
Master’s Degree Project

Master’s Degree in Industrial Engineering

ARTIFICIAL INTELLIGENCE APPLIED TO DEMAND

FORECASTING

MAIN REPORT

 Author: Xavier Vilanova Rubau
 Director: Mònica Aragües / Antonio Emmanuel Saldaña
 Date: June 2021

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Page. 2 Main Report

Artificial Intelligence applied to demand forecasting Page 3

Abstract

 Long-Term Load Forecasting based on Artificial Intelligence (AI) methods are today seen as the

main research interest for the optimal planning of smart energy grids. Numerous techniques have been

applied by the researchers to forecast the future electrical energy demand, which can be broadly

categorized as parametric (statistical) and non-parametric (artificial intelligence techniques). Due to the

amount of data collected in the past years, non-parametric techniques are gaining a lot of attention.

Artificial Neural Networks (ANN) compared with other intelligent techniques is able to map and memorize

the non-linear relations between inputs and outputs variables.

 This project focuses on long-term energy demand forecasting and for this purpose two

Statistical models (ARIMA, SARIMA) and three Artificial Neural Networks (2 RNN, 1 MLP) have been

developed. These models are implemented on real time electricity data from 5567 Households of UK

Power Network, during the period from November 2011 to February 2014 at 30-minute resolution

intervals. Performance indicators have been computed and the advantages and disadvantages of each

model have been analysed. The results, show that Artificial Neural Networks are found to be highly

accurate (MAPE 7,20%) and have lower computational complexity than Statistical Methods.

Page. 4 Main Report

CONTENTS

CONTENTS ___ 4

1. GLOSSARY __ 7

2. PREFACE __ 8

2.1. Origin of the project and motivation .. 8

2.2. Previous requirements ... 8

3. INTRODUCTION ___ 9

3.1. Scope of the project.. 9

3.2. Project Goals .. 9

4. STATE OF THE ART ______________________________________ 11

4.1. PROBABILISTIC DEMAND FORECASTING – STATISTICAL METHODS 11

4.2. Auto regressive Integrated Moving Average (ARIMA) 11

4.2.1. SEASONALITY AUTO REGRESSIVE INTEGRATED MOVING AVERAGE

(SARIMA) .. 12

4.3. Criterions to find p, d, q values ... 13

4.3.1. Box and Jenkins Methodology .. 13

4.3.2. Akaike´s Information Criterion (AIC): Find the models with the lowest AIC values

 .. 17

4.3.3. Schwarts Bayesian Information Criterion (BIC) models with the lowest BIC

values.. 18

4.4. PROBABILISTIC DEMAND FORECASTING – NEURAL NETWORKS 18

4.4.1. Learning Algorithms .. 20

4.4.2. Activation function ... 20

4.4.3. Multilayer perceptrons (MLP) .. 23

4.4.4. Recurrent Neural Networks (RNN) .. 24

4.5. ERROR PERFORMANCE INDICATORS .. 27

5. ALGORITHM DEVELOPMENT ______________________________ 28

5.1.1. DATA SET STRUCTURE ... 28

5.1.2. PREPARATION OF SCENARIOS TO FORECAST.. 29

5.1.3. STATISTICAL METHODS FORECASTING ... 29

5.1.3.1. ARIMA parameters - Box & Jenkins Methodology 30

5.1.3.2. ARIMA FORECASTING ... 34

5.1.3.3. SARIMA – (P, D, Q) s PARAMETER DEFINITION 37

5.1.3.4. SARIMA FORECASTING .. 42

Artificial Intelligence applied to demand forecasting Page 5

5.1.4. NEURAL NETWORKS FORECASTING ... 45

5.1.4.1. RECURRENT NEURAL NETWORK – DEFINITION. 45

5.1.4.2. MULTIPLE LAYER PERCEPTRON NEURAL NETWORK 51

5.1.4.3. NEURAL NETWORKS COMPARISON ... 55

5.1.5. DISCUSSION ... 58

6. OPEN RESEARCH QUESTIONS _____________________________ 64

CONCLUSIONS __ 65

ACKNOWLEDGMENTS __ 67

BIBLIOGRAPHY __ 68

Artificial Intelligence applied to demand forecasting Page. 7

1. Glossary

ARIMA Auto Regressive Integrated Moving Average

SARIMA Seasonal Auto Regressive Integrated Moving Average

AR Auto Regressive

MA Moving Average

ARMA Auto Regressive Moving Average

AIC Aikaike’s Information Criterion

BIC Bayesian Information Criterion

RMSE Root Mean Square Error

MSE Mean Square Error

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

NN Neural Network

LSTM Long Short-Term Memory

ERU Elman Recurrent Unit

ANN Artificial Neural Network

RNN Recurrent Neural Network

MLP Multiple Layer Perceptron

ReLU Rectified Linear Unit

ACF Auto Correlation Function

PACF Partial Auto Correlation Function

Page. 8 Main Report

2. Preface

2.1. Origin of the project and motivation

 With the transition from the analog to the digital world, great changes have been

brought with the use of Internet of Things, generating huge amounts of data in the energy

system, which are mostly never used. The appropriate tracking, acquisition and processing of

this data can drive into innovative tools and services.

