputs and outputs are 

either measured (real process) or simulated (computer code) at constant, successive and equal 

time intervals [𝑡0, 𝑡1, 𝑡2, 𝑡3, . . . 𝑡𝑖, … 𝑡𝑓−1, 𝑡𝑓], the proposed method is based on the 

construction/training of a set of 𝐷𝑦 NARX models (see Eqs.(6.3)) in order to capture the 

incremental evolution of the process outputs,  𝑌̂𝑡+1, over one step-ahead time interval. Thus, 

each model 𝑓𝑗, 𝑗 = 1,2,… 𝐷𝑦 approximates the future value of the j-th process output at the 

next time step 𝑡 + 1, i.e.  𝑦̂𝑗,𝑡+1, as a function of the previous process inputs and outputs, 

considering a specific time delay L. In this way, any possible correlation between the 
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upcoming value of a certain output 𝑦̂𝑗,𝑡+1 and any of the process previous input and output can 

be captured.  

 

𝑦̂1,𝑡+1  = 𝑓1 [𝑌̂𝑡 , . . ,  𝑌̂𝑡−𝐿 ,  𝑈𝑡 , . . , 𝑈𝑡−𝐿],

⋮
𝑦̂𝑗,𝑡+1  = 𝑓𝑗 [𝑌̂𝑡, . . ,  𝑌̂𝑡−𝐿 ,  𝑈𝑡 , . . , 𝑈𝑡−𝐿],

⋮
𝑦̂𝐷𝑦,𝑡+1  = 𝑓𝐷𝑦  [𝑌̂𝑡, . . ,  𝑌̂𝑡−𝐿,  𝑈𝑡 , . . , 𝑈𝑡−𝐿] }

 
 

 
 

 (6.3) 

After the models group (in Eq.(6.3)) is trained, they are used to forecast the evolution 

of the process outputs over longer period of time associated to a “totally new” and known 

profile of the process control input 𝑈𝑣 = [𝑈𝑡0𝑣
𝑣 , 𝑈𝑡1𝑣

𝑣 … .𝑈𝑡𝑖
𝑣
𝑣 … . . 𝑈𝑡𝑓−1

𝑣
𝑣 , 𝑈𝑡𝑓

𝑣
𝑣 ] that affects the 

process over the “totally new” time sequence [𝑡0
𝑣 , 𝑡1

𝑣 , … . , 𝑡𝑖
𝑣 , … . . 𝑡𝑓−1

𝑣 , 𝑡𝑓
𝑣] (the superscript v 

refers to “validation”), i.e. performing multi-step ahead prediction. The latter goal is achieved 

through recursive prediction, assuming that the first 𝐿 values of the outputs are 

known, ( 𝑌𝑡0𝑣
𝑣 , …  𝑌𝑡𝑛𝐿𝑣

𝑣 ), 𝑛𝐿 = 𝐿. The recursive prediction starts using the known inputs 𝑥1
𝑣 =

[ 𝑌𝑡0𝑣
𝑣 , …  𝑌𝑡𝑛𝐿

𝑣
𝑣 ,  𝑈𝑡0𝑣

𝑣 , …  𝑈𝑡𝑛𝐿
𝑣
𝑣  ] to predict the process output values at the next time step, 𝑌̂𝑡𝑛𝐿+1

𝑣
𝑣 . 

These predicted output values are used, jointly with the new control input values, as the new 

models input, 𝑥2
𝑣 = [𝑌𝑡1𝑣

𝑣 , …  𝑌𝑡𝑛𝐿𝑣
𝑣 ,  𝑌̂𝑡𝑛𝐿+1𝑣

𝑣 ,  𝑈𝑡1𝑣
𝑣 , …  𝑈𝑡𝑛𝐿𝑣

𝑣 ,  𝑈𝑡𝑛𝐿+1𝑣
𝑣 ], for the next time step, so as to 

predict the output values,  𝑌̂𝑡𝑛𝐿+2
𝑣
𝑣 . The recursive prediction continues until the last time step, at 

which the prediction input 𝑥𝑛𝑣
𝑣 = [ 𝑌̂𝑡𝑓−1−𝐿

𝑣
𝑣 , . . .  𝑌̂𝑡𝑓−1

𝑣
𝑣 , 𝑈𝑡𝑓−1−𝐿

𝑣
𝑣 , … , 𝑈𝑡𝑓−1

𝑣
𝑣 ] are used to predict the 

output 𝑌̂𝑡𝑓
𝑣
𝑣 . Notice that 𝑛𝑣 = 𝑡𝑓

𝑣 − 𝑛𝐿 is the number of prediction steps or times recursively 

performed by the models in order to predict the future outputs behavior of the validation 

signals.   

The dynamic models performance can be assessed considering an accuracy metric (e.g., 

Normalized Root Mean Square Error – NRMSE - Eq.(6.5)) that computes the difference 

between the exact and the predicted values of each of the 𝐷𝑦 output signals, respectively, 

  𝑦𝑗,𝑡𝑖
𝑣

𝑣 ∈  𝑌𝑡𝑖
𝑣
𝑣   and  𝑦̂𝑗,𝑡𝑖

𝑣
𝑣 ∈   𝑌̂𝑡𝑖

𝑣
𝑣  , 𝑖 = 𝑛𝐿 + 1, . . . , 𝑓, 𝑗 = 1,2,…𝐷𝑦. 

     𝑅𝑀𝑆𝐸𝑗 = √
1

𝑛𝑣
∑ ( 𝑦𝑗,𝑡𝑖

𝑣
𝑣 −  𝑦̂𝑗,𝑡𝑖

𝑣
𝑣 )2

𝑓
𝑖=𝑛𝐿+1   (6.4) 

 𝑁𝑅𝑀𝑆𝐸𝑗 = 100
𝑅𝑀𝑆𝐸𝑗

(𝑚𝑎𝑥 (𝑦𝑗,𝑡𝑖
𝑣

𝑣 ) − min ( 𝑦𝑗,𝑡𝑖
𝑣

𝑣 ))
 (6.5) 

It is worth to highlight that the mathematical structure/design of the proposed modeling 

approach (Eq.(6.3))  does not directly or explicitly assume any correlation between the outputs 

of the single-step emulator [𝑦̂1,𝑡+1, … 𝑦̂𝑗,𝑡+1, 𝑦̂𝐷𝑦,𝑡+1], since each dynamic model is constructed 
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and trained independently. However, the information about the eventual correlations among 

the dynamic model outputs is introduced by two mechanisms: i) the fact that each model output 

𝑦̂𝑗,𝑡+1 is computed as a function of the whole set of former values of the process state (inputs 

and outputs), and ii) the recursive nature of the prediction scheme (Figure 6.1), which makes 

each dynamic model fj to contribute with its prediction 𝑦̂1,𝑡+1 to the overall prediction of the 

process output 𝑌̂𝑡+1 = [𝑦̂1,𝑡+1, 𝑦̂2,𝑡+1, … , 𝑦̂𝑗,𝑡+1, … , 𝑦̂𝐷𝑦,𝑡+1] which, at the end, will constitute 

the prediction/model input at the next time step. In other words, the output of each dynamic 

model at the current time step depends on the delayed outputs predicted by other dynamic 

metamodels at previous time steps, interacting among them during the recursive calculations, 

so every sole model benefits from the knowledge supplied by the other models in former time 

steps.  

On another hand, it is unlikely that each process output will be dependent on the 

complete set of the process input and output variables -including their lagged values-, see 

Eq.(6.3). But, since there is no prior knowledge about the process behavior, it is useful to allow 

for all the possible correlations between the process variables, and to let the training task 

extract the knowledge about the strength of the allowed correlations. However, this may be 

also a limitation when a large-scale process is considered, since this will increase the input 

dimensionality, complicate the model structure and, consequently, increase the number of 

model parameters. Therefore, this might pose many challenges to the training task: not only 

the computational effort will increase, but also a higher number of training data will be 

required in order to face the tuning of the additional model parameters. In this case, previously 

to the modeling task, an initial analysis can be carried out in order to reduce the models input 

dimensionality. Although this is not in the scope of this work, it is worth to mention that this 

can be achieved either based on the knowledge about the system variables and their relations, 

or using computational techniques as cross-correlation, sensitivity analysis, feature selection 

and extraction techniques, etc.  
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Figure 6.1. Scheme of the proposed multistep-ahead prediction using the fitted multivariate 

dynamic models. 

Another factor to be selected at this stage is the model lag/order, 𝐿, which will affect the 

resulting model quality and complexity (and, obviously, will also determine the effort required 

for model training/tuning). Several methods can be found in the literature for making this 

selection. For linear dynamic models, the cross-correlation between the model output and input 

has been used (Nelles, 2001; Espinosa & Vandewalle, 1998b). This technique exploits the 

linear relationships assumed by choosing a linear model. Thus, the cross-correlation between 

the model output, 𝑌𝑡+1, and the input including different delayed information, 

𝑌𝑡 , 𝑌𝑡−1, … , 𝑌𝑡−𝐿 , 𝑈𝑡 , 𝑈𝑡−1, … , 𝑈𝑡−𝐿, would give an indication about the delay within which the 

model input mostly influences its output. Similarly, the correlation between the model inputs 

and the model prediction error, 𝑒 =  𝑌𝑡+1 − 𝑌̂𝑡+1,   based on a test set, can reveal the missing 

regressors, i.e. delayed inputs. Another technique that has been commonly used for the 

inference/selection of the time lag associated to a linear dynamic model is based on the use of 

Akanke’s information criterion. More details can be found in (Espinosa & Vandewalle, 

1998a).  

For nonlinear dynamic models, a common technique for the estimation of a suitable lag 

is the calculation of the Lipschitz index from the training data only without any dependence 

or assumption about the model nature (Espinosa & Vandewalle, 1998b; Cho, et al., 2007; 

Suykens, et al., 1996). The method is based on the continuity property of the nonlinear 

functions that represent input-output models of continuous dynamic systems. The Lipschitz 

Dynamic metamodels 
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index is computed considering different lags or delays starting from 𝐿 = 0, and the best 

embedding dimension is obtained when the index stops decreasing. 

Most of the techniques proposed for estimating the data-driven dynamic models order 

consider only univariate cases. When dealing with multivariate dynamic models, defining a 

specific different lag for each input with respect to each output is an optimal, but utopic, 

objective, and to the authors’ knowledge, a way for achieving this is not yet available in the 

literature because it is practically/numerically complicated, mainly due to the eventual 

combined interactions. A practical and simple approach is to consider a model structure with 

the same lag for all the input variables (Nagy, 2007; Azman & Kocijan, 2007; Bradford, et al., 

2018), see Eq.(6.3). Although this may seem restrictive, as each process variable, in fact, will 

present a different physical behavior, the idea is that the importance of the lagged inputs will 

be adjusted/balanced during the model training according to their significance with respect to 

the model output, through the manipulation of the values of the weights and biases in the ANN 

model, or of the parameters 𝜉𝑙 in the OK model. 

 In this work, a simple and common try and cut procedure is considered for this 

selection. So, different sets of multivariate dynamic models are built with different lag values, 

and the lag that achieves the minimum prediction error of all the 𝐷𝑦 models - over a new test 

set - is selected.   

6.3.3 DOCE for dynamic modelling 

As mentioned in Section 6.2.1, different techniques for the DOCE have been commonly 

used for determining the most convenient training set in the case of data-driven modeling with 

the purpose of approximating static complex computer models. But these techniques are rarely 

applied to situations where the purpose is the approximation of “dynamic” computer models. 

As indicated before, the few methods already proposed for DOCE in dynamic modeling 

(Hernandez & Grover, 2010; Boukouvala, et al., 2011) show different limitations: 1) their 

capabilities to handle general dynamic processes that often include control inputs and lagged 

behavior are not illustrated, 2) their robustness to handle different case studies, and their 

flexibility to integrate different metamodel types are not explored, 3) these sampling 

procedures are based on the estimated prediction error of the GP/OK metamodels and, 

therefore, their application with important metamodelling techniques that do not possess this 

characteristic (e.g. ANN, SVR, etc.) is not feasible, and 4) the sequential nature of these 

sampling procedure would easily lead to a high computational burden, especially if it is applied 

to cases characterized by high dimensionality (e.g., several control inputs and process outputs 

with lagged behavior) and/or include high numbers of training data, see Section 6.2.1 . 
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In this section, a DOCE is proposed for data-driven multivariate dynamic modeling of 

complex processes, assuming the availability of a reliable and accurate FPM. The method is 

based on the use of Hammersley sampling design, which is the one selected in this work, as 

previously justified. However, any efficient alternative can be also used (e.g. optimized Latin 

hypercube designs, etc.). The proposed procedure is aimed at alleviating the limitations just 

mentioned at the beginning of this section. 

As an important principle of the proposed sampling procedure, it must be taken into 

account the different nature of the dynamic model (or metamodel) inputs, when compared to 

steady-state model/metamodel inputs. Since the inputs of a steady-state model are assumed to 

be independent (e.g. temperature, pressure, volume etc.), the selection of their values 

combinations [𝑋]𝑛 within their specific bounds is a straightforward task. However, in the case 

of a dynamic model (Eq.(6.3)), the model inputs 𝑥 = [𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿,  𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿] can 

not be considered independent since, in general, 𝑥 must include some model inputs 

(𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿) which actually correspond to previous outputs (over a certain time lag). Thus, 

the DOCE technique can freely select any possible combination of values for the process 

control inputs and their delayed counterparts, 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿 , since these values correspond 

to external actions applied to the system and, as a consequence, they can be considered neither 

correlated nor dependent over time (i.e. 𝑈𝑡−1 does not depend on 𝑈𝑡−2). But, in contrast, it is 

not possible to freely select any arbitrary combination of values for the process outputs and 

their delayed counterparts, 𝑌𝑡 , 𝑌𝑡−1, . .  𝑌𝑡−𝐿, because the process outputs may be correlated 

among others (i.e., 𝑦𝑗 depends on 𝑦𝑗′ , 𝑗 𝑎𝑛𝑑 𝑗
′, = 1,2, . . 𝐷𝑦 , 𝑗 ≠ 𝑗

′), they will probably depend 

on their delayed values (i.e. 𝑦𝑗,𝑡−1 will probably depend on 𝑦𝑗,𝑡−2) and, of course, they will 

depend on the process inputs and their lagged values also (i.e. 𝑌𝑡−𝑖 = 𝑓(𝑌𝑡−(𝑖+1), 𝑈𝑡−(𝑖+1), … ).  

Thus, 𝑌𝑡−𝐿 are the only output values that can be freely selected, since they are the initial values 

in the generated profile.  

So, the proposed procedure harnesses the Hammersley technique to design a sampling 

plan that includes n combinations of values of independent models 

inputs, [𝑌𝑡−𝐿,  𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿], over the expected operational domain of the process 

variables [𝑈𝑡 𝑚𝑖𝑛 ∶   𝑈𝑡 𝑚𝑎𝑥,  𝑌𝑡 𝑚𝑖𝑛 ∶   𝑌𝑡 𝑚𝑎𝑥]. Each combination (row of the sampling plan 

matrix) consists of the 𝐷𝑦  initial process output values, 𝑌𝑡−𝐿, besides the 𝐷𝑢 × (𝐿 + 1) values 

of the process control inputs and their lagged counterparts, [𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿]. The rest of the 

dynamic metamodel inputs, [𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿+1], together with the dynamic metamodel output, 

𝑌𝑡+1, are obtained by the simulation of the process model considering the initial process 

outputs, 𝑌𝑡−𝐿, and the control input profile value, [𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿], previously selected by the 

DOCE technique (Figure 6.2). Finally, the input–output training data, [𝑋]𝑛 =
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[𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿 ,  𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿]𝑛, [𝑊]𝑛 = [𝑌𝑡+1]𝑛, are used to train the set of 𝐷𝑦 dynamic 

metamodels (Eq.(6.3)).  

                           

Figure 6.2. Scheme of the proposed dynamic DOCE. 

The sampling procedure becomes simpler when no lag exists (i.e. Markovian process, 

L=0,). Hence, the DOCE technique is used to directly select/design a sampling plan [𝑋]𝑛 =

[𝑌𝑡 ,  𝑈𝑡]𝑛. After that, n simulation runs are carried out using the process FPM in order to obtain 

the dynamic model output values [𝑊]𝑛 = [𝑌𝑡+1]𝑛. 

6.3.4 Random input-output signals 

In common practical situations, a FPM of the process may not be available and, 

consequently, the selection of the best training data through the application of the proposed 

DOCE procedure is not possible. Therefore, this work also considers cases where only input-

output signals, measured and collected from the process by the physical sensors network are 

available. We mimic this situation through considering the process FPM as a real plant that 

generates these input-output data signals.   

The first step in the generation of input-output signals is the synthesis of a piecewise-

constant set of the process control inputs 𝑈𝑡 ∈ 𝑅
𝐷𝑢, which are composed by random step 

changes of the control input values along the time within the allowable control limits 𝑈𝑡 𝑚𝑖𝑛 ∶

  𝑈𝑡 𝑚𝑎𝑥. Each step change is expected to hold for some intervals, ∆𝑡, to catch the entire 

dynamic conduct of the process outputs corresponding to this step change. At the same time, 

the number of sampling periods over which the control input values hold should not be large, 

in order to avoid gathering redundant information about the steady-state mode of the process. 

The synthesized control input signals are, then, simulated by the process plant (i.e., model) in 

order to obtain the corresponding process output signals, to which Gaussian noise is added to 

emulate the sensors noise. The initial values of the process output signals are selected to be in 

the middle of their estimated variability domain, in order to maximize the likelihood that 

during their evolution they could span the sub-regions of the whole domain. These input-

output signals, 𝑈𝑡 , 𝑌𝑡, are used to train the system of dynamic surrogate models considering a 

suitable lag, L.  
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Usually, the domain within which the process control inputs are allowed to be 

manipulated 𝑈𝑡 𝑚𝑖𝑛 ∶   𝑈𝑡 𝑚𝑎𝑥  is known from the process operational specification. However, 

the variation domain of the process outputs [ 𝑌𝑡 𝑚𝑖𝑛 ∶   𝑌𝑡 𝑚𝑎𝑥] should be also checked in front 

of the recorded process historical data. In the case of the considered simulated case studies, 

the domain  𝑌𝑡 𝑚𝑖𝑛 ∶   𝑌𝑡 𝑚𝑎𝑥 has been estimated through several trial and error simulations, 

using control profiles within the specified limits of the process control inputs. Also, it is worth 

to mention that the time step length  ∆𝑡 is conditioned by the subsequent application of the 

multivariate dynamic models. For example, if these dynamic models are to be employed for 

monitoring, fault detection and diagnosis, or model predictive control applications,  ∆𝑡 will be 

the sampling period over which the process must be supervised or controlled. In this work, we 

have considered the same ∆𝑡 previously used in the literature for each one of the addressed 

case studies. 

6.4 APPLICATIONS 

In this section, three benchmark models from the chemical process engineering 

literature are used to evaluate the proposed modeling methodology, including the sampling 

procedure, and to compare different metamodels types. These benchmarks are representative 

examples of nonlinear dynamic systems from three different sub-domains, namely, 

biochemical, industrial and petrochemical engineering. 

The first case involves the model of a continuous bioreactor system that has been 

considered in different dynamic modeling and control studies, e.g., for data-driven univariate 

dynamic modeling (Azman & Kocijan, 2007), Quasi-sliding mode control (Cho, et al., 2007), 

and for the design of nonlinear observers (Gauthier, et al., 1992).  The second application 

considers the model of a three-tank system that has been commonly used as a benchmark in 

different monitoring, control and fault detection and diagnosis studies (Frank & Ding, 1997; 

Kouadri, et al., 2012; Sarailo, et al., 2015; Patton, et al., 1994). The third case study involves 

the model for a shale-oil pyrolysis batch system that has been frequently addressed as an 

example of batch processes dynamic optimization (Wen & Yen, 1977; Carrasco & Banga, 

1997). 

As previously mentioned, in all these case studies two application scenarios will be 

considered: the first one would mimic a realistic situation where only input-output signals are 

available for training the models (see Section 6.3.4) and, thus, the FPM is used as the process 

plant from which these signals are collected. The second scenario assumes that the FPM is 

available for the application of the proposed DOCE procedure in order to optimally select the 

training data (see Section 6.3.3). Finally, in both scenarios, the trained dynamic models are 

tested with a set of totally new data, independently generated in the form of input-output 
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signals. The dynamic models are harnessed for forecasting the process output values, given 

the values of the validation control inputs, by interacting in a coordinated way through the 

recursive time integration process proposed (Section 6.3.2). Finally, the NRMSE (Eq.(6.5)) is 

calculated between the predicted outputs and the corresponding known real values. 

6.4.1 Bioreactor 

A bioreactor consists in a system inside which microorganisms grow by feeding on the 

substrate in order to produce the desired product. The difficulties to model the biochemical 

dynamics associated to the involved processes, usually depending on many factors and 

conditions not easy to control, convert such systems in challenging situations where to test 

nonlinear dynamic modeling methods and their applications (Gauthier, et al., 1992; Cho, et 

al., 2007; Azman & Kocijan, 2007). A second-order discrete dynamic model of the bioreactor 

is considered to describe the evolution of the concentrations of the microorganisms, 𝐶𝑚, and 

the substrate, 𝐶𝑠, inside the reactor, which are affected by the reactor outlet flowrate, 𝑈, as 

detailed by Eqs.(6.6): 

 

𝐶𝑚(𝑡+1) = 𝐶𝑚(𝑡) + 0.5 
𝐶𝑚(𝑡) 𝐶𝑠(𝑡)

𝐶𝑚𝑡 +  𝐶𝑠(𝑡)
𝐶 − 0.5 𝑈(𝑡)𝐶𝑚(𝑡)

𝐶𝑠(𝑡+1) =  𝐶𝑠(𝑡) − 0.5 
𝐶𝑚(𝑡) 𝐶𝑠(𝑡)

𝐶𝑚(𝑡) +  𝐶𝑠(𝑡)
𝐶 − 0.5 𝑈(𝑡)𝐶𝑠(𝑡) + 0.05 𝑈(𝑡)

}
 
 

 
 

 (6.6) 

The objective is building a group of data-driven models (Eqs.(6.7)), which are able to 

accurately approximate the bioreactor output evolution, [𝐶𝑚(𝑡+1), 𝐶𝑠(𝑡+1)]: 

 
𝐶̂𝑚(𝑡+1) = 𝑓1(𝐶𝑚(𝑡), … 𝐶𝑚(𝑡−𝐿),  𝐶𝑠(𝑡)… ,  𝐶𝑠(𝑡−𝐿), 𝑈(𝑡), … , 𝑈(𝑡−𝐿))

𝐶̂𝑠(𝑡+1)  = 𝑓2(𝐶𝑚(𝑡), …𝐶𝑚(𝑡−𝐿),  𝐶𝑠(𝑡), … ,  𝐶𝑠(𝑡−𝐿), 𝑈(𝑡), … , 𝑈(𝑡−𝐿))
} (6.7) 

As previously mentioned, the situation where only signals measured from the process 

plant are available [𝑈(𝑡), 𝐶𝑚(𝑡), 𝐶𝑠(𝑡)] is first considered for model training. Thus, a flowrate 

signal, 𝑈(𝑡), is synthesized by arbitrarily changing its amplitude along the time, where every 

change lasts over 20 sampling intervals (Figure 6.3-left). The amplitude values of the step 

changes are randomly chosen within the known operating range [0:0.7] of the outlet flowrate, 

𝑈(𝑡). 
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Figure 6.3. Training signal (bioreactor). 

This outlet flowrate signal is introduced to the process FPM (Eq.(6.6)) in order to obtain 

the corresponding process output signals: concentrations of microorganisms, 𝐶𝑚(𝑡), and 

substrate, 𝐶𝑠(𝑡). To these calculated values, 𝐶𝑚(𝑡), 𝐶𝑠(𝑡), a Gaussian noise 𝒩(𝜇 = 0, 𝜎 =

0.0025%) is added to emulate the kind of information which would be available in this case 

(Figure 6.3-(middle, right)), where 𝜎 is a percentage of the variability domain ([0: 0.15, 

0:0.15]) of these variables, 𝐶𝑚(𝑡), 𝐶𝑠(𝑡) . As previously mentioned in Section 6.3.4, the 

variation ranges of the output, 𝐶𝑚(𝑡) and 𝐶𝑠(𝑡) are estimated by carrying out different trial and 

error simulations using random values of the outlet flowrate, whose variation range is already 

specified, [0:0.7]. Besides, the initial values of the substrate and microorganisms 

concentrations, [𝐶𝑚(0),𝐶𝑠(0)], are selected to be in the middle of their variation ranges. 

In parallel, a second situation where the training data is generated by means of the 

proposed sampling procedure for the dynamic modeling has also been considered. Hence, the 

Hammersley technique is used to sample over the expected variation domain of the dynamic 

models input, [0: 0.15, 0: 0.15, 0: 0.7], so as to generate a sampling plan which includes 300 

sample points (input values combinations), as described in Section 6.3.3. It should be noted 

that a different sampling plan is designed for each one of the different lag values considered, 

since a different lag implies a different number of the dynamic model inputs (i.e. model 

delayed input). 

The procedure application becomes straightforward when no lag is considered (𝐿 = 0): 

the DOCE is used to design a sampling plan over the dynamic models input 

variables [𝐶𝑚(𝑡), 𝐶𝑠(𝑡), 𝑈(𝑡)] and, then, the FPM is used to simulate the model output 

[𝐶𝑚(𝑡+1), 𝐶𝑠(𝑡+1)]; after that, the input-output training data matrices, [𝐶𝑚(𝑡), 𝐶𝑠(𝑡), 𝑈(𝑡)]300 −

[𝐶𝑚(𝑡+1), 𝐶𝑠(𝑡+1)]300, are used to train the models.  However, if a lag is considered, just for 

example, 𝐿 = 1, the Hammersley technique used to design a sampling plan should only 

consider the independent inputs of the dynamic model, [𝐶𝑚(𝑡−1), 𝐶𝑠(𝑡−1), 𝑈(𝑡−1), 𝑈(𝑡)], and the 

FPM is employed to simulate the dependent inputs, [𝐶𝑚(𝑡), 𝐶𝑠(𝑡)], of the dynamic model and 

also the model output, [𝐶𝑚(𝑡+1), 𝐶𝑠(𝑡+1)], as described in Section 6.3.3. Similarly, in this case, 

a Gaussian noise with the same mean and standard deviation is added to the all process output 
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data. Finally, the input-output training data 

matrices, [𝐶𝑚(𝑡), 𝐶𝑚(𝑡−1), 𝐶𝑠(𝑡), 𝐶𝑠(𝑡−1), 𝑈(𝑡), 𝑈(𝑡−1) ]300 − [𝐶𝑚(𝑡), 𝐶𝑠(𝑡)]300, are obtained. 

Both training datasets (input-output signals or DOCE) have been used to train different 

groups of the multivariate models in Eqs.(6.7), considering the OK and ANNs techniques and 

various lags (𝐿 = 0, 1, 2 𝑜𝑟 3).  

In case of the ANN, its structure has been selected by a search procedure, trying to 

balance the accuracy and simplicity of the resulting network. Specifically, for any of the 

models in Eqs.(6.7), four different ANNs-based dynamic models, corresponding to four 

different lags (𝐿 = 0, 1, 2 𝑜𝑟 3), have been fitted. Since in each case the number of the model 

inputs will be different, a single fixed ANN structure is not likely to be suitable for all these 

different dynamic models. In this case, a two layer ANN is used, where the number of neurons 

in each layer equals to double of the number of input variables of the dynamic model. Besides, 

a log-sigmoid transfer function is used for the hidden layer neurons, whereas a linear transfer 

function is used for the output layer. The network training is trained by means of Bayesian 

regularization backpropagation algorithm, which updates the weights and biases according to 

Levenberg-Marquardt optimization. This training algorithm usually provides the ANNs with 

good generalization properties. Again, it is worthy to stress that the selection of the ANN 

structure and configurations is a time and effort consuming task, even when addressing a low 

dimensional problem, as the case in hand. This challenge will be magnified as the problem 

dimensionality and/or the number of training data increases.  

Regarding the OK-based models, the “fmincon” algorithm for nonlinear optimization of 

the Matlab optimization toolbox is used to tune the parameters [ξl, λ] (see Section 6.2.2). 

Unlike the ANN, all the OK parameters are automatically optimized. However, a main 

obstacle which complicates the fitting of the OK is the choice of proper initial values necessary 

for starting the optimization search: a derivative-based optimization algorithm is relatively fast 

but it can, readily, end up at a local optima, because of the intricacy of the likelihood function. 

In this work, few optimization runs (each departing from distinct initial values of the 

parameters) are considered, to ensure effective training of the OK. Although derivative-free 

optimizers (e.g., genetic algorithms, swarm intelligence-based algorithms) guarantee global 

search, their search mechanism may demand a huge computational burden considering the 

expensive evaluation of the likelihood function (see Section 6.2.2). For assessing the trained 

models performance, two validation signals have been randomly generated in the same 

previously mentioned manner (Section 6.3.4), where the amplitude value of the control 

scenarios (reactor outlet flowrate, 𝑈) has been randomly selected within the specified domain 

[0:0.7]. However, the time length over which each amplitude value holds has been selected 
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differently for each control scenario. The objective is to assess the accuracy and robustness of 

the multivariate metamodels under different operational conditions and dynamics (Figure 6.5-

top solid black lines) and also to avoid any correspondence with the training conditions. 

The dynamic metamodels are harnessed to emulate the evolution of the microorganisms 

concentration, 𝐶𝑚(𝑡+1), and substrate concentration, 𝐶𝑠(𝑡+1) , along the entire time period (five 

hundred steps) of each of the two validation scenarios of the output flowrate, 𝑈, (Figure 6.5) 

through the recursive procedure illustrated in Section 6.3.2. Table 6.1 and Figure 6.4 illustrate 

the NRMSE of the multivariate dynamic models  𝐶̂𝑚(𝑡+1) and 𝐶̂𝑠(𝑡+1) when they are trained 

using the considered techniques (i.e.: ANN, OK), lags (𝐿=0, 1, 2, 3) and procedures for training 

data selection (input-output signals, DOCE). 

Table 6.1. NRMSE (%) of the multivariate dynamic metamodels (bioreactor). 

Training 

data type 

Lag 𝑪̂𝒎(𝒕+𝟏)  𝑪̂𝒔(𝒕+𝟏) Average  

(𝑪̂𝒎(𝒕+𝟏)& 𝑪̂𝒔(𝒕+𝟏)) 

OK ANN OK ANN OK ANN 

Signal  

0 4.0 2.9 3.1 3.0 3.5 3.0 

1 3.4 4.6 3.0 2.7 3.2 3.6 

2 2.9 3.7 3.0 3.0 2.9 3.4 

3 2.9 4.4 3.0 2.9 3.0 3.6 

 
𝝁 = 𝟑. 𝟐, 

𝝈 = 𝟎. 𝟐 

𝝁 = 𝟑. 𝟒, 

𝝈 = 𝟎. 𝟑 

DOCE 

0 2.3 1.2 0.4 0.3 1.4 0.8 

1 0.7 2.1 0.8 2.3 0.7 2.2 

2 1.6 1.2 0.4 0.3 1.0 0.8 

3 2.3 1.0 0.9 0.4 1.6 0.7 

 
𝝁 = 𝟏. 𝟐, 

𝝈 = 𝟎. 𝟒 

𝝁 = 𝟏. 𝟏, 

𝝈 = 𝟎. 𝟕 
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Figure 6.4. NRMSE of the multi-step-ahead predictions of the output variables (𝐶𝑚, 𝐶𝑠) of 

the Bioreactor system versus the considered lag of the dynamic models: (a,b,c) training 

using signals data and (d,e,f) training using DOCE data. 

Notice that, generally, all the models trained with the different training data types 

(signals, DOCE), techniques (ANN, OK) and lags (𝐿 = 0,1,2,3) achieved very good 

performances. In particular, the DOCE further enhances the performance of the multivariate 

dynamic models, even when only 300 data points have been used for training in these cases, 

in comparison to the 500 training points used in the cases using input-output signals, (see the 

overall mean, 𝜇, and standard of deviation , 𝜎 , of the different sets of models built with 

different lags). Also, it is worth to highlight that, regarding the signals-based training 

procedure, the set of multivariate dynamic models based on ANNs with 𝐿=0, and OK with 

𝐿=2 achieved the best performances, respectively NRMSE of 3.0 %, and 2.9 %. In relation to 

the DOCE training procedure, dynamic models based on ANNs with 𝐿= 3, and OK with 𝐿= 1 

provided the best performance, respectively NRMSE of 0.7 %, and 0.7 %. 
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Figure 6.5. Multi-step ahead prediction of the Bioreactor output variables (𝐶𝑚, 𝐶𝑠) in two 

validation scenarios (left and right), predicted by different sets of OK-based dynamic 

models, trained using different data selection procedures and considering different lags of 

the dynamic models: solid black line is the exact behavior of the process, blue and brown 

dashed lines are, respectively, the best and worst predictions of the metamodels set trained 

using input-output signals and the green and red dashed lines are, respectively, the best and 

worst predictions of the metamodels set trained using the data selected by the proposed 

DOCE. 

Figure 6.5 shows the step-ahead predictions of the microorganisms, 𝐶𝑚(𝑡+1), and 

substrate, 𝐶𝑠(𝑡+1) , concentrations, corresponding to two validation scenarios by means of the 

multivariate dynamic models set based on the OK technique. The Figure compares -in terms 

of the prediction accuracy, see Table 6.1- the best and the worst models in both training cases: 

using the input-output signal (blue and brown dashed lines for worst and best respectively) 

and the DOCE (red and green dashed lines for worst and best, respectively). Similar Figures 

for the dynamic models based on ANN techniques are illustrated in the Appendix. These 

Figures not only emphasize the very high prediction accuracy of the best multivariate 

metamodels, but also show that even in the worst modeling trials (e.g.: blue and red dotted 

lines) quite satisfactory levels of accuracy are achieved for both the OK and ANN cases. The 

step-ahead prediction of the multivariate dynamic models set based on the ANN technique are 

shown in Figure 6.6.  

Azman et al. (2007) have used the same case study to illustrate their proposal of 

univariate dynamic modeling based on GP models, where a single-input-single-output system, 

𝑈 − 𝐶𝑚, was considered. They used an input-output training signal of 602 samples with added 

normal random noise to the 𝐶𝑚 data (𝜇 = 0, 𝜎 = 0.0025), and a random validation scenario 
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that involves 60 time steps. In their work, a dynamic model with a lag 𝐿 = 2 achieved the best 

prediction accuracy, with a RMSE of 3.44×10-3. Using the methodology proposed in this work, 

extended prediction capabilities have been achieved with equal (600 samples for the input-

output signals training set) or much less (300 samples for the DOCE training set) training data 

sizes, since all the system outputs (𝐶𝑚 and 𝐶𝑠) have been considered and equivalent RMSEs 

have been achieved (3% NRMSE that corresponds to a RMSE of 3.1×10-3) over much larger 

prediction horizons (500 steps-ahead predictions). 

 

Figure 6.6. Multistep-ahead prediction of the bioreactor output variables (𝐶𝑚, 𝐶𝑠) in two 

validation scenarios (left and right) predicted by different sets of ANN-based dynamic 

models, trained using different data selection procedures, and considering different lags of 

the dynamic models: the solid black line is the exact behavior of the process, blue and brown 

dashed lines are the best and worst predictions of the metamodel set trained using 

input−output signals, respectively, and the green and red dashed lines are the best and worst 

predictions of the metamodel set trained using the data selected by the proposed DOCE, 

respectively. 

 

Figure 6.7. Computational times required for the: (a) generation of the training datasets 

using the proposed DOCE, (b) training of the multivariate dynamic models sets based on OK 

and ANN and for (c) the prediction of the testing scenarios of the bioreactor case study. 

