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Abstract 

 Long-Term Load Forecasting based on Artificial Intelligence (AI) methods are today seen as the 

main research interest for the optimal planning of smart energy grids. Numerous techniques have been 

applied by the researchers to forecast the future electrical energy demand, which can be broadly 

categorized as parametric (statistical) and non-parametric (artificial intelligence techniques). Due to the 

amount of data collected in the past years, non-parametric techniques are gaining a lot of attention. 

Artificial Neural Networks (ANN) compared with other intelligent techniques is able to map and memorize 

the non-linear relations between inputs and outputs variables.  

 This project focuses on long-term energy demand forecasting and for this purpose two 

Statistical models (ARIMA, SARIMA) and three Artificial Neural Networks (2 RNN, 1 MLP) have been 

developed. These models are implemented on real time electricity data from 5567 Households of UK 

Power Network, during the period from November 2011 to February 2014 at 30-minute resolution 

intervals. Performance indicators have been computed and the advantages and disadvantages of each 

model have been analysed. The results, show that Artificial Neural Networks are found to be highly 

accurate (MAPE 7,20%) and have lower computational complexity than Statistical Methods. 
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1. Glossary 

  

ARIMA Auto Regressive Integrated Moving Average 

SARIMA Seasonal Auto Regressive Integrated Moving Average 

AR Auto Regressive 

MA Moving Average 

ARMA Auto Regressive Moving Average 

AIC Aikaike’s Information Criterion 

BIC Bayesian Information Criterion 

RMSE Root Mean Square Error 

MSE Mean Square Error 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

NN Neural Network 

LSTM Long Short-Term Memory 

ERU Elman Recurrent Unit  

ANN Artificial Neural Network 

RNN Recurrent Neural Network 

MLP Multiple Layer Perceptron 

ReLU Rectified Linear Unit 

ACF Auto Correlation Function 

PACF Partial Auto Correlation Function 
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2. Preface 

2.1. Origin of the project and motivation 

 With the transition from the analog to the digital world, great changes have been 

brought with the use of Internet of Things, generating huge amounts of data in the energy 

system, which are mostly never used. The appropriate tracking, acquisition and processing of 

this data can drive into innovative tools and services. 

 The project arises from the need to know where it would be necessary to improve the electrical 

infrastructure both in maintenance and deployment. With the ability to make accurate long-term energy 

demand forecasts, we may be able to execute planning strategies that maintain and expand the 

distribution network in a cost-efficient way that also ensures a stable and safe operation in long term 

scenarios. 

 This thesis is intended to be applicable in small part to the Big Data for Open Innovation 

Energy Marketplace (BD4OPEM H2020) project, which proposes innovative solutions in big 

data and artificial intelligence applied to the energy sector to improve the management of 

electricity grids[21]. 

2.2. Previous requirements 

 For the correct understanding of this thesis its needed basic knowledge of statistics, 

data management and python3. 
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3. Introduction 

 Energy demand is constantly changing, current infrastructures must be updated and 

improved, and it is necessary to foresee where there will be significant changes and 

fluctuations in energy demand. The increase in technology over the last few years and the 

large amount of stored data open up new possibilities for intend to forecast this energy demand 

fluctuations.  

 Researchers during the last few years have developed different techniques (parametric 

and non-parametric) and applied to short – term energy demand forecasting (less than 1 year) 

with good results.  However, less papers and studies are published referring to long – term 

demand forecasting (more than 1 year) so it is an unexplored field.  

 Basic statistical methods have been used for short-term energy demand forecasting 

and great results were obtained from Artificial Neural Networks (especially Recurrent Neural 

Networks). Nevertheless, the performance of Statistical methods and Artificial Neural 

Networks applied to long-term demand forecasting is a question mark in the science world and 

there is only recent research about its performance.  

 As input data of the project, it’s been used a univariate time series data from UK 5567 

Households of UK Power Network, during the period from November 2011 to February 2014 

at 30-minute intervals. 

3.1. Scope of the project 

 This study is part of the Big Data for Open Innovation Energy Marketplace (BD4OPEM 

H2020) project. It aims to understand the performance and behaviour differences of Statistical 

Methods versus Neural Networks applied to long – term forecasting. This master thesis is 

focused in developing simple statistical models (ARIMA, SARIMA) and simple structured 

Artificial Neural Networks (RNN, MLP) in order to compare them and determine which one 

performs better for univariate long – term energetic demand forecasting. 

3.2. Project Goals 

 The main goal of this thesis is to test and compare different architectures of artificial 

intelligence techniques applied to long – term energetic demand forecasting. In order to 

compare the proposed approaches, some performance indicators are taken into account, such 

as, RMSE, MSE, MSE and MAPE to determine the accuracy and the execution time to 
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determine the computational efficiency. To do so, a dataset from UK 5567 Households of UK 

Power Network is analysed and 5 forecast of Aggregated Load Demand using 2 Statistical 

methods (ARIMA, SARIMA) and 3 Neural Networks (SimpleRNN, LSTM, MLP) in a winter 

scenario is created to compare the qualitative differences between models and study the 

performance.  

 .  
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4. State of the Art 

4.1. PROBABILISTIC DEMAND FORECASTING – 

STATISTICAL METHODS 

In this section different statistical methods subsequently used for long-term energy 

demand forecasting are presented. Each mathematical model will be described along with 

its properties and the methodology used for the estimation of its parameters. 

The models studied are statistical models that use a part of the data to determine 

the internal constants of the model (training) by iteration and once the model is defined, a 

prediction is made, after all we can evaluate the quality of the model calculating the error 

between the real values and the forecasting. Fort the study has been chosen 2 reference 

models: ARIMA and SARIMA (adding the seasonality to the previous one). 

4.2. Auto regressive Integrated Moving Average (ARIMA) 

ARIMA (Auto regressive Integrated Moving Average) is a generalization of ARMA 

(Auto Regressive Moving Average) model in which one more parameter is added to control 

the stationarity of the data; it consists of a mathematical model developed at the end of the 

20th century and systematized in 1976 by Box & Jenkins. ARMA is a dynamic model, that 

means that future estimates do not depend on independent variables, depend on past 

values of data. The model can be divided into 2 types of independent models, 

autoregressive model (AR) and moving average model (MA)[5]. 

Autoregressive model is a representation of a random process, in which it is 

specified that the output variable depends linearly on its predecessors by satisfying 

equation 4.1. 

  𝑋𝑡 = 𝑐 + ∑ 𝜑𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡                                                        (4.1) 

Where 𝑋𝑡 represents the output variable, 𝜑𝑖 𝑎𝑛𝑑 𝑐 are constant values defined by 

the model, 𝑋𝑡−𝑖 represents previous values used (𝑝 ≥ 𝑖) and the white noise is represented 

by the coefficient 𝜀𝑡. Likewise, the parameter ‘p’ represents the number of previous values 

to be used for model prediction. 

Moving average model represents an invariant time series, in which the output 

variable is specified to depend linearly on the current and past values of an unpredictable 
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constant, thus the model directly accumulates the error of previous predictions. The output 

can be expressed by the following equation (4.2)  where ‘q’ parameter determines the 

influence of the past values in the forecasting.: 

   𝑋𝑡 = 𝜇 + 𝜀𝑡 + 𝜃𝑡𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑞−1                                                                       (4.2) 

 

The ARIMA model adds to the ARMA model the possibility of dealing with non-

stationary dataM the integral part ‘I’ of ARIMA takes careo f it. ARIMA models with non – 

stationary data has always this constants that Will vary depending on the dataset: 

𝑝 → 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑢𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑡𝑒𝑟𝑚 

𝑞 → 𝑜𝑟𝑑𝑒𝑟 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

𝑑 → 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑒𝑟𝑚 

 

Equation for generic ARIMA (p, d, q):  

𝑋𝑡 = ∅1 · 𝑋𝑡−1 + ∅2 · 𝑋𝑡−2 + ⋯ + ∅𝑝 · 𝑋𝑡−𝑝 +  𝛽1 · 𝜀𝑡−1 + 𝛽2 · 𝜀𝑡−2 + ⋯ + 𝛽𝑞 · 𝜀𝑡−𝑞 + 𝜀𝑡 

𝑤ℎ𝑒𝑟𝑒 𝑝, 𝑞 ≤ 𝑡                                                                                                                                         (4.3) 

 

4.2.1. SEASONALITY AUTO REGRESSIVE INTEGRATED MOVING 

AVERAGE (SARIMA) 

Seasonality must be taken in care in time series forecasting; so, if it’s known that in a 

dataset some values are higher or lower in a regular cadence this means there is 

seasonality. SARIMA (Seasonality Auto Regressive Integrated Moving Average) models 

take seasonality into account by essentially applying an ARIMA model to lags that are 

integer multiples of seasonality (previously identified). Once seasonality is modelled with 

seasonality parameters (P, D, Q and s), ARIMA is applied to the non-seasonal structure. 

