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Advisors: Adrià Colomé Figueras
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Abstract

Autonomous systems are no longer confined to factories, but they are progressively
spreading to urban, social, and assistive domains. However, in order to become
handy co-workers and helpful assistants, robots must be endowed with quite dif-
ferent abilities than their industrial ancestors, and a lot of additional research is
still required. A key challenge in intelligent robotics is creating autonomous agents
that are capable of directly interacting with the world around them to achieve their
goals. Learning plays a central role in intelligent autonomous systems, as the real
world contains too much uncertainty and a robot must be capable of dealing with
environments that neither it nor its designers have foreseen.

Learning from demonstration is a promising paradigm that allows robots to learn
complex tasks that cannot be easily scripted, but can be demonstrated by a hu-
man teacher. In this thesis, we develop complete learning from demonstration
framework. We first present a whole-body teleoperation approach for human mo-
tion transfer, which allows a teacher equipped with a motion capture system to
intuitively provide demonstrations to a robot. Then, to learn a generalized rep-
resentation of the task which can be adapted to unforeseen scenarios, we unify in
a single, entirely Gaussian-Process-based formulation, the main components of a
state-of-the-art method. We evaluate our approach through a series of real-world
experiments with the manipulator robot TIAGo, achieving satisfactory results.

Finally, we must be aware that we are in a technological inflection point in which
robots are developing the capacity to greatly increase their cognitive and physical
capabilities. This will raise complex issues regarding the economy, ethics, law, and
the environment, which we provide an overview of in this thesis. Intelligent robotics
offer an unimaginable spectrum of possibilities, with the appropriate attention and
the right policies they open the doors to new sources of value and growth. However,
it is in the hands of scientists and engineers to not look away and anticipate the
potential impacts in order to turn robots into the motor of global prosperity.
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Chapter 1

Introduction

Robotics is concerned with the study of those machines that can help and assist
human beings in the execution of a task, as regards both physical activity and
decision making. Although one might think of robots as inventions of the modern
era, over the course of the centuries it has been a constant ambition for scientists
and engineers to seek artifacts able to mimic our behavior.

Since Issac Asimov started to write short stories in the 1940s, people usually imagine
robots as companions with a human form who can think, see, walk, and hear.
However, the first practical robots that appeared in the 1970s fell quite far from
this conception. These were mechanical arms equipped with a gripper and fixed
in place that manufactured products on assembly lines. Industrial robots excel at
simple and repetitive tasks where speed, precision, and reliability are paramount
but strive for autonomy in complex, unstructured, and unpredictable environments.

Nowadays, we have access to a much more rich set of sophisticated sensors, pow-
erful computing platforms, and all various agile mechatronic devices. Autonomous
systems are no longer confined to factories, but they are progressively spreading to
urban, social, and assistive domains (Figure 1.1). Robots such as vacuum cleaners,
lawnmowers, and window cleaners, as well as a huge number of toys, have been
made commercially available. Nevertheless, a lot of additional research is still re-
quired. In order to become handy co-workers and helpful assistants, robots must
be endowed with quite different abilities than their industrial ancestors.

In this introduction, we first provide an overview in Section 1.1 of the main chal-
lenges and research questions addressed throughout the thesis. Specifically, we focus
on the relevance and need of developing methods that allow robots to easily learn
new skills, for endowing them with human-like abilities. Afterward, in Section 1.2,
we present the main contributions of this thesis. Finally, in Section 1.3, we outline
its organization and, in Section 1.4, we list its associated publications.
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Chapter 1. Introduction

Figure 1.1: From left to right: past, present, and future of robotics.

1.1 Motivation

A key challenge in intelligent robotics is creating autonomous agents that are ca-
pable of directly interacting with the world around them to achieve their goals.
Learning plays a central role in such autonomous systems, as the real world con-
tains too much uncertainty. A robot must be capable of dealing with environments
that neither it nor its designers have foreseen or encountered before.

For endowing robots with close-to-human abilities, inspiration has been taken from
the ways humans learn. When we learn to perform a task, we naturally shape
our behavior based on our a-priori knowledge and experience. This training is com-
monly acquired by mimicking people that we may have seen executing similar tasks.
However, we do not reproduce exactly the same gestures that we have observed. In-
stead, we naturally adapt our motion to make it compatible with both, the available
information about the task, and our instantaneous perception of the environment.

One of the main research directions for building the future intelligent robots is
founded on the learning from demonstration (LfD) paradigm. This approach is
aimed at giving robots the capability of learning skills by observing and generalizing
from human demonstrations. LfD is also motivated by the challenge of enabling
a novice user, a non-expert programmer, to customize existing robot behaviors or
develop new ones through intuitive teaching methods.

The field of learning from demonstration has already generated innumerable insights
into the science and art of teaching robots to perform a variety of tasks across
multiple domains. However, several challenges remain to be addressed if we aspire
to allow robots to learn from humans and operate in challenging environments
fluently and efficiently (Figure 1.2).
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1.1. Motivation

Figure 1.2: Robots performing tasks with human-like abilities (after Josh Ellingson).

Often, robots cannot act the same way as a human does, due to the differences in
physical embodiment. Additionally, robots perceive the world in a fundamentally
different way. While a person can feel force, rugosity, or temperature through tact, a
robot might simply perceive contact. Providing a set of demonstrations that contain
the necessary information requires appropriate interfaces and a deep understanding
of the robot’s behavior and its limitations. This first challenge that appears in LfD
can be synthesized in the following question

How can a robot imitate the human performance of a task?

The next problem, once we have the demonstration data in a form that can be
interpreted by the robot, is to actually learn the task. The human teacher will only
show a limited number of examples. However, in order to operate autonomously in
the real world, the robot must be able to deal with unforeseen scenarios that need
the adaptation of the learned motions. This problem requires the development
of expressive and versatile data-driven models that can exploit the information
encoded in the demonstrations efficiently, leading to the following interrogation

How can a robot learn and generalize a skill from a few demonstrations?

Last but not least, we must be aware that we are in a technological inflection point
in which robots are developing the capacity to greatly increase their cognitive and
physical capabilities. This will raise complex issues regarding the economy, ethics,
law, and the environment. It is the responsibility of scientists and engineers to ask
ourselves the following question in order to turn robots into motors of prosperity

What is the potential impact of the evolution of robots in our societies?

3
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1.2 Contributions

This thesis focuses on addressing the research questions formulated in Section 1.1,
which are concerned with the learning from demonstration problem and the prospec-
tive repercussions that will come along with the expansion of automation. Specif-
ically, we develop a complete LfD framework that encompasses from intuitively
transferring human motion to a robot, to the method for learning the task and
adapt to unforeseen scenarios; and review and discuss the existing literature on the
potential impact of robotics. The main contributions can be listed as follows:

• Intuitive compendium of the theoretical fundamentals: We have put
together the main concepts of machine learning, namely related to nonlinear
regression and probability theory, and Gaussian Process (GP) regression. This
constitutes the basis for the comprehension of the standard LfD methods and
our approach. The value of this compendium lies in the mindset with which it
has been written, minimizing the ‘science per cognitive load’ rather than the
page count, presenting the theory as intuitively and illustrated as possible.

• Comprehensive survey of trajectory-based LfD methods: We describe
a representative subset of the research that has so far been carried out on
robot learning from demonstration. In particular, of the methods that use
trajectory-based representations for encoding the learned skill. This survey is
aimed at providing a general overview of the state-of-the-art within the field,
with a special focus on understanding the main ideas behind each method.

• Interface for transferring human motion to a mobile robot: We
present a robot whole-body teleoperation framework for human motion trans-
fer. Our approach allows a human demonstrator, equipped with a motion
capture system, to intuitively provide demonstrations to a robot. The most
important aspects of our system are:

– General solution of the correspondence problem: Defining a general map-
ping between the human posture and the robot, we overcome the prob-
lems in LfD derived from the differences in physical embodiment.

– Efficient control of the robot’s degrees-of-freedom: We achieve tight coor-
dination between the motion of the robot links and an effective real-time
imitation by adopting a whole-body control scheme.

– Safe physical human-robot interaction: We design a variable admittance
controller for stably adapting the end-effector dynamics to switch be-
tween stiff and compliant behaviors. This allows a tight position control
while ensuring safety when physically interacting with a human.
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• Novel Gaussian-Process-based LfD method: We unify in a single, en-
tirely Gaussian-Process-based framework, the main components required for
state-of-the-art learning from demonstration method. This expressive and
versatile data-driven representation allows to generalize over multiple demon-
strations, and also encode the uncertainty along the different stages of the
task. The most relevant features of our approach are:

– High-dimensional learning: Due to the kernel treatment of Gaussian
Processes, high-dimensional learning problems do not pose an issue.

– Trajectory learning: Our approach presents several advantages for en-
coding trajectory-based policies, namely model the correlations between
outputs, consider derivative relations, and also rotations.

– Task uncertainty: Adopting a Heteroscedastic Gaussian Process repre-
sentation we can accurately infer the latent task uncertainty from the
training data. Furthermore, for time-invariant policies we develop a
method for correcting the time distortions that might appear in the
demonstrations, allowing us to effectively capture the variability.

– Task variables: Adaptability to varying conditions is enhanced by incor-
porating task parameters into the model. We present a formulation for
including either real, integer or categorical parameters.

– Modulation of the motion: The robot can easily adapt the movement of
the task by conditioning the learned policy to pass through specified via-
point constraints. Additionally, several simple motions can be combined
into a single, more complex one.

– Exploitation of replications: We introduce a GP design that takes advan-
tage of the structure of replications i.e., repeated demonstrations with
identical conditions within data, for reducing significantly the computa-
tional cost of the learning process while retrieving an exact model.

• Global assessment of the implications of automation in our society:
We evaluate the prospective social impacts that might come along with the
development of automation from a global perspective. We analyze the possible
consequences in our economy, ethics, law, and the environment, as well as
provide some possible lines of action for effective management. This analysis
is aimed at creating awareness among scientists and engineers, but above all,
for opening the doors to reflection.
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1.3 Thesis Outline

Here, we recapitulate the contents of the different chapters of the thesis and provide
a reader’s guide. The chapters are mostly structured to be independent of each
other, in order to ease reading. At the beginning of each one, we also provide an
overview of the questions addressed, so that the interested reader can skip some of
the specific sections to consider a particular aspect. The thesis is organized around
the following three main parts:

Part I: Theoretical Foundations

This part is aimed at those readers that are not familiar with machine learning and
Gaussian Processes. It outlines the main theoretical background that is required
for the comprehension of the technical aspects of the thesis. It is divided in:

Chapter 2: Machine Learning Fundamentals It starts from the funda-
mental concepts of nonlinear regression and probability theory, focusing also
on the main properties of the Gaussian distribution, which plays a central role
in this thesis. Afterward, it unifies both, regression and probability, by intro-
ducing Bayesian regression.

Chapter 3: Gaussian Processes It introduces Gaussian Processes regres-
sion, first from an intuitive point of view, and then, using the standard formu-
lation. Thereafter, it provides an overview of the main questions regarding the
model design, namely the selection of the kernel and its hyperparameters.

Part II: Robot Learning from Demonstration

The core of the thesis is encompassed in this part. It addresses the problem of
easily transferring skills to robots from examples of a human teacher, presenting a
complete learning from demonstration framework. It is fractionated in:

Chapter 4: Related Work It provides a comprehensive overview of the
existing methods for learning robot tasks based on trajectory representations,
namely, Dynamic Movement Primitives, Gaussian Mixture Models, Probabilis-
tic Movement Primitives, and Kernelized Movement Primitives.

Chapter 5: Human to Robot Motion Transfer It presents an approach
to intuitively transfer the human movements to a mobile manipulator robot
using a motion capture system. The chapter reviews the correspondence prob-
lem, whole-body control, variable admittance control, and concludes with an
experimental evaluation using the TIAGo robot.
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Chapter 6: Learning from Demonstration with Gaussian Processes
It introduces a novel Gaussian-Process-based learning framework, which en-
compasses the main components of a state-of-the-art method. The chapter
shows how the expressiveness and versatility of Gaussian Process models can
be exploited to learn trajectories, model the task uncertainty, consider task vari-
ables of different nature and adapt the learned motion. Furthermore, it presents
a formulation for enhancing the scalability of Gaussian Processes when deal-
ing with large datasets. The chapter concludes with an experimental analysis
based on a door opening and a handwriting task.

Part III: Robots and Society

This part provides an overview of how the expansion of automation might shape
the future of our societies. It can be read independently of the previous parts and
does not require any technical background. It is divided into the following three
chapters:

Chapter 7: Economic Impact of Robotics It discusses which are the
prospective implications of the development of robots, from a macroeconomic
perspective, and in the future of jobs. The chapter finishes with some possible
solutions for managing such implications.

Chapter 8: Robot Ethics and Law The chapter introduces the rising field
of roboethics and the challenges that the technological advancements pose to
the current legal framework. It also concludes by presenting some potential
lines of action.

Chapter 9: Environmental Impact of Robotics It addresses the en-
vironmental consequences of the evolution of robotic technologies through a
systematic assessment, closing with some guidelines for an effective response.

Chapter 10: Conclusions The chapter closes the thesis providing an overview of
the most relevant findings and discussing potential future research avenues. It may
therefore be the starting point for the readers who wish to begin with a condensed
version.
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1.4 Publications

This thesis builds on the findings of the following articles, published in international
journals and conferences on robotics research and artificial intelligence:

• Miguel Arduengo, Adrià Colomé, Júlia Borràs, Luis Sentis, and Carme
Torras. Task-Adaptive Robot Learning from Demonstration with Gaussian
Process Models under Replication. IEEE Robotics and Automation Letters
(RA-L), 6(2):966–973, 2021.

• Miguel Arduengo, Ana Arduengo, Adrià Colomé, Joan Lobo-Prat, and
Carme Torras. Human to Robot Whole-Body Motion Transfer. IEEE-RAS
20th International Conference on Humanoid Robots (Humanoids), Munich,
Germany, July 2021.

• Miguel Arduengo, Adrià Colomé, Joan Lobo-Prat, Luis Sentis, and Carme
Torras. Gaussian-Process-based Robot Learning from Demonstration. ArXiv
e-print, 2020.

• Miguel Arduengo and Luis Sentis. The Robot Economy: Here it Comes.
International Journal of Social Robotics (SORO), 2020.
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Chapter 2

Machine Learning Fundamentals

The world is waking up to the potentially transformative capabilities of machine
learning, particularly when applied to robotics systems. Machine learning endows
robots with learning capabilities, allowing them to move from industrial and struc-
tured environments to social and assistive domains.

Machine learning refers to a vast set of tools for understanding data. These tools can
be classified as supervised or unsupervised. Broadly speaking, supervised machine
learning involves building a model for predicting an output based on one or more
inputs. With unsupervised machine learning, there are inputs but no supervising
output; nevertheless, we can learn relationships from such data. The core objective
of a learner is to generalize from its experience. In machine learning, this is done
by 1) gathering a dataset, and 2) algorithmically building a statistical model based
on such dataset. That statistical model is assumed to be a general representation
explaining the observed data, which allows making predictions on unseen examples.

In this chapter, we examine some of the main theoretical concepts of supervised
machine learning. It serves as an overview of the basic fundamentals. We only
cover the tiny fraction, within the scope of interest of this thesis, of this vast field
that is growing exponentially. For a more general overview, we refer the interested
reader to [1], which is considered the basic reference for such purpose, and is the
book on what the contents of this chapter are based on. Also, [2] provides a concise
and intuitive introduction to the field.

We start, in Section 2.1, providing an intuitive example for introducing some core
ideas. Afterward, in Section 2.2, we present the basic concepts of probability theory,
fundamental for understanding machine learning. Then, in Section 2.3, we discuss
in detail the Gaussian distribution, which plays a central role in this thesis. At the
back end of this chapter, in Section 2.4, we present how to build a statistical model
given a set of example input-output data from a Bayesian perspective.
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2.1 Introduction: Fitting a Polynomial Curve

We begin by introducing a simple regression problem to motivate a number of key
concepts. Suppose we observe a real-valued input variable x and we wish to use
this observation to predict the value of a real-valued target variable y. Now, assume
that we are given a training set D comprising N labeled example input-output pairs

D = {(xi, yi)}Ni=1 (2.1)

Our goal is to exploit the training set (2.1) in order to make predictions of the
value y of the target variable for some new value x of the input variable. A simple
approach can be to fit the data using a polynomial function of the form

f(x,w) = w0 + w1x+ w2x
2 + · · ·+ wMx

M =
M∑
j=0

wjxj (2.2)

where M is the order of the polynomial and the coefficients w0, . . . , wM are grouped
in the vector w. Note that, although the polynomial function f(x,w) is a nonlinear
function of x, it is a linear function of the coefficients w. The values of the coeffi-
cients can be determined by fitting the polynomial to the training data. A possible
approach to do so is to minimize an error function that measures the misfit between
the function f(x,w), for any given value of w, and the training data. One simple
choice of the error function is the sum-of-squares, which is expressed as

E(w) =
1

2

N∑
i=1

(f(xi,w)− yi)2 (2.3)

where the factor of 1/2 is included for later convenience. Note that it is a non-
negative function whose minimum is reached if function f(x,w) passes exactly
through each training point. We can also write (2.3) in matrix form as

E(w) =
1

2
(Xw − y)T (Xw − y) (2.4)

where the matrix X and the vector y refer to

X =


1 x1 . . . xM1
1 x2 . . . xM2
...

...
. . .

...
1 xN . . . xMN

 , y =


y1

y2
...
yN

 (2.5)
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Chapter 2. Machine Learning Fundamentals

Figure 2.1: Polynomial models of different orders M fitted to the training data. The
training data are noisy samples from the function represented as a black dashed line.

To find the optimal coefficients w∗ that minimize the error (2.4), we can derive with
respect to w and equate to zero obtaining

∂E(w)

∂w
= XTXw −XTy −→ w∗ =

(
XTX

)−1
XTy (2.6)

Equation (2.6) is the well-known least-squares formula. We can see that since the
error function (2.4) is a quadratic function of the coefficients w, its derivatives with
respect to the coefficients are linear in the elements of w, and so the minimization
of the error function has a unique solution which can be written in closed form.

There remains the problem of choosing the order M of the polynomial. This is
related to the concept of model selection. For illustrating it, consider the example
shown in Figure 2.1. We can see that the constant (M = 0) and first-order (M = 1)
polynomials result in a poor fit to the training data and consequently they are poor
models. In this case, we say that we are underfitting the data. For the high order
polynomial (M = 9) the model passes exactly through the training points but it
does not generalize well on new input points due to the large oscillations. In this
case, we say that we are overfitting the data. We have that the third-order (M = 3)
polynomial retrieves the best model among the considered ones.
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Figure 2.2: Root mean square error (2.7) evaluated on the training set in Figure 2.1 and
on an independent test set for different orders M of the fitting polynomial.

In machine learning, the goal is to obtain a model with good generalization capa-
bilities i.e. able to make accurate predictions for unseen data. We can obtain some
quantitative insight into the dependence of the generalization performance on M
by considering a separate test dataset. For each choice of M , we can then evaluate
the residual value of E(w∗) for the training and test datasets. In this case, is more
convenient to use the root-mean-square (RMS) error defined by

ERMS =

√
2E(w∗)

N
(2.7)

in which the division by N allows us to compare the error between datasets of
different sizes. In Figure 2.2 we show the RMS over the training and test sets
for several values of the fitting polynomial order M . The training error measures
the fit to the training data while the test set error measures the accuracy of the
predictions for unseen data. We can see that the training error decreases as the
order of the polynomial increases, going to zero for M = 9, as we can verify in
Figure 2.1. Regarding the test error, we can see that is relatively low in the range
3 ≤ M ≤ 7 and relatively high otherwise. For M < 3 we are underfitting to the
training data because the model is too simple, while for M > 7 we are overfitting
to the data because the model is too complex. The best generalization capabilities
are achieved for M = 5, where the test error reaches its minimum.

Additionally, it is also interesting to examine the behavior of the resulting model
as the size of the training dataset is varied. In Figure 2.3 we can see that, for a
given model complexity, the overfitting problem becomes less severe as the size of
the dataset increases. Another way to say this is that the larger the data set, the
more complex the model that we can afford to fit the data.
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Figure 2.3: Polynomial fit of degree M = 9 that minimizes the sum-of-square errors (2.3).
Increasing the size of the training dataset N the overfitting is reduced.

The question now is how can we fit a model to a dataset of limited size when
we want to use relatively complex and flexible models in practice. One technique
that is often used to control the overfitting problem is that of regularization, which
involves including a penalty term to the error function (2.3) in order to discourage
the coefficients from reaching large values

E(w) =
1

2

N∑
i=1

(f(xi,w)− yi)2 +
λ

2
‖w‖2 (2.8)

where the coefficient λ weights the relative importance of the regularization term
compared with the sum-of-squares error. Again, the error function (2.8) can be
minimized in closed form, resulting in the optimal weights

w∗ =
(
XTX + λI

)−1
XTy (2.9)

being I the identity matrix. This type of regression is commonly known as ridge
regression. In Figure 2.4, we show the results of fitting a polynomial of order
M = 9 to the same training data of Figure 2.1 using the regularized error function
(2.8). We can see that the coefficient λ effectively controls the complexity of the
resulting model and hence determines the degree of overfitting. The problem now
is how to determine the best value of λ. A simple approach for achieving this is
by partitioning the available data in a training set, used to determine w, and a
separate validation set, used to determine the best model parameters (M and λ).
If the available data is limited, we have to seek more sophisticated methods such
as cross-validation [3] or Akaike’s Information Criterion [4].
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Figure 2.4: Polynomial fit of degree M = 9 that minimizes the regularized error function
(2.8) for different values of the coefficient λ.

2.2 Probability Theory

In this section, we seek a mathematical formulation that allows us to address ma-
chine learning problems in a more formal and systematic way. The solution can
be found resorting to probability theory. The key link between machine learning
and probability lies in the concept of uncertainty. It arises both through the noise
on measurements, as well as through the finite size of datasets. Probability theory
provides a consistent framework for handling such uncertainty and constitutes one
of the central pillars of machine learning.

The basic concepts of probability can be illustrated through a simple example,
illustrated in Figure 2.5. Imagine that we have two boxes of different colors, one
green and one red, each one containing a different number of black and white balls.
Now, imagine we randomly pick a ball from one of the boxes, and having observed
its color, we put it back in the box. This process is repeated many times choosing
the green box 40 percent of the time and the red box the remaining 60 percent.
When we pick a ball, we are equally likely to pick any of the balls in the box.
The box is analogous to a random variable B. This random variable can take two
possible values, namely g (green) or r (red). Similarly, the ball is also a random
variable L, which can take either value b (black) or w (white).

The probability of an event can be interpreted as the fraction of times that event
occurs out of the total number of experiments when such a number goes to infinity.
Thus, the probability of selecting the green box is p(B = g) = 4/10 and the
probability of selecting the red box is p(B = r) = 6/10. By definition, probabilities
must lie in the interval [0, 1]. Also, if the events are mutually exclusive and include
all possible outcomes, the probabilities for those events must sum to one.
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Figure 2.5: In the black box, on the left, we have 2 black balls and 6 white balls. In the
red box, on the right, we have 3 black balls and 1 white ball.

We could now ask ourselves, what is the overall probability of picking a white
ball? Intuitively, in Figure 2.5, we can see that given that we pick the green box,
the probability is 6/8. On the other hand, given that we pick the red box, the
probability is 1/4. To compute the overall probability, we have to consider that we
are picking more times the red box than the green box, thus it should be closer to
1/4 than 6/8. How much closer? We can weigh it depending on the probability of
picking each type of box. That is,

p(L = w) = p(L = w | B = g)p(B = g)+p(L = w | B = r)p(B = r) = 9/20 (2.10)

where | is equivalent to ‘given that’. Implicitly, in (2.10), we have used the two
fundamental rules of probability theory: the sum rule and the product rule. For a
more general case, let X and Y be two random variables, where X can take any
of the values xi, for i = 1, . . . , N , and Y can take take any of the values yj, for
j = 1, . . . ,M . The aforementioned rules can then be written as

Sum rule : p(X = xi) =
M∑
j=1

p(X = Xi, Y = yj) (2.11)

Product rule : p(X = xi, Y = yj) = p(Y = yj | X = xi)p(X = xi) (2.12)

For the sake of simplicity, from now on we denote p(X) ≡ p(X = xi). Here p(X, Y )
is known as the joint probability, and p(Y | X) as the conditional probability.
Another question we may ask ourselves is, given that we have chosen a white ball,
what is the probability that the box we selected was the red one? To answer it we
have to resort to the Bayes’ theorem, which can be written as
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p(Y | X) =
p(X | Y )p(Y )

p(X)
(2.13)

It is straightforward to derive from the product rule (2.12) together with the symme-
try property p(X, Y ) = p(Y,X). Using the sum rule we can rewrite the denominator
in (2.13) as

p(X) =
∑
Y

p(X | Y )p(Y ) (2.14)

Then, substituting (2.14) in (2.13), we have that the probability that the selected
box is the red one, given that we have chosen a white ball is

p(B = r | L = w) =
1/4 · 6/10

1/4 · 6/10 + 6/8 · 4/10
=

1

3
(2.15)

If we had been asked which box had been chosen before being told the color of the
picked ball, then the most complete information we have available is p(B = r). We
call this the prior probability because it is the probability available before. Once
we are told that the ball is white, we can then use Bayes’ theorem to compute
the probability p(B = r | L = w), which is known as the posterior probability
because it is the probability obtained after we have observed L. In the presented
example the prior probability of selecting the red box is 6/10. However, once we
observe the color of the ball it is more likely that we have picked the green box
since the posterior probability of the red box is 1/3. This result is intuitive, since
the proportion of white balls is much higher in the green box, and such observation
provides significant evidence favoring the green box.

Finally, if each of the boxes in Figure 2.5 contained the same fraction of black and
white balls we would have that the probability of picking a white ball is independent
of which box we pick. Then, B and L are said to be independent. If X and Y are
independent, they fulfill the following identities:

p(X, Y ) = p(X)p(Y ) (2.16)

p(X | Y ) = p(X) (2.17)

In the remainder of this section we extend our discussion on probability theory
based on the introduced core concepts. First, in Section 2.2.1, we present how to
jump from discrete random variables to continuous ones. Then, in Section 2.2.2,
we introduce the definition of expectation and covariance. Finally, in Section 2.2.3
we briefly discuss the Bayesian interpretation of probability.
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2.2.1 Probability Densities

Random variables are not always discrete, in some cases, they can take an infinite
number of different values in a certain range. The probability density function
allows extending the concepts previously presented for discrete events to continuous
variables. Let p(x) be the probability density over the real-valued variable x. The
probability that x lies in the interval (a, b) is given by

p(a ≤ x ≤ b) =

∫ b

a

p(x)dx (2.18)

Because probabilities are non-negative, and the value of x must lie in the real axis,
the probability density p(x) must satisfy the following conditions

p(x) ≥ 0 (2.19)∫ ∞
−∞

p(x)dx = 1 (2.20)

The probability that x lies in the interval (−∞, z) is given by the cumulative dis-
tribution function defined by

P (z) =

∫ z

−∞
p(x)dx (2.21)

Finally, the sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities

Sum rule : p(x) =

∫
p(x, y)dy (2.22)

Product rule : p(x, y) = p(y | x)p(x) (2.23)

Bayes’ theorem : p(y | x) =
p(y | x)p(y)∫
p(x, y)p(y)dy

(2.24)

where both x and y are real variables. If we have several continuous variables
x1, . . . , xD grouped in a vector x, the aforementioned definitions are identical. In
Figure 2.6 we show an example of a probability density function p(x) and the
corresponding cumulative distribution P (x). We can see that since p(x) ≥ 0, the
cumulative distribution is an increasing function.
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2.2. Probability Theory

Figure 2.6: Probability density function p(x) (2.18) along with the corresponding cumu-
lative distribution P (x) (2.21). Note that p(x) is the derivative of P (x).

2.2.2 Expectation and Covariance

One of the most important operations involving probabilities is that of finding the
expected value of a function f(x). This operation can be seen as a weighted average
of the function, being the relative weights determined by the probability of taking
such value. For a continuous variable x the expectation of f(x) is given by

E [f(x)] =

∫
f(x)p(x)dx (2.25)

We can also consider a conditional expectation with respect to a conditional distri-
bution, so that

E [f(x) | y] =

∫
f(x)p(x | y)dx (2.26)

The variance of f(x) provides a measure of how much variability there is in f(x)
around its mean value E [f(x)]

V [f(x)] = E
[
(f(x)− E [f(x)])2] = E

[
f(x)2

]
− E [f(x)]2 (2.27)

Finally, for two random variables x and y, the covariance expresses the extent to
which x and y are related to each other. It is defined by

cov [x, y] = E [x · y]− E [x]E [y] (2.28)

If x and y are independent E [x · y] = E [x]E [y]. Then, their covariance vanishes

cov [x, y] = 0 (2.29)

19



Chapter 2. Machine Learning Fundamentals

2.2.3 Bayesian Probability

Intuitively, probabilities can be seen in terms of the frequencies of random, repeat-
able events. This is known in the literature as the classical or frequentist interpre-
tation of probability. A more interesting interpretation in machine learning is the
Bayesian one, in which probabilities provide a measure of the uncertainty. Consider
an uncertain event, for instance, whether there will be a robot in every home by
the end of the century. This is not an event that can be repeated numerous times
in order to define a notion of probability. Nevertheless, we can have some idea, for
example, of how fast are robotics technologies being developed. Our assessment of
such matters will affect the actions we take, for instance, the extent to which we
endeavor to write the laws for regulating the use of robots. Through the Bayesian
interpretation of probability, we can estimate the uncertainty of such events and
make revisions to them in the light of new evidence.

Bayes’ theorem (2.13) now acquires a new meaning. For instance, consider the
example of inferring the parameters w in polynomial curve fitting (2.2). We can
capture our assumptions about w, before observing any data, in the form of a prior
distribution p(w). Then, the effect of the training data D (2.1) is expressed through
the conditional probability p(D | w). Bayes’ theorem now takes the form

p(w | D) =
p(D | w)p(w)

p(D)
(2.30)

This allows us to evaluate the uncertainty in w after we have observed D in the
form of the posterior probability p(w | D). The term p(D | w) in (2.30) is known
as the likelihood function. It expresses how probable the observed data set is for
different settings of the parameter vector w. Given this definition, we can also state
Bayes’ theorem in words as

posterior ∝ likelihood× prior (2.31)

where all of these quantities are viewed as functions ofw. From this perspective, two
alternative methods can be used to estimate w. If we do not have prior information
available, we can use maximum likelihood estimation (MLE)

w∗ = arg max
w

p(D | w) (2.32)

On the other hand, if we have prior knowledge at hand, we can use maximum
a-posteriori probability (MAP) estimation

w∗ = arg max
w

p(w | D) (2.33)
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2.3. The Gaussian Distribution

Figure 2.7: On the left, Gaussian distribution for a one-dimensional variable (2.34). On
the right for a two-dimensional variable (2.35).

2.3 The Gaussian Distribution

The Gaussian distribution, also known as the normal distribution, is a widely used
model for continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N
(
µ, σ2

)
=

1√
2πσ2

exp

(
−(x− µ)2

σ2

)
(2.34)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
Gaussian distribution takes the form

N (µ,Σ) =
1√

(2π)D |Σ|
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(2.35)

where µ is a D-dimensional vector, Σ is a symmetric D × D matrix, and |Σ|
denotes the determinant of Σ. In Figure 2.7, we can see a graphical representation
of the Gaussian distribution. From a theoretical perspective the interpretation of
the parameters µ and Σ is given by the mean and the covariance

E [x] = µ, cov [x,x] = Σ (2.36)

In this section, we provide an overview of the main aspects of Gaussian distribu-
tions, which commonly play a central role in probabilistic frameworks. We derive,
in Section 2.3.1, the conditional Gaussian distribution, and in Section 2.3.2, the
marginal Gaussian distribution.
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2.3.1 Conditional Gaussian Distribution

An important property of the multivariate Gaussian distribution is that if two
variables are jointly Gaussian, then the conditional distribution of one conditioned
on the other is again Gaussian. Let x be a D-dimensional random variable normally
distributed according to N (µ,Σ). Without loss of generality, we can partition x
in two components x1 and x2, comprising the former the first M components and
the latter the remaining D −M components, so that

x =

[
x1

x2

]
(2.37)

We also define the corresponding partitions of the mean vector µ and the covariance
matrix Σ

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(2.38)

Now, it is convenient to work with the inverse of the covariance matrix

Λ = Σ−1 −→
[

Λ11 Λ12

Λ21 Λ22

]
=

[
Σ11 Σ12

Σ21 Σ22

]−1

(2.39)

Intuitively, finding the conditional probability p(x1 | x2) is equivalent to compute
the probability p(x1,x2) regarding x2 as a constant. Using the decomposition (2.38)
we can rewrite the exponent in the Gaussian distribution (2.35) as

− 1

2
(x− µ)T Σ−1 (x− µ) =

− 1

2
(x1 − µ1)T Λ11 (x1 − µ1)− 1

2
(x1 − µ1)T Λ12 (x2 − µ2)

− 1

2
(x2 − µ2)T Λ21 (x1 − µ1)− 1

2
(x2 − µ2)T Λ22 (x2 − µ2)

(2.40)

The first thing that we should note is that as for the original Gaussian distribution
for x, this is also a quadratic form as a function of x1, and hence the correspond-
ing conditional distribution p(x1 | x2) is also Gaussian. Our goal is to find the
mean µ1|2 and covariance of Σ1|2 such new Gaussian distribution. We can achieve
this by noting that the exponent in general Gaussian distribution, considering the
symmetry of Σ, can be written as

− 1

2
(x− µ)T Σ−1 (x− µ) = −1

2
xTΣ−1x+ xTΣ−1µ+ constant terms (2.41)
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Comparing (2.40) and (2.41), separating all the terms that are second and first
order in x1 we obtain

−1

2
(x− µ)T Σ−1 (x− µ) =− 1

2
xT1 Λ11x1

− xT1 (Λ11µ1 −Λ12 (x2 − µ2)) + cte
(2.42)

where we have used ΛT
12 = Λ21. Then, it is immediate to see that the mean µ1|2

and covariance Σ1|2 of the conditional distribution are equivalent to

Σ1|2 = Λ−1
11 (2.43)

µ1|2 = Σ1|2 (Λ11µ1 −Λ12 (x2 − µ2)) = µ1 −Λ−1
11 Λ12 (x2 − µ2) (2.44)

We can also express equations (2.42) and (2.43) in terms of the original covariance
matrix Σ using the following matrix identity

[
A B
C D

]−1

=

[
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

]
(2.45)

being the matrix M expressed as

M =
(
A−BD−1C

)−1
(2.46)

Then, making use of (2.45) we obtain the following equivalences

Λ11 =
(
Σ11 −Σ12Σ

−1
22 Σ21

)−1
(2.47)

Λ12 = −
(
Σ11 −Σ12Σ

−1
22 Σ21

)−1
Σ12Σ

−1
22 (2.48)

Finally, substituting (2.47) and (2.48), in (2.43) and (2.44), yields the following
mean µ1|2 and covariance Σ1|2 for the conditional distribution p(x2 | x1)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2) (2.49)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 (2.50)

An example of the conditional probability distribution for a Gaussian over two
variables is shown in Figure 2.8.
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Figure 2.8: On the left, contour plot of a Gaussian distribution over two variables p(x1, x2).
On the right, the corresponding conditional probability distribution p(x1 | x2) for different
values of x2, represented as horizontal lines with the same colors in the left plot.

2.3.2 Marginal Gaussian Distribution

Now, we turn to a discussion of the marginal Gaussian distribution. Using the sum
rule (2.22), it is given by

p(x2) =

∫
p(x1,x2)dx1 (2.51)

Similarly to the conditional distribution, if p(x1,x2) is Gaussian, p(x2) will be
Gaussian again. Once again, our strategy for evaluating this distribution is to
focus on the quadratic form in the exponent of the joint distribution and thereby
identify the mean and covariance. Per definition, the exponent of the joint Gaussian
distribution, using the decomposition (2.38), can be written as

− 1

2

([
x1

x2

]
−
[
µ1

µ2

])T [
Σ11 Σ12

Σ21 Σ22

]−1([
x1

x2

]
−
[
µ1

µ2

])
(2.52)

For the matrix inverse we can use (2.45) and (2.46). Defining x̃i = xi −µi, we can
now rewrite (2.52) as

− 1

2

[
x̃1

x̃2

]T [
Λ11 −Λ11Σ12Σ

−1
22

−Σ−1
22 Σ21Λ11 Σ−1

22 + Σ−1
22 Σ21Λ11Σ12Σ

−1
22

] [
x̃1

x̃2

]
(2.53)
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2.3. The Gaussian Distribution

Figure 2.9: On the left, contour plot of a Gaussian distribution over two variables p(x1, x2).
On the right, the corresponding marginal probability distributions p(x1) and p(x2).

Then, we can split up (2.53) into two separate exponents, through

− 1

2
x̃T2 Σ−1

22 x̃2 −
1

2

[
x̃1

x̃2

]T [
−Σ−1

22 Σ21 I
]
Λ11

[
−Σ12Σ

−1
22

I

] [
x̃1

x̃2

]
(2.54)

Noting that Σ12 = ΣT
21 and working the right half, we can find that (2.54) equals

− 1

2
x̃T2 Σ−1

22 x̃2 −
1

2

(
x̃1 −Σ12Σ

−1
22 x̃2

)T
Λ11

(
x̃1 −Σ12Σ

−1
22 x̃2

)
(2.55)

By inspection of (2.55), recalling the expression of Λ11 (2.47), the conditional mean
(2.49) and covariance (2.50), it is immediate that

N (µ,Σ) = N
(
µ1|2,Σ1|2

)
N (µ2,Σ22) (2.56)

From the product rule (2.23), we now that p(x1,x2) = p(x1 | x2)p(x2). Thus, it
follows that the marginal distribution is given by

p(x2) = N (µ2,Σ22) (2.57)

Intuitively, we see that to obtain the marginal distribution over a subset of mul-
tivariate normal random variables, one only needs to drop the irrelevant variables
(the variables that one wants to marginalize out) from the partitioned mean vector
and the covariance matrix. An example of the marginal distribution associated with
a two-variable multivariate Gaussian is shown in Figure 2.9.
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2.4 Bayesian Linear Regression

The goal of regression is to predict the value of a continuous target variable y
given the value of a D-dimensional vector x of input variables. We have already
encountered an example of a regression problem when we considered polynomial
curve fitting in Section 2.1. The polynomial is a specific example of a broad class of
functions called linear regression models, which share the property of being linear
functions of the model parameters w.

From a Bayesian perspective, a regression can be seen as a model of the predictive
distribution p(y | x) because this expresses our uncertainty about the estimated
value of y for each value of x. From this conditional distribution, we can make
predictions of y, for any new value of x, in such a way as to minimize the expected
value of a suitably chosen loss function.

In this section, we return to the curve-fitting problem, approaching it from a prob-
abilistic perspective, thereby gaining some insights into error functions and regu-
larization, as well as taking us towards a full Bayesian treatment. We start, in
Section 2.4.1, presenting the linear regression model that we adopt throughout the
section. Afterward, in Section 2.4.2, we discuss the model complexity problem us-
ing probabilistic formalism. Then, in Sections 2.4.3 and 2.4.4, we show a Bayesian
approach to compute the model parameters w and make predictions for new inputs
x, respectively. Finally, in Section 2.4.5, we present the analogy between Bayesian
regression and kernel methods, which play a central role in this thesis.