(Intel core i5-6200U CPU@2.3GHz.) 
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Figure 6.7-(a) shows that the computational effort required for training data generation 

using the proposed DOCE procedure increases with the considered lags in the dynamic 

models: larger considered lags require more integration steps in the analytical model 

simulation runs (Section 6.3.3 and Figure 6.2). Notice that the time required for generating the 

other type of training data (signals) is not illustrated since it is independent of the model lag 

(an average of 5.6 sec for generating input-output signal as in Figure 6.3).  Figure 6.7-(b) 

shows that, generally, 1) the increase in the dynamic models lag escalates the training time 

due to the increase in dynamic model input dimensions and, consequently, the growth of the 

model parameters to be identified, 2) the training time of the OK-based dynamic models 

(mauve color) are much larger compared with that of the ANN (green color), because of the 

very expensive evaluation of the objective function involved in its parameters tuning task (the 

concentrated likelihood function that implies the expensive calculations of the inverse of the 

correlation matrix [𝑅]𝑛×𝑛, where 𝑛 is the number of the training data). Nevertheless, given the 

fact that the training of the multivariate dynamic models is aimed to be an offline task, the 

high training computational efforts should be affordable. Figure 6.7-(c) shows the average 

prediction time of the entire 500 steps ahead of one testing profile (as in Figure 6.5) required 

by the multivariate dynamic models sets with different lags. Notice that the prediction time of 

the OK-based models are much lower than those of the ANN-based ones, due to the very 

simple predictor formula associated to OK (see Eq.(6.1)) compared with the relatively 

expensive calculations required by the ANN to perform the prediction, which include 

multiplication of matrices of inputs and weights at each layer besides processing their result 

by the transfer functions. In general, the prediction time is quite suitable for any online 

application, as one-step ahead prediction requires an order of magnitude of 10−3 sec in a 

simple Personal Computer. 

It is worth noticing that, in this case study, as well as in the next ones, the analysis of 

the computational time are perturbed by different uncontrolled uncertainties and randomness, 

which lead to some outliers and noise in the trends of the curves in Figure 6.7. These 

uncertainties include the random initial values of the parameters of the metamodels (OK and 

ANN), the possible change of the behavior of the objective function involved in the parameter 

tuning task with the increase of the model lags (i.e. increase in the model input dimensions) 

and, also, the online availability of the processors and RAM of the computer while performing 

the calculations. 

Finally, it should be emphasized that the performance of the proposed methodology in 

all cases will be affected by the general limitations and criticalities of any data-driven / 

machine-learning technique, including the one that refers to the size and the quality of the 
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training data: to ensure a satisfactory prediction accuracy level, sufficient number of training 

data should be available, including enough information about the different dynamic 

conditions/states/scenarios that the process will face. Also, the quality of the training data in 

terms of the measuring error/noise (unavoidable in real systems) is an important factor 

affecting the model performance, as the excess of noisy measurements could lead to poor 

model performance.  

Figure 6.8 shows two experiments that address the effects of the training dataset size 

and noise over the model prediction accuracy in this case, based on the OK model, trained 

with data generated via the DOCE procedure and considering lag =1 (best overall prediction 

accuracy in this case). Figure 6.8-(a) shows how the size of the training dataset (fixing the 

noise standard deviation to 0.0025%) affects the average prediction accuracies of the model. 

Considering the overall accuracy (black stars) the initial positive effect of increasing the size 

of the training dataset achieves an optimum situation and, from this point, an increase of the 

training data does not necessarily enhance further the accuracy (as usually happens with these 

techniques).  Figure 6.8-(b) shows how the noise/error in the data also affects the average 

prediction accuracy of the models (fixing the number of training data to 300, which was the 

best value for the nominal conditions, with a noise standard deviation of 0.0025%). The Figure 

also shows that the methodology behaves robust with respect to the change of the training 

dataset size and the noise. 

 

Figure 6.8. Effect of the training dataset size (a) and the amount of noise (b) on the 

performance of the multivariate dynamic models set based on the OK technique, trained by 

data selected via the DOCE procedure and considering lag=1. 

6.4.2 Three-tanks system 

The second application is based on the three-tank system illustrated in Figure 6.9. It is 

a well-known nonlinear process that has been commonly used as a benchmark in different 

monitoring, control and fault detection and diagnosis studies (Frank & Ding, 1997; Kouadri, 

et al., 2012; Sarailo, et al., 2015). Its popularity stems from the fact that it involves 
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characteristics of fluid distribution systems (tanks, pumps, and pipelines) often encountered in 

real plants (Patton, et al., 1994; Theilliol, et al., 2002), as cooling water circuits of distillation 

columns and feed water systems in power stations, etc.  

          

Figure 6.9. Schematic representation of the three-tanks benchmark system. 

 

 

𝐴
𝑑ℎ1
𝑑𝑡

=  −𝑎1 𝑠13 𝑠𝑔𝑛(ℎ1 − ℎ3 )√2𝑔|ℎ1 − ℎ3| + 𝑄1                                                  

𝐴
𝑑ℎ2
𝑑𝑡

=  𝑎3 𝑠23 𝑠𝑔𝑛(ℎ3 − ℎ2 )√2𝑔|ℎ3 − ℎ2|  − 𝑎2𝑠0√2𝑔ℎ2 + 𝑄2                      

𝐴
𝑑ℎ3
𝑑𝑡

=  𝑎1 𝑠13 𝑠𝑔𝑛(ℎ1 − ℎ3 )√2𝑔|ℎ1 − ℎ3| − 𝑎3𝑠23𝑠𝑔𝑛(ℎ3 − ℎ2)√2𝑔|ℎ3 − ℎ2|}
 
 

 
 

 (6.8) 

The system model (in Eqs.(6.8)) describes the dynamic relations among the levels of 

the tanks, ℎ1, ℎ2,ℎ3, (the process outputs) and the inlet flowrates, 𝑄1, 𝑄2, (the control input), 

whose limiting value is 0.005 𝑚3/𝑠 . The values of the cross section area of the tanks, A, the 

cross section areas of the connecting pipes 𝑠13, 𝑠23, 𝑠0, and the flow coefficients 𝑎1, 𝑎3, 𝑎0, 

can be found in (Theilliol, et al., 2002).  

A set of multivariate dynamic models is to be constructed, which describes the step-

ahead evolution of the tanks levels ℎ1(𝑡+1), ℎ2(𝑡+1), ℎ3(𝑡+1), see Eqs.(6.9). The same general 

procedure described in Section 6.3 and the application details illustrated in Section 6.4.1 are 

systematically followed in this case, too. 

 

ℎ̂1(𝑡+1) = 𝑓1(ℎ𝑖(𝑡), ℎ𝑖(𝑡−1), . . ℎ𝑖(𝑡−𝐿), 𝑄𝑗(𝑡) , 𝑄𝑗(𝑡−1), . . 𝑄𝑗(𝑡−𝐿))

ℎ̂2(𝑡+1) = 𝑓2(ℎ𝑖(𝑡), ℎ𝑖(𝑡−1), . . ℎ𝑖(𝑡−𝐿), 𝑄𝑗(𝑡) , 𝑄𝑗(𝑡−1), . . 𝑄𝑗(𝑡−𝐿))

ℎ̂3(𝑡+1) = 𝑓3(ℎ𝑖(𝑡), ℎ𝑖(𝑡−1), . . ℎ𝑖(𝑡−𝐿), 𝑄𝑗(𝑡) , 𝑄𝑗(𝑡−1), . . 𝑄𝑗(𝑡−𝐿))

where 𝑖 = 1,2,3, and  𝑗 = 1,2 }
 
 

 
 

 (6.9) 

The first training set is obtained by means of the generating input-output signals 

including 750 instances (Figure 6.10). Thus, piecewise constant signals of the fluid inlet 

flowrate, 𝑄1 𝑎𝑛𝑑 𝑄2, are composed, where the signal amplitude values are randomly selected 
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along the time in a constant piecewise manner within the ranges of [0.0: 0.005] 𝑚3/𝑠, and 

each amplitude change holds for 20 sampling periods. The corresponding output signals, ℎ1, ℎ2 

and ℎ3, are obtained by the process FPM simulation, where Gaussian noise of the same 

magnitude described in Section 6.4.1 is added to them. 

 

Figure 6.10. Input-output signal of the three-tanks system used for training the set of 

multivariate dynamic models. 

A second training set is again generated following the proposed dynamic DOCE 

procedure to include 300 samples over the expected variation domain [0: 0.8, 0: 0.8, 0: 0.8, 0: 

0.005, 0: 0.005] of the process variables, respectively, ℎ1, ℎ2 ℎ3, 𝑄1 and 𝑄2. Gaussian noise 

with the same mean and standard deviation is added to the process output data and, finally, the 

input-output training matrices are obtained, [ℎ𝑖(𝑡), … . , ℎ𝑖(𝑡−1),  𝑄𝑗(𝑡), … . , 𝑄𝑗(𝑡−1) ]300 −

[ℎ𝑖(𝑡+1)]300, 𝑖 = 1,2,3 and 𝑗 = 1,2. The set of dynamic models in 

Eq.(6.9), [ℎ̂1(𝑡+1), ℎ̂2(𝑡+1), ℎ̂3(𝑡+1)], is trained using each type of the training datasets, based 

on the different considered techniques (i.e. OK and ANNs) and different lags. The same setting 

and guidelines used in Section 6.4.1 for selecting the ANN structure, for customizing its 

configurations and for tuning the OK models are also considered here. 
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Table 6.2. NRMSE (%) of the multivariate dynamic metamodels (three-tanks). 

Training 

data type 
Lag 

𝒉̂𝟏(𝒕+𝟏)  𝒉̂𝟐(𝒕+𝟏)  𝒉̂𝟑(𝒕+𝟏)  Average 

(𝒉̂𝟏(𝒕+𝟏) , 𝒉̂𝟐(𝒕+𝟏) , 𝒉̂𝟑(𝒕+𝟏) ) 

OK ANN OK ANN OK ANN OK ANN 

Signal 

0 2.7 1.9 1.8 1.4 2.4 2.0 2.3 1.7 

1 6.6 2.1 2.9 1.9 5.1 2.2 4.9 2.0 

2 5.7 2.8 2.7 2.1 4.4 2.9 4.3 2.6 

3 4.7 2.9 2.5 3.7 3.8 3.0 3.7 3.2 

 
𝝁 = 𝟑. 𝟖, 

𝝈 = 𝟏. 𝟏 

𝝁 = 𝟐. 𝟒, 

𝝈 = 𝟎. 𝟕 

DOCE 

0 1.7 0.4 0.7 0.2 1.6 0.3 1.3 0.3 

1 0.6 0.2 0.3 0.2 0.5 0.2 0.4 0.2 

2 0.9 0.5 0.4 0.4 0.9 0.5 0.7 0.5 

3 0.8 1.6 0.6 1.4 0.7 1.7 0.7 1.6 

 
𝝁 = 𝟎. 𝟖, 

𝝈 = 𝟎. 𝟒 

𝝁 = 𝟎. 𝟕, 

𝝈 = 𝟎. 𝟔 

 

Figure 6.11. NRMSE of the multi-step-ahead predictions of the output variables (ℎ1, ℎ2, ℎ3) 

of the three-tanks system versus the considered lag of the dynamic models: (a,b,c) training 

using input-output signals data and (d,e,f) training using DOCE data. 

Again, two validation signals, generated as described in Sections 6.3.4 and 6.4.1, are 

used to assess the fitted dynamic models (Figure 6.12). It deserves to emphasize that the 

amplitude values of the validation control scenarios (inlet flowrates, 𝑄1 and 𝑄2) have been 

randomly chosen within the specified domain [0, 0.005] 𝑚3/𝑠 and the time length over which 

amplitude values hold has been selected differently for each scenario (see Figure 6.12 top four 

subplots). Table 6.2 and Figure 6.11 show the low NRMSE of the multivariate dynamic 

models  ℎ̂1(𝑡+1) , ℎ̂2(𝑡+1) and ℎ̂3(𝑡+1) when they are trained using the considered techniques, 
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lags and procedures for training data selection. Also, the evolution of the tanks levels along 

the time predicted by the multivariate dynamic models sets based on the OK and the ANN 

techniques are shown in Figure 6.12 and Figure 6.13, respectively. 

 

Figure 6.12. Multi-step ahead prediction of the three-tanks system output variables 

(ℎ1, ℎ2, ℎ3) in two validation scenarios (left and right), predicted by different sets of OK-

based dynamic models, trained using different data selection procedures and considering 

different lags of the dynamic models: solid black line is the exact behavior of the process, 

blue and brown dashed lines are, respectively, the best and worst predictions of the 

metamodels set trained using input-output signals and the green and red dashed lines are, 

respectively, the best and worst predictions of the metamodels set trained using the data 

selected by the proposed DOCE. 
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Figure 6.13. Multistep-ahead prediction of the three-tank system output variables 

(ℎ1, ℎ2, ℎ3) in two validation scenarios (left and right), predicted by different sets of ANN-

based dynamic models, trained using different data selection procedures and considering 

different lags of the dynamic models: solid black line is the exact behavior of the process, 

blue and brown dashed lines are the best and worst predictions of the metamodel set trained 

using input−output signals, respectively, and the green and red dashed lines are the best and 

worst predictions of the metamodel set trained using the data selected by the proposed 

DOCE, respectively. 

 

Figure 6.14. Computational times required for the: (a) generation of the training datasets 

using the proposed DOCE, (b) training of the multivariate dynamic models sets based on OK 

and ANN and for (c) the prediction of the testing scenarios of the three tanks case study. 

(Intel core i5-6200U CPU@2.3GHz.) 

Figure 6.14-(a) shows the computational effort required for the training data generation 

using the proposed DOCE procedure. As in the previous case, the time required for generating 

the other type of training data (input-output signal, see Figure 6.10) is constant (now equals to 

an average of  9.0 sec.), and the rest of conclusions are also equivalents: Figure 6.14-(b) 

illustrates the escalation of the training time with the increase of the dynamic models lag and 

mailto:CPU@2.3GHz
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that the training time of the OK-based dynamic models (mauve color) are much larger relative 

to the ANN (green color). Figure 6.14-(c) shows the average prediction time of the entire 500 

steps ahead of one testing profile. It emphasizes again the capabilities of the dynamic models 

for real time predictions, requiring an order of magnitude from 10−3 to  10−2 sec for one-step 

ahead prediction. 

6.4.3 Oil shale pyrolysis 

Oil shale pyrolysis is an industrial process that aims at extracting shale oil through the 

decomposition of the shale. Pyrolysis approximates the natural processing of the organic 

material in the shale, i.e. kerogen, using higher temperatures to compensate for the geological 

time frame (Wen & Yen, 1977). Upon heating, kerogen decomposes by consecutive reactions 

into a benzene-soluble material (pyrolytic bitumen), which, in turn, decomposes to form the 

final products of oil, gas, and carbonaceous residue on the spent shale (Wen & Yen, 1977): 

 

𝐾𝑟
       𝑘1       
→       𝑃𝑏

𝑃𝑏
       𝑘2       
→       𝑂𝑔

𝐾𝑟 + 𝑃𝑏
       𝑘3       
→       𝑃𝑏 + 𝑃𝑏

𝐾𝑟 + 𝑃𝑏
       𝑘4       
→       𝑂𝑔 + 𝑃𝑏

𝐾𝑟 + 𝑃𝑏
       𝑘5       
→       𝑂𝑔 + 𝑂𝑐}

 
 
 

 
 
 

 (6.10) 

The series of reactions taking place during the process are illustrated in Eqs.(6.10), 

where 𝐾𝑟 is the kerogen, 𝑃𝑏 is the pyrolytic bitumen, 𝑂𝑔 is oil and gas and 𝑂𝑐 is the organic 

carbon residue (Wen & Yen, 1977).  The mathematical model in Eqs.(6.11) describes the 

evolution of the concentrations, 𝐶𝐾𝑟, 𝐶𝑃𝑏 , 𝐶𝑂𝑔, 𝐶𝐶𝑟, where 𝑘𝑖 is the specific reaction rate, 𝑘𝑖0 

is its initial value, 𝐸𝑖  is the activation energy, 𝑅  is the gas constant and 𝑇  is the temperature 

that can be manipulated within the range of [698.15 ≤ 𝑇 ≤  748.15] (Carrasco & Banga, 

1997): 

 

𝑑𝐶𝐾𝑟
𝑑𝑡

=  −𝑘1 𝐶𝐾𝑟 − (𝑘1 + 𝑘4 + 𝑘5 ) 𝐶𝐾𝑟𝐶𝑃𝑏

𝑑𝐶𝑃𝑏
𝑑𝑡

=       𝑘1 𝐶𝐾𝑟 − 𝑘2𝐶𝑃𝑏 + 𝑘3 𝐶𝐾𝑟𝐶𝑃𝑏       

𝑑𝐶𝑂𝑔

𝑑𝑡
=       𝑘2𝐶𝑃𝑏 − 𝑘4 𝐶𝐾𝑟𝐶𝑃𝑏                         

𝑑𝐶𝐶𝑟
𝑑𝑡

=       𝑘5 𝐶𝐾𝑟𝐶𝑃𝑏                                          

𝑘𝑖 = 𝑘𝑖0 𝑒𝑥𝑝
(
𝐸𝑖
𝑅𝑇
) , 𝑖 = 1,2,3,4,5 }

 
 
 
 

 
 
 
 

 (6.11) 

This model has been commonly used for the dynamic optimization of the process 

(Carrasco & Banga, 1997), aiming at maximizing the pyrolytic bitumen production at the end 
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of the batch, i.e.  𝐶𝑃𝑏(𝑡𝑓).  With this objective, the optimal batch time, 𝑡𝑓, and the optimal 

temperature profile over the batch time [ 𝑡0: 𝑡𝑓] are to be identified, considering the initial 

conditions [𝐶𝐾𝑟(𝑡0), 𝐶𝑃𝑏(𝑡0), 𝐶𝑂𝑔(𝑡0), 𝐶𝐶𝑟(𝑡0)]= [1, 0, 0, 0]. 

In this application, we illustrate the development of a set of dynamic models 

(Eqs.(6.12)) which is able to accurately approximate the future behavior of the oil shale 

pyrolysis process. Six different batch runs are simulated, such that each batch corresponds to 

a different control profile of the temperature, composed as previously mentioned within the 

known limits [698.15 𝐾: 748.15𝐾] and,  random initial conditions 

[𝐶𝐾𝑟(𝑡0), 𝐶𝑃𝑏(𝑡0), 𝐶𝑂𝑔(𝑡0), 𝐶𝐶𝑟(𝑡0)] between the range  [0.95 : 1.05 , 0 : 0.05, 0 : 0.05 , 0 : 

0.05]. Also, a random Gaussian noise of the aforementioned order of magnitude is added to 

the output values. It is worthy to mention that the batch time is set to its optimal value identified 

in the literature (Wen & Yen, 1977), i.e. 𝑡𝑓 = 9.3 𝑚𝑖𝑛 , while the sampling period is set to 

0.093 𝑚𝑖𝑛. 

 

𝐶̂𝐾𝑟(𝑡+1) = 𝑓1 (
𝐶𝐾𝑟(𝑡), . . , 𝐶𝐾𝑟(𝑡−𝐿), 𝐶𝑃𝑏(𝑡), . . , 𝐶𝑃𝑏(𝑡−𝐿),

𝐶𝑂𝑔(𝑡), . . , 𝐶𝑂𝑔(𝑡−𝐿), 𝐶𝐶𝑟(𝑡), . . , 𝐶𝐶𝑟(𝑡−𝐿), 𝑇(𝑡), . . , 𝑇(𝑡−𝐿)
)

𝐶̂𝑃𝑏(𝑡+1) = 𝑓2 (
𝐶𝐾𝑟(𝑡), . . , 𝐶𝐾𝑟(𝑡−𝐿), 𝐶𝑃𝑏(𝑡), . . , 𝐶𝑃𝑏(𝑡−𝐿),

𝐶𝑂𝑔(𝑡), . . , 𝐶𝑂𝑔(𝑡−𝐿), 𝐶𝐶𝑟(𝑡), . . , 𝐶𝐶𝑟(𝑡−𝐿), 𝑇(𝑡), . . , 𝑇(𝑡−𝐿)
)

𝐶̂𝑂𝑔(𝑡+1) = 𝑓3 (
𝐶𝐾𝑟(𝑡), . . , 𝐶𝐾𝑟(𝑡−𝐿), 𝐶𝑃𝑏(𝑡), . . , 𝐶𝑃𝑏(𝑡−𝐿),

𝐶𝑂𝑔(𝑡), . . , 𝐶𝑂𝑔(𝑡−𝐿), 𝐶𝐶𝑟(𝑡), . . , 𝐶𝐶𝑟(𝑡−𝐿), 𝑇(𝑡), . . , 𝑇(𝑡−𝐿)
)

𝐶̂𝐶𝑟(𝑡+1) = 𝑓4 (
𝐶𝐾𝑟(𝑡), . . , 𝐶𝐾𝑟(𝑡−𝐿), 𝐶𝑃𝑏(𝑡), . . , 𝐶𝑃𝑏(𝑡−𝐿),

𝐶𝑂𝑔(𝑡), . . , 𝐶𝑂𝑔(𝑡−𝐿), 𝐶𝐶𝑟(𝑡), . . , 𝐶𝐶𝑟(𝑡−𝐿), 𝑇(𝑡), . . , 𝑇(𝑡−𝐿)
)
}
 
 
 
 

 
 
 
 

 (6.12) 

 

 

Figure 6.15. Training (blue) and validation batches (red). 
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Four batches (blue lines in Figure 6.15) are considered as the input-output training set, 

while two batches (red lines in Figure 6.15) are used for the testing purpose. On the other side, 

a second training set including 400 samples or instances is generated by the proposed 

procedure for dynamic DOCE, considering the expected variation domain of the process 

variables 𝐶𝐾𝑟, 𝐶𝑃𝑏 , 𝐶𝑂𝑔, 𝐶𝐶𝑟, and 𝑇: [0  : 1.2, 0 : 0.6, 0 : 1.2, 0 : 0.6, 698.15 : 748.15 ] 

Both types of training data, input-output signals and DOCE, are utilized for fitting the 

models set in Eqs.(6.12), considering also the different techniques and lags as in the previous 

sections. The trained sets of models are used to predict the evolution of the process outputs, 

𝐶𝐾𝑟, 𝐶𝑃𝑏 , 𝐶𝑂𝑔, 𝐶𝐶𝑟, over 100 time steps, corresponding to each validation scenario of the 

temperature, 𝑇 (red lines in Figure 6.15). 

The performance of each one of the dynamic models is illustrated in Table 6.3 and 

Figure 6.16, where the prediction NRMSE is shown for each model independently and for the 

set of dynamic models. It can be noticed that the multivariate dynamic models possess quite 

satisfactory level of accuracy (Figure 6.16-(c, f) and the last two columns in Table 6.3), 

especially taking into account the complex nature of the considered case. This complexity is 

expressed by the higher dimensionality of the output, the complex reactions mechanisms (see 

Eqs.(6.10)), the high nonlinear relations in the system (see Eqs.(6.11)) and by the nature of the 

process as a batch type that often included transient dynamics and sophisticated reaction 

kinetics and stoichiometry. Besides, the kerogen concentration, 𝐶𝐾𝑟, seems to be the easiest 

output to be modeled (Figure 6.17, red lines), however, the organic carbon residue, 𝐶𝐶𝑟, 

represents the most difficult behavior to be captured (Figure 6.17, yellow lines). 

Table 6.3. NRMSE (%) of the multivariate dynamic metamodels (oil shale Pyrolysis). 

Training 

data type 
Lag 

𝒄̂𝑲𝒓(𝒕+𝟏)  𝒄̂𝑷𝒃(𝒕+𝟏)  𝒄̂𝑶𝒈(𝒕+𝟏)  𝒄̂𝑪𝒓(𝒕+𝟏)  

Average 

(𝒄̂𝑲𝒓(𝒕+𝟏), 𝒄̂𝑷𝒃(𝒕+𝟏), 

𝒄̂𝑶𝒈(𝒕+𝟏) , 𝒄̂𝑪𝒓(𝒕+𝟏) ) 

OK ANN OK ANN OK ANN OK ANN OK ANN 

Signal 

0 3.7 2.5 5.4 4.6 3.7 2.5 8.4 6.9 5.3 4.1 

1 2.6 2.6 4.5 8.0 1.6 4.9 8.0 7.4 4.2 5.8 

2 1.7 4.0 3.4 7.4 1.5 4.8 7.9 9.4 3.6 6.4 

3 1.7 1.8 2.9 5.9 1.5 4.0 7.8 6.8 3.5 4.6 

 
𝝁 = 𝟒. 𝟐, 

𝝈 = 𝟎. 𝟖 

𝝁 = 𝟓. 𝟐, 

𝝈 = 𝟏. 𝟏 

DOCE 

0 3.6 1.4 5.6 3.9 4.2 3.0 5.2 5.9 4.6 3.6 

1 4.2 0.4 7.2 0.9 6.0 0.6 8.5 2.9 6.5 1.2 

2 1.4 0.7 3.4 1.1 3.0 0.5 5.2 1.0 3.3 0.8 

3 1.7 0.1 3.0 0.2 3.9 0.2 1.5 0.7 2.5 0.3 

 
𝝁 = 𝟒. 𝟐, 

𝝈 = 𝟏. 𝟕 

𝝁 = 𝟏. 𝟓, 

𝝈 = 𝟏. 𝟓 
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Figure 6.16. NRMSE of the multi-step-ahead predictions of the output variables 

(𝐶𝐾𝑟, 𝐶𝑃𝑏, 𝐶𝑂𝑔, 𝐶𝐶𝑟) of the oil shale pyrolysis process versus the considered lag of the 

dynamic models: (a,b,c) training using input-output signals data and (d,e,f) training using 

DOCE data. 

The best performances (input-output training signal) have been achieved by the sets of 

dynamic models based on ANNs with 𝐿=0 and OK with 𝐿=3, finding NRMSE of 4.1 %, and 

3.5 %, respectively. The dynamic models sets (DOCE training) based on ANNs with 𝐿= 3 and 

OK with 𝐿= 3 have provided the best performances, finding NRMSE of 0.3% and 2.5%, 

respectively. Again, the models trained using data generated by the proposed DOCE procedure 

exhibit enhanced performance with respect to those trained by the data generated using the 

input-output signal. 

Figure 6.17 shows the evolutions of the kerogen, 𝐶𝐾𝑟(𝑡+1), pyrolytic bitumen, 𝐶𝑃𝑏(𝑡+1), 

oil and gas, 𝐶𝑂𝑔(𝑡+1), and the organic carbon residue, 𝐶𝐶𝑟(𝑡+1), concentrations in two 

validation batches, predicted by the set of OK-based dynamic models.  Similarly, the worst 

and best performances with respect to each training data type are highlighted by the 

aforementioned colors. The Figure shows that even in the worst modeling trials (blue and red 

dotted lines) quite satisfactory levels of accuracy are achieved, especially for the OK and ANN 

cases. The step-ahead prediction of the ANN-based dynamic models is showed in Figure 6.18. 



 

Chapter 6: Dynamic Surrogate Modelling for Multistep-Ahead Prediction of Multivariate Nonlinear Chemical 

Processes 151 

 

Figure 6.17. Multi-step ahead prediction of the output variables of the oil shale 

pyrolysis process (𝐶𝐾𝑟, 𝐶𝑃𝑏, 𝐶𝑂𝑔, 𝐶𝐶𝑟) in two validation batches (left and right), predicted by 

different sets of OK-based dynamic models, trained using different data selection procedures 

and considering different lags of the dynamic models: solid black line is the exact behavior 

of the process, blue and brown dashed lines are, respectively, the best and worst predictions 

of the metamodels sets trained using arbitrary input-output signals, respectively, and the 

green and red dashed lines are, respectively, the best and worst predictions of the 

metamodels sets trained using data selected by the proposed DOCE. 
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Figure 6.18. Multistep-ahead prediction of the output variables of the oil shale 

pyrolysis process (𝐶𝐾𝑟, 𝐶𝑃𝑏, 𝐶𝑂𝑔, 𝐶𝐶𝑟) in two validation batches (left and right) predicted by 

different sets of ANN-based dynamic models, trained using different data selection 

procedures, and considering different lags of the dynamic models: solid black line is the 

exact behavior of the process, blue and brown dashed lines are the best and worst 

predictions of the metamodel sets trained using input−output signals, respectively, and the 

green and red dashed lines are the best and worst predictions of the metamodel sets trained 

using data selected by the proposed DOCE, respectively. 

Figure 6.19 shows the training data collected by the input-output signal generation (red 

crosses) and the proposed dynamic DOCE (cyan circles) procedures projected onto some of 

the metamodels input dimensions. The Figure shows that when the methodology is used for 

approximating a complex FPM, it is capable of efficiently generating all the possible 

combinations of the process variables values by the proposed DOCE procedure, in order to 

collect dataset covering the entire domain of the models input and, consequently, to enhance 

its prediction accuracy. However, when the methodology is meant to be applied to a real 

process, the FPM model is considered as a process plant, but with only few input-output 

datasets available, which have been generated following the procedure in Section 6.3.4 

(one/few signal(s) or “profile(s)” evolving through the complete set of feasible situations). See 

Figure 6.19, where the training data in the latter case (red crosses) represent a small local 

subset within the entire domain of variability of the model input variables. In this case, these 

“profiles” have been generated in a random way (see Section 6.3.4) since we do not know the 
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control mechanism (problem) of each specific process and, moreover, this is the typical 

procedure used in the literature (Nagy, 2007; Azman & Kocijan, 2007). 

For a real situation, where a database of the process variables measurements history is 

available, the training data selection should cover as much as possible the dynamic conditions 

of the process, in order to feed the model with sufficient information about the process.  

 

Figure 6.19. Comparison between the training data selected by the proposed DOCE 

procedure (cyan circles) and the training data in the case of using input-output signals (red 

crosses), both projected over arbitrary selected pairs of the dynamic models input 

dimensions: (a,b) bioreactor,(c,d) three-tanks and (e,f) oil shale pyrolysis. 

 

Figure 6.20. Computational times required for the: (a) generation of the training 

datasets using the proposed DOCE, (b) training of the multivariate dynamic models sets 

based on OK and ANN and for (c) the prediction of the testing scenarios of the oil shale 

pyrolysis case study.  (Intel core i5-6200U CPU@2.3GHz.) 

Figure 6.20-(a) shows the computational time required for the training data generation 

using the proposed DOCE procedure. The time required for generating the other type of 

mailto:CPU@2.3GHz
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training data (input-output signal, see Figure 6.15) is (again) constant and equals to an average 

of  9.0 sec. Figure 6.20-(b) illustrates the escalation of the training time with the increase of 

the dynamic models lag and that the training times of the OK-based dynamic models (mauve 

color) are (again) larger relative to the ANN (green color) escalation. Figure 6.20-(c) shows 

the average prediction time of the entire 100 steps ahead of one testing profile. It emphasizes 

again the capabilities of the dynamic models for real time predictions, requiring an order of 

magnitude from 10−2 to  10−1 sec for one-step ahead prediction. 

Finally, it should be mentioned that in all the analyzed cases but, especially, in situations 

where only few input-output signals are available for the training and/or they may represent a 

biased or partial view of the process (as in the last case study, see Figure 6.19-(e,f), red 

crosses), the resulting dynamic models may be very sensible to the eventual evolution of the 

real process behavior through the time, which may drive it to unexpected/unexplored 

conditions, either due to the natural evolution of the process (e.g.: heat exchanger fouling, 

process aging, drifting, etc.), or because a wrong/incomplete selection of the training dataset. 

In such situations, the dynamic models can perform poorly, because they are going to be 

applied outside the domain of knowledge/information on which they have been trained. An 

online updating mechanism that continuously feeds/updates the dynamic models with new 

data (information) collected from the process would be the solution for such problem.  

In this sense, the practical application of the proposed methodology needs to account 

for the uncertainty or confidence about the model prediction, which should be more reliable 

when the model is to be used for control and optimization (e.g.: in order to assess how the 

control actions will tolerate the model predictions errors, or in order to detect that the process 

is evolving into a new or not well described working area). Ensemble and Monte-Carlo-based 

methods are suitable for the uncertainty quantification of data-driven models. 

6.5 CONCLUSIONS 

This work presents a robust and generic methodology for data-driven multivariate 

dynamic modelling and multi-step ahead prediction of nonlinear chemical processes using 

surrogate models. The proposed methodology utilizes surrogate models for building a group 

of NARX models, each of them able to predict the evolution of one output as a function of the 

other inputs and outputs of the process. The set of multivariate dynamic models are, then, used 

to forecast the process outputs along larger time intervals, through a recursive and inter-

coordinated prediction scheme. The methodology also offers a new procedure for training data 

selection for dynamic modeling, based on the “design of computer experiments” technique 

when a FPM of the process is available.  
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The application of the proposed methodology is illustrated through three case-studies of 

nonlinear dynamic processes selected from the process engineering literature, including a 

bioreactor, three-tanks and an oil-shale pyrolysis batch reactor. The results make explicit the 

promising capabilities of the developed multivariate dynamic models in terms of: 1) a high 

prediction accuracy, 2) the capability of simulating complex dynamic profiles over large 

prediction time horizons, and 3) the generality and robustness required to handle cases of 

different nature (biological, industrial and chemical systems), integrating different metamodel 

types (ANN and OK), managing situations based on either FPM approximations or where only 

a  limited set of process input-output signals are available, exhibiting very good behavior with 

respect to the sensitivity against the training data size and the noise in the training data. 

The proposal extends the capabilities of the OK techniques (until now only proposed in 

simpler dynamic situations) and efficiently introduces them to full dynamic scenarios, showing 

very competitive characteristics with respect to other leading techniques such as ANNs, in 

terms of accuracy and, more significantly, in terms of flexibility and systematic tuning of 

parameters. The only disadvantage is the relatively high computational effort required for 

fitting. 

The sets of multivariate dynamic models provided by the methodology fit very well with 

the requirements and needs of different engineering applications as model predictive control, 

dynamic optimization, monitoring, etc., where the future values of many process outputs must 

be accurately and rapidly predicted.  

The good results obtained with models trained with a limited quantity of input-output 

data justify the generalization of the message and the potential applicability of the proposed 

procedure to situations when no FPM is available or the conditions from the training data may 

significantly change, although this is to be further investigated. On the other hand, the main 

issues which main appear during the application of the proposed methodology, associated to 

the availability, representativeness and quality of the training data, and common to the 

application of machine-learning techniques, represent potential lines of future research, such 

as the development of online updating method to overcome the process evolution, or the 

development of prediction assessment methods in dynamic environments. 
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Chapter 7: Dynamic 

Optimization of Batch 

Processes Based on 

Multivariate Dynamic 

Surrogate Models 

This Chapter presents a novel data-driven sequential dynamic optimization 

methodology applicable to solve optimal control problems of complex highly nonlinear 

processes. The methodology is based on the use of kriging surrogate models to obtain accurate, 

robust and computationally inexpensive multivariate dynamic models (as presented in Chapter 

6), built using input-output training data eventually generated from the simulation of the 

complex First Principle Model (FPM) of the process (mathematical or analytical model), or 

collected from the real system. Then these data-driven multivariate dynamic models take the 

place of the complex FPM of the process in a well-tailored computational scheme of sequential 

dynamic optimization. The results of applying this approach to three well-known problems 

from the process systems engineering area are compared with the ones obtained using the 

corresponding FPMs, showing how the proposed approach significantly reduces the 

computational effort required to get very accurate solutions, and so enables the use of dynamic 

optimization procedures in applications where robustness and immediacy are essential 

practical constraints. 