 The project arises from the need to know where it would be necessary to improve the electrical

infrastructure both in maintenance and deployment. With the ability to make accurate long-term energy

demand forecasts, we may be able to execute planning strategies that maintain and expand the

distribution network in a cost-efficient way that also ensures a stable and safe operation in long term

scenarios.

 This thesis is intended to be applicable in small part to the Big Data for Open Innovation

Energy Marketplace (BD4OPEM H2020) project, which proposes innovative solutions in big

data and artificial intelligence applied to the energy sector to improve the management of

electricity grids[21].

2.2. Previous requirements

 For the correct understanding of this thesis its needed basic knowledge of statistics,

data management and python3.

Artificial Intelligence applied to demand forecasting Page 9

3. Introduction

 Energy demand is constantly changing, current infrastructures must be updated and

improved, and it is necessary to foresee where there will be significant changes and

fluctuations in energy demand. The increase in technology over the last few years and the

large amount of stored data open up new possibilities for intend to forecast this energy demand

fluctuations.

 Researchers during the last few years have developed different techniques (parametric

and non-parametric) and applied to short – term energy demand forecasting (less than 1 year)

with good results. However, less papers and studies are published referring to long – term

demand forecasting (more than 1 year) so it is an unexplored field.

 Basic statistical methods have been used for short-term energy demand forecasting

and great results were obtained from Artificial Neural Networks (especially Recurrent Neural

Networks). Nevertheless, the performance of Statistical methods and Artificial Neural

Networks applied to long-term demand forecasting is a question mark in the science world and

there is only recent research about its performance.

 As input data of the project, it’s been used a univariate time series data from UK 5567

Households of UK Power Network, during the period from November 2011 to February 2014

at 30-minute intervals.

3.1. Scope of the project

 This study is part of the Big Data for Open Innovation Energy Marketplace (BD4OPEM

H2020) project. It aims to understand the performance and behaviour differences of Statistical

Methods versus Neural Networks applied to long – term forecasting. This master thesis is

focused in developing simple statistical models (ARIMA, SARIMA) and simple structured

Artificial Neural Networks (RNN, MLP) in order to compare them and determine which one

performs better for univariate long – term energetic demand forecasting.

3.2. Project Goals

 The main goal of this thesis is to test and compare different architectures of artificial

intelligence techniques applied to long – term energetic demand forecasting. In order to

compare the proposed approaches, some performance indicators are taken into account, such

as, RMSE, MSE, MSE and MAPE to determine the accuracy and the execution time to

Page. 10 Main Report

determine the computational efficiency. To do so, a dataset from UK 5567 Households of UK

Power Network is analysed and 5 forecast of Aggregated Load Demand using 2 Statistical

methods (ARIMA, SARIMA) and 3 Neural Networks (SimpleRNN, LSTM, MLP) in a winter

scenario is created to compare the qualitative differences between models and study the

performance.

 .

Artificial Intelligence applied to demand forecasting Page. 11

4. State of the Art

4.1. PROBABILISTIC DEMAND FORECASTING –

STATISTICAL METHODS

In this section different statistical methods subsequently used for long-term energy

demand forecasting are presented. Each mathematical model will be described along with

its properties and the methodology used for the estimation of its parameters.

The models studied are statistical models that use a part of the data to determine

the internal constants of the model (training) by iteration and once the model is defined, a

prediction is made, after all we can evaluate the quality of the model calculating the error

between the real values and the forecasting. Fort the study has been chosen 2 reference

models: ARIMA and SARIMA (adding the seasonality to the previous one).

4.2. Auto regressive Integrated Moving Average (ARIMA)

ARIMA (Auto regressive Integrated Moving Average) is a generalization of ARMA

(Auto Regressive Moving Average) model in which one more parameter is added to control

the stationarity of the data; it consists of a mathematical model developed at the end of the

20th century and systematized in 1976 by Box & Jenkins. ARMA is a dynamic model, that

means that future estimates do not depend on independent variables, depend on past

values of data. The model can be divided into 2 types of independent models,

autoregressive model (AR) and moving average model (MA)[5].

Autoregressive model is a representation of a random process, in which it is

specified that the output variable depends linearly on its predecessors by satisfying

equation 4.1.