2.4.1 Linear Basis Functions Models

The simplest linear model for regression involves a linear combination of the input
variables x and the model parameters w

f(x,w) = w0 + w1x1 + · · ·+ wDxD = wTx (2.58)

The key property of this model is that it is a linear function of the parameters
w. It is also, however, a linear function of the input variables xi, which imposes
significant limitations on the model. To address this issue, we can extend the class
of models by considering linear combinations of fixed nonlinear functions of the
input variables, of the form

f(x,w) =
M−1∑
j=0

wjφj(x) = wTφ(x) (2.59)
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where φj(x) are known as basis functions, M is the dimension of w and we have
taken φ0(x) = 1. By using nonlinear basis functions, we allow the function f(x,w)
to be a nonlinear function of the input vector x. There are many possible choices
for the basis functions, a common one is

φj(x) = exp

(
−1

2

(x− µj)T (x− µj)
`2

)
(2.60)

where the µj governs the locations of the basis functions in the input space and
` their spatial scale. These are usually referred to as Gaussian or radial basis
functions. Now, let us assume that the observations of the output y are given by
the deterministic function f(x,w) affected by additive Gaussian noise so that

y = f(x,w) + ε, ε ∼ N
(
0, σ2

n

)
(2.61)

In this case, we can write

p(y | x,w, σ2
n) = N

(
f(x,w), σ2

n

)
(2.62)

Now, we want to use the training dataset D = (X,y). where X is a N ×M matrix
and y is a N × 1 vector, to determine the values of the unknown parameters w and
σ2
n. Making the assumption that the data points are drawn independently (2.16)

from the distribution (2.62), we obtain the following expression

p(y |X,w, σ2
n) =

N∏
i=1

N
(
yi | wTφ(xi), σ

2
n

)
(2.63)

Taking the logarithm of (2.63) and making use of the standard form (2.34) for the
univariate Gaussian we have the following likelihood

log p(y |X,w, σ2
n) = − 1

2σ2
n

N∑
i=1

(
yi −wTφ(xi)

)2 − N

2
log(σ2

n)− N

2
log(2π) (2.64)

Then, we can determine w and σ2
n as those that maximize (2.64). This is known

as maximum likelihood estimation (MLE). Consider first the maximization with
respect to w. For this purpose, we can omit the last two terms on the right-hand
side of (2.64) because they do not depend on w. Also, we note that scaling the
log-likelihood by a positive constant coefficient does not alter the location of the
maximum with respect to w, and so we can replace the coefficient 1/2σ2

n with 1/2.
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Therefore, we have that instead of maximizing the log-likelihood, we can equiva-
lently minimize the negative log-likelihood

w∗ = arg max
w

log(y |X,w, σ2
n) = arg min

w

1

2

N∑
i=1

(
yi −wTφ(xi)

)2
(2.65)

We can see that maximizing likelihood is equivalent, so far as determining w is
concerned, to minimizing the sum-of-squares error function (2.3) that appeared
in the polynomial curve fitting problem in Section 2.1. The sum-of-squares error
function has arisen as a consequence of maximizing likelihood under the assumption
of a Gaussian noise distribution. The solution of this problem is, therefore, (2.6)

w∗ =
(
ΦTΦ

)−1
ΦTy (2.66)

This is known as the normal equations for the least-squares problem. Here, Φ is a
N ×M matrix, called the design matrix, which is written as

Φ =


φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)

 (2.67)

Analogously to (2.9), we can also consider a regularization parameter yielding

w∗ =
(
ΦTΦ + λI

)−1
ΦTy (2.68)

Additionally, we can maximize the log likelihood function (2.64) with respect to the
noise variance σ2

n, giving

σ2
n =

1

N

N∑
i=1

(
yi −w∗Tφ(xi)

)2
(2.69)

and so we see that the noise variance is given by the variance of the residuals of the
target values yi around the regression function.

In Figure 2.10, we show an example of a linear regression considering a set of radial
basis functions (2.60) and the noise parameter σ2

n. It is interesting to note that the
parametrization and the number of basis functions considered play a key role in the
resulting regression model.
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Figure 2.10: On the first row, the sets of radial basis functions (2.60) for the corresponding
regression shown below. The red dots represent the training data, the solid blue line the
mean of the predictive distribution (2.62), and the blue shaded areas one and two times
the standard deviation of such distribution around the mean.

2.4.2 Bias–Variance Decomposition

Selecting the appropriate number of basis functions is key for avoiding overfitting
but still allows enough flexibility of the model to capture the relevant trends in
the data. Although the introduction of regularization terms can control overfitting
for models with many parameters, this raises the question of how to determine a
suitable value for the regularization coefficient λ.

We can formalize these issues through the introduction of a loss function L(y, f(x)),
also called a cost function, which is a single, overall measure of the performance
of our regression model. Our goal, in probabilistic terms, is to minimize the total
expected loss incurred, which is given by

E [L] =

∫∫
L(y, f(x))p(y,x)dxdy (2.70)

A common choice of the loss function in regression problems is the squared loss

L(y, f(x)) = (f(x)− y)2 (2.71)
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Our goal is to choose f(x) so as to minimize E [L]. We can do this using the calculus
of variations, obtaining

δE [L]

δf(x)
= 2

∫
(f(x)− y) p(y,x)dy = 0 (2.72)

Solving for f(x), and using the sum (2.22) and product (2.23) rules of probability,
we obtain

f(x) =

∫
yp(y,x)dy

p(x)
=

∫
yp(y | x)dy = E [y | x] (2.73)

We can also derive this result in a slightly different way, which sheds light on
the nature of the regression problem. Knowing that the optimal solution is the
conditional expectation E [y | x] (2.73), we can expand the loss function as follows

(f(x)− y)2 = (f(x)− E [y | x] + E [y | x]− y)2 =

(f(x)− E [y | x])2 + 2 (f(x)− E [y | x]) (E [y | x]− y) + (E [y | x]− y)2
(2.74)

Substituting into the loss function (2.71) and integrating, we see that the cross-term
vanishes, resulting in an expression for the loss function in the form

E [L] =

∫
(f(x)− h(x))2 p(x)dx+

∫
(h(x)− y)2 p(x)dx (2.75)

where we have substituted h(x) = E [y | x]. The second term, which is independent
of f(x), arises from the intrinsic noise on the data and represents the minimum
achievable value of the expected loss. The function f(x) we seek to determine
enters only in the first term, which is minimized when f(x) = h(x). However, in
practice we have a dataset D containing only a finite number N of data points, and
consequently we do not know h(x) exactly. Consider the integrand of the first term
in (2.75), which for a particular data set D takes the form

(f(x,D)− h(x))2 (2.76)

If we add and subtract the expectancy of f(x,D) with respect to D in (2.76) and
expand it, we obtain a result analogous to the one obtained in (2.74)

(f(x,D)− h(x))2 = (f(x,D)− ED [f(x,D)])2 + (ED [f(x,D)]− h(x))2 +

+ 2 (f(x,D)− ED [f(x,D)]) (ED [f(x,D)]− f(x,D))
(2.77)
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We now take the expectation of this expression with respect to D and note that the
final term vanishes, giving

ED
[
(f (x,D)− h(x))2] =

ED
[
(f(x,D)− ED [f(x,D)])2]+ (ED [f(x,D)]− h(x))2

(2.78)

We see that the expected squared difference between f(x,D) and the regression
function h(x) can be expressed as the sum of two terms. The first term in (2.78)
is called the variance. It measures the extent to which the solutions for individual
datasets vary around their average, and hence this measures the extent to which the
function f(x,D) is sensitive to the particular choice of dataset. The second term,
called the squared bias, represents the extent to which the average prediction over
all datasets differs from the desired regression function. In other words, we obtain
the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (2.79)

This raises a central problem in supervised learning known as the bias-variance
trade-off. Ideally, one wants to choose a model that both accurately captures the
regularities in its training data, but also generalizes well to unseen data. Unfortu-
nately, it is impossible to do both simultaneously. High-variance learning methods
may be able to represent their training set well but are at risk of overfitting to
noise. In contrast, algorithms with high bias produce simpler models that may fail
to capture important regularities (i.e. underfit) in the data.

Now, we provide some intuition to support these definitions through an example.
We generate a total of 20 training datasets, each containing N = 9 data points,
from the following observational model

y = sin(2πx) +N (0, 0.01) (2.80)

We then fit a model with 20 Gaussian basis functions (2.60) by minimizing the
regularized error using (2.68). The obtained results are shown in Figure 2.11. The
top row corresponds to a large value of the regularization coefficient λ that gives
low variance, but high bias. Conversely, on the bottom row, for which λ is small,
there is a large variance but low bias.

Although the bias-variance decomposition may provide some interesting insights
into the model complexity problem from a frequentist perspective, it is of limited
practical value, because the bias-variance decomposition is based on averages with
respect to several datasets, whereas in practice we have only the single observed
dataset.
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Figure 2.11: Dependence of bias and variance on the model complexity, governed by a
regularization parameter λ. There are 20 data sets, each having N = 9 data points, and
there are 20 Gaussian basis functions in the model. The left column shows the result of
fitting the model to each dataset for two different values of λ. The right column shows
the corresponding average of the 20 fits (blue solid line) along with the function (2.80)
from which the datasets are generated (black dashed line).

2.4.3 Parameter Distribution

We now turn to a Bayesian treatment of linear regression, which avoids the over-
fitting problem, and which also leads to automatic methods of determining model
complexity using the training data alone. Since we are adopting a Bayesian ap-
proach, we need to introduce a prior probability distribution over the model param-
eters w. For simplicity in the development, let such distribution be a zero-mean
isotropic Gaussian of the form

p(w) = N
(
0, σ2

wI
)

(2.81)

Using Bayes’ theorem (2.31), the posterior distribution for w, given the training
dataset D, is proportional to the product of the prior distribution and the likelihood
function

p(w | y,X) ∝ p(y |X,w)p(w) = N
(
Φw, σ2

nI
)
N
(
0, σ2

wI
)

(2.82)
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For deriving the posterior mean and variance of the resulting posterior we can
proceed as in Section 2.3.1, focusing on the quadratic form in the exponent

− 1

2σ2
n

(y −Φw)T (y −Φw) +
1

2σ2
w

wTw =

− 1

2
wT

(
1

σ2
n

ΦTΦ +
1

σ2
w

I

)
w +wT 1

σ2
n

ΦTy + const

(2.83)

Comparing (2.40) and (2.83) we have that the posterior distribution is again Gaus-
sian with mean and variance given by

p(w | y,X) ∝ N
(
µw|D,Σw|D

)
(2.84)

Σw|D =

(
1

σ2
n

ΦTΦ +
1

σ2
w

I

)−1

(2.85)

µw|D =
1

σ2
n

Σw|DΦTy (2.86)

Note that if we consider an infinitely broad prior over the parameters σ2
w −→ ∞

the mean of the posterior distribution reduces to (2.66). Similarly, if we have no
data points σ2

n −→ ∞, then the posterior distribution reverts to the prior (2.81).
Also, we can see that the log of the posterior distribution is given by the sum of
the log-likelihood and the log of the prior and, as a function of w, takes the form

log p(w | y,X) = − 1

2σ2
n

N∑
i=1

(
yi −wTφ(xi)

)2 − 1

2σ2
w

wTw (2.87)

Thus, the maximization of (2.87) with respect tow is equivalent to the minimization
of the sum-of-squares error function with the addition of a quadratic regularization
term, being the solution equivalent to (2.68) taking λ = σ2

n/σ
2
w.

An example of the computation of the posterior parameter distribution is shown
in Figure 2.12. We consider a linear model of the form f(x,w) = w0 + w1x. Note
that once the training dataset is given, the posterior distribution is much more
compact than the prior, and we see that sample functions drawn from the parameter
distribution pass close to the data points. In the limit of an infinite number of data
points, the posterior distribution would become a delta function centred on the true
parameter values, shown as a white cross.
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Figure 2.12: Computation of the parameter’s w posterior distribution (2.84) for a linear
model of the form f(x,w) = w0 + w1x. On the first row, the prior distribution after
observing any data. Samples drawn from such distribution are shown on the right column.
On the second row, the posterior distribution given the data represented as red dots. The
true value of the parameters is depicted as a white cross.

2.4.4 Predictive Distribution

In practice, we are not interested in the value of w itself but rather in making
predictions of y for new values of x. This requires the computation of the predictive
distribution defined by

p(y | x,D) =

∫
p(y | x,w)p(w | D)dw (2.88)

Since p(y | x,w) is given by (2.62), and the posterior parameter distribution is
given by (2.84), we see that (2.88) involves the convolution of two Gaussians. The
predictive distribution takes the form

p(y | x,D) = N
(
µTw|Dφ(x), σ2

n + φ(x)TΣw|Dφ(x)
)

(2.89)

The first term in the variance of the predictive distribution (2.89) represents the
noise on the data whereas the second term reflects the uncertainty associated with
the parameters w.
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2.4. Bayesian Linear Regression

Figure 2.13: Predictive distribution (2.89) for a model consisting of 20 Gaussian basis
functions given the data points depicted as red dots.

In Figure 2.13, we fit a model comprising a linear combination of Gaussian basis
functions to datasets of two different sizes and then look at the corresponding
predictive distributions. Note that the predictive uncertainty depends on x and is
the smallest in the neighborhood of the data points. Also, we can see that the level
of uncertainty decreases as more data points are observed.

2.4.5 Equivalent Kernel

The posterior mean solution in (2.89) for the linear basis function model has an
interesting interpretation that sets the stage for kernel methods. The predictive
mean can be rewritten in the form

f(x,µw|D) = µTw|Dφ(x) =
1

σ2
n

N∑
i=1

φ(x)T
(

1

σ2
n

ΦTΦ +
1

σ2
w

I

)−1

φ(xi)yi (2.90)

Thus, the mean of the predictive distribution at a point x is given by a linear
combination of the training set target variables yi, so that we can write

f(x,µw|D) =
N∑
i=1

k(x,xi)yi (2.91)
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Figure 2.14: On the left, the equivalent kernel k(x, x′) for a set of Gaussian basis functions.
On the right, three slices for different values of x′, shown as white lines on the left plot.

The function k(x,x′) is known as the equivalent kernel. Note that it depends on
the input values xi from the training dataset. The equivalent kernel is illustrated
for the case of Gaussian basis functions in Figure 2.14 in which the kernel functions
k(x, x′) have been plotted as a function of x′ for three different values of x. We
see that they are localized around x, and so the mean of the predictive distribution
at x, given by (2.90), is obtained by forming a weighted combination of the target
values in which data points close to x are given higher weight than points further
from x. Intuitively, it seems reasonable that we should weigh local observations
more strongly than distant ones.

Further insight into the role of the equivalent kernel can be obtained by considering
the covariance between f(x) and f(x′), which is given by

cov [f(x), f(x′)] = cov
[
φ(x)Tw,wTφ(x′)

]
= σ2

nk(x,x′) (2.92)

From the form of the equivalent kernel, we can see that the predictive mean at
nearby points is highly correlated, whereas for more distant pairs of points the
correlation is smaller.

The formulation of linear regression in terms of a kernel function suggests an al-
ternative approach to regression as follows. Instead of introducing a set of basis
functions, which implicitly determines an equivalent kernel, we can instead define
a localized kernel directly and use this to make predictions for new input vectors x,
given the observed training set. This leads to a practical Bayesian framework for
regression known as Gaussian Processes, which we discuss in detail in Chapter 3.
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Gaussian Processes

Gaussian Processes (GP) are concerned with supervised learning, which is the prob-
lem of learning input-output mappings from empirical data (the training dataset).
This problem is also known as regression for continuous outputs. The main idea
is that we need to move from the finite training data to a function that makes
predictions for all possible input values.

Intuitively, a Gaussian Process can be seen as a distribution over functions. First,
making some assumptions about the characteristic underlying function, a Gaussian
Process defines a prior distribution over the functions that could explain our data.
Higher probabilities are given to functions that we consider to be more likely, for
example, because they are smoother. The great thing about Gaussian Processes is
that the set of possible functions can be uncountably infinite. Second, conditional on
the input-output data we have observed, a Gaussian Process then finds a posterior
distribution of functions that explain the data.

In this chapter, we examine the main concepts behind Gaussian Processes. It serves
as a first introduction to the field. For a more in-depth development, we refer
the interested reader to [5], which is considered the canonical book on Gaussian
Processes in the machine learning community. Also, [6] provides a very intuitive
overview. The content of this chapter is mainly based on these two references.

In Section 3.1, we start by providing an intuitive introduction to Gaussian Processes
in order to grasp the main concepts. Starting from fundamental ideas we suddenly
wind up with the Gaussian Process regression equations. Next, in Section 3.2, we
look into the formal definition and its interpretation. Afterward, in Section 3.3, we
discuss the main component of Gaussian Process models: the covariance function.
At the back end of this chapter, in Section 3.4, we address the fundamental problem
of hyperparameter tuning and model selection.
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3.1 An Intuitive Introduction to GP

In this section, we examine the basics behind Gaussian Process regression from
a very intuitive point of view. We start in Section 3.1.1 by looking at a simple
problem: approximating the value of variables that we can measure. These exact
same concepts are then used in Section 3.1.2 to infer the value variables that we
have not observed i.e. for regression to approximate functions. That is where we
arrive at the Gaussian Process regression equations.

3.1.1 Approximating Measured Variables

Suppose that we have some variable f that we want to know its value. We expect
it to be roughly µ, but it is likely to be anywhere in the interval [µ− σf , µ+ σf ].
Mathematically we treat f as a random variable. This random variable has a certain
distribution. Based on our prior knowledge (knowledge that we have without doing
any measurements), we can for instance say that f is a Gaussian random variable
with mean µ and standard deviation σf

f ∼ N
(
µ, σ2

f

)
(3.1)

where the ∼ sign means ‘is distributed according to’. To learn more about the value
of f , we do measurements. However, these are possibly affected by noise ε. As a
result, we only get a measured value y, which is different from the true value f ,

y = f + ε (3.2)

We generally assume that we are dealing with Gaussian white noise. That is, ε is
distributed according to a zero-mean Gaussian function with variance σ2

n,

ε ∼ N
(
0, σ2

n

)
(3.3)

Its exact value is independent of the noise of any other measurement we might do
and the value of f . As a result, prior to doing our measurement, we have

y ∼ N
(
µ+ 0, σ2

f + σ2
n

)
(3.4)

Next, when we perform a measurement, we get to know y deterministically. How-
ever, we do not know the measurement noise ε that was involved. As a result,

f = y − ε ∼ N
(
y, σ2

n

)
(3.5)
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3.1. An Intuitive Introduction to GP

Figure 3.1: An example of computing the posterior distribution from the prior and the
measurements of a single variable. Note that the resulting distribution is more peaked.

Note that distribution (3.1) differs from (3.5). How is this possible? Both have
been obtained independently and both are correct. Actually, the first distribution
corresponds to our prior assumption on the value of f . The second one, on the
other hand, corresponds to the distribution given that we have measured y deter-
ministically. What we can do, is combine both distributions to update our a priori
assumption, and obtain an a posteriori distribution. Since (3.1) and (3.5) have been
obtained independently, then the posterior distribution is given by

f ∼
N
(
µ, σ2

f

)
N (y, σ2

n)∫∞
−∞N

(
µ, σ2

f

)
N (y, σ2

n)
(3.6)

Intuitively, the product in the numerator encodes the condition that f must be
explained by (3.1) and (3.5). The denominator is a normalization constant. If we
perform multiple measurements y1, y2, . . . , we have instead

f ∼
N
(
µ, σ2

f

)
N (y1, σ

2
n)N (y2, σ

2
n) . . .∫∞

−∞N
(
µ, σ2

f

)
N (y1, σ2

n)N (y2, σ2
n) . . .

(3.7)

An example of calculating this posterior distribution after two measurements can be
seen in Figure 3.1. Note that the resulting posterior is more peaked than the prior’s
and the measurements’. This is reasonable, since as we obtain more measures we
can expect a smaller uncertainty on the estimation i.e. a more narrow distribution.

Now, suppose that we have multiple variables f1, f2 and f3 that we want to estimate.
We can put them all into a vector f , where the boldface indicates that f is a vector.
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The prior distribution is now written as

f =

 f1

f2

f3

 ∼ N
 µ1

µ2

µ3

 ,
 σ2

f1 0 0
0 σ2

f2 0
0 0 σ2

f3

 = N (µ,Σf ) (3.8)

where µ is the prior mean and Σf is the prior covariance matrix. Note that this
is actually a multivariate Gaussian distribution. Similarly to (3.5), if we have
measured values y1,y2, . . . , variable f is distributed according to

f ∼ N (y,Σn) (3.9)

Now, as in (3.7), we have the posterior distribution

f ∼ N (µ,Σf )N (y1,Σn)N (y2,Σn) . . .∫∞
−∞N (µ,Σf )N (y1,Σn)N (y2,Σn) . . .

(3.10)

The great thing is that the resulting distribution will again be Gaussian,

f ∼ N (µ′,Σ′) (3.11)

Σ′ =
(
Σ−1
f + Σ−1

n + Σ−1
n + . . .

)−1
(3.12)

µ′ = Σ′
(
Σ−1
f µ+ Σ−1

n y1 + Σ−1
n y2 + . . .

)
(3.13)

It is interesting to know here that covariance matrices Σf and Σn are always positive
definite. This means that the more measurements are added in (3.12), the smaller
Σ′ will get. And a smaller variance means a more accurate estimate. An example
is shown in Figure 3.2. Combining the measurement distribution and the prior, the
resulting posterior has smaller error bars.

3.1.2 Approximating Variables we Have not Measured

So far, we haven’t really talked about making predictions of variables we have
never performed any measurements on, which is actually the motivation behind
supervised learning. Suppose that we have some function f(x) and we want to
estimate or approximate the value of this function at various input points x1, x2

and x3. Well, we again have three numbers that we want to know, so just like in
the previous subsection, we assume that they each have some prior mean m(x) and
variance σf (x)2. Note that these may now also depend on the function input x.
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3.1. An Intuitive Introduction to GP

Figure 3.2: An example of computing the posterior distribution from the prior and the
measurements of three variables. The error bars indicate the 95% confidence interval,
which is equivalent to 1.96 times the standard deviation.

The problem now is that, if we now know something about f(x1), we still cannot
say anything about f(x2) or f(x3) if these are not related somehow. Mathemati-
cally, this is because matrix Σf is diagonal. So we have to assume some kind of
relationship between these function values. We can, for instance, assume that the
original function f(x) is smooth and doesn’t vary too much with small variations
of x. This connection can be expressed in probabilistic terms as a correlation.

Let’s have a closer look into the aforementioned smoothness assumption. If x1 is
close to x2, f(x1) should have a similar value than f(x2). On the other hand, if x1

is further apart from x3, we can say less about the value of f(x3) from the value
of f(x1). From a probabilistic point of view, we can assume that f(x1) and f(x2)
are strongly correlated, while f(x1) and f(x3) are weakly correlated. To express
this mathematically, we define a correlation function c(x, x′) which defines the a
priori relation between the function values f(x) and f(x′) for any input points x
and x′. For instance, we could use a Squared Exponential correlation function (SE
correlation function)

c(x, x′) = exp

(
−1

2

(x− x′)2

`2

)
(3.14)

Here ` is a length-scale for the input x. With this function, nearby points are
strongly correlated, while the function values for input points that are far away
from each other, relative to `, have a nearly zero correlation. In Figure 3.3 the
correlation function (3.14) is illustrated for different values of the parameter `.
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Figure 3.3: The correlation function (3.14) for different values of `.

In practice, we actually don’t use a correlation function but we use something very
similar, the covariance function k(x, x′), which is related by

k(x, x′) = σf (x)σf (x
′)c(x, x′) (3.15)

Assuming a constant standard deviation σf (x) = σf , we obtain the well-known
Squared Exponential covariance function (SE covariance function)

k(x, x′) = σ2
f exp

(
−1

2

(x− x′)2

`2

)
(3.16)

Then, our prior distribution for a three-dimensional case is

f = f(X) =

 f(x1)
f(x2)
f(x3)

 ∼ N (m(X), k(X,X)) = N (m,K) =

= N

 m(x1)
m(x2)
m(x3)

 ,
 k(x1, x1) k(x1, x2) k(x1, x3)
k(x2, x1) k(x2, x2) k(x2, x3)
k(x3, x1) k(x3, x2) k(x3, x3)

 (3.17)

Next, suppose that we have measured deterministically (without noise) that f(x1) =
f1. What does this tell us about the distribution of f(x2) and f(x3)? In probability
theory, this question can be answered conditioning the distribution (3.17) on the
measured value f(x1) = f1. For f(x2) we have
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3.1. An Intuitive Introduction to GP

Figure 3.4: A first example of a Gaussian Process. First, we assume a prior distribution
(blue). Then, we measure a value of the output only for input location 1 deterministically.
The remaining are unknown (infinite variance). On the right we have the distribution
conditional on the measurement, assuming a relation between outputs according to co-
variance function (3.16) with ` = 0.5 and σ2

f = 1.0.

f(x2) | f(x1) = f2 ∼ N (m(x2) + k(x2, x1)k(x1, x1)−1 (f1 −m(x1))

k(x2, x2)− k(x2, x1)k(x1, x1)−1k(x1, x2))
(3.18)

and analogously for f(x3). The conditional probability bar | can be read as ‘given
that’. Note that this is equivalent to a prediction since we are estimating the value
of function f(x) in input locations where a measure is not available, given a known
data point, which is what supervised learning is all about. An example is shown
in Figure 3.4. Note that although we have only a measure on one input location,
the uncertainty on the remaining has gotten significantly smaller, especially for the
locations close to the measurement.

At this moment, we can translate these ideas into a more general mathematical
formulation. We distinguish between measurement points xi for i = 1, . . . , n, with
n the number of measurements, and points where we want to predict the function
value x∗j for j = 1, . . . , n∗, with n∗ the number of prediction points. All these
points form a measurement (training) input set X and a prediction input set X∗.
Analogously to (3.17), the prior distribution of f and f∗ is now given by

[
f
f∗

]
∼ N

([
m
m∗

]
,

[
K K∗
KT
∗ K∗∗

])
(3.19)
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Figure 3.5: An example of a Gaussian Process. The red dots represent the measurements.
For the figure above we have used n∗ = 25 prediction points. Error bars represent two
times the standard deviation. Below, we have used n∗ = 100 prediction points. We have
replaced the error bars with a colored area, where the inner (darker) area is one time the
standard deviation and the outer (lighter) area is two times the standard deviation.

where K∗ = K(X,X∗) denotes the n × n∗ matrix of the covariances evaluated
at all pairs of training and prediction points, and similarly for the other entries
k(X,X) = K and K∗∗ = k(X∗, X∗). Additionally, we write f = f(X), m = m(X)
and identically for the prediction set.

Therefore, as (3.18), the posterior distribution of f∗, given the measured function
values f , now equals

f∗ ∼ N (µ∗,Σ∗) (3.20)

µ∗ = m∗ +KT
∗K

−1 (f −m) (3.21)

Σ∗ = K∗∗ −KT
∗K

−1K∗ (3.22)

The main advantage is that, with this expression, we can incorporate as many
measurement points and as many prediction points as we want without modifying
the formulation. An example is illustrated in Figure 3.5, where we predict n∗ = 25
and n∗ = 100 function values given four training points. The representation of the
Gaussian Process in the bottom figure is the one adopted for the remainder of the
chapter. Note that a Gaussian Process is characterized by both its mean and its
covariance (i.e. uncertainty).
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3.1. An Intuitive Introduction to GP

Figure 3.6: An updated version of Figure 3.5, in which measurement noise is considered.

Until now we have assumed that f is measured deterministically. But, what if this
is not the case? If there is measurement noise (3.3), we have

y = f + ε (3.23)

For a multi-dimensional variable, we assume that the noise is distributed as

ε =

 ε1
...
εm

 ∼ N

 0

...
0

 ,
 σ2

n . . . 0
...

. . .
...

0 . . . σ2
n


 = N

(
0, σ2

nI
)

(3.24)

where I refers to the n × n identity matrix. Thus, analogously to (3.4), the prior
distribution of the noisy measurement vector y equals

y ∼ N
(
m,K + σ2

nI
)

(3.25)

Considering noise, identically to (3.20), (3.21) and (3.22), the posterior yields

f∗ ∼ N (µ∗,Σ∗) (3.26)

µ∗ = m∗ +KT
∗
(
K + σ2

nI
)−1

(y −m) (3.27)

Σ∗ = K∗∗ −KT
∗
(
K + σ2

nI
)−1

K∗ (3.28)

So, what is the effect of adding measurement noise to our predictions? Basically,
the posterior uncertainties (variance) will be slightly bigger, which is reasonable if
we measure with less precision. For instance, compare Figures 3.5 and 3.6.
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3.2 The Formal Definition of GP Regression

Now, we know the main concepts behind Gaussian Process (GP) regression. But
we haven’t really looked at what a Gaussian Process actually is. It is time to look
at the formal definition. Consider a training set D with n observations,

D = {(xi, yi) | i = 1, . . . , n} (3.29)

where x denotes a input vector of dimension D, and y denotes a scalar output or
target; the column vector inputs for all n cases are aggregated in the D× n design
matrix X, and the targets are collected in the vector y, so we can write D = (X,y).
In the regression setting, the targets are real values. We are interested in making
inferences about the relationship between inputs and targets, i.e. the conditional
distribution of the targets given the inputs.

One can think of a Gaussian Process as defining a distribution over functions, and
inference taking place directly in the space of functions. More formally, a Gaussian
Process is a collection of random variables, any finite number of which have a joint
Gaussian distribution. Let’s take a look at exactly how this works.

Similarly to a multivariate Gaussian distribution f ∼ N (µ,Σf ), which can be
defined just by the mean vector µ and the covariance matrix Σf ; a Gaussian Process
is completely specified by its mean function and covariance function. We define the
mean function m(x) and the covariance function k(x,x′) of a real process f(x) as

m (x) = E [f(x)] (3.30)

k (x,x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] (3.31)

where E[] refers to the expectation. Then, we can write the Gaussian process as

f (x) ∼ GP (m(x), k(x,x′)) (3.32)

The specification of the covariance function implies a distribution over functions.
For instance, consider the Squared Exponential covariance function (3.16). To see
this, we can draw samples from the distribution of functions evaluated at any num-
ber of points; in detail, we choose a number of input points, X∗ and write out
the corresponding covariance matrix element-wise. Then we generate a random
Gaussian vector with this covariance matrix and mean function zero

f∗ ∼ N (0, k(X∗, X∗)) (3.33)
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3.2. The Formal Definition of GP Regression

Figure 3.7: Four functions drawn at random from a GP prior with m (x) = 0 and a SE
covariance function (3.16).

and plot the generated values as a function of the inputs. Figure 3.7 shows four
such samples. Each of the samples is a possible function from our prior distribu-
tion. Notice that the functions look smooth. In fact, the SE covariance function is
infinitely differentiable, leading to the process being infinitely differentiable.

However, we are usually not primarily interested in drawing random functions from
the prior but want to incorporate the knowledge that the training data provides
about the function. Let us assume that we do not have access to function values
themselves, but only noisy versions y = f(x) + ε. Assuming additive independent
identically distributed Gaussian noise ε with variance σ2

n, the prior on the noisy
observations becomes (3.25). We can write the joint distribution of the observed
target values and the function values at the test locations X∗ under the prior as

[
y
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
k(X,X) + σ2

nI k(X,X∗)
k(X∗, X) k(X∗, X∗)

])
(3.34)

To get the posterior distribution over functions we need to restrict this joint prior
distribution to contain only those functions which agree with the observed data
points. In probabilistic terms, this operation corresponds to condition the joint
Gaussian prior distribution on the observations to give

f∗ ∼ N (µ∗,Σ∗) (3.35)

µ∗ = m(X∗) + k(X∗, X)
(
k(X,X) + σ2

nI
)−1

(y −m(X)) (3.36)

Σ∗ = k(X∗, X∗)− k(X∗, X)
(
k(X,X) + σ2

nI
)−1

k(X,X∗) (3.37)
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Figure 3.8: Three functions drawn at random from the posterior, i.e. the prior conditioned
on the five observations indicated as blue dots.

which is analogous to (3.26), (3.27) and (3.28). Function values f∗ (corresponding
to X∗) can be sampled from the joint posterior distribution by evaluating the mean
and covariance matrix from (3.36) and (3.37), and generating samples according to
the method described previously for the prior distribution (Figure 3.7). Figure 3.8
shows the results of these computations given the five data points marked as blue
dots. Note that all the sampled functions explain the observed data. In the case
that there is only one test point, equations (3.36) and (3.37) are reduced to

E [f(x∗)] = m(x∗) + k(x∗, X)
(
k(X,X) + σ2

nI
)−1

(y −m(X)) (3.38)

V [f(x∗)] = k(x∗,x∗)− k(x∗, X)
(
k(X,X) + σ2

nI
)−1

k(X,x∗) (3.39)

where V refers to the variance. Note first that the mean prediction (3.38) is a linear
combination of observations y. Another way to look at this equation is to see it as
a linear combination of n kernel functions, each one centered on a training point,

E [f(x∗)] = m(x∗) +
n∑
i=1

αik(xi,x∗) (3.40)

where α = (k(X,X) + σ2
nI)

−1
(y −m(X)). This vector does not depend on x∗,

so once all our measurements are known, we only have to compute it once. So
what we see is that the posterior mean function is a sum of n covariance functions.
Mathematically, we can also see this as a sum of basis functions. And we use just as
many basis functions as we have measurements. The interesting thing is that other
function approximation methods like neural networks and support vector machines,
mathematically come down to the same.
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Algorithm 1: Posterior predictive distribution for Gaussian Processes

Input: X (inputs), y (targets), m() (mean function),
k(, ) (covariance function), σ2

n (noise level), X∗ (test inputs)

1 K = k(X,X), K∗ = k(X,X∗), K∗∗ = k(X∗, X∗);
2 L = cholesky(K + σ2

nI);

3 Kinv = (L−1)
T
L−1;

4 µ∗ = m(X∗) +KT
∗Kinv (y −m(X));

5 Σ∗ = K∗∗ −KT
∗KinvK∗;

6 return: µ∗ (posterior mean), Σ∗ (posterior covariance)

Finally, a practical implementation of Gaussian Process regression is shown in Algo-
rithm 1. The algorithm uses Cholesky decomposition, instead of directly inverting
the matrix since it is faster and numerically more stable. The algorithm returns
the posterior predictive mean and variance.

3.3 Covariance Functions

The covariance function is the key ingredient in a Gaussian Process predictor, as it
encodes our assumptions about the function which we wish to learn. From a slightly
different viewpoint, it is clear that in supervised learning the notion of similarity
between data points is crucial. It is a basic assumption that points with inputs x
which are close are likely to have similar target values y, and thus training points
that are near to a test point should be informative about the prediction at that
point. Under the Gaussian process view, it is the covariance function that defines
nearness or similarity.

An arbitrary function of input pairs x and x′ will not, in general, be a valid covari-
ance function. A general name for a function k(, ) of two arguments mapping a pair
of inputs x,x′ ∈ X into R is a kernel. Given a set of input points {xi | i = 1, . . . , n}
we can compute the Gram matrix K whose entries are Kij = k(xi, xj). If k(, ) is
a covariance function we call the matrix K the covariance matrix. A real kernel
is said to be symmetric if k(x,x′) = k(x′,x); clearly covariance functions must be
symmetric from the definition. This implies that the Gram matrix corresponding
to a covariance function must be positive semidefinite.

We start in Section 3.3.1 providing some examples of some commonly-used covari-
ance functions and examining their properties. Afterward, in Section 3.3.2, we
discuss some ways to build complex covariance functions from the combination of
more simple ones.
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Figure 3.9: On the left, a random function drawn from a zero-mean Gaussian Process with
white noise covariance function (3.41) for σ2

n = 1. On the right, a visual representation
of the covariance matrix.

3.3.1 Examples of Covariance Functions

White Noise Covariance Function

The white noise kernel represents independent and identically distributed noise

k(xi, xj) = σ2
nδij (3.41)

where δij is a Kronecker delta which is one if i = j and zero otherwise. The
parameter σ2

n represents the noise variance. In Figure 3.9, we show a sample from
this prior. We can see that the resulting function is similar to a noise signal. We
can also see that the covariance matrix elements are zero everywhere except on the
diagonal. This is because the noise is uncorrelated.

Squared Exponential Covariance Function

The squared exponential (SE) covariance function has already been introduced in
(3.16) and has the form

k(x, x′) = σ2
f exp

(
−1

2

(x− x′)2

`2

)
(3.42)

with parameter ` defining the characteristic length-scale and σ2
f the output variance.
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Figure 3.10: On the left, random functions drawn from a zero-mean Gaussian Process with
SE covariance function (3.42), for σf = 1 and ` = 1. On the right, a visual representation
of the covariance matrix.

This type of covariance function is known as stationary since depends on x − x′.
Thus it is invariant to translations in the input space. Additionally, since is a
function only of |x− x′| it is also called isotropic, which means that it is invariant
to all rigid motions. Furthermore, it is infinitely differentiable, which means that
the GP with this covariance function has derivatives of all orders, and is thus very
smooth. Such strong smoothness assumptions are unrealistic for modeling many
physical processes. However, the squared exponential is probably the most widely-
used kernel within the kernel machines field. The form of the SE kernel matrix and
samples drawn from it for σf = 1 and ` = 1 are shown in Figure 3.10.

Matérn Covariance Function

The Matérn class of covariance functions is given by

k(x, x′) =
21−ν

Γ(ν)

(√
2ν|x− x′|

`

)ν

Kv

(√
2ν|x− x′|

`

)
(3.43)

with positive parameters ν and `, where Kν is a modified Bessel function. For
ν → ∞, it converges to the SE covariance function (3.42). The most interesting
case for machine learning is ν = 5/2, for which

k(x, x′) =

(
1 +

√
5|x− x′|
`

+
5(x− x′)2

3`2

)
exp

(
−
√

5|x− x′|
`

)
(3.44)
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Figure 3.11: On the left, random functions drawn from a zero-mean Gaussian Process
with Matérn covariance function (3.44), for ` = 1. On the right, a visual representation
of the covariance matrix.

This kernel is suitable for modeling processes that do not satisfy the strong smooth-
ness assumption that imposes the SE covariance function. The form of the Matérn
kernel matrix and samples drawn from it for ` = 1 are shown in Figure 3.11. Note
that the samples drawn in Figure 3.10 are much smoother.

Rational Quadratic Covariance Function

The rational quadratic (RQ) covariance function

k(x, x′) =

(
1 +

(x− x′)2

2α`2

)−α
(3.45)

with α, ` > 0 can be seen as an infinite sum of SE covariance functions with different
characteristic length scales. So, GP priors with this kernel expect to see functions
that vary smoothly across many length scales. The parameter α determines the
relative weighting of large-scale and small-scale variations. When α→∞, the RQ
kernel is identical to the SE kernel. This is in fact the most general representation
for an isotropic kernel. Figure 3.12 illustrates the behaviour for ` = 1 and α = 1.

Periodic Covariance Function

The periodic kernel allows us to model periodic functions

k(x, x′) = σ2
f exp

(
− 2

`2
sin2

(
π|x− x′|

p

))
(3.46)
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Figure 3.12: On the left, random functions drawn from a zero-mean Gaussian Process
with rational quadratic covariance function (3.45), for ` = 1 and α = 1. On the right, a
visual representation of the covariance matrix.