7.1 INTRODUCTION  

A key element to improve system performance in the process industry (e.g., to reduce 

the operating cost, to increase the production yield, or to ensure product quality) is the fast and 

reliable identification of the optimal time profiles of the process control variables to be 

followed/applied (e.g., equipment feed rates, cooling temperature profiles, etc.). In most cases, 

the optimum profiles are scenario-dependent (i.e., the profile must be adapted according to the 

quality requirements, the characteristics of the raw materials, the economic conditions, etc.); 

additionally, a large number of uncertain variables must be often contemplated, and the 

relations between the control variables and the performance are usually difficult to model in 

detail. In such cases, a priori calculations (steady-state optimization) are not helpful and the 

process engineer must periodically (even continuously) solve the associated model-based 

control problem (open loop optimal control (Banga, et al., 2005)), which requires going 

through a complex mathematical procedure (dynamic optimization) that involves a dynamic 
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model (usually in the form of differential equations), a multifaceted objective (usually based 

on the final state of the system, but, also, on its evolution), and a set of control variables which 

eventually can be changed along the time (Diehl, et al., 2006; Wang, et al., 2017). 

State-of-the-art methods for solving dynamic optimization problems of industrial 

relevance rely on the application of the so-called direct methods (Banga, et al., 2005), based 

on the discretization of the time domain and the transformation of the original infinite 

continuous optimal control problem into a finite constrained NonLinear Programming (NLP) 

problem, which is, then, solved by appropriate numerical nonlinear optimization tools (e.g., 

Sequential Quadratic Programming (SQP), etc.). Alternatively, indirect methods use the 

analytical necessary conditions from the calculus of variations to formulate a boundary value 

problem, which is usually very difficult to solve (Banga, et al., 2005) and requires a deep a 

priori knowledge of the nature of the problem (initialization, constraints structure, etc.), so 

they are usually inapplicable to the industrial practice.  

Direct methods are further classified according to the elements finally discretized: 

sequential approaches (also known as Control Vector Parameterization (CVP) approaches) 

discretize only the control variables in the form of piecewise low order polynomials, and then 

a NLP optimization problem is carried out in the space of the discretized control variables, 

which requires the successive evaluation (simulation runs) of the nonlinear process model 

during its solution. On the contrary, simultaneous approaches discretize both control and state 

variables by approximating them by a family of polynomials on finite elements (Biegler, 

2007), so they avoid the inner evaluation of the differential process model, although they result 

in a NLP problem of a very large-scale (due to the presence of state variables together with 

the control variables as optimization variables (Carrasco & Banga, 1997; Banga, et al., 2005)) 

and require the introduction of extra constraints to enforce the continuity of the discretized 

state variables (Diehl, et al., 2006; Wang, et al., 2017).   

The sequential strategy is straightforward and relatively easy to construct and to apply, 

and results in a NLP optimization problem of a much reduced size (Carrasco & Banga, 1997; 

Banga, et al., 2005; Diehl, et al., 2006; Biegler, 2007). However, a major challenge that faces 

the sequential approach is the required huge computational effort, associated to a large number 

of evaluations of the nonlinear process FPM, since each evaluation includes the expensive 

integration of this differential model using complicated integration techniques (Diehl, et al., 

2006; Biegler, 2007). This challenge is amplified in case of complex, highly nonlinear and/or 

large-scale problems (e.g., chemical processes) (Srinivasana, et al., 2003), and the 

computational cost becomes unaffordable if a fast identification of the process control profiles 

is required, which is the case in many industrial applications (e.g., transitions between desired 
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operating conditions, response to sudden disturbances or unexpected events, online 

optimization - model based control, etc.) (Nagy, 2007).  

Recently, the Surrogate Based Optimization (SBO) approach is receiving a great deal 

of interest for facing similar challenging situations, when the optimization problem involves a 

complex FPM of the process (Caballero & Grossmann, 2008; Quirante & Caballero, 2016). 

The SBO approach performs the optimization task relying on simplified, but accurate, data-

driven models (also called surrogate models or metamodels, e.g., artificial neural networks), 

which are built using input-output data obtained from the simulation of the complex FPM of 

the process (Nagy, 2007; Forrester & Keane, 2009). However, in the chemical engineering 

literature, almost all SBO methodologies are limited to steady-state optimization problems  

(Kajero, et al., 2017). Additionally, most of these SBO methodologies used “static” kriging 

surrogate models to approximate a complex steady-state FPM of the process (Quirante, et al., 

2018). 

Kriging models are very competitive to many other data-driven model types in many 

engineering fields (Forrester & Keane, 2009), because of their specific properties, as high 

prediction accuracy with a relatively small number of training data, and, specially, their ability 

to estimate a prediction variance (or error) that represents the prediction uncertainty. However, 

as mentioned before, the majority of the kriging usage and developments are concentrated in 

emulating complex “static” models (Fang, et al., 2005; Forrester & Keane, 2009), while 

engineering systems are of dynamic nature, and so, the use of dynamic models is a must in 

any control application. 

This Chapter presents a novel and efficient data-driven dynamic optimization 

methodology to solve optimal control problems of complex highly nonlinear chemical 

processes. The methodology is based on two stages, which include:  

• development of simple and accurate MultiVariate Dynamic Kriging (MVDK) 

models (as presented in Chapter 6), which are able to predict the future values 

of the process outputs over long time horizons, and 

• building an efficient sequential dynamic optimization procedure able to 

integrate these MVDK models that represent the process model.  

The rest of this Chapter is organized as follows. Section 7.2 shows the tools and 

techniques used to build the methodology. Section 7.3 describes the detailed steps of the 

proposed methodology. Section 7.4 presents the application of the methodology to benchmark 

case studies that include the dynamic optimization of different batch reactors. Finally, Section 

7.5 concludes the Chapter. 
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7.2 TOOLS AND TECHNIQUES  

A dynamic system is characterized through a set of state variables 𝑦𝑡, evolving from 

their initial values 𝑦0 over time horizon [𝑡0: 𝑡𝑓], and being affected by the system inherent 

dynamics, and a set of control variables 𝑢𝑡, which can be externally manipulated within a 

certain range during this time horizon, affecting the inherent system dynamics. So, the 

objective is to find the profile of the control variables to obtain the best value of a certain 

objective function. 

7.2.1 Sequential dynamic optimization 

The direct sequential approach to solve dynamic optimization problems is based on the 

discretization or parameterization of the control variables 𝑢𝑡 as piecewise polynomials  

[𝑢1, 𝑢2, 𝑢3  … , 𝑢𝑁−1, 𝑢𝑁] (Banga, et al., 2005; Diehl, et al., 2006) by dividing the total time 

domain [𝑡0: 𝑡𝑓] into a grid of 𝑁 equally sized intervals 𝛥𝑡, where ∆𝑡 = (𝑡𝑗 − 𝑡𝑗−1 ) = (𝑡0 −

 𝑡𝑓)/𝑁  𝑗 = 1,2, …𝑁 , where [𝑡0 < 𝑡1 < 𝑡2 < 𝑡3 <. . . < 𝑡𝑗 < ⋯ < 𝑡𝑁−1 < 𝑡𝑁 = 𝑡𝑓]. For 

simplicity, these polynomials are usually assumed to follow piecewise constant profiles. This 

has also been the choice in this work. The optimization is carried out in the space of the 

parameterized control variables 𝑢𝑗 only, which became decision variables. In each iteration, 

the NLP solver updates the values of the discretized control variables 𝑢𝑗, the differential FPM 

of the process (Eq.(7.2)) is integrated using standard integration algorithms (e.g., Runge-

Kutta), the state variables 𝑦𝑡 are calculated departing from the known initial conditions 𝑦0, 

and, finally, the objective function 𝐽 (Eq.(7.1)) and the constraints 𝑔 (Eq.(7.3) and Eq.(7.4)) 

are evaluated (Banga, et al., 2005; Diehl, et al., 2006; Biegler, 2007). 

 Min
𝑦(𝑡),𝑢𝑗(𝑡)

𝐽 = Φ 𝑦(𝑡𝑓) + ∫ 𝜑[𝑦(𝑡), 𝑢𝑗(𝑡), 𝑡]
𝑡𝑓

𝑡0

 𝑑𝑡 (7.1) 

 S.T.:     
𝜕𝑦

𝜕𝑡
= 𝐹(𝑦(𝑡), 𝑢𝑗(𝑡)) ,             𝑦(𝑡0) = 𝑦0 (7.2) 

 𝑔(𝑦(𝑡), 𝑢𝑗(𝑡)) ≤ 0 (7.3) 

 𝑢𝑚𝑖𝑛 ≤≤ 𝑢𝑗(𝑡) ≤ 𝑢𝑚𝑎𝑥 ≤ (7.4) 

7.2.2 Kriging model construction 

The construction of an accurate surrogate model relies on the representativeness of the 

available input-output training data points. Whenever it is feasible, training points should be 

selected in such a way that the best representation of the original model behavior is obtained. 

This selection task is performed using Design Of Computer Experiments (DOCE) techniques 
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called the “sampling plan design” (Fang, et al., 2005), and it results in a set of input 

combinations (sampling plan [𝑋]𝑛×𝑘, where 𝑛 is the number of sample points, and 𝑘 is the 

number of input variables 𝑥) at which the corresponding output data (response variables data 

matrix [𝑊]𝑛×𝑀) are obtained. The Space-Filling Latin Hypercube Sampling design (SLHS) 

has been used in this work as sample plan design technique (Forrester, et al., 2008). More 

details about DOCE techniques can be found in Section 2.1. 

Given a set of n input-output training data [𝑥𝑖 , 𝑤𝑖], 𝑖 = 1,2, . . 𝑛, 𝑥 ∈ 𝑅𝑘 , 𝑤 ∈ 𝑅 

(considering only one output, for the description simplicity), the OK assumes the predictor 

𝑤̂(𝑥) =  𝜇𝑜𝑘  + 𝑍(𝑥), where the constant term 𝜇𝑜𝑘 represents the main trend of the system to 

be approximated, and 𝑍(𝑥) is a deviation from that trend. The deviation 𝑍(𝑥) is modeled as a 

stochastic Gaussian process with expected value 𝐸(𝑍(𝑥)) =  0, and a covariance between two 

residuals 𝑐𝑜𝑣(𝑍(𝑥𝑖), 𝑍(𝑥𝑗)) that only depends on their corresponding inputs 𝑥𝑖 , 𝑥𝑗. Thus it can 

be calculated as: 𝑐𝑜𝑣 (𝑍(𝑥𝑖), 𝑍(𝑥𝑗)) = 𝜎𝑜𝑘
2  𝑅(𝑥𝑖 , 𝑥𝑗), being 𝜎𝑜𝑘

2  the process variance and 

𝑅 (𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(−∑ 𝜉𝑙|𝑤𝑖,𝑙−𝑤𝑗,𝑙−|
𝑝𝑙𝑘

𝑙=1 ) + 𝛿𝑖𝑗 𝜆 a correlation function, where, 𝜉𝑙 , 𝑙 = 1,…𝑘 

are the model hyper-parameters, 𝛿𝑖𝑗 is the Kronecker delta, 𝑝𝑙 are smoothing parameters and 

𝜆 is a regularization constant that enables the kriging predictor to regress noisy data (Azman 

& Kocijan, 2007).  The kriging predictor is given by Eq.(7.5), where (𝑥∗) is a new interpolating 

point (different from the training data). In Eq.(7.5), [𝑟]𝑛×1 is the vector of correlations between 

the point to be predicted 𝑥∗ and the original training data points and calculated as 𝑅(𝑥𝑖, 𝑤
∗), 

[𝑅]𝑛×𝑛 is the correlation matrix between the training inputs, [𝑊]𝑛×1 is the vector of the 

training outputs and [𝟏]𝑛×1 is the identity vector. 

 𝑤̂(𝑥∗) = 𝜇𝑜𝑘 + 𝑟
𝑇𝑅−1(𝑊 − 𝟏𝜇𝑜𝑘) (7.5) 

This work considers the OK implementation developed by Forrester et al. (2008), 

because of its high efficiency and applicability. Besides, the “fmincon” algorithm included in 

the Matlab optimization toolbox is used for the maximization (nonlinear optimization) of the 

concentrated likelihood function. More details about the OK model can be found in Section 

2.2.1. 

Finally, the surrogate model must be assessed in order to make sure that it exhibits a 

satisfactory level of accuracy over its input domain (Meckesheimer, et al., 2002). Cross-

validation allows the characterization of the surrogate model error without any additional data 

rather than the original set of sample points (Caballero & Grossmann, 2008). Various 

techniques of cross-validation have been developed, as the “K-fold cross-validation” and 

“leave-p-out cross-validation”. In this Chapter the “Leave-One-Out Cross-Validation” 

(LOOCV) is used: in each iteration, one sample point is held out for validation, and the 
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remaining points are used to fit the surrogate model; the cross-validation error at each iteration 

is calculated, and the average root mean square error of the cross-validation of the surrogate 

model is calculated from Eq.(7.6), where n is the total number of sample points, and 𝑥𝑖 , 𝑥𝑖  

are the estimated and the real value- respectively -of the held out point (𝑤𝑖), (Meckesheimer, 

et al., 2002).  

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖 − 𝑥̂𝑖)2
𝑛
𝑖=1   (7.6) 

7.2.3 Multivariate dynamic kriging models 

In the case of a dynamic system, the kriging model(s) must be trained to mimic the 

incremental evolution of the dynamic system behavior (state variables) over a relatively small 

and constant time-step 𝛥𝑡. In this case, the surrogate model output 𝑤̂ in Eq. (7.5) will be 

composed by the state variables 𝑦𝑗 at the time 𝑡𝑗  (i.e., 𝑤̂= 𝑦𝑖) and the surrogate model input 

variables 𝑥 will include both the control variables 𝑢𝑗 and the state variables at the previous 

time 𝑦𝑗−1 (i.e., 𝑥 = [𝑢𝑗, 𝑦𝑗−1]). Hence, the resulting MVDK models will be given by Eq.(7.7).  

 𝑦̂𝑗 = 𝑓(𝑦𝑗−1, 𝑢𝑗) (7.7) 

Assuming that an accurate (but complex) FPM model of the system is available, MVDK 

models can be easily derived following the idea of using “computer experiments” to generate 

the training data: As a first step, the range (domain) within which the input variables (the state 

variables yj-1 and the control variables  𝑢𝑗) are expected to change is estimated 

[𝑦𝑡−𝑚𝑖𝑛: 𝑦𝑡−𝑚𝑎𝑥 , 𝑢𝑡−𝑚𝑖𝑛: 𝑢𝑡−𝑚𝑎𝑥]. Then a SLHS sampling plan [𝑋]𝑛×𝑘 is designed over this 

expected domain. At each row (point) of the sampling plan, a computer experiment (simulation 

run) is carried out using the original complex FPM over a fixed and relatively small time-step 

∆𝑡, to obtain the corresponding outputs [𝑊]𝑛×𝑀, where 𝑀 is the number of outputs (state 

variables). After fitting the 𝑀 dynamic kriging models (one model for each state variable), the 

MVDK models are validated using the LOOCV, to ensure that they possess acceptable range 

of prediction accuracy.  

Once obtained accurate MVDK models, they can be then used in a recursive way to 

predict or interpolate the entire time series/sequence of outputs [𝑦̂1, 𝑦̂2, 𝑦̂3, … . , 𝑦̂𝑁−1, 𝑦̂𝑁] (the 

dash on the 𝑦 means it is an estimated value). The recursive dynamic interpolation or emulation 

starts using the given input values (𝑦0, 𝑢1) to interpolate or predict 𝑦̂1, then with (𝑦̂1, 𝑢2) to 

predict 𝑦̂2, then with (𝑦̂2, 𝑢3)  to predict 𝑦̂3, and so on, until the last interpolation step using 

(𝑦̂𝑁−1, 𝑢𝑁) to predict 𝑦̂𝑁. 
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To illustrate the capability of the MVDK models to emulate a nonlinear dynamic 

process for large time domain, we have applied the technique to a tank draining system, which 

is a well-known example that has been commonly used in control textbooks and software. The 

system model, Eq.(7.8), has one state variable y(t), which represents the water height inside 

the tank, and one control variable u(t) which corresponds to the inlet flowrate entering the 

tank. The water leaves the tank through the bottom part, under the gravity effect. b and a are 

constants related to the inlet and outlet flowrates respectively, and A represents the cross-

section area of the tank. Then, the FPM representing the systems dynamics can be expressed 

as indicated by Eq.(7.8). 

 
𝜕𝑦

𝜕𝑡
=
1

𝐴
(𝑏 𝑢(𝑡) − 𝑎 𝑦(𝑡)0.5) (7.8) 

Since there is one state variable, only one MVDK model is required to emulate the 

system. The input variable (𝑦𝑗−1, 𝑢𝑗) is expected to vary within the limits of [0: 4, 0: 1.5]. 

Over this domain, a SLHS plan is designed with 65 sample points. The original model in Eq. 

(7.8) is used to generate the output matrices [𝑦𝑗], ∆t=0.5 min. The surrogate model fitting is 

achieved through the maximization of likelihood of the observed data, and the obtained values 

of the surrogate model parameters are (𝜇𝑜𝑘, 𝜎𝑜𝑘
2  [𝜉𝑙]) = (2.24, 0.48, [8.1, 1.4] ). The accuracy 

of the fitted MVDK model is assessed by the RMSE of the LOOCV technique, through 

Eq.(7.6). The cross-validation results using the LOOCV method is shown in Figure 7.1-(a), 

and the root mean square error of the cross-validation is obtained (RMSE = 8.13×10-4). The 

extremely low value of the RMSE (almost 4 orders of magnitude less than the expected values 

range) indicates that the fitted MVDK model exhibits a very high accuracy, and it is ready to 

be used for dynamic emulation. 

 
Figure 7.1. (a) LOOCV of the MVDK model, (b) validation control profile, (c) exact dynamic 

behavior 𝑦(𝑡) (blue) and MVDK prediction 𝑦̂(𝑡)  (red dashed line), (d) Absolute error 

(|𝑦(𝑡) − 𝑦̂(𝑡)|). 
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Figure 7.1-(c) shows the comparison between the dynamic simulation of a randomly 

generated control profile (200 time-step (200×∆𝑡 =100 min) in Figure 7.1-(b)), using the fitted 

MVDK model (red dashed line), and the model based on first principles (solid blue line), both 

departing from an initial value of the state variable of 𝑦0=3.96 m. Both lines correspond to 

virtually identical values, so it is clear that the MVDK is able to accurately estimate the same 

behavior of the dynamic system. Figure 7.1-(d) plots the absolute error between the kriging 

prediction and the values calculated by the first principles model.  

7.3 MVDKS-BASED CONTROL VECTOR PARAMETERIZATION 

The previous steps and techniques have been used to construct a robust computational 

framework for the application of CVP based dynamic optimization: 

1. Explore the process behavior and identify the state variables 𝑦𝑡  to be modeled and 

the control variables 𝑢𝑡. 

2. Discretize the time domain [𝑡0: 𝑡𝑓] into a grid of equal time-steps [𝑡0 < 𝑡1 < 𝑡2 <

𝑡3 <. . . < 𝑡𝑗 < ⋯ < 𝑡𝑁−1 < 𝑡𝑁 = 𝑡𝑓], and discretize the control variables 𝑢𝑡  as 

piecewise constants [𝑢1, 𝑢2, 𝑢3, … . , 𝑢𝑁−1, 𝑢𝑁] 

3. Estimate the range of the state and control variables 

[𝑦𝑡−𝑚𝑖𝑛: 𝑦𝑡−𝑚𝑎𝑥 , 𝑢𝑡−𝑚𝑖𝑛: 𝑢𝑡−𝑚𝑎𝑥].  

4. Design a sampling plan [𝑋]𝑛×𝑘 over the surrogate models domain, using the SLHS 

technique. 

5. Carry out a simulation run at each point of the sampling plan using the original 

(complex) model in order to obtain the corresponding response states [𝑊]𝑛×𝑀. 

6. Fit 𝑀 MVDK models and validate them as described (LOOCV),  

7. Integrate the MVDK models in the CVP dynamic optimization scheme: 

a. Determine an initial guess for the decision variables  𝑢0 =

[𝑢1
0, 𝑢2

0, 𝑢3
0, … . , 𝑢𝑁−1

0 , 𝑢𝑁
0 ].  

b. Integrate the dynamic system state variables until the final time horizon, 

using the MVDK models, and compute the performance index 𝐽 and the 

constraints 𝑔.  

c. Use a NLP optimizer (e.g., SQP) to update the values of the parameterized 

control variables, until the objective function is minimized, and the optimal 

control 𝑢∗ = [𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗ , … . , 𝑢𝑁−1

∗ , 𝑢𝑁
∗ ].  policy is obtained.  
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7.4 APPLICATION AND RESULTS 

The proposed kriging based CVP methodology is applied to three benchmark problems, 

which are commonly used in dynamic optimization studies. The methodology is applied to 

each case study two times, each one with a different discretization of the total time domain (15 

and 20 time-steps discretization).  

In each discretization, the methodology results are compared with the use of the classical 

or standard CVP technique, with the same problem adjustment (optimization domain, time-

steps, initial guess of the control profile, NLP optimizer, etc.), but using the first principles 

mathematical model, integrated using the Matlab ODE algorithm “ode15s”. The first case is 

explained in detail; the application to the other two cases is straightforward so just the main 

results are commented. Finally, it is worthy to note that, in order to facilitate the comparison 

of results among the different case-studies, the control policies obtained in the three examples 

are scaled between [0, 1]. 

7.4.1 Case 1: Plug flow reactor catalyst blend problem 

In this problem (Dadebo & Mcauley, 1995), a plug flow reactor is to be packed with a 

mixture of two different types of catalysts (type 1 and type 2). The kinetic sequence is given 

by: 𝐴 ↔  𝐵 →  𝐶 and the problem is to find the optimal profile of catalyst of type 1 (𝑢(𝑧)) 

along the reactor (in this problem, the independent variable 𝑧 represents the reactor length, 

rather than time), to maximize the production of component 𝐶 (𝐽, Eq.(7.9)). 

 Max 
𝑢
𝐽 = 1 −𝑦𝐴(𝑧𝑓) − 𝑦𝐵(𝑧𝑓) (7.9) 

 

S.T.: 
𝑑𝑦𝐴
𝑑𝑡

= 𝑢(𝑧)[10 𝑦𝐵(𝑧) −  𝑦𝐴(𝑧)]

𝑑𝑦𝐵
𝑑𝑡

= −𝑢(𝑧)[10 𝑦𝐵(𝑧) −  𝑦𝐴(𝑧)] − [1 − 𝑢(𝑧)] 𝑦𝐵(𝑧)

} 
(7.10) 

where,  𝑦𝐴 and  𝑦𝐵 are the mole fractions of substances 𝐴 and 𝐵 respectively, 

[ 𝑦𝐴(0),  𝑦𝐵(0)] = [1,0],   𝑧𝑓 = 12,    0 ≤ 𝑢(𝑧) ≤ 1. First, the proposed methodology is 

applied using a 15 step discretization of the length domain [0: 12], hence each step 𝛥𝑧 = 0.8. 

Since the process has two state variables, two MVDK models (Eq.(7.11) and Eq.(7.12)) are 

fitted to mimic the system. The input variables [ 𝑦𝐴𝑗−1,  𝑦𝐵𝑗−1, 𝑢𝑗] are expected to vary within 

the limits (surrogate model/optimization domain) of [0 ∶  1.2, 0 ∶  0.1, 0 ∶  1]. Over this 

domain, a SLHS sampling plan is designed with 91 sample points. The original model, 

Eq.(7.10), is used to generate the output matrix [ 𝑦𝐴𝑗 ,  𝑦𝐵𝑗].  
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  𝑦𝐴𝑗 = 𝑓1(𝑦𝐴𝑗−1,  𝑦𝐵𝑗−1, 𝑢𝑗),       Δ𝑧 = 𝑧𝑗 − 𝑧𝑗−1 (7.11) 

  𝑦𝐵𝑗 = 𝑓2(𝑦𝐴𝑗−1,  𝑦𝐵𝑗−1, 𝑢𝑗),       Δ𝑧 = 𝑧𝑗 − 𝑧𝑗−1 (7.12) 

The accuracy of the fitted MVDK models is evaluated using the LOOCV technique, and 

the RMSE of the cross-validation are listed in Table 7.1. The obtained MVDK models have 

been used in the kriging based CVP, in which a sequential quadratic optimizer updates the 

discretized control profile until obtaining the optimal solution. The same methodology has 

been applied again with a different discretization of 20 step, hence 𝛥𝑧 = 0.6, using the same 

generated sampling plan (the only difference is that the response variables are generated by 

carrying out the computer experiments with 𝛥𝑧 = 0.6). Finally, both problem instances have 

been solved using the standard CVP technique in which the original first principles 

mathematical model is used with the same two discretization configurations (15, 20 times 

steps). The optimization results and computational effort of the proposed methodology and the 

standard CVP technique are compared in Table 7.1, and visualized in Figure 7.2.  

Table 7.1. Case study 1(*): optimization results and MVDK models accuracy. 

 Optimization results (**) MVDK models 

accuracy 

Time-step 

𝜟𝒛 

Objective 

value 

CPU time 

(s) 

RMSE 

( 𝒚𝑨) 

RMSE 

( 𝒚𝑩) 

15 steps FPM 12/15=0.8 0.4745 70.60   

MVDK 

models 
12/15=0.8 0.4739 16.72 7.5×10-5 8.9 ×10-5 

20 steps FPM  12/20=0.6 0.4753 172.9   

MVDK 

models 
12/20=0.6 0.4746 36.00 3.42×10-5 1.3×10-5 

 (*) An optimal objective value of 0.477 is reported in the literature (Dadebo & Mcauley, 1995) without specific 

indication of the required computational effort. 

(**) Optimization results of the MVDK models have been finally assessed using the FPM to ensure a fair comparison 

among both methods. 
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Figure 7.2. Optimal control profile and state variables case (1) obtained by CVP based on 

the FPM (blue lines) and on the MVDK models (red lines), using15 step (a,b,c), and 20 step 

(e,f,g) discretization. 

For both discretization settings, the proposed methodology was able to obtain very similar 

control policies (Figure 7.2-(a,e) red dotted line) to the ones obtained using the first principles 

process model (Figure 7.2-(a,e) blue dashed line), both leading to almost identical process 

dynamics (Figure 7.2-(b,c,f,g)). Moreover, the methodology has obtained approximately the 

same global optimal value of the objective (0.13 % difference in case of 15 time-steps; 0.14 

% in case of 20 time-steps), with relative significant reduction in the computational effort 

(more than 75% savings). 

7.4.2 Case 2: Batch reactor  

In a batch reactor (Luus, 1994), a reversible reaction A↔B is taking place. The problem 

is to find the best temperature control policy 𝑢(𝑡), that maximizes the performance index 𝐽 in 

Eq.(7.13),  

 Max 
𝑢
𝐽 =𝑦2(𝑡𝑓) (7.13) 

 

S.T.: 
𝑑𝑦1
𝑑𝑡

= (1 − 𝑦1(𝑡)) 𝑘1 − 𝑦1(𝑡) 𝑘2

𝑑𝑦2
𝑑𝑡

= 300 [(1 − 𝑦1(𝑡)) 𝑘1 − 𝑦1(𝑡) 𝑘2] − 𝑢(𝑡)(𝑦2(𝑡) − 290)

𝑘1 = 1.753 × 10
5 exp (

−1.1374 × 104

1.9872 × 𝑦2(𝑡)
) , 𝑘2 = 2.488 × 10

10 exp (
−2.2748 × 104

1.9872 × 𝑦2(𝑡)
)

[ 𝑦1(0),  𝑦2(0)] = [0,380],   𝑡𝑓 = 5 𝑚𝑖𝑛,    0 ≤ 𝑢(𝑡) ≤ 0.36 }
 
 
 

 
 
 

 
(7.14) 
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The time domain [0: 5] is discretized (𝛥𝑡 = 0.333, 𝛥𝑡 = 0.25) and, in each case, two 

MVDK models are fitted within the expected limits (surrogate model/optimization 

domain) [0: 1, 290: 490, 0: 0.36]. Over this domain, a SLHS sampling plan is designed with 

123 sample points. The original model (Eq.(7.14)) is used to generate the output matrix 

[ 𝑦1𝑗 ,  𝑦2𝑗] and the accuracy of the fitted MVDK models is evaluated using the LOOCV 

(Eq.(7.6)). The obtained MVDK models have been used in the kriging based CVP. The results 

of the proposed methodology and the standard CVP technique are compared in Table 7.2, and 

in Figure 7.3. 

 

 
Figure 7.3. Optimal control profile and state variables of case (2) obtained by CVP based on 

the FPM (blue lines) and on the MVDKs models (red lines), using15 step (a,b,c), and 20 step 

(e,f,g) discretization. 

Table 7.2. Case study 2(*): optimization results and MVDK models accuracy. 

 Optimization results (**) MVDK models 

accuracy 

Time-step 

𝜟𝒕 
Objective 

value 

CPU time 

(s) 

RMSE 

( 𝒚𝟏) 

RMSE 

( 𝒚𝟐) 

15 

steps 

FPM 5/15=0.3333 0.6744 222   

MVDK 

models 
5/15=0.3333 0.6704 25.5 0.01 3.05 

20 

steps 

FPM 5/20=0.25 0.6749 458   

MVDK 

models 
5/20=0.25 0.6748 43 0.0031 0.0031 

 (*) The reported optimal objective value for this problem in the literature is 0.6753 (Luus, 1994). 

(**) Optimization results of the MVDK models have been finally assessed using the FPM to ensure a fair comparison 

among both methods. 
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For both discretization settings, the proposed methodology is able to obtain a very 

similar control policy ( Figure 7.3-(a,e), red dotted line) to the optimal one obtained from using 

the real process model (Figure 7.3-(a,e) blue dashed line) and leads to so similar process 

dynamics (Figure 7.3-(b,c,f,g)). Moreover, the methodology has obtained approximately the 

same objective value (less than 0.6% difference in case of 15 time-steps; 0.02 % difference in 

case of 20 time-steps), with a significant reduction in the required computational effort (about 

90 % of the computation time saved in both cases). 

7.4.3 Case 3: parallel reaction problem 

In this third problem (Dadebo & Mcauley, 1995), a tubular reactor is considered to 

produce two substances according to the parallel reaction 𝐴 →  𝐵, 𝐴 →  𝐶, with rate constants 

 𝑘1 and  𝑘2 respectively. The objective is to maximize the yield of B at the final state, finding 

the most adequate profile of the control variable 𝑢(𝑡) = 𝑘1 𝑙/𝑣 (𝑙 represents the reactor length 

and 𝑣 the plug flow velocity). The dimensionless model describing the system dynamic is 

given in Eq.(7.16), where 𝑦1, 𝑦2 are the dimensionless concentrations of reactants 𝐴 and 𝐵 

respectively.  

 Max 
𝑢
𝐽 =𝑦2(𝑡𝑓) (7.15) 

 

S.T.: 

𝑑𝑦1
𝑑𝑡

= −(𝑢(𝑡) + 0.5 𝑢(𝑡)2)𝑦1(𝑡)

𝑑𝑦2
𝑑𝑡

= 𝑢(𝑡)𝑦1(𝑡)      

[ 𝑦1(0),  𝑦2(0)] = [1, 0],   𝑡𝑓 = 1 ,    0 ≤ 𝑢(𝑡) ≤ 5
   

}
 
 

 
 

 
(7.16) 

Again, the dimensionless domain [0: 1] is discretized (𝛥𝑡 = 0.0667 𝑎𝑛𝑑 𝛥𝑡 = 0.05) 

and the proposed methodology is applied and compared with the standard CVP technique. 

Once the accuracy of the fitted MVDK models is ensured, they replace the complex first 

principles process model in the CVP. For space limitation, the results of the proposed 

methodology and the standard CVP technique are compared in Figure 7.4 and Table 7.3 only 

for the 20 step case. 
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Table 7.3. Case study 3(*): optimization results and MVDK models accuracy. 

 Optimization results (**) MVDK models accuracy 

Time-step 

𝜟𝒕 
Objective 

value 

CPU time 

(s) 

RMSE 

( 𝒚𝟏) 

RMSE 

( 𝒚𝟐) 

20 

steps 

FPM 5/20=0.05 0.5733 254.7   

MVDK 

models 
5/20=0.05 0.5732 34 1.147×10-6 2.14×10-6 

 (*) The reported optimal objective value of the problem is 0.5735 (Dadebo & Mcauley, 1995). 

(**) Optimization results of the MVDK models have been finally assessed using the FPM to ensure a fair comparison 

among both methods. 

 

 

Figure 7.4. Optimal control profile and state variables of case (3) obtained by CVP 

based on the FPM (blue lines) and on the MVDK models (red lines), using 20 step 

discretization. 

The methodology obtained approximately the same global optimal value of the 

objective with a very small relative error (1.6% and 0.0102%), with relative significant 

reduction in the computational time (about 85%). In the three case studies, the proposed CVP 

framework was able to obtain very accurate results. As well as the standard CVP method, the 

proposed methodology improves the solution using the finer grid (20 time-steps), but still 

saving a huge quantity of computational effort. 

7.5 CONCLUSION  

The potential of dynamic kriging stems from its capacity to replace complex integration 

rules with simple successive interpolations. This potential has been exploited in this Chapter 

to develop a sequential dynamic optimization strategy based on such type of surrogate models 

able to solve the optimal control problem of complex processes, like the ones which usually 

appear in the chemical or petrochemical sectors, with significant advantages over the use of 

traditional FPMs. Specifically, relatively simple processes, frequently used as reference in the 

process systems engineering literature, have been used to assess the eventual benefits of the 

proposed kriging based CVP strategy in terms of accuracy, robustness and computational cost.  
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The kriging models have shown high accuracy to capture the nonlinear dynamic nature 

of these highly nonlinear systems, resulting in an outstanding capacity to predict the system 

dynamics over large time domains. The integration of such modeling technique with other 

complementary techniques, like sampling design for computer experiments, cross-validation 

methods and sequential dynamic optimization, to build a comprehensive dynamic optimization 

framework where the expensive integration of a complex model is replaced by simpler 

recursive or successive interpolation (MVDK models) has been straightforward. The resulting 

characteristics and advantages of the proposed framework, and specially its accuracy and the 

significant reduction of the computational effort, are evident even on its application to three 

case studies of moderate complexity. 

These results confirm that the proposed framework constitutes a significant step forward 

to solve one of the biggest challenges that face the standard CVP techniques, associated to the 

significant computational effort required by the repeated process model integration tasks. The 

methodology becomes also a unique solution when a mathematical process model is missing, 

and only experimental process data are available. In this sense, it looks like a promising way 

to allow a more universal application of nonlinear model-based control techniques, where the 

optimal control problem must be repeatedly solved.  
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Chapter 8: FDD of Nonlinear 

Dynamic Processes 

Based on MVDK 

This Chapter presents a hybrid approach to improve data-based Fault Detection and 

Diagnosis (FDD). It is applicable to nonlinear dynamic noisy processes, operated under time-

varying inputs. The method is based on the combination of kriging models and Classification 

Techniques. A set of MultiVariate Dynamic Kriging-based predictors (MVDKs) is built and 

used to estimate the process dynamic behavior, while static kriging models are used to smooth 

the eventually noisy process outputs. The estimated and the actual smoothed outputs are 

compared, taking advantage of the higher capacity of the residual patterns generated in this 

way to characterize the process state. The performance of the method is illustrated through its 

application to a well-known benchmark case study, for which the FDD performance has been 

significantly improved. This improvement is consistently maintained in different dynamic 

operating conditions and faulty situations, including scenarios with modified fault severities 

and fault styles. 