 𝑋𝑡 = 𝑐 + ∑ 𝜑𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 (4.1)

Where 𝑋𝑡 represents the output variable, 𝜑𝑖 𝑎𝑛𝑑 𝑐 are constant values defined by

the model, 𝑋𝑡−𝑖 represents previous values used (𝑝 ≥ 𝑖) and the white noise is represented

by the coefficient 𝜀𝑡. Likewise, the parameter ‘p’ represents the number of previous values

to be used for model prediction.

Moving average model represents an invariant time series, in which the output

variable is specified to depend linearly on the current and past values of an unpredictable

Page. 12 Main Report

constant, thus the model directly accumulates the error of previous predictions. The output

can be expressed by the following equation (4.2) where ‘q’ parameter determines the

influence of the past values in the forecasting.:

 𝑋𝑡 = 𝜇 + 𝜀𝑡 + 𝜃𝑡𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑞−1 (4.2)

The ARIMA model adds to the ARMA model the possibility of dealing with non-

stationary dataM the integral part ‘I’ of ARIMA takes careo f it. ARIMA models with non –

stationary data has always this constants that Will vary depending on the dataset:

𝑝 → 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑢𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑡𝑒𝑟𝑚

𝑞 → 𝑜𝑟𝑑𝑒𝑟 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦

𝑑 → 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑒𝑟𝑚

Equation for generic ARIMA (p, d, q):

𝑋𝑡 = ∅1 · 𝑋𝑡−1 + ∅2 · 𝑋𝑡−2 + ⋯ + ∅𝑝 · 𝑋𝑡−𝑝 + 𝛽1 · 𝜀𝑡−1 + 𝛽2 · 𝜀𝑡−2 + ⋯ + 𝛽𝑞 · 𝜀𝑡−𝑞 + 𝜀𝑡

𝑤ℎ𝑒𝑟𝑒 𝑝, 𝑞 ≤ 𝑡 (4.3)

4.2.1. SEASONALITY AUTO REGRESSIVE INTEGRATED MOVING

AVERAGE (SARIMA)

Seasonality must be taken in care in time series forecasting; so, if it’s known that in a

dataset some values are higher or lower in a regular cadence this means there is

seasonality. SARIMA (Seasonality Auto Regressive Integrated Moving Average) models

take seasonality into account by essentially applying an ARIMA model to lags that are

integer multiples of seasonality (previously identified). Once seasonality is modelled with

seasonality parameters (P, D, Q and s), ARIMA is applied to the non-seasonal structure.

Seasonality can be identified by applying the differencing operator on different points of the

time series. Next table shows an explanation of the parameters:

Parameter Definition

P Seasonal Autoregressive Order

D Seasonal Difference Order

Artificial Intelligence applied to demand forecasting Page. 13

Q Seasonal Moving Average Order

s Number of time steps for a single seasonal period

 To define the parameters P, D and Q we have used the methods studied previously

in the ARIMA section such as Box & Jenkins Methodology combined with ACF and PACF.

The data for the good parameterization must be previously modified, so differential operator

is applied between seasonal periods to perform the study on the difference values. As an

extension of ARIMA same parameters p, d and q are applied for forecasting with SARIMA.

4.3. Criterions to find p, d, q values

There is different combination of values that can be assigned to p, d, q. There are

different approaches to find the best p, d, q values that minimize the prediction error. In this

section the most common criterions and methodology are shortly described.

4.3.1. Box and Jenkins Methodology

Box and Jenkins methodology consists in an iterative process developed by Box &

Jenkins in 1976. This methodology is used over year to determine the coefficients (p, d, q)

in ARIMA for an accurate prediction; the requirements for using this methodology consists

in having a stationary time series or a time series that is stationary after one or more

differencing degrees. The next graph shows us the methodology applied during the project

for determining ARIMA p, d, q coefficients:

Fig.1 Box & Jenkins Methodology [1]

Page. 14 Main Report

Step 1: Identifying stationary of the data.

Assuming stationarity of the model is necessary to provide a valid basis for

forecasting. In Mathematical approach we call a stochastic process stationary in the broad

sense if it satisfies equation 4.4:

𝐸(𝑥𝑡) = 𝜇; 𝐸[(𝑥𝑡 − 𝜇)2] = 𝜎𝑥
2; 𝐶𝑜𝑣(𝑥𝑡 , 𝑥𝑡+𝑘) = 𝛾(𝑘) (4.4)

Plotting your data gives us a first impression if the data is stationary or has a clear

trend. Trend can be identified by measuring the slope of the linear regression equation. In

addition to graphical (visual) methods, there are different tests that we can pass through

our data that clearly identify if data is stationary or must be corrected such as ‘Augmented

Dickey-Fuller Unit Root Test’.

Augmented Dickey-Fuller Unit Root Test is a type of statistical test that defines how

strongly a time series is defined by a trend (non-stationary), that uses an autoregressive

model and optimizes an information criterion across multiple lag values. Test is formed by

two hypotheses:

• H0 (Null Hypothesis): Suggests time series has a unit root, meaning is non-

stationary and has some time dependent structure.