Seasonality can be identified by applying the differencing operator on different points of the 

time series. Next table shows an explanation of the parameters:  

 

Parameter Definition 

P Seasonal Autoregressive Order 

D Seasonal Difference Order 
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Q Seasonal Moving Average Order 

s Number of time steps for a single seasonal period 

 

 To define the parameters P, D and Q we have used the methods studied previously 

in the ARIMA section such as Box & Jenkins Methodology combined with ACF and PACF. 

The data for the good parameterization must be previously modified, so differential operator 

is applied between seasonal periods to perform the study on the difference values. As an 

extension of ARIMA same parameters p, d and q are applied for forecasting with SARIMA. 

4.3. Criterions to find p, d, q values 

There is different combination of values that can be assigned to p, d, q. There are 

different approaches to find the best p, d, q values that minimize the prediction error. In this 

section the most common criterions and methodology are shortly described. 

4.3.1. Box and Jenkins Methodology 

 

Box and Jenkins methodology consists in an iterative process developed by Box & 

Jenkins in 1976. This methodology is used over year to determine the coefficients (p, d, q) 

in ARIMA for an accurate prediction; the requirements for using this methodology consists 

in having a stationary time series or a time series that is stationary after one or more 

differencing degrees. The next graph shows us the methodology applied during the project 

for determining ARIMA p, d, q coefficients: 

 

Fig.1 Box & Jenkins Methodology [1] 
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Step 1: Identifying stationary of the data. 

Assuming stationarity of the model is necessary to provide a valid basis for 

forecasting. In Mathematical approach we call a stochastic process stationary in the broad 

sense if it satisfies equation 4.4: 

𝐸(𝑥𝑡) = 𝜇; 𝐸[(𝑥𝑡 − 𝜇)2] = 𝜎𝑥
2; 𝐶𝑜𝑣(𝑥𝑡 , 𝑥𝑡+𝑘) = 𝛾(𝑘)                             (4.4 )  

Plotting your data gives us a first impression if the data is stationary or has a clear 

trend. Trend can be identified by measuring the slope of the linear regression equation. In 

addition to graphical (visual) methods, there are different tests that we can pass through 

our data that clearly identify if data is stationary or must be corrected such as ‘Augmented 

Dickey-Fuller Unit Root Test’.  

Augmented Dickey-Fuller Unit Root Test is a type of statistical test that defines how 

strongly a time series is defined by a trend (non-stationary), that uses an autoregressive 

model and optimizes an information criterion across multiple lag values. Test is formed by 

two hypotheses:  

• H0 (Null Hypothesis): Suggests time series has a unit root, meaning is non-

stationary and has some time dependent structure. 

• H1 (Alternate Hypothesis): Suggests time series does not have a unit root, meaning 

it is stationary and does not have a time dependent structure. 

Result of the test is interpreted using a p-value given by the test and a threshold 

(normally 5%) determined by the user. A p-value below threshold means H0 is rejected, 

and data is stationary; a p-value above the threshold suggests we fail to reject the null 

hypothesis and data is non-stationary.[1]  

Step 2: Determine p and q through Autocorrelation: ACF and PACF.  

Next steps consist in developing an accurate prediction of p and q. ACF and PACF[4] 

functions helps us to determine the order of each parameter. Both samples of the 

Autocorrelation Plot and Partial Autocorrelation plot are compared to the theoretical 

behaviour of these plots when the order is known.  [2][3] 

Autocorrelation Function [9] defines how data points in a time series are related, 

on average, to the preceding data points (it measures the self-similarity of the signal over 

different delay times). A scatter plot of  �̂�𝑡 with �̂�𝑡−1 can be defined as simple regression 

equation without constant as follows:  

�̂�𝑡 = ∅𝑡 · �̂�𝑡−1 +  𝑒𝑡     𝑡 = 𝑘 + 1, … , 𝑇                                          (4.5)  
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Where  ∅̂𝑘 ≅ �̂�𝑘 =
∑ �̂�𝑡·�̂�𝑡−𝑘

𝑇
𝑡=𝑘+1

∑ �̂�𝑡−𝑘
2𝑇

𝑡=𝑘+1
 and takes values from -1 to 1. If we make the 

estimation for different time steps k=1, 2, … K, we obtain a number of simple correlation 

coefficients �̂�1, �̂�2, … , �̂�𝑘and it’s representation through time steps it’s the AutoCorrelation 

Function. To compare zero hypothesis (∅𝑘 = 0) in front of the alternative ∅𝑘 ≠ 0 we 

calculate the t rate where:  

 𝑡 =
∅̂𝑘

√𝑉𝐴𝑅(∅̂𝑘)

→ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎 𝑁(0,1) 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑤ℎ𝑒𝑟𝑒 𝑉𝐴𝑅(∅̂𝑘) =
1

𝑇
                (4.6) 

The hypothesis is denied if:  

||
∅̂𝑘

√𝑉𝐴𝑅(∅̂𝑘)

|| >  𝑧𝛼
2

↔ |∅̂𝑘| >  𝑧𝛼
2

· √𝑉𝐴𝑅(∅̂𝑘)                                     (4.7) 

𝑤ℎ𝑒𝑟𝑒 𝑧𝛼
2

 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 | 𝑃𝑟𝑜𝑏 (𝑁(0,1) > 𝑧𝛼
2

) =
𝛼

2
                         

 

Fig 2. Autocorrelation Function [9] 

 

Partial Autocorrelation Function as a complement of the ACF is constructed by 

estimating successive equations of multiple regression shown as follows:  

 �̂�𝑡 = ∅11 · �̂�𝑡−1 + 𝑒𝑡 

�̂�𝑡 = ∅21 · �̂�𝑡−1 + ∅22 · �̂�𝑡−2 + 𝑒𝑡 

�̂�𝑡 = ∅31 · �̂�𝑡−1 + ∅32 · �̂�𝑡−2 + ∅33 · �̂�𝑡−3 + 𝑒𝑡  

⋮ 

�̂�𝑡 = ∅𝑘1 · �̂�𝑡−1 + ⋯ + ∅𝑘𝑘 · �̂�𝑡−𝑘 +  𝑒𝑡                                    (4.8)  
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The coefficients ∅11, ∅22, ∅33, … , ∅𝑘𝑘is named PACF sample. This terminology 

becomes from the interpretation of the multiple regression coefficients as partial regression 

coefficients. The coefficients √𝑇∅𝑘𝑘 follow a N(0,1) distribution, so, the zero hypothesis 

∅𝑘𝑘 = 0 is denied in front of ∅𝑘𝑘 ≠ 0 when |∅̂𝑘𝑘| > 2/√𝑇. 

1. Order of Autoregressive Process (p): For an AR (1) process, the sample 

autocorrelation function should have an exponentially decreasing appearance. 

However, with higher-order AR processes are often a mixture of exponentially 

decreasing and damped sinusoidal components.  

For higher – order autoregressive process, we must calculate the PACF that will 

become to zero of an AR (p) at lag p+1; so, we examine if there is evidence of a 

departure from zero. A 95% confidence interval on the sample partial 

autocorrelation plot is usually determined.  

2. Order of Moving Average Process (q): The autocorrelation function of a MA(q) 

process becomes zero at lag q+1 and greater, so we examine the sample 

autocorrelation function to see where it essentially becomes zero. We do this by 

placing the 95 % confidence interval for the sample autocorrelation function on the 

sample autocorrelation plot.  

For determining the order of moving average process the PACF is usually not 

useful. 

 

With the shape of Autocorrelation function we are capable to identify the model as explained 

before. Next table summarises how to determine coefficients p and q with the plot shape: 

Table 1. Summary of Autocorrelation Shape 

  SHAPE INDICATED MODEL 

Exponential Shape, decaying to zero Model is autoregressive, to determine it’s 

order we use the PACF plot. 