8.1 INTRODUCTION  

A fault is an unexpected change of a system behavior with respect to its normal 

operation. Although it may not lead to immediate physical failure or breakdown, a fault 

hampers or disturbs the normal system operation, thus causing an unacceptable deterioration 

of the system performance, which may even lead to dangerous operating conditions (Patton, 

et al., 1995; Calado, et al., 2001). A FDD system should be able to perform two main functions: 

first detecting the existence of the fault, as opposite to the normal behavior, and second 

diagnosing the fault type or characteristics (Patton, et al., 1995; Narasimhan, et al., 2008). 

Early FDD plays an essential role in the safety and reliability of industrial process operations 

because of its ability to discover the root cause of abnormal situations, averting sudden 

shutdowns, breakdowns or even catastrophic events, which finally lead to economic losses due 

to production stop and/or replacement of spare parts (Amozeghar & Khorasani, 2016).  

General FDD methods can be classified into three main groups: knowledge-based, 

model-based and data-based methods (Calado, et al., 2001; Venkatasubramanian, et al., 2003a; 

Venkatasubramanian, et al., 2003b). Knowledge-based methods rely on the development of 

some diagnostic rules, the establishment of rule-based expert system, necessitate a deep 

knowledge about process structure and components under the normal (fault-free) and the 
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different possible faulty situations (Calado, et al., 2001). However, the knowledge acquisition 

is generally a challenging task, beside that the response or the performance of the knowledge-

based systems to events outside their domain of knowledge or expertise cannot be reliable 

(Calado, et al., 2001). Model-based methods rely on what is named “analytical redundancy” 

(Patton, et al., 1994; Qin, 2012), through the monitoring of the extent of matching between the 

actual process measured features (e.g. state variables, outputs signals, coefficients or 

parameters) and the corresponding features calculated by means of an analytical model of the 

process representing the normal, or fault-free, features.  

Therefore, the model-based approach allows the generation of error or residual signals, 

resulting from the differences between the model-estimated features and the actual process-

measured features (Patan & Parisini, 2005; Isermann, 2005). These error signals indicate the 

extent of the process malfunctioning, i.e. the residuals should be close to zero when no fault 

occurs, while showing considerable values when any fault affects the system. Thus, error 

signals are used to detect and diagnose faults, simply by comparing them to threshold values 

for the errors, or using a more elaborated statistical analysis (Patton, et al., 1995; Narasimhan, 

et al., 2008; Caccavale, et al., 2010; Elhsoumi, et al., 2011). 

Model-based methods mainly include approaches such as observer-based, parity space-

based and parameter estimation-based. In the first approach, residuals are generated by 

comparing process-measured outputs to the corresponding outputs estimated by an observer 

(e.g., Leunberger observers in deterministic settings or Kalman filter(s) in a stochastic setting). 

On the other hand, the parity space approach is based on rearranging or transforming the input-

output or state-space process model, in order to obtain what is called parity equations or 

relation. The obtained relations are used to assess the parity (consistency) of the process model 

with sensor outputs and known process inputs; hence, the unbalance term is used as a residual 

signal. Meanwhile, the parameter estimation-based FDD approach is based on the assumption 

that faults can be interpreted as changes on physical process parameters (density, viscosity, 

specific heat, etc.). Thus, residuals can be generated as the difference between the repeatedly 

estimated parameters of the actual process, and the parameters of the analytical or reference 

model obtained under fault-free conditions. 

Model-based methods show great advantages when dealing with dynamic systems, 

where inputs and outputs of the monitored system are fed into a processor (e.g. diagnostic 

observer) that represents the knowledge about the process dynamics, in order to generate a 

fault indicator /residual (Patton, et al., 1994; Elhsoumi, et al., 2011). However, they are 

associated with many shortcomings that complicate their implementation 

(Venkatasubramanian, et al., 2003a). First of all, the difficulties to create an accurate dynamic 

model of the process should be considered. Besides the sensitivity of such models to modelling 
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errors, parameter variations and uncontrolled disturbances, etc., it becomes significantly 

difficult to develop analytical models for complex, highly nonlinear and/or large-scale (high 

dimensional) processes (Ardakani, et al., 2016a; Ardakani, et al., 2016c; Banu & Umab, 2011). 

Second, most of these approaches are based on linear state space models, which effectiveness 

is reduced when applied to highly nonlinear complex processes (poor linear approximation) 

(Venkatasubramanian, et al., 2003a; Serdio, et al., 2014); alternatively, some model-based 

approaches are nonlinear, but they are very specific to certain classes of processes 

(Venkatasubramanian, et al., 2003a). Finally, applications addressing large-scale processes 

would result in a high number of observers, which end up with solutions requiring an 

unaffordable computational effort if they must be used on-line (Venkatasubramanian, et al., 

2003a).  

Alternatively, data-based methods, especially Classification Techniques (CTs) (e.g. 

Support Vector Machines (SVMs), Gaussian Naïve Bayes classifiers (GNBs), Decision Tree 

(DT), Artificial Neural Networks (ANNs), etc.), have shown a great flexibility and robustness 

for the FDD of nonlinear chemical processes (Askarian, et al., 2016; Ardakani, et al., 2016c). 

Without requiring any process mathematical model, they are trained based on pattern 

recognition principles from process historical data, including information about normal and 

different faulty situations (Patton, et al., 1994). The learning process enables these CTs to 

extract knowledge from data, via optimization/adjustment of their parameters. Hence, features 

in the process variables that correspond to each class/situation (normal situation or different 

faults) can be recognized (Askarian, et al., 2016). Then, the trained CTs can be used for the 

process supervision in order to detect and diagnose possible faults from the process outputs 

measurements.  

However, these CTs also suffer from serious limitations (Patton, et al., 1994; Caccavale, 

et al., 2010). The first one is that the classification of faults is based only on the current 

measurement of the process outputs (features), which, in contrast to model-based approaches, 

disregards any knowledge about the system dynamics (i.e. relations between the system inputs 

and outputs). As a result, they are mostly used for FDD of steady state processes, where the 

process is expected to operate under constant conditions/controls (Patton, et al., 1994; 

Ardakani, et al., 2016a). Consequently, the process state/output variables are also expected to 

follow a constant/specific behavior (set points). This constant or steady-state behavior 

represents a definite or specific pattern that is relatively easy to be recognized by these CTs 

under normal or faulty conditions as well. However, in many situations the process is to be 

operated under changeable / manipulated operating conditions (e.g. during the transition 

between different process set points, or because of the changes in the manipulated inputs to 

overcome some external disturbances in order to retain the process to its optimal set point). In 
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these cases, CTs could easily produce false alarms by diagnosing the changes in the processes 

features as faults. This is due to the lack of information about the dynamics governing the 

relation between the process inputs and outputs. Thus, a second limitation is that the 

measurement errors that very often contaminate the measurements can create false diagnosis 

and alarms. These usual errors may be random (e.g.: sensors white noise) or not (outliers / 

biases due to instruments malfunctioning, miss-calibration or poor sampling) (Patton, et al., 

1994; Amozeghar & Khorasani, 2016).  

Complementary to these two basic methodologies (model-based and data-based FDD), 

some works have proposed the usage of ANNs and other related methods to mimic the system 

dynamic behavior, identifying the underlying mapping between the system inputs and outputs 

(Patton, et al., 1994; Calado, et al., 2001; Caccavale, et al., 2010; Honggui, et al., 2014; 

Smarsly & Petryna, 2014; Serdio, et al., 2014; Tayarani-B. & Khorasani, 2015; Banu & Umab, 

2011; Amozeghar & Khorasani, 2016). In these approaches, the ANN is employed as a model 

(predictor), in order to generate a residual vector between the ANN estimated outputs and the 

process measured outputs. These residuals are then used to detect and isolate faults using a 

threshold value for each residual component or applying some statistical analysis. ANNs 

predictors have been proven to be very robust and capable of approximating the dynamic 

behavior of a very wide range of complex linear and nonlinear systems, which overcome the 

previously mentioned difficulties associated to the development of analytical model-based 

approaches. Due to its flexible structure of neurons and powerful generalization properties, 

ANNs are capable of learning from input-output data, capturing complex nonlinear dynamic 

behaviors and filtering out the system noise and disturbances. 

Few works (Patton, et al., 1995; Tayarani-B. & Khorasani, 2015; Amozeghar & 

Khorasani, 2016) have combined these data-based predictors (and the generated residuals) 

with CTs to automate and improve FDD. However, in most of these works, CTs are trained to 

isolate each fault type when the residual component of a specific output exceeds a specific 

threshold value. This approach neglects the basic and most important characteristic of any CT, 

which is its ability to identify a certain pattern in the features, regardless of the specific values 

of the residuals. Furthermore, the identification of a specific threshold value for each residual 

component as a fault indicator is not a trivial task, as it requires prior knowledge about the 

process behavior besides its behavior under the effects of the fault, and may be even infeasible 

if scenarios with time-varying inputs are considered. Finally, it should be noted that the use of 

ANNs for data-based modeling frequently shows drawbacks as the curse of dimensionality 

and the difficulty to specify the network structure (Boukouvala, et al., 2011). Thus, it would 

be worth investigating the effectiveness of using other alternative modeling techniques. 
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This Chapter presents a hybrid data-based approach for FDD that combines data-based 

predictors and CTs. The objective is to enhance the performance of the data-based CTs used 

for FDD of nonlinear, dynamic, noisy processes, emphasizing that the dynamics may be 

associated to the fact that the process is running under changeable operating conditions. This 

enhancement is based on the following: the use of static kriging models to smooth noise; the 

use of efficient kriging-based process dynamic predictors; the use of residuals to characterize 

the different faults; the proper identification of a classification method; and the full 

exploitation of the potential capabilities of all these techniques. The proposed approach is 

illustrated through its application to the FDD of a three-tank benchmark problem. Results show 

not only a high enhancement in the performance of the CTs, but also high robustness under 

different profiles of the process control inputs and different faulty behaviors, even in situations 

not included in the training datasets of these CTs. 

8.2 METHODOLOGY 

The proposed system involves two stages: the first one is the offline stage, in which the 

predictor and the CT are trained using the process history data, while the second stage (Figure 

8.1) involves the online monitoring of the process by means of a smoothing procedure or 

filters, and of the already fitted predictor and CT.  

Assuming a process with inputs U(t) and outputs X(t),   𝑈𝑡 ∈ 𝑅
𝑘𝑢 , 𝑋𝑡 ∈  𝑅𝑘𝑥, the first 

step of the offline stage is the construction of the MVDKs based predictor 𝑋̂𝑝𝑟𝑑(𝑡 + 1) =

 𝐹𝑝𝑟𝑑(𝑋(𝑡), 𝑈(𝑡)). This predictor is trained with the available process input-output historical 

data (𝑈𝑝𝑟𝑑
𝑡𝑟𝑛/ 𝑋𝑝𝑟𝑑

𝑡𝑟𝑛 ) under normal (fault-free) conditions. In this way, the MVDKs is capable to 

estimate the process future outputs 𝑋̂𝑝𝑟𝑑(𝑡 + 1) –at the next time step, i.e. next or future 

sampling period- as a function of the current inputs and outputs (Section 8.2.3). Before its 

online usage, this predictor has to be validated to ensure that it has satisfactory estimation 

accuracy beyond the training conditions. This validation can be accomplished through the 

harnessing of the already fitted predictor to estimate the process outputs of a different set of 

data (validation data). Hence, the predictor estimations of the outputs are quantitatively 

compared to their corresponding real values by using some performance indicator (e.g., the 

Normalized Root Mean Square Error (NRMSE)).  

In order to generate the signal 𝑈𝑝𝑟𝑑
𝑡𝑟𝑛/ 𝑋𝑝𝑟𝑑

𝑡𝑟𝑛  used for the predictor training, a random 

signal of the inputs 𝑈𝑝𝑟𝑑
𝑡𝑟𝑛  is composed in such a way that it includes several step changes along 

the time. The amplitudes of these step changes are selected randomly within the allowed limits 

of the inputs. Additionally, the length (i.e. the time) of the step change should be long enough 

to capture the whole dynamic response of the system to this step change, and at the same time 
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it should be short enough to avoid the excess of the steady state samples. After the composition 

of the input signal 𝑈𝑝𝑟𝑑
𝑡𝑟𝑛 , a process first-principle model is used to simulate the corresponding 

outputs 𝑋𝑝𝑟𝑑
𝑡𝑟𝑛 . 

In the cases where there is no first-principle model of the process and only process 

history data is available, the input-output training signal (𝑈𝑝𝑟𝑑
𝑡𝑟𝑛/𝑋𝑝𝑟𝑑

𝑡𝑟𝑛 ) is selected from the 

process history data, so that it includes as many changes/fluctuations as possible within the 

whole variability domain of inputs and outputs. Consequently, this allows the collection of all 

possible information about the system dynamic behavior along most of its sub-domains or 

local domains. The size of the required training dataset (i.e. the signal 𝑈𝑝𝑟𝑑
𝑡𝑟𝑛 /𝑋𝑝𝑟𝑑

𝑡𝑟𝑛  length) is a 

case-dependent factor, since it mainly relies on the number of the system inputs and outputs, 

the degree of the system behavior nonlinearity and the size of the inputs variability domain. 

The second task of the offline stage is the construction and the training of a CT based 

on the residuals e(t), 𝑒𝑡 ∈ 𝑅
𝑘𝑥 (Section 8.2.4). These training error signals can be generated as 

follows: the available measurements signal(s) of the process inputs and outputs under normal 

and different faulty situations are collected (𝑈𝑃𝑅𝑇
𝑡𝑟𝑛 / 𝑋𝑃𝑅𝑇

𝑡𝑟𝑛 ); then static filters are used to smooth 

the outputs, filtering out the noise in order to obtain  𝑋̂𝑃𝑅𝑇
𝑡𝑟𝑛−𝑠𝑚. Generally, these filters are very 

simple static models  𝑋̂𝑠𝑚(𝑡) = 𝐹𝑠𝑚(𝑡, 𝑋(𝑡)). They are trained using the measured output data 

X(t), in order to define static relations able to describe the smoothed values of these outputs 

𝑋̂𝑠𝑚(𝑡) as a function of their noisy values X(t) and their measurements time t. The black-box 

functions Fsm represent the noise-free underlying behaviors of the outputs, i.e. the filters 

(Section 8.2.2). Analogously, as in this offline case, the inputs for the static filters are 𝑋𝑃𝑅𝑇
𝑡𝑟𝑛 ; 

thus, the outputs of the filters are their corresponding smoothed values  𝑋̂𝑃𝑅𝑇
𝑡𝑟𝑛−𝑠𝑚 . On the other 

hand, the predictor is used to estimate the normal outputs 𝑋̂𝑃𝑅𝑇
𝑡𝑟𝑛−𝑝𝑟𝑑

  corresponding to the input 

scenario 𝑈𝑃𝑅𝑇
𝑡𝑟𝑛 (𝑡). The residuals are then calculated as the difference between the smoothed 

actual outputs and the predictor estimated outputs 𝑒𝑃𝑅𝑇
𝑡𝑟𝑛 = 𝑋̂𝑃𝑅𝑇

𝑡𝑟𝑛−𝑝𝑟𝑑
−  𝑋̂𝑃𝑅𝑇

𝑡𝑟𝑛−𝑠𝑚. It is worthy 

to mention that half of the residual data  𝑒𝑃𝑅𝑇
𝑡𝑟𝑛  are used for the training of the CT, while the 

other half is used for its validation before its usage in the second stage of the framework. 

For the generation or the collection (either if a first principle model is available or only 

the process history data is available respectively) of the input-output signal 𝑈𝑃𝑅𝑇
𝑡𝑟𝑛 / 𝑋𝑃𝑅𝑇

𝑡𝑟𝑛 , the 

same principle previously mentioned should be also regarded. Thus, this signal(s) should 

include -as much as possible- all the potential combinations of the process normal and faulty 

situations under different/changeable dynamic behavior of the inputs (see the part 3.2). 

Similarly, the size of the required training dataset for the CT is a case-dependent factor, which 
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also depends on the process dimensionality, nonlinearity and additionally the expected number 

of process behavior classes (i.e. number of the faulty situations).  

Once the predictor and the classifier are trained and validated, they are linked to monitor 

and supervise the process during its operation (the second stage of the framework –Figure 8.1). 

Hence, under a certain time profile of the inputs U(t), the predictor is used to estimate the 

process behavior 𝑋̂𝑝𝑟𝑑(𝑡) corresponding to this profile. In parallel, the static filters are used 

to smooth the noise from the process actual output measurements. The error signal is then 

calculated as 𝑒(𝑡) = 𝑋̂𝑝𝑟𝑑  (𝑡) − 𝑋̂𝑠𝑚(𝑡), where 𝑋̂𝑠𝑚(𝑡) are the actual smoothed outputs. This 

error signal enables the CT (classifier) to have information about the process dynamics, along 

with possible faults, so the CT can discern if the outputs change is normal (i.e. the change is 

due only to the change of inputs or it is caused by an eventual fault). 

 

Figure 8.1. The second stage of the proposed FDD framework. 

8.2.1 Ordinary kriging 

Since both of the dynamic predictor and the static filters are based on the use of the OK 

model, therefore, this part presents a brief summary about the OK basics, while the subsequent 

parts (Sections 8.2.2 and 8.2.3) explain how the OK is employed as a dynamic predictor and a 

static filter.  

Given a set of n input-output training data [𝑤𝑖 , 𝑦𝑖], 𝑖 = 1,2, . . 𝑛, 𝑤 ∈ 𝑅𝑘 , 𝑦 ∈ 𝑅, the OK 

assumes the predictor 𝑦̂(𝑤) =  𝜇𝑜𝑘  + 𝑍(𝑤), where the constant term 𝜇𝑜𝑘 represents the main 

trend of the system to be approximated, and 𝑍(𝑤) is a deviation from that trend. The deviation 

𝑍(𝑤) is modeled as a stochastic Gaussian process with expected value 𝐸(𝑍(𝑤)) =  0, and a 

covariance between two residuals 𝑐𝑜𝑣(𝑍(𝑤𝑖), 𝑍(𝑤𝑗)) that only depends on their 

corresponding inputs 𝑤𝑖, 𝑤𝑗. Thus it can be calculated as: 𝑐𝑜𝑣 (𝑍(𝑤𝑖), 𝑍(𝑤𝑗)) = 𝜎𝑜𝑘
2  

𝑅(𝑤𝑖, 𝑤𝑗), being 𝜎𝑜𝑘
2  the process variance and 𝑅 (𝑤𝑖, 𝑤𝑗) = 𝑒𝑥𝑝(−∑ 𝜉𝑙|𝑤𝑖,𝑙−𝑤𝑗,𝑙−|

𝑝𝑙𝑘
𝑙=1 ) +

𝛿𝑖𝑗 𝜆 a correlation function, where, 𝜉𝑙 , 𝑙 = 1,…𝑘 are the model hyper-parameters, 𝛿𝑖𝑗 is the 

Kronecker delta, 𝑝𝑙 are smoothing parameters and λ is a regularization constant that enables 

the kriging predictor to regress noisy data (Azman & Kocijan, 2007).  The kriging predictor 
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and its estimated error are given by Eq. (8.1) and Eq. (8.2), respectively, where (𝑤∗) is a new 

interpolating point (different from the training data). In Eq. (8.1), [𝑟]𝑛×1 is the vector of 

correlations between the point to be predicted 𝑤∗ and the original training data points and 

calculated as 𝑅(𝑤𝑖, 𝑤
∗), [𝑅]𝑛×𝑛 is the correlation matrix between the training inputs, [𝑌]𝑛×1 

is the vector of the training outputs and [𝟏]𝑛×1 is the identity vector. 

 𝑦̂(𝑤∗) = 𝜇𝑜𝑘 + 𝑟
𝑇𝑅−1(𝑌 − 𝟏𝜇𝑜𝑘) (8.1) 

 𝑠̂2(𝑤∗) = 𝜎𝑜𝑘
2 (1 + 𝜆 − 𝑟𝑇𝑅−1𝑟 + (1 − 𝟏𝑇𝑅−1𝑟)−1 (𝟏𝑇𝑅−1𝟏)⁄ ) (8.2) 

This work considers the OK implementation developed by Forrester, et al., (2008), 

because of its high efficiency and applicability. Besides, the “fmincon” algorithm included in 

the Matlab optimization toolbox is used for the maximization (nonlinear optimization) of the 

concentrated likelihood function. More details about the OK model can be found in Section 

2.2.1. 

8.2.2 Static filter 

In order to smooth the data of the measured outputs X(t), a simple filtering step based 

on the use of static OK models is proposed. In summary, for each process output xi(t), 

i=1,2,..kx, an OK model is trained using the measured noisy data of this output (Figure 8.2, 

black point), in order to approximate a relation  𝑥𝑖
𝑠𝑚(𝑡) = 𝑓𝑠𝑚,𝑖(𝑡, 𝑥𝑖(𝑡))  (Figure 8.2, dotted 

green line) describing the underlying/ smoothed behavior of the output 𝑥𝑖
𝑠𝑚(𝑡) as a function 

of the time and the noisy measurements. This relation represents the OK filter that is used to 

interpolate at the different time instances (Figure 8.2, vertical dotted grey lines) in order to 

predict the corresponding smoothed output (Figure 8.2 , green circles).  

 

           

Figure 8.2. OK filter illustration. 
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The proposed filters  𝑥𝑖
𝑠𝑚(𝑡) = 𝑓𝑠𝑚,𝑖(𝑡, 𝑥𝑖(𝑡)) are straightforward applications of the 

previously described OK model, where the smoothed output  𝑥𝑖
𝑠𝑚, the measurement time t and 

the noisy output data 𝑥 are analogous to 𝑦̂, w and Y in Eq. (8.1), respectively. Recently, 

Ardakani et al. (2016b) have proposed the usage of these OK filters for smoothing noisy data 

of chemical processes history, in order to enhance the training of different CTs. They have 

shown that OK has very good capabilities in front of other techniques such as ANNs and 

polynomial regressions models.  

8.2.3  Predictor: multivariate dynamic kriging models 

Although the high modeling capabilities offered by the kriging approach have been 

extensively shown in the process systems engineering area, its usage has been concentrated in 

the modelling of complex but static systems (Davis & Ierapetritou, 2007; Caballero & 

Grossmann, 2008). This Chapter considers the MVDKs, which have been proposed (in 

Chapter 6) for data-driven modelling of multivariate dynamic systems, showing outperforming 

capabilities over many state-of-the-art techniques (e.g. ANNs, and Gaussian models) 

(Boukouvala, et al., 2011).  

This MVDKs method will be used in this work. It is based on the construction and 

training (using measured or simulated data) of a number of kx OK models that are trained to 

capture the incremental evolution of the system, i.e. the system future state/output variables 

over one time-step. In more details, each OK model is trained to approximate the mapping 

between the future value of one state/output variable at the next time step 𝑥𝑖
𝑝𝑟𝑑(𝑡 + 1) as a 

function of the system previous state and control variables values [ Xt, Xt-1 ,… Xt-L,   Ut, Ut-1,… 

Ut-L] considering a specific time lag or delay L=0, 1, 2….or L. This is given by Eq. (8.3), where 

𝑈(𝑡) ∈ 𝑅𝑘𝑢 represents the control/input variables, and 𝑋 ∈ 𝑅𝑘𝑥 corresponds to the 

state/output, which are recorded at discrete time instances of equal intervals Δt between them, 

being ku and kx the number of control and state variables respectively.  

 

𝑥1
𝑝𝑟𝑑(𝑡 + 1)  = 𝑓𝑝𝑟𝑑,1[𝑋̂(𝑡), . .  𝑋̂(𝑡 − 𝐿), 𝑈(𝑡), . . 𝑈(𝑡 − 𝐿)]

𝑥2
𝑝𝑟𝑑(𝑡 + 1) = 𝑓𝑝𝑟𝑑,2[𝑋̂(𝑡), . .  𝑋̂(𝑡 − 𝐿),  𝑈(𝑡), . . 𝑈(𝑡 − 𝐿)]

……

𝑥𝑖
𝑝𝑟𝑑(𝑡 + 1) = 𝑓𝑝𝑟𝑑,𝑖[𝑋̂(𝑡), . .  𝑋̂(𝑡 − 𝐿),  𝑈(𝑡), . . 𝑈(𝑡 − 𝐿)]

……… . .

𝑥𝑘𝑥
𝑝𝑟𝑑(𝑡 + 1) = 𝑓𝑝𝑟𝑑,𝑘𝑥[𝑋̂(𝑡), . .  𝑋̂(𝑡 − 𝐿),  𝑈(𝑡), . . 𝑈(𝑡 − 𝐿)] }

  
 

  
 

 (8.3) 

The time intervals Δt are always conditioned by the sampling periods of the system to 

be modelled. On the other hand, the lag L - which is also the dynamic model order- is often 

determined via a cut-and-try approach in order to select the lag value that achieves the best 

model prediction accuracy. At the same time, it is favorable to keep it as low as possible in 
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order to obtain simple dynamic models, since the increase of the lag value increases the 

number of the dynamic model inputs (see Eq.(8.3)), which consequently increases the 

complexity of the models fitting and usage. These sets of single-step emulators (Eq.(8.3)) are 

also considered as Nonlinear AutoRegressive models with Exogenous inputs (NARX), which 

are able to predict the system outputs over one time-step ahead. Additionally, they can be also 

used via recursive interpolation to predict the outputs over several time steps. Thus, at each 

time step, the predicted values of the state variable are fed back to the model representing its 

input for the next time step estimation, together with the new value of the control variables. 

For more details about the dynamic kriging models, multivariate dynamic prediction via 

recursive interpolation and their applications to other case studies, the interested reader is 

referred to (Boukouvala, et al., 2011; Biegler, 2007).  

8.2.4 Classification techniques  

Classification techniques may be based on a priori knowledge or on statistical 

information obtained from process data (García-Laencina, et al., 2010). In this work, statistical 

information-based methods have been adopted because of their flexibility and ease of 

implementation, especially for complex nonlinear processes. Each of them presents relative 

strengths and weaknesses, so the combination of some of them in hybrid systems has been 

suggested as a practical way for exploiting their advantages and covering their individual 

shortcomings (Venkatasubramanian, et al., 2003a). 

Different classification methods are adopted and compared in this study, representing 

the most common types of CTs. They are: ANNs, as a machine learning method, Support 

SVMs, as hyperplane-based methods (margin-based the latter), GNB, as a probabilistic 

method and finally DT, as a rule-based method. For the sake of generalization, but also in 

order to limit the number of tests, the performance of the proposed approach is quantified in 

this work for a reduced but significant set of classification methods. These methods are:  

• Artificial Neural Networks are non-statistical methods that have been imported from the 

machine learning area, and have been used as a fault diagnostic tool in the process 

engineering field (Venkatasubramanian, et al., 2003a; Venkatasubramanian, et al., 2003b). 

Its learning and prediction potential make them attractive in many areas. However, ANNs 

application in FDD could be limited because of its high computational load for complex 

systems. 

• Support Vector Machine  are margin based classification approaches initially introduced 

by Vanpik et al. (Boser, et al., 1992) and have been commonly used by researchers as 

reliable tools for a wide range of purposes (Monroy, et al., 2010; Akram, et al., 2014). 
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They establish the classification space based on the maximization of the margin between 

the training patterns and the decision boundaries, which is a way to reduce the structural 

risk of misclassification (Monroy, et al., 2010).  

• Gaussian Naïve Bayes classifiers are probabilistic models based on applying Bayes’ 

theorem. These classifiers exhibit two main benefits: First, their easy construction and the 

absence of a learning procedure. Second, the independency assumption of the features, 

leading to a very efficient classification process (Addin, et al., 2011; Atoui, et al., 2015). 

• Decision Trees are simple algorithms based on the formulation of diverse classification 

rules. These rules are extracted through a recursive approach (Dash & 

Venkatasubramanian, 2000). Many decision tree structures can be considered, some of 

them already standardized (Özyurt, et al., 1998).  

Finally, the performance of the CT and the resulting FDD system will be assessed in 

this work based on the 𝑓1-score measure, which is calculated as in Eq.(8.4) (based on a test 

dataset) and represents the harmonic mean of classifier precision and recall. More details can 

be found in Section 2.3.2. 

 𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8.4) 

The 𝑓1-score ranges from 0.0 (worst value) to 1.0 and (best value), and facilitates the 

comparison between methods and summarizing various concepts. However, it obviously 

implies a loss of information which may be relevant in particular situations in which precision 

and recall need to be discriminated or weighted to model the actual consequences of the 

misdiagnosis (i.e., when the consequences for false fault identification and false negative 

identification are different).  

8.3 APPLICATION AND DISCUSSION 

The three-tank system in Figure 8.3 has been used to illustrate the application and 

characteristics of the proposed approach. This is a well-known benchmark used in monitoring, 

control and FDD studies (Frank & Ding, 1997; Kouadri, et al., 2012; Sarailo, et al., 2015); it 

includes the basic characteristics of a fluid distribution network typically found in the chemical 

industry (Patton, et al., 1994), and its evolution can be described through a simple 

mathematical model, so it can be easily used to develop and reproduce faulty scenarios of 

different diagnosis difficulty to objectively test data-based (and model-based) the performance 

of FDD systems in scenarios including all the different elements motivating this work: 

nonlinear dynamic noisy processes, operated under time-varying inputs. 
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For comparative purposes, the same design and characteristics used in the original work 

(laboratory scale) have been maintained in this study: The system consists of three identical 

cylindrical tanks of cross section area A=0.0154 m2, which are serially interconnected by three 

cylindrical pipes of cross section area s13=s23=s0=0.005 m2, and flow coefficients (a13= 

0.6836, a23= 0.4819, a0= 0.4819. Two pumps are delivering the liquid to the system with 

flowrates Q1, Q2, where the maximum allowed flowrates are limited to 0.003 m3/s. The tank 

levels (h1, h2 and h3 respectively) are the measurable process outputs to be used for FDD. 

 

Figure 8.3. Three tanks benchmark system 

The process is described by the set of ordinary differential equations illustrated in 

Eq.(8.5). 

 

𝐴
𝑑ℎ1
𝑑𝑡

=  −𝑎1 𝑠13 𝑠𝑔𝑛(ℎ1 − ℎ3 )√2𝑔|ℎ1 − ℎ3| + 𝑄1 + 𝑄𝑓1                                                  

𝐴
𝑑ℎ2
𝑑𝑡

=  𝑎3 𝑠23 𝑠𝑔𝑛(ℎ3 − ℎ2 )√2𝑔|ℎ3 − ℎ2|  − 𝑎2𝑠0√2𝑔ℎ2 + 𝑄2 + 𝑄𝑓2                        

𝐴
𝑑ℎ3
𝑑𝑡

=  𝑎1 𝑠13 𝑠𝑔𝑛(ℎ1 − ℎ3 )√2𝑔|ℎ1 − ℎ3| − 𝑎3𝑠23𝑠𝑔𝑛(ℎ3 − ℎ2)√2𝑔ℎ3 − ℎ2 + 𝑄𝑓3}
 
 

 
 

 (8.5) 

The process is subjected to three possible faults: the first fault (F1) is the leaking in tank 

1 (Qf1=-0.0007 m3/s), the second (F2) is the plugging in tank 2 (Qf2=+0.0007 m3/s), and the 

third fault (F3) is the leaking in tank 3 (Qf3=-0.0007 m3/s). These values have been selected 

to be between 10% and 25% of the inlet flow, based on the literature of this case study. 

Additionally, a Gaussian error, 𝒩(𝜇 = 0, 𝜎 = 0.010), has been added to the model output in 

order to represent the noise introduced by the different sensors; besides, outliers following a 

normal distribution 𝒩(𝜇 = 0, 𝜎 = 0.01) have been also added to the 7% of the measurements. 

A sampling time of one second has been selected. 

The objective is to design a data-driven FDD system for the detection and diagnosis of 

possible faults, considering scenarios which should consider arbitrary changes in the 

manipulated inputs (Q1, Q2). It is worthy to mention that many studies exploiting this case 

study have used different values of the operating conditions/ adjustments (e.g. faults 

magnitudes, maximum limits of the input flowrates, etc.); however, the order of magnitude of 
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these values is always the same. During the subsequent parts of the methodology applications 

to the addressed case study, the process first principle model in Eq.(8.5) is only used to 

generate an input-output database (that imitates the real process history database), which is 

used for the training and the validation of both MVDKs and CTs. 

8.3.1 Predictor construction 

As previously mentioned, the first task in the offline stage is the MVDKs predictor 

construction. In this case, the task includes the development of three dynamic kriging models, 

Eq.(8.6), where i=1,2,3 and j=1,2. Each of the three models is approximating the future value 

of each tank level as a function of the pervious values of the system the levels h1(t), h2(t), h3(t) 

and inlets Q1(t), Q2(t) considering a certain time lag L. 

 

ℎ̂1
𝑝𝑟𝑑(𝑡 + 1) = 𝑓𝑝𝑟𝑑,1[ℎ𝑖(𝑡), ℎ𝑖(𝑡 − 1), . . ℎ𝑖(𝑡 − 𝐿), 𝑄𝑗(𝑡) , 𝑄𝑗(𝑡 − 1), . . 𝑄𝑗(𝑡 − 𝐿)]

ℎ̂2
𝑝𝑟𝑑(𝑡 + 1) = 𝑓𝑝𝑟𝑑,2[ℎ𝑖(𝑡), ℎ𝑖(𝑡 − 1), . . ℎ𝑖(𝑡 − 𝐿), 𝑄𝑗(𝑡) , 𝑄𝑗(𝑡 − 1), . . 𝑄𝑗(𝑡 − 𝐿)]

ℎ̂3
𝑝𝑟𝑑(𝑡 + 1) = 𝑓𝑝𝑟𝑑,3[ℎ𝑖(𝑡), ℎ𝑖(𝑡 − 1), . . ℎ𝑖(𝑡 − 𝐿), 𝑄𝑗(𝑡) , 𝑄𝑗(𝑡 − 1), . . 𝑄𝑗(𝑡 − 𝐿)]

} (8.6) 

As previously described in Section 8.2.3, different lag values can be tested, however, it 

is also obvious to assume first the simplest case when no lag is introduced to the models (i.e. 

L=0). Hence, the models take the form in Eq.(8.7). 

 

ℎ̂1
𝑝𝑟𝑑(𝑡 + 1) = 𝑓𝑝𝑟𝑑,1[ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡), 𝑄1(𝑡), 𝑄2(𝑡) ]

ℎ̂2
𝑝𝑟𝑑(𝑡 + 1) = 𝑓𝑝𝑟𝑑,2[ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡), 𝑄1(𝑡), 𝑄2(𝑡)]

ℎ̂3
𝑝𝑟𝑑(𝑡 + 1) = 𝑓𝑝𝑟𝑑,3[ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡), 𝑄1(𝑡), 𝑄2(𝑡)]

} (8.7) 
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Figure 8.4. Training data of the MVDKs predictor. 

To train the MVDKs predictor, a fault-free random signal set of process inputs U(t) = 

[Q1(t), Q2(t)] and output measurements X(t) = [h1(t), h2(t), h3(t)] has been used (Figure 8.4). 

The training of these dynamic models has been achieved via determining the values of the 

parameters [𝜉𝑙] that maximize the concentrated log-likelihood of the training data. This task 

involves a computationally expensive nonlinear unconstrained optimization problem due to 

the iterative inversion of the correlation matrix [R]n×n. Since the MVDKs are programmed and 

implemented in Matlab subroutines, the aforementioned nonlinear optimization problem has 

been solved using the “fmincon” algorithm included in the Matlab optimization toolbox 

library.  
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A nontrivial challenge that often faces OK training is the selection of the appropriate 

initial values required to start this optimization: a local search optimizer can be easily trapped 

in local optima, due to the complexity of the likelihood function. Different optimization trials 

(starting from different initial parameter values) are recommended in order to guarantee a 

successful fitting task. Table 8.1 illustrates the MVDKs optimal parameters that resulted from 

the training task. The training of the predictor (in this case, the three OK dynamic models) 

required a relatively high computational effort (Table 8.4), although it should be emphasized 

that this task is performed offline. Yet, the main element to assess system performance is the 

prediction time, which is small enough.  

