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Abstract In this paper, we extend the Zipf distribution by means of the Randomly
Stopped Extreme mechanism; we establish the conditions under which the maximum
and minimum families of distributions intersect in the original family; and we demon-
strate how to generate data from the extended family using any Zipf random number
generator. We study in detail the particular cases of geometric and positive Poisson
stopping distributions, showing that, in log-log scale, the extended models allow for
top-concavity (top-convexity) while maintaining linearity in the tail. We prove the
suitability of the models presented, by fitting the degree sequences in a collaboration
and a protein-protein interaction networks. The proposed models not only give a good
fit, but they also allow for extracting interesting insights related to the data generation
mechanism.
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1 Introduction

Discrete Power Law (DPL) distributions are those families of distributions such that
the probabilities are inversely proportional to a positive power of the value itself.
When the support of the DPL is the strictly positive integer values equal or larger
than 1, we obtain the Zipf distribution (Zipf, 1949). The popularity of the Zipf dis-
tribution has increased over the years because it provides a reasonable fit to data that
originates from dissimilar areas. Some examples of its applications can be found in
assessing the quality of the peer review process (Ausloos et al., 2016), mobility pat-
terns (Ectors et al., 2018), and the arts (Manaris et al., 2005). In the last years several
authors have pointed out that, in practice, few empirical phenomena obey DPLs for
all values of x, and more often the DPL applies only to values greater than a given
threshold (xmin), see Clauset et al. (2009) and McKelvey et al. (2018). In the net-
work analysis environment, networks with a DPL degree distribution are also called
scale free networks see Barabási and Pósfai (2016). Recently the work by Broido and
Clauset (2019) has analyzed a large corpus of degree sequences of graphs coming
from many different research areas, and has confirmed that only a small percentage
of those are what they denote as ”pure scale free”. The goal of this paper is to define
two-parameter Zipf extensions that, on one side, perform similarly to the Zipf when
modeling the tail of the data and, on the other side, allow for fitting the data in all its
range without requiring the selection of an xmin value.

The main reason for the real degree sequences to deviate from DPL behavior
is that, when the probabilities of a DPL are plotted in log-log scale, one obtains
a straight line, and degree sequences of real networks tend to show a top-concave
(less frequent top-convex) pattern that is not adapted by DPL distributions. Thus, the
additional parameter has to guarantee this flexibility for the initial values.

The concept of Randomly Stopped Extreme distribution (RSED) is used to ex-
tend the Zipf distribution. The RSEDs are the distribution families defined as the
minimum or the maximum of a random number of independent and identically dis-
tributed (i.i.d.) random variables (r.v.). The name RSED was introduced by Pérez-
Casany et al. (2016) at the ICOSDA 2016 conference. However, these kinds of dis-
tributions have been widely studied in the literature. See Louzada et al. (2012) for a
formal definition of the RSED. These distribution families are applied mainly to life-
time scenarios in which the information of a particular event is not observed and one
instead has the information about the minimum or maximum of a random number
of events. The survey by Tahir and Cordeiro (2016) introduces several distributions
that belong to this class. However, in most of the cases that appear in the literature,
the extended distribution is a continuous distribution and the extension of a discrete
family is less frequent. See Gómez-Déniz (2010) for an extension of the geometric
distribution.

The paper is organized as follow: Section 2 introduces the Zipf distribution and its
main characteristics. Section 3 focuses on the concept of RSED and presents two new
results related to this concept. Section 4 particularizes on RSE Zipf generalizations,
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and Section 5 is devoted to two particular extensions obtained by assuming geometric
and positive Poisson stopping distributions. Section 6 shows the suitability of the
models proposed through the analysis of the degree sequence of two real networks.
The fits obtained by the presented models are also compared with those from other
bi-parametric models, such as: the discrete Gaussian Exponential (DGX) (Bi et al.,
2001), the Zipf-Polylog (Valero et al., 2020) and the positive version of the Zipf-PSS
(Duarte-López et al., 2020) distribution. In Section 7, we explain how to synthetically
generate networks with a degree sequence that follows one of our extensions. This
is a research that is in its early stage, but with encouraging results. Finally, the main
conclusions are stated in Section 8.

2 The Zipf distributions and its limitations

A random variable (r.v.) is said to follow a DPL when its probability mass function
(PMF) is equal to:

P(X = x) =

{
x−α

ζ (α,xmin)
∀x≥ xmin

0 otherwise,
(1)

where α > 1, xmin > 0 and ζ (α,xmin) =∑
+∞

i=xmin
i−α =∑

+∞

i=0(i+xmin)
−α is the Hurwitz

zeta function.
For the particular case when xmin = 1 in (1) the Zipf distribution is obtained. Thus,

it is said that a r.v. X follows a Zipf distribution with parameter α > 1 if, and only if,
its PMF is equal to:

P(X = x) =
x−α

ζ (α)
,x = 1,2, ..., α > 1, (2)

where ζ (α) = ∑
+∞

i=1 i−α is the Riemann Zeta function. Observe that the parameter
space of the Zipf distribution is the set of values where the Riemann zeta function
converges, which is (1,+∞).

The Zipf distribution is a one-parametric distribution defined on the strictly pos-
itive integer numbers, where the probabilities change inversely to a power of the
values. Since it is a markedly skewed distribution, one may observe in a sample from
this model values that sometimes differ by orders of magnitude.

As any DPL distribution, it is highly recommended for modeling two types of
data: rank and frequencies of frequency. An example of rank data is, for instance, the
list of the world’s billionaires 1 provided by Forbes. There the richest people in the
world are ranked based on the fortune that they own. For frequencies of frequency
data, one understands data that are frequency tables of counts. For instance, let us
assume that we known the number of followers that each Instagram account has, if
we group them by the number of followers, and then we count how many accounts
each group has, it gives place to the frequencies of frequency table having in the
first column the category and, in the second column, the amount of accounts of that

1 https://www.forbes.com/billionaires/list/;

https://www.forbes.com/billionaires/list/;
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category. The data sets considered in Section 6 are frequencies of frequency data.
Notwithstanding, they could also be analyzed in terms of ranks.

In what follows we point out the main characteristics of the Zipf distribution. By
taking logarithm in both sides of (2) one has that when the probabilities are plotted
in log-log scale they show a straight line with a slope equal to −α and an intercept
equal to log(ζ (α)). Figure 1 shows the probabilities of the Zipf for different values
of the α parameter in log-log scale. Observe that when the α parameter increases, the
probabilities concentrates at the low values.
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Fig. 1: PMFs of the Zipf distribution for α = 1.5,2,3.5 and 5 in log-log scale.

The survival function (SF) and the cumulative density function (CDF) of the Zipf
distribution with parameter α are respectively equal to:

Fα(x) = P(X > x) =
1

ζ (α)

+∞

∑
i=x+1

i−α =
ζ (α,x+1)

ζ (α)
, α > 1, (3)

Fα(x) = 1− ζ (α,x+1)
ζ (α)

=
ζ (α)−ζ (α,x+1)

ζ (α)
, α > 1. (4)

The k-th moment of the Zipf, k ∈ Z+ is equal to:

E[Xk] =
+∞

∑
x=1

xkx−α

ζ (α)
=

ζ (α− k)
ζ (α)

,

and thus, it is finite if, and only if, α > k+1 because ζ (α− k) needs to be finite. In
particular, the first moment only exists if α > 2 and in that case, it is equal to:

E[X ] =
ζ (α−1)

ζ (α)
, α > 2. (5)

Moreover, if x1,x2, . . . ,xn is a sample from an r.v. X with a Zipf(α) distribution,
the log-likelihood function is equal to:

`(α;x1,x2, . . . ,xn) =−α

n

∑
i=1

log(xi)−n log(ζ (α)).
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Thus, the maximum likelihood estimation (MLE) of α is obtained by solving the
equation:

−
n

∑
i=1

log(xi)−n
ζ ′(α)

ζ (α)
= 0,

and given that ζ ′(α) = ∑
+∞

i=1 i−α log(i), it is equivalent to solve:

E[log(X)] =
1
n

n

∑
i=1

log(xi) = log(x).

Observe that this equation is equivalent to applying the moment-method estimation
to the logarithm of the variable. Applying the logarithm to a Zipf distributed r.v.,
i.e. considering the r.v. log(X), it is guaranteed that the transformed variable has
moments of any order. This is a consequence of the fact that the logarithm reduces the
data variability. The MLE of the Zipf distribution when necessary, can be computed
numerically.