Alternating positive and negative, finally 

decaying to zero 

Model is autoregressive, to determine it’s 

order we use the PACF plot 

One or more spikes, rest of them are 

essentially zero 

Model is moving average, order identified 

by where plot becomes to zero. 

Decay starts after a few lags Mixed autoregressive and moving average 

model 
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All zero or close to zero Dataset is random 

High values at fixed invervales Include seasonal autoregressive term 

(SARIMA) 

No decay to zero Series is not stationary. 

Step 3: Check the accuracy of the model.  

Once coefficients are determined, we do a prediction with a real time series data. Using 

different error performance indicators such as (MAPE, MAE, RMSE, etc.). If the results 

given for the model are satisfactory, we determine that the model is ‘robust’ and we can 

continue with the forecasting.  

4.3.2. Akaike´s Information Criterion (AIC): Find the models with the lowest 

AIC values  

Aikaike-s Information Criterion (AIC) is an estimator of prediction error and thereby 

relative quality of statistical models for a given set of data. AIC is founded on information 

theory that means that when statistical models are used to represent the process that 

generate the data, this representation will never be exact and there will always be some 

information that is lost. The AIC parameter estimates the relative amount of information that 

is lost by a model, the less information a model loses, higher is the value and the quality of 

the model[6].  

There will always be information lost when a ‘true data’ is represented so the model is 

an estimation, not an exactly ‘replica’. The main purpose of AIC is to determine how well a 

model fits the data it was generated from. AIC is calculated from:  

- K: Number of independent variables used to build the model. 

- L: Maximum likelihood estimate of the model (how well the model reproduces the 

data. 

Using the two parameters mentioned before we can calculate the AIC coefficient:  

𝐴𝐼𝐶 = 2 · 𝐾 − 2 · ln(𝐿)                                                       (4.9)  

 K for default is always 2 so if your model use one independent variable your K will 

be 3, if it uses two independent variables your K will be 4, and so on.  

 For determining which one is better, we need to calculate for each model the AIC 

Coefficient; if a model is more than 2 AIC units lower than another, it is considered 

significantly better. [6] 



Page. 18  Main Report 

 

The main problem for calculating the AIC coefficient is that calculating the log-likelihood 

is difficult so statistical software is used for this calculation, in this project Python libraries 

are used for calculating the log-likelihood for the models.  

4.3.3. Schwarts Bayesian Information Criterion (BIC) models with the lowest 

BIC values.   

Bayesian Information Criterion or Schwarts Criterion is a criterion for model selection 

among a finite collection of models. It is closely related with AIC (Akaike Information 

Criterion) due to it is based, in part, on the likelihood function.  

Increasing the likelihood when fitting models can be easy by adding more parameters 

but can produce overfitting. BIC solve this problem by introducing a penalty term in the 

equation for the number of parameters in the model; it’s term Is larger in BIC than in AIC 

(that’s the main difference).  

The BIC balances the number of model parameters and number of data points against 

the maximum likelihood function as follows:[7] 

𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠                                                   

𝑛 = 𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠                                                                    

𝐿 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛                                                   

 

 𝐵𝐼𝐶 = 𝑘 · ln(𝑛) − 2 · ln(�̂�)                                                 (4.10) 

Maximum likelihood function is defined as:  

 �̂� = 𝑝(𝑥|𝜃, 𝑀)                                                                 (4.11) 

 This is explained as how likely our data x is explained by the model M, which has certain 

model parameters 𝜃. Usually, the calculation of �̂� parameter, is done by statistical software, 

in this project we use python libraries[8].  

4.4. PROBABILISTIC DEMAND FORECASTING – NEURAL 

NETWORKS 

The origins of neural networks (NN) go back to the late 1950s where Rosenblatt 

conceived the idea of perceptron, a simple mathematical model of how neurons in the brain 

operate. From the earliest ideas to the present day, interest in NN’s has oscillated 

considerably from great interest from the scientific community to periodic abandonment. [10] 

 



Artificial Intelligence applied to demand forecasting   Page. 19 

 

Neural networks are made up of cells (which act as neurons) connected to each other; 

the type of cell, the organization of the cells (number of layers), the connections between 

them and how the neural network is trained determines the type of neural network. There 

are many types of cells, some of which are shown below: 

• Perceptron: A single-layer perceptron is the basic unit of a neural network, it 

consists on input values, weights and a bias, a weighted sum and activation 

function. 

 

Fig 3. Single – layer Perceptron [10] 

• Long Short-Term Memory (LSTM): LSTM is composed by a cell, an input gate, 

an output gate and a forget gate. It remembers values over arbitrary time intervals 

and the tree gates regulate the flow of information into and out of the cell.  

 

Fig 4.  Basic LSTM unit. [11] 
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• Elman recurrent unit (ERU): Elman Recurrent Neural Network (ERNN) are 

networks with hidden state but without any advanced gating mechanisms. ERNN 

cell suffers from the well-known vanishing gradient and exploding gradient problems 

over very long sequences. This implies that are not capable of carrying long-term 

dependencies to the future.  

 

Fig 5. Elman recurrent Unit [11] 

4.4.1. Learning Algorithms 

In order for NNs to learn and improve results, so-called learning algorithms are 

used.The AdaGrad optimizer (AdaGrad), Root Mean Square Propagation (RMSProp) and 

The Adam optimizer (Adam). All of them require and hyperparameter learning rate, that 

must be correctly tuned for not perturbing the learning process. 

• The AdaGrad optimizer (AdaGrad): Adapts de learning rate to the parameters, 

performing smaller updates for parameters associated with frequently occurring 

features, and larger updates for parameters associated with infrequent features[13].  

• Root Mean Square Propagation (RMSProp): Maintain per – parameter learning 

rates that are adapted based on the average of recent magnitudes of the gradients 

for the weight. This algorithm works well in online and non-stationary problems. 

• The Adam optimizer (Adam): Is an algorithm that can be used instead of the 

classical stochastic gradient descent procedure for updating network weights 

iterative based in training data. It’s been described as combining the best features 

of AdaGrad and RMSProp and famous for it’s computational efficiency and little 

memory requirements, also, have an intuitive interpretation and typically require little 

tuning[12].  

4.4.2. Activation function  

A neural network without an activation function is essentially just a linear regression 

model. The activation function does the non-linear transformation to the input making it 

capable to learn and perform more complex tasks. Activation function defines how the sum 
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of the input is transformed into an output from a node or nodes in a layer of the network.  

Normally the activation function for the nodes of a hidden layer is the same and can 

vary from one layer to another.  The activation functions can be classified according to the 

layer in which they are to be used.  

Hidden layers receive the input from another layer (Input Layer or Hidden Layer) and 

provides output to another layer (Output Layer or Hidden Layer). Basically, there are 3 main 

activation functions used in hidden layers:  

• Rectified Linear Activation (ReLu): ReLu is the most common activation function 

used in NN design, its calculated as 𝑓(𝑢)  = max (0.0 , 𝑥); this means that if 𝑥 has 

a negative value the output is 0, otherwise the output will be the value of 𝑥 (as 

shown in Figure 6) [14][15]. 

 

Fig 6. ReLu Function [18] 

• Sigmoid: It’s also called logistic function and it’s calculated as (𝑢) =  
1

1−𝑒−𝑥 . Output 

range is between 0 to 1 and more positive is the value is closer to 1, otherwise (𝑥 <

0) output is closer to 0. 

• Hyperbolic tangent (tanh): Tanh is remarkably similar to the sigmoid function for its 

S-shape, output values are from -1 to 1. The main difference between the Sigmoid 

and Tanh is that Sigmoid values goes from 0 to 1 instead of -1 to 1, furthermore, 

near input values close to zero in tanh will be centred in zero.  

 𝑦 = 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                                                 (4.12) 
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Fig 7. Sigmoid vs Tanh [19] 

Output layers receive the input from the hidden layers or input layer and directly outputs 

the prediction of the model, depending on the type of NN and the data, the activation 

function will be different; a study must be carried out to determine which is the most 

appropriate in each case. 

• Linear Activation Function: Multiplies the weighted sum of the input per 1.0 so there 

is no transformation; due to it’s naturality is also called ‘identity’ or ‘no activation’. 