Table 8.1. Parameters for the three OK dynamic models. 

 𝝁𝒐𝒌 𝝈𝒐𝒌
𝟐  λ 𝝃𝒉𝟏 𝝃𝒉𝟐 𝝃𝒉𝟑 𝝃𝑸𝟏  𝝃𝑸𝟐  

𝒉̂𝟏
𝒆𝒔𝒕
(𝒕+𝟏)

 0.572 0.159 0.0020 0.166 0 0.0416 0.0681 0.0398 0.0044 

𝒉̂𝟐
𝒆𝒔𝒕
(𝒕+𝟏)

 0.143 0.095 0.0029 0.0948 0.0500 0.0476 0.0296 0.0717 

𝒉̂𝟑
𝒆𝒔𝒕
(𝒕+𝟏)

 0.518 0.161 0.0019 0.1201 0.0354 0.0599 0.0124 0.0066 

 

The predictor is validated by using it to estimate the process outputs (tank levels) 

corresponding to different inlet profiles. Figure 8.5 shows the validation inlet scenarios, and 

the predicted tank levels (dotted red lines) compared to the ideal outputs (solid black lines) 

and the process measured outputs (solid blue lines). The figure reveals the high accuracy of 

the predictor, and its efficient ability to identify the real underlying behavior of the outputs, 

achieving a very small NRMSE values for each model (1.05%, 1.1%, 1.02 %, respectively). 

The figures and the results also highlight the high potential capabilities of MVDKs to predict 

a multivariate behavior over relatively large time horizons (in this case, 800 steps ahead). 

The zero-lag models (Eq.(8.7)) can approximate the system behavior with high 

accuracy. Therefore, there is no need to introduce any lagged behavior into the models (i.e. 

testing other lag values where L>0) and no reason to assume any extra cost in terms of the 

computational effort of the training and the prediction times, and the complexity of the 

resulting models structure. 
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Figure 8.5. Validation of the MVDKs predictor. 

8.3.2 Classifier construction 

The second task in the offline stage is the CT construction using the residuals. For this 

goal, process historical data, including the inlets (𝑈𝑃𝑅𝑇
𝑡𝑟𝑛 = [𝑄1(𝑡), 𝑄2(𝑡)]) and the tank 

levels (𝑋𝑃𝑅𝑇
𝑡𝑟𝑛 = [ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡)]), are collected under many process conditions, including 

normal and faulty situations [Nr, F1, F2, F3]. Figure 8.6-(a) shows the profiles of the inlets, 

Figure 8.6-(b) shows the faulty scenario, and Figure 8.6-(c) shows the measured tank levels 

(solid blue lines). In Figure 8.6-(b), the same sequence of faults [Nr, F1, F2, F3] is repeated 

three times, where at each time, the faulty scenario is consistent with a different dynamic 

behavior of the inlets (Figure 8.6-(a)). 
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Three dynamic modes of the inlets are selected, including sinusoidal, linear decreasing 

and linear increasing profiles. The objective is to gather -as much as possible- information 

about the effects of the faults (patterns) on the process under different modes of the control 

inputs (inlets), in order to obtain an accurate classifier. Conversely, the usage of a large number 

of training data could complicate the training of the classifier due to the required computational 

effort. 

 

Figure 8.6. Training and validation data of the CT: Process inputs (a), faults scenario 

(b), outputs (c) and residuals (d). 

Three kriging filters ℎ̂𝑃𝑅𝑇,𝑖
𝑡𝑟𝑛−𝑠𝑚  = 𝑓𝑠𝑚,𝑖(𝑡,  ℎ𝑃𝑅𝑇,𝑖

𝑡𝑟𝑛 ), 𝑖 = 1,2,3 are fitted and used  - as 

proposed in Section 8.2.2 - to filter out the noise from the measured outputs (Figure 8.6-(c), 

solid blue lines) in order to obtain the corresponding smoothed ones (Figure 8.6-(c), dotted 

green lines). Table 8.2 shows the parameter values of the OK-based filters, and the NRMSE 

of the values estimated by the filters (smoothed output values) compared to the ideal known 

behavior of the tank levels (Figure 8.6-(c), solid black lines). Using the information of the inlet 

profiles and the initial values of the tank levels (ℎ1(0), ℎ2(0), ℎ3(0)), the MVDKs predictor 

is used to predict the normal (fault free) behavior of the tank levels (Figure 8.6-(c), dotted red 
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lines): 𝑋̂𝑃𝑅𝑇
𝑡𝑟𝑛−𝑝𝑟𝑑

= ℎ̂𝑃𝑅𝑇,𝑖
𝑡𝑟𝑛−𝑝𝑟𝑑

, 𝑖 = 1,2,3. Again, the MVDKs estimations of the tank levels are 

very accurate and close to the known ideal behavior given by the simulation (Figure 8.6-(c), 

black lines). 

Table 8.2. Parameter values and NRMSE for the three OK static filters. 

 𝝁𝒐𝒌 𝝈𝒐𝒌
𝟐  λ 𝝃t NRMSE (%) 

𝒉̂𝟏,𝑷𝑹𝑻
𝒕𝒓𝒏−𝒔𝒎(𝒕) 0.2125 0.0012 0.2000 0.0036 1.41 

𝒉̂𝟐,𝑷𝑹𝑻
𝒕𝒓𝒏−𝒔𝒎(𝒕) 0.1527 0.0008 0.2000 0.0029 1.20 

𝒉̂𝟑,𝑷𝑹𝑻
𝒕𝒓𝒏−𝒔𝒎(𝒕) 0.1937 0.0010 0.2000 0.0033 1.40 

Finally, the training residuals (Figure 8.6-(d)) are generated as the difference between 

the estimated tank levels (Figure 8.6-(c), dotted red lines) and the corresponding smoothed 

measured levels (Figure 8.6-(c), dotted green lines); 𝑒𝑃𝑅𝑇,𝑖
𝑡𝑟𝑛 = ℎ̂𝑃𝑅𝑇,𝑖

𝑡𝑟𝑛−𝑝𝑟𝑑
 − ℎ̂𝑃𝑅𝑇,𝑖

𝑡𝑟𝑛−𝑠𝑚, 𝑖 = 1,2,3. 

The total set of 1800 data (Figure 8.6-(d)) is randomly separated into a training set (900 data) 

used to train the CT, and a validation set (900 data) used to assess the trained CT. 

Table 8.3. Offline validation accuracy of the CT. 

Validation accuracy (f1-score %) 

Classifiers Variable-based CT Residual-based CT 

Nr  F1 F2 F3 total Nr  F1 F2 F3 total 

ANN 90.4 83.4 97.9 82.4 88.3 96.5 92.4 97.4 89.9 94.0 

SVM 79.0 74.5 81.8 81.8 79.2 96.6 93.9 97.8 91.1 94.9 

GNB 11.2 63.2 56.3 39.3 43.1 95.2 75.3 97.4 65.2 83.3 

DT 87.5 79.3 91.5 79.2 84.4 97.9 89.3 98.0 88.5 93.4 

In order to allow fair comparisons, the CTs are also trained in the classical way, using 

the inlets and the smoothed measured variables[𝑄1, 𝑄2, ℎ̂𝑃𝑅𝑇,1
𝑡𝑟𝑛−𝑠𝑚, ℎ̂𝑃𝑅𝑇,2

𝑡𝑟𝑛−𝑠𝑚, ℎ̂𝑃𝑅𝑇,3
𝑡𝑟𝑛−𝑠𝑚], since the 

residuals are also generated by comparing the smoothed actual outputs to the estimation of the 

predictor. Additionally, the training and validation data-sets are kept the same for both the 

residual-based and the variable-based classifiers. Table 8.3 shows the accuracy of several 

classifiers including the ANN, SVM, GNB and DT in terms of the 𝑓1-score, when they are 

trained and validated using the residuals and the process variables, and how the residuals are 

able to isolate the effect of the inputs from the effect of faults. The results also indicate that 

fault F2 (plugging in tank 2) is the most easy-to-detect fault, as it will be further explained in 

the following parts of this section. The table also indicates that among the four classifiers, 

ANN and SVM show the best accuracy in these cases, while GNB shows the lowest. 
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In this work, the MVDKs predictor, the static filters and the OK model are programmed 

and implemented in a Matlab subroutine. On the other hand, the ANN toolbox of Matlab is 

used to construct the ANN classifier through the “patternnet” function. The ANN structure is 

chosen to have two hidden layers, each one including seven neurons, and the function 

“trainscg”, based on the “Scaled Conjugate Gradient” algorithm, is used for training the 

network. The ANN structure and the training algorithm are selected using a cut-and-try 

approach, in order to balance the network simplicity and its prediction accuracy. The SVM, 

GNB and DT classifiers are built using the Python 3.3.2-2013/05/15 libraries: A SVM 

classifier having a radial basis function kernel type is constructed using the Python SVM and 

grid search libraries, where the grid search library is employed for tuning the kernel 

parameters. Regarding the GNB and the DT classifiers, the “GaussianNB” library and the 

“DecisionTreeClassifier” library are used, respectively. Lastly, the computational effort 

required by the predictor, the static filter and the CTs for training and execution (i.e. to predict, 

filter or diagnose) are also reported in Table 8.4. It is important to note that the given execution 

times are per one prediction/filtering/diagnosis step (i.e., during one sampling period). 

Table 8.4. Computational effort (training and execution) for the MVDKs predictor, the 

OK-based filters, and the CTs. 

 Predictor Filter Classifiers 

 ANN SVM GNB DT 

Training (*) 2.08 ×103 53.45 1.650   0.009 <0.001   0.002 

Execution (*) 0.009 0.003 0.003 <0.001 <0.001 <0.001 

(*) CPU seconds, Intel(R) Core (TM) i7-4710HQ CPU @ 2.5GHz 

8.3.3 Application 

After the training and the validation of the MVDKs predictor and the CTs, the proposed 

framework is ready to supervise the process and to detect and diagnose eventual faults, through 

its application to several tests. The results obtained are next presented, discussed and classified 

according to the three main elements that characterize the robustness and flexibility of the 

proposed solution: the analysis of the performance of the proposed FDD method under 

different dynamic profiles of the process inputs, the assessment of this performance under 

different faulty scenarios, and the analysis of the sensitivity of the proposed method toward 

changes in the magnitude of the faults. In all cases, different faulty and normal situations will 

be combined. It is worth noting that this situation is not realistic, since after the detection of 

the earliest fault (whichever the type), some corrective actions will be taken in order to remedy 

this process malfunctioning as soon as possible. However, the objective of this study is to 

determine the prompt reaction and diagnosis consistency of the proposed FDD system, which 
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in a dynamic scenario can be better assessed by maintaining the faulty situation during a 

significant time period. 

8.3.3.1 Robustness against changes in the dynamic inputs  

For the sake of illustration, the first test involves a very simple scenario in which both 

inlets are assumed to be constant (Figure 8.7-(a)) while different step/abrupt faults occur 

(Figure 8.7-(b)), starting from normal conditions and following a sequence of faults [Nr, 

F1,F2,F3] during the whole time horizon (100 time intervals). Figure 8.7 shows the emulated 

process measurements (actual outputs, (c), solid blue lines) which are first smoothed ((c), 

green dotted lines) and compared to the MVDKs estimation of the outputs corresponding to 

the normal behavior ((c), red dotted lines); finally, this comparison is given by the residual 

values ((d)). In order to visualize the accuracy of the static kriging-based filters and the 

MVDKs predictor, the simulated data have been also represented in both cases ((c), solid black 

lines, showing almost identical behavior in all cases).  

Figure 8.8 shows the classification labels (FDD results) estimated using the residual-

based ANN (red stars) and the variable-based ANN (green stars) compared to the real scenario 

(black stars), where label “0” corresponds to the normal conditions, label “1” corresponds to 

fault F1, etc. Table 8.5 presents the performance of these CTs in terms of the 𝑓1-score. The 

proposed methodology detected and isolated the test faults with total 𝑓1-score of 98.4%, in 

front of a 𝑓1-score of 73.6% for the best result obtained (ANN results) using the classical 

variable-based CT. This conventional approach is severely affected by the slight difference 

between the patterns associated to faults F1 and F3. On the contrary, the use of the residuals 

(Figure 8.7-(d)) leads to more differentiated patterns for these faults. For the rest of faults 

(normal conditions and F2) the resulting patterns are quite different, and the FDD shows no 

problems. 

A remarkable issue is the low failure rate of the proposed FDD method, and the fact that 

most failures correspond to transitions between the different faults/conditions: In some of these 

cases, the delay includes a wrong detection of a condition that does not coincide with any of 

the states associated to this transition, typical result of the application of a filter to smooth the 

process information. The same behavior can be also identified at the beginning of the test, 

when the static kriging filters show low prediction performance because of the lack of data. In 

any case, all these effects are shown to be amplified when a variable-based classifier is used. 
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Figure 8.7. Test 1: Process inputs (a), faulty scenario (b), outputs (c) and residual 

values (d). 

 

Figure 8.8. Test 1: Data-based Diagnosis: Simulated situation, proposed error-based 

method and variable-based CT. 

Additional tests are next carried out, each one including different inlet profiles, while 

the faulty scenario [Nr, F1, F2, F3] is kept constant. The inlet profiles present increasing 
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complexity, from the same simple behavior in test 2 (Figure 8.9-(a)) to profile of the fifth test 

(Figure 8.9-(d)), which includes a linear increase of the first inlet parallel to a linear decrease 

of the second inlet, as well as flowrate values higher than those used for the CT training. In 

any case, it is worth to emphasize that this different behavior of the variable-based CT in front 

of the residual-based CT is very difficult to be detected during the training (Table 8.3): 

although both the training and the testing sets include more complex input profiles, compared 

to test 1, training results seem correct. 

Results for all the tests are illustrated in Figure 8.11 and Table 8.5. Middle subplots 

show the smoothed actual outputs and the MVDKs estimations, which are compared in order 

to generate the residuals (bottom subplots). The MVDKs models produce accurate estimations, 

as well as they show robustness and flexibility to predict the system behavior under changing 

inlet profiles. The figures also show that the resulting FDD isolates the effect of changing the 

forcing inputs, generating distinct patterns for each fault type even with the change of the 

control inlet profiles, which is extremely important to the CTs in order to easily detect and 

diagnose the faults. The complete test results in Table 8.5 reveal that, for all CTs, the accuracy 

attained by the residual-based approach is always higher than the accuracy produced by the 

variable-based approach. ANN and SVM appear to be very competitive, showing the best 

accuracies among the classifiers, even when they are used as variable-based CTs, while GNB 

shows the lowest FDD accuracies.  

It is worth noting that, in the second test, the variable-based approach performs in a 

similar way to the residual-based method, especially for the ANN and DT classifiers. This can 

be explained because the inlet profiles in this case were included along the training data for 

the offline construction of the CTs (see Figure 8.6). On the contrary, in the fifth test, the 

accuracy of the variable-based approach is about 50 % of that obtained by the residual-based 

methodology, which is maintained even when the control inputs violated the limits of the 

offline training. This confirms the high robustness of the proposed methodology. 
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Figure 8.9. Test 2 (a,b,c) and test 3 (d,e,f). 

 

Figure 8.10. Test 4 (a,b,c) and test 5 (d,e,f). 
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Figure 8.11. The ANN classifiers estimated labels compared to the ideal labels of: 

Test 2 (a), test 3 (b), test 4 (c) and test 5 (d). 

Table 8.5. FDD accuracy based on ANN, SVM, GNB and DT classifiers under 

different inlet scenarios. 

  Residual-based CT Variable-based CT 

  ANN SVM GNB DT ANN SVM GNB DT 

Test 1 Nr 98.4 97.5 96.0 98.9 96.10 92.5 62.0 3.8 

F1 98.8 94.7 15.5 52.1 00.0 0.0 0.0 0.0 

F2 98.2 95.3 94.4 96.4 98.2 66.0 3.2 64.7 

F3 98.2 93.1 62.8 73.5 65.8 84.7 0.0 59.9 

F all 98.4 95.2 67.2 80.2 73.6 60.8 16.3 32. 

Test 2 Nr 94.7 95.2 92.7 92.9 86.9 92.9 40.0 82.4 

F1 97.0 96.9 86.6 87.8 95.4 84.6 71.3 86.5 

F2 97.0 96.3 94.8 96.9 92.2 84.2 63.5 83.3 

F3 94.4 94.4 80.2 78.7 94.7 94.7 72.6 95.3 

F all 95.8 95.7 88.6 89.1 92.3 89.1 61.8 86.9 

Test 3 Nr 97.1 96.1 96.1 95.8 84.4 62.5 0.0 94.1 

F1 96.0 95.4 48.6 70.1 58.5 47.7 33.3 64.7 

F2 96.4 95.8 95.3 92.2 85.9 76.3 58.2 94.6 

F3 95.4 94.4 33.1 71.8 57.7 79.5 47.3 54.9 

F all 96.3 95.4 68.3 82.5 72.0 66.5 34.7 77.1 

Test 4 Nr 95.2 94.7 95.6 98.4 85.0 51.3 0.0 60.5 

F1 93.0 88.2 61.4 84.1 56.3 36.1 36.5 48.3 

F2 96.0 96.4 95.9 94.6 92.2 61.7 39.3 66.9 

F3 90.8 87.5 34.4 83.5 45.0 56.0 19.0 37.8 

F all 93.8 91.7 71.8 90.2 70.8 51.3 23.7 53.4 

 

 

Test 5 

Nr 96.1 95.6 95.6 90.9 53.6 0.0 17.2 92.6 

F1 94.2 98.0 85.0 89.5 08.6 3.9 56.1 14.8 

F2 95.0 95.9 94.9 91.5 95.4 32.1 43.2 68.0 

F3 93.6 96.4 80.0 87.0 38.3 96.9 0.0 91.1 

F all 94.8 96.5 88.8 89.7 50.0 33.2 29.1 66.6 
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8.3.3.2 Performance under different faulty scenarios 

In order to analyze the effect of a more complex sequence of faults on the diagnosis 

capabilities, different faulty scenarios have been incorporated considering the same inlet 

profiles. Figure 8.12 summarizes the scenario and the results of the first of these applications 

(test 6): the inlet profiles are shown in part (a), and the first faulty scenario [Nr, F1, F2, F3] is 

shown in part (b); Figure 8.13 illustrates the conditions of the second and third applications, 

corresponding to different sequences of faults: [F2, Nr, F3, F1] and [F3, F1, Nr, F2]. The 

figures show again the accuracy and the flexibility of the methodology, since the residuals are 

able to establish the fault patterns regardless of their arrangement or sequence. Table 8.6 

compares the FDD accuracy of the proposed method to the FDD accuracy of a variable-based 

CT along these three tests. The results prove that the sequence of the faults does not 

significantly affect the performance of the proposed method. The comparative performance of 

the different CT methods is maintained, and a significant enhancement of the proposed 

residual-based method in front of the equivalent variable-based methods is evident.  

Again, the limitations of the static kriging filter appear only at the early stages of the 

changing behavior. Although test 8 evidences a more complex situation (Figure 8.13-(b)), this 

does not significantly affect the diagnostic performance in the residual-based proposed 

procedure. It is worth noting that in this case changing the sequence significantly affects the 

residual patterns, in part because the hold-up of the tanks have been affected by the previous 

faults. In this sense, good results when changing the sequence assure that the classifiers do not 

over fit the system incorporating the fault sequences included in the training data in the patterns 

to be recognized; in this specific case, this also assures reliability, confirming that the diagnosis 

system is really considering the dynamics of the process. 
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Figure 8.12.  The application results of the methodology to test 6. 

 

Figure 8.13. The application results of the methodology to: (a) test 7, (b) test 8. 
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Table 8.6. FDD accuracy (f1-score) based on ANN, SVM, GNB and DT classifiers 

under different faulty scenarios. 

  Residual-based CT Variable-based CT 

 ANN SVM GNB DT ANN SVM GNB DT 

Test 6 Nr 96.2 96.1 95.6 96.4 94.8  31.2 14.2 29.7 

F1 93.0 93.0 65.2 84.7 65.7  70.4 64.5 45.4 

F2 97.0 97.4 96.9 96.5 95.8 63.3 63.0 63.2 

F3 89.6  90.1 08.8 79.7 20.0   42.3   5.5 17.6 

F all 94.0 94.2 66.6 89.3 73.8 51.8 36.8 39.0 

Test 7 Nr 93.3 95.3 93.6 79.2 93.6 30.1   9.5 12.5 

F1 96.6 97.5 69.4 96.0 65.9 76.0 66.2 50.2 

F2 95.2 96.6 94.7 89.2 96.2 63.2 69.4 60.7 

F3 94.7 96.3 19.8 90.7 34.3 50.6   3.6 16.7 

F all 95.0 96.4 69.4 88.8 75.0 55.0 37.1 35.0 

Test 8 Nr 96.4 97.4 95.8 95.2 67.1 32.4 05.7 23.3 

F1 96.1 98.0 68.5 78.5 56.3 73.0 65.3 48.6 

F2 99.0  99.5 99.0 98.0 84.7 59.2 70.4 61.9 

F3 93.5  96.0 20.0 73.2 26.6 52.8 10.8 26.4 

F all 96.3 97.7 70.8 86.2 61.3 54.4 38.0 40.1 

8.3.3.3 Sensitivity to the magnitude of the faults  

Most of the studies that have been performed in the area of FDD methods have been 

illustrated considering a fixed threshold value to characterize each fault. However, in real 

situations the faults may occur with different magnitude or intensity degrees. Hence, an 

important characteristic that is worthy to be examined is the robustness of the method toward 

different magnitudes of the fault(s), i.e.: to which extent the method is able to handle a range 

of fault magnitudes with acceptable FDD accuracy. So, in this section, the analysis will include 

the application of the proposed method to the simplest studied scenario (test-1; Figure 8.7) but 

manipulating the absolute magnitudes of the faults. Also, for simplicity, and in order to 

facilitate the comparison between the different studied situations, it will be considered that, in 

the faulty scenarios, the magnitude/intensity of all the faults [F1, F2 and F3] will take place 

with the same absolute magnitude/intensity. The absolute values for these faults will be then 

fixed within a specific range [0.0002: 0.0012 m3/s] around their nominal values (0.0007 m3/s). 

Only the results obtained by the ANN and the SVM methods for CT are shown, since these 

have been the ones consistently showing the most accurate results in all previous cases. 

Figure 8.14 shows the overall 𝑓1-score (diagnosis accuracy) along each scenario, for 

the normal and faulty situations, given the different intensities of each fault. The performance 

of both, the proposed residual-based methodology (red colors) and the equivalent results using 
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variable-based CT (green colors) can be compared, as well as the two selected methods for 

CT. In general, the increase of the fault magnitude above its nominal value (0.007 m3/s - 

vertical dotted black line) leads to slight improvements of the FDD accuracy, and the reduction 

in the fault magnitude leads to gradual reduction in the accuracy of all the proposed methods, 

but only until a certain threshold is reached, after which a rapid decrease of the accuracy starts. 

So, in general, when the fault magnitude is large enough, the performance of any CT method 

becomes good enough, highlighting the need of a good selection in order to build flexible and 

sensible FDD systems. The results also clearly confirm the superiority of the proposed method, 

since it is able to efficiently detect and diagnose smaller magnitudes of the same faults with 

good accuracy. On the contrary, the classical CTs show significant decays in their performance 

when dealing with small fault magnitudes and, in the extreme cases, they even become unable 

to detect some faults at all (as F1 and F3, see Figure 8.14-(b) and (d) respectively) while the 

proposed procedure still shows good performance.  

 

Figure 8.14. f1-score of the four classes for different values of the faults (absolute 

magnitudes). 

 

Figure 8.15. Residual signals for test 1, using different magnitudes of the faults: (a) 

0.0012 m3/s (b) 0.0007m3/s, and (c) 0.0002 m3/s. 
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Figure 8.16. ANN classification labels of two extreme cases of the fault magnitudes 

(test 1): (a) 0.0012, (b) 0.0002 m3/s. 

This generic correlation between the FDD accuracy of the proposed method and the 

fault magnitudes could be further explained by the results shown in Figure 8.15, where the 

residual signals for different absolute magnitudes of the faults are shown. It is clear how the 

patterns of the faults included in the residual signals change, facilitating or complicating the 

mission of the CT which has not been trained for these scenarios, to correctly classify them. 

Figure 8.16 shows the detail of the obtained diagnosis using the residual-based ANN and the 

variable-based ANN classifier.  

The previous analyses prove that the proposed methodology is able to detect and 

diagnose the process state under different profiles of the control inputs dynamics and different 

faulty scenarios, in an accurate flexible and robust way, allowing a significant enhancement 

of the performances of the different classifiers. Additionally, the method also proved its 

efficiency and significant enhancement in the FDD performance in cases where the faults 

affect the process with magnitudes or degrees different than the ones included in the training 

data. But in all these analyses, the faulty scenarios were always taking the same “step” style. 

This systematization is required to present a fair comparison between the performance of 

different classifiers under different inlet scenarios or different magnitudes or intensities of the 

faults and obtaining clear conclusions and a deeper understanding of the method behavior, but 

it is usually far from realistic scenarios. Thus, in order to confirm the previous conclusions, 

the method has been finally applied to a more complex test consisting of a complicated 

piecewise constant profile of inlets (Figure 8.17-(a)), and also a complicated sequence of faults 

with different changing magnitudes, totally different than the sequence and magnitudes 

included in the training data (Figure 8.17-(b)). Some of them can be considered as “incipient 

faults”, which gradually (nonlinearly) increase with a pattern that is also far away from what 

has been considered during the training of CTs. 
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Figure 8.17. The application results of the methodology to test 9. 

Figure 8.17-(c) shows the measured information, leading to the obtained residuals 

(Figure 8.17-(d)), while Table 8.7 shows the accuracy of the overall FDD obtained using the 

proposed method and its equivalent using a variable-based FDD. These overall results (FDD 

performance) are also represented in Figure 8.18. The CTs based on ANNs and the SVMs 

confirm their robustness although, when compared with the previous reported results, in all 

cases the overall FDD accuracies have been reduced (as it was obviously expected). Table 8.7 

also quantifies the enhancement obtained by the use of a residual-based CT, which is always 

significant. Also, the problem of the misclassification of F1 and F3 appears for all the variable-

based classifiers. Figure 8.18 also illustrates how the differences are more evident when trying 

to detect and diagnose incipient faults, since in all cases the pattern of the residuals at the early 

moments of the incipient fault is much clearer. 
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Table 8.7. FDD accuracy of test 9 based on ANN, SVM, GNB and DT classifiers. 

  Residual-based CT Variable-based CT 

 ANN SVM GNB DT ANN SVM GNB DT 

Test 9 Nr 76.7  77.4 79.9 79.2 62.9     48.2 32.5 50.7 

F1 85.5 87.1 22.4 54.9   0.4     0.0   0.0 15.5 

F2 95.2 97.3 96.0 89.0 91.7    28.7 18.9 88.5 

F3 83.0    87.0 54.8 65.7 55.1 72.9   0.0 31.0 

F all 85.4 87.0 59.6 70.6 57.3 34.6 10.7 44.0 

 

 

Figure 8.18. ANN labels, compared to the ideal labels (test 9). 

8.3.3.4 Sensitivity to the measurement noise  

In order to confirm the robustness of the selected signal smoothing procedure to 

compensate for the effect of sensor noise, two additional types of artificial sensor noise 

patterns have been tested: uniform and logistic probability distributions. The parameters of 

both distributions have been chosen in such way that the ranges of the corresponding 

deviations are similar to the previously used one (Gaussian distribution: ( 𝜇 = 0, 𝜎 = 0.01 ); 

uniform distribution with (𝑎 = −0.0175, 𝑏 = 0.0175), and logistic distribution with  

(𝜇 = 0, 𝑠 = 0.01 )). Figure 8.19 shows the noisy measured tank levels (in yellow, blue and 

green solid lines) and their smoothed values (dashed red lines) using the kriging filters, as well 

as their ideal behavior (solid black lines). The results over the FDD accuracy (Table 8.8 and  
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Table 8.9) confirm that the proposed procedure is still able to maintain a consistent high 

level of accuracy in all cases; in this sense, the effects of the noise appear to be significantly 

more important in the variable-based CT, although there is not any specific pattern on the 

found differences. Additionally, Table 8.10 shows the NRMSE of the OK-based filters with 

respect to the known ideal behavior, also confirming the capabilities of the OK-based filters 

for smoothing different random noise types, achieving very low normalized root mean square 

error values.   

Table 8.8. FDD accuracy of test 3 using the ANN classifier under different types of the 

artificial sensor noise. 

 
 

Residual- based ANN CT Variable-based ANN CT 
 

 Gaussian Uniform Logistic Gaussian Uniform Logistic 

Test 3 Nr 97.0 96.6 96.6 84.4 75.5 81.0 

F1 96.0 95.5 96.0 58.5 62.1 61.8 

F2 96.4 96.4 96.4 85.9 81.0 84.3 

F3 95.4 95.4 94.9 57.7 59.4 58.0 

F all 96.2 96.0 96.0 72.0 70.0 71.7 

 

Table 8.9. FDD accuracy of test 3 using the SVM classifier under different types of the 

artificial sensor noise. 

            Residual-based SVM CT Variable-based SVM CT  
 Gaussian Uniform Logistic Gaussian Uniform Logistic 

Test 3 Nr 96.1 97.0 96.6 62.5 80.0 72.6 

F1 95.4 95.5 96.4 47.7 53.0 49.7 

F2 95.8 96.4 95.8 76.3 77.8 78.4 

F3 94.4 94.9 93.0 79.5 80.2 73.4 

F all 95.4 95.9 95.5 66.5 72.7 68.5 

 

Figure 8.19. Filter performance in test 3, using three different random sensor noises:  

Gaussian (a), uniform distribution (b) and logistic distribution (c). 
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Table 8.10. NRMSE (%) of the filters prediction in test 3. 

Noise type 𝒉̂𝟏
𝒔𝒎(𝒕)  = 𝒇𝒔𝒎,𝟏(𝒕, 𝒉𝟏(𝒕)) 𝒉̂𝟐

𝒔𝒎(𝒕)  = 𝒇𝒔𝒎,𝟐(𝒕, 𝒉𝟐(𝒕)) 𝒉̂𝟑
𝒔𝒎(𝒕)  = 𝒇𝒔𝒎,𝟐(𝒕, 𝒉𝟑(𝒕)) 

Gaussian 1.64 1.31 1.46 

Uniform 1.54 1.29 1.49 

logistic 1.77 1.44 1.80 

8.4 CONCLUSIONS 

This work proposes a hybrid approach for data-based FDD of nonlinear noisy dynamic 

processes, affected by changes in the manipulated inputs. Typical applications include 

situations where the control system reacts in order to compensate for uncontrolled 

disturbances, transitions between different operating conditions, batch and fed-batch 

processes, or plant start-up processes, when the failure rate is likely to be higher. The proposed 

method combines three different techniques, namely data-based dynamic models capable to 

estimate the expected state of the system (predictor), static models smoothing plant data to 

reduce the noise effects, and data-based classification techniques trained with the patterns 

created with the residuals from the comparison between the predictor results and the process 

smoothed information. 

The use of a data-based predictor system is a necessary step of the proposed approach, 

transforming data measurements into highly sensitive residual values without requiring an 

analytical model of the system. The proposed predictor system, based on Ordinary Kriging, 

has shown very high accuracy (NRMSE) to approximate process nonlinear dynamic behaviors 

even though it is trained with noisy process data.  

The use of residuals (error signals) in addition to process variables is also a key element 

which enables a better identification of the process state, since residuals compensate the effects 

of the manipulated inputs on the process outputs. Unlike other works combining CTs and data-

based predictors, the proposed approach takes the maximum advantage of the generated 

residuals, by exploiting their patterns in addition to their values. This significantly improves 

the FDD efficiency, gives the flexibility required to deal with different fault severities and 

allows the system to better identify incipient faults. The use of the proposed approach has been 

illustrated through its application to a FDD benchmark problem. In this case, the analytical 

model of the system is known, so the theoretical/ideal behavior of the system may be 

calculated, allowing a fair assessment, clear analysis and credible comparison of the obtained 

results in different scenarios. 

Different CTs implementations, based on usual classification techniques such as ANN, 

SVM, GNB and DT, have been developed and tested for this case study, using the proposed 

approach and other state of the art methods. All these implementations established the 
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enhanced performance of the residual-based approach over the variable-based approach, as 

well as the better performance of ANN and SVM over GNB and DT.  

When an analytical or mechanistic model-based FDD is unavailable or unaffordable, 

the proposed approach is revealed as an efficient alternative for data-based FDD. The approach 

developed in this work has shown to accurately detect and diagnose faults under different input 

profiles and in different faulty scenarios. Moreover, a significant enhancement in the 

classification performance has been obtained in the cases where the faults affect the process 

in a way significantly different from the situations included in the training data. 

These encouraging results open some issues for future investigations, most of them 

related to the exploration of the performance of the system in more realistic working conditions 

(closer to the real industrial challenges) to check if the advantages now reported are 

maintained, for example, when the input disturbances affect both normal and abnormal 

conditions, when a closed-loop control system is in operation (thus compensating the effects 

of the faults), or when the non-linearities of the system are stronger, complicating the task of 

the prediction system. 
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Chapter 9: Soft-Sensors for Batch 

Processes with 

Different Initial 

Conditions 

In this Chapter, soft-sensing methodologies applicable to batch processes operated 

under changeable initial conditions are presented. These cases appear when the raw materials 

specifications differ from batch to batch, different production scenarios should be managed, 

etc. The proposal exploits the capabilities of the machine learning techniques to provide 

practical soft-sensing approaches with minimum tuning effort in spite of the fact that the 

inherent dynamic behavior of batch systems are tracked through other online indirect 

measurements. Current data modelling techniques have been also tested within the proposed 

methodologies to demonstrate their advantages. Simulation case-studies and a pilot-plant case-

study involving a complex batch process for wastewater treatment are used to illustrate the 

problem, to assess the modelling approaches and to compare the modelling techniques. The 

results reflect a promising accuracy even when the training information is scarce, allowing 

significant reductions in the cost associated to batch processes monitoring and control.  

9.1 INTRODUCTION 

Competitive and rapidly changing market environments bear many sources of 

uncertainty and variability such as product demands, material availability, prices, product 

specifications and environmental restrictions. This has favored a continuous and growing 

interest in batch processes due to their high flexibility and adaptability, which also allow a 

quicker development of new products. These abilities stem from the relative independence of 

each equipment/unit and the possibility to reassign them and develop new production schemes. 

Thus, a wide range of important low-volume and high-value-added products are manufactured 

in a batch mode, including specialty chemicals, materials for microelectronics, 

pharmaceutical, agricultural and biochemical products, etc. (Jin, et al., 2014; Moreno-Benito, 

2014).  

However, batch processes typically exhibit challenging operational problems (high 

inherent nonlinearity, transient dynamic behavior with no steady-state operating point, 

complex reaction kinetics, mechanisms and stoichiometry, etc.) that hamper their optimal 

management (Bonne & Jorgensen, 2004). A key challenge that commonly complicates their 
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monitoring, supervision and/or control is the unavailability of online measurements of the 

process Quality Indicator Variables (QIV), which are often obtained through expensive and 

time-consuming offline sampling and processing (Zamprogna, et al., 2005; Desai, et al., 2006). 

Moreover, a large laboratory delay also hinders a reliable process monitoring and supervision  

(Liu, et al., 2012). Thus, soft-sensor techniques have been proposed as a promising solution 

that has proven its effectiveness in many situations (Hoskins & Himmelblau, 1988; Kadlec, et 

al., 2009).  