• H1 (Alternate Hypothesis): Suggests time series does not have a unit root, meaning

it is stationary and does not have a time dependent structure.

Result of the test is interpreted using a p-value given by the test and a threshold

(normally 5%) determined by the user. A p-value below threshold means H0 is rejected,

and data is stationary; a p-value above the threshold suggests we fail to reject the null

hypothesis and data is non-stationary.[1]

Step 2: Determine p and q through Autocorrelation: ACF and PACF.

Next steps consist in developing an accurate prediction of p and q. ACF and PACF[4]

functions helps us to determine the order of each parameter. Both samples of the

Autocorrelation Plot and Partial Autocorrelation plot are compared to the theoretical

behaviour of these plots when the order is known. [2][3]

Autocorrelation Function [9] defines how data points in a time series are related,

on average, to the preceding data points (it measures the self-similarity of the signal over

different delay times). A scatter plot of �̂�𝑡 with �̂�𝑡−1 can be defined as simple regression

equation without constant as follows:

�̂�𝑡 = ∅𝑡 · �̂�𝑡−1 + 𝑒𝑡 𝑡 = 𝑘 + 1, … , 𝑇 (4.5)

Artificial Intelligence applied to demand forecasting Page. 15

Where ∅̂𝑘 ≅ �̂�𝑘 =
∑ �̂�𝑡·�̂�𝑡−𝑘

𝑇
𝑡=𝑘+1

∑ �̂�𝑡−𝑘
2𝑇

𝑡=𝑘+1
 and takes values from -1 to 1. If we make the

estimation for different time steps k=1, 2, … K, we obtain a number of simple correlation

coefficients �̂�1, �̂�2, … , �̂�𝑘and it’s representation through time steps it’s the AutoCorrelation

Function. To compare zero hypothesis (∅𝑘 = 0) in front of the alternative ∅𝑘 ≠ 0 we

calculate the t rate where:

 𝑡 =
∅̂𝑘

√𝑉𝐴𝑅(∅̂𝑘)

→ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎 𝑁(0,1) 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑤ℎ𝑒𝑟𝑒 𝑉𝐴𝑅(∅̂𝑘) =
1

𝑇
 (4.6)

The hypothesis is denied if:

||
∅̂𝑘

√𝑉𝐴𝑅(∅̂𝑘)

|| > 𝑧𝛼
2

↔ |∅̂𝑘| > 𝑧𝛼
2

· √𝑉𝐴𝑅(∅̂𝑘) (4.7)

𝑤ℎ𝑒𝑟𝑒 𝑧𝛼
2

 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 | 𝑃𝑟𝑜𝑏 (𝑁(0,1) > 𝑧𝛼
2

) =
𝛼

2

Fig 2. Autocorrelation Function [9]

Partial Autocorrelation Function as a complement of the ACF is constructed by

estimating successive equations of multiple regression shown as follows:

 �̂�𝑡 = ∅11 · �̂�𝑡−1 + 𝑒𝑡

�̂�𝑡 = ∅21 · �̂�𝑡−1 + ∅22 · �̂�𝑡−2 + 𝑒𝑡

�̂�𝑡 = ∅31 · �̂�𝑡−1 + ∅32 · �̂�𝑡−2 + ∅33 · �̂�𝑡−3 + 𝑒𝑡

⋮

�̂�𝑡 = ∅𝑘1 · �̂�𝑡−1 + ⋯ + ∅𝑘𝑘 · �̂�𝑡−𝑘 + 𝑒𝑡 (4.8)

Page. 16 Main Report

The coefficients ∅11, ∅22, ∅33, … , ∅𝑘𝑘is named PACF sample. This terminology

becomes from the interpretation of the multiple regression coefficients as partial regression

coefficients. The coefficients √𝑇∅𝑘𝑘 follow a N(0,1) distribution, so, the zero hypothesis

∅𝑘𝑘 = 0 is denied in front of ∅𝑘𝑘 ≠ 0 when |∅̂𝑘𝑘| > 2/√𝑇.

1. Order of Autoregressive Process (p): For an AR (1) process, the sample

autocorrelation function should have an exponentially decreasing appearance.

However, with higher-order AR processes are often a mixture of exponentially

decreasing and damped sinusoidal components.

For higher – order autoregressive process, we must calculate the PACF that will

become to zero of an AR (p) at lag p+1; so, we examine if there is evidence of a

departure from zero. A 95% confidence interval on the sample partial

autocorrelation plot is usually determined.

2. Order of Moving Average Process (q): The autocorrelation function of a MA(q)

process becomes zero at lag q+1 and greater, so we examine the sample

autocorrelation function to see where it essentially becomes zero. We do this by

placing the 95 % confidence interval for the sample autocorrelation function on the

sample autocorrelation plot.