The suitability of the Zipf distribution has been widely demonstrated in dissim-
ilar areas. For example, the classical book by Zipf (1949) shows, from among other
examples, that this distribution provides accurate results when it is used for fitting the
frequency of the words in a given text. More recently, it has been used in the work by
Ausloos et al. (2016) to assess the quality of the peer review process. In particular, the
analyzed data came from peer review reports of the Journal of the Serbian Chemical
Society.

In addition, Ectors et al. (2018) have shown that the Zipf distribution also emerges
in the frequency at which people conduct their daily activities; this contribution can be
directly used for validating travel demand models. Other examples from a completely
unrelated area appear in the paper by Manaris et al. (2005), where the Zipf distribu-
tion has been used in music classification for measuring the proportion of various
parameters, such as harmonic consonance and duration, among others. Moreover, it
has been used for automatic detection of regions of interest in digital images (Caron
et al., 2007).

The same occurs in network analysis, where the distribution is considered rea-
sonable for fitting the degree sequence of a real network. For example, the work by
Adamic and Huberman (2002) has shown that it provides the best fit for the connec-
tions of the Internet backbone as well as for the connections included in the World
Wide Web.

However, even though Zipf’s law seems to govern multiple natural and man-made
systems, it has an intrinsic limitation: it lacks flexibility, which is a consequence of
being a one-parameter distribution. When the probabilities are plotted in double loga-
rithmic scale, the distribution always exhibits a straight line (see Figure 1). However,
real data usually deviate from this type of pattern and generally show linearity only
in the tail. Moreover, for small values, a top-concave pattern is often observed while
a top-convex one is seen less often. Figure 2 shows several plots in log-log scale of
the degree distributions of real networks. These plots illustrate a clear deviation from
pure DPL behavior. On the upper left-hand side is the in-degree sequence of a com-
munication network representing emails exchanged in a European institution. The
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upper right-hand side shows the degree sequence of the Arabidopsis thaliana com-
prehensive knowledge network. Finally, the example at the bottom corresponds to the
Facebook network of the University of California, Santa Cruz in 2005. In Section 6
the second data set is fitted by means of the Zipf extensions proposed in this paper.
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Fig. 2: Examples of degree sequences of real networks plotted in log-log scale. On
the upper left-hand side is the in-degree sequence of a communication network repre-
senting emails exchanged in a European institution. The upper right-hand side shows
the degree sequence of the Arabidopsis thaliana comprehensive knowledge network.
Finally, the example at the bottom corresponds to the Facebook network of the Uni-
versity of California, Santa Cruz in 2005.

According to McKelvey et al. (2018), in just a few scenarios the power law pattern
appears in the entire range of values. In most of the cases, this pattern is observed only
for values over a given threshold. This threshold separates two behaviors: the first
one tends to be Gaussian; and the second one, which corresponds to the tail, follows
a DPL. This implies that fitting a DPL to many data sets requires the selection of
a plausible cut-off point, xmin. A widely used practice is the methodology proposed
by Clauset et al. (2009), which seeks a cut-off point and fits the distribution of the
data at values that are larger or equal than the selected cut-off. In Drees et al. (2020)
it is proved that Clauset’s methodology tends to select values of the cut-off that are
too high. A consequence of this is that the Hill estimator for parameter α ( see,
Hill (1975)) has large variances. The determination of a cut-off point implies a loss
of information and creates the need to generalize the Zipf in such a way that the
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extension is able to fit the data in their entire range, while maintaining the linearity
in the tail. In Section 6 we show that by using the models proposed in this paper it is
not necessary to choose an xmin value because they allows for fitting the data in all its
range while performing similarly to the Zipf in the tail.

The next section introduces the concept of RSED as a way of generalizing a fam-
ily of probability distributions. In addition, it states the conditions under which the
original family is included in the extended family. At the end we present a methodol-
ogy for generating random data from an extended family based on a random number
generator of the original family.

3 Randomly Stopped Extreme distributions

In practice, maximums (less often minimums) of i.i.d. copies of an r.v. X are used in
the lifetime and reliability studies of many research areas, such as physics, computer
science, industry, public health, and communications, among others. See for instance
Kuş (2007) and Cancho et al. (2011) for the definition of the Poisson-exponential
lifetime distribution in terms of, respectively, minimums and maximums. The work
by Tahir and Cordeiro (2016) reviews the different classes of compound distributions
and introduces several examples of distributions that can be described as Randomly
Stopped Extreme distributions.

In this section, we first introduce the concept of Randomly Stopped Extreme dis-
tribution (RSED) and then point out two important results related to the RSEDs.

3.1 Definition

Let X be an r.v. with parameter vector α and cumulative density function (CDF)
FX (x;α); and let N be a discrete r.v. defined in the strictly positive integer numbers,
independent of X , and with probability generating function (PGF) hN(t;θ), with θ

being the parameter vector. The r.v.’s defined as:

Y max
X ;N = max(X1,X2, · · · ,XN) and Y min

X ;N = min(X1,X2, · · · ,XN),

where Xi are i.i.d. copies of X , have their CDF and survival function (SF), respec-
tively, equal to:

FY max
X ;N

(x;α,θ) = hN(FX (x;α),θ) and SY min
X ;N

= hN(SX (x;α),θ), (6)

with SX (x;θ) being the SF of X (see, Louzada et al., 2012). The distribution of
Y max

X ;N and Y min
X ;N are called, by definition, RSED, since they are the distribution of a

maximum or minimum (extreme) of a random number of independent copies of X
(see, Pérez-Casany et al., 2016).

It is important to observe that X is associated with the phenomena under study
while N is related to the number of observations of X that one has in a given period
of time or in a given space. RSEDs appear in real situations when one observes only
the variable of interest when it is larger (smaller) than a given threshold. For instance,
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one may be interested in buying foreign currency only when the price is lower than a
given value. In such a case, Xi will be the price of the currencies that are smaller than
the threshold in a given period of time, and N will be the number of currencies that
have a price smaller than the threshold.

The distributions of the r.v.’s X and N are, respectively, denoted by stopped and
stopping distributions. This allows for a parallelism between RSED and Stopped Sum
distributions, i.e., the distributions that appear as a random sum of i.i.d. copies of a
given r.v. X . The stopped distribution of an RSED serves as the secondary distribution
of a stopped sum, while the stopping distribution represents the primary distribution.
In the case of stopped sum distributions, the PGF of the final variable is equal to the
composition of the PGF of the primary distribution with the PGF of the secondary
distribution. This is the reason why they are also known as compound distributions.
Based on (6), for RSEDs one compose the PGF of the stopping distribution with
the CDF (maximums) or the SF (minimums) of the stopping distribution to obtain,
respectively, the CDF of the maximum or the SF of the minimum.

Randomly Stopped Extreme and Stopped-Sum distributions are two mechanisms
that allow us to generalize the distribution of X . Both transformations help us better
understand the mechanism that generates the data. The next section is devoted to the
extensions of the Zipf distribution obtained by applying RSED. See Duarte-López
et al. (2020) for the generalization of the Zipf distribution based on Poisson-stopped-
sums.

By restricting N to being a strictly positive integer r.v., one avoids computing the
maximum (minimum) of the empty set. Thus, one may assume for instance, that N
follows either a strictly positive geometric distribution or a logarithmic series distri-
bution. One may also consider as a distribution for N, any zero truncation of a positive
integer distribution. In this latter case, one has to take into account that if Nzt denotes
the zero-truncated version of N, then its PGF is equal to:

hNzt (t;θ) =
hN(t;θ)−hN(0;θ)

1−hN(0;θ)
. (7)

For example, if N is Poisson distributed with λ > 0, given that hN(t) = eλ (t−1), one
has that,

hNzt (t;λ ) =
eλ t −1
eλ −1

. (8)

As a consequence of the fact that limλ→0 hNzt (t;λ ) = t, it is possible to consider
[0,+∞) as the parameter space of the zero-truncated Poisson distribution, where λ =
0 corresponds to the degenerate distribution at one. The PGFs of the positive negative
binomial and the positive Hermite distributions appear in Table 2, and they have been
obtained in a similar way.