Soft-sensors are computational techniques that provide online estimations of process 

variables (including QIVs) that cannot be measured online in a continuous and/or reliable way 

due to technological and/or economic reasons  (Lin, et al., 2007). These techniques exploit the 

process variables that are reliably measured and recorded online with minimum cost by means 

of available physical sensors. Soft-sensors can be used for different purposes, but their basic 

application field is the online prediction of QIVs, so they could be further integrated in a 

monitoring and/or a control system (Kadlec, et al., 2009; Jin, et al., 2015). 

Soft-sensor techniques can be categorized in two main classes: analytical model-based 

soft-sensors and data-based soft-sensors. Analytical model-based soft-sensors rely on First 

Principle Models (FPMs) that provide a detailed process description based on 

phenomenological knowledge (Lin, et al., 2007; Jin, et al., 2014); these FPMs are used to 

predict/monitor the process behavior, either solely or using the information provided by 

physical sensors (e.g. for continuously adjusting their parameters). However, accurate and 

reliable FPMs of chemical processes are often unobtainable, especially for complex highly 

nonlinear ones (Jain, et al., 2007): in many cases, the details required to build the models 

needed to describe such processes are limited, because of the involved highly nonlinear 

behaviors, sophisticated mechanisms and complex phenomena as reaction kinetics, 

thermodynamics etc. (Caballero & Grossmann, 2008). Even more, the existing FPMs of many 

processes have been developed under the assumption of the most favorable/ideal experimental 

and laboratory conditions, which make them sensitive to parameter variations, uncontrolled 

disturbances and distinct reactors geometries  (Kadlec, et al., 2009; Jin, et al., 2015). Moreover, 

in real industrial or pilot plant scale applications, many other factors that affect or interact the 

process (e.g. mechanical and electrical components and connection etc.), usually are not 

considered by the FPMs, which badly affects their prediction accuracy (Kadlec, et al., 2009; 

Jin, et al., 2014). 

As an alternative, data-based soft-sensors are gaining wide interest in the process 

industry, because of its practicability, robustness and flexibility to be developed and applied 

to a wide range of processes, in addition to their independence from a process mathematical 

model (Hoskins & Himmelblau, 1988). They are based on the construction of a data-driven 
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model able to accurately approximate the relation between the QIV and other online variables  

(Bonne & Jorgensen, 2004; Facco, et al., 2009). In this line, many machine learning techniques 

for regression have been used to identify this relation, as Artificial Neural Networks (ANNs) 

(Gonzaga, et al., 2009; Banu & Umab, 2011), Support Vector Regression (SVR) (Yan, et al., 

2004; Desai, et al., 2006), and recently Gaussian Process (GP) models (Jin, et al., 2015). These 

machine learning models are built relying on the use of input (online variables)-output (QIV) 

data from the process history, in order to find a black-box relation that describes the underlying 

mapping between the inputs and the output (training step). Then the constructed soft-sensor is 

used for the online prediction of the QIVs once the other online variables (online inputs) are 

measured (Jin, et al., 2015). In this framework, measures of the QIV, when available, can be 

easily integrated in the system, either offline (e.g. Kaneko and Funatsu, (2013), to 

update/improve the soft-sensor) or even online (e.g. Jin, et al.,  (2015), to confirm estimations 

and eventually reset them to better match the current situation).  

Data-based soft-sensors have been vastly applied to continuous processes, in order to 

predict the process steady state behavior, although they have shown limitations dealing with 

the transient states of the process (e.g. start-up and shut-down) (Facco, et al., 2009; Wang, et 

al., 2016). Comparatively, the development and application of data-based soft-sensors to batch 

processes, which are always in transient state, have been found to be relatively more 

complicated (Bonne & Jorgensen, 2004; Liu, et al., 2012).  

The combination of Principal Component Regression (PCR) and Partial Least-Squares 

(PLS) techniques is the most common method for building data-based soft-sensors. PCR is 

used to reduce the input space via transforming it into a lower dimensional space in which the 

importance of each new feature/input is determined (Zamprogna, et al., 2005; Kadlec, et al., 

2009; Jin, et al., 2014). PLS is then used to find a regression model that correlates the 

transformed input variables or features with the output variables (QIVs) (Zamprogna, et al., 

2005; Lin, et al., 2007; Facco, et al., 2009). However, these methods are basically developed 

for linear modeling and they may oversimplify the description of complex nonlinear behaviors 

(Nagy, 2007; Jin, et al., 2015). Although some versions of these techniques have been 

developed to inexpensively handle nonlinearities (as kernel PCR and kernel PLS), more 

advanced and efficient techniques have been proposed for soft-sensing highly nonlinear 

processes (Kadlec, et al., 2009).  

In this scope, Artificial Neural Networks (ANNs) approaches (Masters, 1993) have been 

often selected for soft-sensing, due to their universal approximation and efficient 

generalization performance, additional to their flexible structure of nonlinear neurons that 

enable ANNs to capture sophisticated behaviors (Kadlec, et al., 2009; Yan, et al., 2004) . 

Several types of ANNs have been efficiently used for soft-sensing, as feed-forward multi-
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layer, radial basis and Fuzzy ANNs  (Kadlec, et al., 2009). Nevertheless, ANNs particularly 

suffer from the curse of dimensionality and require laborious tuning (selection of the network 

structure and configuration; as number of layers, number neurons in each layer, transfer 

function type, training method etc.) to achieve a reliable model fitting (Azman & Kocijan, 

2007; Davis & Ierapetritou, 2007).  

Models based on Support Vector Regressions (SVR) have been also proposed for soft-

sensing in batch processes (Desai, et al., 2006). The SVR model (Vapnik, 1995) consists of a 

subset of specific training data (support vector) that compose the margins of the simplest 

functional shape within which the prediction error for all training data is acceptable. SVR 

techniques have very good generalization properties, and rapidity of tuning (associated to the 

optimization problem solution time for the support vectors selection) (Forrester, et al., 2008). 

However, the effort and the time required to select the parameters of the SVR model –prior to 

the optimization-, as the penalty cost, the error margin and the variance become a major 

limitation.  

In the Bayesian statistics and inference area, the Gaussian Process (GP) models are 

initially proposed by O’Hagan et al. (1978; 1999) in order to represent a general class of non-

parametric probabilistic models. Later on, they have gained a wide popularity within the 

machine learning community through the works of Rasmussen and Williams (2006). Recently, 

GP models are attracting huge attention in the soft-sensing area, and have been applied either 

for continuous (Grbić, et al., 2013; Wang, et al., 2016; Liu, et al., 2016) or batch processes 

(Jin, et al., 2015), offering high prediction accuracy and tuning flexibility while requiring a 

relatively small set of the training data. Pioneering GP metamodels were developed in the 

nineties (O'Hagan, et al., 1999), mainly for complex computer code emulation (O’Hagan, 

2001), and afterward they became popular for dynamic modeling (Azman & Kocijan, 2007). 

But the computational effort and capabilities required for its parameter tuning could be a 

serious shortage, especially for high dimensional cases and/or large training datasets. 

The techniques based on Ordinary Kriging (OK) (Cressi, 1993) may be considered as 

specific forms/applications of the GP models. Their use was first proposed in the field of 

mining industry and geo-statistics by Dr. Danie Krige (1951) and Matheron (1963), where 

their predictor derivations and parameters estimations are sought as the “Best linear Unbiased 

Predictor” of the realization of a spatial process. After the works of Sacks et al. (1989) and 

Jones et al. (1998), the OK became very popular in the context of the modelling, simulation 

and optimization of complex nonlinear systems in many engineering fields (Queipo, et al., 

2005; Forrester & Keane, 2009). Ordinary kriging has shown outperforming characteristics, 

as high prediction accuracy with relatively small number of training data, and relatively high 

tuning flexibility (Forrester, et al., 2008). The use of OK metamodels was introduced to the 



  

Chapter 9: Soft-Sensors for Batch Processes with Different Initial Conditions 209 

chemical process engineering area by Davis and Ierapetritou (2007), and Caballero and 

Grossmann (2008), and since that time it is gaining growing interest mainly for surrogate based 

optimization and analysis of complex nonlinear chemical systems (Quirante, et al., 2018), and 

later on for multivariate dynamic modelling (Boukouvala, et al., 2011). However, the use of 

OK metamodels - as a specific implantation/formulation of Gaussian Process models - has 

never been introduced to the area of the soft-sensing of batch chemical processes yet.  

In the literature, the studies that have addressed data-based soft-sensing of batch 

processes consider a single operating phase/mode along the batch run, which is also the scope 

of this work. Consequently, the machine learning techniques are harnessed to provide a single 

global data-based model that describes the relation between the online variables and the QIV 

along the whole batch (Yan, et al., 2004; Desai, et al., 2006; Grbić, et al., 2013; Gustavsson, 

et al., 2015; Banu & Umab, 2011). However, for alternate batch process conditions, these 

global models may produce inaccurate predictions in specific input regions, and in these cases, 

the process should be described through a multiphase/multimode model, based on the 

construction of several local models, each one responsible for predicting the process behavior 

over a specific local input domain (Liu, et al., 2012; Jin, et al., 2014; Wang, et al., 2016). 

Further research addresses the development of adaptive data-based soft-sensors to be used 

online in processes showing time-varying behavior, e.g. due to process fouling, aging etc. 

(Grbić, et al., 2013; Kaneko & Funatsu, 2013). Different approaches have been proposed as 

the moving window approach and the recursive adaptation methods that automatically manage 

online data to update the soft-sensor in order to maintain its prediction performance (Jin, et al., 

2015). 

Most of the data-driven soft-sensing approaches for batch processes proposed in the 

literature have not considered the initial conditions of the batches in their design, because they 

have been tailored for batch processes operated under fixed initial conditions. In these cases, 

the data-based soft-sensing approach have addressed the batch-to-batch data variability -due 

to a very slight change in the initial condition- from the uncertainty and noise perspectives: 

input-output training data from different batch runs are assumed to have random errors due to 

undesired disturbances, which are expected to be representative of a population of batches that 

are swarming around the mean behavior of the process or what is called the “reference batch” 

or the “golden batch” (Kadlec, et al., 2009). Then, the correct underlying process behavior can 

be identified, thanks to the regularization abilities of the employed machine learning models, 

which enable them to learn from this uncertain and perturbed data, and to filter out the assumed 

noise. 

Considering this overview, the novelty of this work relies on three main contributions: 
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1. To address the development of a soft-sensing approaches for a special type of batch 

processes that is rarely explored in the area of soft-sensing: those batch processes that show a 

characterized variability in their initial settings or conditions, as a result of a specific purpose 

decision (i.e.: different from a small uncertain noise or an uncontrolled variation). These cases 

are usual in such batch processes aiming to manage raw materials whose specifications or 

properties differ from one batch to another (e.g. waste treatment systems), or when different 

product qualities/quantities are to be generated. Hence, the objective is to develop a soft-sensor 

able to estimate the QIVs along the batch run under any set of initial conditions in the expected 

operating range. 

2. To explore the advantages of the OK metamodeling technique –as a kind of GP 

metamodels- for soft-sensing in the chemical engineering area: the kriging method is 

compared to the most common data-based modeling techniques used for soft-sensing as SVR 

and ANN, in order to assess and compare its capabilities.  

3. To provide efficient soft-sensors able to track an advanced oxidation process (AOPs) 

based on the photo-Fenton reaction, which in the same time can be used as data-based process 

models to help understanding the complex behavior usually associated to these processes. 

Nowadays, AOPs are receiving a huge interest, because of their capacity to manage 

Contaminants of Emerging Concern present in the water, which cannot be degraded using 

conventional water treatments technologies (biological, physical or chemical). However, due 

to the complexity and high nonlinearity of these processes, the best way to address their 

analytical or phenomenological modeling is still under debate in the scientific and research 

community; while many data-based modelling studies of these processes have been 

accomplished from the point of view of experimental design in laboratory scale, their 

monitoring and control have been never addressed from a soft-sensing perspective, i.e. at 

industrial or pilot plant scale. 

The Chapter is organized as follows:  

• Section 9.2 presents the theoretical basis of the modeling techniques utilized 

and the proposed training and validation procedures.  

• Section 9.3 illustrates the first proposed modelling approach for building soft-

sensors for the online prediction of the QIV “current” values (Section 9.3.1), 

and their application details (Section 9.3.2) to three case studies, including 1) a 

simulated simple first-order batch reactor, 2) a simulated fed-batch fermenter 

and 3) a real pilot plant of a batch process for wastewater treatment.  

•  Section 9.4 shows the second proposed modelling approach for building soft-

sensors for the online “step-ahead” prediction of the QIV “future” values 
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(Section 9.4.1), and their application to two case studies, including 1) a 

simulated batch reactor and 2) a real pilot plant of a batch process for 

wastewater treatment. 

• Section 9.5, finally, summarizes the main conclusions. 

9.2 DATA-DRIVEN MODELLING TECHNIQUES 

Data-based soft-sensors rely on building machine learning or data-driven models to 

define accurate black-box relations between the QIV and the online variables. This part spots 

the light on the most common nonlinear data-driven modeling techniques that have been used 

in the soft-sensing area as OK, ANN and SVR. More details about their mathematical basis, 

available software and details of implantations can be found in Chapter 2 (Tools and 

Techniques). 

9.2.1 Ordinary kriging  

Given a set of n input-output training data [𝑥𝑖 , 𝑦𝑖], 𝑖 = 1,2, . . 𝑛, 𝑥 ∈ 𝑅𝑘 , 𝑦 ∈ 𝑅, the OK 

assumes the predictor 𝑦̂(𝑥) =  𝜇𝑜𝑘  + 𝑍(𝑥), where the constant term 𝜇𝑜𝑘 represents the main 

trend of the system to be approximated, and 𝑍(𝑥) is a deviation from that trend. The deviation 

𝑍(𝑥) is modeled as a stochastic Gaussian process with expected value 𝐸(𝑍(𝑥)) =  0, and a 

covariance between two residuals 𝑐𝑜𝑣(𝑍(𝑥𝑖), 𝑍(𝑥𝑗)) that only depends on their corresponding 

inputs 𝑥𝑖, 𝑥𝑗. Thus it can be calculated as: 𝑐𝑜𝑣 (𝑍(𝑥𝑖), 𝑍(𝑥𝑗)) = 𝜎𝑜𝑘
2  𝑅(𝑥𝑖, 𝑥𝑗), being 𝜎𝑜𝑘

2  the 

process variance and 𝑅 (𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−∑ 𝜉𝑙|𝑥𝑖,𝑙−𝑥𝑗,𝑙−|
𝑝𝑙𝑘

𝑙=1 ) + 𝛿𝑖𝑗 𝜆 a correlation function, 

where, 𝜉𝑙 , 𝑙 = 1,…𝑘 are the model hyper-parameters, 𝛿𝑖𝑗 is the Kronecker delta, 𝑝𝑙 are 

smoothing parameters and λ is a regularization constant that enables the kriging predictor to 

regress noisy data (Azman & Kocijan, 2007).  The kriging predictor and its estimated error are 

given by Eq.(9.1) and Eq.(9.2), respectively, where (𝑥∗) is a new interpolating point (different 

from the training data). In Eq. (9.1), [𝑟]𝑛×1 is the vector of correlations between the point to 

be predicted 𝑥∗ and the original training data points and calculated as 𝑅(𝑥𝑖, 𝑥
∗), [𝑅]𝑛×𝑛 is the 

correlation matrix between the training inputs, [𝑌]𝑛×1 is the vector of the training outputs and 

[𝟏]𝑛×1 is the identity vector. 

 𝑦̂(𝑥∗) = 𝜇𝑜𝑘 + 𝑟
𝑇𝑅−1(𝑌 − 𝟏𝜇𝑜𝑘) (9.1) 

 𝑠̂2(𝑥∗) = 𝜎𝑜𝑘
2 (1 + 𝜆 − 𝑟𝑇𝑅−1𝑟 + (1 − 𝟏𝑇𝑅−1𝑟)−1 (𝟏𝑇𝑅−1𝟏)⁄ ) (9.2) 

This work considers the OK implementation developed by Forrester, et al.,  (2008), 

because of its high efficiency and applicability. Besides, the “fmincon” algorithm included in 
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the Matlab optimization toolbox is used for the maximization (nonlinear optimization) of the 

concentrated likelihood function, see Section 2.2.1. The work, also, considers another software 

implementation for the GP model construction: the GP-Regression (GPR) algorithm based on 

the function “fitrgp” included in the Matlab statistics and machine learning toolbox. Here, it 

is worthy to emphasize that the objective of this work is not to compare different specific 

implementations of the GP models but to explore the robustness and flexibility of the proposed 

soft-sensing methodology by handling different data-based modelling techniques and 

software. 

9.2.2 Artificial neural networks 

The ANNs are very well-known efficient machine learning models, which are widely 

used for data-driven modelling of nonlinear systems. In this work, the Matlab ANN toolbox 

and the function “feedforwardnet” have been used to create multilayer feedforward ANNs. In 

each of the following application cases, the number of layers, number of neurons and the 

training algorithm were selected based on a trial and error procedure in order to balance the 

ANN structure simplicity and its prediction accuracy. More details about ANNs can be found 

in Section 2.2.2. 

9.2.3 Support vector regression  

Given a set of n input-output training data [𝑥𝑖 , 𝑦𝑖], 𝑖 = 1,2, . . 𝑛, 𝑥 ∈ 𝑅𝑘, 𝑦 ∈ 𝑅, SVR 

(Vapnik, 1995) maps the input data original space into a high-dimensional feature space, often 

through a basis or kernel function Φ(𝑥𝑖, 𝑥𝑗) that may be represented by different styles as 

linear, polynomial, Gaussian, etc. Then, the modeling problem becomes the determinations of 

the optimal (flattest) surface 𝑦̂(𝑥)  = 𝑏 + ∑ 𝑤𝑖Φ (𝑥𝑖, 𝑥𝑗)
𝑛
𝑖=1  in this feature space that fits the 

data, through the minimization of the weights vector norm |𝑤|2, 𝑤 ∈ 𝑅𝑛, where 𝑏 = 𝜇𝑠𝑣𝑟 is a 

base or bias (Forrester & Keane, 2009). The final predictor of the SVR is given by Eq.(9.3), 

where 𝛼𝑗
+, 𝛼𝑗

−are Lagrange multipliers resulting from the solution of the aforementioned 

minimization problem. 

 𝑦̂(𝑥∗) = 𝑏 +∑(𝛼𝑗
+ − 𝛼𝑗

−) Φ(𝑥∗, 𝑥𝑖)

𝑛

𝑖=1

 (9.3) 

A seriousdraw back of the SVR is the huge time and effort required to select the kernel 

function type and the values of its parameters (e.g., the value of the parameter 𝜎𝑠𝑣𝑟, in a 

Gaussian kernel Φ(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−‖𝑥𝑖, 𝑥𝑗‖
2
2𝜎𝑠𝑣𝑟

2⁄ )), which are case dependent (Forrester 

& Keane, 2009). The detailed mathematical description and derivations can be found in 
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Section 2.2.3. This work uses the SVR algorithm based on the function “fitrsvm” included in 

the Matlab statistics and machine learning toolbox. 

9.2.4 Metamodel validation 

A common way to validate a metamodel is to use a different input-output dataset, 

usually known as validation set: [𝑥𝑣, 𝑦𝑣]𝑛𝑣. Then, the metamodel is used to predict the outputs 

ŷi
v, and the prediction is compared by the known output yi

v. The Root Mean Square Error 

(RMSE), the Normalized Root Mean Square Error (NRMSE), and the Correlation Coefficient 

(CC) are calculated as accuracy measures of the prediction. The RMSE (Eq.(9.4)) and the 

NRMSE (Eq.(9.5)) are direct measures of accuracy: they are reporting an average deviation 

measure of predicted values from the actual values, where the RMSE is an absolute quantity, 

and the NRMSE is a relative quantity to the variability range ( 𝑦𝑖,𝑚𝑎𝑥
𝑣 − 𝑦𝑖,𝑚𝑖𝑛

𝑣 ) of the output 

y. However, the CC (Eq.(9.6)) is an indicator of the matching or the trend between the overall 

predictions and the real output values.  

 𝑅𝑀𝑆𝐸 = √
1

𝑛𝑣
∑(𝑦𝑖

𝑣−𝑦̂𝑖
𝑣)2

𝑛𝑣

𝑖=1

 (9.4) 

 𝑁𝑅𝑀𝑆𝐸 = 100
𝑅𝑀𝑆𝐸

( 𝑦𝑖,𝑚𝑎𝑥
𝑣 − 𝑦𝑖,𝑚𝑖𝑛

𝑣 )
 (9.5) 

 

𝐶𝐶 = 𝑟𝑦𝑣,𝑦̂𝑣 =
∑ (𝑦̂𝑖

𝑣 − 𝑦̅̂𝑣)(𝑦𝑖
𝑣 − 𝑦̅𝑣)

𝑛𝑣
𝑖=1

√∑ (𝑦̂𝑖
𝑣 − 𝑦̅̂𝑣)2

𝑛𝑣
𝑖=1 √∑ (𝑦𝑖

𝑣 − 𝑦̅𝑣)2
𝑛𝑣
𝑖=1

 , 𝑦̅𝑣 =
∑ 𝑦𝑖

𝑣𝑛𝑣
𝑖=1

𝑛𝑣
  ,

𝑦̅̂𝑣 =
∑ 𝑦̂𝑖

𝑣𝑛𝑣
𝑖=1

𝑛𝑣
 

(9.6) 

9.3 SOFT-SENSING FOR ONLINE PREDICTION 

This section addresses the development and application of novel soft-sensors able to, 

cheaply and continuously, predict the value of the QIV at the “current” time instance. 

9.3.1 Soft-sensor modelling approach 

Consider a batch process in which a significant QIV 𝑦(𝑡) (e.g.: reaction progress) may 

be only expensively measured and/or requires offline sampling and analysis over relatively 

large sampling time periods. This variable coexists along with other variables 𝑥(𝑡) that are 

measured and recorded online in an automatic and continuous way (over very small sampling 

periods) probably with a more reduced cost. Additionally and more importantly, the process 
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may run under different combination of initial conditions [𝑥(𝑡 = 0) 𝑦(𝑡 = 0)], which vary 

within a known range or bounds [𝑥𝑚𝑖𝑛
𝑡=0 : 𝑥𝑚𝑎𝑥

𝑡=0  , 𝑦𝑚𝑖𝑛
𝑡=0 : 𝑦𝑚𝑎𝑥

𝑡=0 )].  

The objective is to develop a soft-sensor that is able to predict the QIV as a function of 

the cheaply measured online variables, over the whole batch run and departing from any 

combination of the initial conditions over their known variation range. This soft-sensor might 

be further used to monitor the process and to predict the reaction progress at any time along 

the batch run, saving the cost and the time of the offline experimental sampling and analysis. 

The proposed design/modeling approach of such soft-sensor is based on the approximation of 

the current measurements of the offline QIV, 𝑦(𝑡), as a function of the current values of the 

online variables 𝑥(𝑡) and the initial values of both of the offline 𝑦 (𝑡 = 0) and the online 

𝑥(𝑡 = 0) variables (Eq.(9.7)). Thus, the initial conditions [𝑥 (𝑡 = 0), 𝑦 (𝑡 = 0)] provide or 

identify the overall effect on the main path or trajectory of the batch QIV, while the current 

values of the online variables 𝑥(𝑡) provide the instantaneous or temporal effect.  

 𝑦(𝑡) = 𝑓[𝑥(𝑡), 𝑦(𝑡 = 0), 𝑥(𝑡 = 0)] (9.7) 

The methodology steps include: 

1. The selection of a proper set of training batches whose ICs   [𝑥(𝑡 = 0) 𝑦(𝑡 = 0)] 

cover or span –as much as possible- the known variation domain of the ICs 

[𝑥𝑚𝑖𝑛
𝑡=0 : 𝑥𝑚𝑎𝑥

𝑡=0  , 𝑦𝑚𝑖𝑛
𝑡=0 : 𝑦𝑚𝑎𝑥

𝑡=0 )]. In this way, the training data includes more 

information about the system different dynamic behaviors corresponding to 

different ICs.   

a. In the case of data generation from a complex FPM simulation, different 

design of computer experiments techniques can be efficiently used for the 

definition of a representative set of the training data. Typical situations 

are when the complexity of the FPM hinders its practical usage for the 

online monitoring of the process. 

b. In the case of a real process without an available accurate FPM, the 

process history data should be exploited as much as possible 

2. The online data 𝑥(𝑡) of each training batch is smoothed using a moving average 

technique –a proper time window should be selected- to reduce Gaussian noise of 

the sensors. 
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3. The input-output (online-offline) data are collected from each training batch. 

Thus, the number of the input-output training data extracted from each batch 

equals to the number of the QIV measurements along the batch run. 

4. The data collected from each training batch is unfolded to compose the overall 

training set, noticing that the overall training dataset does not include any 

information neither about the batches identification nor about the temporal 

sequence of the measurements. Then the soft-sensor (Eq.(9.7)) is trained 

according to the requirements of the selected modelling technique (OK, GPR, 

SVR or ANN). 

5. The trained soft-sensor is then used along a series of validation batches, in order 

to predict the values of the offline QIV(𝑦(𝑡)) along the whole run of each batch, 

using only the initial values [𝑥𝑡=0;  𝑦𝑡=0] and the online measured variables 𝑥(𝑡). 

a. The accuracy measures (Eq. (9.4), (9.5) and (9.6)) can be calculated 

through comparing the estimated QIV values by the soft-sensor to their 

known real values. 

It is worth noting that the data used to train the soft-sensor will be obviously affected 

by random or Gaussian errors, due to the nature of the real-sensor(s) and the experimental 

instruments providing these data. Thus, the target accuracy of a soft-sensor cannot be higher 

than the accuracy offered by the real sensors and instruments providing the training data. In 

addition, this maximum accuracy will be also affected (reduced) by the accuracy of the sensors 

(real-sensors) used to provide the online information required by the already fitted soft-sensor 

to perform the required online estimations. As a result, it can be concluded that the accuracy 

of a soft-sensor is expected to be within the same order of magnitude of (but lower than) the 

accuracy offered by the real-sensor(s) and instruments providing the information required to 

train and also to use the soft-sensor. 

9.3.2 Applications 

In these sections, the application of the proposed soft-sensing approach to two simulated  

case-studies based on the modeling techniques previously introduced in Section 9.2 (OK, SVR 

and ANN), will be illustrated. 

9.3.2.1 Batch reactor 

This simulation case-study was proposed by Ruppen, et al., (1995) and involves a 

common batch reactor model (Eqs.(9.8)) running the reactions  2𝐴
𝑘1
→ 𝐵

𝑘2
→ 𝐶, being 𝐴 the 
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reactant, 𝐵 the undesired product and 𝐶 the desired product. It is assumed that the process 

depends only on the initial conditions (no perturbations/external inputs are considered along 

the batch run).  

 

𝑑𝑐𝐴
𝑑𝑡
= −2𝑘1 𝑐𝐴

2   ,             
𝑑𝑐𝐵
𝑑𝑡

= 𝑘1𝑐𝐴
2 − 𝑘2𝑐𝐵𝑐𝐶 ,       

𝑑𝑐𝐶
𝑑𝑡
= 𝑘2𝑐𝐵𝑐𝐶 , 

𝑘𝑖 = 𝑘𝑖,0𝑒𝑥𝑝 (
𝐸𝑖
𝑅𝑇
) 

(9.8) 

The concentration  𝐶𝐶 of product 𝐶 is considered as the offline QIV, while the 

concentrations CA and CB of products 𝐴 and 𝐵 are treated as the online variables. Thus, during 

each batch run (1 ℎ𝑟),  𝐶𝐶 is calculated at 7 specific sampling times (every ten minutes), 

simulating its expensive offline sampling and analysis. On the contrary,  𝐶𝐴,  𝐶𝐵 are calculated 

every second, simulating the automatic recording of data by the physical sensors. Small white 

or Gaussian noise 𝒩 ≈ (𝜇 = 0, 𝜎 = 0.018) is added to the simulated online variables values 

(𝐶𝐴,  𝐶𝐵), while a higher error 𝒩 ≈ (𝜇 = 0, 𝜎 = 0.16) is also added to the simulated offline 

variable data ( 𝐶𝐶) in order to mimic the experimental error. The white noise and the 

experimental errors in this case-study and the next ones are estimated in a heuristic manner 

with respect to the variability domain of each variable. Hence, the experimental error variance 

𝜎 has been set to 1.5 % of the variability range for the offline variables, while the white noise 

variance 𝜎 for the online variables has been set to 0.5 % of their respective variability ranges. 

In order to generate the training data, 24 batches are simulated in the previously 

described way, using different initial concentrations values [𝐶𝐴(𝑡 = 0), 𝐶𝐵(𝑡 = 0), 𝐶𝐶(𝑡 = 0)] 

selected by a Hammersley sampling procedure within the limits 

[𝐶𝐴,𝑚𝑖𝑛
𝑡=0 : 𝐶𝐴,𝑚𝑎𝑥

𝑡=0 , 𝐶𝐵,𝑚𝑖𝑛
𝑡=0 : 𝐶𝐵,𝑚𝑎𝑥

𝑡=0 , 𝐶𝐶,𝑚𝑖𝑛
𝑡=0 : 𝐶𝐶,𝑚𝑎𝑥

𝑡=0 , ] = [1 : 4, 0 : 2, 0 : 3] (𝑀𝑜𝑙/𝐿). Additionally, 

another set of 100 batches with different initial concentrations (but within the same domain) 

are simulated and used as the validation set, see Figure 9.1. The whole online/offline data set 

generated for 4 specific training batches is illustrated in Figure 9.2. The initial conditions of 

these 4 training batches are highlighted in Figure 9.1 with their corresponding colors.  
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Figure 9.1. Initial conditions of the training and validation batches. 

 

 
Figure 9.2. Subset of 4 training batches: (a, b) measured noisy online data, and (c) offline 

data. 

The Hammersley sequence is a sampling technique for computer experiments which is 

used in this example to find a suitable set of the initial values combinations that uniformly 

cover the modeling space, in order to collect -as much as possible- information about the 

process dynamics when it is initiated departing from different initial settings. However, in the 

real situations (e.g. the pilot plant illustrating, section 4), this welfare of selecting the training 

data might not be feasible. So, it will be required to take the maximum advantage of the 

available historical data recorded and measured from the batch process (previous runs).  

A moving average technique with a time window of 50 seconds has been used to smooth 

the online data (𝐶𝐴,  𝐶𝐵) through all the batches (training and validation) in order to diminish 
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the effect of the artificial (simulated) white noise introduced in the measures, see the zoom-

out view in Figure 9.3-(c). After that, 7 input-output (online-offline) training points have been 

collected from each one of the 24 training batches. Figure 9.3-(a, b) shows the collected input-

output (online-offline) data from two training batches: the solid blue and red lines are the 

measured online data (𝐶𝐴,  𝐶𝐵) and the dashed black lines correspond to their smoothed values, 

while the green squares represent the values of the measured offline variable 𝐶𝐶. Hence, the 

circles, diamonds and squares are the collected input-output data from each batch.   

The number of the training batches is selected based on a try and cut procedure, in order 

to roughly find the minimum number of batches that is able to provide a high prediction 

accuracy of the soft-sensor. During this try and cut procedure, two main principles are 

considered: first, the number of the training batches should emulate real situations, where often 

few information about such kind of processes is available; second, the number of the training 

batches should be related to the initial conditions variation domain, and also to the complexity 

of the process behavior. On the contrary, a much higher number of validation batches is 

considered in this case-study since their generation is feasible (simulation runs) and this allows 

to get a precise evaluation of the developed soft-sensors, through assessing their prediction 

accuracy at each sub-region of the initial condition variation domain.  

 

Figure 9.3. (a, b) online data smoothing and input-output data collections from training 

batches no. 1 and no. 23, respectively, (c) Zoom-out view of batch 1. 

The collected 168 (7 ×24) input-output data are used to train the soft-sensor in Eq.(9.9) 

based on the four metamodel implementations considered (OK, GPR, SVR and ANN). It 

should be emphasized that the training data does not include any information neither about the 

batches order/identifications nor the temporal sequence of each specific sample. The training 

task is accomplished according to the requirements of each metamodel type as previously 

described in Section9.2. As previously mentioned in Section 9.2, a traditional try and cut 

procedure has been used to select the best ANN configuration. So, different ANN adjustments 

have been trained with the 24 training batches and validated with the 100 validation batches, 
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and the adjustment that achieved the best prediction accuracy for the validation batches is 

selected. The different configurations were in terms of the number of layers (from one to two 

layers), the number of neurons in each layer (from 3 to 10 neurons) and the training algorithm 

(Levenberg-Marquardt back-propagation or Bayesian regularization back-propagation). After 

several trials, an ANN with one hidden layer of six neurons, trained using the Levenberg-

Marquardt back-propagation method (via the Matlab algorithm “trainlm”), is found to exhibit 

the best tradeoff between the ANN structure simplicity and prediction accuracy. On another 

side, a linear kernel function Φ (𝑥𝑖 , 𝑥𝑗) = 𝑥′𝑥 has been shown to be the best kernel type for 

the SVR-based soft-sensor.  

 𝐶𝐶(𝑡) = 𝑓[𝐶𝐴(𝑡), 𝐶𝐵(𝑡), 𝐶𝐴(𝑡 = 0), 𝐶𝐵(𝑡 = 0), 𝐶𝐶(𝑡 = 0) ] (9.9) 

After the training of the soft-sensors, they are used to predict the  𝐶𝐶 behavior of the 100 

validation batches, using only the noisy initial conditions and the values of the smoothed 

online variables of each batch. It is also worth to emphasize that, although the soft-sensors are 

trained using noisy measurements of the offline variable  𝐶𝐶 (Figure 9.3-(a, b)), their 

performance assessment is achieved via comparing their predictions with the ideal 

exact/theoretical behavior of  𝐶𝐶.    

The quality of the soft-sensors predictions is evaluated numerically through the 

calculation of several accuracy measures including the RMSE (Eq.(9.4)), the NRMSE 

(Eq.(9.5)) and the CC (Eq.(9.6)). It’s worthy to mention that usually the aforesaid accuracy 

measures are calculated by comparing the predictions with the available noisy measurements. 

But then, a conceptual dilemma arises, as these data involve random deviations accumulated 

from human operation and analysis apparatus errors. Hence, the metamodel prediction is 

intended to match the experimental data but also to compensate these errors so avoiding 

overfitting. In real situations, the aforementioned manner is the only possible way to calculate 

an accuracy measure, since the real behavior of the system is unknown. But since we are 

dealing with a simulation case, we may take advantage of our knowledge about the process 

theoretical/exact behavior. So, the corresponding accuracy measures are calculated by 

comparing the metamodels prediction with the process theoretical/ideal behavior, as well with 

the  𝐶𝐶 data emulating the noisy measurements.  

The calculation of the accuracy measures with respect to theoretical behavior is much 

more credible to express the soft-sensor accuracy. However, calculating them with respect to 

the noisy measurement allows extracting some conclusions that can help to evaluate the soft-

sensor performance when applied to a real case-study, where only noisy measurements are 
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available. Table 9.1 shows the accuracy measures of the soft-sensors predictions including the 

average the RMSE, NRMSE and the CC. In the case when calculating these measures with 

respect to the data emulating noisy measurements, the number of evaluation data 𝑛𝑣 in Eq. 

(9.4), (9.5) and (9.6) is 700 (100 batches × 7 measurements). However, when calculating them 

relative to the system theoretical behavior - that is known from the simulation with one second 

time step-, so 𝑛𝑣 is 360000 data points (100 batches × 3600 measurements). 

The results in Table 9.1 illustrate how the soft-sensor based on any of the metamodels 

is able to predict the  𝐶𝐶 concentration with high accuracy, as it was able to achieve in the 

worst case (the soft-sensor based on ANN) a NRMSE of 3.89 % of the total variation range of 

the  𝐶𝐶 [0 :  6.3 ], and a correlation of 0.983. More importantly, the table reflects that the 

accuracy measures calculated with respect to the system theoretical behavior are better than 

those calculated with respect to the noisy experimental data. This indicates that the developed 

soft-sensors are able to identify the process underlying behavior, although they have been 

trained using noisy measurements, and these soft-sensors are not over-fitting the training data. 