For determining the order of moving average process the PACF is usually not

useful.

With the shape of Autocorrelation function we are capable to identify the model as explained

before. Next table summarises how to determine coefficients p and q with the plot shape:

Table 1. Summary of Autocorrelation Shape

 SHAPE INDICATED MODEL

Exponential Shape, decaying to zero Model is autoregressive, to determine it’s

order we use the PACF plot.

Alternating positive and negative, finally

decaying to zero

Model is autoregressive, to determine it’s

order we use the PACF plot

One or more spikes, rest of them are

essentially zero

Model is moving average, order identified

by where plot becomes to zero.

Decay starts after a few lags Mixed autoregressive and moving average

model

Artificial Intelligence applied to demand forecasting Page. 17

All zero or close to zero Dataset is random

High values at fixed invervales Include seasonal autoregressive term

(SARIMA)

No decay to zero Series is not stationary.

Step 3: Check the accuracy of the model.

Once coefficients are determined, we do a prediction with a real time series data. Using

different error performance indicators such as (MAPE, MAE, RMSE, etc.). If the results

given for the model are satisfactory, we determine that the model is ‘robust’ and we can

continue with the forecasting.

4.3.2. Akaike´s Information Criterion (AIC): Find the models with the lowest

AIC values

Aikaike-s Information Criterion (AIC) is an estimator of prediction error and thereby

relative quality of statistical models for a given set of data. AIC is founded on information

theory that means that when statistical models are used to represent the process that

generate the data, this representation will never be exact and there will always be some

information that is lost. The AIC parameter estimates the relative amount of information that

is lost by a model, the less information a model loses, higher is the value and the quality of

the model[6].

There will always be information lost when a ‘true data’ is represented so the model is

an estimation, not an exactly ‘replica’. The main purpose of AIC is to determine how well a

model fits the data it was generated from. AIC is calculated from:

- K: Number of independent variables used to build the model.

- L: Maximum likelihood estimate of the model (how well the model reproduces the

data.

Using the two parameters mentioned before we can calculate the AIC coefficient:

𝐴𝐼𝐶 = 2 · 𝐾 − 2 · ln(𝐿) (4.9)

 K for default is always 2 so if your model use one independent variable your K will

be 3, if it uses two independent variables your K will be 4, and so on.

 For determining which one is better, we need to calculate for each model the AIC

Coefficient; if a model is more than 2 AIC units lower than another, it is considered

significantly better. [6]

Page. 18 Main Report

The main problem for calculating the AIC coefficient is that calculating the log-likelihood

is difficult so statistical software is used for this calculation, in this project Python libraries

are used for calculating the log-likelihood for the models.

4.3.3. Schwarts Bayesian Information Criterion (BIC) models with the lowest

BIC values.

Bayesian Information Criterion or Schwarts Criterion is a criterion for model selection

among a finite collection of models. It is closely related with AIC (Akaike Information

Criterion) due to it is based, in part, on the likelihood function.

Increasing the likelihood when fitting models can be easy by adding more parameters

but can produce overfitting. BIC solve this problem by introducing a penalty term in the

equation for the number of parameters in the model; it’s term Is larger in BIC than in AIC

(that’s the main difference).

The BIC balances the number of model parameters and number of data points against

the maximum likelihood function as follows:[7]

𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑛 = 𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

𝐿 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 𝐵𝐼𝐶 = 𝑘 · ln(𝑛) − 2 · ln(�̂�) (4.10)

Maximum likelihood function is defined as:

 �̂� = 𝑝(𝑥|𝜃, 𝑀) (4.11)

 This is explained as how likely our data x is explained by the model M, which has certain

model parameters 𝜃. Usually, the calculation of �̂� parameter, is done by statistical software,

in this project we use python libraries[8].

4.4. PROBABILISTIC DEMAND FORECASTING – NEURAL

NETWORKS

The origins of neural networks (NN) go back to the late 1950s where Rosenblatt

conceived the idea of perceptron, a simple mathematical model of how neurons in the brain

operate. From the earliest ideas to the present day, interest in NN’s has oscillated

considerably from great interest from the scientific community to periodic abandonment. [10]

Artificial Intelligence applied to demand forecasting Page. 19

Neural networks are made up of cells (which act as neurons) connected to each other;

the type of cell, the organization of the cells (number of layers), the connections between

them and how the neural network is trained determines the type of neural network. There

are many types of cells, some of which are shown below:

• Perceptron: A single-layer perceptron is the basic unit of a neural network, it

consists on input values, weights and a bias, a weighted sum and activation

function.