Taking into account (6) in the case where the zero truncation of N is required, the
CDF of the maximum and the SF of the minimum are equal to:

FY max
X ;N

(x;α,θ) = hNzt (FX (x;α),θ) =
hN(FX (t;α);θ)−hN(0;θ)

1−hN(0;θ)
, (9)
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N Dist. E[N] hNzt (t;θ) Param. space X Dist.

geometric 1
p

pt
1−(1−p)t [0,1] p = 1

zt. Poisson λ

1−e−λ

 eλ t−1
eλ−1

if λ > 0

t if λ = 0
[0,+∞) λ = 0

zt. Hermite θ−2β

1−e−(θ+β )
eθ t+β t2−1

eθ+β−1
[0,+∞)× [0,+∞) θ = β = 0

log-series − θ

log(1−θ)(1−θ)
ln(1−θ t)
ln(1−θ) (0,1) θ = 0

zt. neg.bin − θ β

(1−θ)θ β

( 1−θ

1−θ t )
β−(1−θ)β

1−(1−θ)β
, (0,1)× (0,+∞) θ = 0

Table 1: Some possible stopping distributions together with their PGFs, parameter
spaces and the parameter values that gives the family of distributions of X .

and

SY min
X ;N

(x;α,θ) = hNzt (SX (x;α),θ) =
hN(SX (t;α);θ)−hN(0;θ)

1−hN(0;θ)
. (10)

3.2 Two interesting results

In this section, we prove two theorems. The first one establishes a condition under
which the random stopped extensions contain the family of distributions of X as a
particular case. The second theorem explains how to generate data in the extended
family based on a random data generator of the family of distributions of X .

Theorem 1 If N is defined in the strictly positive integer values and a value θ0 exists
in the parameter space, such that hN(t;θ0) = t, then the distribution of X belongs to
both sets of maximum and minimum stopped extreme distributions.

Proof. Given that hN(t;θ0) = t, from (6) one has that:

FY max
X ;N

(x;α,θ) = hN(FX (x;α),θ0) = FX (x;α),

and that:

SY min
X ;N

(x;α,θ) = hN(SX (x;α),θ0) = SX (x;α).

Observe that saying hN(t;θ0) = t is equivalent to saying that the family contains
the degenerate distribution at one, as a particular case. This is the case for the stopping
distributions considered in Table 1. Their corresponding RSEDs contain the family
of the distribution of X as a particular case, for the parameter values that appear in
the last column.

The next theorem shows how to generate random numbers from the RSED fam-
ilies, based on knowing how to generate random data from the baseline family. This
is important, because one may use any random number generator implemented in
any statistical software for the baseline family, and then easily generate data from
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the extended families. Thus, even if the CDF of the extended distribution is rather
complicated, simulating data from it is computationally simple.

Theorem 2 Let Y be an r.v. with an RSED. To generate a random value from Y is
enough to follow the next steps and to:

1) uniformly generate a value u in (0,1);
2) compute the value u′ in the following way:

a) if Y is a maximum, then u′ = h−1
N (u(1−hN(0)))+hN(0), and

b) if Y is a minimum, then u′ = 1−h−1
N (1−u(1−hN(0)));

3) apply the inversion method to u′ using the distribution of X.

Proof. We first prove the theorem for maximums. Given a value u ∈ (0,1), to apply
the inversion method to the distribution of Y is equivalent to finding the smaller value
of x, such that u ≤ FY (x;α,θ). Taking into account (9), this is equivalent to finding
the minimum value of x, such that:

u≤ hN(FX (x;α);θ)−hN(0;θ)

1−hN(0;θ)
,

which is equivalent to saying that:

h−1
N (u(1−hN(0;θ)))+hN(0;θ)≤ FX (x;α)⇔ u′ ≤ FX (x;α),

with u′ = h−1
N (u(1−hN(0)))+hN(0).

To prove the theorem for minimums, one has that u ≤ FY (x;α,θ)⇔ u ≤ 1−
SY (x;α,θ), and by (10), this is equivalent to saying that:

u≤ 1−hN(SX (x;α);θ)

1−hN(0;θ)
⇔

u(1−hN(0;θ))≤ 1−hN(SX (x;α);θ)⇔
hN(SX (x;α);θ)≤ 1−u(1−hN(0;θ))⇔

SX (x;α)≤ h−1
N (1−u(1−hN(0;θ));θ)⇔

1−FX (x;α)≤ h−1
N (1−u(1−hN(0;θ));θ)⇔

1−h−1
N (1−u(1−hN(0,θ));θ)≤ FX (x;α)⇔

u′ ≤ FX (x;α),

with u′ = 1−h−1
N (1−u(1−hN(0))).

4 Randomly Stopped Extreme Zipf distributions

By RSEZipf distribution, we denote the RSED that assumes that X follows a Zipf
distribution. Table 2 contains the CDFs of the maximums as well as the SFs of the
minimums of the RSEZipf obtained by considering the stopping distributions that
appear in Table 1. They were obtained by compounding the PGF of the stopping
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Stopping distrib. FY max
N

SY min
N

geometric
1− ζ (α,x+1)

ζ (α)

1+( 1
θ
−1) ζ (α,x+1)

ζ (α)

ζ (α,x+1)
ζ (α)

1
θ
+(1− 1

θ
)

ζ (α,x+1)
ζ (α)

log.series
ln(1−θ(1− ζ (α,x+1)

ζ (α)
))

ln(1−θ)

ln(1−θ
ζ (α,x+1)

ζ (α)
)

ln(1−θ)

zero-trunc. Poisson e
θ(1− ζ (α,x+1)

ζ (α)
)
−1

eθ−1
e

θ
ζ (α,x+1)

ζ (α) −1
eθ−1

zero-trunc. neg. bin.

( 1−θ

1−θ(1− ζ (α,x+1)
ζ (α)

)
)β−(1−θ)β

1−(1−θ)β

( 1−θ

1−θ
ζ (α,x+1)

ζ (α)

)β−(1−θ)β

1−(1−θ)β

zero-trunc. Hermite e
θ(1− ζ (α,x+1)

ζ (α)
)+β ((1− ζ (α,x+1)

ζ (α)
))2
−1

eθ+β−1
e

θ
ζ (α,x+1)

ζ (α)
+β (

ζ (α,x+1)
ζ (α)

)2
−1

eθ+β−1

Table 2: CDF for the maximum and SF for the minimum of the random extreme Zipf
generalizations, considering the following types of stopping distributions: geometric,
logarithmic series, positive Poisson, positive negative binomial, and positive Hermite.

distribution (that appears in the second column of Table 1) with: the CDF of the Zipf
(4) (in the case of maximums); and the SF of the Zipf (3) (in the case of minimums).

The next theorem states the asymptotically relation of the tails of the Zipf and
any RSEZipf distribution. The results obtained are a consequence of the work by
Jessen and Mikosch (2006, p. 18–20). For these particular result, bear in mind that
f (x) ∼ g(x), as x→ +∞ is equivalent to saying that f (x)/g(x) −−−−→

x→+∞
1 if g(x) 6= 0,

and it is equivalent to f (x) = o(1) if g(x) = 0.

Theorem 3 The tail of an r.v Y ∼ RSEZipf(α,β ) is asymptomatically related to the
tail of an r.v. X ∼ Zipf(α). More precisely:

a) if Y is a minimum, then P(Y > x) ∼ P(N = n0)[P(X > x)]n0 , where n0 is the
smallest positive integer, such that P(N = n0)> 0,

b) if Y is a maximum, then P(Y > x) ∼ E[N]P(X > x), where N is the stopping
distribution and E[N]<+∞.

Proof. These results hold when X is assumed to be a regularly varying function.
According to Gulisashvili (2012, p. 220), the Zipf distribution is a regularly varying
function, since it is a Pareto-type distribution. In the author’s words, a function f
belongs to the kind of Pareto-type distributions if it is asymptotically equivalent to a
regularly varying function, which implies that f is also a regularly varying function.
For an extended proof of these results, the reader is encouraged to review the work
of Jessen and Mikosch (2006, p. 18–19). Consequently, any extension of the Zipf
distribution obtained by RSED will have a linear tail independently of the stopping
distribution.
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For a generalization of the Zipf distribution with a non-linear tail, see Valero et al.
(2020).

5 The MOEZipf and the Zipf-PE generalizations

In this section, the two RSEZipf distributions corresponding to the geometric and the
positive Poisson stopping distributions are analyzed in detail. The first one is denoted
by MOEZipf, because it also the result of applying the Marshall-Olkin transformation
(MO) (Marshall and Olkin, 1997) to the Zipf distribution. The second one is denoted
by Zipf-PE (Zipf-Poisson Extreme), and it is aligned with the framework proposed
by Ramos et al. (2018).

5.1 The Marshall-Olkin Extended Zipf distribution

The MO transformation allows us to extend a family of probability distributions by
adding an extra parameter. The authors in their work also demonstrate that this trans-
formation concurs with the RSED definition, since the extended family of distribu-
tions can be interpreted as the minimum (maximum) of a geometric number of in-
dependent r.v.’s (Marshall and Olkin, 1997, p. 646). Consequently, applying the MO
transformation to (3) results in the SF (11) of the MOEZipf distribution, that is equal
to.