Figure 3.13: On the left, random functions drawn from a zero-mean Gaussian Process
with periodic covariance function (3.46), for ` = 1, σf = 1 and p = 2.5. On the right, a
visual representation of the covariance matrix.

with parameter p defining the period i.e. the distance between repetitions. The
meaning of parameters ` and σf is analogous to the SE covariance function (3.42).
A few samples drawn for the periodic kernel function as well as the structure of
the covariance matrix with ` = 1, σf = 1 and p = 2.5 are shown in Figure 3.13.
Note that the prior functions repeat periodically each |x− x′| = 2.5. This periodic
structure can also be recognized in the covariance matrix, which has bands spaced
by a distance of 2.5 in the input space.

53



Chapter 3. Gaussian Processes

Figure 3.14: On the left, random functions drawn from a zero-mean Gaussian Process
with periodic covariance function (3.47), for σ2

0 = 0. On the right, a visual representation
of the covariance matrix.

Linear Covariance Function

The linear covariance function

k(x,x′) = σ2
0 + x · x′ (3.47)

can be obtained from linear regression by putting N (0, 1) priors on the coefficients
and a prior of N (0, σ2

0) on the bias. The bias σ2
0 is the point where the function is

likely to cross the vertical axis. Note that in contrast with the previous kernels it
does not depend on |x − x′|. This type of covariance function is known as a dot
product function since depends only on x and x′ through x · x′.

The behavior of the samples from the prior and the covariance matrix is shown
in Figure 3.15. We can easily see that all the sample functions are linear. For
regression problems the linear kernel is a rather strange choice, as we can observe,
the prior variance grows rapidly with |x| for |x| > 1.

3.3.2 Combining Kernels

In the previous section, we have developed many covariance functions. Now, we
show how these can be combined to make new ones. The advantage is that, by
combining various elemental covariance functions, we can create all sorts of more
complex kernels. So if we know that the function f(x) we are approximating has
some kind of structure, we can take it into account. The basic operations that we
discuss are the sum and the product.
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Figure 3.15: On the left, random functions drawn from a zero-mean Gaussian Process
with a kernel constructed by the addition of a periodic kernel (3.46) with σ2

f = 1, ` = 1

and p = 1, and a linear kernel (3.47) with σ2
0 = 0. On the right, a visual representation

of the covariance matrix.

Combining Kernels by Addition

The sum of two kernels is a kernel. Suppose that we have a function f(x) =
f1(x) +f2(x). If f1(x) is a GP with mean m1(x), covariance function k1(x,x′) and
similarly for f2(x), assuming the two GPs are independent, then f(x) is a GP with
mean and covariance function

m(x) = m1(x) +m2(x) (3.48)

k(x,x′) = k1(x,x′) + k2(x,x′) (3.49)

Roughly speaking, adding two kernels can be interpreted as an OR operation. This
means that the covariances of the two added kernels will only have a low value if
both of the covariances have a low value. An application of this method is shown
in Figure 3.15, where you can see the Gaussian Process resulting from the addition
of a periodic kernel (3.46) and a linear kernel (3.47). The sampled functions are
periodic with increasing mean as they move away from the origin.

Combining Kernels by Multiplication

The product of two kernels is a kernel. However the developement is not as simple
as with the addition. Assuming that f1(x) and f2(x) are independent, then we
have the following mean and variance for f(x) = f1(x)f2(x),
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Figure 3.16: On the left, random functions drawn from a zero-mean Gaussian Process
with a kernel constructed by the product of a periodic kernel (3.46) with σ2

f = 1, ` = 1

and p = 1, and a linear kernel (3.47) with σ2
0 = 0. On the right, a visual representation

of the covariance matrix.

m(x) = m1(x) ·m2(x) (3.50)

k(x,x′) = k1(x,x′)k2(x,x′) + k1(x,x′)m2(x)m2(x′)+

+ k2(x,x′)m1(x)m1(x′)
(3.51)

If, m1(x) = m2(x) = 0, we can hence just use k(x,x′) = k1(x,x′)k2(x,x′). Mul-
tiplying kernels is an element-wise multiplication of their corresponding covariance
matrices. This means that the covariances of the two multiplied kernels will only
have a high value if both covariances have a high value. The product operation can
thus be interpreted as an AND operation. An example is shown in Figure 3.16 com-
bining, as in Figure 3.15, a linear and a periodic kernel. This results in a periodic
function with linearly varying amplitude.

3.4 Hyperparameter Tuning and Model Selection

So far we have seen how to do GP regression using a given fixed covariance function.
However, in many practical applications, it may not be easy to specify all aspects of
the covariance function with confidence. While some properties such as stationarity
may be easy to determine a priori, we typically have only rather vague information
about other properties, such as the value of free (hyper-)parameters, e.g. length
scales or noise level.
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Figure 3.17: Gaussian Process regression for different hyperparameters
(
σ2
f , `, σ

2
n,
)

with

value (1.0, 0.5, 0.05) (left) and (2.0, 0.8, 0.5) (right). While the first approximation seems
sensible, the second explains the training data (red dots) almost through noise.

For instance, consider a GP with a prior covariance function built from the addition
of (3.41) and (3.42)

k(xi, xj) = σ2
f exp

(
−1

2

(xi − xj)2

`2

)
+ σ2

nδij (3.52)

There are several hyperparameters that need to be selected, in this case θ =(
σ2
f , `, σ

2
n,
)
. In Figure 3.17, we can see that they have a significant effect on the

predictions. We can choose them ourselves, based on our expert knowledge, or we
can tune them automatically. In order to turn Gaussian Processes into powerful
practical tools, it is essential to develop methods that address the tuning of the
hyperparameters and the model selection problem.

We first discuss, in Section 3.4.1, the model selection problem from a general per-
spective within the probabilistic framework. Then, in Section 3.4.2, we focus on
Gaussian Process regression, exploring a simple method for optimizing the covari-
ance function hyperparameters.

3.4.1 Bayesian Model Selection

The key realization we should first make is that we do not know the set of hyperpa-
rameters θ, and hence we should treat it as a random variable. Also, we can include
a higher level formed by a set of possible model structures, Hi under consideration.
We can divide the model selection problem into a two-step process:
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1. At the lower level, we can look at the probability that a certain set of hyper-
parameters θi is the correct one for each candidate model Hi given the data
D = (X,y).

2. At the higher level, we can look at the probability that a certain model Hi

explains the data D = (X,y) given the distribution of θi.

Recalling the Bayes’ theorem

p(A | B,C) =
p(B | A,C) · p(A | C)

p(B | C)
(3.53)

where p(A | B,C) can be read as ’the probability of A given B and C’. The first
step in the model selection process requires the computation of the posterior over
the hyperparameters for a certain model Hi. It can be written as

p(θi | y, X) =
p(y | X,θi) · p(θi | X)

p(y | X)
(3.54)

The term p(y | X,θi) is known as the likelihood. It is the probability that, given
certain hyperparameters θi, we obtained observations y. According to (3.25), this
probability is equal to

p(y | X,θi) = N
(
m |K + σ2

nI
)

(3.55)

Note that the covariance K + σ2
nI and possibly the mean m depend on the hy-

perparameters θi. The term p(θi | X) is the prior hyperparameter distribution, or
short, the hyper-prior. This probability actually does not depend on X since only
knowing X does not tell us anything about θi. Thus, p(θi | X) ≡ p(θi). We can
use the hyper-prior to indicate which hyperparameters we roughly expect to get. In
practice, we often don’t really know much in advance so p(θi) is assumed constant.
Finally, the denominator p(y | X) is called the marginal likelihood, but since it
does not depend on θi, it is a constant too. Putting all together we have that the
probability of θi is proportional to the likelihood

p(θi | y, X) ∝ p(y | X,θi) (3.56)

Then, at the second level of the model selection process, we evaluate the posterior
of the model

p(Hi | y, X) =
p(y | X,Hi) · p(Hi | X)

p(y | X)
(3.57)

58



3.4. Hyperparameter Tuning and Model Selection

Following the same reasoning as with the hyperparameter posterior, and marginal-
izing over the hyperparameters, we have

p(Hi | y, X) ∝ p(y | X,Hi) =

∫
p(y | X,θi,Hi) · p(θi | Hi)dθi (3.58)

In practice, the evaluation of (3.58) may be difficult, and as an approximation, the
following is usually assumed

p(Hi | y, X) ∝ p(y | X,θi) (3.59)

Therefore, we can conclude that the model selection problem can be reduced to the
evaluation of the likelihood with respect to the possible hyperparameter sets θi.

3.4.2 Model Selection for GP Regression

Now, we apply the general Bayesian inference principles from subsection 3.4.1 to
the specific Gaussian Process model. Instead of taking into account all possible
hyperparameters θ, the idea is to find the most likely hyperparameters and only
use those. The key is to maximize the likelihood p(y | X,θ)

p(y | X,θ) =
1√

2π|Ky|
exp

(
−1

2
(y −m)T K−1

y (y −m)

)
(3.60)

The exponent makes maximizing this somewhat difficult. To solve this issue, we take
the logarithm of the above function. Because the logarithm is a strictly ascending
function this does not affect the position of the maximum. When we take the
logarithm and simplify the result, we get the log-likelihood

log p(y | X,θ) = −1

2
(y −m)T K−1

y (y −m)− 1

2
log |Ky| −

n

2
log 2π (3.61)

where Ky = K + σ2
nI is the covariance matrix for the noisy targets y. The three

terms of the marginal likelihood in (3.61) have readily interpretable roles. The only
term involving the observed targets is the data-fit (y −m)T K−1

y (y −m) /2, which
describes how well our measurements y fit with our hyperparameters. The second
term |Ky|/2 is the complexity penalty depending only on the covariance function
and the inputs. The great thing about this complexity penalty is that, unlike other
methods like neural networks, Gaussian process regression has a far smaller risk of
overfitting. It has an automatic regularization built into it through its foundation in
Bayesian probability theory. Finally, n log (2π)/2 is just a normalization constant.
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Figure 3.18: On the top left contour plot showing the log marginal likelihood for data
generated using a GP with (σ2

f , `, σ
2
n) = (1.0, 1.0, 0.1) (3.52) as a function of the character-

istic length-scale l and the noise level σ2
n. On the remaining plots, three GPs with σ2

f = 1,

and ` and σ2
n marked as a cross with the corresponding color (blue, red, and green) in the

contour plot. We can see that the most sensible option among the candidates is also the
one with the highest log-likelihood.

Figure 3.18 shows an example of the log marginal likelihood as a function of the
characteristic length-scale and the noise level hyperparameters for covariance func-
tion (3.52). The signal variance σ2

f is set to 1. The marginal likelihood has a clear
maximum around the hyperparameter values which were used in the Gaussian Pro-
cess from which the data was generated. Note that for length scales and a noise
level higher than σ2

n = 0.8, the marginal likelihood becomes almost independent of
the length scale; this is caused by the model explaining everything as noise, and
no longer needing the signal covariance. Similarly, for small noise and small length
scales, the marginal likelihood becomes almost independent of the noise level; this
is caused by the ability of the model to exactly interpolate the data at this short
length scale.

60



3.4. Hyperparameter Tuning and Model Selection

Figure 3.19: On the right, the mean of the prediction while tuning the hyperparame-
ters. We use the same data as Figure 3.18 but start with hyperparameters (σ2

f , `, σ
2
n) =

(1.0, 6.0, 8). We then optimize them using a gradient ascent algorithm, converging to
(σ2, `, σ2

n) = (1.0, 1.124, 0.087). The steps of the gradient ascent can be seen on the
contour plot of the likelihood on the left.

The next question is: how do we find the maximum of the log-likelihood? There
are many optimization methods to do so. A common choice is the gradient ascent
method for which the partial derivatives of the marginal likelihood with respect to
the hyperparameters are required. Differentiating (3.61) we obtain

∂

∂θj
log p(y | X,θ) =

1

2
tr

((
ααT −Ky

) ∂Ky

∂θj

)
(3.62)

where α = K−1
y (y −m). Note that the term ∂Ky/∂θj depends on the covari-

ance function. An illustration of the evolution of the GP prediction, adapting the
hyperparameters with the gradient ascent algorithm is shown in Figure 3.19.

The challenge of the Gaussian Process selection problem is that there is no guar-
antee that the marginal likelihood does not suffer from multiple local optima. The
gradient ascent algorithm is not suitable for these cases. Thus, more complex, but
standard, optimization algorithms can be used to determine the hyperparameters.
An overview of some alternative optimization methods based on evolutionary algo-
rithms is provided in [7].
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As robots move from structured and simple problems to more complex, unstructured
environments, manually programming their behavior is requiring a more specific set
of skills and knowledge. Often, it is much easier for a human to demonstrate the
desired behavior rather than attempt to engineer it. This is the main behind the
paradigm of learning from demonstration (LfD).

Learning from demonstration may be a key technology to shift robots from indus-
trial applications to work closely with humans in elder care or the service industry.
Classical industrial robotic manipulators are powerful, but also dangerous. For
this reason, they have been used mainly in constrained, repetitive tasks. In recent
years this is changing due to the development of light, compliant and safe robotic
manipulators. They are ideal for applications that benefit from human-robot col-
laboration, such as reducing the physical workload of caregivers. These applications
need efficient and intuitive ways to teach robots the required motions.

Over the last decade, learning from demonstration has been an intensive field of
study, for which research interest has done nothing but steadily increase. As it can
be seen in Figure 4.1, the number of publications related to the topic during 2020
is almost four times larger than in 2010. Also note that, although we use the term
learning from demonstration to encompass the field as a whole, other popular terms
are used in the literature such as imitation learning, programming by demonstration,
and behavioral cloning, among others.

Different learning approaches, namely supervised, reinforcement, and unsupervised,
have been used to address a plethora of problems in robot learning. The choice be-
tween the different methods is not trivial and depends on the problem of interest.
From a general perspective, to allow robots to learn skills from human demonstra-
tions, we need to develop a system that records demonstrations by experts, learns
the ideal behavior from the available demonstrations, and reproduces it.
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Figure 4.1: Evolution of the estimated number of publications during the last decade in
the field of learning from demonstration (LfD). The estimate is obtained as the number
of search results on Google Scholar that contain the specified key terms related to LfD.

For addressing the learning from demonstration problem we need to answer the
following questions [8]:

1. How should we record the data of the expert demonstrations? There
is a wide variety of methods for recording human demonstrations. Some
examples are motion capture or teleoperation systems. This choice depends
on the differences in the embodiment between the human teacher and the
robot learner. In Chapter 5, we discuss this question in detail.

2. What should we imitate? The recorded data might include redundant
information about the ideal behavior, or unnecessary motions, which should
not be imitated. We must carefully select the appropriate features.

3. How should we represent the skill? The ideal behavior can be represented
using methods such as trajectory-based representation or state-action space
representation. The choice depends largely on the level of abstraction that is
appropriate for the problem of interest.

4. How should we learn the ideal behavior from the demonstrations?
Many algorithms for learning the demonstrated skill have been developed over
the last years. The choice of the most suitable algorithm is closely related to
the previous question.

With regard to these questions, several survey papers on robot learning from demon-
stration provide a distinct overview of the field by answering them from different
perspectives [8, 9, 10, 11].
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In order to keep the discussion within the scope of a Chapter, we concentrate on the
last two questions and focus on reviewing the state-of-the-art learning trajectories
from demonstrations. This family of algorithms is one of the most dominant in
LfD research. Trajectory learning methods rely on low-level controllers to execute
the trajectories required to perform the taught skill. They are so popular because,
if we assume that the system is fully actuated, which is the case for most robot
manipulators, we do not need any knowledge of the robot dynamics.

We start in Section 4.1, by presenting the fundamental aspects of Dynamic Move-
ment Primitives (DMPs). Then, in Section 4.2, we discuss the main concepts behind
Gaussian Mixture Models (GMMs). Afterward, in Section 4.3, we study some of
the most relevant features of Probabilistic Movement Primitives (ProMPs). And
finally, in Section 4.4, we introduce the Kernelized Movement Primitives (KMPs)
formulation.

4.1 Dynamic Movement Primitives

Human beings have the innate ability to perform complex manipulation tasks in a
versatile manner. Researchers have tried to understand and define this capability,
concluding that is based on combining and adapting basic units of motion into
complex movements. This is the origin of the motion primitives theory.

Dynamic Movement Primitives (DMPs) represent one of the first attempts to de-
sign a method that allows robots to execute movements in a versatile and adaptive
manner. They can be seen as a formal mathematical formulation of the motion
primitives as stable nonlinear dynamical systems [12]. These systems must guaran-
tee convergence to a given target, be sufficiently flexible to create complex behaviors,
and possible to learn from demonstrations using efficient algorithms.

DMPs have been successfully exploited in a wide variety of applications. Due to
their simple formulation, they have become the first approach that beginners in
learning from demonstration use on their robots. For the interested reader, we refer
to the following tutorials and surveys, [13, 14, 15, 16]. Especially [16], since it is
the most recent one and scans a wider spectrum within the Dynamic Movement
Primitives related literature.

Here, we provide an overview of Dynamic Movement Primitives. First, in Section
4.1.1, we introduce the DMPs formulation for discrete and periodic motions. Then,
in Section 4.1.2, we discuss some extensions of the DMP formalism for improving
the generalization capabilities of the learned skill or combine multiple primitives.
Finally, in Section 4.1.3, we present DMPs in different robotics applications.
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4.1.1 Basic Formulation

In this section, we introduce the standard formulations of DMPs. Specifically, to
learn discrete point-to-point motions and rhythmic pattern motions.

Discrete DMPs

The basic idea behind a classical discrete DMP, is to use a dynamical system with
convenient stability properties and modulate it with nonlinear terms such that it
achieves the desired attractor behavior. One of the simplest possible models for
a single-degree-of-freedom trajectory y, is a damped spring model, defined by the
following set of nonlinear equations

τ ż = αz (βz (g − y)− z) + f(x) (4.1)

τ ẏ = z (4.2)

τ ẋ = −αxx (4.3)

Here, z is known as the auxiliary variable, the parameter τ > 0 is a time constant,
and αz > 0 and βz > 0 define the behavior of the system described by equations (4.1)
and (4.2), commonly referred to as the transformation system. On the other hand,
equation (4.3) defines the so-called canonical system, being x the phase variable
and αx > 0 a positive constant.

The key to achieve the desired behavior with DMPs, is the function f(x), which is
commonly defined as a linear combination of N nonlinear radial basis functions

f(x) =

∑N
=1wiφi(x)∑N
i=1 φi(x)

· x (g − y0) (4.4)

φi(x) = exp

(
− 1

2`2
i

(x− µi)2

)
(4.5)

Here, µi are the centers of the basis functions distributed along with the phase of
the movement, `i their widths, and y0 the initial position. Note that the complete
system is designed to have a unique equilibrium point at (x, y, z) = (0, g, 0). Thus,
a DMP serves as a basis for generating a discrete movement for y, evolving towards
the goal g, from any initial position y0.

We assume that skill is demonstrated by providing a desired trajectory in terms of
position, velocity, and acceleration triples

D = {(yd(tj), ẏd(tj), ÿd(tj))}Mj=1 (4.6)
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Learning the taught behavior is performed in two phases: determining the high-
level parameters (g, y0 and τ) and then learning the weights wi. The parameter
g is simply the position at the end of the demonstration g = yd(tM), and analo-
gously, y0 = yd(t1). The time constant τ must be adjusted to the duration of the
demonstration.

Then, the learning of the weights can be formulated as a regression problem. Rear-
ranging equation (4.1), and including the information provided by the demonstrated
trajectory (4.6), we have

fd(tj) = τ 2ÿd(tj)− αz (βz (g − yd(tj))− τ ẏd(tj)) (4.7)

Therefore, we have to adjust the weights wi such that f(x) is as close as possible
to fd(tj). There are many possible methods for solving this problem. The most
common approach is to use locally weighted regression (LWR) [17] due to its efficient
one-shot learning procedure and the fact that each weight is learned independently.
For each wi, LWR minimizes the local weighted quadratic error

E(wi) =
M∑
j=1

φi (x(tj)) (fd(tj)− wjζ(tj))
2 (4.8)

with ζ(tj) = x(tj) (g − y0). This optimization problem has the following closed-form
solution

w∗i =
ζTΦifd
ζTΦiζ

(4.9)

where

ζ =


ζ(t1)
ζ(t2)

...
ζ(tM)

 , Φi =

 φi (x(t1)) . . . 0
...

. . .
...

0 . . . φi (x(tM))

 , fd =


fd(t1)
fd(t2)

...
fd(tM)

 (4.10)

An example of a DMP learned after providing a synthetic demonstration is shown
in Figure 4.2. We can observe that the demonstrated trajectory and the resulting
DMP are almost perfectly superposed. Also, we can see the sequential activation
of the basis functions comprising the forcing term f(x).
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Figure 4.2: A discrete DMP is used to generate 1-dimensional motion between y0 = 0
and g = 1. The learned trajectory (blue solid line) along with the demonstration data
(black dashed line) is shown in the three upper left graphs. On the center-right, the
exponentially decaying phase. The plots on the bottom row illustrate the results of LWR.

Periodic DMPs

Periodic DMPs [18] are used when the motion follows a rhythmic pattern. The
second order system described by (4.1), (4.2) and (4.3) is redefined as follows

ż = Ω (−αz (βzy + z) + f(ψ)) (4.11)

ẏ = Ωz (4.12)

τ ψ̇ = 1 (4.13)

The main difference between discrete and periodic DMPs is that the time constant
τ , related to the trajectory duration, is replaced by the frequency Ω. Analogously
to (4.4), the forcing term is defined as

f(ψ) =

∑N
i=1 φi(ψ)wi∑N
i=1 φi(ψ)

· r (4.14)

φi(ψ) = exp (hi (cos (ψ − µi)− 1)) (4.15)
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Figure 4.3: A periodic DMP is used to reproduce a 1-dimensional rhythmic motion. The
learned trajectory (blue solid line) along with the demonstration data (black dashed line)
is shown in the three upper left graphs. The plots on the bottom row illustrate the weights
learning procedure.

where r is used to modulate the amplitude of the periodic signal, and hi is a scale
parameter analogous to ` in (4.5). Similarly to discrete DMPs, the desired shape
of f(ψ) is determined as follows

fd(tj) =
ÿd(tj)

Ω2
+ αz

(
βzyd(tj) +

ẏd(tj)

Ω

)
(4.16)

Then, the learning of the weights can also be performed with LWR taking ζ(tj) = r,
and using equations (4.9) and (4.10).

In Figure 4.3, we show an example of a periodic DMP, when trained with a super-
position of several sine signals of different frequencies. Note how quickly the DMP
converges to the demonstrated trajectory from zero initial conditions. The evolu-
tion of the velocity and the acceleration is also almost perfectly coincident with the
taught ones.
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4.1.2 Extensions

In this section, we present approaches that allow adapting skills learned with DMPs
to novel situations, and how to smoothly combine several simple DMPs to obtain
a more complex behavior.

Generalization of a DMP

A desirable property of motion primitives is the ability to generalize the learned skill
to unforeseen scenarios. One possibility to achieve such capability is to modulate the
DMP through via-points (points where the trajectory has to pass). Weitschat et al.
[19] considered each via-point as an intermediate goal to reach gv for v = 1, . . . , V .
Then, they redefined the constant goal in g (4.1) as a variable in the following way

g(x) =
V∑
v=1

φv(x)gv (4.17)

where φv(x) are radial basis function centered at the time corresponding to the v-th
via-point. By changing the goal position, the DMP maintains the general shape of
the learned trajectory but is adapted to pass through the via-points.

Sometimes, modulating the DMP using via-point constraints may not be enough to
successfully perform a task in a different context. For this reason, other approaches
adapt the DMP by adjusting the weights wi of the forcing term (4.4). Weitschat
et al. [20], assumed that several demonstrations are given covering the possible
contexts. Each one is then encoded with a different DMP. In order to generalize to
new scenarios, they proposed to interpolate the weights of DMPs encoding demon-
strations in a nearby context. For instance, let us consider the case of reaching a
new goal g′. The weights of the resulting DMP are computed as

w′i =

∑
∀k:dk<dmax

wikd
−1
k∑

∀k:dk<dmax
d−1
k

(4.18)

where dk is the distance between the goal of the k-th DMP gk and g′, representing
k the indices of the nearby DMPs.

In Figure 4.4, we show some examples of DMPs generalized by considering both,
via-point constraints and adjusting the weights by interpolating DMPs learned for a
similar context. We can see that by considering via-points the shape of the resulting
trajectory is preserved except in those regions close to the new constraints. On the
other hand, note that by combining the weights of several DMPs we are able to
generate intermediate behaviors.
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Figure 4.4: Examples of generalization of DMPs. (a) The blue solid line depicts the
original DMP, and the orange dashed line the modulated trajectory using an initial and a
final via-point (after [19]). (b) The black dashed line shows the DMPs interpolated from
those depicted as red dotted lines. The trajectories labeled as OC in the legend are not
a matter of interest in this work (after [20]).

Figure 4.5: Example of a combination of DMPs. The demonstrations are represented as
black dashed lines and each learned DMP as a solid line of a different color. The magenta
dotted line indicates the time instant when the switch occurs (after [16]).

Combination of DMPs

An important property of a motion primitive representation is the possibility to
combine several basic movements to perform complex tasks [21]. A simple approach
for this purpose is proposed by Pastor et al. [22]. In general, a DMP reaches the
desired target with zero velocity and acceleration. This also implies that, once the
robot is close to the target, the velocity is continuously decreasing. Thus, DMPs
can be combined sequentially by terminating the current DMP when the velocity is
below a certain threshold and then starting the next one. To prevent discontinuities,
the state of each DMP is initialized with that of the previous one. In Figure 4.5,
we illustrate the combination of several pairs of DMPs.
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Figure 4.6: Applications of DMPs. (a) Ironing task [23]. (b) Sawing task [24]. (c)
Exoskeleton for rehabilitation [25]. (d) Underwater valve turning task [26].

4.1.3 Applications

Dynamic Motion Primitives have been adopted in a wide range of applications in
robotics. Most of the tasks that the robots must perform involve physical interac-
tion with the environment, which requires the control of forces and positions. In
[23], the human first guides the robot arm for teaching the position and orientation
trajectories required to perform the ironing task. In the second stage, the corre-
sponding forces are recorded with a haptic device in a teleoperation setup (Figure
4.6a). The position and force profiles are then encoded as a mixture of DMPs.

In some cases a passive interaction is not enough, the robot might have to interact
with an active agent. In human-robot collaboration tasks, [27] the robot must be
able to control complex movements in coordination with a human co-worker. DMPs
offer an elegant solution to encode such motions. In [24], the robot is taught how
to perform the collaborative sawing task (Figure 4.6b). During the execution, the
robot learns the motion and impedance trajectories online using DMPs.

Another type of co-manipulation occurs when a human is wearing an exoskeleton.
Usually, the exoskeleton simply amplifies human motion [28]. However, in some
cases, the exoskeleton executes pre-defined trajectories during physical therapy on
patients. In [25], the authors provide demonstrations of a series of movements and
encode them with DMPs. Then, they use the learned motion in an arm exoskeleton
for supporting the patient’s movements (Figure 4.6c).

Finally, DMPs can also be applied in different autonomous mobile robots such as
Autonomous Underwater Vehicles (AUVs). In [26], the authors used DMPs to teach
an AUV the underwater valve turning task from demonstrations (Figure 4.6d).
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4.2 Gaussian Mixture Models

Robot motions can be learned from demonstrated trajectories using determinis-
tic methods, such as Dynamic Motion Primitives, or probabilistic methods, such
as Gaussian Mixture Models (GMMs) [29]. In the latter case, the demonstrated
trajectories are assumed to represent samples of a stochastic process, and thus re-
productions are obtained by sampling the learned distribution over trajectories.

The theoretical analysis of GMMs and the development of related learning algo-
rithms have been largely studied in machine learning [30]. In the context of learning
from demonstration, GMMs are used to encode the joint distribution of the tem-
poral and spatial components of continuous trajectories. Then, through Gaussian
Mixture Regression (GMR) [31], we can obtain the spatial variables as a function
of the temporal ones from the joint distribution.

Gaussian Mixture Models have a proven record of success in LfD [32, 33]. Most of
the literature related to the field can be attributed to Sylvain Calinon. For this rea-
son, we refer the reader interested in a more in-depth exploration of GMMs within
robotics to his personal webpage [34], where open-source code and many relevant
publications are available. Also, [35] summarizes in a comprehensive manner the
most important ideas behind GMMs, and is the manuscript on which some of the
contents of this section are based.

Here, we outline the main concepts of Gaussian Mixture Models in the context of
learning from demonstration. We start, in Section 4.2.1, by reviewing the standard
formulation of a combined GMM-GMR model. Next, in Section 4.2.2, we present
Task-parametrized Gaussian Mixture Models (TP-GMMs). Finally, in Section 4.2.3,
we discuss some relevant robotic applications.

4.2.1 Basic Formulation

The combination of GMMs with GMR allows learning smooth trajectories from
the taught motions through Gaussian conditioning. Let us assume that we have
a dataset of n observations D = {ξj}nj=1, with ξj ∈ Rm. We, therefore, consider
that the dataset is distributed according to a linear combination of K Gaussian
densities, which can be expressed as follows

p(ξj) =
K∑
k=1

πk · N (ξj | µk,Σk) (4.19)
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where N (ξj | µk,Σk) refers to the conditional probability of ξj

N (ξj | µk,Σk) =
1√

(2π)m Σk

exp

(
−1

2
(ξj − µk)

T Σ−1
k (ξj − µk)

)
(4.20)

The GMM parameters are then {πk,µk,Σk}Kk=1, being πk the mixing coefficients,
µk the mean, and Σk the covariance of the k-th Gaussian component. Note that if
we integrate both sides of (4.19), it yields

K∑
k=1

πk = 1, 0 ≤ πk ≤ 1 (4.21)

One way to set the values of the model parameters is to maximize the likelihood of
having observed the demonstration dataset

{π∗k,µ∗k,Σ∗k}
K
k=1 = arg max

{πk,µk,Σk}Kk=1

n∑
j=1

log

(
K∑
k=1

πk · N (ξj | µk,Σk)

)
(4.22)

Although several methods exist for solving this optimization problem [36, 37], the
usual approach is based on an expectation-maximization (EM) procedure [38]. It
is an iterative algorithm that, after initializing the parameters, alternates between
the two following steps:

1. E-step: Evaluate the responsibility γj,k of each component

γj,k =
πk · N (ξj | µk,Σk)∑K
k=1 πk · N (ξj | µk,Σk)

(4.23)

2. M-step: Update the estimate of the parameters

µk =
1∑n

j=1 γj,k

n∑
j=1

γj,k · ξj (4.24)

Σk =
1∑n

j=1 γj,k

n∑
j=1

γj,k (ξj − µk) (ξj − µk)T (4.25)

πk =
1

n

n∑
j=1

γj,k (4.26)
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These two steps are repeated until convergence, i.e., until the difference of the
log-likelihood between two consecutive iterations falls below a given threshold.

Now it is convenient decompose the demonstration data ξj, the mean µk, and the
covariance Σk in terms of the input (i) and output (o) dimensions

ξj =

[
ξ

(i)
j

ξ
(o)
j

]
, µk =

[
µ

(i)
k

µ
(o)
k

]
, Σk =

[
Σ

(i)
k Σ

(i,o)
k

Σ
(o,i)
k Σ

(o)
k

]
(4.27)

Gaussian Mixture Regression relies on the joint probability distribution p(ξ
(i)
j , ξ

(o)
j )

of the GMM to infer the the conditional distribution of the output vector given the
input vector p(ξ

(o)
j | ξ

(i)
j ). The resulting multimodal distribution can be approxi-

mated by a single Gaussian

p(ξ
(o)
j | ξ

(i)
j ) ∼ N

(
µ̃j, Σ̃j

)
(4.28)

µ̃j =
K∑
k=1

hk(ξ
(i)
j )µ̃k(ξ

(i)
j ) (4.29)

Σ̃j =
K∑
k=1

hk(ξ
(i)
j )
(
Σ̃k + µ̃k(ξ

(i)
j )µ̃k(ξ

(i)
j )T

)
− µ̃jµ̃Tj (4.30)

with componentwise conditional means and covariances

µ̃k(ξ
(i)
j ) = µ

(o)
k + Σ

(o,i)
k

(
Σ

(i)
k

)−1 (
ξ

(i)
j − µ

(i)
j

)
(4.31)

Σ̃k = Σ
(o)
k −Σ

(o,i)
k

(
Σ

(i)
k

)−1

Σ
(i,o)
k (4.32)

Finally, the responsability hk(ξ
(i)
j ) of component k is computed in closed form as

hk(ξ
(i)
j ) =

πk · N
(
ξ

(i)
j | µ

(i)
j ,Σ

(i)
j

)
∑K

k=1 πk · N
(
ξ

(i)
j | µ

(i)
k ,Σ

(i)
k

) (4.33)

In Figure 4.7, we show an example of regression with GMR for a GMM with K = 2.
As a probabilistic approach, we can see that GMMs encode the variability of the
demonstrated movements in the covariance matrices. This allows to identify those
phases in the task that need to be reproduced exactly as the human teacher, or on
the contrary, some deviation is admissible.
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Figure 4.7: Illustration of a GMM and the corresponding GMR in two dimensions. Two
Gaussian components are fitted to the demonstration data, represented by black dots.
Each component describes a linear trend, whose influence on the learned trajectory is
determined by the responsibility of each component (top). The conditional distribution
for three different inputs is shown on the right panel (after [35]).

4.2.2 Extensions

Task-parameterized models of movements refer to representations that can auto-
matically adapt to a set of task parameters that can, for instance, describe the
current context. Task-parameterized Gaussian Mixture Models (TP-GMMs) [35]
aim at increasing the generalization capabilities of the learned skill by exploiting
the functional nature of parameters related to different frames of reference.

Before discussing the formal aspects of the task-parameterized model, consider a
set of demonstrations observed from the perspective of two different frames (Figure
4.8). Such frames are described at each time step j by {pj,1,Rj,1} and {pj,2,Rj,2},
being p the position of their origins and R the orientation of their coordinate
systems. The observed movement from the perspective of the first and the second
frame can be represented by N

(
µ(1),Σ(1)

)
and N

(
µ(2),Σ(2)

)
, respectively. Then,

for demonstrations observed from a different perspective, we can expect the data

to lie within the distributions N
(
ξ̂

(1)
j , Σ̂

(1)
j

)
and N

(
ξ̂

(2)
j , Σ̂

(2)
j

)
, with

ξ̂
(`)
j = Rj,`µ

(`) + pj,`, Σ̂j = Rj,`Σ
(`)RT

j,` ` = 1, 2 (4.34)

computed using the linear transformation properties of Gaussians.
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Figure 4.8: Expectation for the location of new data after observing demonstrations from
two different frame observers. The estimate is obtained by minimizing equation 4.35,
whose results corresponds to the product of two Gaussians (after [35]).

During the reproduction of the task trajectory, we need to determine a trade-off to
concord with the distributions expected by each frame. We can formulate this as
the following optimization problem

ξ̂j = arg min
ξj

=
2∑
`=1

(
ξj − ξ̂(j)

j

)T (
Σ̂

(j)
j

)−1 (
ξj − ξ̂(j)

j

)
(4.35)

Differentiating (4.35) and equating to zero, yields a point estimate ξ̂j, with an

uncertainty defined by a covariance Σ̂j. As it can be intuited from Figure 4.8, the

resulting distribution N
(
ξ̂j, Σ̂j

)
is equivalent to the product of the two Gaussians,

N
(
ξ̂

(1)
j , Σ̂

(1)
j

)
and N

(
ξ̂

(2)
j , Σ̂

(2)
j

)
.

Task-Parameterized Gaussian Mixture Models are a generalization of this concept
to more complex movements, encoded in a GMM instead of a single Gaussian.
By encoding the movements in multiple coordinate systems simultaneously, the
idea is to use this information during the reproduction of the task to adapt the
demonstrated skill to unforeseen scenarios.

Formally, let us assume that the task parameters are represented by L coordinate
systems {pj,`,Rj,`}L`=1. The demonstrations ξ are observed from these different
perspectives, forming L trajectory samples X(`)

X
(`)
j = R−1

j,` (ξj − pj,`) (4.36)
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The parameters of a TP-GMM with K components are then defined by

{
πk,
{
µ

(`)
k ,Σ

(`)
k

}L
`=1

}K
k=1

(4.37)

where µ
(`)
k and Σ

(`)
k are the mean and covariance matrix of the k-th Gaussian

component in the candidate frame `. As in Section 4.2.1, these can be determined
iteratively until convergence with an expectation-maximization algorithm:

1. E-step: Evaluate the responsibilities γj,k, considering all candidate frames:

γj,k =
πk ·

∏L
`=1N

(
X

(`)
j | µ

(`)
k ,Σ

(`)
k

)
∑K

k=1 πk ·
∏L

`=1N
(
X

(`)
j | µ

(`)
k ,Σ

(`)
k

) (4.38)

2. M-step: Update the estimate of the parameters

µ
(`)
k =

1∑n
j=1 γj,k

n∑
j=1

γj,k ·X(`)
j (4.39)

Σ
(`)
k =

1∑n
j=1 γj,k

n∑
j=1

γj,k

(
X

(`)
j − µ

(`)
k

)(
X

(`)
j − µ

(`)
k

)T
(4.40)

πk =
1

n

n∑
j=1

γj,k (4.41)

These operations aim to maximize the log-likelihood but subject to the constraint
that the data in the different frames arose from the same source.

The learned model can be then used to reproduce movements considering new can-
didate frames. A new GMM with parameters {πk, µ̂j,k, Σ̂j,k}Kk=1 can automatically
be generated with

N
(
µ̂j,k, Σ̂j,k

)
∝

L∏
`=1

N
(
µ̂

(`)
j,k, Σ̂

(`)
j,k

)
(4.42)

with

µ̂
(`)
j,k = Rj,`µ

(`)
k + pj,` Σ̂

(`)
j,k = Rj,`Σ

(`)
k R

T
j,` (4.43)
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Figure 4.9: Example of a TP-GMM. (a-b) GMM encoding withK = 3 of the demonstrated
motion from two reference frames. (c) GMM retrieved at time step j for a new observer,
computed as the product of Gaussian distributions (after [35]).

Figure 4.10: Generalization capability of a TP-GMM in combination with GMR. Each
column shows a different scenario. The demonstrations and the corresponding adapted
model parameters are depicted in semi-transparent colors (after [35]).

The result of the Gaussian product given by

Σ̂j,k =

(
L∑
`=1

Σ̂
(`)−1

j,k

)−1

µ̂j,k = Σ̂j,k

L∑
`=1

Σ̂
(`)−1

j,k µ̂
(`)
j,k (4.44)

In Figure 4.9, we depict the resulting TP-GMM for the two frame example in
Figure 4.8. We can see how the variability encoded in frame 1 is low at the start of
the movement and high towards frame 2, and vice-versa. Note how, by using the
Gaussian product, the invariant motions are encoded with small covariances.

Finally, the GMM obtained from equation (4.44) can be used to retrieve a reference
trajectory for the robot through GMR at any given time step j. In Figure 4.10, we
show an illustrative example. We can observe that, by using a task-parametrized
model, suitable trajectories for different unforeseen scenarios can be retrieved.
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Figure 4.11: Applications of GMMs. (a) Moving a chess piece [32]. (b) Empty a glass in
a basin [39] (c-d) Peg-in-hole and wiping board task, respectively [40].