Fig 3. Single – layer Perceptron [10]

• Long Short-Term Memory (LSTM): LSTM is composed by a cell, an input gate,

an output gate and a forget gate. It remembers values over arbitrary time intervals

and the tree gates regulate the flow of information into and out of the cell.

Fig 4. Basic LSTM unit. [11]

Page. 20 Main Report

• Elman recurrent unit (ERU): Elman Recurrent Neural Network (ERNN) are

networks with hidden state but without any advanced gating mechanisms. ERNN

cell suffers from the well-known vanishing gradient and exploding gradient problems

over very long sequences. This implies that are not capable of carrying long-term

dependencies to the future.

Fig 5. Elman recurrent Unit [11]

4.4.1. Learning Algorithms

In order for NNs to learn and improve results, so-called learning algorithms are

used.The AdaGrad optimizer (AdaGrad), Root Mean Square Propagation (RMSProp) and

The Adam optimizer (Adam). All of them require and hyperparameter learning rate, that

must be correctly tuned for not perturbing the learning process.

• The AdaGrad optimizer (AdaGrad): Adapts de learning rate to the parameters,

performing smaller updates for parameters associated with frequently occurring

features, and larger updates for parameters associated with infrequent features[13].

• Root Mean Square Propagation (RMSProp): Maintain per – parameter learning

rates that are adapted based on the average of recent magnitudes of the gradients

for the weight. This algorithm works well in online and non-stationary problems.

• The Adam optimizer (Adam): Is an algorithm that can be used instead of the

classical stochastic gradient descent procedure for updating network weights

iterative based in training data. It’s been described as combining the best features

of AdaGrad and RMSProp and famous for it’s computational efficiency and little

memory requirements, also, have an intuitive interpretation and typically require little

tuning[12].

4.4.2. Activation function

A neural network without an activation function is essentially just a linear regression

model. The activation function does the non-linear transformation to the input making it

capable to learn and perform more complex tasks. Activation function defines how the sum

Artificial Intelligence applied to demand forecasting Page. 21

of the input is transformed into an output from a node or nodes in a layer of the network.

Normally the activation function for the nodes of a hidden layer is the same and can

vary from one layer to another. The activation functions can be classified according to the

layer in which they are to be used.

Hidden layers receive the input from another layer (Input Layer or Hidden Layer) and

provides output to another layer (Output Layer or Hidden Layer). Basically, there are 3 main

activation functions used in hidden layers:

• Rectified Linear Activation (ReLu): ReLu is the most common activation function

used in NN design, its calculated as 𝑓(𝑢) = max (0.0 , 𝑥); this means that if 𝑥 has

a negative value the output is 0, otherwise the output will be the value of 𝑥 (as

shown in Figure 6) [14][15].

Fig 6. ReLu Function [18]

• Sigmoid: It’s also called logistic function and it’s calculated as (𝑢) =
1

1−𝑒−𝑥 . Output

range is between 0 to 1 and more positive is the value is closer to 1, otherwise (𝑥 <

0) output is closer to 0.

• Hyperbolic tangent (tanh): Tanh is remarkably similar to the sigmoid function for its

S-shape, output values are from -1 to 1. The main difference between the Sigmoid

and Tanh is that Sigmoid values goes from 0 to 1 instead of -1 to 1, furthermore,

near input values close to zero in tanh will be centred in zero.

 𝑦 = 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (4.12)

Page. 22 Main Report

Fig 7. Sigmoid vs Tanh [19]

Output layers receive the input from the hidden layers or input layer and directly outputs

the prediction of the model, depending on the type of NN and the data, the activation

function will be different; a study must be carried out to determine which is the most

appropriate in each case.

• Linear Activation Function: Multiplies the weighted sum of the input per 1.0 so there

is no transformation; due to it’s naturality is also called ‘identity’ or ‘no activation’.

Linear activation function is useful for regression problems and usually, the target

values used to train the model had scaled prior using normalization or

standardization transformations.

Fig 8. Linear Activation Function [20]

• Sigmoid Activation Function: As explained before Sigmoid outputs goes from 0 to

1. Sigmoid is used when the output accepts multiple ‘true’ answers, that means that

the sum of outputs is not necessary to be equal to 1 performs well with problems of

binary classification or multi-label classification.

Artificial Intelligence applied to demand forecasting Page. 23

• Softmax Activation Function: Outputs a vector of values that converts the vector of

input values into probabilities, probabilities are proportional to each value in the

input vector. Softmax is often used in NN that provide 𝑛 (𝑛 > 1) outputs, one for

each class in the classification task (Multi-class Classification); the activation

function normalizes the output, converting them from weighted sum values into a

vector of probabilities that sum to one.

Softmax activation is related to argmax function that outputs a 0 for all option and 1

for the chosen option, the main difference is that instead of 0 values gives probability

values that sum 1.