Fα,β (x) =
β Fα(x)

1−β Fα(x)
=

β ζ (α,x+1)

ζ (α)−β ζ (α,x+1)
, α > 1, β > 0. (11)

The MOEZipf distribution was originally defined and analyzed by Casany and
Casellas (Pérez-Casany and Casellas, 2013; Casellas, 2013). The main results pre-
sented by these authors are:
a) for sufficiently large x, β is obtained as the limit of the ratio of the MOEZipf and

Zipf probabilities;
b) for large values of x, the log(P(Y = x)) is a linear function of the log(x);
c) the k-th moment of the MOEZipf distribution exists only if α > k+1;
d) the ratio of two consecutive MOEZipf probabilities is greater than that of prob-

abilities coming from a Zipf distribution with the same α if β > 1, otherwise it
is smaller than the Zipf one. They also define the MLE and the moment-method
estimation for the MOEZipf distribution.
In what follows, we complement the results mentioned in the papers above by

including new properties of the MOEZipf and by extending one of the existing ones.
Based on the definition, the MOEZipf distribution has support on the strictly

positive integer values, and its parameters are the α parameter of the Zipf distri-
bution and the β parameter of the geometric distribution. Thus, the parameter space
is: (1,+∞) × (0,+∞). The PMF of the MOEZipf distribution can be derived from
(11) by computing Fα,β (x−1)−Fα,β (x) and it is equal to:

P(Y = x) =
x−α β ζ (α)

[ζ (α)−β ζ (α,x)] [ζ (α)−β ζ (α,x+1)]
, x = 2,3,4, . . . , (12)
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and,

P(Y = 1) = 1−Fα,β (1) =
1

ζ (α)−βζ (α,2)
.

Observe that P(Y = 1) is equal to (12) at x = 1; and thus (12) is the PMF in the entire
support.

Figure 3 shows the PMFs of the MOEZipf distribution in log-log scale for α = 2.1
and different values of the β parameter. Observe how the value of the β parameter
influences the top-concavity (top-convexity) of the distribution in log-log scale. For
β values smaller than one, the distribution is top-convex; while for β values larger
than one it is top-concave. When β = 1, the probabilities are equal to those of a Zipf
distribution with the same α parameter.

1 2 5 10

MOEZipf(2.1, β)

ln(x)

ln
(P

(Y
 =

 x
))

5
×

1
0

−
4

1
0

−
2

5
×

1
0

−
1

β = 0.1

β = 0.5

β = 1

β = 2.5

β = 10

Zipf

Fig. 3: PMFs of the MOEZipf distribution in log-log scale for α = 2.1 and β =
0.1,0.5,1,2.5 and 10.

The next proposition establishes the conditions under which a MOEZipf distribu-
tion can be interpreted in terms of maximums or minimums. It also proves that each
distribution in the maximum family has a dual distribution in the minimum family.

Proposition 1 Let Y be a MOEZipf distributed r.v. with parameters (α,β ). Then:
i) If β > 1, Y corresponds to a maximum of i.i.d. Zipf(α) r.v.’s, where the r.v. N

follows a geometric distribution with parameter θ = 1/β .
ii) If β < 1, Y corresponds to a minimum of i.i.d. Zipf(α) r.v.’s, where the r.v. N

follows a geometric distribution with parameter θ = β .
iii) If β = 1, Y follows a Zipf(α) distribution and may be seen as a maximum as

well as a minimum of i.i.d. Zipf(α) r.v.’s, where the r.v. N follows a geometric
distribution with probability at one equal to one, i.e., a degenerate distribution at
one.

Proof. From (11) the CDF of Y is equal to:

Fα,β (x) = 1−Fα,β (x) =
ζ (α)−ζ (α,x+1)

ζ (α)− (1−β )ζ (α,x+1)
=

1− ζ (α,x+1)
ζ (α)

1+(β −1) ζ (α,x+1)
ζ (α)

.
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Assuming that β > 1, the middle part of the first row of Table 2 shows that this cor-
responds to a maximum of i.i.d. Zipf(α) r.v.’s, with a geometric stopping distribution
with parameter θ = 1/β , which proves (i).

By dividing the SF of the MOEZipf(α,β ) that appears in (11) by ζ (α), one has
that:

Fα,β (x) =
β

ζ (α,x+1)
ζ (α)

1− (1−β ) ζ (α,x+1)
ζ (α)

=

ζ (α,x+1)
ζ (α)

1
β
+(1− 1

β
) ζ (α,x+1)

ζ (α)

,

which, as we can see at right hand side of the first row of Table 2, corresponds to
the SF of an RSED, with a Zipf(α) distribution as the secondary distribution and
a geometric distribution with parameter θ = β as the primary distribution, which
proves (ii).

Using Theorem 1 when β = 1, (11) it is equal to the SF of a Zipf(α) distribution,
which can be interpreted as a maximum as well as a minimum RSED with a geometric
distribution degenerated at one, which proves (iii).

To better understand the SF of the MOEZipf distribution and, from there, be able
to deduce further properties of the distribution, the next lemma analyzes the sign and
monotonicity of the function that appears in its denominator. Its results are illustrated
in Figure 4. For any α > 1 and β > 0, let us define the function

h(α,β )(x) = ζ (α)− (1−β )ζ (α,x+1), x≥ 1. (13)

Lemma 1 The function h(α,β )(x) defined for x≥ 1 verifies that:

a) If β ∈ (0,1), it is an increasing concave function in [1,+∞) that takes values in
the interval [βζ (α),ζ (α)). Consequently, ∀x≥ 1, βζ (α)≤ h(α,β )(x)≤ ζ (α).

b) If β > 1, it is a decreasing convex function in [1,+∞) that takes values in the
interval (ζ (α),βζ (α)]. Consequently, ∀x≥ 1, ζ (α)≤ h(α,β )(x)≤ βζ (α).

c) If β = 1, it is a constant function equal to ζ (α).

Proof. The first two derivatives of the function hα,β (x) are equal to:

h′(α,β )(x) = α(1−β )ζ (α +1,x+1),and

h′′(α,β )(x) =−α(α +1)(1−β )ζ (α +2,x+1). (14)

Taking into account that ζ (α,x)≥ 0 ∀α > 0 and x≥ 1, proving a) merely requires
observing, first, that for β ∈ (0,1), h′(α,β )(x)≥ 0 and h′′(α,β )(x)≤ 0 and, second, that
h(α,β )(1) = βζ (α) and limx→+∞ h(α,β )(x) = ζ (α). As an increasing function, the
interval where it takes values es equal to [βζ (α),ζ (α)). Proving b), is a matter of
observing that for β > 1, h′(α,β )(x) ≤ 0 and h′′(α,β )(x) ≥ 0. As a decreasing function,
the interval where it takes values is now equal to: (ζ (α),βζ (α)]. The proof of c) is
straightforward.



Randomly Stopped Extreme Zipf Extensions 15

0 5 10 15 20 25 30

x

h2.1,0.76(x)

β
ζ
(α

)
ζ
(α

)

0 5 10 15 20 25 30

h2.1,3.5(x)

x

ζ
(α

)
β

ζ
(α

)

Fig. 4: Function h(α,β )(x) for α = 2.1. On the left hand side, for β = 0.76 (mini-
mum) and, on the right hand side, for β = 3.5 (maximum). The function limits are
represented by a dash line.

The next proposition establishes a condition under which the MOEZipf distribu-
tion is log-convex. Note that the log-convexity is sufficient criteria for stating that the
distribution is infinitely divisible (Johnson et al., 2005).

Proposition 2 Let Y be an r.v., such that Y ∼MOEZipf(α,β ), with β ∈ (0,1]. Then,
Y has a log-convex distribution.

Proof. As stated in Johnson et al. (2005), a discrete distribution is said to be log-
convex if and only if,

P(Y = x)P(Y = x+2)
(P(Y = x+1))2 ≥ 1. (15)

Thus, it is necessary to prove that (15) holds for β ∈ (0,1]. From (12), one has that
(15) is equivalent to:

P(Y = x)P(Y = x+2)
(P(Y = x+1))2 =

(
x(x+2)
(x+1)2

)−α( hα,β (x+1)
hα,β (x)

hα,β (x+3)
hα,β (x+2)

)
≥ 1. (16)

Given that for x≥ 1 x(x+2)/(x+1)2 < 1, the first term of the product on the right
hand side of the equality that appear in (16) is larger than one. Thus, it is enough to
prove that the second term is also larger than one. Defining

g(x) =
hα,β (x+1)

hα,β (x)
,



16 Ariel Duarte-López et al.

the second term is equal to g(x)/g(x+2). Observe that

g(x) =
ζ (α)−βζ (α,x+2)

ζ (α)−β [(x+1)−α +ζ (α,x+2)]
=

=
ζ (α)−βζ (α,x+2)

ζ (α)−β (x+1)−α −βζ (α,x+2)]
=

[
1− β (x+1)−α

h(α,β )(x+2)

]−1

.