It is worth to refer that the soft-sensors based on the SVR and the OK have achieved the best 

prediction accuracy (average NRMSE of 2.56 % and 2.39 % respectively).  

Table 9.1. Average RMSE, NRMSE and CC of the batch reactor soft-sensors. 

 W.R.T. the noisy measurements  W.R.T. the known exact behavior  

 RMSE NRMSE (%) CC RMSE NRMSE (%) CC 

OK 0.21 3.34 0.988 0.16 2.56 0.992 

GPR 0.27 4.39 0.980 0.23 3.80 0.984 

SVR 0.20 3.22 0.989 0.15 2.39 0.994 

ANN 0.28 4.52 0.978 0.24 3.89 0.983 
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Figure 9.4. Exact versus predicted values of Cc of a random subset of the 100 validation 

batches using the soft-sensors based on (a) OK and (b) ANN metamodels. 

Figure 9.4 shows a randomly selected validation subset (300 data points) of the 

estimated offline variable (𝐶𝐶) using the OK and the ANN based soft-sensors (best and worst 

cases), compared to their corresponding theoretical/ideal behavior. The displayed qualitative 

assessment demonstrates the high quality of the soft-sensors predictions: the prediction linear 

fit (red dashed line calculated considering the whole validation set - 360000 data points) is 

very close to the ideal fit (𝑦𝑖𝑑𝑒𝑎𝑙 = 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑; solid black line).  

Another qualitative evaluation of the soft-sensors performance is presented in Figure 

9.5, which shows the predictions normalized error distribution for the best (OK) and worst 

(ANN) soft-sensors; it is clear that the soft-sensors based on the four metamodels behave 

normally without any biased behavior/ predictions, since the majority (mean) of the 

predictions exhibit very small error values along with some outliers. 

The values in Table 9.1 represent average or gross measures of the soft-sensors 

accuracy, so it is necessary to give more deep or detailed sight to the performance of the soft-

sensors. Figure 9.6 shows the estimations of the offline variable (𝐶𝐶) for the batches with the 

highest (Figure 9.6-(a)), average (Figure 9.6-(b)) and lowest (Figure 9.6-(c)) prediction 

accuracy, using the OK (dashed red line) and the ANN (dashed mauve line) soft-sensors. The 

three batches are selected through the calculation of the NRMSE for each batch independently, 

using average values with respect to the four soft-sensor types. 

Figure 9.6 demonstrates that the four soft-sensors are able to continuously predict the 

offline variable CC with high accuracy under different initial settings within the known bounds. 

It also illustrates that soft-sensors predictions are able to capture the ideal/theoretical process 

behavior (continuous black line), without overfitting the noisy measured behavior/data (green 

squares), in spite of the deviations introduced to the training data in order to emulate the 
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measurement errors. Much more significant, the figure reflects the ability of the proposed soft-

sensor to predict the offline variable along different batches operated under different initial 

settings within the known bounds: the initial conditions [𝐶𝐴(𝑡 = 0), 𝐶𝐵(𝑡 = 0), 𝐶𝐶(𝑡 = 0)] of 

the selected three batches are [3.01, 1.52, 1.52], [2.68,   0.22, 2.07] and [3.85, 1.95, 2.46] for 

batch no. 67 (Figure 9.6-(a)), batch no. 56 (Figure 9.6-(b)) and batch no. 95 (Figure 9.6-(c)), 

respectively. 

 

Figure 9.5. Normalized errors distributions of the OK and ANN based soft-sensors 

predictions. 

Correlating Figure 9.1 and Figure 9.6 highlights the effect of the location of the batches 

initial conditions on the soft-sensor accuracy. For example, the initial conditions of the most 

accurate predicted batch (no. 67, Figure 9.1) lay within the middle of the training batches initial 

conditions, so soft-sensors have sufficient knowledge about the behavior of the process 

dynamics associated to this local area of the initial conditions. On the contrary, the initial 

conditions of the batch with least accurate predictions (no. 95, Figure 9.6) fall far from the 

main bulk of initial conditions of the training batches (i.e. on the limits of the initial conditions 

domain). Hence, the soft-sensor includes less information about the process behavior when it 

departs from this local area of the initial conditions. These conclusions and remarks match 

with the OK and GPR metamodels main assumptions that distinguish them from any other 

metamodel type. This assumption considers that the prediction uncertainty/error increases as 

the point to be predicted moves far from the training data, and vice versa. 

Additionally, the OK (and GPR) estimated errors can be exploited to construct a 

confidence area that can be used as an uncertainty measure about the predictions (Figure 9.6, 

grey lines). So, in the cases where the OK predictions behave a significant deviation from the 

theoretical behavior, these deviations are often accommodated within an estimated confidence 

area (−/+ 5 𝜎). The reliability of this estimation (which would correspond to a confidence 

interval of 99.999% in the case of a normal distribution) depends on the quality of the approach 

and the application, so other elections are also feasible according to the case characteristics 
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and modeler preferences (consequences of a wrong estimation, risk aversion, knowledge about 

the system, etc.). In very few batches, the theoretical behavior may fall outside this uncertainty 

area (Figure 9.6-(c)). 

 

Figure 9.6. Predictions of Cc for three validation batches. 

Finally, it is worth to note that, in this case, both of the online variables and the QIV are 

concentrations closing the mass balance, so one straightforward procedure to estimate the 

missing information (𝐶𝐶(𝑡)) in this case would be to exploit this knowledge about the system 

(analytical model-based soft-sensor).  Since the proposed soft-sensors have been trained in a 

behavior which accomplishes the mass conservation principle, the results would be finally 

equivalent, but it should be emphasized that the proposed soft-sensors are not based  on the 

exploitation of any “a priori” knowledge, but on the approximation of the latent relationships 

between the offline variable and other online variables regardless of the nature of this 

knowledge and the involved variables (i.e. concentrations, temperatures, pressures, etc.).   

Hence, a modified version of this case-study is addressed, which is exactly the same as 

the original one but assuming that no information is available about the online 

concentration 𝐶𝐵(𝑡). Thus, the soft-sensors should infer the offline values 𝐶𝐶(𝑡) only from the 

online variable 𝐶𝐴(𝑡) and the initial conditions of all the variables, i.e. 𝐶𝐶(𝑡) =

𝑓[𝐶𝐴(𝑡), 𝐶𝐴(𝑡 = 0), 𝐶𝐵(𝑡 = 0), 𝐶𝐶(𝑡 = 0)]. In this way, no mass balance can be closed to 

predict/validate the required offline concentration 𝐶𝐶(𝑡). 

Table 9.2 displays the validation results of the soft-sensors resulting from this modified 

version of the case-study. Although the comparison with Table 9.1 reveals a slight reduction 

in the soft-sensors accuracy (reduced information about the process behavior), the results still 

indicate a very good accuracy even when the concentration  𝐶𝐵(𝑡) is not available. The same 

subset of the off-line variable predictions previously represented in Figure 9.4 are now 

displayed in Figure 9.7 for the new soft-sensors, confirming the same previously drawn 
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conclusions (again,  the linear fit equation has been calculated considering the entire validation 

set).  

Table 9.2. Average RMSE, NRMSE and CC of the batch reactor soft-sensors (modified case). 

 W.R.T. the noisy measurements  W.R.T. the known exact behavior  

 RMSE NRMSE (%) CC RMSE NRMSE (%) CC 

OK 0.33 5.27 0.9700 0.31 5.09 0.9701 

GPR 0.33 5.28 0.9699 0.31 5.09 0.9701 

SVR 0.45 7.23 0.9458 0.37 7.26 0.9419 

ANN 0.34 5.48 0.9690 0.32 5.18 0.9706 

 

Figure 9.7. Exact versus predicted values of Cc of a random subset of the 100 validation 

batches using the soft-sensors based on (a) OK and (b) SVR metamodels (modified case). 

The application of the proposed soft-sensing methodology to the modified version of 

the case-study also highlights the robustness and tuning flexibility of the OK compared to the 

other considered techniques. The comparison between Table 9.1 and Table 9.2 reveals that the 

OK has been able to maintain its high prediction accuracy level, while this is not the case of 

the SVR soft-sensors. This is due to the challenging task of selecting the best SVR kernel 

through a try and error procedure each application time, which does not guaranty the optimal 

selection, while in the case of using OK –as well as the GPR- parameters are automatically 

optimized, which ensures an optimal fitting through repetitive applications considering 

different soft-sensor structures and also different training data. As it will be seen in the next 

case-study, a similar problem affects the ANN based soft-sensors, although in this first 

example the best ANN structure found has allowed to maintain a performance similar to the 

one shown by the soft-sensors based on OK and GPR. 
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9.3.2.2 Fed-batch fermenter for Penicillin production 

A fed-batch fermentation process for the production of Penicillin is used as a second 

simulation case-study. The process mechanistic model had been initially developed by Bajpai 

and Reul, (1980), and since this time, it has become a very popular benchmark case-study for 

the dynamic optimization and control studies, due to its high nonlinearity (Cuthrell & Biegler, 

1989; Dadebo & Mcauley, 1995; Banga, et al., 2005; Wang, et al., 2017). The analytical model 

in Eqs.(9.10) describes the relations among the process variables, including the concentrations 

(𝑔/𝐿) of the biomass 𝐵, penicillin 𝑃 and substrate 𝑆 inside the reactor, the reactants volume 𝑉 

(𝐿) and the substrate inlet flowrate 𝐹 (𝑔/ℎ). This case represents relative further challenges to 

the proposed soft-sensing method in terms of the higher dimensionality, higher nonlinearity 

(see the process model in Eqs.(9.10)) and, more important, the process kind (fed-batch), since 

the existence of the external input (𝐹) generates a more complicated dynamic behavior of the 

system. 

 
𝑑𝐵

𝑑𝑡
= ℎ1𝐵 − 𝐹 (

𝐵

500 𝑉
) 

(9.10) 
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𝑑𝑡
=
𝐹

500
 

 Where       ℎ1 = 0.11 (
𝑆

0.006𝐵+𝑆
),           ℎ2 = 0.0055(

𝑆

0.0001+𝑆(1+10𝑆)
) 

During each batch run of 150 minutes, the product (penicillin) concentration P is treated 

as the offline variable that is measured via expensive offline sampling and analysis (one 

sample every 15 minutes). Meanwhile, the biomass concentration 𝐵, substrate concentration 

𝑆, the reactants volume 𝑉, and the substrate inlet flowrate 𝐹 are assumed to be the online 

variables, measured and registered by the sensors every second. Also, white noise distributed 

according 𝒩(𝜇 = 0, 𝜎 = 0.2), 𝒩(𝜇 = 0, 𝜎 = 0.15), 𝒩(𝜇 = 0, 𝜎 = 0.05) and 𝒩(𝜇 =

0, 𝜎 = 0.05) are added to the simulated measurements of the online variables 𝐵, 𝑆, 𝑉, and 𝐹, 

respectively. Besides, a higher experimental error of 𝒩(𝜇 = 0, 𝜎 = 0.2) is added to the 

simulated measurement of the offline variable 𝑃. The noise amounts are calculated as 

mentioned in the previous case. The nominal initial conditions often used in the literature for 

this case are 𝐵(𝑡 = 0), 𝑃(𝑡 = 0), 𝑆(𝑡 = 0), 𝐵(𝑡 = 0) = [1.5, 0, 0, 7] but, for the purpose of 

this study, the initial conditions are allowed to vary within the limits 



 

226 Chapter 9: Soft-Sensors for Batch Processes with Different Initial Conditions 

[𝐵𝑚𝑖𝑛
𝑡=0 : 𝐵𝑚𝑎𝑥

𝑡=0 ,  𝑃𝑚𝑖𝑛
𝑡=0: 𝑃𝑚𝑎𝑥

𝑡=0 ,  𝑆𝑚𝑖𝑛
𝑡=0: 𝑆𝑚𝑎𝑥

𝑡=0 ,  𝑉𝑚𝑖𝑛
𝑡=0: 𝑉𝑚𝑎𝑥

𝑡=0] =  [0.5   10;  0   3;  0   10;  5.0   8.5] to 

simulate a situation in which several settings of the batch are feasible, assuming the 

unavailability of a first principle model. 

A set of 24 noisy batches are simulated for training of the soft-sensors, while other 100 

batches are also simulated for validation purposes. As in the first studied case (Section 9.3.2.1), 

the noisy data (a subset of them are shown in Figure 9.9) are used to train the soft-sensor, 

which is then used to predict the Penicillin concentration 𝑃 of the validation batches. Then, 

the predicted 𝑃 values are compared to their corresponding ideal ones. 

 

Figure 9.8. Initial conditions of the training (stars) and validation (crosses) batches of the 

penicillin production case-study. 

 

Figure 9.9. Case 2: Subset of 4 training batches: (a, c, d, e) measured noisy online data, and 

(b) offline data. 
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The inlet flowrate profiles (𝐹) associated to the training and validation batches are also 

synthesized in a random manner in order to ensure that the training will include as much 

information as possible about the dynamic behavior of the process. Thus, each flowrate profile 

is characterized by random step changes (piecewise constant) along the batch time. A subset 

of the training batches are represented in Figure 9.9, where the effect of the variations in the 

initial conditions and the inlet flowrate profile 𝐹 can be observed in terms of significant 

changes in the process behavior from one batch to another. The initial conditions of this subset 

of the training batches are also highlighted in Figure 9.8 with the corresponding colors. Figure 

9.10 illustrates the inlet flowrate profiles associated to the three specific validation batches 

previously marked in Figure 9.8 with a red solid circle, diamond and triangle, respectively.  

A moving average technique with a time window of 120 seconds is used to manage the 

(artificial) white noise associated to the inputs (simulated physical sensors measurements), see 

Figure 9.11  Then, ten input-output training points have been collected from each one of the 

24 training batches (Figure 9.11). The soft-sensors based on the four metamodel 

implementations considered (OK, GPR, SVR and ANN) are trained using the collected 264 

(24×11) input-output training data. Again, no knowledge about the batch identifications or the 

temporal sequence of the measurements is introduced during the training. The same SVR 

kernel type and ANN configurations – but with a Bayesian regularization back-propagation 

algorithm, via the Matlab algorithm “trainbr"- used in the previous example have been found 

to be the most suitable customizations in this case too. 

 

Figure 9.10. Case 2: Profiles of the inlet flowrate F for the three validation batches. 

Table 9.3 displays the numerical/quantitative assessment of the Penicillin soft-sensors 

prediction accuracy in terms of  the RMSE (Eq.(9.4)), the NRMSE (Eq.(9.5)) and the CC 

(Eq.(9.6)), as in the previous case (𝑛𝑣=1100 samples (100 batches × 11 measurements) when 

compared to noisy measurements, and 𝑛𝑣=900000 samples (100 batches × 9000 

measurements) when ideal behavior is used as reference). 
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𝑃(𝑡) = 𝑓[𝐵(𝑡), 𝑆(𝑡), 𝑉(𝑡), 𝐹(𝑡), 𝐵(𝑡 = 0), 𝑆(𝑡 = 0), 𝑉(𝑡 = 0), 𝐹(𝑡

= 0), 𝑃(𝑡 = 0) ] 
(9.11) 

Again, the results in Table 9.3 reflect the high accuracy of the Penicillin soft-sensors, 

since they were able to achieve in the worst cases (the soft-sensor based on ANN) a NRMSE 

of 5.9 % of the total variation range of the P (0 : 13.75), and  a CC of  0.94. These accuracy 

measures are not as good as the ones reported in the previous example (Table 9.1) because of 

the relatively higher nonlinearity and dimensionality of the Penicillin process/model 

(Eqs.(9.10)). Besides, this case poses an additional significant challenge to the proposed 

method compared to the previous example, due to its nature as a fed-batch process with 

external forcing input (flowrate 𝐹).  

 

Figure 9.11. Input-output data collection and smoothing for two different training batches 

(Penicillin case). 

The conclusions drawn from the previous example regarding the capabilities of the 

proposed soft-sensors to identify the process underlying behavior, even though they have been 

trained using noisy measurements, are also confirmed in this case. Besides, the results indicate 

the ability of the proposed soft-sensor to handle fed-batch processes. Table 9.3 also highlights 

the performance of the OK based soft-sensor, which is able to achieve higher prediction 

accuracy than the SVR and ANN based systems.  

Figure 9.12 displays a subset (300 data point) of the estimated Penicillin concentrations 

compared to their ideal values, using the soft-sensors based on the OK (most accurate soft-

sensor) and ANN (least accurate soft-sensor), and represents a qualitative assessment of the 

soft-sensors accuracy. Also, the prediction linear fit is calculated considering the whole 

validation set (900000 data points). On another side, Figure 9.13 shows the predictions 

normalized error distribution of the validation set; again, homogenous normal distributions of 
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the soft-sensors prediction errors can be clearly identified, which reflects the soundness and 

unbiasedness of the soft-sensors performances. 

Table 9.3. Average RMSE, NRMSE and CC of the Penicillin concentration soft-sensors. 

 W.R.T. the noisy measurements W.R.T. the known exact behavior 

 RMSE NRMSE (%) CC RMSE NRMSE (%) CC 

OK 0.51 3.91 0.9773 0.49 3.69 0.9778 

GPR 0.52 4.00 0.9762 0.50 3.76 0.9771 

SVR 0.77 5.84 0.9480 0.71 5.33 0.9527 

ANN 0.81 6.16 0.9445 0.81 5.99 0.9417 

 

Figure 9.12. Predictions of a subset of the 100 validation batches (Penicillin case). 

Figure 9.14 shows the predictions of the Penicillin concentration (𝑃) for three validation 

batches with the highest (a), average (b) and lowest (c) prediction accuracy, using the OK and 

the ANN soft-sensors. The three batches are selected in the same way as the previous case in 

Section 9.3.2.1. The figure also indicates the high accuracy of the soft-sensors and their ability 

to continuously (each second) capture the underlying behavior of the Penicillin concentration 

(continuous black line). Additionally, it confirms the high capability and flexibility of the soft-

sensors to predict different dynamic behaviors of the Penicillin concentration, associated to 

the changes in the initial conditions [𝐵(𝑡 = 0), 𝑃(𝑡 = 0), 𝑆(𝑡 = 0) , 𝑉(𝑡 = 0) ] (see Figure 9.8 

red solid circle, diamond and triangle, respectively), and -more importantly- different forcing 

input 𝐹 profiles, see Figure 9.10-(b). 

Again, when the initial conditions of a validation batch lie very near to or within the 

main bulk of the training batches initial conditions (batch no. 33, red circle in Figure 9.8) the 

results exhibit the highest prediction accuracy, as the soft-sensor is trained with sufficient 
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information or knowledge about the process dynamics associated to this local area of the initial 

conditions. In contrast, the initial conditions of batch no. 100 lay far from the main bulk of the 

training batches initial conditions –on the limits of their domain- (Figure 9.8, red triangle). 

Therefore, the soft-sensor has less data/information/knowledge about the process behavior 

when departing from this local area of the initial conditions. These observations match the OK 

and GPR metamodels main principle: as the predicted point moves far from the training data, 

the prediction error increases.  

 

Figure 9.13. Normalized errors distributions of the Penicillin soft-sensors predictions: (a) 

OK and (b) ANN. 

The figure also emphasizes the merit of the OK confidence area (grey lines) that is 

established around its prediction thanks to its estimated error. Again, even in the cases where 

the OK predictions –as well the GPR ones- behave a significant deviation from the theoretical 

or ideal behavior, these deviations often fall within the confidence area (−/+ 5 𝜎). Similar to 

the previous case (Section 9.3.2.1), Figure 9.8 and Figure 9.14 also show that the OK 

uncertainty area– i.e. distance between the two grey lines– of a batch increases as its initial 

conditions goes far from the main bulk of the training batches initial conditions.  

 

Figure 9.14. Prediction of the Penicillin concentrations for three validation batches: (a) 

highest (b) average, and (c) lowest prediction accuracies. 

Another very important point that has been raised by the nature of this case-study (fed-

batch process) is that the soft-sensor (Eq.(9.11)) is able to accurately predict the Penicillin 
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concentration 𝑃(𝑡) just considering the current values of the control variable -substrate inlet 

flowrate- 𝐹(𝑡) although, in fact, the Penicillin concentration 𝑃(𝑡) depends also on the dynamic 

evolution of the inlet flowrate (i.e. 𝐹(𝑡 − 1), 𝐹(𝑡 − 2), 𝐹(𝑡 − 3) etc.). This can be explained 

by the fact that the soft-sensor approximates the Penicillin concentration 𝑃(𝑡) not only as a 

function of the control variable 𝐹(𝑡), but also as a function of other measured online state 

variables [𝑆(𝑡), 𝐵(𝑡), 𝑉(𝑡)] whose current values are also dynamically affected by the inlet 

flowrate. In other words, the values of these online state variables include enough knowledge 

about the accumulation/history of the inlet flowrate from the beginning of the batch time to 

build good estimations of the QIV.  

In order to better illustrate this aspect, a modified form of this case has been studied, 

where the online variables 𝐹(𝑡) and 𝑆(𝑡) have been assumed to be unmeasured and the initial 

values 𝐹(𝑡 = 0) and 𝑆(𝑡 = 0) are also assumed to be unknown. Consequently, the modified 

soft-sensors take the form: 𝑃(𝑡) = 𝑓[𝐵(𝑡), 𝑉(𝑡), 𝐵(𝑡 = 0), 𝑉(𝑡 = 0), 𝑃(𝑡 = 0) ].Table 9.4 

and Figure 9.15 show how the soft-sensors built for the modified case still maintain very high 

prediction accuracy, even with this dramatic reduction of the available information about the 

process. Also, the results underline again the consistent and robust performance of the OK 

approach in front of the oscillating accuracy of the ANN and SVR methods (Table 9.3 vs. 

Table 9.4). 

Table 9.4. Average RMSE, NRMSE and CC of the modified soft-sensors of the Penicillin 

concentration. 

 W.R.T. the noisy measurements W.R.T. the known exact behavior 

 RMSE NRMSE (%) CC RMSE NRMSE (%) CC 

OK 0.58 4.46 0.9719 0.55 4.19 0.9733 

GPR 0.68 5.24 0.9607 0.66 5.03 0.9604 

SVR 0.76 5.82 0.9483 0.69 5.23 0.9542 

ANN 0.60 4.62 0.9703 0.58 4.40 0.9708 
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Figure 9.15. Predictions of a subset of the 100 validation batches (Penicillin case, modified 

soft-sensors). 

9.3.2.3 Accuracy assessment 

Excluding just one outlier case (SVR soft-sensor in Table 9.2), the accuracies (NRMSE) 

of the soft-sensors proposed in this section are in the range [2.5% - 6.0%], and the 

corresponding Correlation Coefficients are in the range [0.94 - 0.99] (Table 9.1, Table 9.2, 

Table 9.3 and Table 9.4). As previously indicated, these values are to be compared with the 

accuracy of the information used to train the soft-sensors, which in these cases is known, since 

the disturbances in this information have been simulated by introducing white noise in the 

information provided by the mathematical models: the variance of such noise has been fixed 

to be 1.5% of the variability range of the offline variables, and 0.5% of the variability range 

of the online variables. Additionally, the NRMSE values have been calculated in front of 2 

references: the exact values (provided by the mathematical model), and the disturbed values, 

again affected by the corresponding white noise (1.5%). 

So, the obtained NRMSE values (2.5% - 6.0%) are in accordance with the target 

accuracy that can be expected from a soft-sensor, as it has been previously discussed in this 

section: lower but within the same order of magnitude of the accuracy of the offline 

information used to train these soft-sensors (1.5%), further reduced by the accuracy of the 

online information available to use them (0.5%).  

Besides, the proposed soft-sensors offer better or equivalent accuracies than the ones 

offered by other soft-sensing approaches recently proposed in the literature for continuous and 

batch processes: although the available information is presented in different forms and usually 

the resulting accuracies are not referred to the accuracy of the raw information, common CC 

results are in the range [0.84 – 0.95] (Grbić, et al., 2013; Jin, et al., 2015), and values of RMSE 
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of 3.35 (Mota, et al., 2014) and average relative errors of 15% (Duran, et al., 2006) are 

reported.  

9.3.2.4 Application to a photo-Fenton batch process 

Previous studies have been devoted to model wastewater treatments based on the photo-

Fenton processes. Some of these works have proposed the use of analytical or First Principle 

Models (FPMs) for the characterization of these processes in particular experimental 

conditions, or for specific reactor geometries (Farias, et al., 2009; Reina, et al., 2012). 

However, the complex and nonlinear natures of these processes make such FPMs unable to 

include all the involved mechanisms in a general exhaustive way.  

Alternatively, many studies have been carried out focusing on the data-based modeling 

of different types of treatments based on photo-Fenton processes, mainly using ANNs. 

However, they have been oriented to address the kinetic modeling from experimental design 

perspectives: the ANN is used to model a measure of the treatment performance (the total 

removal of contaminant, the final H2O2 concentration, etc.) at the final time of the treatment 

as a function of the working conditions (Nascimento, et al., 1994; Duran, et al., 2006; 

Guimarães, et al., 2007; Jaafarzadeh, et al., 2012; Khataee, et al., 2014; Hassani, et al., 2015; 

De Tuesta, et al., 2015; Expósito, et al., 2017; Belkacem, et al., 2017). Thus, the obtained ANN 

model can be only used for the identification and analysis of the impact of the experiment 

initial settings on this final measure of performance. 

A different class of data-based modeling studies has been focused on the prediction of 

the contaminant degradation dynamics during the treatment time (Göb, et al., 1999; Salari, et 

al., 2005; Elmolla, et al., 2010; Ayodele, et al., 2012; Mota, et al., 2014; Mustafa, et al., 2014; 

Gazi, et al., 2017; Sebti, et al., 2017). To do so, the degradation evolution is assumed to be a 

function of the initial experiment parameters (e.g. initial concentrations of H2O2, Fe2+, etc.) 

and the time. But this approach does not allow monitoring an online process, since any change 

or disturbance affecting the process cannot be tracked or captured by the model, which only 

considers the time and not any dynamics nor the rest of the online measurements. Besides, the 

modeling approaches proposed in the majority of these works have not been systematically 

validated, neither through the comparison of different modelling techniques nor by using other 

test case(s). Finally, the data used in most of these works have been collected from the 

experimentations on a laboratory scale (reactors or a flasks of 500 to 2000 mL), which makes 

the obtained information/data much smoother/more ideal than in an industrial-size situation (it 

is easier to control the random error within this scale than within a pilot plant/ industrial scale).  
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9.3.2.4.1 Materials and methods 

In this work, a pilot plant case-study is addressed, consisting of a photochemical pilot 

plant built to study water treatment processes based on the photo-Fenton reaction, working in 

a batch mode and considering paracetamol as reference contaminant. Paracetamol 

(acetaminophen or 4-amidophenol, PCT from this point) is a widely used analgesic, anti-

inflammatory and antipyretic, reported as the most popular non-opioid analgesic sold in Spain 

in recent years  (Yamal-Turbay, et al., 2015). Due to this, and also due to the difficulties to 

eliminate it through conventional wastewater treatment techniques, it has been widely used to 

investigate the efficiency of non-conventional wastewater treatment processes, like the photo-

Fenton technologies. Experiments were carried out using 98 % purity PCT to prepare samples 

in distilled water. Fenton reagents of H2O2 33 % w/v and Fe2SO4·7H2O were used  (Yamal-

Turbay, et al., 2015). The process performance (reaction progress) must be evaluated through 

an off-line procedure consisting on withdrawing aliquots from the pilot plant reactor and 

measuring the Total Organic Carbon (TOC) concentration by means of a TOC analyzer, which 

offers an accuracy of 1% of the measurement range, although the overall analysis procedure 

includes several manual steps which obviously affect the accuracy of the final obtained 

information. 

9.3.2.4.2 Pilot plant  

The photochemical pilot plant  (Yamal-Turbay, et al., 2015) (Figure 9.16) consists of 

an annular photo-reactor equipped with a Philips Actinic BL TL-DK 36W/10 1SL lamp and a 

pumping system set to keep a constant recirculation. The total volume of the system was 15 L, 

pumped at 12 𝐿 𝑚𝑖𝑛−1 to guarantee proper mixing. The processing conditions that were kept 

constant for all the experiments were: 90 minutes process time, irradiation, 3±0.2 pH, 10 mg·L-

1 iron(II) salt. During every batch run (each of 90 minutes), samples of the reaction mixture 

were taken out at regular time intervals (every 15 minutes). Then, the reaction progress is 

measured by expensive offline analysis of the extracted samples, which resulted in only seven 

measurements (TOC and H2O2 evolution) available for each batch run. Additionally, the 

SCADA system automatically registers the Temperature (𝑇) and Redox potential (𝑅), which 

are also expected to be related to the reactions progress. Both variables were measured online 

and recorded every second at a minimum cost, providing 5400 measurements along each batch 

run. The accuracy of the respective sensors is of 0.5% of the measuring ranges. It should be 

noticed that the use of Redox potential as online variable implicitly allows to take into 

consideration one of the most significant factors in photo-Fenton process, such as the Fenton 

reagent ratio with respect to the amount of contaminant (TOC/H2O2/Fe2+). 



  

Chapter 9: Soft-Sensors for Batch Processes with Different Initial Conditions 235 

 

Figure 9.16: Photo-Fenton pilot plant. 

Several batch runs have been carried out under different initial concentrations of the 

contaminant (TOC) and Hydrogen peroxide [H2O2], in order to characterize the process 

behavior and to determine the significant process factors (Figure 9.17). Some of these batches 

are carried out considering the same initial conditions (highlighted by dotted gray circles), in 

order to minimize the noise effects resulted from human errors in the training set, and also to 

assess the sensitivity /robustness of the metamodel in the validation set for confirmation. 7 

batches have been used as training batches, while the soft-sensor performance will be 

confirmed using other 4 validation batches (Figure 9.17); the whole data recorded (online) and 

measured (offline) for the eleven batches are displayed in Figure 9.18 where each color express 

a different batch. 

 

Figure 9.17. Initial concentrations of the H2O2 and TOC of the eleven batches. 
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Figure 9.18. Online and offline data of all the batches. 

The same procedure that has been presented and validated in section 3 is directly applied 

here. Thus, the soft-sensor (Eq.(9.12)) is designed to model and predict the expensively 

measured offline TOC for any initial batch settings of the TOC and H2O2 as a function of the 

initial values of the all variables (𝑇𝑂𝐶 (𝑡 = 0), 𝑇(𝑡 = 0), 𝑅(𝑡 = 0) ) and the timely measured 

values of the available online variables (𝑇(𝑡), 𝑅(𝑡)). The online data (𝑇, 𝑅) are smoothed 

using a moving average technique with a time window of 60 seconds. Then, seven input-output 

training points are collected from each batch of the training group, which results in a training 

set of 49 input-output data. The soft-sensor (Eq.(9.12)) is then trained based on each of the 

four metamodels (OK. GPR, SVR, ANN) according to their requirements, see Section 9.2. 

Using the same try and cut approach previously described, an ANN with one hidden layer of 

nine neurons, trained using the algorithm “trainbr” is selected. Besides, a linear kernel 

function is selected for the SVR-based soft-sensor. 

Each of the constructed soft-sensors is validated by employing it to predict the TOC of 

the four validation batches. So, with the known initial concentrations [𝑇𝑂𝐶 (𝑡 = 0), 𝑇(𝑡 =

0), 𝑅(𝑡 = 0)], together with the timely measured values of the online variables, the soft-

sensors will enable the TOC monitoring along the whole time of each batch.   

 𝑇𝑂𝐶(𝑡) = 𝑓[𝑇(𝑡), 𝑅(𝑡), 𝑇𝑂𝐶(𝑡 = 0), 𝑇(𝑡 = 0), 𝑅(𝑡 = 0) ] (9.12) 

The numerical accuracy of the soft-sensors predictions can be assessed through the 

results shown in Table 9.5. The NRMSE values are again in the range of the accuracy of the 
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available information used to train the system and affected by the accuracy of the online 

information available to make the required predictions. In this case, it must be noted the limited 

number of data available (49 samples), which probably underestimates the real performance 

according to the conclusions drawn from the simulation case-studies results (the accuracy 

measures calculated relative to the noisy measurement often underestimate the real soft-sensor 

performance –Table 9.1 and Table 9.3).  

Table 9.5. Average accuracy measures (RMSE, NRMSE, CC) of the TOC soft-sensors. 

 RMSE NRMSE (%) CC 

OK 1.19 2.37 0.9956 

GPR 1.50 2.98 0.9942 

SVR 2.84 5.66 0.9730 

ANN 1.90 3.84 0.9901 

Figure 9.19 and Figure 9.20 show the qualitative assessment of the TOC soft-sensors: 

Figure 9.19 displays the TOC estimations of the validation batches set using the fitted soft-

sensors compared to their corresponding real measurements, resulting  in a well distributed 

correlation along the ideal diagonal of the graphic; Figure 9.20 shows the distributions of the 

prediction normalized errors for the soft-sensors based on the OK (a) and the SVR (b), which 

are quite close to normal type. 

 

Figure 9.19. Prediction of the validation batches data versus their experimental 

measurements. 
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Figure 9.20. Normalized errors distributions of the TOC soft-sensors predictions: (a) OK 

and (b) ANN. 

Both of the qualitative assessments confirm that the four soft-sensors do not reflect any 

bias, and also the better performance of the OK based approach. But the distributions of the 

prediction errors of the photo-Fenton soft-sensors (Figure 9.20) do not show the same very 

high quality compared to the soft-sensors of the simulation case-studies (Figure 9.5 and Figure 

9.13). This is explained by three main reasons: first, the very low size of the training and 

validation datasets in this case (49 data for training and 28 data for validation), while relatively 

larger datasets are used in the previously presented simulation cases. Second, the uniformity 

of the training and validation data relative to the initial conditions domain, which in this case 

was forced by the need to take the maximum advantage of the available expensive data, in 

front of the use of a well-designed experimentation plan that spans/covers the whole working 

domain (Hammersley sampling technique - see Figure 9.1 and Figure 9.8 vs.  Figure 9.17). 

Third and finally, the hypothesis that the experimental errors will follow a normal distribution, 

which may not be true in this case (while this was obviously true in the simulated cases).  

Table 9.6 shows the detailed accuracy measures for each of the four validation batches 

independently. It should be noticed that batch no. 9 is showing the lowest prediction accuracy 

(maximum RMSE and NRMSE) in any case. This is associated to the fact that the initial 

conditions of this batch are far from the initial conditions of the training batches set (see Figure 

9.17), which makes the trained soft-sensors having relatively less knowledge about the process 

behavior in this region of the initial operating condition than the other batches (no. 1, 3, 4), 

whose initial conditions are relatively closer to the initial conditions of the training batches. 
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Table 9.6. Accuracy measures for each of the four validation batches. 

 Batch No. 1 Batch No. 3 Batch No.4 Batch No.9 

 RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE 

OK 1.05    2.09     1.10    2.20    0.74     1.48    1.68 3.35 

GPR 1.61    3.21     0.82    1.63   1.14    2.27     2.09 4.18 

SVR 3.33 6.63 2.22 4.43 1.00 1.99 3.90 7.78 

ANN 1.38 2.76 0.73 1.45 2.12   4.23 2.81 5.60 

 

Figure 9.21. TOC prediction of the four validation batches. 