4.2.3 Applications

The combination of GMM and GMR is an example of a probabilistic approach that
has a proven record of success in LfD. Advantages of GMMs over DMPs include
the automatic inference of the correlations between the movement variables, and
the encoding of the underlying variability in the demonstrated motions.

The information encoded by the covariance matrices provides a continuous repre-
sentation of the task constraints. In [32], the authors exploit this to decompose,
generalize and reconstruct robot gestures. After temporally aligning the demon-
strations with the Dynamic Time Warping (DTW) algorithm [41], they model the
gesture required to move a chess piece with GMMs (Figure 4.11a), which allows a
localized characterization of the different parts of the gesture.

The covariance matrices can also be used to quantify the relevance of a task con-
straint. The authors [39] present an approach based on GMMs for designing a robot
controller that takes into account the task constraints in the joint and Cartesian
space simultaneously by retrieving a trade-off motion. The method is illustrated by
teaching a robot to empty a glass of water in a basin (Figure 4.11b).

A major challenge in LfD is handling disturbances, which might come, for instance,
from modeling errors or external forces. These can lead the robot far from the states
visited while learning, which in real systems might cause dangerous situations. In
[40], they take advantage of GMMs to quantify the action uncertainty at each state
and fuse several controllers to ensure safe execution. The proposed approach is
validated through the peg-in-hole and wiping board tasks (Figure 4.11c-d).
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4.3 Probabilistic Movement Primitives

Movement Primitives (MPs), as we discuss in Section 4.1, are a well-established
approach for representing movement policies in robotics. In this regard, Proba-
bilistic Movement Primitives (ProMPs) [42] are aimed to be a general probabilistic
framework for representing and learning MPs.

Analogously to GMMs, a ProMP represents a distribution over trajectories. In this
case, instead of a mixture of Gaussians, the probabilistic model for representing
such distribution is based on basis functions. This allows reducing significantly
the number of model parameters, facilitating the learning process. Working with
distributions enables to formulate the desirable properties for MPs, such as gener-
alization to new situations, or to be easy to learn from demonstrations, in terms of
operations from probability theory.

Probabilistic Movement Primitives are one of the most well-established approaches
in LfD because they unify many useful features from MPs in a single probabilistic
framework. The method is quite recent, and it can be attributed to Alexandros
Paraschos et al. Therefore, we refer the reader interested in a complete and com-
prehensive development to [43, 44], from which this section has been adapted.

We start, in Section 4.3.1, introducing the basic formulation for using Probabilistic
Motion Primitives to learn a skill representation from demonstrated trajectories.
Afterward, in Section 4.3.2, we present some probabilistic operators that can be
used to further enhance the capabilities of ProMPs. In the end, in Section 4.3.3,
we review some applications where this method has been adopted with success.

4.3.1 Basic Formulation

We start by considering a robot with d degrees-of-freedom, being the joint angles
given by the vector q ∈ Rd. In ProMPs, a single movement execution is modelled
as a trajectory T = {qt, q̇t}Tt=1, defined by the joint position qt and velocity q̇t over
time. At each time step, we assume that the observation vector yi,t for the i-th
dimension, can be expressed in terms of a linear basis function model

yi,t =

[
qi,t
q̇i,t

]
= Φtwi + εy (4.45)

where Φt = [φt, φ̇t]
T represents the time-dependent basis function matrix for the

position qi,t and velocity q̇i,t, wi the weight vector, and εy ∼ N (0,Σy) zero-mean
independent and identically distributed Gaussian noise.
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Considering the model in equation (4.45), the probability of an observation yt at
time t, given the combined weight vector w = [wT

1 , . . . ,w
T
d ]T is given by

p(yt | w) = N


 y1,t

...
yd,t

 ∣∣∣
 Φt . . . 0

...
. . .

...
0 . . . Φt

w,Σy

 = N (yt | Ψtw,Σy) (4.46)

Then, it follows that the probability of observing a trajectory T is

p(T | w) =
T∏
t=1

N (yt | Ψtw,Σy) (4.47)

Note that the covariance matrix of the distribution in (4.46) only takes into ac-
count the observation noise. In order to capture the variability of the trajectories,
ProMPs introduce a distribution over the weight vector p(w,θ), with parameters
θ. Marginalizing over the weight vector equation (4.46), and assuming a Gaussian
distribution for p(w,θ) = N (w | µw,Σw) the distribution for yt yields

p(yt,θ) =

∫
N (yt | Ψtw,Σy)N (w | µw,Σw)dw (4.48)

The model parameters are then given by the observation noise variance Σy and θ.
The former depends on the sensors used to gather the data, so the question now
is, how can we learn θ = {µw,Σw} from the demonstration data? The learning
procedure can be carried out by means of a simple maximum likelihood estimation
algorithm. First, the weights for each individual trajectory in the demonstration
set are estimated with ridge regression (Section 2.4.1)

wj =
(
ΨTΨ + λI

)−1
ΨTYj (4.49)

where Yj stands for the positions and velocities of all joints and time steps from
the j-th demonstration, and Ψ the corresponding basis function matrix for all t.
In a second and final step, the mean µw and covariance Σw are obtained from the
resulting weight samples for the N demonstrations

µw =
1

N

N∑
j=1

wj Σw =
1

N − 1

N∑
j=1

(wj − µw) (wj − µw)T (4.50)
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Figure 4.12: Illustrative example of ProMPs. The shaded areas represent two times
the standard deviation. (a) Distribution of demonstrated trajectories, generated for a
via-point task using a stochastic optimal control algorithm. (b) Learned trajectory dis-
tribution using ProMPs (blue) superposed to the demonstrations (after [43]).

In Figure 4.12, we show an example of a ProMP. The demonstrations are first
generated using an optimal control algorithm [45]. Then, the trajectory distribution
is learned using equations (4.49) and (4.50). We can see that the ProMP policy is
capable of reproducing almost exactly the variability of the movement.

4.3.2 Extensions

Taking advantage of the probabilistic nature of ProMPs, probability operators can
be used to further enhance their capabilities. In particular, we discuss how to mod-
ulate the trajectory distribution by conditioning, and combine and blend ProMPs.

Modulation with Via-Points

The modulation of the learned trajectory distribution using via-points is an impor-
tant property to adapt the movement to new scenarios. In probabilistic terms, this
can be achieved by conditioning the ProMP to reach a certain state yvt at time t.
Adding the observation V = {yvt ,Σv

y}, and applying the Bayes’ theorem yields

p(w | V) ∝ N
(
yvt | Ψtw,Σ

v
y

)
N (w | µw,Σw) (4.51)

where Σv
y describes the allowed deviation of the resulting motion from the via-point.
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Figure 4.13: Modulation of ProMPs using via-points, depicted as blue and green boxes.
(a) Via-points on the final position. (b) Via-points on the final velocity. (c) Via-points in
intermediate and final locations for the position and velocity simultaneously (after [43]).

The conditional distribution p(w | V) is again Gaussian with mean and variance

µvw = µw + ΣwΨt

(
Σv
y + ΨT

t ΣwΨt

)−1 (
yvt −ΨT

t µw
)

(4.52)

Σv
w = Σw −ΣwΨt

(
Σv
y + ΨT

t ΣwΨt

)−1
ΨT
t Σw (4.53)

An illustration of a ProMP conditioned to different target positions and/or veloc-
ities is shown in Figure 4.13. We can see that the trajectory distribution adapts
successfully, staying within the original demonstrations far from the via-points,
while also reaching the specified states at the corresponding time steps.

Combination and Blending of ProMPs

ProMPs take advantage of the product of trajectory distributions to continuously
combine or blend several of them into a single movement. Assuming that we have
a set of K different primitives, these can be combined into a single one by taking
the product of the individual distributions

pcombine(T ) ∝
K∏
k=1

pk(Tk)α
(k)

(4.54)

where the factor α(k) ∈ [0, 1] denotes the activation of the k-th primitive. The result-
ing product is a trade-off between the combined ProMPs, capturing the overlapping
region of the trajectory space where all have a high probability mass.
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Figure 4.14: Combination (a) and blending (b) of two ProMPs. The resulting distribution
is represented in green color, and the original ProMPs in blue and red (after [43]).

Alternatively, instead of activating all the ProMPs simultaneously, we might want
to modulate the activation in order to continuously blend the movement from one
primitive to the next one. For achieving this, we can use time-varying activation
functions α

(k)
t

pblend(T ) ∝
T∏
t=1

pblend(yt) =
T∏
t=1

K∏
k=1

N
(
y

(k)
t | µ

(k)
t ,Σ

(k)
t

)α(k)
t

(4.55)

The resulting distribution at each time step pblend(yt) is Gaussian, with mean µt,blend

and covariance Σt,blend given by

µt,blend = Σt,blend

(
K∑
k=1

(
Σ

(k)
t / α

(k)
t

)−1

µ
(k)
t

)
(4.56)

Σt,blend =

(
K∑
k=1

(
Σ

(k)
t / α

(k)
t

)−1
)−1

(4.57)

An example of the combination and blending of Probabilistic Movement Primitives
is depicted in Figure 4.14. Two different ProMPs are learned for solving the defined
indicated by the via-points represented with the same color. On the left-hand side,
we can see that the combined ProMP reaches all three via-point simultaneously i.e.
both tasks are performed successfully at the same time. On the right-hand side,
the blended movement first follows the red ProMP and, subsequently, switches to
following exactly the blue ProMP.
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Figure 4.15: Applications of ProMPs. (a) Play table tennis (after [46]). (b) Play Astrojax
(after [43]). (c) Collaborative toolbox assembly (after [47]). (d) Pouring task (after [48]).

4.3.3 Applications

Probabilistic Movement Primitives have been successfully used for learning different
robotic tasks from demonstrations. The main advantages of ProMPs lie in their
capability to generalize the learned task by conditioning the trajectory distribution
to some desired keypoints and their efficient learning procedure.

Due to its strong requirements in terms of human-like motion capabilities, robot
table tennis is an interesting test bench for robot learning approaches (Figure 4.15a).
In [46], the authors use ProMPs to learn table tennis strokes. They exploit the
capabilities to adapt the motion primitive to successfully strike and return the ball.
ProMPs have also been used for learning rythmic motions such as playing the game
Astrojax [43] (Figure 4.15b). By capturing the variability in the demonstrations,
the robot is capable of generating periodic movements which show the same type
of variations, allowing it to successfully perform the task.

In physical human-robot interaction, tasks are challenging due to the inherent vari-
ability of humans. This uncertainty during the interaction motivates in [47] the use
of ProMPs. The authors use them for both, learning the human intent, and the
corresponding robot commands, validating their approach through the collaborative
assembly of a toolbox (Figure 4.15c). Another central problem in LfD is that the
acquisition of demonstrations is sometimes costly. Active learning is a promising
research direction since it allows the robot to actively request the demonstration, re-
ducing the human burden of choosing which to provide. In [48], the authors address
this problem using ProMPs due to their efficient learning procedure, demonstrating
the effectiveness of their method on a pouring task (Figure 4.15d).
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4.4 Kernelized Movement Primitives

In the context of learning from demonstration, DMPs, GMMs, and ProMPs (Sec-
tions 4.1, 4.2 and 4.3, respectively) have achieved reliable performance. However,
they still have some limitations. The main weaknesses of DMPs are first, their
deterministic nature, which does not allow to encode the variability in the demon-
strations; and second, the use of manually defined basis functions, which limit their
applicability for high-dimensional learning problems. The latter is also applicable
to ProMPs. GMMs on the other hand, alleviate the modeling of trajectories via
specific functions. However, the adaptation to via-points requires re-estimate the
entire model. Kernelized Movement Primitives (KMPs) [49] aims to overcome the
aforementioned limitations. The comparison between the most relevant features of
the methods discussed throughout the chapter are summarized in Table 4.1

Feature DMPs GMMs ProMPs KMPs

Probabilistic — X X X

Via-points X — X X

High-dimensional learning — X — X

Table 4.1: Comparsion between DMPs, GMMs, ProMPs and KMPs.

Kernelized Movement Primitives provide a non-parametric solution for learning a
distribution of demonstrations, alleviating the use of basis functions. By taking
advantage of the kernel treatment, their capability of learning demonstrations as-
sociated with high-dimensional inputs is further improved. Additionally, the prob-
abilistic representation of KMPs allows them to exploit operators from probability
theory to adapt the learned motion.

KMPs are a very recent method, and for this reason, the related literature is not very
extensive. It can be attributed to Yanlong Huang et al., being [49] the reference
paper, and which the contents of this chapter are based on. For those readers
interested in the implementation details, we also refer them to the KMPs software
repository [50], also published by the authors of the method.

We start, in Section 4.4.1, introducing the fundamental formalism for learning a
Kernelized Motion Primitive from demonstrations. Afterward, in Section 4.4.2, we
present some extensions that allow to modulate the learned trajectory distribu-
tion and superpose several KMPs into a single one. To conclude, in Section 4.4.3,
we discuss some example robotic applications for which KMPs have been adopted
successfully.
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4.4.1 Basic Formulation

Learning from multiple demonstrations allows for capturing the relevant features of
the task. Formally, let us denote the demonstration dataset by

D =
{
{xi,j,yi,j}Ni=1

}M
j=1

(4.58)

where xi,j and yi,j are the input and output variables respectively, N denotes the
number of demonstrations, and M the trajectory length. We start the derivation
of KMPs by considering that the taught task can be described by a parametric
trajectory of the form

y(x) =

 φ(x) . . . 0
...

. . .
...

0 . . . φ(x)

w = Φ(x)w (4.59)

where φ(x) denotes the basis functions and w the weight vector. Assuming that
w ∼ N (µw,Σw), the parametric trajectory is distributed according to

y(x) ∼ N
(
Φ(x)µw,Φ(x)ΣwΦ(x)T

)
(4.60)

For an unknown µw and Σw, the LfD problem is equivalent to determine the values
of these parameters such that (4.60) explains the observations in (4.58). To do so,
KMPs optimize the parametric trajectory so that it matches the following reference
distribution at each input location xj

p(ŷi | xi) ∼ N (µ̂i, Σ̂i) (4.61)

This reference trajectory distribution can be inferred directly from the demonstra-
tions using GMMs and GMR (Section 4.2.1). Using the Kullback–Leibler (KL)
divergence [51] as a measure of the distance between two probability distributions,
the optimization can be formulated as the following cost function

J (µw,Σw) =
N∑
i=1

DKL

(
N
(
Φ(xi)µw,Φ(xi)ΣwΦ(xi)

T
)
|| N (µ̂i, Σ̂i)

)
(4.62)

where DKL(· || ·) denotes the KL divergence between the probability distributions.

88



4.4. Kernelized Movement Primitives

By using the properties of KL divergence between two Gaussian distributions, the
optimization of (4.62) can be decomposed into a mean minimization subproblem

µw∗ = arg min
µw

N∑
i=1

(Φ(x)µw − µ̂i)T Σ̂−1
i (Φ(x)µw − µ̂i) (4.63)

and a covariance minimization subproblem

Σw∗ = arg min
Σw

N∑
i=1

(
− log

∣∣Φ(xi)ΣwΦ(xi)
T
∣∣+ tr

(
Σ̂−1
i Φ(xi)ΣwΦ(xi)

T
))

(4.64)

where |·| and tr(·) denote the determinant and trace of a matrix, respectively.

Mean Prediction of KMPs

Note that equation (4.63) resembles a least-squares formulation, where each data
point is weighted by Σ̂−1

i . Thus, large deviations from the reference trajectory points
with low covariance are heavily penalized. In order to circumvent overfitting, KMPs
also include in 4.63 a penalty term λµµ

T
wµw, resulting in the optimal solution [52]

µw∗ = Ψ
(
ΨTΨ + λµΣ̂

)−1

ΨT µ̂ (4.65)

where

ΨT =

 Φ(x1)T

...
Φ(xN)T


T

Σ̂ =

 Σ̂1 . . . 0
...

. . .
...

0 . . . Σ̂N

 µ =

 µ̂1
...
µ̂N

 (4.66)

Subsequently, for a new input x∗, its corresponding mean prediction µ∗ is

E [y(x∗)] = µ∗ = Φ(x∗)µw∗ = Ψ(x∗)Ψ
(
ΨTΨ + λµΣ̂

)−1

ΨT µ̂ (4.67)

In order to avoid the explicit definition of basis functions, equation (4.67) can be
defined in terms of a kernel function k(x,x′), which can be further rewritten as a
kernel matrix k(x,x′)

k(x,x′) = φ(x)φ(x′)T −→ k(x,x′) = Φ(x)Φ(x′)T = k(x,x′)I (4.68)
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Figure 4.16: Learning of the handwritten letters ‘B’ and ‘G’ with KMPs. On the two
left panels, the demonstrations are represented as green solid lines, starting from ‘∗’ and
ending in ‘+’. The ellipses depict the Gaussian components of the GMMs. On the two
right panels, learned trajectory distributions using KMPs, where the curve and the shaded
area correspond to the mean and standard deviation, respectively (after [53]).

Hence, the mean prediction results

µ∗ = K∗

(
K + λµΣ̂

)−1

µ̂ (4.69)

with matrices K and K∗ denoting

K =


k(x1,x1) k(x1,x2) . . . k(x1,xN)
k(x2,x1) k(x2,x2) . . . k(x2,xN)

...
...

. . .
...

k(xN ,x1) k(xN ,x2) . . . k(xN ,xN)

 KT
∗ =


k(x∗,x1)
k(x∗,x2)

...
k(x∗,xN)

 (4.70)

Covariance Prediction of KMPs

Similar to the development for the mean prediction, a penalty term λΣtr(Σw) is
introduced in (4.64) to bound the covariance. The covariance prediction Σ∗ for a
new input x∗ results

Σ∗ =
N

λΣ

(
k(x∗,x∗)−K∗

(
K + λΣΣ̂

)−1

KT
∗

)
(4.71)

In Figure 4.16, we show an illustrative example of a KMP. The aim is to learn to
write two letters from five handwritten demonstrations each. We can clearly see
that the learned trajectory distribution resembles successfully the taught skill.
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4.4.2 Extensions

As we have already discussed throughout the chapter, in dynamic and unstructured
environments, the capability to adapt the robot’s motion is essential. Another
challenge arises when the robot is given a set of candidate feasible trajectories
for performing a task. These possible movements can be superposed to retrieve a
motion that balances the different solutions according to their priorities. In this
section, we extend the KMPs’ formulation to address these two problems.

Modulation of KMPs

Kernelized Movement Primitives can be modulated by adapting the learned trajec-
tory distribution to pass through via-points. Formally, let us define V new desired
points V = {xv,yv}Vv=1, with associated conditional probability distributions

p(yv | xv) ∼ N (µv,Σv) (4.72)

These distributions can be designed based on new requirements. For instance, if
the robot needs to pass through the v-th via-point with high precision, we should
assign it a small covariance Σv. Now, let D̃ and be Ṽ the datasets corresponding
to the demonstrations’ and via-points’ distributions, respectively

D̃ =
{
xi, µ̂i, Σ̂i

}N
i=1

Ṽ =
{
xv, µ̂v, Σ̂v

}V
v=1

(4.73)

For enforcing the KMP to pass through the desired via-points, we can simply con-
catenate D̃ and Ṽ into an extended reference dataset. Then, we can use equations
(4.69) and (4.71), taking the extended dataset instead of just D̃ to predict the mean
and covariance. An example of the modulation of a KMP is depicted in Figure 4.17.

Superposition of KMPs

Kernelized Movement Primitives representing different feasible solutions for a task
can be mixed on a single one. Formally, given a set of L reference trajectory
distributions, associated with inputs and corresponding importance γi,`, denoted as

S =
{
{xi, ŷi,`, γi,`}Ni=1

}L
`=1

(4.74)
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Figure 4.17: Modulation of a KMP using three via-points (purple circles): at the start,
in the middle, and at the end of the motion. The gray area represents the original KMP,
and the red one the modulated KMP (after [49]).

For a given input xi, the conditional trajectory distribution is given by

p(ŷi,` | xi) ∼ N
(
µ̂i,`, Σ̂i,`

)
(4.75)

Additionally, the priority coefficients satisfy that γ`,j ∈ [0, 1] and
∑L

`=1 γ`,j = 1. To
consider all the candidate trajectories along with their priority, the optimization
problem in (4.62) can be modified as follows

J (µw,Σw) =

N,L∑
i,`=1

γi,`DKL

(
N
(
Φ(xi)µw,Φ(xi)ΣwΦ(xi)

T
)
|| N (µ̂i,`, Σ̂i,`)

)
(4.76)

Similar to the decomposition in (4.63) and (4.64), the objective function (4.76) can
be separated into a weighted mean and covariance minimization subproblems

µw∗ = arg min
µw

N∑
i=1

(Φ(x)µw − µ̄i)T Σ̄−1
i (Φ(x)µw − µ̄i) (4.77)

Σw∗ = arg min
Σw

N∑
i=1

(
− log

∣∣Φ(xi)ΣwΦ(xi)
T
∣∣+ tr

(
Σ̄−1
i Φ(xi)ΣwΦ(xi)

T
))

(4.78)

where µ̄i and Σ̄i are equal to

µ̄i = Σ̄i

L∑
`=1

(
Σ̂i,` / γi,`

)−1

µ̂i,` Σ̄i =
L∑
`=1

(
Σ̂i,` / γi,`

)−1

(4.79)

92



4.4. Kernelized Movement Primitives

Figure 4.18: Superposition of KMPs. The resulting distribution is represented in purple,
while the original ones are depicted in red and green. On the left, the x − y trajectory.
On the remaining right panels, the evolution over time of each coordinate (after [49]).

Note that the (4.77) and (4.78) have the same form of (4.63) and (4.64), respec-
tively. The difference lies on the mean and covariance of the reference trajectory.
Also, comparing (4.56) and (4.57) with (4.79), we can see that the new mean and
covariance are equivalent to a product of Gaussians

N
(
µ̄i, Σ̄i

)
∝

L∏
`=1

N
(
µ̂i,`, Σ̂i,` / γi,`

)
(4.80)

Therefore, superposing KMPs can be performed by simply taking the product of the
candidate trajectory distributions as the reference trajectory distribution, weight-
ing the covariances by the inverse of the corresponding priorities. An illustrative
example of the superposition of two KMPs is provided in Figure 4.18.

4.4.3 Applications

Kernelized Movement primitives have exhibited a reliable performance in several
robotic tasks. One example is provided in [54]. The authors present an approach
for designing an optimal controller from demonstrations by exploiting the capability
of KMPs to encode the uncertainty. More specifically, the robot can be driven with
high precision when the variability in the data is low, and render the robot compliant
when the uncertainty is high. The performance is validated experimentally in a
human-robot collaborative painting task (Figure 4.19a).

Another possible application of KMPs is obstacle avoidance [49]. This problem is
interesting because it allows the robot to avoid possible collisions when executing a
task and undesired circumstances occur.
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Figure 4.19: Applications of KMPs. (a) Collaborative painting (after [54]). (b) Obstacle
avoidance (after [49]). (c) Walking (after [55]). (d) Unlatch a toolbox (after [56]).

Taking advantage of the adaptation of KMPs through via-points, when the robot is
about to collide with an obstacle, new target locations can be defined as a function
of the sensed forces (Figure 4.19b). In this way, KMPs allow generating an updated
trajectory that fulfills the unforeseen constraints.

KMPs have also been used for learning walking tasks with a humanoid robot [55].
The authors use them for generating swing leg trajectories, exploiting their modula-
tion capabilities to adjust the step location and duration. The presented approach
is tested through whole-body dynamic simulations (Figure 4.19c).

As a final example, KMPs have also been used for improving the dexterity of a
robot hand [56]. Due to the complexity of manually designing a controller capa-
ble of manipulating objects with dexterity, it is an ideal task to be learned from
demonstrations of a human hand. The example hand postures are first encoded with
KMPs, and then adapted using via-points to reuse the learned motions for unseen
objects. The method is used for generating movements that allow, for instance, a
robot hand to open the latches of a toolbox (Figure 4.19d).
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Human to Robot Motion Transfer

In robot learning from demonstration (LfD) several key problems need to be solved
for ensuring such a generic approach to transferring skills across various agents and
situations. These have been formulated as a set of generic questions [57]. In this
chapter, we are concerned about answering how to imitate?. The general pipeline
for human motion imitation [58], illustrated in Figure 5.2, can be divided into four
stages: (1) Human motion must be observed and recorded. (2) The motion data is
converted into a format suitable for imitation. (3) A model of the movement, which
defines the mapping between equivalent robot and human actions is created. (4)
The motion is reproduced on the robot platform. The first two stages have been
addressed successfully by motion tracking systems. In the last years, these have
become increasingly miniaturized and available, reducing measurement error to a
minimum with advanced tracking algorithms and post-processing [59]. However,
many challenges remain open regarding the correspondence between human and
robot motion, and the reproduction of such complex movements.

In general, robots cannot act exactly the same way as a human does, due to differ-
ences in physical embodiment. For example, if the demonstrator uses the foot to
move an object, is it acceptable for a wheeled robot to bump it, or should it use
a gripper instead? To reproduce the demonstrated movement, the robot requires
a mapping from the human body to its own body that allows it to reproduce the
demonstrated movement. This is termed the correspondence problem [11].

The versatility of the human body when performing tasks can be partially attributed
to its large number of actuated degrees of freedom (DoF). This imposes significant
challenges when reproducing the human motion with a robot, due to the tight
coordination that is required. On this subject, Whole-Body Control (WBC) [60]
has been proposed as a promising research direction, since it opens the door for the
simultaneous execution of multiple tasks, such as positioning various links while
optimizing the posture, by exploiting the full capabilities of the robot’s body.
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Figure 5.1: Overview of the human motion transfer pipeline. First, human motion data
is measured using techniques such as motion capture. Next, motion data is processed
to handle sensor noise and possibly convert the data to a more convenient format, such
as joint angles. Next, a model mapping the human movement to the robot movement is
formulated. Finally, the movement is reproduced on a robot (after [58]).

Another key concern in the reproduction of human motion is safety. Especially when
considering robots operating in environments that are unpredictable due to the
presence of people. In human environments, the robot has to feature a certain degree
of compliance to be able to instantaneously react in case of contacts and physical
interactions. While this can be achieved by passive elements such as mechanical
springs, the concept of active compliance is dominating the field [61].

We start this chapter by addressing the correspondence problem, in Section 5.1.
Beginning from its formulation, we review different solutions based on the interface
used to provide demonstrations. Afterward, in Section 5.2, we look into the whole-
body control paradigm. Next, in Section 5.3, we introduce a control scheme for
ensuring active compliance when reproducing the human motion. Finally, in Section
5.4, we present a whole-body motion transfer framework for the TIAGo robot.

5.1 The Correspondence Problem

For learning from demonstration to be successful, the states and actions in the
learning dataset must be usable by the robot [10]. Humans, and robots may per-
form different actions to accomplish the same task. For instance, consider the task
of playing soccer. In Figure 5.2 is evident that even when performing the same
task, humans and robots may interact with the environment in different ways. Hu-
mans run and kick, while robots roll and bump. Solving this discrepancy in motor
capabilities implies solving the correspondence problem.
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Figure 5.2: Humans and robots playing soccer. Due to differences in embodiment humans
run and kick while robots roll and bump for accomplishing the same task.

The following statement of the correspondence problem, as proposed in [62], draws
attention to the fact that the model and imitator agents may not necessarily share
the same morphology or affordances:

Given an observed behavior of the model, which from a given starting state leads
the model through a sequence of sub-goals in states, action and/or effects, one must
find and execute a sequence of actions using one’s own (possibly dissimilar) em-
bodiment, which from a corresponding starting state, leads through corresponding
sub-goals; in corresponding states, actions, and/or effects, while possibly responding
to corresponding events.

Essentially, the idea is to find a map fRP between the person’s configuration space
P and the robot’s configuration space R, such that from the human motion, the
robot can reproduce the desired behavior. In order to tackle the correspondence
problem systematically, we divide it into three different subproblems [63]:

1. Observation: In reality, we do not have access to the person state space
P . Indeed, we need an interface to observe human motion. If we define O
as space where the observations of the motion lie, finding a solution to this
problem involves the specification of the following mapping

fOP : P −→ O (5.1)

2. Equivalence: Due to the differences in the embodiment, we need to deter-
mine a mapping from the observations of the demonstrator to the robot’s
desired behavior. This requires adequate considerations regarding the differ-
ences in the kinematic chains and joint limits. If G is the state space of the
robot’s goal configurations, the problem reduces to define

fGO : O −→ G (5.2)

97



Chapter 5. Human to Robot Motion Transfer

3. Reproduction: Generally, the desired robot behavior is not represented in
terms of the robot’s configuration space R. Then, in order to be able to
compute the required control actions, we need to determine the robot’s con-
figurations that allow reproducing all possible desired behaviors. This requires
the computation of the following mapping

fGR : R −→ G (5.3)

Then, the solution of the correspondence problem fRP can be written using the
proposed decomposition in subproblems, in terms of (5.1), (5.2) and (5.3), as

fRP = fOP ◦ fGO ◦
(
fGR
)−1

fRP : P
fOP−−−−−→ O

fGO−−−−−→ G
(fGR)

−1

−−−−−−−→ R
(5.4)

where ◦ refers to the composition operator and ()−1 to the inverse mapping. Note
that the interface used to provide the demonstrations and the robot’s kinematic
structure play a key role in the solution of the correspondence problem. The former
imposes fOP , while the latter restricts of fGR.

Since there are infinite possibilities for the robot’s kinematic structure, we focus
on discussing different approaches to the correspondence problem based on the
selection of the interface used to provide the demonstrations. In particular, we
distinguish three major trends: kinesthetic teaching (Section 5.1.1), teleoperation
(Section 5.1.2), and motion capture (Section 5.1.3).

5.1.1 Kinesthetic Teaching

In kinesthetic teaching, the demonstrator holds and moves the robot along the
trajectories that need to be followed to accomplish the task, while the robot actively
or passively compensates for the effect of gravity [64]. Some examples are shown in
Figure 5.3. This approach simplifies the correspondence problem by letting the user
demonstrate the skill in the robot’s environment with the robot’s own capabilities.
This means that O ≡ R. Changing fGO by fGR in equation (5.4) yields

fRP = fOP ◦ fGR ◦
(
fGR
)−1

= fOP ◦ I =⇒ fRP = fOP (5.5)

where I is the identity function. As we can see, kinesthetic teaching directly pro-
vides the mapping between demonstrations and robot actions by projecting the
observations of the human motion onto the robot’s configuration space.
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Figure 5.3: Kinesthetic teaching. The demonstrator performs the task of holding the
robot.

Figure 5.4: Robot teleoperation examples. On the left, Model H from Telexistence Inc.
On the right, Tactile Telerobot from the Shadow Robot Company.

The main drawback of kinesthetic teaching is that the human must often use more
degrees of freedom to move the robot than the number of degrees of freedom moved
on the robot. This limits the type of tasks that can be taught through kinesthetic
teaching. For instance, tasks that require moving both hands simultaneously cannot
be taught this way.

5.1.2 Teleoperation

Using immersive teleoperation scenarios the human teacher is limited to using the
robot’s own sensors and effectors to perform the task. Teleoperation may be per-
formed using simple joysticks or other remote control devices, including haptic de-
vices. The latter has the advantage that they can allow the teacher to teach tasks
that require precise control of forces, while joysticks would only provide kinematic
information. Some examples are depicted in Figure 5.4.
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Figure 5.5: Motion capture systems. On the left, OpenPose [65] jointly detects the
human body, hand, facial, and foot keypoints on single images. On the right, OptiTrack
3D tracking system. Aside from robotics, it is also very popular in video game design and
animation.

Teleoperation allows solving the correspondence problem entirely since the system
directly records the perception and action from the robot’s configuration space R.
Similarly to kinesthetic teaching, this means thatO ≡ R. Then, the correspondence
between the demonstrator’s actions and the robot’s actions is also directly provided
by the demonstration interface (5.5).

The disadvantage of teleoperation techniques is that the teacher often needs the
training to learn to use the remote control device. Also, common controllers such
as joysticks allow guiding only a subset of degrees of freedom. To control for all
degrees of freedom, very complex, exoskeleton type of devices must be used, which
can be cumbersome. This limits significantly the scope of tasks that can be taught.

5.1.3 Motion Capture

The usual approach in learning from demonstration is to directly measure the human
movements using a motion capture system. Essentially, motion is recorded by track-
ing the precise position and orientation of points of interest at high frequency. Each
tracker, usually wearable, uses fundamentally different physical principles to mea-
sure position and orientation. Mechanisms vary from using a multiplexed reading of
orthogonal magnetic fields from inductive coils, accelerometers and gyroscopes, the
intensity of ultrasonic pulses, the mechanical orientation of joints, or reconstruc-
tion of the position of visible markers detected with multiple cameras (Figure 5.5).
The resulting dataset consists in the Cartesian trajectory of each body landmark
over the duration of the motion. These methods are advantageous compared to the
aforementioned ones in that they let the human move freely and perform the task
naturally. This allows teaching a wide scope of tasks.
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The main drawback of motion capture systems is that they require solutions to
the correspondence problem. As we mentioned, trajectories are commonly recorded
in Cartesian space. This means that O ≡ SE(3)n, where n is the number of
observed body landmarks. Then, the correspondence problem can be addressed by
finding a mapping between human and robot motion in Cartesian space. That is,
defining G ≡ SE(3)m, where m is the number of robot links to be constrained. The
correspondence problem solution (5.4) can then be written as

fRP : P
fOP−−−−−→ O ≡ SE(3)n

fGO−−−−−→ G ≡ SE(3)m
(fGR)

−1

−−−−−−−−→ R (5.6)

where fGO depends on the task. The mapping
(
fGR
)−1

may be obtained by computing
a path in Cartesian space for m robot links that are close to the path followed by
the human. If the only link to be constrained is the end-effector, we can rely on
standard inverse kinematics methods to find the appropriate joint displacements.
For instance, the football example in Figure 5.2, would require the robot to deter-
mine a path for its center of mass which corresponds to the path followed by the
human’s right (or left) foot when projected on the ground. For m ≥ 2 we must
resort to more complex methods such as whole-body control (Section 5.2).

5.2 Whole-Body Control

While humans may occasionally be outperformed by robots in a single task, they are
vastly more capable of adapting and combining behaviors for simultaneous execution
of multiple tasks. Whole-body control (WBC) has been proposed as a promising
research direction when using robots with many DoF and several simultaneous
objectives, like positioning multiple links at the same time while imitating the
human motion (Figure 5.6). WBC aims to: (1) define a small set of simple, low-
dimensional rules; (2) that are sufficient to guarantee the correct execution of any
single task, whenever feasible, and of simultaneous multiple tasks; (3) exploiting
the full capabilities of the entire body of redundant robots to meet the multiple
tasks’ constraints [67].

There are different techniques that can be used to find a whole-body control policy
[68]. In particular, we differentiate between closed-form techniques, in Section 5.2.1
and optimization-based methods 5.2.2. In the first case, the control action is derived
after a sequence of algebraic operations e.g., projections, inversions, and pseudo-
inversions. In the second case, the problem is defined as an optimization problem,
and a solution is determined using a solver. Closed-form solutions are usually faster
to compute than optimization-based solutions, but the scope of constraints that can
be considered is more limited.
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Figure 5.6: Posture control of the 61 DOF NASA Valkyrie robot involves the simultaneous
execution of multiple tasks such as the positioning of both feet and hands (after [66]).

5.2.1 Closed-form WBC

Performing multiple tasks simultaneously may generate conflicting situations in
which neither of the tasks is executed satisfactorily. A remedy for this inconvenience
is the so-called task priority strategy, according to which a priority between the two
tasks is established beforehand, and the lower priority task produces only self-
motion which does not interfere with the higher priority task. In the case of a
highly redundant system, such as the example depicted in Figure 5.6, it would be
possible to introduce multiple constraint tasks of different nature and then decide
the order of priority between them [69]. Let’s start by considering a robot with n
degrees of freedom and r tasks, which are defined by

xi = fi(q) ∈ Rmi ∀i = 1, . . . , r (5.7)

where q is the n× 1 joint displacement vector, xi is the mi× 1 task position vector
and fi() a function that defines a generic i-th task constraint of dimension mi ≤ n.
The differential relation from joint velocities q̇i to task velocities ẋi is determined
by the Jacobian matrix Ji(q) of dimension mi × n via

ẋi = Ji(q)q̇ (5.8)
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being the task Jacobian equal to

Ji(q) =
∂fi(q)

∂q
(5.9)

The task constraint fi() is used to describe r different desired robot functions. For
instance, a task could represent the end-effector position and/or orientation, the
available joint range, the distance from an obstacle, etc. The hierarchy is defined
such that i = 1 is top priority, and ia < ib implies that ia has higher priority than
ib. Now, let

NAi(q) = I − JAi(q)†JAi(q) (5.10)

be the projector onto the null space of the augmented Jacobian i.e. the Jacobian
matrix that contains all higher-priority Jacobian matrices

JAi(q) =


J1(q)
J2(q)

...
Ji(q)

 (5.11)

denoting the superscript † the Moore-Penrose pseudo-inverse

JAi(q)† = JAi(q)T
(
JAi(q)JAi(q)T

)−1
(5.12)

Then, the joint velocity solution can be cast in a recursive fashion

q̇i = q̇i−1 + (Ji(q)NAi(q))† (ẋi − Ji(q)q̇i−1) , q̇1 = J1(q)†ẋ1 (5.13)

Essentially, this allows the i-th task to be executed with lower priority with respect
to the previous i − 1 tasks since is executed on the null-space projection of the
i − 1 higher priority tasks. That is, the motion is only executed along with those
directions in the configuration space not disturbing the higher priority tasks.

The resulting control action provided by the whole-body controller in terms of joint
velocities q̇ can also be written in closed form as

q̇ = J1(q)†ẋ1 + (J2 (q)NA1 (q))† ẋ2 + · · ·+

(
Jr(q)

r−1∏
j=1

NAj(q)

)†
ẋr (5.14)
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At this point, we may ask, what if the i-th task is not feasible? If this occurs,
we have a task singularity, which means that Ji(q) is singular, and the i-th task
cannot be satisfied, regardless of all other tasks. However, the great thing about the
presented formulation is that remaining lower priority tasks are not affected. This
can be easily demonstrated by observing that, if Ji(q) is singular, the dimension of
the null-space of JAi(q) is not decreased.

5.2.2 Optimization-based WBC

The whole-body control problem can also be expressed as an optimization prob-
lem, allowing us to consider not only task constraints in terms of equalities but
also inequality constraints. In optimization-based methods, the WBC controller
is expressed as cascade optimization problems. Given a set of r constraints with
decreasing priority i, these can be described either as linear equalities (5.8) and/or
linear inequalities

Ai(q)q̇ ≤ bi (5.15)

with Ai(q) ∈ Rmi×n and bi ∈ Rmi . The control action q̇ that meets all possible
task constraints, following the specified hierarchy, can be computed by solving at
each level of priority i the following optimization problem [70]

Si+1 = arg min
q̇∈Si

1

2
‖Ji(q)q̇ − ẋi‖2 +

1

2
‖w‖2

s.t. Ai(q)q̇ −w ≤ bi
(5.16)

where w is a vector of slack variables, and Si corresponds to the set of solutions
of q̇ satisfying the i − 1 higher priority task constraints. In the case of kinematic
structures with a high number of degrees of freedom, infinite solutions may exist
that satisfy q̇ ∈ Si. Of particular interest then is the solution with minimum norm,

q̇∗ =
1

2
arg min
q̇∈Si

‖q̇‖2 (5.17)

A first direct implication of the proposed cascade optimization problems is that

Si+1 ⊆ Si (5.18)

This means that the set of solutions found at a level of priority i is always strictly
enforced at lower levels of priority, which is the objective of the WBC hierarchical
task strategy.
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Additionally, if Si is a non-empty convex polytope, Si+1 is also a non-empty convex
polytope, which can be described in terms of equality and inequality constraints

∀i, ∃
{
J̃i(q), ˙̃xi, Ãi(q), b̃i

}
such that q̇ ∈ Si ⇐⇒

{
J̃i(q)q̇ = ˙̃xi

Ãi(q)q̇ ≤ b̃i
(5.19)

With this representation, (5.16) resorts to a simple Quadratic Program with linear
constraints. Overall, in Algorithm 2 we summarize the procedure to perform the
prioritized optimization. Figure 5.7 illustrates some examples of how the optimal
set is computed for different priority orderings.