If β ∈ (0,1), by Lemma 1, one has that (x+ 1)α h(α,β )(x+2) is an increasing
function of x, and consequently,(

1− β (x+1)−α

h(α,β )(x+2)

)−1

decreases by increasing the value of x. As g(x) is a decreasing function of x, one has
that g(x)/g(x+2)≥ 1, which is what we wanted to see.

Figure 5 shows the behavior of the ratio that appears on the left hand side of
equation (16) for α = 2.34 and α = 5. In both cases β = 0.1,0.6,2,10 and 22. Ob-
serve that, for β < 1, the distribution is log-convex independently of the value of β .
However, for β > 1, the function can be log-convex or log-concave.
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P(x)P(x + 2)
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Fig. 5: Behavior of the ratio that appears in equation (16). On the left hand side, for
α = 2.34 and, on the right hand side, for α = 5. In both cases, β = 0.1,0.6,2,10 and
22.

The next proposition establishes the relationship between the probability values
of a MOEZipf and a Zipf distribution with the same α value. This proposition extends
Proposition 3.3 by Pérez-Casany and Casellas (2013, p. 6), where only the lower
bounds are stated.

Proposition 3 Let Y and X be two r.v.’s, such that Y ∼ MOEZipf(α,β ) and X ∼
Zipf(α). Then, ∀x≥ 1,

a) if β ∈ (0,1), then β P(X = x)≤ P(Y = x)≤ 1
β

P(X = x),
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b) if β > 1, then 1
β

P(X = x)≤ P(Y = x)≤ β P(X = x),
c) if β = 1, then P(Y = x) = P(X = x).

Proof. Considering β > 1 according to Lemma 1, one has that h(α,β )(x) is a decreas-
ing function of x, and that h(α,β )(x)≤ h(α,β )(1) = β ζ (α), ∀x≥ 1. Thus,

P(Y = x) =
β ζ (α)x−α

h(α,β )(x)h(α,β )(x+1)
≥ β ζ (α)x−α

β 2 ζ 2(α)
=

1
β

P(X = x),

which proves the left hand side of b); to see the inequality on the right hand side, it
is necessary to take into account that h(α,β )(x)≥ ζ (α), ∀x≥ 1, and that

P(Y = x) =
β x−α ζ (α)

h(α,β )(x)h(α,β )(x+1)
≤ β x−α ζ (α)

ζ (α)2 = β P(X = x).

Point a) is proved in a similar way using the results of Lemma 1 a). Finally, c) is
a direct consequence of the definition of the MOEZipf distribution.

The next theorem relates the tail of the MOEZipf distribution to the tail of the
Zipf distribution with the same parameter α .

Theorem 4 Let Y and X be two r.v.’s, such that Y ∼MOEZipf(α,β ) and X ∼ Zipf(α).
The tail of Y is asymptotically equivalent to β times the tail of X, ∀β > 0.

Proof. We will distinguish if Y is a maximum (β > 1) or if it is a minimum (β ∈
(0,1)). If Y is a minimum, given that n0 = 1 and that P(N = 1) = (1−β )n0−1β = β ,
then, from Theorem 3 a), one has that:

P(Y > x)∼ P(N = 1)P(Y > x),

which implies that

P(Y > x−1)−P(Y > x)∼ P(N = 1)[P(X > x−1)−P(X > x)]⇔

P(Y = x)∼ β P(X = x).

If Y is a maximum, from Proposition 1, one has that E[N] = 1/(1/β ) = β . And
thus, from Theorem 3 b), one has that:

P(Y > x)∼ E[N]P(X > x),

which implies that

P(Y > x−1)−P(Y > x)∼ E[N][P(X > x−1)−P(X > x)]⇔

P(Y = x)∼ β P(X = x).

Figure 6 illustrates the results stated in Theorem 4 for α = 2.8 and β = 0.3 (left
hand side) and α = 2.8 and β = 4.86 (right hand side). Observe that, for the parameter
values considered, the convergence of the probabilities is faster when the distribution
is defined in terms of minimums.
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Fig. 6: Probabilities of the Zipf and the MOEZipf distributions with the same α

parameter in log-log scale, jointly with β times the probability of the Zipf. The
MOEZipf on the left-hand side is defined in terms of minimums and, on the right-
hand side, it is defined in terms of maximums.

5.2 The Zipf-Poisson Extreme distribution

The paper by Ramos et al. (2018) proposes a unified framework for generalizing a
family of distributions, which corresponds to an RSED with a positive Poisson stop-
ping distribution. The results of this paper intersect with those presented by Pérez-
Casany et al. (2016). In their applications, the authors focus on extending the con-
tinuous distributions: exponential, Weibull and Generalized Extreme Value. In this
section we focus on extending the Zipf distribution, although others discrete distribu-
tions may similarly be considered.

The Zipf-PE family of distributions is obtained when the r.v. N is assumed to be
a positive Poisson distribution. The resulting distribution has support on the strictly
positive integer numbers, and its parameters are the α parameter of the Zipf and the
β parameter of the positive Poisson.

Considering Y as an r.v. with a Zipf-PE distribution, the third row of Table 2 shows
the CDF of Y if it corresponds to a maximum, and the SF of Y if it corresponds to
a minimum. Nevertheless, a little bit of algebra reveals that for any α > 1, the CDF
of Y when it corresponds to a minimum has the same expression as the CDF of a
maximum, but for negative values of β . Thus, the CDF of any Zipf-PE is equal to:

F(α ,β )(x) =

 e
β

(
ζ (α)−ζ (α,x+1)

ζ (α)

)
−1

eβ−1
, β ∈ R\{0},

1− ζ (α,x+1)
ζ (α,x) , β = 0,

(17)

where positive values of β correspond to maximums of a Po(β ) number of copies,
and negative values correspond to minimums of a Po(−β ) number of copies. More-
over, as mentioned in Section 3, the parameter space of the zero-truncated Poisson
distribution includes the zero value that corresponds to the degenerate distribution at
one. That is the reason why the value β = 0 is also included in (17) and, in this case,
Y follows the baseline distribution, that is, the Zipf(α) distribution.
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From (17) ∀α > 1 and x≥ 2, one can obtain the PMF of Y as follows:

P(Y = x) = F(α,β )(x)−F(α,β )(x−1) = (18)

=
eβ

(
ζ (α)−ζ (α,x+1)

ζ (α)

)
− eβ

(
ζ (α)−ζ (α,x)

ζ (α)

)
eβ −1

=


eβ e

−β ζ (α,x)
ζ (α)

(
e

β x−α

ζ (α) −1
)

eβ−1
, β ∈ R\{0},

x−α

ζ (α)
, β = 0.

For x = 1,

P(Y = 1) = F(α,β )(1) =


e

β

ζ (α)−1
eβ−1

, β ∈ R\{0},
1

ζ (α)
, β = 0,

(19)

which is equal to (18) at x = 1. Thus (19) is the PMF in the entire support. Figure 7
shows the PMFs of the Zipf-PE distribution in log-log scale for α = 2.1 and different
values of the β parameter. Note that the β parameter influences the top-concavity
(top-convexity) at the low values of the distribution. For β > 0, the distribution is
top-concave while, for β < 0, the distribution is top-convex.
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Fig. 7: PMFs of the Zipf-PE distribution in log-log scale for α = 2.1 and β =
−2,−1,0.1,2.5 and 10.

The next proposition states that the probability at one of an r.v. with a Zipf-
PE(α,β ) distribution is always smaller (larger) than the probability at one of a Zipf
distribution with the same parameter α , depending on the sign of β . Negative values
of β inflate the probability at one while positive values deflate it. This is reasonable
because β < 0(β > 0) corresponds to minimums (maximums) and, thus, inflates (de-
flates) the probabilities of the first values.
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Proposition 4 Let Y and X be two r.v.’s, such that Y ∼ Zipf-PE(α,β ) and X ∼
Zip f (α). Then, P(Y = 1) ≤ (≥)P(X = 1) for all β > 0(β < 0), and the equality
holds only when β = 0.

Proof. If β 6= 0, taking into account (19) it is necessary to prove that:

P(Y = 1)≤ (≥)P(X = 1)⇔ e
β

ζ (α) −1
eβ −1

− 1
ζ (α)

≤ (≥)0.

Let us define the function

g(x) =
eβ x−1
eβ −1

− x, ∀x ∈ [0,1].