Linear activation function is useful for regression problems and usually, the target 

values used to train the model had scaled prior using normalization or 

standardization transformations. 

 

Fig 8. Linear Activation Function [20] 

 

• Sigmoid Activation Function: As explained before Sigmoid outputs goes from 0 to 

1. Sigmoid is used when the output accepts multiple ‘true’ answers, that means that 

the sum of outputs is not necessary to be equal to 1 performs well with problems of 

binary classification or multi-label classification. 
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• Softmax Activation Function: Outputs a vector of values that converts the vector of 

input values into probabilities, probabilities are proportional to each value in the 

input vector. Softmax is often used in NN that provide  𝑛 (𝑛 > 1) outputs, one for 

each class in the classification task (Multi-class Classification); the activation 

function normalizes the output, converting them from weighted sum values into a 

vector of probabilities that sum to one.  

 

Softmax activation is related to argmax function that outputs a 0 for all option and 1 

for the chosen option, the main difference is that instead of 0 values gives probability 

values that sum 1.  

 

𝑝, 𝑥𝑖 =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑁
𝑖=1

 𝑖 = 1, 𝐼, 𝑁                                               (4.13)  

 

4.4.3. Multilayer perceptrons (MLP) 

MLPs also known as feed-forward neural networks are the most basic form of artificial 

NNs. The name of “Feed-Forward” comes from the fact that the inputs are feed forward, 

through the hidden nodes (if any) of the network and to the outputs nodes only in one 

direction. There are no cycles or loops in the network. 

A complex NN is composed by Input layer, hidden layer(s) and output layer. The input 

features are denoted as the input layer. Output nodes are denoted as output layer and 

hidden layers are layers between input layer and output layer, nodes in each layer of the 

network are fully connected to all the nodes in the previous layer. A fully connected layer is 

called a dense layer. Figure 9 (a) shows a generic example of a SLP and Figure 9 (b) shows 

a MLP: 

 

Fig 9. Single layer Perceptron and Multiple Layer Perceptron [10] 

One of the main limitations of MLP is that the number of input and output values is fixed, 
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which makes it inapplicable to problems where the size of the input and output values vary 

as in the case of time series. In the hidden layers the main activation function is Rectified 

Linear Activation (ReLu).  

 

4.4.4. Recurrent Neural Networks (RNN) 

Recurrent neural networks (RNNs) are designed specifically to handle sequential data 

that arise in applications such as time series, natural language processing and speech 

recognition. A direct approach to address the sequential nature of the data is to use 

recurrent connections between nodes that connect the neural networks hidden units back 

to themselves with a time delay[11].  

 

Fig 10. Folded RNN [11] 

 Since the hidden units learn some kind of feature from the raw input, feeding hidden 

units back to themselves in each time step can be interpreted as providing the network with 

a kind of dynamic memory. A crucial detail Is that the same network is used for all time 

steps; this weight-sharing allows the RNNs to handle sequences of varying length during 

training and, generalize to sequence lengths not seen during training.  

 Training RNN is quite difficult given that they are typically applied to very long 

sequences of data. LSTM were proposed to address the problem of training, instead of 

using a simple network at each time step, LSTMs use a more complicated architecture that 

controls the flow of input to the cell as well as decide on what information should be kept 

inside and what information should be propagated through next time step. One simplest 

variant of LSTMs is Gated Recurrent Units (GRU) that do not use a separate memory cell 

and consequently they are computationally more efficient.  
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 Stacked Architecture: Figure 11 shows the structure of one layer in stacked 

architecture. The feedback loop of the cell helps the network to propagate the state ht to the 

future time steps; for generalisation purposes in the diagram, it’s only shown ht but for an 

LSTM cell, ht should be accompanied by the cell state Ct. Stacking means that multiple 

LSTM layers can be stacked on top of one another (shown in Figure 12), the output from 

every layer is directly fed as input to the next layer immediately above, and the final 

forecasts are retrieved from the last layer. Xt denotes the input to the cell at time step t and 

�̂�𝑡corresponds to the output; once stacked Xt and �̂�𝑡are vectors instead of single data points.  

  

 

Fig 11.1-Layer Stacked Architecture [11] 

 

Fig 12. Multi-Layer Stacked Architecture [11] 
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 Sequence-to-sequence architecture: Figure 13 illustrates the generalised S2S 

architectures. The input 𝑥𝑡fed to each cell instance of this network is a single data point. 

Encoder is the part of the RNN where cells keep getting input at each time step and 

consequently build the state of the network. However, in contrast to stacked architecture, 

the output is not considered for each time step; rather, only the forecast produced after the 

last input point of the encoder is considered.  

 The Decoder is the component that produces the outputs in this manner, every 

𝑦𝑡  corresponds to a single forecasted data point in the forecast horizon. The initial step of 

the decoder is the last step of the encoder which is also known as the context vector, and 

it contains autoregressive connections from the output of the previous time step into the 

input of the cell of the next one. During training, those autoregressive connections are 

disregarded and externally fed with the actual values of the output of the previous time, this 

is called teacher forcing – helps the decoder to see how much it should be corrected. During 

testing, since the actual values are not available (forecasting is made), auto regressive 

connections are used instead as the actual value because it is unknown.  

 

Fig 13. Sequence-to-sequence architecture [11]  

Table 2. RNN summary 

Architecture Output component Input component Error computation 

Stacked Dense layer Moving Window Accumulated error 

Sequence-to-sequence Decoder 
Without moving 

window 
Last step error 

 

 Usually Sigmoid and Tanh (explained above) are the activation functions used 

hidden layers in RNN.  
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4.5. ERROR PERFORMANCE INDICATORS 

 In order to determine the performance of the forecasting the following error 

indicators between the actual values and forecasting will be calculated.   

 

•  Root Mean Square Error (RMSE): Is the square root of the average of squared 

errors. The effect of each error on RMSE is proportional to the size of the squared 

error; thus larger errors have a disproportionately large effect on RMSE.  

 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑦�̂� − 𝑦𝑡)2𝑇

𝑡=1

𝑇
                                                   (4.14) 

 

 

• Mean Squared Error (MSE): The mean squared error (MSE) tells you how close a 

regression line is to a set of points. It does this by taking the distances from the 

points to the regression line (these distances are the ‘errors’) and squaring them. 

 

 𝑀𝑆𝐸 =  
∑ (𝑦�̂� − 𝑦𝑡)2𝑇

𝑡=1

𝑇
                                                        (4.15) 

 

 

• Mean Absolute Error (MAE): It’s the mean of the absolute errors between the 

forecast and the actual values.  

 

 𝑀𝐴𝐸 =  
|∑ (𝑦�̂� − 𝑦𝑡)𝑇

𝑡=1 |

𝑇
                                                      (4.16) 

 

 

• Mean Percentage Absolute Error (MAPE): is the mean or average of the absolute 

percentage errors of forecasts. Error is defined as actual or observed value minus 

the forecasted value. Percentage errors are summed, and a positive percentage is 

given. 

 

 𝑀𝐴𝑃𝐸 = 100 ·
|
∑ (𝑦�̂� − 𝑦𝑡)𝑇

𝑡=1
𝑦𝑡

|

𝑇
                                                   (4.17) 
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5. ALGORITHM DEVELOPMENT 

5.1.1. DATA SET STRUCTURE 

 Data has been taken on 5567 Households of UK Power Network, during the period 

from November 2011 to February 2014 at 30-minute intervals. Of these 5567 values there 

are 1100 customers on dynamic tariffs (Low, Normal, High) and 4467 on constant tariffs.  

 The database contains specific energy consumption information, in kWh per half 

hour, a household identifier, the date and time of data collection.  

Step 1: Data Cleaning 

 The First step consists of preparing data for analysis by removing or modifying data 

that is incorrect. Data frame is created using pandas, dates and times column is set to index 

and transformed to datetime object and energy values are set to type float64.  

 

Fig 14. Step 1 Dataframe. 