Algorithm 2: Whole-body control with task priorities [70]

Input: {Ji(q), ẋi}ri=1 (task equality constraints),

{Ai(q), bi}ri=1 (task inequality constraints)

1 J̃1 = Ji(q); Ã1(q) = A1(q); ˙̃x1 = ẋ1; b̃1 = bi;

2 for i = 1 to r do

3 Si ≡
{
J̃i(q), ˙̃xi, Ãi(q), b̃i

}
= Solution of (5.16);

4 q̇∗ = arg minq̇∈Si‖q̇‖
2;

5 J̃i+1(q) =

[
J̃i(q)

Ji(q)

]
; ˙̃xi+1 =

[
˙̃xi

Ji(q)q̇∗

]
;

6 Ãi+1(q) = Ãi(q); b̃i+1 = b̃i;

7 foreach aij(q) = rowj(Ai(q)) do

8 if aij(q)q̇∗ ≤ bij then

9 Ãi+1(q) =

[
Ãi+1(q)

aij(q)

]
; b̃i+1 =

[
b̃i+1

bij

]
;

10 end

11 else

12 J̃i+1(q) =

[
J̃i(q)

aij(q)

]
; ˙̃xi+1 =

[
˙̃xi

aij(q)q̇∗

]
;

13 end

14 end

15 end

16 return: q̇∗ (joint velocities);
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Figure 5.7: Illustration of the optimal sets for prioritization problems involving both
linear equality and inequality constraints. a) The constraint of two linear inequalities P1

and equality constraint P2 have common solutions so the priority does not matter. b)
Equality P1 has priority over the inequality constraints P2. The error is minimized with
respect to inequalities that could not be satisfied. c) Inequalities P1 have priority over
equality P2. The optimal set minimizes the distance to the equality set (after [70]).

5.3 Variable Admittance Control

The type of robots to which human motion is usually transferred is designed to co-
exist and cooperate with people in different applications within the same workspace.
In these environments physical human-robot interaction (pHRI) might occur, be-
coming safety a key issue. The robot has to feature a certain degree of active
compliance. A popular method for achieving this is admittance control. By mea-
suring the interaction forces, the set-point to a low-level motion controller is changed
through a virtual spring-mass-damper model dynamics to achieve some preferred
interaction responsive behavior.

Reproduction of human motion involves two competing control objectives. On the
one hand, an accurate position control (high stiffness) is desirable. On the other
hand, when physical human-robot interaction occurs, compliance (low stiffness) is
of vital importance to ensure safety. This problem can be addressed with a variable
admittance control scheme that adaptively modulates the robot dynamics; switching
between stiff and compliant behaviors based on the external forces, changing the
virtual spring-mass-damper dynamics continuously during the task. However, this
has important implications on the stability properties of the control system which
cannot be overlooked.

We start, in Section 5.3.1, providing an intuitive introduction to admittance con-
trol in order to grasp the main ideas. Afterward, in Section 5.3.2, we discuss
some stability considerations when adopting a variable admittance control scheme.
Finally, in Section 5.3.3, we present a role-adaptive admittance controller for dy-
namically switching the robot’s behaviour, ensuring both a tight precision control
while reproducing the human motion, and compliance during physical human-robot
interaction.
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Figure 5.8: Generic overview of the mechanical system. An actuator moves all mechanics
(robot inertia mr and some dissipation) placed before the force sensor. Behind the force
sensor, there will be mechanics that generate force sensor measurements during motion
(mps). These post-sensor mechanics also interact with the human limb. The sensor is
assumed to be infinitely stiff and its mass is absorbed in mps (after [71]).

5.3.1 Simple Admittance Control Model

The goal of this section is to give the reader an introduction to admittance controller
design. We study a generic mechanical set-up [71] and a control model to explain
the main concepts behind admittance control in the context of physical human-
robot interaction. A scheme of the system is shown in Figure 5.8. The actuator
imposes forces on the mechanics of the device, which can consist of robotic links.
Close to the interaction point a sensor measures the forces exerted by the human.
The admittance controller should attempt to respond to these forces according to
some specified virtual dynamics.

From the control perspective, the robot is equivalent to a rigid body mass with
some dissipation. This robot can be in contact with a human that applies a force
Fext, which can be from human impedance (shown in dotted gray in Figure 5.9).
The equation of motion of the system, omitting the human impedance, absorbing
any external force into Fext(t) is given by

(mr +mps)ẍ(t) + brẋ(t) = Fext(t) + Fc(t) (5.20)

with mr the pre-sensor robot inertia and mps the post-sensor robot inertia, x(t)
the real robot position, br the viscous effects in the drive train, and Fc(t) the force
applied by the controller through the actuators. Now, we impose the following
dynamic admittance model

Fext(t) = mdẍ(t) + bdẋ(t) + kd (x(t)− xd) (5.21)
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Figure 5.9: Rigid robot from a control perspective. An external force Fext and a controller
force from an actuator Fc are applied to the robot inertia mr combined with the post-
sensor inertia mps, both resulting in some robot velocity v. Some energy losses during
robot motion are modeled as viscous damping br. The robot can be rigidly connected to
a human with inertia mh, stiffness kh, and damping bh, shown by the gray dotted outline.
By measuring Fext the set-point to a low-level position controller x0 is adjusted according
to the desired admittance (after [71]).

where md > 0, bd > 0, kd > 0 and xd are the desired virtual inertia, damping,
stiffness and robot position respectively. Note that the presence of an external
force Fext 6= 0 prevents the equilibrium to be at the desired robot position x0 = xd.
Indeed, assuming Fext constant and substituting ẍ(t) = ẋ(t) = 0 in (5.21), the
equilibrium position is given by

x0 =
Fext
kd

+ xd (5.22)

As we can see the higher the value of kd →∞ (i.e. stiffer), the closer the equilibrium
point is to the desired position x0 → xd. Inversely, the lower the value of kd the
more compliant the robot is to the external force Fext, allowing a greater position
error. The remaining parameters md and bd affect the temporal evolution towards
the equilibrium position as for a damped harmonic oscillator. As a rule of thumb
for robotic applications, the following inequality should be fulfilled

bd ≥ 2
√
mdkd (5.23)

otherwise, we can have oscillations in the transient. Our strategy for the controller
design is now to implement relation (5.21) via admittance control, using a position
controller to achieve the desired end-effector dynamics (Figure 5.9).
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Figure 5.10: Closed-loop simulation of the mechanical system in Figure 5.9 with the
parameters in Table 5.1. The desired position is xd = 0, and from t = 2 s a sinusoidal
external force Fext is exerted on the system. On top, the evolution of the position x(t)
for different amplitudes of the external force Fext. Below, applying an external force with
amplitude Fext = 2 N, the evolution of x(t) for different values of the stiffness kd.

In order to analyze the behavior of the resulting closed-loop system, we have to
consider a position control law. We can, for instance, use a simple proportional-
derivative (PD) controller of the form [72]

Fc(t) = −P (x(t)− x0(t))−D (ẋ(t)− ẋ0(t)) (5.24)

with positive proportional and derivative gains P > 0 and D > 0. Assuming the
parameters for the mechanical system in Table 5.1, we can see some simulations of
the closed-loop system in Figure 5.10. Setting a constant desired position xd = 0,
we can observe the effect of the external force Fext(t) magnitude and the admit-
tance stiffness kd on the evolution of the robot position x(t). Using the proposed
admittance control scheme we can see that the robot presents a compliant behavior.
The dynamics of this behavior can be adjusted by means of the desired admittance
(5.21). We can observe that for higher values of kd we achieve a tighter position
control, while for smaller values of kd we are more compliant to the external force,
allowing a greater deviation from the desired position xd = 0 as Fext(t) increases.
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Parameter Value Units

md 2 kg

bd 2 Ns/m

kd 20 N/m

mr 10 kg

mps 2 kg

br 5 Ns/m

P 100 N/m

D 2000 Ns/m

Table 5.1: Parameters for the closed-loop simulation of the system in Figure 5.9.

5.3.2 Stability in Variable Admittance Control

The interaction forces are subject to uncertainties when robots are operating in
human-shared environments. The desired response can be adaptively regulated
using a variable admittance control scheme. However, careful attention should be
paid to the design of the admittance profile, since it has important implications
on the stability properties of the system. In this section, we focus on studying the
stability constraints following the procedure proposed in [73].

In variable admittance control, the objective is to maintain the following dynamic
relationship between the external force Fext(t) and the robot’s end-effector position
error e(t)

M (t)ë(t) +B(t)ė(t) +K(t)e(t) = Fext(t) (5.25)

where M (t), B(t) and K(t) denote the desired virtual inertia, damping, and stiff-
ness profiles respectively. These determine the behavior of the robot when subjected
to an interaction force Fext(t). If M , B and K are constant, the system is asymp-
totically stable for any symmetric positive definite choice of the matrices. However,
we are concerned with varying admittance control. Without loss of generality, we
assume that M remains constant while B(t) and K(t) are time-varying functions.

The stability properties of (5.25), are commonly performed based on energy con-
siderations since the dynamics allow a physical interpretation analogous to a classic
mass-spring-damper system. Consider the following Lyapunov candidate function

V1(t) =
1

2
ė(t)tMė(t) +

1

2
e(t)TK(t)e(t) (5.26)
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Differentiating V1(t) along the trajectories of (5.25) with Fext = 0 and M constant,
we obtain

V̇1(t) = −ė(t)TB(t)ė(t) + e(t)TK̇(t)e(t) (5.27)

Equation (5.27) is negative semidefinite for a negative semidefinite K̇(t). Hence,
we can conclude stability at the origin only if all the eigenvalues of the stiffness
matrix are either constant or decreasing. Assuming e(t) 6= 0, increasing the stiffness
eigenvalues can inject potential energy into the system, and it is hence intuitively
clear that this practice can cause unstable behavior.

By inspection of the expression in (5.27), the obvious solution to the problem would
be to design a controller that tries to follow the desired stiffness profile as well as
possible, but limiting it when (5.27) becomes positive. However, such an approach
has several disadvantages, the most important being that the admissible stiffness
profile depends on the state of the robot and can hence not be known beforehand.

Experience of varying stiffness control suggests that in general, reasonable varying
stiffness profiles show no destabilization tendencies. This motivates the search for a
less conservative Lyapunov candidate function than (5.26). Consider the following
Lyapunov candidate function

V2(t) =
(ė(t) + αe(t))T M (ė(t) + αe(t))

2
+
e(t)Tβ(t)e(t)

2
(5.28)

where

β(t) = K(t) + αB(t)− α2M (5.29)

with some positive constant α chosen, such that β(t) is positive semidefinite for all
t > 0. Differentiating V2(t) along the trajectories of (5.25) with Fext(t) = 0 yields

V̇2(t) = ė(t)T (αM −B(t)) ė(t) + e(t)T
(

1

2
K̇(t) +

α

2
Ḃ(t)− αK(t)

)
e(t) (5.30)

Therefore, assuming M constant, K(t) and B(t) continuously differentiable, and
the three of them symmetric, positive definite matrices, the system (5.25) is globally
uniformly stable if there exists α > 0 such that ∀t ≥ 0:

1. αM −B(t) is negative semidefinite.

2. K̇(t) + αḂ(t)− 2αK(t) is negative semidefinite.
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In practice, the admittance parameter that has the most significant impact on task
performance is the stiffness K(t). Hence, it is often reasonable to give priority
to the stiffness design. The damping can then be chosen to guarantee that the
desired stiffness profile can be stably executed, typically by using critical damping.
Inspection of the stability constraints reveals that the least conservative constraints
are given by α chosen so the largest eigenvalue of αM − B(t) remains negative
during the task. Hence, to have the least conservative constraints,

α = min
t

λ (B(t))

λ (M )
(5.31)

where λ() and λ() denote the largest and smallest eigenvalue, respectively. For
robotic applications, these conditions can typically be simplified to a form that has
a more intuitive interpretation. Usually, M , D(t) and K(t) are diagonal matrices.
Therefore, system (5.25) can be uncoupled in independent scalar systems:

më(t) + b(t)ė(t) + k(t)e(t) = Fext(t) (5.32)

Assuming b(t) = 2ζ
√
mk(t), where ζ > 0 is a constant damping ratio, and substi-

tuting ḃ(t) into the second stability condition, yields the following upper bound for
the stiffness derivative

k̇(t) <
2α
√
k(t)

3√
k(t) + 2ζα

√
m

(5.33)

which taking the least conservative constraints for α (5.31) results

k̇(t) <
4ζ
√
k(t)

3√
maxt k(t)√

mk(t) + 4ζ2
√

maxt k(t)
(5.34)

Note that stability is favored by smooth variations and large values of the stiffness
profile k(t), and vice-versa.

5.3.3 Role Adaptive Admittance Controller

The classical approach for dealing with physical human-robot interaction typically
involves the robot yielding compliantly to the motion of the human. However, when
a robot is reproducing a demonstrated motion, a compliant behavior can degrade
the performance of the position control due to disturbances on the external force
sensors. On the other hand, following tightly the demonstrated trajectories can be
dangerous when operating in human-shared environments.
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What we are looking for is an adaptive varying admittance profile that adjusts the
role of the robot dynamically. Understanding by the role the balance between the
tracking precision (leader), and compliance (follower). In order to switch the robot
role between a follower, with low stiffness kmin and leader, with high stiffness kmax,
we propose the following varying stiffness profile

k(t) = kmin + γ(t) (kmax − kmin) (5.35)

where γ(t) ∈ [0, 1] is a scalar role adaptation factor. The value of γ(t) should be
derived from the interaction force feedback Fext(t) in order to achieve the desired
responsive behavior. Continuous and smooth variations of the stiffness profile,
show no destabilization tendencies. Therefore, we propose the following role factor
sigmoid-like profile, which is infinitely differentiable

γ(t) = 1− 1

1 + exp (−c1 (ψ(t)− c2))
(5.36)

where c1 > 0 and c2 ∈ [0, 1] are design parameters. The first one determines the
speed of the transition between stiff and compliant behaviors, while the second one
specifies at which value of ψ(t) does this transition occur. On the other hand,
ψ(t) ∈ [0, 1] is an interaction factor that varies according to the external force
feedback Fext(t). We propose the following interaction factor dynamics

ψ̇(t) =


c3 if Fext(t) > Fthresh and ψ(t) ≤ 1

−c4 if Fext(t) ≤ Fthresh and ψ(t) ≥ 0

0 else

(5.37)

where Fthres is the force threshold to consider that physical human-robot interaction
is occurring, and c3 > 0 and c4 > 0 are design parameters. Essentially, the idea
of the proposed variable admittance profile is that, if a force Fext(t) > Fthresh is
detected on the end effector, the interaction factor increases ψ(t)→ 1, making the
role adaptation factor decrease γ(t) → 0, evolving the stiffness smoothly towards
k(t)→ kmin. Inversely, if Fext(t) < Fthresh we have that k(t)→ kmax.

Now, we can derive the stability constraints for our role-adaptive variable admit-
tance profile, using the results of Section 5.3.2. Substituting (5.36) into (5.35) and
differentiating we obtain the following upper bound for the stiffness derivative

k̇(t) =
−c1 exp (−c1 (ψ(t)− c2)) ψ̇(t)

(1 + exp (−c1 (ψ(t)− c2)))2 (kmax − kmin) ≤ c1c4

4
(kmax − kmin) (5.38)
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Figure 5.11: Behaviour of the proposed role adaptive admittance controller with parame-
ters c1 = 14, c2 = 0.5, c3 = 10 and c4 = 0.25 when the force depicted in the upper-left plot
is applied. Below, we can see the evolution of the role adaptation factor γ(t) (5.36) and
the interaction factor ψ(t) (5.37). On the upper-right plot we can observe how does the
stiffness k(t) vary (5.35), switching between kmin and kmax according to Fext(t). Below
we show its derivative (5.38) along with the sufficient stability bound (5.40).

Then, for the proposed variable admittance profile we can also compute a lower
bound for the right-hand side of (5.34)

4ζ
√
k(t)

3√
maxt k(t)√

mk(t) + 4ζ2
√

maxt k(t)
≥ 4ζ

√
kmin

3

√
m+ 4ζ2

(5.39)

Finally, substituting the bound of the stiffness derivative (5.38) and (5.39) in the
stability condition (5.34) we can derive the following sufficient stability condition

c1c4

4
(kmax − kmin) <

4ζ
√
kmin

3

√
m+ 4ζ2

(5.40)

The great thing about this sufficient condition is that is independent of the state
and can be computed beforehand. By tuning the design parameters adequately we
can ensure stability. From inspection of (5.40) and the example shown in Figure
5.11 we can study several interesting properties of the proposed variable admittance
controller regarding its stability. The most relevant perhaps is that instabilities can
only occur in the transition from compliant (kmin) to stiff (kmax) dynamics. This
means that, when a person physically interacts with the robot, it can almost react
instantaneously without compromising the system stability.
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Figure 5.12: Transferring human motion to robots while ensuring safe human-robot phys-
ical interaction can be a powerful and intuitive tool for teaching assistive tasks such as
helping people with reduced mobility to get dressed or cleaning.

Rapid transitions from the leader to the follower role can be achieved for high
values of the design parameter c3, which we can see that does not appear in (5.40).
For favouring stability small values of (kmax − kmin) are preferred. Note that for
the limit case kmax = kmin stability in ensured regardless of the value of all other
parameters. Stability is also supported for small values of c1 and c4, which basically
implies a slower transition from kmin to kmax.

As a final concluding remark, keep in mind that stability condition (5.40) is sufficient
but not necessary. That is, if the design parameters fulfill the condition we can
ensure stability. However, if this is not the case, we cannot conclude that the
system is unstable.

5.4 Whole-Body Motion Transfer with TIAGo

Transferring human motion to a mobile robotic manipulator and ensuring safe phys-
ical human-robot interaction are crucial steps towards automating complex manip-
ulation tasks in human-shared environments. As we have discussed throughout this
chapter, this raises several challenges in robotics.

In this section, we present a novel human to robot whole-body motion transfer
framework for the TIAGo robot [74]. The main contributions are the formulation
of a solution to the correspondence problem, and the definition of a control scheme
for effective real-time whole-body imitation, while ensuring compliance and stabil-
ity during physical human-robot interaction. The presented framework is validated
through several real-world experiments with the TIAGo robot. Results show ef-
fective real-time imitation and dynamic behavior adaptation, opening the door for
intuitive human motion transfer to service robots (Figure 5.12).
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Figure 5.13: Overview of the main components of the TIAGo robot.

We start, in Section 5.4.1, by giving a brief overview of the TIAGo robot. Next,
in Section 5.4.2, we describe the Xsens motion capture system, our interface for
providing demonstrations in real-time. Afterward, in Section 5.4.3, we look into
the solution for the correspondence problem. Then, in Section 5.4.4, we present a
whole-body control system for achieving real-time imitation with TIAGo’s upper
body and base, while ensuring compliance. Finally, in Section 5.4.5, we evaluate the
performance of the proposed framework through several real-world experiments.

5.4.1 TIAGo Robot

TIAGo is a mobile service robot designed to work in indoor environments. It is
developed by PAL Robotics, a company with its corporate headquarters located in
Barcelona. The TIAGo robot is equipped with an extendable torso and a manipu-
lator’s arm to grab tools and objects. Its sensor suite allows it to perform a wide
range of perception, manipulation, and navigation tasks. An overview of its main
components is depicted in Figure 5.13.

The upper body of TIAGo is composed of a lifting torso with a stroke of 35 cm. The
robot height can be adjusted between 110 and 145 cm. The frontal part is equipped
with a stereo microphone and a speaker, both aimed at human-robot interaction.
The arm of TIAGo has 7 degrees of freedom (DoF), with a force/torque sensor
attached at the endpoint of the wrist. The head has 2 DoF, providing pan-tilt
movements, and it is equipped with an RGB-D camera. The mobile base has
a differential drive mechanism and is provided with a laser plane for SLAM and
safety purposes. On the rear part of the mobile base, there are three ultrasound
sensors to prevent collisions when moving backward [75].
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Figure 5.14: Xsens MVN consists of 17 inertial and magnetic motion trackers. Data from
wireless trackers is transmitted to a PC where it is further processed and visualized.

5.4.2 Xsens MVN Motion Capture

The Xsens MVN inertial motion capture system is an easy-to-use interface for full-
body human motion capture [76]. We use it for transferring the demonstrator’s
movements online to the TIAGo robot. It is based on small, unobtrusive inertial
and magnetic sensors combined with advanced algorithms and biomechanical mod-
els. Compared to alternative motion capture systems based on external emitters
and/or cameras, inertial motion capture does not rely on any external infrastructure
allowing it to be used anywhere.

Xsens MVN captures the motion of the human body using 17 motion trackers that
are attached to the feet, lower legs, upper legs, pelvis, shoulders, sternum, head,
upper arms, forearms, and hands, as shown in Figure 5.14. A custom lycra suit with
dedicated zippers and body straps is provided for a simplified mounting of motion
trackers at specific body locations. The sensor modules are inertial and magnetic
measurement units that contain gyroscopes, accelerometers, and magnetometers.
Each module runs an advanced signal processing pipeline that ensures 3D tracking
accuracy.

The key element of Xsens MVN is the software engine, where the data of the
individual motion trackers is combined with biomechanical models of the human
body to obtain segment positions and orientations. It is capable of sending real-
time motion capture data of 23 body segments using the UDP/IP communication
protocol.
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Figure 5.15: Mapping in Cartesian space of an equivalent pose between a human model
and the TIAGo robot. The colors red, green, and blue are the x, y, and z axes respectively
of each reference frame attached to a body segment. Note that for the particular case of
the TIAGo robot the torso and the shoulder frames are equivalent.

5.4.3 Correspondence Problem Solution

Using the Xsens MVN motion capture system as the interface to provide the demon-
strations to the TIAGo robot, the correspondence problem can be addressed as dis-
cussed in Section 5.1.3. Adopting the same notation, we have O ≡ SE(3)23, that is,
the human movements are encoded as the trajectory of a 23-dimensional array (one
element per each tracked body segment) of three-dimensional Euclidean groups.
Each element is represented by a homogeneous transformation from reference a to
b, which can be written as

T b
a =

[
Rb
a pba

0 1

]
(5.41)

where Rb
a ∈ SO(3) and pba ∈ R3 are the rotational and translational components of

the transform, respectively.

The objective now is to define a complete mapping in the form of (5.6). In par-
ticular, we need to specify fGO (5.2), that is, the equivalence between the observed
human motion and the robot’s desired behavior. We consider that the human pose
and the robot pose are equivalent if the relative position and orientation of the
person’s right (or left) wrist, elbow, chest, and the projection of the pelvis onto
the floor with respect to an arbitrarily fixed reference frame are as close as possible
to those equivalent links of the robot up to a scaling factor in Cartesian space, as
depicted in Figure 5.15.

118



5.4. Whole-Body Motion Transfer with TIAGo

Given the transforms T pf
po , T pt

pf , T pe
ps and T pw

ps , where po, pf , pt, ps, pe and pw
stand for the person arbitrary origin, virtual footprint (i.e. projection of the pelvis
onto the floor), torso, shoulder, elbow and wrist reference frames respectively, and
a sample equivalent person-robot pose, like the one depicted in Figure 5.15. The
correspondent robot pose is fully-determined by T rf

ro , T rt
rf , T re

rs and T rw
rs , where ro,

rf , rt, rs, re, rw are the equivalent robot links (Figure 5.15). The rotational
components of these robot transforms are defined as

Rrb
ra = Rsrapa ·Rpb

pa (5.42)

where Rsrapa is the rotational component of the relative transform between the per-
son’s frame pa and the robot’s equivalent frame ra when both are in the equivalent
sample pose. On the other hand, their translational components are given by

prfro = ppfpo (5.43)

prtrf = Lrtrf ·
pptpf

‖pptpf‖
(5.44)

prers = Lrers ·
ppeps
‖ppeps‖

(5.45)

prwrs = prers + Lrwre ·
ppwps − ppeps
‖ppwps − ppeps‖

(5.46)

where Lrtrf is the robot’s base to torso height when the torso is fully extended, Lrers and
Lrwre are the lengths of the robot’s equivalent shoulder to elbow and elbow to wrist
segments respectively. Note that essentially, the translations are obtained using a
generalized scaling model. At this point, since we have fully determined the robot
pose from the observations of the demonstrator’s motion, a complete definition of
fGO, and consequently a solution to the correspondence problem, is provided.

5.4.4 Whole-Body Control System

The reproduction of human motion with a complex mobile manipulator robot-like
TIAGo requires tight control of the multiple degrees of freedom. We propose a con-
trol architecture that decouples the upper body and the mobile base. An overview
is depicted in Figure 5.16. For ensuring both, accurate position control and safety
while reproducing the upper body motion, we combine the role adaptive variable
admittance controller derived in Section 5.3.3 with an optimization-based WBC
analogous to the one presented in Section 5.2.2. On the other hand, for imitating
the human walking motion with the mobile base, we implement a control algorithm
at a velocity level that efficiently handles the nonholonomic constraints imposed by
the differential drive mechanism.
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Figure 5.16: Overview of the whole-body human to robot motion transfer control scheme
for the TIAGo robot. The human operator provides a reference pose xd for the robot
to imitate and possibly exerts a force Fext on the robot’s end-effector. Based on xd and
Fext, the role adaptive admittance controller generates a new setpoint x0 for the robot’s
upper body links. The robot is then driven towards the required configuration q using a
hierarchical WBC controller. The mobile base is controlled separately at a velocity level
(v, ω) for efficient handling of the nonholonomic constraints while imitating the human
walking motion, encoded also in xd.

Upper Body Control

Based on the solution of the correspondence problem for the TIAGo robot derived
in Section 5.4.3, the robot needs to reach multiple varying goals in Cartesian space
simultaneously for imitating the human’s upper body motion (Figure 5.15). This
makes WBC a suitable control framework since the multiple goals can be defined
as a set of tasks with an adequate hierarchy such as they do not interfere with each
other. We use PAL robotics’ implementation, which is based on the Stack of Tasks
[77]. Taking into consideration the equivalence human-robot relations discussed in
the previous section, we select the following task hierarchy:

1. Joint limit avoidance

2. Self-collision avoidance

3. End-effector pose admittance control

4. Torso position control

5. Elbow pose control
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The first task addresses the physical limitations and restrictions of the robotic sys-
tem. Thus, it should always be active. The second and third tasks are concerned
with safety aspects and for this reason, they must be at a high priority to prevent
dangerous situations. Defining the end-effector task with a high priority we also
ensure a correct end-effector goal tracking, which is of critical importance for ma-
nipulation tasks. The torso task guarantees that the base of the robot’s arm is at
the required height. Finally, with the elbow task, we achieve not just a correct
positioning of the end-effector but the imitation of the whole arm’s posture. For a
robot with human-like affordances, which is the case of the TIAGo robot, a correct
imitation of the human motion can be achieved with this hierarchy.

Differential Drive Base Control

TIAGo’s mobile base is controlled by a differential drive mechanism, which consists
of two separately driven wheels placed on either side of the robot base. Direction is
changed by varying the relative rate of rotation of its wheels. These types of mobile
bases are usually controlled at a velocity level. Let (x, y, θ)T be the coordinates
that define the base position and orientation in a plane. Also, let v and ω be the
instantaneous linear and angular velocity commands respectively. The kinematic
model can then be written as

(
ẋ ẏ θ̇

)
=
(
v cos θ v sin θ ω

)
(5.47)

from which the nonholonomic constraint ẏ cos θ − ẋ sin θ = 0 can be derived. Es-
sentially, it implies that movement is not allowed in the wheels’ axis direction.

In order to reproduce the walking motion, the robot’s base must follow, with the
same orientation, the path followed by the projection of the demonstrator’s pelvis
onto the floor. This is an inverse kinematics problem i.e., find the velocity com-
mands that allow the robot to reach a given pose. Common path planning frame-
works address this problem. However, they are not suitable for cases where the
goal is constantly changing, which is the case of human walking. They usually
involve complex calculations that cannot be solved faster than the goal-changing
rate, which makes the robot remain in a planning state constantly.

We propose Algorithm 3 to solve these issues. When initialized, it assumes the per-
son’s and the robot’s footprint frames are coincident in an arbitrarily fixed reference
frame. Then the relative transform between the person and the robot footprint is
determined at each time step. When the robot is further than a certain margin
to the reference, angular velocity commands orientate the robot towards the goal
position. If the robot position is close enough, angular velocity commands align the
robot with the goal orientation. Additionally, the possibility of moving backward
is also considered.
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Algorithm 3: Differential Drive Base Motion Transfer

/* ε,δ,λ,σ: design parameters */

/* ()yaw: yaw component of rotation */

/* ()x,y: x, y component of translation */

/* x axis is assumed as forward */

1 T pf
rf = I;

2 T po
ro = T rf

ro T
po
pf ;

3 while True do

4 T pf
rf =

(
T pf
ro

)−1
T po
ro T

pf
po ; // Relative transform

5 if
∥∥∥ppfrf∥∥∥ < ε then

6 v = 0 ω = λ ·
(
Rpf
rf

)
yaw

7 else if
(
ppfrf

)
x
< 0 and

∣∣∣ (Rpf
rf

)
yaw

∣∣∣ < δ then

8 v = −σ ·
∥∥∥ppfrf∥∥∥

9 ω = λ ·
(

arctan
(ppfrf)

y

(ppfrf)
x

− π · sign

[
arctan

(ppfrf )
y

(ppfrf)
x

])
10 else

11 v = σ ·
∥∥∥ppfrf∥∥∥ ω = λ · arctan

(ppfrf)
y

(ppfrf)
x

12 end

13 end

5.4.5 Experiments

We carried out a series of real-world experiments using the TIAGo robot and the
Xsens MVN motion capture system to validate our whole-body human-to-robot mo-
tion transfer framework. These can be divided into three different groups according
to the aspect in which we focus the experimental analysis.

In the first group of experiments, we evaluate the similarity between the demonstra-
tor’s and the robot’s upper body motion. The objective is to verify the correctness
of the proposed solution for the correspondence problem and the tracking preci-
sion of the hierarchical WBC. In the second group, we analyze the behavior of the
proposed role adaptive admittance controller scheme. The TIAGo robot must be
able to respond compliantly to external forces on the end-effector, preserve a good
tracking precision in their absence, and guarantee a stable behavior. Finally, in the
third group of experiments, we study the performance of our algorithm for imitating
the walking motion with the differential drive mobile base.
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Figure 5.17: The demonstrator performs a spiral trajectory with the hand while the
TIAGo robot imitates the upper body motion. On the lower-left the robot’s end-effector
trajectory against the goal trajectory. On the lower-right the evolution over time of the
person’s and the robot’s angle φ between the elbow-wrist and elbow-shoulder segments.

Upper Body Motion Transfer

For evaluating the upper body motion transfer system, the robot performs real-time
imitation while the demonstrator describes a spiral trajectory with the hand. We
compare the trajectory followed by the robot’s end-effector and the evolution of
the angle formed by its elbow-wrist and elbow-shoulder segments with the demon-
strator’s reference. The results are shown in Figure 5.17. We can observe that the
robot describes the spiral with the end-effector accurately while imitating the arm
posture. This indicates, on the one hand, that the proposed solution of the cor-
respondence problem allows the reproduction of the desired behavior with TIAGo
using the demonstrator’s motion. On the other hand, the whole-body controller
effectively handles the redundant robot’s DoF, achieving an online accurate refer-
ence tracking with multiple links of the robot simultaneously. This is also verified
qualitatively in further experiments, depicted in Figure 5.18.
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Figure 5.18: Several demonstrations of upper body motion transfer system performance.
The robot accurately reproduces the movements of the human teacher. As we can see in
some of the experiments depicted in this figure, our system opens the door for non-robotic
experts to teach manipulation skills to a robot intuitively.
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Figure 5.19: The demonstrator performs a circular trajectory with the hand while the
TIAGo robot reproduces the motion. During the experiment, physical human-robot in-
teraction occurs when a person grabs the end-effector. The TIAGo robot rapidly switches
from the leader to the follower role, reducing its stiffness and yielding compliantly to the
external force. When the end-effector is released the TIAGo robot switches back to the
leader role in a stable manner, reproducing again the demonstrator’s motion.

Role Adaptative Admittance Control

In order to study the behavior of the role adaptive variable admittance controller,
we perform an experiment where TIAGo’s end-effector is grasped while reproducing
the demonstrator’s motion and then released after a few seconds. The controller
parameters are tuned empirically, selecting ζ = 1.1, kmin = 10, kmax = 500, c1 = 20,
c2 = 0.275, c3 = 1.5 and c4 = 0.2 for all six end-effector DoF. The experiment results
are shown in Figure 5.19. We can see that when the grasping occurs, the interaction
factor ψ(t) starts to increase, while the stiffness k(t) rapidly decreases to switch the
robot behavior from stiff to compliant. This allows to easily move the end-effector
away from its commanded trajectory. When it is released, the interaction factor
starts to decrease while the stiffness starts to restore its initial value and the robot’s
end-effector position converges again to the reference trajectory. No oscillations or
unstable behavior appeared during the experiment.
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Figure 5.20: Several demonstrations of the mobile base motion transfer system perfor-
mance with TIAGo. The robot accurately reproduces the walking motion of the human
demonstrator. This includes forward and backward motions, and rotations. In some of
the experiments, upper body motion is also transferred simultaneously.
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Figure 5.21: The demonstrator walks and describes a series of turns while the TIAGo
robot imitates the motion with its mobile base. The plot shows the position (x and y)
and orientation (θ) along with the path described by the robot’s base (continuous line)
compared with the reference trajectory provided by the demonstrator (dashed line).

Base Motion Transfer

Several qualitative tests of the mobile base motion transfer system are depicted in
Figure 5.20. Additionally, we performed a more quantitative experiment where the
demonstrator describes a series of turns while the TIAGo robot is reproducing the
motion online, moving in parallel with the demonstrator. The results are shown in
Figure 5.21. We can clearly observe that both, the robot position and orientation
are very similar to the reference trajectory. Therefore, we can conclude that the
proposed algorithm for differential drive base control allows the TIAGo robot to
imitate the demonstrator’s walking motion through velocity commands. It should
be remarked that the non-holonomic constraint does not apply to human walking
motion. Then, due to the difference in affordances, in order to achieve a successful
imitation, the demonstrator trajectory should not include side steps.
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Chapter 6

Learning from Demonstration
with Gaussian Processes

Learning from demonstration (LfD) is the paradigm in which robots implicitly learn
task constraints and requirements from demonstrations of a human teacher. This
allows more intuitive skill transfer, satisfying a need of opening policy development
to non-robotic-experts as robots extend to assistive domains. Flexible models that
allow learning the task by extracting relevant motion patterns from the demon-
strations, and subsequently apply these patterns to perform the task in different
situations, are essential for transferring human skills to robots.

For addressing the learning from demonstration problem, we can assume that there
exists a direct and learnable function (i.e., the policy) that generates the desired
behavior. This policy can be defined as a function that maps available information
onto an appropriate action space

π : X −→ Y (6.1)

where X is the domain (the input space of the policy) and Y is its codomain (action
space). The objective is to learn this policy π(), which allows the reproduction of
the skill taught by the expert. For this, the robot is presented with a demonstration
(i.e. training) dataset which consists of sample input-action pairs

D = {(xi,yi)}Ni=1 = (X, Y ) (6.2)

where xi ∈ X , yi ∈ Y , N stands for the number of samples, and X ∈ Rdim(X )×N

and Y ∈ Rdim(Y)×N represent the matrices where all the column input and output
vectors are aggregated, respectively. Note that this statement is analogous to the
supervised learning problem, tackled with Gaussian Processes in Chapter 3.
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Figure 6.1: Gaussian-Process-based learning from demonstration framework overview.

From the formulation of the problem, we can see that the first key aspect in LfD
involves identifying the appropriate inputs and outputs to the policy. Regarding
the latter, trajectories are the most popular choice since in a myriad of robotic
systems these govern the robot actions. On the other hand, the input captures the
information that is necessary for generating the optimal actions, playing a central
role in the generalization capabilities of the learned policy.

Another fundamental feature of LfD methods is the possibility of retrieving a prob-
abilistic representation of the policy. This allows a complete description of the task,
encoding the uncertainty along with the motion; which is crucial for reflecting the
importance of certain points of the task, leading to better generalization capabili-
ties. Also, in LfD it is interesting to adapt the learned motion to unseen scenarios
while maintaining the general trajectory shape as in the demonstrations without
re-training the model. Commonly, these requirements are expressed as via-point
constraints or the blending of multiple movement policies. Finally, one should keep
in mind that providing enough demonstrations to cover the input and action spaces
is essential. When the model is probabilistic, repetitions are also required for cap-
turing adequately the statistics of the taught motion. Thus, for learning complex
manipulation tasks the amount of required data might increase considerably.

Taking advantage of the versatility and expressiveness of Gaussian Processes (GPs),
in this chapter we aim to unify in a single framework, entirely GP-based, the
main features required for state-of-the-art learning from demonstration method.
An overview is depicted in Figure 6.1. We start in Section 6.1 by discussing how to
learn trajectories with Gaussian Processes. Then, in Section 6.2, we show how to
model the task uncertainty in general, and for time-invariant policies. Afterward,
in Section 6.3, we introduce some kernels for including integer and categorical, as
well as real input variables, in the model. Next, in Section 6.4, we discuss the adap-
tation of the learned policy, through via-point constraints and combination with
other policies. Thereafter, in Section 6.5, we present an approach for exploiting the
structure of replications for alleviating the computational complexity of Gaussian
Processes. Finally, in Section 6.6, we illustrate the main ideas discussed throughout
the chapter by means of a series of real-world experiments.
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6.1 Learning Trajectories

The first fundamental question to design methods for learning robot manipulation
tasks from demonstrations is, what should be learned? We have to decide which
are the input space X and the action space Y that the learned policy π() maps.
The learning outcome depends on the level of abstraction that is appropriate, and
thus chosen, for the problem of interest [9].

In robot learning from demonstration, the most popular approach is to select the
space of trajectories as the action space, since this allows a direct skill transfer
from human motion to robot actions. Learning a skill at a trajectory level involves
encoding trajectories of certain variables of interest by extracting patterns from the
available demonstrations. Examples of such variables include end-effector position,
end-effector pose, and joint state. This approach has proven to be particularly
well suited for over actuated systems, such as redundant manipulators, for which
kinematic feasibility is relatively easier to achieve. Another important advantage is
that there is no need for a model of the robot dynamics.

In this section, we present some extensions of the classical Gaussian Process for-
mulation for modeling trajectory-based policies. First, in Section 6.1.1, we show
how to adapt the single-output GP for learning functions with a multi-dimensional
output space. Then, in Section 6.1.2, we discuss how to incorporate derivative in-
formation such as velocities or accelerations for making predictions and inference
with Gaussian Processes. Finally, in Section 6.1.3, we introduce some covariance
functions for considering rigid-body motions with rotations in the input space.