Observe that g(x) is a continuous and differentiable function in (0,1), which ver-
ifies that g(0) = g(1) = 0. Applying Bolzano’s theorem (Apostol, 1974, p. 84), we
have that exists a value x0 ∈ (0,1), such that g′(x0) = 0. Differentiating, one has:

g′(x0) = 0⇔ eβ x0 =
eβ −1

β
⇒ x0 =

1
β

log(
eβ −1

β
).

By computing the second derivative of g(x), one has:

g′′(x) =
eβ x β 2

eβ −1
,

which is positive if β > 0, and negative otherwise. Thus, if β > 0, x0 is a minimum,
g(x) ≤ 0∀a ∈ [0,1], and, in particular, g( 1

ζ (α)
) ≤ 0. In contrast, if β < 0, x0 is a

maximum, g(x)≥ 0∀x ∈ [0,1], and, in particular, g( 1
ζ (α)

)≥ 0.

5.2.1 Moments

The following proposition assesses the condition under which the k-th moment of
a Zipf-PE distribution is finite, which is the same as for the Zipf and the MOEZipf
family of distributions.

Proposition 5 The k-th moment of a Zipf-PE distribution exists and is finite if, and
only if, α > k+1.

Proof. Let Y and X be two r.v.’s, such that Y ∼ Zipf-PE(α,β ) and X ∼ Zipf(α).
As mentioned in Section 4, the k-th moment of the Zipf distribution converges if,
and only if, α > k+1. Applying the comparison criteria of convergence of series of
positive terms, one has:

lim
x→+∞

P(Y = x)xk

P(X = x)xk = lim
x→∞

eβ e
−β ζ (α,x)

ζ (α)
(

e
β x−α

ζ (α) −1
)

eβ−1
x−α

ζ (α)

=

=
eβ ζ (α)

eβ −1
· lim

x→+∞
e
−βζ (α,x)

ζ (α) · lim
x→+∞

e
β x−α

ζ (α) −1
x−α

.
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Given that ζ (α,x) tends to zero when x tends to +∞, limx→+∞ e
−βζ (α,x)

ζ (α) = 1.
Moreover, applying L’Hôpital rule, one has:

lim
x→+∞

e
β x−α

ζ (α) −1
x−α

= lim
x→+∞

e
β x−α

ζ (α)
β

ζ (α)
=

β

ζ (α)
.

Thus,

lim
x→+∞

P(Y = x)xk

P(X = x)xk =
eβ ζ (α)

eβ −1
β

ζ (α)
=

β

1− e−β
, 6= 0,+∞.

Since the limit β/(1− e−β ) is a constant value different from zero, the k-th mo-
ment of the Zipf-PE(α,β ) distribution converges if, and only if, the k-th moment of
the Zipf(α) converges, that is, when α > k+1.

Figures 8 shows the behavior of the mean as: a function of α for β =−1,−0.5,1.5
and 3 (on the left hand side); and as a function of β for α = 2.5,4.8,7.5,20 (on the
right hand side). A similar plot for the variance appears in Figure 9: on left hand side
as a function of α for β =−1,−0.5,1.5 and 3; and on the right hand side as a func-
tion of β for α = 3.5,4.8,7.5 and 20. Note that, on the left hand side of both figures,
the E[Y ] and the Var[Y ] are not only decreasing functions of α , but they decrease
faster as β becomes smaller. On the right-hand side of both figures can be observed
that the E[Y ] and Var[Y ] are increasing functions of β , with a slope that decreases
when α increases.
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Fig. 8: Mean values of a Zipf-PE(α,β ) distribution. On the left hand side: as a func-
tion of α for β =−1,−0.5,1.5 and 3. On the right hand side: as a function of β for
α = 2.5,4.8,7.5 and 20.

Proposition 6 Let Y and X be two r.v.’s, such that Y ∼ Zipf-PE(α,β ) and X ∼
Zipf(α). Then, the ratio of two consecutive probabilities of Y is equal to:

P(Y = x+1)
P(Y = x)

=
eβ P(X=x+1)−1
1− e−β P(X=x)

.
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Fig. 9: Variance values of a Zipf-PE(α,β ) distribution. On the left hand side: as a
function of α for β =−1,−0.5,1.5 and 3. On the right hand side: as a function of β

for α = 3.5,4.8,7.5 and 20.

Proof. From (18) one has:

P(Y = x+1)
P(Y = x)

=
eβ e

−βζ (α,x+1)
ζ (α)

(
e

β (x+1)−α

ζ (α) −1
)

eβ e
−βζ (α,x)

ζ (α)
(
e

β x−α

ζ (α) −1
) = e

β x−α

ζ (α)

(
e

β (x+1)−α

ζ (α) −1
)

(
e

β (x)−α

ζ (α) −1
)

=
e

β (x+1)−α

ζ (α) −1

1− e
−β x−α

ζ (α)

=
eβ P(X=x+1)−1
1− e−β P(X=x)

.

Figure 10 shows the behavior of this ratio for α = 2.1 and β = −3 and 3. The
ratio of the Zipf(α) is also included in order to facilitate comparison between both
distributions. Note that, when β > 0, the ratio associated with the Zipf-PE(α,β ) con-
verges faster to that of the Zipf distribution. In contrast, when β < 0, the convergence
is not that fast, even though it also converges to that of the Zipf. In general, the most
significant difference occurs at the initial values of x, which is another manner of
observing the flexibility of the Zipf-PE distribution at the first integer values. In ad-
dition, by increasing the value of x, the ratio of all the distributions tends to one.
Moreover, independently of the β value, those values in the tail of the distribution
behave similarly to those of the Zipf distribution, which is proven in the Theorem 5.

The next theorem establishes the relationship between the tail of the Zipf-PE and
the tail of the Zipf distributions.

Theorem 5 The tail of an r.v. Y ∼ Zipf-PE(α,β ) is asymptotically related to the tail
of an r.v. X ∼ Zipf(α), in such a way that:

a) if β < 0, then Y is a minimum and,

P(Y = x)∼ −β eβ

1− eβ
P(X = x),
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Fig. 10: Ratio of two consecutive Zipf-PE probabilities for α = 2.1, with β =−3 and
3, respectively.

b) if β > 0, then Y is a maximum and,

P(Y = x)∼ β

(1− eβ )
P(X = x).

Proof. From Theorem 3 one has that, if β < 0, then n0 = 1 and P(N = 1)=−β eβ/1−
eβ . Consequently,

P(Y > x)∼ P(N = n0)[P(Y > x)]n0 ,

is equivalent to:

P(Y > x−1)−P(Y > x)∼ P(N = n0)[P(X > x−1)−P(X > x)]n0 ⇔

P(Y = x)∼ −β eβ

1− eβ
P(X = x),

which proves a). If β > 0, then E[N] = β/(1− e−β ) and, consequently,

P(Y > x)∼ E[N]P(X > x)

is equivalent to:

P(Y > x−1)−P(Y > x)∼ E[N][P(X > x−1)−P(X > x)]⇔

P(Y = x)∼ β

1− e−β
P(X = x),

which proves b).

Figure 11 shows the results achieved in the previous Theorem. Observe that for
the parameter values used, the equivalence between the tails of both distributions
emerges for x≥ 10.
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Fig. 11: The probabilities of the Zipf and Zipf-PE distributions with the same α pa-
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6 Applications

The aim of this section is to illustrate the performance of both the MOEZipf and
Zipf-PE families of distributions when they are used to fit real data. We analyze two
data sets that contain the degree sequences of real networks. Each degree sequence
contains information on nodes that have at least one connection in the network. Thus,
isolated nodes are not taken into account. In both examples we assume independent
observations. The work by Duarte-López et al. (2015) shows the suitability of the
MOEZipf distribution when it is used to fit this type of data. Moreover, the work
by Güney et al. (2017) has also used the MOEZipf distribution for modeling the
frequency of cancer types in Turkey during the period 2007-2011.

Other bi-parametric models have also been considered, such as the Discrete Gaus-
sian Exponential (DGX) (Bi et al., 2001), the Zipf-Polylog (Valero et al., 2020) and
the positive version of the Zipf-PSS (Duarte-López et al., 2020); and their fits have
been compared to those associated with the proposed distributions. An implementa-
tion of the MOEZipf, the Zipf-PE, the Zipf-Polylog and the Zipf-PSS distributions
can be found in the R package zipfextR (Duarte-López and Pérez-Casany, 2018),
which is available through the CRAN repository.