𝑝, 𝑥𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑁
𝑖=1

 𝑖 = 1, 𝐼, 𝑁 (4.13)

4.4.3. Multilayer perceptrons (MLP)

MLPs also known as feed-forward neural networks are the most basic form of artificial

NNs. The name of “Feed-Forward” comes from the fact that the inputs are feed forward,

through the hidden nodes (if any) of the network and to the outputs nodes only in one

direction. There are no cycles or loops in the network.

A complex NN is composed by Input layer, hidden layer(s) and output layer. The input

features are denoted as the input layer. Output nodes are denoted as output layer and

hidden layers are layers between input layer and output layer, nodes in each layer of the

network are fully connected to all the nodes in the previous layer. A fully connected layer is

called a dense layer. Figure 9 (a) shows a generic example of a SLP and Figure 9 (b) shows

a MLP:

Fig 9. Single layer Perceptron and Multiple Layer Perceptron [10]

One of the main limitations of MLP is that the number of input and output values is fixed,

Page. 24 Main Report

which makes it inapplicable to problems where the size of the input and output values vary

as in the case of time series. In the hidden layers the main activation function is Rectified

Linear Activation (ReLu).

4.4.4. Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are designed specifically to handle sequential data

that arise in applications such as time series, natural language processing and speech

recognition. A direct approach to address the sequential nature of the data is to use

recurrent connections between nodes that connect the neural networks hidden units back

to themselves with a time delay[11].

Fig 10. Folded RNN [11]

 Since the hidden units learn some kind of feature from the raw input, feeding hidden

units back to themselves in each time step can be interpreted as providing the network with

a kind of dynamic memory. A crucial detail Is that the same network is used for all time

steps; this weight-sharing allows the RNNs to handle sequences of varying length during

training and, generalize to sequence lengths not seen during training.

 Training RNN is quite difficult given that they are typically applied to very long

sequences of data. LSTM were proposed to address the problem of training, instead of

using a simple network at each time step, LSTMs use a more complicated architecture that

controls the flow of input to the cell as well as decide on what information should be kept

inside and what information should be propagated through next time step. One simplest

variant of LSTMs is Gated Recurrent Units (GRU) that do not use a separate memory cell

and consequently they are computationally more efficient.

Artificial Intelligence applied to demand forecasting Page. 25

 Stacked Architecture: Figure 11 shows the structure of one layer in stacked

architecture. The feedback loop of the cell helps the network to propagate the state ht to the

future time steps; for generalisation purposes in the diagram, it’s only shown ht but for an

LSTM cell, ht should be accompanied by the cell state Ct. Stacking means that multiple

LSTM layers can be stacked on top of one another (shown in Figure 12), the output from

every layer is directly fed as input to the next layer immediately above, and the final

forecasts are retrieved from the last layer. Xt denotes the input to the cell at time step t and

�̂�𝑡corresponds to the output; once stacked Xt and �̂�𝑡are vectors instead of single data points.

Fig 11.1-Layer Stacked Architecture [11]

Fig 12. Multi-Layer Stacked Architecture [11]

Page. 26 Main Report

 Sequence-to-sequence architecture: Figure 13 illustrates the generalised S2S

architectures. The input 𝑥𝑡fed to each cell instance of this network is a single data point.

Encoder is the part of the RNN where cells keep getting input at each time step and

consequently build the state of the network. However, in contrast to stacked architecture,

the output is not considered for each time step; rather, only the forecast produced after the

last input point of the encoder is considered.

 The Decoder is the component that produces the outputs in this manner, every

𝑦𝑡 corresponds to a single forecasted data point in the forecast horizon. The initial step of

the decoder is the last step of the encoder which is also known as the context vector, and

it contains autoregressive connections from the output of the previous time step into the

input of the cell of the next one. During training, those autoregressive connections are

disregarded and externally fed with the actual values of the output of the previous time, this

is called teacher forcing – helps the decoder to see how much it should be corrected. During

testing, since the actual values are not available (forecasting is made), auto regressive

connections are used instead as the actual value because it is unknown.

Fig 13. Sequence-to-sequence architecture [11]

Table 2. RNN summary

Architecture Output component Input component Error computation

Stacked Dense layer Moving Window Accumulated error

Sequence-to-sequence Decoder
Without moving

window
Last step error

 Usually Sigmoid and Tanh (explained above) are the activation functions used

hidden layers in RNN.

Artificial Intelligence applied to demand forecasting Page. 27

4.5. ERROR PERFORMANCE INDICATORS

 In order to determine the performance of the forecasting the following error

indicators between the actual values and forecasting will be calculated.

• Root Mean Square Error (RMSE): Is the square root of the average of squared

errors. The effect of each error on RMSE is proportional to the size of the squared

error; thus larger errors have a disproportionately large effect on RMSE.