6.1.1 Multi-output Gaussian Processes

Commonly, the trajectories required to perform robot manipulation tasks are en-
coded by multiple coordinates. However, the standard Gaussian Process formula-
tion focuses on the problem of predicting a single output variable from an input
x, which can be multi-dimensional. Gaussian Processes handle multi-dimensional
input spaces naturally thanks to the kernel treatment. However, considering more
than one output variable is more challenging.

To introduce the notation, we start by recalling some of the fundamental concepts
of single-output Gaussian Processes. Essentially, a GP is defined by its prior scalar
mean m(x) and covariance k(x,x′) functions

π(x) ∼ GP (m(x), k(x,x′)) (6.3)
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Then, given the demonstration dataset D = (X,y) we are interested in incorpo-
rating the knowledge that it provides about the task policy π(). This operation
corresponds to condition the joint Gaussian prior distribution on the observations

π(X∗) ∼ N (µ∗,Σ∗) (6.4)

µ∗ = m(X∗) + k(X∗, X)k(X,X)−1 (y −m(X)) (6.5)

Σ∗ = k(X∗, X∗)− k(X∗, X)k(X,X)−1k(X,X∗) (6.6)

where π(X∗) are the actions predicted by the posterior task policy at the test input
locations X∗, m(X) denotes the vector resulting from evaluating the scalar mean
function m(x) at all the dataset’s input locations X, and k(X∗, X) the matrix
resulting from evaluating the scalar covariance function for all input pairs (x,x∗).

For multi-dimensional trajectories we need to predict the value of multiple variables
simultaneously. This situation requires that the covariance function models not only
the correlation structure of each output, but also the cross-correlations between
them. We can obtain a multi-output Gaussian Process (MOGP) replacing the scalar
mean m(x) and covariance k(x,x′) functions in (6.3) by their multi-dimensional
counterparts

π(x) ∼ GP (m(x),k(x,x′)) (6.7)

For a m-dimensional output π(x) ∈ Rm the covariance k(x,x′) can be written as

k(x,x′) =

 k11(x,x′) . . . k1m(x,x′)
...

. . .
...

km1(x,x′) . . . kmm(x,x′)

 (6.8)

The off-diagonal elements kij(x,x
′) with i 6= j, represent the prior covariance be-

tween two different outputs πi(x) and πj(x). On the other hand, the interpretation
of the diagonal elements kii(x,x

′) is analogous to the single-output case. The pre-
dictive equations for the multi-output Gaussian Process are identical to (6.4), (6.5)
and (6.6), but arranging the elements adequately. For a m-dimensional output we
would have a posterior distribution of the form

π(X∗) =

 π1(X∗)
...

πm(X∗)

 ∼ N

 µ1∗

...
µm∗

 ,
 Σ11∗ . . . Σ1m∗

...
. . .

...
Σm1∗ . . . Σmm∗


 (6.9)
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Denoting by k(X,X∗) the covariance matrix constructed by evaluating all scalar
functions kij(, ) at all possible input pairs

k(X,X∗) =

 k11(X,X∗) . . . k1m(X,X∗)
...

. . .
...

km1(X,X∗) . . . kmm(X,X∗)

 (6.10)

and analogously for k(X,X), k(X∗, X) and k(X∗, X∗), the posterior mean and
covariance matrices of equation (6.9) yield

 µ1∗
...

µm∗

 =

 m1(X∗)
...

mm(X∗)

+ k(X∗, X)k(X,X)−1

 Y1
...
Ym

−
 m1(X∗)

...
mm(X∗)

 (6.11)

 Σ11∗ . . . Σ1m∗
...

. . .
...

Σm1∗ . . . Σmm∗

 = k(X∗, X∗)− k(X∗, X)k(X,X)−1k(X,X∗) (6.12)

where Yj corresponds to the vector that contains all the observations of the j-th
output dimension. When modeling trajectories we might don’t know anything in
advance about how the outputs relate to each other. Because of that, a common
simplificative assumption is that kij(x,x

′) = 0, for i 6= j. The covariance matrix
hence becomes diagonal

k(x,x′) =

 k11(x,x′) . . . 0
...

. . .
...

0 . . . kmm(x,x′)

 (6.13)

By inspection of (6.10), (6.11) and (6.12), we can see that in this case the multi-
output Gaussian Process with the covariance matrix (6.13) is equivalent to m single-
output Gaussian Processes. For a more general case, approaches for modelling
vector-valued functions with Gaussian Processes are mostly formulated around the
linear model of coregionalization (LMC) [78]. Covariance functions obtained under
the LMC assumption follow the form of a sum of Q separable kernels

k(x,x′) =

Q∑
q=1

Bqkq (x,x′) (6.14)

where each Bq ∈ Rm×m is a symmetric and positive semi-definite matrix known as
the coregionalization matrix.
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Figure 6.2: On top, samples drawn for a zero-mean multi-output Gaussian Process with a
diagonal covariance function, shown on the right. Below, samples drawn for a zero-mean
Gaussian Process formulated around the linear model of coregionalization. The prior
scalar covariance for both cases is a SE kernel (6.16) with parameters ` = 1 and σf = 1.

Equation (6.14) can be interpreted as the sum of the products of two covariance
functions. One that models the dependence between the outputs, independently of
the input vector x (the coregionalization matrixBq), and one that models the input
dependence, independently of the particular set of output functions (the covariance
function kq (x,x′)).

For the particular case of Q = 1, the computations required for inference are sim-
plified significantly, since the prior distribution can be expressed just as

π(x) ∼ N (m(X),B ⊗ k(X,X)) (6.15)

where ⊗ denotes the Kronecker product. An illustrative example of a comparison
between a multi-output Gaussian Process considering all output dimensions as in-
dependent, and another formulated around the LMC is shown in Figure 6.2. As the
scalar covariance function, we take the squared-exponential (SE) kernel

k(x, x′) = σ2
f exp

(
−1

2

(x− x′)2

`2

)
(6.16)
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We can observe that the samples drawn from the prior for each output are quite
different considering a diagonal coregionalization matrix B. On the other hand,
including positive off-diagonal elements in the coregionalization matrix B, we are
assuming that for similar input values both outputs π1(x) and π2(x) should have
a similar value. As we can see, the samples drawn from the posterior in this case
are very similar to each other. Thus, for modeling trajectories for which we have
some prior knowledge about the relation among the different output dimensions, an
adequate multi-output design is essential to express this structure in the policy.

6.1.2 Derivative of a Gaussian Process

In the representation of trajectories, they usually appear derivative relations e.g.
velocities and accelerations. Since differentiation is a linear operator, the deriva-
tive of a Gaussian Process is also a Gaussian Process. Thus we can use GPs to
make predictions about derivatives, and also make inferences based on derivative
information [79]. For developing this concept, consider the following general prior
distribution for a two-dimensional output Gaussian Process

[
y(x)
yd(x)

]
∼ N

([
m(x)
md(x)

]
,

[
k(x,x′) kd(x,x

′)
kd(x

′,x) kdd(x,x
′)

])
(6.17)

We know that the output yd(x) corresponds to the derivative of y(x)

yd(x) =
dy(x)

dx
(6.18)

How can we incorporate this knowledge into the multi-output Gaussian Process?
First, we can relate the prior mean functions substituting (6.18) in the definition of
md(x). Taking advantage that both, the expectation and the derivative operators
are linear operators we can hence change the order in which they are applied

md(x) = E [yd(x)] = E
[
dy(x)

dx

]
=

d

dx
E [y(x)] =

dm(x)

dx
(6.19)

This means that to find the mean of the derivative of a Gaussian Process, we can
just take the derivative of the mean. Applying the same trick we can also compute
how are the diagonal terms of the covariance matrix (6.17), related to each other

kdd(x,x
′) = E

[(
dy(x)

dx
− dm(x)

dx

)(
dy(x′)

dx′
− dm(x′)

dx′

)]
=
d2k(x,x′)

dxdx′
(6.20)
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Figure 6.3: On the left column, two independent zero-mean Gaussian Processes for y(x)
and its derivative yd(x), with prior covariance function (6.23) and (σf , `, σn) = (1, 1, 0.01).
We use three training points for each output, marked as red dots. The derivative mea-
surements are also represented in y(x) as red stripes. On the right column, multi-output
Gaussian Process taking into account the derivative relation between the outputs (6.21).

Finally, for the off-diagonal terms kd(x,x
′) we have

kd(x,x
′) = E

[
(y(x)−m(x))

(
dy(x′)

dx′
− dm(x′)

dx′

)]
=
dk(x,x′)

dx′
(6.21)

Substituting (6.19), (6.20) and (6.21) in (6.17), the joint prior distribution consid-
ering the differential relation between the outputs yields

 y(x)

yd(x)

 ∼ N
 m(x)

dm(x)
dx

 ,
 k(x,x′)

dk(x,x′)
dx′

dk(x′,x)
dx

d2k(x′,x)
dxdx′

 (6.22)

Then, prediction can be performed using (6.11) and (6.12). An example for il-
lustrating the advantage of embedding the differential relation in the multi-output
Gaussian Process design is shown in Figure 6.2. We assume a zero-mean prior and
a SE kernel with additive white noise

k(xi, xj) = σ2
f exp

(
−1

2

(xi − xj)2

`2

)
+ σ2

nδij (6.23)
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where δij is the Kronecker delta. The derivatives of this kernel are the following

dk(xi, xj)

dxj
=
dk(xj, xi)

dxi
=
σ2
f

`2
(xi − xj) exp

(
−1

2

(xi − xj)2

`2

)
(6.24)

dk(xi, xj)

dxidxj
=
σ2
f

`4

(
`2 − (xi − xj)2) exp

(
−1

2

(xi − xj)2

`2

)
(6.25)

We can observe that considering the differential relation between the outputs, the
resulting posterior for y(x) takes also into account the derivative measurements,
adjusting the slope of the posterior. On the contrary, considering both outputs as
independent, the resulting model is not coherent with the differential relation. This
gives an intuitive insight into the effect of considering observations of the function
and its derivatives for computing the Gaussian Process posterior.

6.1.3 Gaussian Processes over Rigid-body Motions

The kernel functions are considered the core of GP modeling. However, most of
the kernels are non-trivial to extend beyond the Euclidean space in general. When
learning trajectories, the input space of the policy X might include rigid-body
motions, which consist of the composition of a translation and a rotation. As for
rotations, there exists no representation in Euclidean space, they cannot be modeled
accurately with the classical GP formulation. In this section, we discuss how to
generalize the common kernels to consider the special Euclidean group SE(3) of 6
degree-of-freedom rigid body motions in the input space [80]. For this purpose, we
first address the representation of rotations, then the definition of a distance metric
in the SE(3) manifold, and finally the construction of suitable kernel functions.

Axis-angle and Translation Vector Representation

From Euler’s fixed point theorem [81], we know that in 3D space, any rigid-body
displacement with one fixed point, i.e. any composition of rotations, can be equiva-
lently described by a single rotation about some non-trivial axis of rotation through
the fixed point (Figure 6.4). This axis is also called the Euler axis. Thus, the set of
unit length Euler axes u together with a rotation angle θ parametrizes the rotation
group, called special orthogonal group SO(3)

SO(3) ⊂
{
θu ∈ R3 | ‖u‖ = 1 ∧ θ ∈ [0, π]

}
(6.26)
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Figure 6.4: Axis (u) - angle (θ) representation of rotations.

where the symbol ∧ denotes the logical ‘and’. The set (6.26) defines the solid
ball Bπ(0) in R3 with radius 0 ≤ r ≤ π centered around the origin and is thus
closed, dense and compact. Ambiguity in the representation occurs for θ = π, as
πu = −πu define the same rotation. To obtain a homeomorphism (i.e. a one to
one relation) between the rotation group SO(3) and the axis-angle representation,
we additionally fix the Euler axis representation for θ = π and obtain

B̃π(0) = Bπ(0) \ {πu | uz < 0 ∨ (uz ∧ uy < 0) ∨ (uz = uy = 0 ∧ ux < 0)} (6.27)

where the symbol ∨ denotes the logical ‘or’, \ refers to the subtraction operation for
sets, and ux, uy and uz are the components of the axis vector u. This parametriza-
tion of the rotation group by an Euler axis and a rotation angle is minimal and
unique, SO(3) ' B̃π(0). Therefore, the link with translations v ∈ R3 can be real-

ized using the standard Cartesian set product. The spaces of rotation B̃π(0) and
translation R3 jointly define a homeomorphism to SE(3)

SE(3) ' B̃π(0)× R3 (6.28)

Thus, any 6 degree-of-freedom rigid-body motion s ∈ SE(3) can be represented by

the pair s = (θu,v) ∈ B̃π(0) × R3. Additionally, the dot product is defined as in
regular vector spaces

〈s1, s2〉 = 〈θ1u1, θ2u2〉+ 〈v1,v2〉 = |θ1||θ2| cos^u1u2 + 〈v1,v2〉 (6.29)
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Figure 6.5: Geodesic distance dgeo between rotations for the axis-angle representation.

Distance Metrics

The prominent squared exponential kernel (6.16) and most other kernel functions
depend on a distance metric between input samples. We can define the distance over
rotations as the length of the geodesic between rotations. An illustration is shown
in Figure 6.5. For the axis angle representation, this distance can be computed as

dgeo(θ1u1, θ2u2) = 2 arccos

∣∣∣∣cos
θ1

2
cos

θ2

2
+ sin

θ1

2
sin

θ2

2
uT1u2

∣∣∣∣ (6.30)

Note that 0 ≤ dgeo ≤ 2π. Then, as distance function on SE(3) parametrized by
axis-angle and translation vector we can use the root over a sum of squares. Hence,
we define a distance function for rigid motions

ds (s1, s2) =
√
ρ1

(
dgeo (θ1u1, θ2u2))2 + ρ2‖v1 − v2‖2

)
(6.31)

where ρ1 and ρ2 are a convex combination of weights,
∑

i ρi = 1 where ρi ≥ 0,
for an application-dependent scaling between rotation and translation, allowing
the incorporation of domain knowledge. Depending on the underlying rigid-body
motion, we can weigh the contribution of rotation and translation on the similarity
measure between poses. For instance, for the motion of a sphere, we can set ρ1 = 0.

Covariance Functions for Rigid-Body Motions

The covariance function of the Gaussian Process solely depends on the input domain
X . For a single-output Gaussian Processes over rigid body motions on SE(3) the
covariance is of the form

k(s, s′) : SE(3)× SE(3) −→ R (6.32)
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Figure 6.6: Comparison of stationary kernels over rigid-body motions. On the upper-
right, squared-exponential kernel (6.23) evaluated for different values of the translation
and rotation, computing the latter as Euclidean. Below, kernel (6.33), where the distance
between rotations is computed as the geodesic of the axis-angle representation. The
parameters are set to σf = ` = 1, σn = 0.01 and ρ1 = ρ2 = 0.5.

This function must be symmetric from the definition, implying also that the Gram
matrix must be positive semidefinite. The most common covariance functions can
be divided into two main groups: stationary and dot product kernels. Essentially,
a stationary covariance function is a function of |x − x′|. Thus it is invariant to
translations in the input space. On the other hand, dot product covariance functions
depend only on x and x′ through x ·x′ ≡ 〈x,x′〉. These are invariant to a rotation
of the input space about the origin, but not translations.

Stationary Kernels: These type of kernels, commonly defined for an underlying
Euclidean space, can be adapted for SE(3) replacing the distance |x−x′| by (6.31).
For instance, the squared-exponential kernel (6.23) over rigid-body motions yields

k(si, sj) = σ2
f exp

(
−ρ1

2

dgeo (θiui, θjuj)
2

`2

)
exp

(
−ρ2

2

‖vi − vj‖2

`2

)
+ σ2

nδij (6.33)

A comparison of kernel (6.33) against its Euclidean counterpart (6.23), evaluating
the covariance between the poses of a mobile robot is shown in Figure 6.5. We
can see that using the axis-angle representation for rotations, and evaluating the
distance between configurations adequately, the kernel captures much better the
similarity between poses, taking into account the non-euclidean topology of SE(3).
This can be observed in the periodicity of the covariance matrix for the rotation
coordinate.
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Dot Product Kernels: Analogously to the stationary kernels, these can be
adapted to rigid-body motions using the definition (6.29) of the dot product. The
advantage of the axis-angle representation is that the dot product operation in
SE(3) is analogous to the dot product in Euclidean space. In this case, the main
difference lies in the representation of the rotation component. Using the axis-angle
we take into account the periodicity on SO(3).

6.2 Modeling the Task Uncertainty

Encoding the task policy with Gaussian Processes we have a stochastic represen-
tation. That is, instead of assuming that a singular optimal action exists for every
situation, we assume that there is an underlying distribution of ideal behaviors.
The great advantage of a stochastic policy is its ability to capture the inherent task
uncertainty as well as generalize across multiple demonstrations. Using Gaussian
Processes we assume that the policy is distributed according to a multivariate Gaus-
sian distribution, being the task uncertainty encoded in the covariance matrix, and
the generalized representation of the policy in the mean.

In this section, we focus on modeling effectively the task uncertainty from the
demonstrations with Gaussian Processes, for what some careful design considera-
tions are required. On the one hand, in a standard Gaussian Process, the uncer-
tainty is presumed to be constant in those regions where training data is available.
However, this is not the case for a general manipulation task. On the other hand,
for a human teacher is very difficult to always perform the task at the same speed.
This introduces a time variability that can lead to an erroneous estimate of the task
uncertainty when learning time-independent policies.

First, in Section 6.2.1, we present heteroscedastic Gaussian Processes, which relax
the constant uncertainty assumption, introducing an input-dependent uncertainty
in the model. Then, in Section 6.2.2, we discuss how to correct the time variability
introduced by the human teacher in the demonstrations with the Dynamic Time
Warping algorithm, traditionally used for temporal alignment of time series.

6.2.1 Heteroscedastic Gaussian Processes

The standard Gaussian Process formulation assumes identically distributed white
noise in the kernel design. This can be an important limitation for capturing the
variability in the demonstrations, as this assumption yields a constant uncertainty
profile in those regions where data is available. This is illustrated in the example
shown in Figure 6.7.
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Figure 6.7: Task policy π(x) (blue) inferred from the demonstrations (black) with a
standard Gaussian Process. It assumes a constant uncertainty, which might lead to un-
derestimate it in certain phases of the task (on the left) or overestimate it (on the right).

It is evident that while the intermediate positions are highly constrained, that is not
the case for the starting and final positions. With the standard Gaussian Process
model we are able to correctly estimate the mean, however, we totally fail to infer
the inherent task uncertainty. Thus, we should relax the constant noise assumption
to have a variable uncertainty profile. This kind of model is known in the literature
as the heteroscedastic Gaussian Process [82].

In most of the cases, in robot learning from demonstration, we have that the un-
certainty of the task policy is actually input-dependent. Thus, if yi represents the
demonstrated action for input xi, we can assume the following observation model

yi = f(xi) + r(xi) (6.34)

where r(xi) ∼ N (0, kr(xi,xj)) is the latent task uncertainty function which we
assume normally distributed and independent from f(xi) ∼ N (m(xi), k(xi,xj)),
which is the function describing the underlying mean trajectory for performing the
demonstrated task. Then, taking into account that the sum of two independent
normally distributed random variables is normal, with its mean being the sum of
the two means, and its variance being the sum of the two variances. Prior to
providing any demonstration of the task, yi is distributed according to

yi ∼ N (m(xi), k(xi,xj) + kr(xi,xj)) (6.35)
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Given the training dataset D = (X,y), we have that the demonstrated trajecto-
ries and the predicted mean trajectory for the new input locations X∗ are jointly
Gaussian distributed as

[
y

f(X∗)

]
∼ N

([
m(X)
m(X∗)

]
,

[
k(X,X) + kr(X,X) k(X,X∗)

k(X∗, X) k(X∗, X∗)

])
(6.36)

Then, the posterior distribution of the generalized trajectory f(X∗) for performing
the task conditioned on the demonstrations yields

f(X∗) ∼ N (µ∗,Σ∗) (6.37)

µ∗ = m(X∗) + k(X∗, X) (k(X,X) + kr(X,X))−1 (y −m(X)) (6.38)

Σ∗ = k(X∗, X∗) + k(X∗, X) (k(X,X) + kr(X,X))−1 k(X,X∗) (6.39)

Until now, the development is identical to the predictive equations of the standard
Gaussian Process with measurement error, but including an input-dependent noise.
However, unlike the usual regression problem, note that we do not want to infer the
underlying mean trajectory f(). This is the problem that we have in the example
shown in Figure 6.7. Actually, we want our task policy π() to encode jointly both,
a generalized representation of the task f() and its uncertainty r(). That is,

π(x) = f(x) + r(x) (6.40)

Therefore, we have that the posterior distribution of the actions retrieved by the
policy conditioned on the demonstrations yields

π(X∗) ∼ N (µ∗ + 0,Σ∗ + kr(X∗, X∗)) = N (µ∗,Σr∗) (6.41)

Σr∗ = k(X∗, X∗) + kr(X∗, X∗) + k(X∗, X) (k(X,X)+kr(X,X))−1 k(X,X∗) (6.42)

Intuitively, one can understand the term µ∗ as the mean trajectory, Σ∗ as the
uncertainty in the estimation of µ∗ and kr(X∗, X∗) as the inherent task uncertainty.
This idea is illustrated in Figure 6.8. Since a large number of demonstrations are
provided, Σ∗ is almost null. By including the task uncertainty in the policy model
we are able to capture the variability in the demonstrations.

Now the question is, how can we determine the covariance function kr(, ) of the
latent task uncertainty r()? For simplifying the problem, we can decouple the
covariance as the product of the correlation and the variance

kr(x,x
′) = σr(x)σr(x

′)c(x,x′) (6.43)
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Figure 6.8: The task policy π(x) encodes jointly the underlying mean trajectory f(x) and
the task uncertainty r(x). The shaded areas represent two times the standard deviation
and the solid lines the means. Due to the large amount of training data the uncertainty
of f(x) is negligible.

where c(x,x′) describes how is the task uncertainty at the input location x cor-
related with the uncertainty at the input location x′, and σr(x

′) represents the
magnitude of such uncertainty. The former is task-dependent and can be selected
analogously to kernels in Gaussian Processes depending on the nature of the uncer-
tainty. The heteroscedastic Gaussian Process literature always considers

c(xi,xj) = δij (6.44)

However, this assumption is not adequate for robot manipulation tasks. For in-
stance, consider the case shown in Figure 6.9. Assuming that the uncertainty is
uncorrelated, the samples drawn from the posterior are very noisy and not suit-
able to be reproduced by a robot. Instead, by considering a squared exponential
correlation for the noise

c(x, x′) = exp

(
−1

2

(x− x′)2

`2

)
(6.45)

the samples drawn from the posterior are much more smooth. The intuitive idea
behind this behavior is analogous to the standard Gaussian Process design. Con-
sidering a correlation of the form (6.44) we are assuming that the uncertainty in
the task is explained by white noise, resulting in a very wiggly sample.
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Figure 6.9: Comparison between samples drawn from the posterior predictive distribution
considering uncorrelated noise (6.44) (on the left) and considering a correlation of the form
(6.45) with ` = 2.5 (on the right).

The input-dependent magnitude of the uncertainty σr(x) can be inferred from the
demonstrations. As proposed in [83], we can use an independent Gaussian Process
to model the logarithm of the uncertainty, which we denote as

z(x) = log
(
σ2
r(x)

)
∼ GP (mz(x), kz(x,x

′)) (6.46)

By performing a regression of the logarithm, we ensure that the predicted variances
are always positive after computing the exponential for recovering σ2

r(x). Now, let
z = z(X) and z∗ = z(X∗) be the (unknown) vectors obtained after evaluating z(x)
at the training and test input locations, respectively. Considering them as latent
variables and marginalizing, we have that posterior predictive distribution of the
task policy is given by

p (π(X∗) | D, X∗) =

∫∫
p (π(X∗) | D, X∗, z, z∗) p(z, z∗ | D, X∗)dzdz∗ (6.47)

Given z and z∗, the first term can be computed using equations (6.38) and (6.42).
However, p(z, z∗ | D, X∗) prevents an analytical solution. Thus, for computing the
integral we can assume the following approximation

p (π(X∗) | D, X∗) ' p(π(X∗) | D, X∗, z̃, z̃∗) (6.48)

where z̃ and z̃∗ are the most likely log-uncertainty levels
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(z̃, z̃∗) = arg max
z,z∗

p(z, z∗ | D, X∗) (6.49)

This is a good approximation if most of the probability mass of p(z, z∗ | D, X∗) is
concentrated around the most likely values of z and z∗. Considering the Gaussian
Process model in (6.46) we have that they are given by

z̃ = mz(X) + kz(X,X)kz(X,X)−1 (z −mz(X)) (6.50)

z̃∗ = mz(X∗) + kz(X∗, X)kz(X,X)−1 (z −mz(X)) (6.51)

The problem is that we do not have direct observations z. For the moment, let us
assume the following true posterior predictive distribution for the task policy

π(x) ∼ N (µ(x),Σ(x,x′)) (6.52)

In this case, we can compute an estimate of the task uncertainty as [84]

σ2
r(xi) =

1

2

(
(yi − µ(xi))

2 + σ2(xi)
)

(6.53)

where σ2(xi) = diag (Σ(xi,xi)). Thus, we can build a dataset for the task uncer-
tainty Dz = (X, z) empirically from the demonstrations with

z = log

(
1

2

(
(y − µ(X))2 + σ2(X)

))
(6.54)

Then, we can obtain the most likely log-uncertainty (z̃, z̃∗) from equations (6.50)
and (6.51). Finally, to recover the task uncertainty note that we cannot directly
exponentiate z̃ and z̃∗ since

E
[
σ2
r(X)

]
= E [exp (z̃)] =

∫
exp(z) · N

(
z̃, σ2

z(X)
)
dz (6.55)

By direct exponentiation we would under-predict the true uncertainty levels by
introducing a bias from the transformation [85]. Integral (6.55) has an analytical
solution, since the result is the mean of the Log Normal distribution. That is,

E
[
σ2
r(X)

]
= exp

(
z̃ +

σ2
z (X)

2

)
(6.56)
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However, remember that for obtaining the samples of the log-uncertainty z we have
assumed the posterior predictive distribution (6.52), which we cannot compute with-
out knowing the task uncertainty. For this reason, the optimization procedure has to
be performed iteratively. Initially, we compute the posterior predictive distribution
of π(x) as a standard Gaussian Process. In this way, we can obtain a first estimate
of the log-uncertainty and compute the heteroscedastic Gaussian Process. Then,
we evaluate the similarity between the initial standard Gaussian Process and the
heteroscedastic one. If they are very different, we take as our new estimate of π(x)
the heteroscedastic Gaussian Process and update the log-uncertainty, repeating the
steps until convergence. The procedure is summarized in Algorithm 4.

Algorithm 4: Most Likely Heteroscedastic Gaussian Process

Input: D = (X,y) (demonstrations), X∗ (prediction inputs),
mf (), kf (, ) (f(x) prior mean and covariance),
mz(), kz(, ) (z(x) prior mean and covariance),
c(, ) (uncertainty correlation)

/* Train a standard Gaussian Process on D */

1 µ,Σ = GP(D, kf ,mf );

2 while True do

/* Estimate empirically the latent uncertainty */

3 z = log
[

1
2

(
(y − µ)2 + diag (Σ)

)]
−→ Dz = (X, z);

/* Train a standard Gaussian Process on Dz */

4 µz,Σz = GP(Dz, kz,mz);

/* Train a heteroscedastic Gaussian Process on D */

5 σ2
r(X) = exp (µz + diag (Σz) /2) −→ kr(X,X) = σ2

r(X)c(X,X);
6 µ′,Σ′ = HeteroscedasticGP(D,mf , kf , kr);

/* Evaluate convergence */

7 if ‖µ− µ′‖ < εµ and ‖Σ−Σ′‖ < εΣ then
8 break;
9 else

10 µ,Σ = µ′,Σ′;
11 end

12 end
13 µ∗,Σ∗ = HeteroscedasticGP(D, X∗,mf , kf , kr);
14 return: µ∗ (posterior mean), Σ∗ (posterior covariance)
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Figure 6.10: On the left, an illustration of the iterative optimization procedure summa-
rized in Algorithm 4. The solid lines represent the evolution of two times the estimate
of the standard deviation and the dashed lines the evolution of mean. Blue colors corre-
spond to the first iterations while red colors correspond to the last ones. On the right,
the resulting most likely heteroscedastic GP along with the true latent uncertainty.

In Figure 6.10, we illustrate the computation of the most likely heteroscedastic
Gaussian Process using Algorithm 4. We can see that initially, the estimate of the
task uncertainty is constant along with the task and it iteratively evolves towards
the true value. Note that the estimation of the mean does not vary significantly,
since the initial standard Gaussian Process already provides a good approximation.

6.2.2 Temporal Alignment of Demonstrations

The learned policy can be either time-dependent or time-invariant. As the name
would suggest, time-dependent policies rely on time. These are potentially more ex-
pressive than their time-invariant counterparts and are capable of capturing strate-
gies that vary with time and involve time-based requirements. For instance, time-
dependent policies provide a straightforward mechanism to ensure that the repro-
duced behavior aligns with the demonstration in terms of speed and duration.

However, for robot manipulation tasks we are sometimes interested in capturing
general strategies that are independent of time t ∈ R+. That is, in learning a time-
invariant policy. These have only an implicit dependence on time just to capture
sequential aspects of behavior using a phase variable τ ∈ R. The problem is that
in general, it is very difficult for a human to repeat the demonstrations with the
same velocity and accelerations. As a result, there are distortions and shifts in time
between trajectories that might lead to poor performance when inferring the task
uncertainty with Gaussian Processes.
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Figure 6.11: Importance of the temporal alignment of demonstrations for capturing the
task uncertainty with time-invariant policies. This can be seen by comparing the left
column, where demonstrations are affected by time distortions, against the right column,
where demonstrations are aligned.

Figure 6.11 illustrates the question that we are addressing in this section. We
can see that, by temporally aligning the demonstrations, we are able to capture
the time-independent task uncertainty much more accurately. Correcting the time
shifts in a preprocessing step improves significantly the policy inference process.
First, we introduce the Dynamic Time Warping algorithm for temporal alignment
of time series. Then, we present the task completion index, which allows aligning
the demonstrations of robot manipulation tasks using this algorithm.

Dynamic Time Warping

The Dynamic Time Warping (DTW) algorithm [86] is a well-known technique to
find an optimal alignment between two given (time-dependent) sequences under
certain restrictions. Let y1 = {y11, . . . , y1n} and y2 = {y21, . . . , y2m} be two in-
dependent sequences of length n and m, respectively. To compare the similarity
between two points of each sequence y1i, y2j ∈ Y , one needs a local cost measure,
sometimes also referred to as local distance measure, which is defined to be a func-
tion

d : Y × Y −→ R+ (6.57)
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Figure 6.12: On the left, matching (dashed black lines) between two temporal sequences
y1 and y2, obtained with the DTW algorithm. On the right, the corresponding distance
matrix D, using the Euclidean distance. Regions of low distance are indicated by blue
colors and regions of high distance are indicated by red colors. The warping path is
depicted as a white solid line.

Typically, d(y1i, y2j) is small (low distance) if y1i and y2j are similar to each other,
and otherwise d(y1i, y2j) is large (high distance). Evaluating the local distance
measure for each pair of elements of the sequences y1 and y2, one obtains the
distance matrix D ∈ Rn×m, defined by D(i, j) = d(y1i, y2j). Then the goal is to find
the alignment between y1 and y2 which minimal overall distance. Intuitively, such
an optimal alignment can be seen as a path that runs along a “valley” of low cost
within the cost matrix D. See Figure 6.11 for an illustration.

We can formalize the notion of alignment with the following definition. An (n,m)-
warping path (or simply warping path) is a sequence p = {p1, . . . , pl} of pairs
pk = (ik, jk) defining the alignment between y1 and y2 that satisfies the following
three conditions:

1. Boundary Condition: p1 = (1, 1) and pl = (n,m)

2. Monocity Condition: i1 ≤ i2 ≤ · · · ≤ il and j1 ≤ j2 ≤ · · · ≤ jl

3. Continuity Condition: pk+1 − pk ∈ {(1, 0), (0, 1), (1, 1)}

The boundary condition enforces that the first elements of y1 and y2 as well as the
last elements of y1 and y2 are aligned to each other. In other words, the alignment
refers to the entire sequences y1 and y2. The monotonicity condition reflects the
requirement of faithful timing: if an element in y1 precedes a second one this
should also hold for the corresponding elements in y2, and vice versa. Finally, the
continuity condition implies that no element in y1 and y2 can be omitted and there
are no replications in the alignment. Figure 6.13 illustrates the three conditions.
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Figure 6.13: Illustration of the warping path conditions. (a) Admissible warping path.
(b) The boundary condition is violated. (c) The monocity condition is violated. (d) The
continuity condition is violated (after [86]).

The total distance dp(y1,y2) of a warping path p between y1 and y2 with respect
to the local distance measure d is defined as

dp(y1,y2) =
l∑

k=1

d(y1ik , y2jk) (6.58)

An optimal warping path between y1 and y2 is a warping path p∗ having minimal
total distance among all possible warping paths. The DTW distance DTW(y1,y2)
between y1 and y2 is then defined as the total cost of p∗

DTW(y1,y2) = dp∗(y1,y2) (6.59)

The usual approach to compute the optimal path p∗ is based on a Dynamic Pro-
gramming algorithm. We define the prefix sequences y1(1 : i) = {y11, . . . , y1i} and
and y2(1 : j) = {y2j, . . . , y2j} and set

γ(i, j) = DTW (y1(1 : i),y2(1 : j)) (6.60)

All the entries γ(i, j) define a n×m matrix, which is also referred to as the cumu-
lative distance matrix. Each element represents the minimum total distance to be
traveled by the path to reach (i, j). This matrix can be computed efficiently in a
recursive fashion thanks to the following identities

• γ(i, 1) =
∑i

k=1 d(y1i, y21) for i = 1, . . . , n

• γ(1, j) =
∑j

k=1 d(y11, y2k) for j = 1, . . . ,m

• γ(i, j) = d(y1i, y2j) + min {γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)}
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6.2. Modeling the Task Uncertainty

Figure 6.14: On the left, cost matrix D as in Figure 6.12. On the right, the corresponding
accumulated cost matrix γ along with the optimal warping path p∗ (white line).

Once we have the cumulative distance matrix, we can compute the optimal warping
path following the procedure summarized in Algorithm 5. An example is shown in
Figure 6.14, where the optimal warping path p∗ along with the cumulative distance
matrix γ for the sequences in Figure 6.12 are depicted.

Algorithm 5: Dynamic Time Warping

Input: γ (cumulative distance matrix)

1 p∗ = {};
2 i = rows(γ), j = columns(γ);
3 while i > 1 and j > 1 do
4 if i = 1 then
5 j = j − 1;
6 else if j = 1 then
7 i = i− 1;
8 else
9 q = min {γ(i− 1, j), γ(i, j − 1), γ(i− 1, j − 1)};

10 if q = γ(i− 1, j − 1) then
11 i = i− 1, j = j − 1;
12 else if q = γ(i− 1, j) then
13 i = i− 1;
14 else
15 j = j − 1;
16 end

17 end
18 p∗ = {p∗, (i, j)};
19 end
20 return: p∗ (optimal warping path)
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Figure 6.15: Warped demonstrations using the DTW algorithm and the Euclidean dis-
tance (6.61). On the left column, the demonstrations follow almost an identical path,
being matched successfully. On the right column, they follow different paths, and the
algorithm fails to warp them correctly.

Task Completion Index

The distance function d required by the Dynamic Time Warping algorithm can vary
with the application. In robot learning from demonstration, the most common is
the Euclidean distance between the demonstrated trajectories

d(y1i, y2j) = ‖y1i − y2j‖ (6.61)

However, this relies on the assumption that the manipulation task must be per-
formed always following the same path. An example is shown in Figure 6.15. The
trajectories can be interpreted as demonstrations of a pick-and-place task where the
object is placed at a different height. Using the Euclidean distance as a similarity
measure between each point of the sequence, intermediate points for placing the
object at a higher level are mapped to ending points of the demonstration at a
lower level, since they are the closest in terms of (6.61). This leads to an erroneous
warping, as we can see in the example.

We need to define a different similarity measure, suitable for warping correctly
the demonstrations of a manipulation task where different paths are possible. We
propose to perform the warping in terms of the task completion index ζ

d(y1i, y2j) = ‖ζ1i − ζ2j‖ (6.62)
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Figure 6.16: Warped demonstrations (on the right) using the DTW algorithm in the task
completion index (6.63) space (on the left).

The task completion index (TCI) can be interpreted as a measure of the portion of
the trajectory that has been covered for task completion. We define it as

ζ(t) =

∫ t

0

‖dy(τ)/dτ‖dτ∫ T

0

‖dy(τ)/dτ‖dτ
(6.63)

where y(τ) refers to the value of the demonstrated trajectory y, of duration T , at
time instant τ . The numerator encodes the distance traveled until time instant t,
while the denominator is equivalent to the total distance to cover until the comple-
tion of the task. Note that the TCI fulfills the following

0 = ζ(0) ≤ ζ(t) ≤ ζ(T ) = 1 (6.64)

Alternatively, it can also be defined in discrete form as

ζi =

∑i
k=1|yk+1 − yk|∑n−1
k=1 |yk+1 − yk|

(6.65)

In Figure 6.16, we show that by performing the warping in the TCI space, we are
able to warp the demonstrations in Figure 6.15 correctly.
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6.3 Task Variables

An important aspect of learning from demonstrations is to enable robots to acquire
skills that can be adapted to new situations. Such generalization capability can be
achieved by associating the task variables, that describe the context under which
the demonstrations are performed; with the movement variables, that describe the
skill [35]. Encoding the policy with Gaussian Processes, we can consider the task
variables as the inputs and the movement variables as the outputs. Then, given
a set of demonstrations, the model can learn the constraints and requirements of
the manipulation task from a general perspective. Being capable of retrieving an
adaptive motion for a previously unseen context, described by a new set of task
variables. These can represent a wide range of context features, for instance, the
state of the environment, the robot configuration, positions of objects, etc. They are
collected by the robot and can either be fixed or vary while the motion is executed.

The task variables can be either continuous or discrete. However, the standard
Gaussian Process formulation assumes that the input variables are continuous. As a
first approach to overcome this issue, one might think that we could train a distinct
Gaussian Process model for each possible combination of the discrete variables.
Then, while executing the task, the robot could select which model fits the current
context. However, this method ignores possible correlations and becomes infeasible
as the dimensionality of the discrete variables set grows, since the number of possible
models increases exponentially.

The key ingredient for Gaussian Process design is the covariance function. Defining
the kernel adequately is essential for capturing the topology of the input space, as
we have seen for instance, in Section 6.1.3. In this section we show how to include
discrete task variables, which can be either integer (Section 6.3.1) or categorical
(Section 6.3.2) in the learned policy, focusing on the design of the covariance struc-
ture. Finally, in Section 6.3.3, we discuss how to incorporate discrete and continuous
variables simultaneously in the Gaussian Process model.