Step 2: Reduction of dataset 

 Since there is a big amount of Data, it is essential to reduce the dimensionality of 

the dataset in order to study some properties such as stationarity, autocorrelation and 

seasonality. The Data set will be reduced to smaller periods of time in order to minimizethe 

compilation time. Next step consists in selecting a range of Day – Time (initial date – final 

date)to focus in order to study properties mentioned before indicating dates of the period 

that wants to be analysed ; a data frame is created with 4 columns (Cumulative Sum, Max 

Load, Mean Load, and Number of smartmete–s - calculated for each date and time) and 
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DayTime set to index. These 4 parameters are used for forecasting in later sections.  

 

Fig 15. Example of a Dataframe from 01-01-2013 00:00:00 to 14-01-2013 23:30:00 

5.1.2. PREPARATION OF SCENARIOS TO FORECAST 

 In order to test the algorithms, it is essential to create a test scenario for developing 

the long-term forecast; since the season with the highest peak demand (due low 

temperatures) is Winter, a ‘Winter scenario’ will be carried out. 

  The Forecast will be made using ‘January 2012 – January 2013’ for model training 

and ‘January 2014’ for model validation.  

 The original dataset contains the energy consumption of each smart meter at 

specific time but instead of focusing in several smart meters, it has been decided to work 

with the aggregated demand, meaning that, all residential smart meters have been summed 

(same time intervals) in order to model a single aggregated load curve. Some of identified 

issues in this process are the homogeneity of smart meter data. It is common to find 

metering errors of energy consumptions due external factors (non-technical losses, SM 

failures). In this case, the number of smart meters (load curves) were not consistent over 

all thedataset, therefore a correction has been applied to each point adding the average 

load to reach the same number of smart meters for each period of time (January 2012 – 

2013 – 2014). 

5.1.3. STATISTICAL METHODS FORECASTING 

 Long term forecasting with ARIMA and SARIMA has been developed, during the 

following sections Box & Jenkins Methodology is applied for parameter definition and Long-

Term forecasting results are presented. 
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5.1.3.1. ARIMA parameters - Box & Jenkins Methodology 

 In order to define ARIMA parameters p, d and q has been decided to focus in 1 

month analysis, decision has been made to analyse a smaller period and has been 

assumed that the behaviour of this period represents in a general way the behaviour of the 

data in the whole data set. Month decided for this analysis is January 2013. 

Step 1: Identifying stationary data.  

 To identify whether the data are stationary time series of the ‘Cumulative Sum 

Corrected’ (Aggregated Load Demand) and Mean Load vs ‘Dates’ is plotted. In this way its 

easy to identify if any transformation of the data is necessary, for instance converting non-

stationary data into stationary. Once the data is plotted, linear regression equation is 

calculated, which its slope indicates whether the data is stationary or not; the closer the 

slope is to 0 the more stationary the data is, for a final check, the Augmented Dickey Fuller 

test is run through data. 

 Figures 16 and 17 show the graphs of our data for the month of study (January 

2013) in which can be seen that there is no significant trend and appears to be stationary; 

Linear regression equations have been calculated for checking the previous hypothesis: 

• Cumulative Sum Corrected vs Dates: y = 0.09–x - 4061.9  

• Mean Load vs Dates: y = 0.002–x - 84.623  

 As can be seen, the values of the slope in the linear regression equation are close 

to zero, so the data is probably stationary and would not need any transformation. 

Furthermore, can be identified that there are some peaks every 48 values that represent 1 

day (resolution each 30 min), so seasonality in the data can be expected.  

Augmented Dickey Fuller test gives the following results:  

 

ADF Statistic: -11.895104 

p-value: 0.000000 

Critical Values: 

 1%: -3.435 

 5%: -2.864 

 10%: -2.568 

 

 With that information, can be confirmed that data is stationary so d parameter has 

will be set to 0, and dataset does not need any transformation for the ARIMA execution.    
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Fig 18. Mean Load January 2013 
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Step 2: Determine p and q through Autocorrelation: ACF and PACF.  

 Through this step the ACF and PACF has been developed for the data frame 

created in previous steps.   

 

Fig 19. Autcorrelation Function Plot 

 ACF gives us valuable information about the behaviour of our time series dataset. 

Also, it helps us to define the order of the parameters p and q. These values are taken as 

an initial indicative and must be used as a starting point of the iterations. Analysing Figure 

19 (ACF) we conclude the following statements:  

- Strong decay starts after a few lags (2 or 3) that means dataset might be forecast 

with both parts Auto Regressive and Moving Average Parameters 

- Autocorrelation enters to non-significative zone at 8th lag. 

- After 11th lag there appears to be some significant values, but they appear later and 

seem to be part of noise and show us periodicity in our data set. Must be taken in 

care later for Seasonality. 

 ACF analysis concludes that parameter q has an order of 8 because it enters to 

non-significance band at 9th lag. Order of the p parameter (AR part) must be defined after 

analysing PACF plot.  
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Fig 20. Partial Autocorrelation Function Plot 

 PACF gives the information to define exactly the order of p and q, in this case its 

concluded that after 5th lag there is no values greater than 0,05 in exception of values from 

18th to 20th; however, values from 18th to 20th lag might be noise of the data set because 

they appear after a big number of values that are between the significancy band and are 

not considered. Furthermore, applying rules and characteristics explained in section. 4.2.1 

has been decided that parameter p have an order of 6 (5 + 1).  

 P, d, and q values defined before will be used in the project as hypothesis for 

appliance of ARIMA model. 

Step 3: Check Accuracy of the model. 

 In this step accuracy of the model defined in previous sections (p=8, d=0, q=6) is 

checked, to do so, error performance indicators (RMSE, MAPE, MSE and MAE), Aikaike’s 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) are calculated. A study 

has been made varying values of p and q in a range of ± 2, so different options has been 

studied. 

 One month time compilation (January 2013) is very high, and volume of data must 

be reduced for studying the performance of different ARIMA parameters. So, it has been 

decided to focus in the first 2 weeks of January 2013. From these two weeks it has been 

decided that the first 10 days (01/01 - 10/01) will be used for training the ARIMA model and 

the 4 resting days (11/01 - 14/01) will be used for model validation. 
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Table 3 Study of different ARIMA Distribution performance indicators 

ARIMA 
COEFS 

RMSE MAPE MSE MAE AIC BIC 

(6, 0, 5) 2,35 8,85 5,53 1,76 3000,93 3059,55 

(6, 0, 6) 2,33 6,73 5,42 1,75 3011,98 3075,11 

(6, 0, 7) 2,33 6,60 5,42 1,71 3009,63 3077,26 

(7, 0, 4) 2,29 6,53 5,24 1,70 3005,48 3064,09 

(7, 0, 5) 2,31 6,78 5,35 1,73 3003,01 3066,14 

(7, 0, 6) 2,38 6,76 5,64 1,77 3004,45 3072,08 

(7, 0, 7) 2,35 6.66 5,51 1,74 3012,19 3084,34 

(8, 0, 6) 2,41 6.91 5,80 1,80 3009,46 3081,61 

(8, 0, 7) 2,36 6,73 5,55 1,75 3015,73 3092,38 

(9, 0, 7) 2,335 6,71 5,43 1,74 3013,42 3094,58 

 Red colour numbers represent the minimum values of each performance indicator; 

ARIMA coefficients with the lowest error indicator is (7, 0, 4). In the case of AIC and BIC 

the lowest value is 3000,93 (6, 0, 5) and 3059,55 (6, 0, 5) very similar to the value of (7, 0, 

4) distribution 3005,48 and 3064,09. So it’s been decided that ARIMA coefficient that will 

be used for future forecasting will be (7, 0, 4). 

5.1.3.2. ARIMA FORECASTING 

 ‘Statsmodels’ is the Python3 package that includes ARIMA model used for the 

forecasting in this project. The parameters for the long term ARIMA forecasting are (7, 0, 4) 

defined in the previous sections; run time for the case study applying ARIMA with 2 months 

of training (January 2012 – 2013) and performing the 1-month forecasting (January 2014) 

is 11574,4 seconds which corresponds to approximately 3,5 hours. 