The Akaike Information Criterion (AIC) and the log-likelihood, at the maximum
likelihood parameter estimates, were chosen as goodness-of-fit criteria. The Like-
lihood Ratio Test (LRT) was performed to compare the Zipf model with the Zipf
extension that provided the best fit for each particular data set.

For illustrative purposes, we also include the results obtained from the method-
ology presented by Clauset et al. (2009). By means of this procedure, the power
law is fitted for values above a certain threshold at which the distribution holds. To
that aim, the authors estimate a cut-off value, xmin, by minimizing the value of the
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Kolmogorov-Smirnov statistic (D); then, the α parameter of the power law distri-
bution is obtained using MLE on the truncated data. It is important to say that our
models are not compared with the fits obtained by means of Clauset’s methodology,
basically because the domain of the two approaches are different.

6.1 Application 1: Collaboration Network

Collaboration networks are important because they play an important role in measur-
ing how knowledge spreads. Furthermore, they allow detecting strategical research
collaborations. The co-authorship network studied in this section was created and an-
alyzed in the paper by Molontay and Nagy (2019). Their work is a tribute to the work
developed by the network science community in the last 20 years. During the net-
work construction phase, the authors used the Web of Science bibliographic database
to collect all the network science papers published in the period 1998-2019. The au-
thors classify a publication as a network science paper if it cites at least one of the
following important papers: Barabási and Albert (1999), Watts and Strogatz (1998) or
Girvan and Newman (2002). After conducting an accurate pre-processing step, they
obtained a dataset of 29528 different papers, leading to 52406 authors representing
nodes in the network. An edge is created between two authors if they co-authored at
least one network science paper. The data set containing this undirected network is
accessible through the git-hub repository: https://github.com/marcessz/Two-
Decades-of-Network-Science.

Table 3 summarizes the main statistical properties of the network and its degree
sequence. From the total number of authors, 851 are reported as isolated nodes. This
means that these authors have not shared any publications with the other members of
the network.

In this analysis we have considered only those authors that have at least one con-
nection in the network. Consequently, the isolated nodes are not included as part of
this analysis. For those interested in the analysis of this kind of authors we strongly
recommend the use of the Zipf-PSS distribution Duarte-López et al. (2020).

Table 3: Characteristics of the degree sequence: number of nodes (N); number of
edges (E); (Range); (Mean); variance (Var); skewness (Skew).

N E Range Mean Var Skew

52406 329181 443 12.7701 2310.7120 6.8616

Table 4 contains the parameter estimates and their confidence intervals, as well
as the log-likelihood and AIC values for all the considered distributions used in the
first part of the study. Without including the isolated nodes, the Zipf-PE distribution
is the one that provides the best fit to the data, closely followed by the positive Zipf-
PSS. Figure 12 shows the fits obtained by each considered distribution. In general,
the distribution families with a clear long right tail are the ones providing the best fit
to the real observations. On the other hand, by applying Clauset’s methodology just

https://github.com/marcessz/Two-Decades-of-Network-Science
https://github.com/marcessz/Two-Decades-of-Network-Science
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for illustrating, the cut-off point is fixed to be equal to 4, which implies that 43.3% of
the authors in the network are not considered.
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Fig. 12: Degree sequence of the co-authorship network and the fit obtained by each
one of the considered models. In addition, the fit obtained using the methodology
proposed by Clauset et al. (2009) is also included.

For this data set and the Zipf-PE distribution, we interpret N as the number of
papers published by an author in this period of time. Variable X is interpreted as
the number of co-authors in a given publication, which has sense to be Zipf dis-
tributed since there are papers with very few authors and others with a large number
of authors. Finally, the maximum of the number of co-authors for all the publications
published by a person has sense to be a good approximation of the total number of
co-authors, which corresponds to variable Y . Thus, based on the parameter interpre-
tation of the Zipf-PE distribution, we can say that an author published an average of
Ê[N] = 8.2382 papers in the period 1998-2019. For each paper published, the num-
ber of co-authors in a given publication is estimated by Ê[X ] = 2.48779. Finally,
Ê[Y ] = 9.52 is an estimation of the total number of co-authors of an author in this
period of time.

Performing the LRT, we can confirm that the Zipf-PE obtains a better fit than that
of the Zipf, thus ensuring the importance of the extra parameter included in the new
model when fitting the data in its entire range. As in the previous examples, the signif-
icance level considered is α = 0.05, which leads to a critical point equal to χ2

0.95,1 =
3.84. The LR statistic for this degree sequence is equal to −2[−165879.1326−
(−146709.7874)] = 38338.69, which means that the null hypothesis of the Zipf dis-
tribution is clearly rejected, thus ensuring the superiority of the Zipf-PE in providing
a better fit to the data.

Table 7 in Appendix A contains, for the first 15 integer values, their relative fre-
quencies jointly with the theoretically probabilities of the Zipf(α̂) and Zipf-PE(α̂, β̂ )
distributions. It also shows the ratio of two consecutive frequencies as well as the ra-
tio of two consecutive probabilities of the already mentioned distributions. This table
allows us to observe that the probabilities of the Zipf-PE are closer to the observed
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Table 4: The parameter estimations for each analyzed distribution, their confidence
intervals, log-likelihood, and AIC goodness-of-fit measures.

Distribution param1 CIparam1 param2 CIparam2 Log-like AIC

Zipf-PE α̂ = 2.3442 (2.3339, 2.3544) β̂ = 8.2636 (8.1259, 8.4012) -146709.7874 293423.5748

zt-Zipf-PSS α̂ = 2.2364 (2.2259, 2.247) λ̂ = 2.6946 (2.6691, 2.7201) -146935.1020 293874.2040

MOEZipf α̂ = 2.7668 (2.7509, 2.7827) β̂ = 26.1943 (25.3232, 27.0654) -147547.3002 295098.6003

DGX µ̂ = 1.4308 (1.4195, 1.442) σ̂ = 1.1161 (1.107, 1.1253) -151357.8829 302719.7658

Zipf-Polylog α̂ = 1.1366 (1.1271, 1.1461) β̂ = 0.9863 (0.9858, 0.9868) -160820.0267 321644.0533

Zipf α̂ = 1.5001 (1.4957, 1.5045) - - -165879.1326 331760.2651

frequencies than those of the Zipf. Also, it shows that while the ratios of the Zipf
distribution are always decreasing, those of the Zipf-PE distribution can increase and
later decrease when the data show this pattern.

6.2 Application 2: Protein-Protein Interaction Network

Network analysis is also a profitable tool in the field of biology, as it helps model
the interactions of organisms and proteins, among other objects of study. Therefore,
the second application example focuses on analyzing the degree distribution of the
Arabidopsis thaliana comprehensive knowledge network (AtCKN), see Ramšak et al.
(2018). This network is the result of combining a plant immune signaling model with
three extra layers of information: protein-protein interactions (PPI); transcriptional
regulation; and regulation through microRNA. The resulting network is composed of
20011 nodes and 58901 edges (see Table 5).

Most of the nodes in the network have less than or equal to 30 interacting part-
ners (19462 proteins; 97.26%), which is double the number of pure protein-protein
interaction networks (Lee et al., 2010). This can probably be attributed to the fact
that AtCKN not only includes protein-protein type reactions, but also transcriptional
regulation (protein to gene) and regulations through microRNA (miRNA to gene).
Proteins with a very large number of interactions in AtCKN belong to various tran-
scription factor families, which in turn increases the number of interacting partners.

Table 5 contains the main statistics for the AtCKN degree sequence. Again, the
data show large variability as well as high skewness value, which allows us to hy-
pothesize the suitability of the proposed models.

Table 5: Characteristics of the degree sequence: number of nodes (N); number of
edges (E); (Range); (Mean); variance (Var); skewness (Skew).

N E Range Mean Var Skew
20011 58901 4688 5.89 143.75 7.16

Table 6 contains the maximum likelihood parameter estimation for all the fitted
models, jointly with their 95% confidence intervals. It also contains the values of the
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log-likelihood and the AIC. The AIC value confirms that the worst models are Zipf
and Zipf-Polylog. In contrast, the Zipf-PE distribution provides the best fit, followed
by MOEZipf and the positive Zipf-PSS. These three models have linear tails, which
is not the case for the Zipf-Polylog. The DGX gives a better fit than the Zipf and the
Zipf-Polylog, but it is worse than the two models presented in this paper.

Table 6: The parameter estimations for each analyzed distribution, their confidence
intervals, log-likelihood, and AIC goodness-of-fit measures.