6.3.1 Integer Task Variables

An integer variable ι ∈ Z is a discrete variable with ordered levels. The values of the
integer variable can be viewed as a discretization of a continuous one ρ ∈ R. The
key to designing suitable covariance functions is realizing that for integers, unlike
categorical variables, the notion of order is preserved. Therefore, the concept of
similarity between input locations in terms of the distance between points exploited
in kernels for continuous variables can also be applied for discrete integer variables.
Then, we can easily adapt the stationary kernels defined for real inputs to integers.
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6.3. Task Variables

Figure 6.17: Comparison between Gaussian Processes over real input variables ι ∈ R and
discrete integers ι ∈ Z. (a) One-dimensional input. (b) Two-dimensional input. The
training points are depicted as dots. Note that for obtaining an interpretable graphical
representation we have depicted the discrete policy defined over the real plane. However,
only those values at integer input locations are meaningful.
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We can define a non-decreasing transformation

F : Z −→ R (6.66)

such that the order is preserved, which projects the discrete variable into a con-
tinuous space. Therefore, a kernel kZ for integer variables can be obtained from a
kernel for real variables kR by

kZ (ι, ι′) = kR (F (ι) , F (ι′)) (6.67)

In the general case, F is piecewise-linear. However, common warping functions are
based on the cumulative distribution of a uniform, normal or lognormal random
variable F : Z −→ [0, 1]. Note that when kR depends on the distance ‖x−x′‖, then
kZ depends on the distance between ι, ι′ distorted by F .

In order to allow negative correlations one may choose, for instance, the cosine
correlation kernel on [0, β), being β ∈ (0, π] a fixed parameter tuning the minimal
correlation value

kZ (ι, ι′) = cos (F (ι)− F (ι′)) (6.68)

An example of a Gaussian Process over discrete variables, compared with its con-
tinuous counterpart is depicted in Figure 6.17. We can see that the policy over
integers is analogous to a discretization of the policy over reals, taking only values
at the discrete input locations.

6.3.2 Categorical Task Variables

A categorical variable κ ∈ K is a discrete variable where there is not a notion
of order between levels, in contrast with integer variables. Thus, we cannot use
kernels based on the distance between input variables as we usually do for Gaussian
Processes. What we have in a categorical input space K is the notion of equality
= and inequality 6=. The question then comes down to constructing a valid kernel
based on these operations.

The usual approach for dealing with this type of variable in machine learning is
one-hot encoding. Basically, this consists of adding as many extra input variables
as different values the categorical variable can take. Then, each category is encoded
by a ‘1’ on the corresponding input and a ‘0’ in all the remaining ones. Although it
might be appealing for its simplicity, the major drawback is that the dimensionality
of the input can increase dramatically.

156



6.3. Task Variables

The most parsimonious kernel parametrization is the compound symmetry (CS)
covariance structure

kK (κ, κ′) =

{
v if κ = κ′

c if κ 6= κ′
with v ≥ 0 and v ≥ c (6.69)

where v is the variance and c is the covariance. All pairs of categories are treated
equally, being the similarity maximum for two equal input points, and minimum
for different ones. This is an important limitation when the categorical variable can
take a large number of values. A more flexible parametrization can be obtained by
considering groups of categories [87]. Let the discrete categorical set be partitioned
into G groups, and g(κ) be the group number corresponding to the value κ of the
categorical variable. The covariance function can be expressed as

kK (κ, κ′) =

{
v if κ = κ′

cg(κ),g(κ′) if κ 6= κ′
(6.70)

where for all i, j ∈ {1, . . . , G}, the terms ci,i/v are within-group correlations, and
ci,j (i 6= j) are between-group correlations. Note that additional constraints on v
and ci,j are required to ensure that kK is a valid kernel function. The corresponding
Gram matrix K, written in block form is

K (κ,κ′) =

 W1 . . . B1,G
...

. . .
...

BG,1 . . . WG

 (6.71)

where diagonal blocks Wg and constant off-diagonal blocks Bg,g′ encode within-
group and between-group covariances respectively. The necessary and sufficient
conditions [87] for K to be positive semidefinite are:

• Wg is positive semidefinite ∀ g = 1, . . . , G

• Wg −W gJg is positive semidefinite ∀ g = 1, . . . , G

where Jg is a matrix of ones with the size of Wg and W g the average of its elements.
An example of a Gaussian Process over a binary categorical variable compared with
its continuous counterpart is shown in Figure 6.18. We can see that since we only
have two possible values of κ, the resulting policy is also binary.
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Figure 6.18: Comparison between Gaussian Processes over real input variables κ ∈ R and
discrete categorical variables κ ∈ K. The training points are depicted as black and white
dots. Note that for obtaining an interpretable graphical representation we have encoded
κ in the real plane as (1, 0) = True and (0, 1) = False. However, only the policy at these
input locations is meaningful.

6.3.3 Combining Real, Integer, and Categorical Variables

So far we have seen how to include discrete integer, categorical and real variables
separately in a Gaussian Process. Now we address how to combine them in a single
model. Without loss of generality, we can consider the three-dimensional input

x = (ρ, ι, κ) ∈ X = R× Z×K (6.72)

Focusing the modeling effort on the covariance structure, kernels for inputs with
multiple dimensions on X can be obtained by combining one-dimensional kernels
[88] on R, Z and K. Standard valid combinations are the (1) product, (2) sum or
(3) ANOVA across the different input dimensions.
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Figure 6.19: Sum (6.73), product (6.74) and ANOVA (6.75) composition across two input
dimensions x1 and x2. The latter is equivalent to the sum of the first two.

The sum composition can be written as

k(x,x′) = kR(ρ, ρ′) + kZ(ι, ι′) + kK(κ, κ′) (6.73)

Roughly speaking, adding two kernels can be thought of as an OR operation. That
is, the resulting kernel will have a high value if any of the base kernels have a high
value. On the other hand, the product composition is expressed as

k(x,x′) = kR(ρ, ρ′) · kZ(ι, ι′) · kK(κ, κ′) (6.74)

This is the standard way of combining kernels across multiple dimensions. Roughly
speaking, it can be thought of as an AND operation. That is, the resulting kernel
will have a high value only if all the base kernels have a high value. Finally, the
ANOVA composition is written as

k(x,x′) = [1 + kR(ρ, ρ′)] · [1 + kZ(ι, ι′)] · [1 + kK(κ, κ′)]− 1 (6.75)

It can be seen as a generalization of (6.73) and (6.74), since it captures all the
interactions in terms of sums and products between the input variables. This allows
more flexibility in the model. The operation is equivalent to the tensor product.
An illustration of the presented kernel compositions for a two-dimensional input is
shown in Figure 6.19. We can see that the ANOVA composition is equivalent to
the combination of the sum and the product.
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Figure 6.20: Task which depends on real ρ, integer ι and categorical κ variables encoded
by function (6.76). The samples used as demonstration data are depicted as black dots.

In order to illustrate the combination of real, categorical, and integer variables
in the same policy, consider a task represented deterministically by the following
function

π(ρ, ι, κ) =


0.2− ρ · ι/10 if κ = lin

0.3 sin (5π · ρ− ι/2 + π/4) if κ = sin

0.1 + 0.3 sin (3π · ρ− π/2) exp (1.2 · ρ · ι) if κ = dsin

(6.76)

with ρ ∈ [0, 1], ι ∈ {1, 2, 3, 4, 5} and κ ∈ {lin, sin, sin}. We aim at reconstructing this
task policy from demonstrations. As training data we take the samples depicted in
Figure 6.20. We can see that the path varies greatly with κ, being either linear (lin),
a sinusoid (sin) or a damped sinusoid (dsin). On the other hand, slight variations
are explained by the integer variable ι.

For the kernel design, we consider the ANOVA composition (6.75), a squared-
exponential kernel for the integer and real inputs, and a block compound symmetry
kernel (6.70) for the categorical input. The resulting covariance matrix after op-
timizing the hyperparameters by maximum likelihood is shown in Figure 6.21a).
We can clearly see the blocks of the categorical kernel, being almost uncorrelated
κ = lin and κ = sin, and quite correlated κ = sin and κ = dsin. Also, note that
each block is at the same time divided into five other blocks, corresponding to the
different values of ι. The resulting mean of the policy, inferred from the demon-
strations, is depicted in Figure 6.21b). We can observe that the Gaussian Process
model is able to recover (6.76) using the proposed kernel design.
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Figure 6.21: Policy inferred from the demonstrations of task (6.76). (a) Training covari-
ance matrix after optimization of the hyperparameters by maximum likelihood, construced
as the ANOVA composition (6.75) of the one-dimensional kernels kR(ρ, ρ′), kZ(ι, ι′) and
kK (κ, κ′). (b) Posterior predictive mean of the policy after providing the training data
depicted as black and white dots, using the covariance structure in (a).
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6.4 Policy Adaptation

Human demonstrations can be used to retrieve a distribution of trajectories that the
robot exploits to carry out a specific task. However, in dynamic and unstructured
environments the robot also needs to adapt its motions when required. For example,
if an obstacle suddenly occupies an area that intersects the robot’s motion path,
the robot is required to modulate its movement trajectory so that collisions are
avoided. A similar modulation is necessary (e.g., in pick-and-place and reaching
tasks) when the target varies its location during the task execution [49]. This can
be achieved by introducing via-point constraints in the policy.

Besides the modulation of a single trajectory, another challenging problem arises
when the robot is given a set of movement policies that only solve a fraction of the
task. For instance, in a task where actions on different objects are required. The
candidate policies can be exploited to compute a mixed trajectory, combining all of
them into a single movement.

In this section, we do not focus on retrieving a policy of the task, but on its adap-
tation, once we have it. First, in Section 6.4.1, we discuss how to constraint it to
pass through specified via-points. Then, in Section 6.4.2, we show how to combine
multiple policies to retrieve a single representation that encompasses all of them.

6.4.1 Via-point Constraints

The modulation of the policy through via-point constraints is an important property
to adapt the learned motion to new situations. Formally, let us define a set of M
desired via-points

V = {xvi, yvi}Mi=1 = (Xv,yv) (6.77)

Considering a stochastic representation of the policy, the problem is to find the
posterior predictive distribution given the demonstrations dataset D = (X,y) and
the via-point constraints V for the query input locations X∗. In probabilistic terms,
this is equivalent to

π(X∗) ∼ p (π(X∗) | D,V , X∗) (6.78)

Assuming that the demonstrations are independent of the via-point constraints we
can express (6.78) as

π(X∗) ∼ p (π(X∗) | D, X∗) · p (π(X∗) | V , X∗) (6.79)
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As we have seen throughout this chapter, the first term in (6.79) can be obtained
using a Gaussian Process model. But, what about the second term? The idea
behind imposing via-point constraints is that we want our policy π(x) to retrieve
action yvi when the input is xvi. Probabilistically, we can write this as

π(xvi) ∼ p(π(xvi) | xvi, yvi) = N
(
yvi, σ

2
vi

)
(6.80)

where the variance σ2
vi is selected based on the task requirements. For instance, if

the robot needs to pass through yi with high precision, we should assign a small
variance. On the contrary, for via-points that allow for large tracking errors, we can
set a high variance. Considering the whole set of via-points V instead of a single
point, (6.80) is extended to a multivariate Gaussian distribution

π(Xv) ∼ p (π(Xv) | V) = N (yv,Σv) (6.81)

What does this tell us about the conditional probability distribution at the query
points p (π(X∗) | V , X∗)? Note that this problem is analogous to a standard Gaus-
sian Process regression, but considering an input-dependent variance σ2

vi. In Section
6.2.1, we discussed how to embed this type of variance in the model. The differ-
ence, in this case, is that instead of inferring it from the demonstrations, we should
specify it based on the task requirements. As we did in Section 6.2.1, assuming a
null prior mean, the posterior distribution of the via-point constraints is given by

π(X∗) ∼ p(π(X∗) | V , X∗) = N (µv∗,Σv∗) (6.82)

µv∗ = k(X∗, Xv) (k(Xv, Xv) + kv(Xv, Xv))
−1 yv (6.83)

Σv∗ = kv(X∗, X∗)− k(X∗, Xv) (k(Xv, Xv) + kv(Xv, Xv))
−1 k(Xv, X∗) (6.84)

encoding k(, ) the relation between the mean of the via-point constraints and the
mean at an arbitrary input location, and kv(, ) analogously for the variance. The
latter can be expressed as

kv(x,x
′) = σv(x)σv(x

′)c(x,x′) (6.85)

where σv(xvi) = σvi specifies the strength of the via-point constraint and c(x,x′) de-
fines the correlation between x and x′. Then, if the posterior predictive distribution
of the policy conditional on the demonstrations is given by

π(X∗) ∼ p(π(X∗) | D, X∗) = N (µ∗,Σ∗) (6.86)
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Figure 6.22: Illustrative example of the adaptation of a policy through via-points. In (a)
we have the posterior distribution of the specified via-point constraints (6.82), considering
the variance in (b). Then, in (d) we have the policy depicted in (c) after the modulation.

We have that (6.78) is then given by the product of two Gaussian distributions,
which yields also a Gaussian distribution of the following form

π(X∗) ∼ p (π(X∗) | D,V , X∗) = C−1 · N (µ′∗,Σ
′
∗) (6.87)

µ′∗ =
(
Σ−1
∗ + Σ−1

v∗
)−1 (

Σ−1
∗ µ∗ + Σ−1

v∗ µv∗
)

(6.88)

Σ′∗ =
(
Σ−1
∗ + Σ−1

v∗
)−1

(6.89)

C = |2π (Σ∗ + Σv∗)|−
1
2 exp

(
−1

2
(µ∗ − µv∗)T (Σ∗ + Σv∗)

−1 (µ∗ − µv∗)
)

(6.90)

where C is a normalization constant. The resulting distribution is a compromise
between the via-point constraints and the demonstrated trajectories, weighted in-
versely by their variances. Thus, via-points with low variance modify significantly
the learned policy and via-points with a high variance produce a more subtle mod-
ulation. Additionally, it is important to note that for modulating the policy we do
not have to re-train the model, since we only need the posterior distribution at the
query input locations.

An illustrative example of the adaptation of a policy through via-points is shown in
Figure 6.22. Those via-points that have a smaller variance produce a stronger effect.
Also, it should be remarked that a smooth specification of the variance profile σv(x)
is recommended for the via-point constraints. A sharp profile would modulate the
policy only in a small region close to the via-points, appearing peaks in the mean
trajectory, which is not desirable for a robot policy.
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6.4.2 Combination of Policies

In some cases, decomposing a manipulation task in multiple sub-tasks allows for
more flexibility in the learning process. We can train multiple simple policies and
then combine them based on the current task requirements instead of learning a
complex policy for each particular situation. Formally, given a set of M task policies

P = {πi(x)}Mi=1 (6.91)

How can we encompass all of them in a single policy π̂(x)? Intuitively, one can
think that each policy encodes a series of task constraints. Thus, for obtaining a
meaningful blend, the combined representation must encode all the task constraints
simultaneously. Let each sub-policy πi() have associated the following posterior
predictive distribution for the query inputs

πi(X∗) ∼ p(πi(X∗) | Di, X∗) = N (µi∗,Σi∗) (6.92)

where Di is the corresponding demonstrations dataset. Assuming each set of task
constraints πi() as independent, the posterior predictive distribution of the com-
bined policy is given by

π̂(X∗) ∼ p(π̂(X∗) | D1, . . . ,DM , X∗) =
M∏
i=1

p(πi(X∗) | Di, X∗) (6.93)

Since each sub-policy πi() is distributed according to a Gaussian distribution (6.92),
the product (6.93) is again a Gaussian with the following mean and variance

π̂(X∗) ∼ N
(
µ̂∗, Σ̂∗

)
(6.94)

µ̂∗ =

(
M∑
i=1

Σ−1
i∗

)−1( M∑
i=1

Σ−1
i∗ µi∗

)
(6.95)

Σ̂∗ =

(
M∑
i=1

Σ−1
i∗

)−1

(6.96)

We can see that the resulting combined policy is a compromise between the M
policies, each weighted inverse to their variances. Thus, those task constraints with
a lower uncertainty have a higher relative weight.
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Figure 6.23: Combination of two task policies π1(x) and π2(x). In the first and the second
rows, we have the independent extraction of two task constraints. In the third row, we
have the combined policy π̂(x) (blue color).

Note that the introduction of via-point constraints, discussed in Section 6.4.1, can
also be interpreted as the combination of two independent policies. The difference
is that the policy associated with the via-point constraints is not given beforehand.
Instead, we have to infer it from the specified via-points.

An illustrative example of the combination of two task policies is shown in Figure
6.23. Two demonstration datasets are used to train two independent models, π1(x)
and π2(x). We can see that the former presents a high task uncertainty for small
values of the input x, and a small uncertainty for high values. On the other hand,
the opposite occurs for π2(x). We can see that the combined policy π̂(x) represents
an intermediate behavior between the sub-policies, weighted inversely by their un-
certainty. For low values of x is almost identical to π1(x) while for higher values it
is almost identical to π2(x).
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6.5 Inference and Prediction under Replication

When the demonstration dataset becomes large, the computational requirements
of Gaussian Processes start to become important. Especially, when the number of
training points N becomes larger than a thousand [6]. Using Gaussian Processes,
mainly two operations are involved: prediction and inference. The former refers to
the computation of the posterior predictive distribution

π∗ = π(X∗) ∼ N (µ∗,Σ∗) (6.97)

µ∗ = m(X∗) + k(X∗, X)k(X,X)−1 (y −m(X)) = m∗ +KT
∗K

−1 (y −m) (6.98)

Σ∗ = k(X∗, X∗) + k(X∗, X)k(X,X)−1k(X,X∗) = K∗∗ −KT
∗K

−1K∗ (6.99)

On the other hand, inference refers to the evaluation of the log-likelihood for the
optimization of the kernel hyperparameters θ

L = log p (y | X,θ) = −1

2
(y −m)T K−1 (y −m)− 1

2
log |K| − N

2
log 2π (6.100)

A question we could ask ourselves is which is the computational complexity of these
calculations. This depends on the number of training N and prediction N∗ points.
To analyze it, we can apply the following rules

• Adding/substracting two n×m matrices takes O (nm) time.

• Multiplying and n×m matrix by a m× l matrix takes O (nml) time.

• Multiplying a n×m matrix by a vector of size m takes O (nm) time.

• Inverting a n× n matrix takes O(n3) time.

• Computing the determinant of a n× n matrix takes O(n3) time.

Using these results, we can see that regarding the prediction step, calculating the
predictive mean µ∗ (6.98) takes O (N3 +N∗N

2 +N∗N +N +N∗) time, and com-
puting the predictive covariance Σ∗ (6.99) takes O (N3 +N∗N

2 +N2
∗N +N2

∗ ) time.
With respect to the inference step, the computation of the log-likelihood takes
O (2N3 +N2 + 3N) time. In practice we usually have that the number of training
points is much larger than the number of query points N � N∗. Thus, the com-
putational complexity of a Gaussian Process regression is approximately O(N3),
which scales dramatically with the amount of demonstration data.
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For alleviating the computational complexity we can exploit the structure of replica-
tions i.e., repeated demonstrations for identical inputs [89]. These appear naturally
in the context of learning from demonstration since replications are essential for
capturing the task uncertainty. For the developement, we assume a heterocedastic
Gaussian Process model, which we discuss in detail in Section 6.2.1. The standard
prediction (6.98), (6.99) and inference (6.100) equations are changed to

µ∗ = m∗ +KT
∗ (K +R)−1 (y −m) (6.101)

Σ∗ = K∗∗ +R∗∗ −KT
∗ (K +R)−1K∗ (6.102)

L = −1

2
(y −m)T (K +R)−1 (y −m)− 1

2
log |K +R| − N

2
log 2π (6.103)

where R and R∗∗ are the covariance matrices that encode the task uncertainty
at the training and query inputs, respectively, which for this section we assume
diagonal. Now, let x̂i represent the i-th out of n � N unique input locations in
the demonstrations dataset, and y

(j)
i be the j-th out of ai ≥ 1 replicates observed

at x̂i, where
∑n

i=1 ai = N . Then, let

ŷ =
[
ŷ1 . . . ŷn

]T
, ŷi = a−1

i

ai∑
j=1

y
(j)
i (6.104)

be the vector whose i-th element is the average of the observations at x̂i. We now
develop a map from the covariance matrices considering the N data points KN and
RN to their unique-n counterparts Kn and Rn. Without loss of generality, assume
that the data are ordered so that

X =
[
x̂1 . . . x̂1 . . . x̂n

]
(6.105)

where each input is repeated ai times, and where y is stacked with observations on
the ai replicates in the same order. With X composed in this way, we have

KN = UKnU
T , KN∗ = UKn∗, UTRNU = AnRn, UTy = Anŷ (6.106)

where the matrices U and An fulfill the following identities

U = diag (1a1,1, . . . ,1an,1) , An = diag (a1, . . . , an) , UTU = An (6.107)

denoting 1k,l a k × l matrix filled with ones.
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We can write the prediction (6.101)(6.102) and inference (6.103) equations in terms
of Kn and Rn making use of two well-known formulas, together comprising the
Woodbury identity

(D +UBV )−1 = D−1 −D−1U
(
B−1 + V D−1U

)−1
V D−1 (6.108)

|D +UBV | =
∣∣B−1 + V D−1U

∣∣ · |B| · |D| (6.109)

where D and B are invertible matrices. Using decomposition (6.106), and applying
the Woodbury identity (6.101), taking D = RN , B = Kn and V = UT , the
predictive equations yield (see [89] for the full proof)

µ∗ = m∗ +KT
n∗
(
Kn +A−1

n Rn

)−1
(ŷ − m̂) (6.110)

Σ∗ = K∗∗ +R∗∗ −KT
n∗
(
Kn +A−1

n Rn

)−1
Kn∗ (6.111)

Note that equation (6.110) establishes that the predictive mean, calculated on
the average observations at replicates, and with covariances calculated only at the
unique input locations, is indeed identical to the original predictive equations built
by overlooking the structure of replication. Equation (6.111) reveals the same result
for the predictive variance. Similarly, applying the Woodbury identity (6.109) in
the inference equation yields

L =− 1

2
(y −m)T R−1

N (y −m) +
1

2
(ŷ − m̂)T AnR

−1
n (ŷ − m̂)−

− 1

2
(ŷ − m̂)T

(
Kn +A−1

n Rn

)−1
(ŷ − m̂)− 1

2
log
∣∣Kn +A−1

n Rn

∣∣+
+ log |RN |+ log

∣∣A−1
n Rn

∣∣
(6.112)

We can see here the reason for the requirement of a diagonal RN , otherwise, the
complexity of the computation of the log-likelihood would remain the same as in the
standard Gaussian Process. Then, by exploiting the structure of replications, we
are able to retrieve the exact same model, reducing the computational complexity
of the prediction and inference equations from O (N3) to O(n3).

In order to illustrate the potential of exploiting the structure of replications in the
Gaussian Process design, consider a manipulation task modeled by

y(x) = 5 sin

(
4π

10
x− π

4

)
exp(−0.3x)

1 + exp (−0.5x)
+N

0 ,
0.5

1 + exp

(
−x+ 5

2

)
 (6.113)

where the second term represents the input-dependent uncertainty.
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Figure 6.24: On the top row, the mapping between the full covariance matrix KN and its
unique-n counterpart Kn through the replicate decomposition Kn → U → KN (6.106).
On the second and third rows, the resulting Gaussian Process model after the inference
and prediction steps, overlooking and exploiting the structure of replications, respectively.
The green dots depict the training samples. The computation time required for the former
is ts = 0.2284s, and for the latter, trep = 0.0021s.

In Figure 6.24, we can see the results after training a Gaussian Process model on
N = 1969 samples from (6.113). The demonstration dataset presents a high degree
of replication since we have only n = 40 unique input locations. We can see that
the covariance matrix Kn is similar to KN but with a size considerably smaller. We
can also observe that the model retrieved overlooking the structure of replications is
identical to the one obtained considering the replicate decomposition. This is due to
the exact nature of the method. The main difference lies on the computation time
required for inference and prediction. For the standard model it takes ts = 0.2284s
while for the replication-based model it takes just trep = 0.0021s.
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6.6 Application Examples

Endowed with higher levels of autonomy, robots are required to perform increasingly
complex manipulation tasks. Learning from demonstration is a promising paradigm
in this direction since it allows robots to learn tasks that cannot be easily scripted,
but can be demonstrated by a human teacher. In this section, we illustrate the po-
tential of the Gaussian-Process-based framework presented in this chapter through
a series of real-world experiments. First, in Section 6.6.1, we address the problem
of learning to open doors [90]. Then, in Section 6.6.2, we evaluate some of the most
relevant aspects of our method through the robot writing task [91].

6.6.1 Door Opening Task

Service robots operating in domestic environments are typically faced with a variety
of objects they have to deal with or they have to manipulate to fulfill their task. A
further complicating factor is that many of the relevant objects are articulated, such
as doors. The ability to deal with such articulated objects is relevant for assistive
robots, as, for example, they need to open doors when navigating between rooms
and to open cabinets to pick up objects in fetch-and-carry applications [92].

Opening doors is a task that is intuitive to teach but is difficult to hard-code since
they are objects that come in a wide variety of sizes. For example, consider a room
door, a refrigerator door, a small cabinet door, etc. We distinguish between two
parts in the learning scheme: first, the inference of the policy from the demonstra-
tions of the human teacher, which requires an adequate Gaussian Process design;
second, the online adaptation to the current task requirements during the execution
of the door opening motion based on the robot’s sensorial feedback.

Policy Inference from Human Demonstrations

Demonstrations are recorded using the Xsens MVN motion capture system (a brief
description of the device is given in Section 5.4.2). In Figure 6.25, we show some
pictures of the human teacher performing the door opening motion. We can see
that the interface for providing the demonstrations is basically a gown with wearable
sensors that tracks several limbs of the operator.

We record the position and orientation of the operator’s right hand relative to the
initial position with the door closed. The reference frame is selected such as that
the initial pulling direction is parallel to the x-axis and the y-axis is perpendicular
to the floor. For the demonstration dataset, we consider three different doors and
two trajectories per each door i.e., a total of six trajectories.

171



Chapter 6. Learning from Demonstration with Gaussian Processes

Figure 6.25: Demonstrations of the door opening motion are recorded using the MVN
motion capture system. The human teacher opens doors with different radius.

Figure 6.26: Recorded right-hand trajectories of the demonstrations dataset.

The demonstration dataset is shown in Figure 6.26. We can see that the door open-
ing motion is planar. Thus, we can encode the trajectory using three coordinates,
two for the position and one for the orientation. For the policy input, we consider
only a phase variable for capturing the sequential aspects of the task. With respect
to the selection of the kernel, the generated paths have to be continuous and smooth.
Also, we have to take into account that the proposed phase parametrization of the
trajectory is invariant to translations in the input domain. Then, the covariance
function must be stationary. All these requirements are fulfilled by the squared
exponential kernel (6.16). Moreover, since we have multiple outputs, we also have
to consider the prior interaction in the design. Since in a general case we usually
do not have any previous knowledge, we assume that the output components are
independent.
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Figure 6.27: Inference of the door opening policy from human demonstrations. The
outputs are the position, defined by (x, z), and the orientation defined by θuz taking the
axis-angle representation. The input is a phase variable τ . On the left column, we have
the demonstrations of the door opening motion. On the middle column, the trajectories
temporally aligned. On the right column, the inferred Gaussian Process (GP) policy.

The main steps of the learning process of the door opening policy are illustrated in
Figure 6.27. The rotation component is encoded using the axis-angle representa-
tion. The demonstrated trajectories are aligned with the Dynamic Time Warping
algorithm using the task completion index. We can see that the trajectories are
warped effectively since they are clearly clustered in three different groups, one for
each type of door. Once the trajectories are aligned, we infer the task policy train-
ing a heteroscedastic Gaussian Process model on the demonstration data. We can
observe that the model effectively captures the door opening skill. This is more
clear in Figure 6.28, where the task uncertainty has been projected onto the x-z
plane. In this case, the variability in the task comes from the uncertainty in the
radius of the door, which is reflected in the resulting policy.
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Figure 6.28: Door opening policy in Figure 6.27, projected onto the x-z plane.

Policy Adaptation During the Execution of the Task

During the execution of the task, we can exploit the observations of the motion of
the door which is currently being opened to adapt the learned policy. Specifically,
we can gather these data by solving the forward kinematics of the robot, and use it
to define a set of via-point constraints. By updating this set at each time step we
can adapt the motion online to the current task requirements. In order to evaluate
quantitatively the performance of the adaptive policy against the one based solely on
the demonstrations, we use the mean squared prediction error (MSPE). Assuming
that there exists a ground truth policy π̃(), which is the case when opening a door,
the MSPE summarizes the predictive ability of the model. Ideally, this value should
be close to zero

E
[
ε2
]

= (E [π(X∗)]− π̃(X∗))
2 + V [π(X∗)] (6.114)

where E[] and V[] refer to the expectancy and the variance, respectively. The
evolution of the adaptive policy and the MSPE during the execution of the door
opening motion is shown in Figure 6.29. We can see that by conditioning on the
current observations of the door we are able to reduce the task uncertainty in the
near future, converging also the mean to the ground truth. This translates into
better performance in terms of the MSPE, as we can see in Figure 6.29b). It is
reduced by almost two orders of magnitude in the final stages of the task. With the
proposed approach we are able to successfully perform the door opening task with
the TIAGo robot, as can be seen in Figure 6.30.
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Figure 6.29: (a) Evolution of the posterior predictive distribution considering as via-points
the observations of the door motion in the light-blue shaded area. (b) The first row shows
the comparison between the predictive distribution considering the adaptive policy or the
policy based only on human demonstrations. In the second row we can see the mean
squared prediction error (6.114) of each policy.

Figure 6.30: TIAGo robot opening the door.
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Figure 6.31: Demonstrations of the handwriting task are performed using a tablet.

6.6.2 Learning to Write

Learning to write is a skill that suits perfectly in the learning from demonstration
context. The task has been explored for engaging robots in teaching activities.
By letting a child teach a robot how to write, not only does the child practice
handwriting but, as they take on the role of the teacher, they also positively reinforce
their self-esteem and motivation [93].

Through the writing task, we illustrate and evaluate some of the main concepts
of the presented Gaussian-Process-based learning from demonstration framework.
First, we build an experimental handwritten dataset, which includes trajectories
for several letters indexed by real, integer, and categorical task variables. Then, we
consider the problem of learning a policy from the demonstrations, comparing the
performance of different Gaussian Process designs. Next, we assess the adaptability
of the resulting policy by evaluating the modulation through via-points, and the
interpolation and extrapolation capabilities. Finally, we study, in terms of compu-
tational time, the implications of considering the structure of replications.

Handwritten Letter Dataset

The demonstration dataset has been generated experimentally by handwriting dif-
ferent letters on a tablet using a standard note app (Figure 6.31). We extracted
the data by first screen recording while writing, and then, processing the resulting
videos with computer vision techniques. As output variables, we take the x and y
coordinates of the path that describes the handwriting motion. As input variables
we take a phase variable ρ; the size of the letter ι, which we consider defined by the
height, measured as an integer height = ι×8mm; and finally, the letter correspond-
ing to the motion κ, e.g. ‘A’, ‘B’, ‘C’, etc. The variables and the domain sampled
in the dataset are summarized in Table 6.1.
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Figure 6.32: Handwritten letter dataset. Trajectories are indexed by the input variables
indicated in Table 6.1. A total of 5 replicates are provided for each possible combination
of the discrete variables ι and κ, represented in the same color. On the left column, each
pair of trajectories x(ρ), y(ρ) on the right column is projected onto the x-y plane.
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Variable Symbol Type Domain

Time ρ Input [0, 1]

Size ι Input {2, 3, 4, 5, 6}
Letter κ Input {A,B,C,D}

Horizontal coordinate x Output R
Vertical coordinate y Output R

Table 6.1: Handwritten letter dataset variables.

The size of the dataset was guided by the discrete task variables, such that each
of the 5 × 4 = 20 possible discrete input locations have 5 replicates. That is a
total of 100 different demonstrations. The dataset, after aligning temporally the
trajectories, is shown in Figure 6.32.

Task Policy Design

We aim to learn a movement policy from the demonstrations that is capable of
generating the motion required to write a given letter with a specified size. As in
the presented Gaussian-Process-based approach, we focus the modeling effort on
the covariance structure. A-priori, the outputs are uncorrelated since the relation
between them depends on the letter being written. Thus, we use a diagonal matrix
covariance function for the multi-output Gaussian Process.

Regarding the diagonal elements, since we have multiple input dimensions of dif-
ferent nature, we can build the kernel as a composition, which can be either sum
(6.73), product (6.74) or ANOVA (6.75), of one-dimensional kernels. For kR we
consider the squared-exponential and the Matérn; for kZ we propose the cosine ker-
nel (6.68); finally, for kK we take the CS structure (6.69). To select the best model,
we split the dataset in 50% for learning the task policy and the remaining 50% for
assessing its performance. The results obtained for different covariance structures
in terms of the coefficient of determination R2 coefficient are shown in Table 6.2.
Although very accurate predictions are obtained either with the product or ANOVA
composition, the best score is achieved by the ANOVA+Matérn model. In Figure
6.33, we can see that the task policy effectively retrieves the motion required for
different letters and sizes, also encoding the uncertainty.

Composition Product Sum ANOVA

kR = SE 0.87 0.32 0.93

kR = Matérn 0.89 0.35 0.94

Table 6.2: Coefficient of determination R2 for different covariance structures.
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Figure 6.33: Motion retrieved by the task policy learned from the demonstrations for
writing different letters with different sizes. The solid blue line denotes the mean, the
blue shaded area, the 95% confidence interval, and the green dots, the training data.
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Generalization Capabilities of the Task Policy

Here, we study the generalization capabilities of the learned task policy by evaluat-
ing how is it adapted to unseen scenarios. This adaptation can be achieved either
through the specification of via-points, or relying on the GP model to generate
the required motion given a new set of task parameters, for which demonstrations
are not provided. This requires interpolation or extrapolation from the training
dataset.

The obtained results are shown in Figure 6.34. In Figure 6.34a), we can see that the
motion is easily modulated to fulfill new specifications by conditioning the learned
distribution to pass through new initial, final and/or intermediate via-points. In
case that during the execution of the task the robot encounters a new context, not
sampled in the demonstration set, we consider two different scenarios. In Figure
6.34b), we only use data of letters with sizes 3 and 5. Thus, for writing a letter ‘A’ of
size 4, interpolation is required. We can see that the policy is capable of predicting
accurately the trajectory for generating the required motion with relatively low
uncertainty. On the other hand, in Figure 6.34c), we only consider demonstrations
for sizes 5 and 6, requiring extrapolation for writing a letter ‘A’ of size 4. Since
the unseen task variables are close to the demonstration region, we can see that the
policy is capable of adapting effectively. Note that the task uncertainty is higher
than in the case of interpolating.

Computational Advantage of Exploiting the Structure of Replications

Now, we evaluate the potential benefit of exploiting the structure of replications dur-
ing the inference and prediction steps of the Gaussian-Process-based policy. From
each of the 100 demonstrations in the dataset, we take 25 uniformly distributed
samples along the real dimension for all possible combinations of the task variables
for training. Thus, we have a total of N = 2500 points with n = 500 unique input
locations, that is, we have a degree of replication of a = 5. In Figure 6.35, we show
a comparison of the computational time per evaluation of the inference function
(inference), and for calculating the posterior predictive distribution of the policy
(prediction). We can see that we are able to perform the calculations 100 times
faster without any approximation, achieving identical results.
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Figure 6.34: (a) Policy adaptation through via-points (red circles). For comparison, the
mean of the demonstrations is represented as a black dashed line. (b) The model is built
only with demonstrations of sizes 3 and 5, requiring interpolation for size 4. (c) In this
case, only demonstrations of sizes 5 and 6 are used, thus extrapolation is performed.

Figure 6.35: Computational advantage of exploiting replications for evaluating the hy-
perparameter inference function, and calculating the predictive distribution.
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Chapter 7

Economic Impact of Robotics

Rapid advances in technology have led to a surge of public interest in robotics.
The International Federation of Robotics (IFR), estimates that by the end of 2021
around 730,000 service robots will be used worldwide in the industrial sector and
around 50 million service robots in the end consumer sector [94]. This forecast
shows that service robots have the potential to become part of the professional and
private lives of many people in the future. Furthermore, some researchers anticipate
that this growth will be boosted by the global impact of the COVID-19 pandemic
due to the necessity of measures for physical distancing and isolation [95].

The rapid development of the robotics market has sparked a lively debate among
economists, journalists, and technophiles about the likely impact of automation
on economic growth and the distribution of income. Mainly, two narratives have
emerged in the literature [96]. On the one hand, technology pessimists fear that we
are headed toward an economic dystopia of extreme inequality and class conflict [97].
On the other hand, technology optimists argue that historically, rapid technological
advancements have led to an improvement in human welfare by raising the value of
non-automatable tasks [98].

Automation is not a new phenomenon, and questions about its effects have long
accompanied its advances. More than a half-century ago, US President Lyndon B.
Johnson established a national commission to examine the impact of technology on
the economy and employment, declaring that automation did not have to destroy
jobs but ‘can be the ally of our prosperity if we will just look ahead’ [99]. In this
chapter, we aim to shed some light on the debate around the potential economic
impact caused by the introduction of robots in our daily lives (Figure 7.1). We
start, in Section 7.1, discussing the implications of an automated society from a
macroeconomic perspective. Then, in Section 7.2, we study how robotics will change
the labor market. Finally, in Section 7.3, we present some guidelines for addressing
some of the new challenges that we might face in the future robot economy [100].
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Figure 7.1: Illustration of an automated economy (after [101]).

7.1 Macroeconomic Impact

Although economists have extensively analyzed the effects of technological change,
the formal theoretical macroeconomic literature that bears on the current debate is
quite small. Predicting the economic impact of robotics or any disruptive technology
is a very complex exercise [102]. This is a world of near-continuous discontinuity.
The scope and pace of automation deployment depend on several variables (some
more predictable than others) including technical feasibility, the cost of developing
and deploying technologies for specific uses in the workplace, labor-market dynamics
including the quality and quantity of labor and associated wages, the benefits of
automation beyond labor substitution, and regulatory and social acceptance.

The key idea behind automation from a macroeconomic perspective is that it im-
proves productivity when it is applied to tasks that they perform more efficiently
and to a higher and more consistent level of quality than humans. Gross Domestic
Product (GDP) growth was brisk over the past half-century, driven by the twin
engines of employment growth and rising productivity, both contributing approxi-
mately the same amount. However, declining birth rates and the trend toward aging
in many advanced and some emerging economies mean that peak employment will
occur in most countries within 50 years. The expected decline in the share of the
working-age population will open an economic growth gap: roughly half of the
sources of economic growth from the past half-century (employment growth) will
evaporate as populations age.
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Figure 7.2: Globally, automation could become a significant economic growth engine as
employment growth wanes (after [99]).

Even at historical rates of productivity growth, economic growth could be nearly
halved. Automation could compensate for at least some of these demographic
trends. McKinsey [99] estimates that the productivity injection that automation
could give to the global economy as being between 0.8 and 1.4 percent of global
GDP annually. By 2065, automation could potentially add productivity growth in
the largest economies in the world (G19 plus Nigeria) that is the equivalent of an
additional 1.1 billion to 2.3 billion full-time workers (Figure 7.2).