ERROR PERFORMANCE INDICATORS:  

 

ARIMA COEFS RMSE MAE MSE MAPE 

(7, 0, 4) 2,98 2,30 8,91 9,70 % 
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ARIMA MODEL SUMMARY: 

 

 Autoregressive constants (L1, L2, L3, L4, L5 and L6) and Moving Average 

constants (L1, L2, L3 and L4) are non-significative (P-value > 0.05) and ARIMA model can 

be optimised to obtain more accurate results. However, error performance indicators are 

low and acceptable since a long-term forecast does not need an extremely high accuracy 

but must be able to foresee the highest demand peaks and changes in consumption. As 

shown below, this model can foresee these demand pics and shapes itself to the energy 

demand. Furthermore, error is stationary and is considered white noise because p-value in 

Dickey Fuller test is 0,00:  

 

ADF Statistic: -13.157155 

p-value: 0.000000 

Critical Values: 

 1%: -3.435 

 5%: -2.864 

 10%: -2.568 

 The following figures show the results obtained from Week 1 and Week 2 of January 

2014: 
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Fig 21. ARIMA Forecast Week 1 – 2 January 2014 
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5.1.3.3. SARIMA – (P, D, Q) s PARAMETER DEFINITION 

 For an accurate forecast is needed to study seasonality in the dataset. Seasonality 

can be studied with the results of ACF and PACF plots in a longer period. However, in 

ARIMA Box & Jenkins methodology was focused in a period of 2 weeks to estimate 

parameters p, d and q; those parameters will be used for SARIMA forecast as p, d, q coming 

from ARIMA. Period taken for seasonality analysis is 2 months, and for ACF and PACF has 

been taken 60 lags, study is performed to the Aggregated Load Demand.  

 

 One of the main troubles when performing long-term forecasting with SARIMA is 

that is difficult converge for its complex equations and high number of parameters; the 

resources in this project are limited in terms of computer calculation capacity so its been 

decided that for SARIMA forecasting to reduce the data resolution in the dataset from 30 

minutes to 2 hours. 
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Fig 24. Partial Auto Correlation Plot J-F 2013 

 
  

Fig 23. Autocorrelation Plot J-F 2013 
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 As shown in Autocorrelation plot there is evidence of seasonality each 12 lags, that 

corresponds a period of 1 day, so there is a measure 2 hours, so the parameter s will take 

value of 12. 

 To determine the auto regression, moving average and integration parameters, a 

12 -value differencing is applied to the initial data. Once the differencing is done, the study 

is repeated using the Box & Jenkins technique to determine the P, D and Q values of the 

seasonality. 

Auto-Regressive Parameter (P) and Moving Average Parameter (Q): In order to 

determine both parameters it has been analysed the ACF and PACF of the data with the 

differentiation applied.  

 

Fig 25. Autocorrelation Plot 

 

 

 

 

 

 

Fig 16. Partial Autocorrelation Plot 

• Autocorrelation Function: Very strong decay and enters to non-significance band  at 

3th lag. That means Q = 2. 

• Partial Autocorrelation Function: After 1st lag there is no values outside the non-

significance band so P = 2. 
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Integration parameter (D): Figure 27 shows the graph with the values of ‘Aggregated 

Load Demand’ vs ‘Dates’. At first glance it seems that the data is stationary, and it is 

checked with the linear regression equation and with the Dickey fuller test:  

• Linear Regression equation: y = -0.0014x + 59.524 

• Augmented Dickey Fuller Test:  

 

ADF Statistic: -4.858278 

p-value: 0.000042 

Critical Values: 

 1%: -3.440 

 5%: -2.866 

 10%: -2.569 

 The slope of linear regression equation is remarkably close to zero and Augmented 

Dickey Fuller Test with a p-value of 0.000042 confirms that data is stationary so D 

parameter will be 0. 
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Figure 27. Differentiation 12 lags Stationarity Study January - February 2013 
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5.1.3.4. SARIMA FORECASTING 

 ‘Statsmodels’ package in python3 is the package used for developing the forecast 

in this project. Model SARIMA (7, 0, 4) x (2, 0, 2)12 defined in the previous sections is used 

for forecasting, the execution time of this model with data of January 2012 – 2013 as a 

training and January 2014 for testing is 4408,93 s what is approximately 1 hour and 13 

minutes. We must consider that the amount of data has been reduced to 2 hours instead 

of 30 minutes that is why the execution time is lower than ARIMA.  

 
ERROR PERFORMANCE INDICATORS 
 

SARIMA COEFS RMSE MAE MSE MAPE 

(7, 0, 4) x (2, 0, 2)12 3.00 2.37 8.99 10.50% 

 
SARIMA MODEL SUMMARY 

 
 There are some constants of the model that are non – significative (p-value > 0,05), 

the algorithm can be optimised and should have similar results with less constants that will 
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reduce the execution time. However, RMSE of the model equals to 3,00, so it is considered 

a good model for long-term demand forecasting. As shown below, the model can foresee 

demand pics and shapes itself to the energy demand. Furthermore, error is stationary and 

is considered white noise because p-value in Dickey Fuller test is 0,000017: 

 
ADF Statistic: -5.061181 

p-value: 0.000017 

Critical Values: 

 1%: -3.449 

 5%: -2.870 

 10%: -2.571 

The following figures show the results obtained from Week 1 and Week 2 of January 2014: 

 
 



Page. 44  Main Report 

 

0

10

20

30

40

50
Lo

ad
 D

em
an

d
 (

kW
h

)

Dates (hour)

Forecasting Real Values

-10

-8

-6

-4

-2

0

2

4

6

8

10

Tí
tu

lo
 d

el
 e

je

Dates (hour)

Fig 28. SARIMA Forecast Week 1 - 2 January 2014 

Fig 29. ERROR SARIMA Forecast Week 1 - 2 January 2014 
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5.1.4. NEURAL NETWORKS FORECASTING 

 For the development of long-term energy demand forecasting with neural networks, 

an MLP model and an RNN have been developed. The development of both neural 

networks is based on the aforementioned data.  

 Neural networks can offer a lot of help when data scientists deal with more complex 

but still very common problems such as, time series forecasting. Many different studies 

have been published during last few years about performance of NN depending on the type 

of cell, activation functions and optimization algorithms applied to short term and long-term 

demand forecasting. Recurrent neural networks — specifically long short-term memory 

(LSTM) networks and gated recurrent units (GRUs) — are good at extracting patterns in 

input data that span over relatively long sequences[16].   

 In order to test different NNs, three Neural Networks have been developed. Two 

RNN based on LSTM and a simple RNN and 1 MLP. The main purpose consists in 

comparing the results of a similar structure between both RNN and MLP and study the 

performance of the NN depending on the activation function, type of cell and optimizer.  

 In the experiment the number of steps ‘n’ (n values used to determine the ‘n+1’ 

value) has been determined to 20 and a learning rate of 0,005. 

5.1.4.1. RECURRENT NEURAL NETWORK – DEFINITION. 

 Development of Recurrent Neural Networks has been based on the study of Long 

Term Load Forecasting with Hourly predictions based on LSTM developed in the Delhi 

Technological University[17].  This study proposes a 3-layer with 15 LSTM cells tuned by an 

exhaustive search approach for hyper parameters applying a learning rate of 0,01 using the 

activation function ‘ReLu’.  

 For the purpose of this work, two types of recurrent neural network have been 

developed, in both cases the Keras library within the tensorflow framework have been used, 

applying a reduction of cells between the hidden layers without Dropout and one Dense 

Layer as output layer:  

1. Simple RNN Cells: Made up of 1 input layer (400 cells), two hidden layers (300 

and 100 cells) and 1 output layer (Dense layer). 

 

2. LSTM Cells: Made up of 1 input layer (400 cells), two hidden layers (300 and 100 

cells) and 1 output layer (Dense layer). 
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DATA PREPARATION 

 The initial data frame has a resolution of 30 minutes, for the simplification of the 

problem and to be able to correctly run the neural network models (Simple RNN and LSTM) 

the data has been organized in a matrix form with a resolution of 1 hour, thus obtaining a 

row per day - month - year and a column for each hour of the same day.  

Fig 30. Matrix form of data - Aggregated Load Demand (kWh) 

 Next step consists in separate data between train data (January 2012 – January 

2013) and test data (January 2014), once data is separated its normalized to improve neural 

network performance using MinMaxScaler() from sklearn.  