Figure 9.21 shows the TOC prediction in the four validation batches using the OK (most 

accurate) and the SVR (least accurate) soft-sensors, proving the high capabilities of the soft-

sensors to continuously (each second) predict the TOC along different batch runs with very 

high accuracy and flexibility in terms of the initial conditions. The same figure confirms how 

the OK estimated error can be very useful in practical situations where no knowledge about 

the exact process behavior (i.e. FPM) is available. Hence, this estimated error is used to 

establish a confidence interval about the soft-sensor prediction (Figure 9.21, solid gray lines, 

-/+ 5 sigma). So, even in the cases where the OK –or the GPR- predictions behave a significant 

deviation from the measured data (green squares), these deviations are still within the 

confidence area. 
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9.4 SOFT-SENSING FOR STEP-AHEAD PREDICTION 

The soft-sensors developed and applied in Section 9.3 (as well as most of data-driven 

soft-sensing techniques developed for batch processes in the literature) are able to predict only 

the “current” value of the offline variable (QIV) as a function of the current and previous 

values of the online variables (Kadlec, et al., 2009; De-Canete, et al., 2016). Although these 

soft-sensors are very efficient from the points of view of reducing the experimental cost and 

enhancing the process monitoring by providing continuous estimates of the QIV values, for 

the process control point of view, a dynamic soft-sensor able to predict in advance the “future” 

values of the QIV would be much more rewarding (Liu, et al., 2016).  

Therefore, this section proposes the development of novel soft-sensors able to predict 

the “future” values of the QIV at the “next” time instances for the same class of challenging 

batch processes (those which are expected to operate under different IC and include significant 

differences in the sampling rates among their measured variables). The proposed dynamic soft-

sensor is based on the use of Nonlinear AutoRegressive (NAR) models (as presented in 

Chapter 6), which has been customized to suit this class of processes, through their integration 

with a suitable data collection procedure/guideline and an imputation step for the missing data.   

9.4.1 Soft-sensor modeling approach 

The dynamic soft-sensor modeling approach is based on building a NAR model 

(Eq.(9.13)) to approximate the future behavior of the offline QIV (𝑦𝑡+1) as a function of the 

previous state of the batch, including the offline and online variables (𝑦 and 𝑥) over a specific 

time lag or delay 𝐿.  

 𝑦𝑡+1 = 𝑓[𝑦𝑡, 𝑦𝑡−1, … . 𝑦𝑡−𝐿 , 𝑥𝑡 , 𝑥𝑡−1, … . 𝑥𝑡−𝐿] (9.13) 

The application of the NAR models, as presented in Chapter 6, to the targeted class of 

processes poses several challenges. Thus, the proposed dynamic soft-sensing methodology has 

been tailored to tackle these challenges. This includes a first step for adjusting the collection 

of training data: data from different batch runs with different ICs [𝑦𝑡=0, 𝑥𝑡=0] are collected 

through the whole operation domain [𝑦𝑡=0
𝑚𝑖𝑛: 𝑦𝑡=0

𝑚𝑎𝑥, 𝑥𝑡=0
𝑚𝑖𝑛: 𝑥𝑡=0

𝑚𝑎𝑥], in order to get the maximum 

information about process dynamics.  

Having all the system variables available at the same time step is a numerical 

requirement for the application of NAR models, due to their recursive prediction nature. So, 

in a second step, a simple linear interpolation is used to estimate the missing data of the offline 

QIV for each training batch. Advanced techniques for interpolation (e.g., cubic, splines) may 
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be also used, but they are not recommended, in order to avoid forcing any incorrect behavior 

to the imputed data. Then, the data of each batch (including the imputed data) are unfolded in 

the form of input-output set (see Eq.(9.13)), and used for training the NAR model according 

to the requirements of the adopted data-modeling technique (GP, OK or ANN).  

The resulting NAR model(s) are then used along a series of validation batches in a 

recursive interpolation manner, to predict the future values of the offline QIV (𝑦𝑡+1) along the 

whole batch run, knowing only the initial values [𝑥𝑡=0;  𝑦𝑡=0] and the online measured 

variables 𝑥𝑡. The time grid at which the offline variables are imputed is selected via cut-and-

try procedure, in order to achieve the best prediction accuracy of the fitted NAR model, but 

avoiding excessive redundancy of training data, which would severely complicate the training 

task. Similarly, a try and cut procedure is also used to choose the dynamic soft-sensor model 

lag 𝐿 taking into account both accuracy and model simplicity.    

9.4.2 Applications 

9.4.2.1 Simulation-based case study 

The proposed procedure is first illustrated through its application to a simple simulation 

case  (Tieu, et al., 1995). A batch process running the reactions  𝐴 → 𝐵 → 𝐶 is considered, 

where 𝐴 is the reactant, 𝐵 is the undesired product and 𝐶 is the desired product. During a 30-

minute batch, the concentration of 𝐶 is assumed to be determined at 7 time instants, simulating 

an expensive offline QIV determination, while the concentrations of 𝐴 and 𝐵 are recorded 

every second, simulating the case of online measured variables. 24 training batches are 

simulated in this way, using different initial values [𝐶𝐴(𝑡=0), 𝐶𝐵(𝑡=0), 𝐶𝐶(𝑡=0)] selected by a 

Hammersley sampling procedure within the limits [14:20, 0:2, 0:2]. Small white noise ≃

𝒩(𝜇 = 0, 𝜎 = 0.03) is added to the recorded online values (𝐶𝐴, 𝐶𝐵), while a higher error ≃

𝒩(𝜇 = 0, 𝜎 = 0.3) is also added to the simulated offline data (𝐶𝐶). 100 additional batches 

with different initial concentrations (within the same range [14:20, 0:2, 0:2]) are also 

simulated, in order to be used as a validation set.  

 𝐶𝐶(𝑡+1) = 𝑓[𝐶𝐴(𝑡)…𝐶𝐴(𝑡−𝐿), 𝐶𝐵(𝑡)… . 𝐶𝐵(𝑡−𝐿), 𝐶𝐶(𝑡)… . . 𝐶𝐶(𝑡−𝐿)] (9.14) 

The data from the 24 training batches are smoothed using a moving average method. 

Then the missing 𝐶𝐶 data of each training batch are imputed at a specific time grid. Hence, the 

data from the training batches (real and imputed) are collected, unfolded in one input-output 

dataset, and finally three NAR models (Eq.(9.14)) are trained, based on the ANN, GP and OK 

techniques.  
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Figure 9.22-(a) shows two of these training batches, including the simulated 

measurements of 𝐶𝐶 and the imputed values. Different imputation grids have been tested, and 

the one that achieved the best averaged prediction accuracy for the 100 validation batches has 

been selected.  

Figure 9.22-(b,c) and Table 9.7 show the enhancement obtained by the proposed 

approach (NAR models  trained with real and imputed values of 𝐶𝐶 using a suitable lag for 

each model) respect to the direct/classical applications of the NAR models (real 𝐶𝐶 data 

without imputation and considering zero lag). The improvements are evident disregarding the 

specific technique (GP, OK, ANN). Table 9.7 shows the average NRMSE and CC for the 

prediction of the 100 test batches, also considering both scenarios: classical method (unshaded 

side), and proposed method (shaded side). All errors are relative to the underlying behavior 

described by the system FPM. 

      
  

Figure 9.22. (a) Data of two training batches, (b) and (c) Prediction of two validation 

batches. 

Table 9.7.  Average NRMSE (%) and Pearson coefficient for the 100 validation batches.  

Model NRMSE PC Model Imputation 

Grid (sec) 

Lag 

(L) 

NRMSE Pearson 

Coefficient 

GP    19.2 0.9816 GP 60 3 3.9 0.9991 

ANN 17.2 0.9869 OK 60 3 3.5 0.9990 

OK    18.7 0.9831 ANN 60 2 2.6 0.9986 

9.4.2.2 Application to a photo-Fenton pilot plant 

The second application considers the same photo-Fenton pilot plant for wastewater 

treatment running in a batch mode, which is already presented in section 9.4.2.2. Also, the 

same data used in section 9.4.2.2 (11 batches) and its divisions to training and validation 

subsets are exactly maintained. 

Training Batch 1 

Training Batch 2 
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The training subset (7 batches) are used to fit the TOC dynamic soft-sensor based on 

the NAR model illustrated by Eq.(9.15), while the validation subset (4 batches) are used to 

assess the soft-sensor performance. For comparison, the TOC soft-sensor in Eq.(9.15)  is also 

trained using only the measured TOC values, without any imputation. Table 9.8 and Figure 

9.23 show the predicted TOC accuracy for the validation batches, with imputation and best 

Lag (shaded part of the table) and without imputing the missing data and 𝐿 = 0, confirming 

the advantages of the proposed approach. 

 𝑇𝑂𝐶𝑡+1 = 𝑓[𝑇𝑂𝐶𝑡, 𝑇𝑂𝐶𝑡−1, … 𝑇𝑂𝐶𝑡−𝐿 , 𝑇𝑡  , 𝑇𝑡−1 , …𝑇𝑡−𝐿 , 𝑅𝑡 , 𝑅𝑡−1, . . 𝑅𝑡−𝐿] (9.15) 

Table 9.8. Average accuracy measures (NRMSE, CC) of the TOC dynamic soft-sensors. 

 

 

 

 

Figure 9.23. TOC prediction (OK-based dynamic soft-sensor for the validation batches). 

Table 9.9 shows the NRMSE for each of the four validation batches independently. It 

should be noticed that batches no. 9 and no. 4 are showing the lowest prediction accuracy 

(maximum NRMSE). 

 NRMSE 

 

CC  Imputation 

Grid (sec) 

Lag (L) NRMSE 

 

CC 

GP 5.2 0.9862 GP 180 3 4.4 0.9889 

OK 5.2 0.9869 OK 180 4 3.0 0.9891 

ANN 6.1 0.9681 ANN 180 3 3.8 0.9827 
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Table 9.9. Average NRMSE for each of the four validation batches. 

 

 

 

 

The obtained soft-sensor may be also integrated in a monitoring/supervision system, 

where the measured process output (TOC) is compared to the dynamic soft-sensor prediction. 

Residuals can be used to check process malfunctioning, through comparing its value to a 

specific threshold that is often specified based on the knowledge about the processes and the 

soft-sensor accuracy. A faulty batch (rather than the 11 batches) illustrates this: the difference 

between the predicted and the measured TOC value (residual value) is compared with a 

threshold (five times of the average absolute prediction error of the dynamic soft-sensor; i.e. 

5𝜎). Figure 9.24-(a) shows the predicted TOC of the faulty batch, and the corresponding real 

measurements, while Figure 9.24-(b) displays the generated residual signals of the healthy 

batches and a faulty one.  

 

Figure 9.24. (a) TOC prediction of the faulty batch and (b) generated residuals for different 

batches. 

9.5 CONCLUSIONS AND FUTURE WORK 

This work proposes soft-sensing methodologies for a specific class of batch processes, those 

whose dynamic nature is combined with a significant variability in the initial batch conditions. 

The presented soft-sensors building approaches are found to be appropriate for these cases that 

usually appear when the process should manage raw materials whose specifications or 

properties frequently differ from one batch to another (e.g. waste treatment systems), new 

process conditions are considered (e.g. to incorporate new production resources), or at the 

 
Imput. 

grid 

Lag 

L 

Batch No. 

1 3 4 9 

GP 180 3 1.5 2.1   8.0 6.1 

OK 180 4 1.8   1.0     5.2 3.8 

ANN 180 3 2.2     2.5  5.5 5.2 

9 
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early stages of designing new products, so different alternatives of the initial 

conditions/settings are explored.  

The procedure is tested using the most common data-based modeling architectures in the soft-

sensing area, as OK, GP, SVR and ANNs in order to demonstrate its robustness and potential 

capabilities. The method is applied to simulation case-studies and a pilot-plant situation 

running the photo-Fenton reaction (an advanced oxidation process) for wastewater treatment 

in batch mode, in order to online predict the reaction progress.  

The results produced reveal promising prediction accuracy even when few input-output 

training data are available due to large sampling periods. Additionally, they illustrate high 

capabilities in the approximation of the QIV -that is expensively measured by offline sampling 

and analyses- along the whole batch, even when the batch initial conditions vary from one 

batch run to another. Consequently, the application of the proposed methodologies may result 

in huge savings of time and cost consumed by the expensive offline sampling and 

experimentations, enhancing the online supervision and monitoring of such complex processes 

difficult to follow through FPMs, and also to allow flexible exploration of many alternative 

designs (of the initial conditions) with minimum cost.  

In quantitative terms, the accuracy shown by the soft-sensors proposed in this work clearly 

meets the target expectation of being within the same order of magnitude of the accuracy 

offered by the real-sensor(s) providing the information used to train the soft-sensor, 

additionally affected by the accuracy of the available online information used to make the 

required estimations. In any case, it is worth noting that, when a soft-sensor is needed, this is 

most likely because no feasible real-sensor is available to work online and, in this sense, the 

proposed soft-sensors offer better accuracy than other soft-sensors recently proposed in the 

literature for continuous and batch processes and, even more, they are applicable to situations 

not supported by other alternatives (batch processes with changing initial conditions). 

Considering the presented application cases in their different versions, the OK and the GPR 

based models have shown the best average performance among all the considered metamodels 

in terms of their prediction accuracy. Besides, both exhibit very high flexibility and robustness 

during their tuning -compared to the SVR and ANN-, since all the model parameters can be 

easily optimized (the modeler just makes a guess about the parameters initial values and then 

the optimization/training procedure provides their optimal values). Additionally, the OK and 

GPR metamodels offer an outperforming characteristic: their ability to estimate a prediction 

error, which has demonstrated to be very useful to construct a confidence area around the soft-

sensor predictions. This estimation can be used for process control when the real behavior of 
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the system is unknown (as in the photo-Fenton case), or when it is hard to estimate the 

prediction accuracy. 

The SVR has also achieved good accuracy, and was very competitive to the OK and GPR in 

the first simulation cases study. However, the SVR requires higher effort and time to select a 

suitable kernel function (once the kernel is selected, the SVR training task –the support vectors 

selection- is usually carried out requiring very low computational effort). Similarly, the ANN 

requires a significantly higher testing effort to select the best configuration including the 

number of layers, the number of neurons in each layer and the training algorithm. Nevertheless, 

it is not the main objective of the work to compare specific metamodeling approaches, but to 

prove the flexibility and robustness of the soft-sensing approach to work properly with 

different metamodel types. Thus, any other metamodel type can be employed, and it may 

achieve better accuracy than the considered ones (e.g. advanced types of ANNs). 

Particularly, with respect to the first soft-sensing methodology (Section 9.3), in spite of the 

inherent dynamic behavior of any batch system, in many cases (as the ones studied in this 

work) it is not required to introduce any lag or delay to the soft-sensor model (i.e.: explicit 

dynamics) to provide very high prediction accuracy, so the dynamic nature of the process can 

be correctly tracked just through the available online indirect measurements. In the proposed 

approach, lag introduction is feasible, but it would result in additional effort in means of the 

complication of the soft-sensor model structure through including additional model inputs (i.e. 

delayed values of the online variables) and, consequently, additional model parameters which, 

in turn, would increase the required size of training data –which are often scarce for such 

processes- in order to identify these extra parameters. However, a future work line is the 

investigation of the ability of the first soft-sensing methodology to handle batch processes 

involving delayed behavior, where the lagged values of the online variables can be considered 

as additional model inputs. Hence, the soft-sensor in Eq.(9.7) might be 𝑦(𝑡) = 𝑓[𝑥(𝑡), 𝑥(𝑡 −

1),…𝑥(𝑡 − 𝐿), 𝑥(𝑡 = 0), 𝑦(𝑡 = 0)], where L=1, 2,... represents the suitable lag to be 

specifically applied to the model (Espinosa & Vandewalle, 1998a; Espinosa & Vandewalle, 

1998b; Nelles, 2001; Cho, et al., 2007). 

With respect to the second soft-sensing methodology (Section 9.4), the constructed soft-

sensors-based NAR models show promising enhancements in terms of the ability to predict 

the future values of the QIV along different batch runs. Thus, they can be better used for 

supporting the process control and supervision tasks. The consideration of lagged input in the 

dynamic soft-sensors design is essential, since these soft-sensors are not mapping the 

instantaneous (i.e., at the same shot of time) relation between the QIV and the online variables, 

but they are approximating the evolution of the QIV over the time, which is more complex. 
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Also, the consideration of the imputed data allows higher modeling degrees of freedom (i.e., 

possibilities of trying different model lags) when very limited number of samples measured 

over wide time intervals along each batch run are available. In contrast, if the NAR models are 

directly applied to such class of processes introducing higher lags (𝐿 = 4), five samples of the 

batch will be required to start the prediction, which makes the dynamic model useless. 
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Chapter 10: Conclusions and 

Future Work 

In the chemical process engineering area, the growing capacity and efficiency of 

available hardware and software computational resources can hardly satisfy the also increasing 

demand for using higher fidelity models, which involve more detailed descriptions of the 

process behavior, with the purpose of achieving more accurate and realistic operational 

decisions. As a consequence, the use of FPM models is becoming more and more 

computationally challenging, especially at the lower levels of the decision-making hierarchy, 

e.g., online optimization, model predictive control, fault detection and diagnosis etc., where 

the operational decisions are required in minutes or even seconds, and decision making 

involves lots of simulation runs using complex and highly nonlinear process models. Surrogate 

modelling approaches, in which a simple and accurate data-driven model replaces the complex 

FPM in these applications, represent a potential solution to overcome such challenges. 

However, their current use in the chemical engineering area is just concentrated on process 

design and steady-state optimization problems. 

10.1 THESIS CONTRIBUTIONS 

This Thesis presents a framework for the efficient and systematic use of surrogate 

models and other artificial intelligence tools (e.g., DOCE, classification, clustering) in 

different tasks related to the process operation optimization, monitoring and control. The 

framework includes a set of efficient and flexible methodologies, each supporting the decision 

making in a specific phase/module of the process operation management domain. These 

phases are the steady-state optimization, dynamic optimization, model predictive control, 

multivariate system identification, multistep-ahead prediction, fault detection and diagnosis 

and soft-sensing. In this sense, it should be noted that the main challenges identified in Chapter 

1 have been addressed through the different chapters of this Thesis.  

The first challenge addressed in this Thesis is the practical difficulties of using complex, 

highly nonlinear and/or black box FPMs in the steady-state operation optimization module, 

and the additional complications associated to the process-inherent and external uncertainties 

that amplifies this challenge. 

• In Chapter 3, an improved implementation of the usual Surrogate-Based Optimization 

(SBO) methodology is presented and applied to complex nonlinear steady-state 

chemical processes. The method replaces the entire complex FPM with a set of global 
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kriging metamodels representing the objective function and the constraints. The 

search space of the decision variables is explored by an adaptive sampling procedure, 

based on the Constrained Expected Improvement (CEI) criterion, in which the 

metamodels are iteratively updated with the obtained optimal solution to refine the 

search around the candidate solution. The methodology is compared to classical 

optimization procedures through their applications to three benchmark examples and 

two case studies including black box models that are built using modular process 

simulators. The methodology and its proposed implementation provide very accurate 

solutions, significantly reducing the number of the function evaluations and 

computational effort required, avoiding local optima, exploring separated feasible 

regions in constrained optimization, and ensuring the convergence of the optimization 

problem to global solutions. With these proven capabilities, the methodology 

demonstrates its reliability for applications requiring hour-to-hour or day-to-day 

operation optimization in complex processes. 

• The performance of the SBO methodology proposed in Chapter 3 might be limited by 

the frequent and sudden variation of process-inherent and external uncertainty 

sources/parameters (inlet feed temperatures, demand, etc.). To overcome this 

limitation, Chapter 4 presents innovative SBO methodologies for the continuous and 

mixed-integer multiparametric optimization of steady-state processes influenced by 

traceable uncertainties. The main idea is simple but innovative: the training of 

surrogate models and classification techniques to capture the underlaying mapping 

between the traceable Uncertain Parameters (UPs) and the optimal decision variables 

of the process. The developed methodologies combine DOCE techniques, state-of-art 

optimization algorithms, metamodeling, classifications and clustering techniques. The 

proposed methods are able to accurately approximate the multiparametric behavior of 

the optimal solution with very high accuracy using relatively small number of training 

data. Moreover, the simplicity, systematism and robustness of these methodologies 

have been proven through their application to different optimization problem types 

(linear, bilinear, quadratic, nonlinear, black box) in front of many 

classical/mathematical MultiParametric Programming (MPP) algorithms, each of 

them specialized and particularly tailored to solve a type of optimization problems. 

Once the optimum steady-state operating conditions (i.e., set points) have been 

identified, the subsequent task is to maintain the plant operating conditions at their optimum 

set-points against the eventual disturbances and fluctuations through the use of efficient Model 

Predictive Control (MPC) technologies, able to handle the complexities of the process. 
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• Chapter 5 presents a new Data-Based MultiParametric-Model Predictive Control 

(DBMP-MPC) methodology, which enables simple implementations of explicit MPC 

for nonlinear processes. The method is established considering the same principles 

applied to develop the methodologies presented in Chapter 4, where surrogate models 

are built offline to approximate the relation between the state variables of the process, 

measured at the current time instant, and the optimal values of the control variables to 

be applied to the process along the next time step or sampling period. Then, the 

developed surrogate models, which represent explicit control laws, are used online to 

control the process by calculating the optimal control decisions through simple 

interpolation instead of solving the classical MPC problem based on complex FPMs. 

The results obtained by applying this methodology to benchmark problems proposed 

in the MPC literature show the very high accuracy of the predicted optimal control 

decisions, its robustness to handle different dynamic model structures (i.e., discrete 

and continuous dynamic models) and its capability to overpass complex mathematical 

formulations associated to the traditional MP-MPC. 

Up to the moment, in the Process System Engineering (PSE) area, surrogate modeling 

techniques have been mainly applied to systems assuming steady-state condition, although in 

may modules of the process operation (e.g., dynamic optimization, MPC, Fault Detection and 

Diagnosis (FDD)), dynamic FPMs of the process must be considered, and, in many cases, they 

are complex. 

• Chapter 6 presents the basis for the extension of the proposed approaches to non-

steady-state systems, in the form of a robust and generic methodology for data-driven 

multivariate dynamic modelling and multistep ahead prediction of nonlinear chemical 

processes. The developed methodology utilizes surrogate models for building a set of 

Nonlinear AutoRegressive with eXogenous (NARX) models, each of them predicting 

the evolution of one output as a function of the other inputs and outputs of the process. 

The resulting set of multivariate dynamic models is, then, used to forecast the process 

outputs along larger time intervals, through a recursive and inter-coordinated 

prediction scheme. Additionally, the proposed methodology provides a novel 

procedure for the DOCE in dynamic modelling, suitable for the approximation of 

complex and computationally expensive dynamic FPMs. The multivariate dynamic 

models provided by this methodology showed very promising capabilities such as 

high prediction accuracy, large prediction time horizons and high applicability and 

robustness (handling different case studies of different nature, integrating different 

metamodel types, etc.).  
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These capabilities efficiently satisfy the requirements and needs of other process 

operations modules, such as dynamic optimization (Chapter 7) and monitoring and supervision 

(Chapter 8), where the future values of many outputs of the process must be accurately and 

rapidly predicted. 

• Chapter 7 introduces a novel surrogate-based dynamic optimization methodology for 

the quick solution of open-loop optimal control problems associated to complex 

highly nonlinear processes. The methodology is based on building a set of multivariate 

dynamic surrogate models (as presented in Chapter 6), which are able to accurately 

and rapidly predict the process outputs with respect to any time-profile of the process 

control inputs. The resulting set of dynamic surrogate models is then integrated in a 

sequential dynamic optimization procedure based on a Control Vector Parametrization 

(CVP) approach. The accuracy of the optimal solutions found and the significant 

reduction of the required computational effort stem from the fact that the multivariate 

dynamic surrogate models accurately predict the time-profiles of the process outputs 

through simple and rapid recursive interpolations, avoiding the expensive integration 

of a complex dynamic FPMs, as in standard dynamic optimization techniques.  

• Chapter 8 presents a novel data-driven methodology for Fault Detection and Diagnosis 

(FDD) of chemical processes operated under time-varying control inputs (e.g., plant 

start-ups and shutdowns, changes in set-points, etc.), when the failure rate is likely to 

be higher. The proposed methodology relies on a dynamic observer (based on 

multivariate dynamic surrogate models - Chapter 6), which predicts the expected 

normal behavior of the system, and the use of classification techniques which are 

trained using the residuals patterns created from the comparison between the process 

outputs estimated by the dynamic observer (expected normal behavior) and the actual 

outputs of the process measured under different dynamic conditions and faulty 

scenarios. The obtained results confirm the methodology capabilities to enhance the 

performance of classical data-driven approaches for FDD (which are based on the sole 

use of classification techniques trained using measured process outputs) when used 

for nonlinear processes operating under time-varying inputs. Thanks to the use of this 

data-driven observer, valuable information about the process dynamics, in the form of 

highly sensitive residuals, are efficiently fed to the classification techniques. This 

enables better identification of the process state (normal one or in one of the faulty 

conditions) and provides the flexibility required to deal with different fault severities, 

fault scenarios (sequences of different fault types) and fault styles (abrupt and 

incipient).  
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• Finally, Chapter 9 introduces new data-driven soft-sensing techniques applicable to a 

specific class of batch processes, those whose dynamic nature is combined with a 

significant variability in the batch initial conditions (e.g., processes managing raw 

materials whose specifications or properties may differ from one batch to another, or 

when new process conditions must be considered). The capabilities of the proposed 

methods are proved by their applications to simulation benchmark case-studies and a 

real photochemical pilot plant running a water treatment process in a batch mode. The 

results confirm: i) the very high accuracy of the predictions obtained by the proposed 

soft-sensors, even when few training data (measurements) are available for the Quality 

Indicator Variable (QIV), ii) significant savings (in time and cost) associated to the 

reduction of expensive offline sampling and laboratory measurements of the QIV, and 

iii) significant potential improvements in the feasibility and reliability of the process 

control, supervision and monitoring applicable techniques, which typically require 

online and continuous measurements of the process QIV variables, whose 

measurements are typically expensive, time consuming and obtained with very large 

delay.  

10.2 DEPTH AND WIDTH OF THE THESIS DEVELOPMENTS 

The Thesis offers an exhaustive library of novel methodologies that exploit the powerful 

capabilities of machine learning (regression or surrogate models, classification and clustering) 

and artificial intelligence (e.g., Genetic Algorithms) techniques. The methodologies are aimed 

at supporting the decision making at the main stages of the process operation optimization in 

situations when it is not possible to use the available analytical models of the process due to 

their complexity, or when the measurements data are the only available source of information 

about the process without the support of a well-founded analytical model. These stages include 

the steady-state optimization (Chapters 3, 4), model predictive control (Chapters 5), 

multivariate dynamic modeling and multistep ahead predictions (Chapter 6), dynamic 

optimization (Chapter 7), fault detection and diagnosis (Chapter 8) and soft-sensing (Chapter 

9).  

The powerful capabilities of machine learning techniques, in terms of the high potential 

of universal approximation and high applicability and adaptability, are efficiently employed 

in this Thesis to approximate i) the steady-state behavior of the process (Chapter 3), ii) the 

optimal behavior of the process in response to uncertain variations (Chapters 4, 5) and iii) the 

dynamic behavior of the process (Chapters 6, 7, 8, 9).  

Thanks to these three main application scenarios, machine learning techniques have 

been the core of novel methods performing diverse and different functions. Within the first 
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application scenario, the developed surrogate models can be used to simplify the steady-state 

optimization task by not only reducing the required computational effort but also by improving 

the reliability of the computations/convergence, essential in the case of complex systems 

(Chapter 3). With respect to the second application scenario, the developed surrogate models 

are able to simply and accurately reproduce multiparametric relations and control laws to 

predict/adapt the optimal set-points (Chapter 4) or control inputs (Chapter 5) of a process in 

response to uncertain variation/fluctuations of the process conditions, alleviating very complex 

mathematical solution procedures proposed for the same goal in the current literature. 

Regarding the third application scenario, the developed surrogate models have been trained to 

act as simple and accurate multivariate dynamic discrete state-space models of the process 

(Chapter 6), which enhanced the dynamic optimization tasks by a significant reduction in the 

required computational effort (Chapter 7). Also, these dynamic surrogate models improved 

the process supervision, by acting as observers of the process that feed relevant information 

about the process dynamics to the fault classifiers to enhance their detection and diagnosis 

performance (Chapter 8). Finally, the surrogate models have been proposed as soft-sensors to 

enable the real-time monitoring of a process thanks to their continuous and real-time estimates 

of the QIV, which otherwise must be expensively measured through offline laboratory 

procedures that, additionally, introduce a very large time delay in the control loop (Chapter 8). 

Finally, it’s worth to emphasize, again, that the machine learning models have been proven to 

be able to efficiently (i.e., accurately and quickly) and reliably perform all these wide range of 

functions only relying on data collected from the real process (or generated by complex model 

simulations), without the need of knowledge neither about the first principles governing the 

process nor about complex mathematical optimization formulations and techniques which may 

fail to perform the required tasks. 

Besides the diversity of the functions (e.g., optimization, control, system identification, 

supervision and soft-sensing) that the surrogate models have been proven to efficiently 

perform (through the developed methodologies in this Thesis), it’s important to spot the light 

on the diversity of the applications themselves. This Thesis has not considered a certain case-

study or even a certain class of them. On the contrary, it handled a relatively large number of 

examples and case studies (reached to 24) possessing very diverse characteristics, including  

• fed-batch (Chapters 6, 7, 9) and continuous (Chapters 3, 4, 5, 6, 8) processes, 

• single-unit (Chapters 5, 6, 7,8, 9) and multi-units (Chapters 3, 4) processes, 

• a wide range of domains such as energy engineering (utility systems in Chapters 3, 4), 

reaction engineering (fed-batch reactors in Chapters 4, 8, CSTR reactor in Chapter 5, 

Oil-shale pyrolysis reactor in Chapter 6), biochemical engineering (bioreactor in 
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Chapter 6, Penciling production reactor in Chapter 9) fluid dynamics (three-tank 

system in Chapter 6 and 8), and environmental engineering (batch Photo-Fenton 

reactor for water treatment in Chapter 9).  

This, from one side, confirms the high potential of these machine learning or surrogate 

models in terms of their applicability and robustness and, from the other side, indicates the 

credible and exhaustive validation of the developed methodologies. 

Within the developed methodologies, different machine learning techniques for 

regression have been compared (Artificial Neural Network (ANN) Ordinary Kriging (OK), 

Support Vector Regression (SVR)), as well as for classification (ANN, Support Vector 

Machine (SVM)). For regression, OK and ANN have shown the best performances. In general, 

the OK showed the best approximation accuracies, especially when the size of the training set 

is small (Chapter 9), due to its nonparametric nature that reduces the number of model 

parameters to be tuned and, consequently, the required size of training data. Another advantage 

of the OK model is the fact that all of its parameter values are automatically tuned. Also, the 

OK outstanding ability to estimate an error representing the uncertainty about its prediction, 

enables the development of efficient SBO procedures with probabilistic and global search 

mechanism (e.g., CEI in Chapter 3) able to consider the infeasibility of the optimal solution 

due to the models’ approximation errors, as well as the adaptation of the models during the 

optimization search. However, the OK suffers from a serious limitation, which is the very high 

computational cost required for its parameters tuning, especially for high dimensional cases 

and/or large training datasets, because of the associated repetitive and expensive calculations 

of the inverse of the correlation matrix among the training data samples. 

The ANN based approaches, on the other side, also showed very good performance, in 

terms of the high prediction accuracies which were, in most cases, comparable to those of the 

OK. In situations where sufficient number of training data are available (e.g., Chapter 5, 6) 

and/or where the approximated output shows non-smooth behavior (e.g., the stepwise behavior 

of control laws in Chapter5), the accuracy of the ANN outperforms the results from other 

models. Also, in the case of high dimensional input and/or large training data size, the ANNs 

require much lower computational effort than that of the OK. The main drawback of the ANN 

is the effort required for the selection of its structure (i.e., number of layers, number neurons 

in each layer, transfer function type, training algorithm, etc.). For the classification techniques 

(chapter 8), ANN classifiers showed better accuracy and more robust performance than that 

of the SVM. 



  

Chapter 10: Conclusions and Future Work 255 

10.3 EXTENSIONS AND FURTHER DEVELOPMENTS 

One of the main strength points of the Thesis is the high flexibility of the developed 

methodologies, which makes them a very good basis for future research. In this context, the 

perspectives include: 

The extension of the SBO method, developed in Chapter 3, in order to handle general 

multi-objective optimization problems, where each objective is to be represented with a 

kriging model (besides the kriging models of the constraints). This will imply the development 

of new sequential optimization search procedures (i.e., Multi-objective Constraint Expected 

Improvement methods) that consider the sequential enhancement of the entire Pareto front. 

For the methodologies developed in Chapters 4 and 5, an interesting research line would 

be the extension of their capabilities to improve the approximation of the multiparametric 

behavior of continuous decision variables (Chapter 4) or continuous control input (Chapter 5) 

that show significant/discrete changes over the UPs (Chapter 4) or state variables (Chapter 5) 

space. This can be accomplished by exploiting adaptive sampling techniques to collect training 

data from the local subspaces of the UPs at which the behavior of the optimal decision 

variables or control inputs show sharp changes. Also, the use of deep learning models (e.g., 

Convolutional Neural Networks) can help to treat the previous problem since their powerful 

approximation capacities make them good candidates to efficiently handle such discrete 

behavior, better than classical machine learning models (e.g., kriging and ANN).  

With respect to the data-driven explicit MPC methodology presented in Chapter 5, an 

additional research line would consist of expanding its capabilities so as to handle hybrid MPC 

problems, where the control inputs to be determined (optimized) are of discrete nature. For 

this purpose, clustering and classification techniques might be considered to handle and 

quantify this discrete or integer behavior. It would be also worth to consider MPC problems 

involving UPs (that often influence the process dynamic model), so the optimal control at the 

future sampling period will be modeled as a function of the current values of the state variables 

and the UPs. 

Regarding the multivariate dynamic modeling and multistep-ahead prediction 

methodology developed in Chapter 6, three interesting future research lines are recommended. 

The first one consists in handling real world problems (i.e., data) where, in spite of the quantity 

of data, very limited knowledge about the process behavior is known in the form of specific 

profiles of input-output data signals. The second is the management of the prediction 

uncertainty in order to propagate it through the multistep-ahead prediction. Finally, the 

characteristics of the Long-Short Term Memory (LSTM) ANNs for modeling temporal 

information are probably worth to be exploited in the multivariate dynamic modeling of 
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chemical processes. These characteristics include the ability of capturing long-term temporal 

dependencies, the automatic extracting of temporal and spatial patterns in the input feature 

space, and the capacity of handling nonlinear and complex feature interactions in the data 

without explicitly defining them and memorizing the occurrence of the distant-past and the 

near-past and balance out the two when making predictions, all of them contributing to a 

potential increase of the prediction accuracy. 

With respect to Chapter 7, considering more complex application cases (higher 

dimensional fed-batch processes) to further exploit the capabilities of the data-driven dynamic 

optimization methodology is a straightforward future work. Also, the improvement of the 

methodology through a sort of adaptive optimization procedure will be interesting: at each 

iteration, the data-driven dynamic models of the process might be updated with the input-

output data corresponding to the identified optimal profiles of control variables and the 

corresponding profiles of the state variables. 

 Regarding Chapter 8, the extension of the methodology capacities in order to handle 

“unsupervised” FDD is a realistic need that should be investigated, where the labels of faults 

are not known. In this line, advanced clustering techniques to isolate the monitoring data with 

respect to the process faults can be leveraged. Also, another line is the exploration the 

performance of the methodology in more realistic working conditions, for example, when the 

input disturbances affect both normal and abnormal/fluty conditions, when a closed-loop 

control system is in operation (thus compensating the effects of the faults), or when the non-

linearities of the system are stronger, complicating the task of the observer (prediction).  

Finally, for Chapter 9, an interesting research direction is to investigate the development 

of multivariate soft-sensors, where more than one QIV of the process is to be modeled. 
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