Distribution param1 CIparam1 param2 CIparam2 Log-like AIC
Zipf-PE 2.3241 (2.305, 2.3432) 4.8585 (4.7169, 5.0001) -49429.9595 98863.9191
MOEZipf 2.5575 (2.5313, 2.5837) 9.3057 (8.8438, 9.7676) -49518.0492 99040.0984
zt-Zipf-PSS 2.1698 (2.1517, 2.1878) 1.6747 (1.6377, 1.7116) -49563.1824 99130.3648
DGX 0.9308 (0.9054, 0.9563) 1.1616 (1.1424, 1.1807) -49818.0469 99640.0939
Zipf-Polylog 1.0091 (0.9859, 1.0322) 0.9454 (0.9425, 0.9483) -50816.0231 101636.0462
Zipf 1.6174 (1.6086, 1.6262) - - -53085.1701 106172.3402

Figure 13 illustrates the fits obtained for each considered model. Observe the
Zipf’s model lacks of flexibility in adapting the top-concave pattern and the curvature
drawn by the Zipf-Polylog in the middle range of the data. This highlights its lack of
fit. On the other hand, the models Zipf-PE, MOEZipf, zt-Zipf-PSS and DGX seem
to provide a quite accurate fit. With respect to Clauset’s methodology, it establishes a
cut-off equal to 4, from which the distribution is fitted. With this cut-off, the method
loses approximately 61% of the data.
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Fig. 13: Degree sequence of the PPI network and the fit obtained by each considered
model. In addition, the fit obtained using the methodology proposed by Clauset et al.
(2009) is also included.

Observe that both RSEDs agree with modeling the data in terms of maximums.
This is because, it makes sense to assume that a protein must interact with the max-
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imum number of elements required if it is going to produce the biological organism
being modeled by the interaction network.

In this example N is interpreted as the number of times that a protein is active.
Variable X describes the number of interactions performed every time that it is active.
As in the previous example, it has sense to assume that the maximum of the number
of interactions performed each time that a protein is active, is a good estimation of
the total number of interactions. Based on the estimated parameters of the Zipf-PE
distribution, we can say that, in average, a given protein is expected to be active ap-
proximately Ê[N] = 4.89 times. Moreover, every time a protein is active, we estimate
its number of interactions to be equal to Ê[X ] = 2.62. In general, the number of ex-
pected interactions of a given protein in the network is estimated by Ê[Y ] = 6.87.
According to Grigoriev (2003), the average interacting partners per protein in the
proteome of a yeast (Saccharomyces cerevisiae) is about five; the estimates obtained
from the Zipf-PE distribution - the best model - agree with the results of their paper.

Applying the LRT to compare H0 : β = 0 vs. H1 : β 6= 0, we see that the criti-
cal value is equal to χ2

0.95,1 = 3.84, and the likelihood ratio statistic for this degree
sequence is equal to −2 [−53085.17− (−49429.96)] = 7310.42. By comparing the
values, and given that 7310.42 ≥ 3.84, the null hypothesis is clearly rejected, and
we conclude that the Zipf-PE distribution provides a better fit than the classical Zipf
distribution.

Table 8 in Appendix A contains, for the first 15 integer values, their relative fre-
quencies jointly with the theoretically probabilities of the Zipf(α̂) and Zipf-PE(α̂, β̂ )
distributions. It also shows the ratio of two consecutive frequencies as well as the ra-
tio of two consecutive probabilities of the already mentioned distributions. As in the
previous example, this table allows us to observe that the probabilities of the Zipf-
PE are closer to the observed frequencies than those of the Zipf. Also, it shows that
while the ratios of the Zipf distribution are always decreasing, those of the Zipf-PE
distribution can increase and later decrease when the data show this pattern.

7 The RSEZipf distributions in Synthetic Data Generation

It is very important to be able to synthetically generate graphs that mimic the char-
acteristics of the real ones. This is because, researches are not always able to have as
many real graphs as desired to meet their objectives, either for privacy or economic
reasons.

At present we are working on defining a random graphs generator that ensures a
degree distribution that follows the models presented in this paper. This is an early
stage work that requires more time to be improved. Nevertheless, the first results
are encouraging. Figure 14 shows the flow chart of an algorithm used for randomly
generating graphs, whose degree sequence follows a Zipf-PE distribution defined in
terms of a maximum (β > 0). In the chart, the list of candidate nodes (CN) refers to
those nodes that have not being processed yet.

The algorithm presented takes into account two important concepts that appear
in the paper by Barabási and Albert (1999) which are the preferential attachment
(PA) and the growing of the network. PA describes the fact that nodes that are more
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connected have more probability to be connected (“the richer get richer”). The growth
of the graph is based on the addition of new nodes and edges based on the distribution
considered. In a similar way, it is possible to generate random graphs with a MOEZipf
distribution, which just requires to change the stopping distribution.

G(n1)
maxIter

Yes

First Iteration? Add d nodes and
connect them to n1.

No
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Length(CN) == 0?

Ramdomly pick a node
(nX) with degree d

Add new node
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d = MAX(X1, X2, ..., XN)
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process.
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Last Iteration ?
Yes

Return G

No
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processed.

Fig. 14: Flow chart of an algorithm used for randomly generating graphs whose de-
gree sequence follows a Zipf-PE distribution defined in terms of a maximum (β > 0).



Randomly Stopped Extreme Zipf Extensions 31

1 2 5 10 20 50 100

1
2

5
2

0
5

0

ln(Degree)

ln
(F

re
q

u
e

n
c
y
)

Zipf−PE( α̂ = 2.3, β
^
 = 5.14)

Fig. 15: Degree distribution, in log-log scale, of a synthetically generated graph from
a Zipf-PE(3, 5) distribution and 500 iterations, jointly with the theoretical probabili-
ties of the Zipf-PE at the MLE.

Figure 15 shows, in log-log scale, the degree sequence of a graph generated fol-
lowing the algorithm just described for α = 3 and β = 5 and with 500 iterations,
jointly with the theoretical probabilities of the Zipf-PE at the MLE. The MLE pa-
rameter estimators and their corresponding 95% confidence intervals are respectively
equal to α̂ = 2.3 with CIα = (2.14,2.45) and β̂ = 5.14 with CIβ = (3.91,6.37). It is
important to see that the Zipf-PE(2.3,5.14) fits the generated data reasonably well.
Although the theoretical value for the parameter α is not in the confidence interval
for α , the theoretical value for parameter β is.

8 Conclusions

The Zipf distribution is widely used in many different disciplines to fit empirical data.
Notwithstanding, it has important limitations such as its lack of flexibility, which al-
lows practitioners to fit the distribution only in the data tails. The two RSEZipf distri-
butions proposed in this work have been proven to allow for not only top-concavity
and top-convexity when plotting the probabilities as a function of the size in log-log
scale, but they also maintain the linearity in the tail. As a consequence, they can fit
the data in all its range.

In addition, the parameters of the presented models allow in some cases for better
understanding of the data generation process. The suitability of the models for fit-
ting real data has been shown by fitting two degree sequences: a collaboration and a
protein-protein interaction network. To do so, the R-package zipfextR has been used
because it implements the MOEZipf and the Zipf-PE families. Finally, the authors
have included the flow chart of an algorithm for randomly generating graphs with a
degree sequence that follows the models presented. This work is in an early step, but
the results are encouraging.
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Appendix A Supplementary tables for Section 6

Table 7: First 15 degree values of the Collaboration network, jointly with their associ-
ated frequencies and estimated probabilities from the Zipf and Zipf-PE distributions
(columns 1-4). The last three columns contain the ratio of two consecutive frequen-
cies and the ratio of two consecutive probabilities for the mentioned distributions.

Degree Freq. Zipf(α̂) Zipf-PE(α̂, β̂ ) Freqi/Freqi+1 P(X = xi)/P(X = xi+1) P(Y = xi)/P(Y = xi+1)

1 0.0991 0.3829 0.0903 0.6 2.83 0.46
2 0.1649 0.1353 0.1968 0.98 1.84 1.22
3 0.169 0.0737 0.1616 1.32 1.54 1.41
4 0.1284 0.0478 0.1146 1.45 1.4 1.41
5 0.0887 0.0342 0.0813 1.34 1.32 1.37
6 0.0663 0.026 0.0592 1.32 1.26 1.33
7 0.0504 0.0207 0.0445 1.29 1.22 1.3
8 0.0391 0.0169 0.0343 1.33 1.19 1.27
9 0.0295 0.0142 0.027 1.29 1.17 1.24
10 0.0229 0.0121 0.0218 1.46 1.15 1.22
11 0.0157 0.0105 0.0178 1.18 1.14 1.2
12 0.0133 0.0092 0.0148 1.1 1.12 1.18
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14 0.0108 0.0073 0.0106 1.16 1.11 1.16
15 0.0093 0.0066 0.0091
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