 As mentioned, it has been decided to use the previous 20 values to determine the 

21st, train and test data frames are splitted and transformed to sequences. A requirement 

of LSTM and SimpleRNN cells is that the input data is a 3D array ‘(batch_size, 

time_steps, seq_len)’. In this case X is the input of the Neural Network and Y is the 

data validation:  

Training Set X (2, 25, 24) and Y (2, 24) 

Dimensions of the test set with training data needed for predictions: 

(91, 24) 

Testing Set X (31, 25, 24) and Y (31, 24) 

  

Methodology of study 

 This section describes the methodology used to study the performance of the 

RNNs; in this case, the structure of the neural network is already defined and the 

parameters that will vary are the activation function and the learning algorithm 

(optimization). In this algorithm for all the examples a learning ratio of 0,005 is applied. 

 Three activation functions (ReLu, Tanh and Sigmoid) and three learning algorithms 

(Adam, AdaGrad and RMSprop) are considered and a maximum of 2000 epochs are 
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permitted. The performance is measured considering the errors (RMSE, MAE, MAPE, 

MSE) of each model applied in each type of neural network, the number of epochs without 

overfitting and the total execution time.  

 To avoid overfitting an early stopping function has been applied with a patience of 

20 values, that means that if in 20 values the mean squared error is stationary it stops, apart 

from avoiding overfitting it improves the total time execution. 

 Furthermore, graphical representation of the values has been evaluated to avoid 

repetitive models.  

RNN FORECASTING RESULTS 

 Table 4 shows the values of the performance indicators for the Simple RNNs. 

 Green values have a normal behaviour and are considered for the comparation with 

other methodologies; however, white ones show a strange behaviour when are plotted and 

are omitted. Next figure shows the strange behaviour (all days are practically identical) of 

RMSProp ‘Sigmoid’ during the first week test: 

 Best results in SimpleRNN are performed by the learning algorithm RMSProp and 

with the activation function ‘ReLu’ with a RMSE value of 7,30, an execution time of 14,56 

seconds and 92 epochs. Next graphs show the behaviour of the green ones the first two 

weeks of the month:

Table 4. Simple RNN performance indicators 

Fig 31. RMSProp Sigmoid W1 

RMSE MAE MSE MAPE EXEC TIME (seconds) EPOCHS

Adam 'relu' 20 8.23 6.70 67.71 13.59% 38.85 516

Adam 'tanh' 20 8.16 6.58 66.64 10.53% 47.76 724

Adam 'sigmoid' 20 8.39 6.85 70.38 11.26% 93.12 1581

AdaGrad 'relu' 20 7.60 6.27 57.83 14.22% 111.54 2000

AdaGrad 'tanh' 20 8.56 6.78 73.29 15.19% 31.66 436

AdaGrad 'Sigmoid' 20 8.15 6.56 66.47 10.48% 116.90 2000

RMSProp 'relu' 20 7.30 6.12 53.33 13.86% 14.56 92

RMSProp 'tanh' 20 8.45 6.68 71.33 10.89% 10.58 67

RMSProp 'Sigmoid' 20 6.89 5.69 47.42 14.09% 10.99 70
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N

N
 S

IM
PL

E



Page. 48  Main Report 

 

 

Fig 32. Simple RNN Forecast Week 1. 

Fig 33. Simple RNN Forecast Week 2. 
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Table 5 shows the results of the performance indicators for LSTM. 

 

 Same analysis performed in SimpleRNN have been done for LSTM. As can be seen 

for LSTM the execution time is higher than SimpleRNN due to the high number of epochs 

performed during the test. Adam is the only learning algorithm that gives good results in 

terms of the behaviour of the model once it is plotted; RMSprop ‘ReLu’ gave bad results it 

is not taken into account, so the optimization didn’t perform correctly. Figure 34 shows the 

strange behaviour of AdaGrad ‘tanh’ during the first week: 

 

Fig 34. AdaGrad ‘tanh’ strange behaviour 

 Best results in LSTM are a rmse value of 7,62, and execution time of 80,13 seconds 

and 527 epochs, those are given by the learning algorithm Adam with the activation function 

‘ReLu’. Next figures show the behaviour of the green ones the first two weeks of the month:  

 

  

RMSE MAE MSE MAPE EXEC TIME (seconds) EPOCHS

Adam 'relu' 20 7.62 6.32 58.07 10.81% 80.13 527

Adam 'tanh' 20 8.19 6.83 67.12 11.30% 103.33 638

Adam 'sigmoid' 20 8.43 6.90 71.05 11.42% 182.25 1240

AdaGrad 'relu' 20 7.80 6.42 60.89 10.68% 263.39 2000

AdaGrad 'tanh' 20 7.87 6.37 61.90 10.42% 260.48 2000

AdaGrad 'Sigmoid' 20 8.15 6.56 66.40 10.49% 86.66 658

RMSProp 'relu' 20 NA NA NA NA NA NA

RMSProp 'tanh' 20 8.19 6.88 67.00 12.00% 40.82 109

RMSProp 'Sigmoid' 20 8.64 7.05 74.71 11.84% 24.03 65

LS
TM

 C
EL

LS

Table 5. LSTM Performance Indicators 
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Fig 35. LSTM Normal Behaviour W2 

  

Fig 36. LSTM Normal Behaviour Week 2 
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5.1.4.2. MULTIPLE LAYER PERCEPTRON NEURAL NETWORK 

 Multiple Layer Perceptron is simpler than recurrent neural networks in its structure. 

One of the objectives is to compare the results obtained by the MLP with RNN, so the RNN 

previously designed has been adapted to a MLP. To do so, the same number of layers has 

been used; 1 input layer (400 cells), 2 hidden layers (300 and 100 cells) and an output layer 

(Dense layer), the main difference is that all layers are fully connected, so it has been done 

with 3 dense layers. 

 This way it will be possible to measure the computational speed and performance 

of the different neural networks. Learning rate and number of previous steps is the same 

decided in RNN with values of 0,005 and 20. 

DATA PREPARATION 

 In the case of the MLP the data has not been normalized since its typical activation 

function as mentioned above is ReLu and performs well without data normalization.   

 From the initial data frame we use the ‘Cumulative Sum Corrected’ column and split 

it between the values according to the date with those to be used for training (January 20–

2 - January 2013) and those to be used for the test part (January 2014). The output before 

transforming it to an array:  

 

Train dataset 

DayTime 

2012-01-01 00:00:00    24.432 

2012-01-01 00:30:00    15.216 

2012-01-01 01:00:00    12.144 

2012-01-01 01:30:00    11.952 

2012-01-01 02:00:00    44.640 

                        ...   

2013-01-31 21:30:00    36.472 

2013-01-31 22:00:00    35.004 

2013-01-31 22:30:00    32.580 

2013-01-31 23:00:00    28.110 

2013-01-31 23:30:00    21.943 

Name: Cumulative Sum Corrected, Length: 2976, dtype: float64 

 

 

Test dataset 

DayTime 

2014-01-01 00:00:00    22.890546 

2014-01-01 00:30:00    19.056000 

2014-01-01 01:00:00    16.698545 

2014-01-01 01:30:00    15.674182 

2014-01-01 02:00:00    15.021818 

                         ...     

2014-01-31 21:30:00    32.216930 

2014-01-31 22:00:00    33.353302 
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2014-01-31 22:30:00    28.708465 

2014-01-31 23:00:00    23.103628 

2014-01-31 23:30:00    23.840372 

Name: Cumulative Sum Corrected, Length: 1487, dtype: float64 

 Input shape in Dense Layers is (batch_size, units), then the data frame values 

should be divided into sequences of 20 values to predict the 21st. In this case, due to the 

nature of the sequences, it is not necessary to modify the resolution of the problem to one 

hour and it is kept at 30 minutes, which benefits since we have more data both for training 

and for the test. 

 
Training Set X_train (2956, 20) and Y_train (2956,) 

Testing Set X_test (1487, 20) and Y_test (1487,) 

 
Those are the shapes of the sequences introduced in the MLP for training and testing. 
 
 
Methodology of study 
 
 For the study case, RELU is the only activation function used in the MLP, and the 

performance of the NN with the different learning algorithms it’s been measured. Same 

parameters used in the study performed for RNN are used (learning rate applied = 0,005 , 

maximum number of epochs = 2000).  

 

 The performance is measured considering the errors (RMSE, MAE, MAPE, MSE), 

the number of epochs without overfitting and the total execution time. To avoid overfitting 

an early stopping function has been applied with a patience of 20 values, which means that 

if in 20 values the mean squared error is stationary it stops, apart from avoiding overfitting 

it improves the total time execution. 