Increased productivity is enabling some firms (such as Whirlpool, Caterpillar, and
Ford Motor Company in the US and Adidas in Germany) to restructure their supply
chains, bringing back parts of the manufacturing process to the country of origin.
Companies that deploy robots are less likely to relocate or offshore in the first place
according to a report prepared for the European Commission [103]. This brings
advantages at the national level, with the potential for demand spillovers into other
sectors, and the accumulation of specialist manufacturing know-how that is critical
for attracting and expanding talent, and for national competitiveness [94].
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The productivity growth enabled by automation can ensure continued prosperity in
aging nations and provide an additional boost to fast-growing ones. This could help
close the economic growth gap in the 20 largest economies in the medium term, to
2030. Countries can use automation to further national economic growth objectives,
depending on their demographic trends and growth aspirations. We can divide the
world countries into three main groups [99], based on how can they exploit robotics
to boost their economic growth:

• Advanced economies: Including Europe, the United States, Canada, Aus-
tralia, Japan, and South Korea. These economies typically face an aging
workforce, with the decline in the working-age population. Automation can
provide the productivity boost required to meet economic growth projections
that they otherwise would struggle to attain without other significant pro-
ductivity growth accelerators. These economies thus have a major interest in
pursuing rapid automation adoption.

• Emerging economies with aging populations: This category includes
Argentina, Brazil, China, and Russia, which face economic growth gaps as a
result of projected declines in the growth of their working population. For
these economies, automation can provide the productivity injection needed
just to maintain the current GDP per capita. To achieve a faster growth
trajectory that is more commensurate with their developmental aspirations,
these countries would need to supplement automation with additional sources
of productivity, such as process transformations, and would benefit from the
more rapid adoption of automation.

• Emerging economies with younger populations: These include India,
Indonesia, Mexico, Nigeria, Saudi Arabia, South Africa, and Turkey. The
continued growth of the working-age population in these countries could sup-
port maintaining current GDP per capita. However, given their high growth
aspirations, automation plus additional productivity-raising measures will be
necessary to sustain their economic development.

Productivity gains due to robotics and automation are important not just at the
company level but also for both industry and national competitiveness. However, we
have also to take into account that the advances in automation and their potential
impact on national economies could upend some prevailing models of development
and challenge ideas about globalization. Countries experiencing population declines
or stagnation will be able to maintain living standards even as the labor force wanes.
Meanwhile, countries with high birth rates and significant growth in the working-
age population may have to worry more about generating new jobs in a new age
of automation. Moreover, low-cost labor may lose some of its edges as an essential
developmental tool for emerging economies, as automation drives down the cost of
manufacturing globally.

186



7.2. Labour Market Impact

7.2 Labour Market Impact

With the raising of robotics and artificial intelligence, one of the most repeated
questions in the mainstream media is: ‘will robots take our jobs?’. What is already
clear and certain is that new technological developments will have a fundamental
impact on the global labor market within the next few years, not just on industrial
jobs but on the core of human tasks in the service sector. Economic structures,
working relationships, job profiles, and well-established working time and remuner-
ation models will undergo major changes [104].

Both blue-collar and white-collar sectors will be affected. Nowadays, robots not
only do things that we thought only humans could do but also can increasingly do
them at superhuman levels of performance. Some robots are far more flexible (and a
fraction of the cost) than those used in manufacturing environments. Today, robots
can be ‘trained’ by frontline staff to perform tasks that were previously thought to
be too difficult for machines, and are even starting to take over service activities.

In this section, we discuss how will the irruption of robotics is going to change
the labor market. First, in Section 7.2.1, we study the impact on the job profile
demand. Then, in Section 7.2.2, we analyze the effect on the organization of work.
Finally, in Section 7.2.3, we argue how it will affect the time spent at work.

7.2.1 Impact on the Job Profiles Demand

A recent study by McKinsey [99] focuses on work activities rather than whole occu-
pations. This is a more relevant and useful measure since occupations are made up
of a range of activities with different potential for automation. For example, a retail
salesperson will spend some time interacting with customers, stocking shelves, or
ringing up sales. Each of these activities is distinct and requires different skills.

Overall, it is estimated that 49 percent of the activities that people are paid to do
in the global economy have the potential to be automated by adapting currently
demonstrated technology. While less than 5 percent of occupations can be fully au-
tomated, about 60 percent have at least 30 percent of activities that can technically
be automated. While certain categories of activity, such as processing or collecting
data, or performing physical activities and operating machinery in a predictable
environment, have a high technical potential for automation, the susceptibility is
significantly lower for other activities including interfacing with stakeholders, ap-
plying expertise to decision making, planning, and creative tasks, or managing and
developing people. Figure 7.3 shows a range of sectors in the economy broken down
into different categories of work activity along with their automation potential.
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Figure 7.3: Technical potential for automation across sectors varies depending on the mix
of activity types (after [99]).
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Figure 7.4: Zero-sum activities that have emerged in the twenty-first century.

Other potential impacts in the job profile demand can be explained by Baumol’s
cost disease [105]. Baumol observed that sectors with rapid productivity growth,
such as manufacturing, often see their share of GDP decline while those sectors with
relatively slow productivity growth, such as the service sector, experience increases.
Rapid technological growth can be and often is accompanied by a proliferation
of low productivity jobs taken up by workers no longer required in increasingly
automated sectors. Thus, paradoxically, radical automation may eventually reduce
towards zero the number of people involved in those economic activities essential to
produce the goods and services which support human welfare, while having no such
impact on the amount of human labor devoted to zero-sum activities (Figure 7.4),
which may therefore grow in relative importance as we ‘find things to do’ [106].
In conclusion, robots will make work more human, demanding more creative skills
rather than repetitive physical skills.

7.2.2 Impact on the Organization of Work

For economic reasons, numerous jobs will be carried out by intelligent software or
machines rather than by humans in the future. The differentiation made in this
regard will not be so much between physical and cognitive work, but primarily
between routine and non-routine work. The established companies will need to
create new business structures.

In the future, robotics engineers will be indispensable for many of the traditional
departments in which a company is divided, such as sales, supply chain, production,
and finance. Therefore, an interface must be established that ensures that informa-
tion is passed on without delay to the offices responsible internally. But it is not
only the departments that will have to be better connected. Companies will have
to focus on their core competencies and will outsource other work in a cost-effective
manner [104].
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The increased interconnection and internationalization of companies changes not
only the traditional internal company structures but also the need for the estab-
lishment of cross-company and cross-border units. Many companies already use
so-called matrix structures today. They are characterized by the technical super-
vision and the disciplinary supervision of the employee being treated separately.
Increasing digitalization makes this possible. Owing to the interconnection of indi-
vidual companies, such unitary structures usually result in increased productivity
due to improved communication and exchange of knowledge.

7.2.3 Impact on Working Time

Working time rules have been established in various countries in order to protect
the health and safety of employees or to warrant pay for overtime work. One of
the things that all of the systems have in common is that they are faced with
fundamental reforms within the framework of automation.

Working life has to date been characterized worldwide by rigid standard working
hours: employees were present in the establishment or in the office and worked there
for a certain number of hours. The working day ended when the employees left the
establishment after eight or ten hours of work. Nowadays, employees sometimes
take their work home with them in the form of smartphones, laptops, and email.
Critics claim that this makes it impossible to ‘disconnect’ from work, which damages
employees’ health over the long term. Additionally, self-determined working time
can lead to higher motivation, increased health, and more productivity with regard
to the individual employee.

A possibility may be the six-hour day in Sweden. Innovative employers report that
shorter workdays improve the productivity of employees. New vistas are opened:
thanks to digital innovations, families, especially, are able to adapt work and leisure
time more flexibly to their own needs, which is said to lead to a better work-life
balance. Supporters say this will cause employees to be more satisfied and motivated
and will reduce stress and illness.

The new work might be geared more to the interests of the employees than before.
The reason for this is that highly qualified staff can be ‘winners’, since research,
development, design, planning, and organization jobs are now in demand, whereas
purely productive occupations are on the decline since they are easily replaceable
by robots. Companies must lure these prospective employees, unlike 20 or 30 years
ago, not only by offering money but also by offering attractive arrangements for
a better work-life balance. The future world of work will require employees to be
much more flexible. Ties to fixed places of work or to fixed working hours will be
increasingly broken.
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7.3 Managing the Economic Impact

Business leaders, policymakers, and workers everywhere face considerable challenges
in capturing the full potential of automation’s beneficial effect on the economy,
even as they navigate the major uncertainties about the social and employment
repercussions. There is a basic doubleness in economics that reflects a fundamental
social tension: the microeconomic perspective of individual businesses is to minimize
labor costs, while the macroeconomic perspective of society as a whole requires
consumers to have some source of income and for most of us, that is work. How
society balances these rival demands of labor and capital is a subject of both politics
and economics [107].

Thus, socio-economic, political, and resource constraints should be carefully con-
sidered when advanced robotic technologies are deployed since there is potential
for unintended consequences such as tilting economic and power structures to un-
duly benefit certain segments of the society resulting in new gaps and/or exacer-
bating existing inequities. The results of theoretical and empirical investigations
differ regarding the effects of robotization and AI on productivity, employment,
and wages (as examples of recent studies with conflicting results can be consulted
[108, 109, 110]). Also, in order to assess the impact of robotic technology on in-
equality, we would consider aspects such as ownership structures and tax systems
[111].

Philosophy of economics that better corresponds to a coming automation economy
featuring social robotics is needed. This would need to include reconceptualizations
of the core ideas and purpose of economics. While material goods attend to survival,
social goods attend to thriving. The automation economy is concerned not just with
human survival, but an improved quality of life such that humans can thrive, and it
is in this domain that social robotics could feature prominently. Possibly even more
than technological unemployment and the possibility of ‘robots taking our jobs’,
income inequality is a threat to the future well-being of our economies. Among the
proposed measures to address the challenges of the future robot economy, we can
highlight the following:

• Constant free life-long education: This is the most obvious solution to
technological unemployment. As robots are capable of taking over a growing
number of tasks, humans have to focus on their comparative advantages,
including creative and social skills.

• Universal basic income (UBI): This is widely discussed as a solution to
technological unemployment. Under the UBI scheme, every citizen of a coun-
try receives a fixed amount of money every month regardless of his/her em-
ployment status. All other social payments are ceased and replaced by UBI.
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The main advantage of UBI is that it provides income for all people in a soci-
ety and serves as a social safety net. On the other hand, UBI requires a lot of
resources. Furthermore, it may suppress many people’s stimuli to work and
improve their skills, thus making them permanently unemployable. Moreover,
if UBI is introduced in one or a few countries only without strict migration
control, they will experience a huge influx of immigrants who would apply for
citizenship in order to take advantage of UBI [112].

• Robot-based taxation: This is considered as one of the ways to finance
the UBI. Essentially, under a robot tax scheme, every company that installs
a robot must pay tax, and the proceeds are used to support the UBI of dis-
placed human employees. While robot-based taxation sounds quite attractive,
is difficult to implement. By decreasing the capital returns of robots, the tax-
ation has potentially negative effects on growth. This is also becoming more
complicated with globalization and increasing capital mobility [96].

• Job guarantee program (JGP): This is a proposal by critics of UBI that
have pursued a broader vision for social purposes. Rather than guaranteeing
income, JGP would guarantee jobs in those necessary fields, as a means for
the government to ensure access to universal basic services. The program is
intended to ‘hire off the bottom’, i.e. those with fewer qualifications or skills
who otherwise cannot find employment [113]. According to modern monetary
theory (MMT), the JGP is financially feasible when a sovereign government’s
currency uses a floating exchange rate [114]. The sovereign government risks
inflation if it creates too much of its own currency. But the hope behind MMT
is that wise spending will increase the productive capacity of the economy,
sparking innovation to assure more efficient use of resources and mobilizing
now-unemployed labor [115]. In any case, maintaining full employment is one
of the chief responsibilities of modern governments, and a direct employment
guarantee can be better targeted to this purpose than discretionary policy
[116].

• Employee ownership of robots: If intelligent robots are substitutes for
labor, the key is who owns the robots. While the previous measures are
intended to establish transfers from rich to poor to reduce income inequality,
this aims to directly reallocate income from owners to workers [97].

Managed adequately, the development of robotics can contribute to the improve-
ment of human well-being. The automation of global value chains contributes to the
divorce of humans from their labor, from their capacity to earn wages for sustain-
ing human life. However, policymakers must begin to consider alternative economic
arrangements which do not rely solely on the wage-labor contract at the heart of
capitalism. The final socio-economic objectives of the development of production
with robots must be those contributing to the improvement of society.
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Robot Ethics and Law

Our social spaces will no longer be exclusively human. The interactions with robots
are increasing, and we can expect that we will be coexisting with social robots in the
future. These robots will be nested within our social spaces and work with us side
by side [117]. Service robots operating among people and often in close interaction
with them raises many questions concerning their influence on the future of society
and the role this technology may play.

As robotics technology advances, ethical concerns become more pressing (Figure
8.1). Should robots be programmed to follow a code of ethics, if this is even possible?
Are there risks in forming emotional bonds with robots? How might ethics change
with robotics? [118]? The expectations and the fears about the future consequences
of autonomous technologies are monopolizing the ethical debate. Several initiatives
and projects are underway in an attempt to address such questions in contexts
as diverse as the military, labor market, and educational fields [119]. Also, if the
legal conditions do not impose adequate restrictions, human society can give their
robots substantial autonomy in decision-making, thus permitting them to complete
tasks that involve sophisticated judgments. Intelligent robots can learn through
experience, modifying and devising new instructions in their own programs. Then,
they can make decisions based on these self-modified or self-created instructions,
which can be dangerous. Robot law is an emerging field that aims to build a new
legal framework that satisfies the needs of automated society [120].

In this chapter, we address some of the most relevant questions in ethics and law
caused by the probable introduction of robots in our society. We start, in Section
8.1, presenting a series of ethical problems posed by the advance of automation.
Afterward, in Section 8.2, we discuss the potential impact on the current legal
framework. Finally, in Section 8.3, we provide some guidelines for facing the future
challenges that we might face regarding ethics and law because of the robotics
revolution.
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Figure 8.1: Comic presenting a simple example of an ethical debate raised by robotics.

8.1 Roboethics

The term roboethics was introduced at the First International Symposium on
Roboethics in 2004 by G. Veruggio [121]. Roboethics is a field of applied ethics
aimed at developing tools for the advancement of robotics, studying both the pos-
itive and negative implications of robotics for individuals and society, with a view
to inspire the moral design, development, and use of intelligent robots, and help
prevent their misuse against humankind. In recent years researchers from areas as
diverse as robotics, computer science, psychology, law, philosophy, and others are
approaching the pressing ethical questions about developing and deploying robotic
technology in societies. Fundamental issues in roboethics include the dual-use prob-
lem of robots (robots can be used or misused), the anthropomorphization of robots
(the illusion that machines have internal states that correspond to the emotions they
express, like a “ghost in the machine”), and the equal accessibility to technology
challenges, such as for care robots [122]. While military robots were initially a main
focus of the discussion, social robots are now becoming an increasingly important
topic as well. The prevalence of service robots and their successful cooperation with
humans will depend heavily on the extent to which they are accepted by the people
who are to work or collaborate with them [123].

One of the first publication directly addressing and setting the foundation for robot
ethics was Runaround, a science fiction short story written by Isaac Asimov in 1942
which featured his well known Three Laws of Robotics:
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Figure 8.2: Ethical issues of robotics developments (after [124]).

• A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

• A robot must obey the orders given it by human beings except where such
orders would conflict with the First Law.

• A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

The laws are prioritized to minimize conflicts. However, in story after story, Asi-
mov demonstrated that three simple, hierarchically arranged rules could lead to
deadlocks when, for example, the robot received conflicting instructions from two
people, or when protecting one person might cause harm to others. It became clear
that there are many complex open questions when mixing robotics and ethics.

Robotics and AI pose five fundamental concerns [124], summarized in Figure 8.2.
First, excessive reliance on intelligent robots may lead to the delegation of sensitive
tasks to autonomous systems that should remain subject to human supervision, ei-
ther ‘in the loop’, for monitoring purposes, or ‘post-loop’ for correcting the robot’s
actions. Second, robotics and AI may de-responsibilize people whenever an au-
tonomous system could be blamed for a failure. Third, unemployment is an ethical
problem, not just an economic one. Intelligent robotics could change the work-
force structure, cause a shift in the skills base, and potentially facilitate a complete
de-skilling of the workforce even in safety-critical contexts. Fourth, AI may erode
human freedom, because it may lead to unplanned and unwelcome changes in human
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behaviors to accommodate the routines that make automation work and people’s
lives easier. Five, it is possible a straightforward AI misuse. This is a problem
related to the unethical application of AI by those who control it. AI should be
designed and used to treat every human being always as an end and never only as
a means.

For addressing the aforementioned issues to some extent, it is fundamental that
intelligent robotics incorporate the principle of transparency, which requires that
the basic elements of decisions that can have a substantial impact on people can
always be provided and that the calculations of the system of AI can be reduced to
a form understandable to human beings.

Another very basic principle in the ethical dilemma is that robots cannot do all the
work and ‘sideline’ humans. If this was the case, human conditions would worsen,
their learning and cognitive capacities would be modified, and even conditioned to
perform tasks like robots, faced with the need to compete with robots as a workforce.
Then, advances in the intelligence of robots must be ‘driven’ by the human society
so that robots are used to stimulate humans, increase their capabilities and make
them grow as people: ‘robots should increase the abilities of people and give them
more autonomy, instead of decreasing it’ [125].

A general ethical framework governing robot design through to robot use is now
needed, composed of a set of ethics applied to robotics and aimed at humankind.
In 2016, the European Parliament [126] set the following list of basic roboethical
principles for robot users and designers:

1. Protecting humans from harm caused by robots: The first principle
of roboethics is to protect humans against any harm caused by a robot, for
example, in an instance where a technician is operating a health care robot
that has just injured patients due to a lack of maintenance or faulty settings.

2. Respecting the refusal of care by a robot: This principle follows on
from the first and establishes the right for a person to refuse to be cared for
by a robot. It may apply in the sensitive situation that arises when a person
suffers no physical harm from a robot but feels so profoundly uncomfortable
in its presence as to render this presence unbearable.

3. Protecting human liberty in the face of robots: This roboethical prin-
ciple calls for respect of human liberty when using a robot. Some autonomous
robots might trample all over freedoms, on the pretext of protecting a person,
leading to a clash of certain basic rights, such as protecting liberty versus
considering people’s health and safety. For example, a security robot might
restrain a person who has broken into a shop, or a robot might detain a
runaway child at home.
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Figure 8.3: Dilbert comic about robots’ free will (after Scott Adams).

4. Protecting humans against privacy breaches committed by a robot:
The aim of this roboethical principle is to protect people from any privacy
breaches committed by a robot. The specific nature of the breach would mean
that the robot user might see not only their private life exposed but also that
of third parties, such as family members, friends, or helpers. A protocol needs
to be established, to allow the interested party to remain in control of when
a third party is permitted to enter his private sphere.

5. Managing personal data processed by robots: Autonomous robots will
gather large volumes of data using their various sensors. This would mean
that the robot user should always be empowered to prevent the machine from
gathering or processing personal data.

6. Protecting humanity against risk of manipulation by robots: Emo-
tional robots have some clear advantages when it comes to facilitating inter-
action between people and robots, as some humanlike robots seek to do with
children suffering from autism. Whenever we enable a robot to simulate emo-
tions, there is a risk of a person developing the same type of bond as with
another human being.

7. Avoiding the dissolution of social ties: Autonomous robots offer a rem-
edy to various problems linked to aging populations. For example, robots
assisting elderly people will allow senior citizens to remain at home, even if
they lose their health or independence. Therefore, the public health service
could make large savings. However, as it will be less expensive for people to
have robots rather than a human helper at home, there is a risk of machines
becoming the norm and people the exception.
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8.2 Legal Framework

If intelligent robots are able to learn and modify their own behavior means that
they are capable of manifesting (or, at least, appearing to manifest) human cognitive
processes that are associated with the exercise of free will [127] (Figure 8.3). These
processes include making choices, forming intentions, reaching decisions, and giving
or withholding consent. Robots are the technology of the future. But the current
legal system is incapable of handling them. We, therefore, need to start asking
ourselves whether a legislative instrument on these technologies is truly necessary
and, if so, what this future text might look like.

The first issue when discussing regulation is that of definitions. One cannot regu-
late something without first defining it. However, the term robot is technical and
encompasses a wide range of applications that have very little in common. For this
reason, it is a very complex issue to develop a unitary body of rules applicable to
all kinds of robotic applications.

The European Parliament [126] defines a smart autonomous robot as a machine
encompassing the following characteristics:

• Acquires autonomy through sensors and/or by exchanging data with its en-
vironment (inter-connectivity) and trades and analyses data.

• Is self-learning.

• Has physical support.

• Adapts its behaviors and actions to the environment.

This definition relates solely to smart autonomous, and so not all, robots. How-
ever, the cited characteristics warrant further clarification to avoid any uncertainty
regarding the scope of the future law.

When considering civil law in robotics, we should disregard the idea of autonomous
robots having a legal personality (Figure 8.4), for the idea is as unhelpful as it is
inappropriate. Traditionally, when assigning an entity legal personality, we seek
to assimilate it to humankind. This is the case with animal rights, with advocates
arguing that animals should be assigned a legal personality since some are conscious
beings, capable of suffering, etc., and so of feelings that separate them from things.
Legal personality is therefore not linked to any regard for the robot’s inner being or
feelings, avoiding the questionable assumption that the robot is a conscious being.
Assigning robots such personality would, then, meet a simple operational objective
arising from the need to make robots liable for their actions.
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Figure 8.4: A sentient robot asks Lady Justice to be transferred from a legal thing to a
legal person for freedoms, rights, and protections (after @MackKennyArt).

We also have to bear in mind that this status would unavoidably trigger unwanted
legal consequences. Creating a legal personality would mean that robots’ rights and
duties had to be respected. How can we contemplate conferring rights and duties
on a mere machine? How could a robot have duties, since this idea is closely linked
with human morals? Which rights would we bestow upon a robot: the right to life,
the right to dignity, the right to equality with humankind, the right to retire, the
right to receive remuneration, etc.?

Another fundamental question is the liability for damages caused by an autonomous
robot. Conventionally, damage caused by an autonomous robot might arise from a
machine defect, for which specific laws have already been developed. These could
be applied in several circumstances, particularly if the producer had insufficiently
informed the customer of the dangers associated with autonomous robots, or if the
robot’s safety systems were deficient. Damage caused by autonomous robots might
also be traced back to user error. In such instances, either strict or fault-based
liability may be imposed, depending on the circumstances.

Nevertheless, autonomous robots will bring about further unprecedented difficul-
ties, since it may be more difficult to ascertain what caused the damage in certain
situations, particularly if the robot is able to learn new things by itself. However,
it is wrong to say that this calls for new rules which focus on how a machine can be
held responsible for its acts or omissions. Bearing in mind the dangers of assum-
ing a robot has a legal personality, it is out of the question that it might be held
responsible for its acts or omissions. Only a physical person should be held liable,
through various insurance mechanisms.
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The European Parliament suggests that the future legislative instrument should
provide for the application of strict liability, as a rule, thus requiring only proof that
damage has occurred and the establishment of a causal link between the harmful
behavior of the robot and the damage suffered by the injured party. In principle,
once the ultimately responsible parties have been identified, their liability would
be proportionate to the actual level of instructions given to the robot and of its
autonomy, so that the greater a robot’s learning capacity or autonomy is, the lower
other parties’ responsibility should be, and the longer a robot’s ‘education’ has
lasted, the greater the responsibility of its ‘teacher’ should be; notes, in particular,
that skills resulting from ‘education’ given to a robot should not be confused with
skills depending strictly on its self-learning abilities [126].

The previous leaves many ideas to explore. It must be ensured that the future
instrument is more accurate and simpler to implement since one potential concern
is that judges who are little-versed in emerging technologies might have trouble
comprehending the subtleties. Moreover, we should take into account many other
various possible scenarios, such as the one in which a self-learning robot is hired
out (a growing trend).

8.3 Managing the Ethical-legal Impact

Service robots are designed to interact with human beings in domestic environments.
The wide range of applications made available by the new generation of robots has
raised a number of issues that are not solely related to engineering and should be
addressed during the design process.

Among the major consequences of coexisting with human beings, besides safety and
usability requirements, is the imperative need to guarantee their ‘social acceptabil-
ity’. Acceptability is usually described as the willingness within a user group to
employ robots for the task it is designed to support [128]. The social, as well as the
functional use of robots, differentiates them from traditional consumer technology
appliances. How we view and interact with them; the familiarity, trust, and con-
fidence we might place in them; and our high expectations of how they will work
fed by media, film, and our own imagination mean that robotics warrants special
consideration when considering how to protect consumers. At the same time, we
need to ensure that any fears and risks applicable to the design are seen in context,
and balanced with the need to ensure innovators feel on safe ground in developing
and marketing the new and exciting robotic applications [129].

Several complex questions regarding ethics and legislation will arise in the context
of advanced robotization. We must not look away. Intelligent robotics offer an
unimaginable spectrum of possibilities, and it is roboticists’ responsibility to get
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educated on the potential effects to make correct statements on the consequence of
robotization. It is important that society is introduced to the new intelligent service
robotics technologies and debates about their implications. This will inevitably lead
to adaptations to existing laws and the drafting of new legislation and regulation
where there are gaps.

In order to achieve full social acceptability of intelligent service robots, it is es-
sential to take into account that technological progress does not just happen but
is driven (at least for now) by human decisions on what, where, and how to in-
novate. It would be misplaced to succumb to techno-fatalism and view our fate
as pre-determined by blind technological forces and market forces that are beyond
our control. Instead, our future is shaped jointly by the technological innovations
that we humans create, by the social and economic institutions that we collectively
design, and by the ethical values that guide it all. We as a society have the power
to confront the challenges posed by our technological possibilities and, through in-
dividual and collective action, actively steer the path of technological progress in
AI so as to shape the future that we want to live in [130].
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Environmental Impact of Robotics

The development of advanced automated systems is expected to offer a high degree
of customization of goods and services, and decentralized production systems. This
might bring significant changes to current production and consumption patterns,
altering the associated demands for energy and resources. We need to consider the
environmental footprint caused by the deployment of robotic technologies in order to
create improvements compared with the processes used today. The advent of robots
has the potential to create a unique momentum for revisiting our understanding
of sustainability. A strategical environmental analysis of automation may facilitate
such debate, decreasing the expected adverse impacts and enhancing environmental
benefits. These ideas can support discussions on wider policy proposals, such as
those related to the circular economy.

In this chapter, we discuss the potential environmental impact of robotics. First,
in Section 9.1, we perform a strategic environmental assessment for evaluating the
potential environmental impact caused by the irruption of robots. Then, in Section
9.2, we present some guidelines for sustainable development, allowing us to face
some of the current environmental challenges.

9.1 Strategic Environmental Assessment

A strategic environmental assessment (SEA) is a systematic decision support pro-
cess, aiming to ensure that environmental and possibly other sustainability aspects
are considered effectively in policy, plan, and program making. It allows to look
at cumulative environmental effects and appropriately address them at the earli-
est stage of decision-making alongside economic and social considerations. SEA
was created in an attempt to extend environmental impact assessments (EIA) to
policies, at a more strategic level [131].
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Figure 9.1: Best case and worst-case environmental outcomes of automation (after [132]).

The adoption of automation is typically supported through implicit public policies
that are not subject to any formal environmental assessments. In the absence of
rigorous studies, it is often suggested that the new technologies will help to solve
the most urgent sustainability challenges [133]. However, an emerging body of liter-
ature examining the environmental implications of these new technologies suggests
that the picture may be mixed. Production and consumption systems created by
automation may if carefully managed, deliver environmental improvements com-
pared with the processes used today. Yet if applied without proper environmental
considerations and management systems, robots alone may bring adverse impacts.

According to J. Dusik et al. [132], the best-case and worst-case environmental out-
comes of automation, in terms of greenhouse gas (GHG) and non-GHG emissions,
and the use of resources and the ecosystem, are depicted in Figure 9.1. We can
see that regarding the environmental benefits, virtually all automation technologies
have the potential to reduce non-GHG emission loads compared with techniques
used today. Beneficial impacts can also be achieved in ecosystem uses that are
unlikely to be systemically affected by automation and which may even profit from
opportunities for improved environmental monitoring, management, and potentially
environmental accounting systems.
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The picture is much more varied when examining the impacts of automation tech-
nologies on resource use. Even if some innovations aim to minimize energy consump-
tion the operation of the entire information and communication system supporting
automation is expected to significantly increase the use of electricity and potentially
also GHG emissions, depending on the power source used. The proliferation of elec-
tronic appliances and equipment will also increase demands for input materials and
will generate volumes of electronic waste that will need to be properly managed
and ideally recycled.

Regarding the consumption of rare materials in the manufacture of the robots them-
selves, it must be taken into account that robots are not different from any machine
with high precision and high durability parts. Robot manufacturing will require
sustainable solutions similar to those for other products. Sustainable materials
development for robotics mainly targets two scientific questions. First, can we em-
ploy new materials and resources that contribute to a more sustainable future? and
second, how can we use or modify existing materials to reduce their ecological foot-
print on the environment? Solutions to the first question include high-performance
materials from renewable sources, or biodegradable ones, with the target to save
valuable resources or to reduce waste. The same goals apply for solutions to the
second question, but instead of developing new materials, they target fabrication
processes, recycling, and product designs [134].

We have to consider the life-cycle of robotics as a whole (Figure 9.2), taking into
account the economic and environmental cost of producing, maintaining, and dis-
posing of the robots. For a technology that has to meet high-performance standards,
recycling represents a feasible approach toward more sustainable use of technology.
In general, robot recycling follows economical viewpoints: a product is more likely to
be recycled if recycling is cheaper than the fabrication costs of a new one. Therefore,
the ideal recycling process must be cost-effective, technologically easily achievable,
integrated with closed production-recycling loops, target valuable materials, and
require little energy.

To render robotics sustainable, recycling must be already included in the design
phase. A successful recycling scheme requires the individual robotic materials to be
easily separable to enable uncomplicated reuse, exchange, and upgrade of robots.
Another sustainability approach is to use less material by design. Autonomous
robots benefit twofold from lightweight materials/component designs, aiming to first
reduce the weight and increase operation time, and second minimize environmental
impact by reducing the total amount of waste.

As a concluding remark, one must keep in mind that the actual impacts will ob-
viously vary depending on the actual uptake (speed and scale) of automation, and
on the economic, social, environmental, and institutional context in which these
technologies get deployed.
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Figure 9.2: Sustainable robotics development. (a) Strategies toward ecofriendly robotics
include several pathways from material approaches to optimized design and fabrication.
(b) The optimal life-cycle of a robot is a closed-loop, which (c) targets all robotic com-
ponents from actuation to energy supply (after [134]).
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9.2 Managing the Environmental Impact

Robotics and intelligent automation might help communities improve their quality
of life and contribute to sustainable development. In the long-term, the adoption
of robotics and intelligent automation as part of a development plan must be based
upon documented opportunity, feasibility studies, and customized technology solu-
tions designed for the local environment, preferably by local engineers, educators,
and policy-makers [135].

Robotics for sustainability could develop from a combination of classical and sus-
tainable technology and new application models. The latter is difficult to imag-
ine and might best be developed by trial and error in the environment where the
solutions are used. This relies on creative engineers and entrepreneurs fluent in
the local environment who have a working knowledge of the principles of classical
robotics and sustainable technology. Utilizing local resources and developing talent
is crucial to the successful design and production of applied-technology development
solutions. Local technologists and engineers ‘have a unique understanding of the
relevant problems as well as the cultural context, available resources, strengths and
challenges that will influence the creation of innovative and useful solutions’ [136].
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Chapter 10

Conclusions and Future Work

Endowed with higher levels of autonomy, robots are required to perform increasingly
complex manipulation tasks. In this work, we aim at providing a step forward
towards enabling robots to learn from human demonstrations. Achieving this would
mean opening the doors to robots to operate in assistive domains, and approaching
them to people outside fields related to science and engineering. In this final chapter,
in Section 10.1, we summarize and discuss the main results from the investigations
presented throughout the thesis. We close, in Section 10.2, looking at possible
directions for future research.

10.1 Conclusions

We can structure the main conclusions around the following three questions (Section
1.1), which motivated the research of this thesis.

How can a robot imitate the human performance of a task?

We look for the answer to the first question in Chapter 5. In order to transfer the
human motion to a robot, we first define a general mapping that allows determining
the equivalent robot posture based on human motion capture data. This solves the
correspondence problem due to differences in physical embodiment (Section 5.1).
However, although we know what the movement of the robot should be, achieving
tight coordination between the motion of the robot links poses a challenge from a
control perspective. By adopting a whole-body control scheme (Section 5.2), we are
able to efficiently compute the required control actions to meet the multiple task
constraints simultaneously, achieving a successful imitation in real-time.
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Additionally, we have to consider that when robots are operating in human-shared
environments, ensuring safety when physical-human robot interaction occurs is of
utmost importance. For this purpose, we design a variable admittance controller
(Section 5.3), for which we derive the stability conditions, that allows combining a
tight position control with a compliant behavior when the robot enters in contact
with a human. We validate our approach through several real-world experiments
using the mobile robot TIAGo (Section 5.4). The results show an effective real-time
imitation and a successful dynamic adaptation of the robot behavior. In light of
the obtained performance, we can conclude that this work sets the foundations for
providing robots with demonstrations of a task in an intuitive manner.

How can a robot learn and generalize a skill from a few demonstrations?

Seeking a response to the second question, we first reviewed the existing solutions
in Chapter 4. The methods proposed in the literature are mainly based on proba-
bilistic nonlinear regression (Chapter 2), being the most advanced and recent one
Kernelized Movement Primitives (Section 4.4). This approach is based on a kernel-
ized treatment and can handle high-dimensional learning problems while allowing
the adaptation of the motion. Inspired by these findings, we conclude that Gaussian
Processes (Chapter 2) have a great potential within the learning from demonstra-
tion field as they are the most general and versatile formulation for probabilistic
nonlinear regression, and are purely based on a kernel treatment.

In Chapter 6, we develop a novel Gaussian Process-based learning from demonstra-
tion framework that encompasses the main components required for a state-of-the-
art method. First, we introduce an extended formulation for encoding trajectory
distributions by considering multiple outputs, derivative observations, and rotations
in the input space (Section 6.1). Then, we address the problem of modeling the
latent uncertainty in the demonstrations, which is crucial for reflecting the impor-
tance of the different stages of the task (Section 6.2). We resort to Heteroscedastic
Gaussian Process models and introduce an algorithm for optimizing their likelihood.
Additionally, for adequately capturing the variability in time-invariant policies, we
propose the Task Completion Index, which along with the Dynamic Time Warping
algorithm allows to correct the time distortions that might appear in the demon-
strations performed by a human teacher.

Also, in learning from demonstration is essential to be capable of generalizing the
learned motion to a wide range of scenarios. In order to enhance such capability,
we introduce a formulation for including task variables in the model, which describe
the context and can be either real, integer, or categorical (Section 6.3). For further
improving the versatility of the learned policy, we present a simple method for mod-
ulating the retrieved motion using via-points, and also an approach for combining
several policies into a single representation (Section 6.4).
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One of the major limitations of Gaussian Processes is the computational cost asso-
ciated with the learning process, which limits its applicability for tasks that require
a large number of demonstrations. To tackle this problem, we present an alternative
formulation that exploits the structure of replications for alleviating the computa-
tional complexity (Section 6.5). The main advantage of the proposed approach is
that the retrieved model is exact since no approximations or assumptions are made.

Finally, we illustrate the potential of our learning framework through a door open-
ing and a handwriting task (Section 6.6). The results show that the proposed model
is capable of generalizing across multiple demonstrations, encode the task uncer-
tainty and adapt to variant task conditions. Therefore, we conclude that Gaussian
Processes might be a step forward towards automating complex manipulation tasks.

What is the potential impact of the evolution of robots in our societies?

In order to answer the last question, in Part III, we study the existing literature
on the prospective consequences that the development of automation. We start,
in Chapter 7, addressing the question from an economic perspective. Mainly, two
narratives have emerged. On the one hand, technology pessimists fear that we are
headed toward an economic dystopia of extreme inequality and class conflict. On
the other hand, technology optimists argue that historically, rapid technological
advancements have led to an improvement in human welfare by raising the value
of non-automatable tasks. Another major concern is whether robots are going to
‘take our jobs’ or not. What there is a general consensus about is that most sectors
will be affected. The automation of global value chains contributes to the divorce
of humans from their labor, from their capacity to earn wages for sustaining human
life. Policymakers must begin to consider alternative economic arrangements which
do not rely solely on the wage-labor contract at the heart of capitalism.

In Chapter 8, we address the ethical and legal concerns that are becoming more
pressing as robotic technologies advance. In recent years, researchers from areas as
diverse as robotics, computer science, psychology, law, philosophy, and others are
entering the field of roboethics. Some of the general questions involve an excessive
reliance on intelligent robots, unemployment, or limitations of human freedoms.
Regarding legal frameworks, the major concerns include the definition of a robot,
whether it should have a legal personality, and who is responsible for the possible
damages that it might cause.

Finally, in Chapter 9, we evaluate the environmental footprint caused by the de-
ployment of robotic technologies. We have to consider the life-cycle of robotics
as a whole, taking into account the economic and environmental cost of produc-
ing, maintaining, and disposing of the robots. To render robotics sustainable, it is
essential to consider the recycling process during the design phase.
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As a concluding remark, from the author’s viewpoint, it is certain that several
complex questions regarding the economy, ethics, law, and the environment will
arise along with the deployment of robots in assistive domains. However, intelligent
robotics offer an unimaginable spectrum of possibilities, with the appropriate atten-
tion and the right policies they open the doors to new sources of value and growth.
It is in the hands of scientists and engineers to not look away and anticipate the
potential impacts in order to turn robots into the motor of global prosperity.

10.2 Future Work

This thesis provides a step forward towards endowing robots with the capability to
learn complex manipulation tasks in assistive and unstructured domains. However,
many challenges and avenues for future development still remain to be explored. In
this section, we identify and discuss some of the most prominent hurdles in learning
from demonstration and suggest potential research directions for overcoming them.

Learning from Multimodal Demonstrations Research suggests that utilizing
multimodal information, enhances human learning [137]. Current methods for mul-
timodal learning from demonstrations are limited to a small number of modalities
[138]. Approaches that reason over demonstrations in multiple modalities will lead
to more robust and adaptive behaviors.

Learning from Multiple Teachers Learning from demonstration methods work
well for demonstrations performed by one teacher rather than multiple teachers
[139]. Different demonstrators tend to have different priorities and notions of op-
timal behavior. By considering different levels of expertise we can learn a richer
policy. So far, this problem has not been sufficiently addressed.

Transferring the Learned Skills Humans can learn from few demonstrations
because they are capable of transferring the knowledge from previously learned
tasks to new ones. How can robots leverage past demonstrations of related tasks to
quickly learn the current task has been explored in some recent works [140, 141].

Interactive Learning We need learning methods that can estimate the suitabil-
ity of the taught skill to the current situation. The robot must identify when does
it have to request user intervention [142, 143]. By taking a more active role in the
learning process, robots’ performance could benefit from reasoning about the task
from a high-level perspective.

Learning Tasks that Humans Cannot Perform Learning from demonstration
methods assume that sample motions of the task are available. However, it might
occur that a robot has a physical advantage compared to a human, such as having
more than two arms. To achieve a performance beyond human capabilities robots
should also be able to learn tasks autonomously.
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[51] Fernando Pérez-Cruz. Kullback-Leibler divergence estimation of continuous
distributions. In IEEE International Symposium on Information Theory,
pages 1666–1670, 2008.
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