 Furthermore, graphical representation of the values has been evaluated to avoid 

repetitive models.  

MLP FORECASTING RESULTS 

Table 6 shows the performance indicators of MLP study case: 

 

 As can be seen all three optimization models gave good results in terms of error 

and execution time, clearly the worst is AdaGrad ‘relu’ 20 with an execution time of 84,49 s 

and an RMSE of 2,32. The more accurate model is RMSprop ‘relu’ 20 with an RMSE of 

2.13 and an execution time of 39,62 s but Adam ‘relu’ 20 is very fast and forecasting is also 

accurate so we consider the best model to be Adam ‘relu’ 20. Following graphs show values 

Table 6. MLP performance indicators 

RMSE MAE MSE MAPE EXEC TIME (seconds) EPOCHS

Adam 'Relu' 20 2.27 1.71 5.16 7.20% 19.29 124

AdaGrad 'Relu' 20 2.32 1.76 5.40 7.04% 84.49 577

RMSprop 'relu' 20 2.13 1.62 4.52 7.05% 39.62 206

M
LP
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predicted during the first 2 weeks of January 2014; as can be seen prediction clearly follows 

the trend of the actual values apart from AdaGrad that is not accurate in the periods that 

demand is low:  
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Fig 37. MLP Forecast Week 1 

Fig 38. MLP Forecast Week 2 
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5.1.4.3. NEURAL NETWORKS COMPARISON 

 To make a comparison of which between different neural networks, best 

configuration within the type of neural network (SimpleRNN, LSTM and MLP) has been 

selected.  

 Best configurations are selected considering the lowest RMSE, execution time and 

number of epochs. From the performance indicators we can see how MLP networks 

perform better than RNN having a much lower error (RMSEMLP = 2,27) compared to RNNs 

(RMSERNN= 7,30). RNNs are more complex than MLPs, one of the causes of the 

differentiation of performance between them can be the size of the data used; RNNs work 

very well with large amount of data, and this is not the case since 2 months of training and 

1 month of testing were used. The week-by-week forecasting for best configurations during 

January 2014 are plotted below: 

 

 

 
 
 
 
 
 
 
 
 

Table 7. Best configurations of Neural Networks 

NEURAL NETWORK CONFIGURATION RMSE MAE MSE MAPE EXEC TIME EPOCHS

RNN SIMPLE RMSProp 'relu' 20 7.30 6.12 53.33 13.86% 14.56 92

LSTM CELLS Adam 'relu' 20 7.62 6.32 58.07 10.81% 80.13 527

MLP Adam 'Relu' 20 2.27 1.71 5.16 7.20% 19.29 124
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Fig 39. Neural Networks Comparison Week 1 

 

Fig 40. Neural Networks Comparison Week 2 
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Figure 41. Neural Network Comparison Week 3 

Figure 42. Neural Network Comparison Week 4 
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5.1.5. DISCUSSION 

 In chapter 5 forecast of Aggregated Load Demand using 2 Statistical methods 

(ARIMA, SARIMA) and 3 Neural Networks (SimpleRNN, LSTM, MLP) in a winter 

scenario have been created to compare the qualitative differences between models and 

study the performance. The winter scenario designed corresponds into using January 

20–2 – 2013 as training data, and January 2014 for testing.  

 The results obtained from Neural Networks has been compared in section 

5.1.4.3 where MLP shows a better performance than RNN (RMSEMLP=2,27, RMSERNN 

= 7,30) so in order to compare NN with Statistical methods, MLP has been selected to 

be compared with ARIMA an SARIMA to define the Advantages and Disadvantages of 

each one.  

 Forecasting results obtained in section 5.1.2, 5.1.3 and 5.1.4 show significant 

differences for every model in terms execution time, in terms of accuracy statistical 

models are quite similar (RMSE 2,98 – 3,00), NN show an accuracy a bit better than 

statistical methods (RMSE 2,27). Furthermore, as can be seen in the following graphs 

all 3 methods adapt correctly to the sharper changes of the aggregated load demand in 

the peak hours from 18:00 to 22:00. 

 

Fig 43. Aggregated Load Demand on 05-01-2014 

 

 

Table 8. Comparison NN vs Statistical Methods 
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ACTUAL MLP ARIMA SARIMA

RMSE MAE MSE MAPE EXECUTION TIME (s) Resolution

ARIMA 2,98 2,30 8,91 9,70 % 11574,4 30 min

SARIMA 3,00 2,37 8,99 10,50% 4408,93 2 hours

MLP 2,27 1,71 5,16 7,20% 19,29 30 min
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 However, in terms of Execution Time NN, performs much better than statistical 

methods. MLP in 19,29 s is capable of being training with the amount of data given and 

give a more accurate prediction than Statistical Methods with the same resolution 

(11574,4 s). In the case of SARIMA it has not been possible to perform a forecasting 

with the resolution of 30 minutes due to the computational restrictions. SARIMA is a 

more complex model than ARIMA and using ¼ (2 hours resolution) of the data used in 

ARIMA or MLP (30 min resolution) it has an execution time of 4408,93 s.   

 Depending on the type of cell we are using, the input data used in NN need to 

be transformed or modified, so needs an extra time of data cleaning that in Statistical 

methods is not necessary. Nevertheless, the computational efficiency and accuracy of 

NN in big amounts of data, gives possibilities that cannot be performed in Statistical 

methods.  

 The following figures show week-by-week long-term energy demand forecasts 

for the month of January 2014. As can be seen the SARIMA values do not adhere to the 

energy demand curves as accurately as MLP or ARIMA although the error is similar, that 

is because SARIMA does not have the same data resolution as the other forecasts: 
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Fig 44. Stastistical models vs Neural Networks Week 1 

Fig 45. Stastistical models vs Neural Network Week 2 
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Fig 46. Statistical models vs Neural Network Week 3 

 

Fig 47. Statistical models vs Neural Network Week  
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6. OPEN RESEARCH QUESTIONS 

 During the work of this thesis additional interesting questions arose, but, due to the 

scope of the work some of them have to remain subject to future research. The focus has been 

on the development of artificial intelligence methodologies to be applied to long-term demand 

forecasting, in order to compare the statistical methods with the Neural Networks.  

 Dataset used has only data of energy load demand, so it would be interesting to 

combine this data with other datasets such as economic factors, or meteorological influence 

in order to determine the influence in the energy demand. Furthermore, Recurrent Neural 

Networks developed in the project could be and tested with bigger amounts of data to 

determine the computational efficiency and be also compared with MLP in a big data 

environment.  

 Finally, Convolutional Neural Networks combined with RNN could be developed and 

tested with other datasets to determine its performance since they haven’t been included in 

the framework.  
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Conclusions 

 Long-Term forecasting is crucial for planning and operations in the power sector. There 

are not many published studies on long-term prediction as it is something new. However, there 

are several published studies on short-term energy demand prediction. For the development 

of the work different articles and studies have been analysed to finally develop a neural network 

capable of making a long-term prediction in a reasonable time with the data set provided for 

further comparisons with statistical methods. 

 Statistical methods (ARIMA, SARIMA) have proven to be reliable and capable of giving 

a good long-term forecast (RMSE = 2,98 – 3,00). Nevertheless, the run time is high and a 

previous study of the data must be performed in order to select the parameters correctly. In 

the study case data size is not very large and yet the run times have been quite large i.e. 

ARIMA 3,5 hours. Therefore, if we were to use large data sizes the run time would increase or 

model the might not converge. 

 Neural Networks have proven to be better in accuracy by 25,56% than statistical 

methods, and also in the execution time (NN: 19,29s, ARIMA: 11574,4s, SARIMA: 4408,93s). 

Several published studies such as [11] or [17] refer to the great advantages of RNNs in terms 

of accuracy and speed of calculation for long-term energy demand forecasts. According to the 

results obtained, it has been seen how MLP led to better results than RNN, this is since RNN 

are more complex. The size of the data used in this work is quite small, so in a bigger dataset 

RNN would have a different behaviour and a better performance.  

 In conclusion, all statistical models and neural networks tested have a good accuracy 

and can be used for long-term demand forecasting. However, the simplicity of the Neural 

Networks, along with its numerical and computational efficiency add great benefits to the 

results. 
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