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂� − 𝑦𝑡)2𝑇

𝑡=1

𝑇
 (4.14)

• Mean Squared Error (MSE): The mean squared error (MSE) tells you how close a

regression line is to a set of points. It does this by taking the distances from the

points to the regression line (these distances are the ‘errors’) and squaring them.

 𝑀𝑆𝐸 =
∑ (𝑦�̂� − 𝑦𝑡)2𝑇

𝑡=1

𝑇
 (4.15)

• Mean Absolute Error (MAE): It’s the mean of the absolute errors between the

forecast and the actual values.

 𝑀𝐴𝐸 =
|∑ (𝑦�̂� − 𝑦𝑡)𝑇

𝑡=1 |

𝑇
 (4.16)

• Mean Percentage Absolute Error (MAPE): is the mean or average of the absolute

percentage errors of forecasts. Error is defined as actual or observed value minus

the forecasted value. Percentage errors are summed, and a positive percentage is

given.

 𝑀𝐴𝑃𝐸 = 100 ·
|
∑ (𝑦�̂� − 𝑦𝑡)𝑇

𝑡=1
𝑦𝑡

|

𝑇
 (4.17)

Page. 28 Main Report

5. ALGORITHM DEVELOPMENT

5.1.1. DATA SET STRUCTURE

 Data has been taken on 5567 Households of UK Power Network, during the period

from November 2011 to February 2014 at 30-minute intervals. Of these 5567 values there

are 1100 customers on dynamic tariffs (Low, Normal, High) and 4467 on constant tariffs.

 The database contains specific energy consumption information, in kWh per half

hour, a household identifier, the date and time of data collection.

Step 1: Data Cleaning

 The First step consists of preparing data for analysis by removing or modifying data

that is incorrect. Data frame is created using pandas, dates and times column is set to index

and transformed to datetime object and energy values are set to type float64.

Fig 14. Step 1 Dataframe.

Step 2: Reduction of dataset

 Since there is a big amount of Data, it is essential to reduce the dimensionality of

the dataset in order to study some properties such as stationarity, autocorrelation and

seasonality. The Data set will be reduced to smaller periods of time in order to minimizethe

compilation time. Next step consists in selecting a range of Day – Time (initial date – final

date)to focus in order to study properties mentioned before indicating dates of the period

that wants to be analysed ; a data frame is created with 4 columns (Cumulative Sum, Max

Load, Mean Load, and Number of smartmete–s - calculated for each date and time) and

Artificial Intelligence applied to demand forecasting Page. 29

DayTime set to index. These 4 parameters are used for forecasting in later sections.

Fig 15. Example of a Dataframe from 01-01-2013 00:00:00 to 14-01-2013 23:30:00

5.1.2. PREPARATION OF SCENARIOS TO FORECAST

 In order to test the algorithms, it is essential to create a test scenario for developing

the long-term forecast; since the season with the highest peak demand (due low

temperatures) is Winter, a ‘Winter scenario’ will be carried out.

 The Forecast will be made using ‘January 2012 – January 2013’ for model training

and ‘January 2014’ for model validation.

 The original dataset contains the energy consumption of each smart meter at

specific time but instead of focusing in several smart meters, it has been decided to work

with the aggregated demand, meaning that, all residential smart meters have been summed

(same time intervals) in order to model a single aggregated load curve. Some of identified

issues in this process are the homogeneity of smart meter data. It is common to find

metering errors of energy consumptions due external factors (non-technical losses, SM

failures). In this case, the number of smart meters (load curves) were not consistent over

all thedataset, therefore a correction has been applied to each point adding the average

load to reach the same number of smart meters for each period of time (January 2012 –

2013 – 2014).

5.1.3. STATISTICAL METHODS FORECASTING

 Long term forecasting with ARIMA and SARIMA has been developed, during the

following sections Box & Jenkins Methodology is applied for parameter definition and Long-

Term forecasting results are presented.

Page. 30 Main Report

5.1.3.1. ARIMA parameters - Box & Jenkins Methodology

 In order to define ARIMA parameters p, d and q has been decided to focus in 1

month analysis, decision has been made to analyse a smaller period and has been

assumed that the behaviour of this period represents in a general way the behaviour of the

data in the whole data set. Month decided for this analysis is January 2013.

Step 1: Identifying stationary data.

 To identify whether the data are stationary time series of the ‘Cumulative Sum

Corrected’ (Aggregated Load Demand) and Mean Load vs ‘Dates’ is plotted. In this way its

easy to identify if any transformation of the data is necessary, for instance converting non-

stationary data into stationary. Once the data is plotted, linear regression equation is

calculated, which its slope indicates whether the data is stationary or not; the closer the

slope is to 0 the more stationary the data is, for a final check, the Augmented Dickey Fuller

test is run through data.

 Figures 16 and 17 show the graphs of our data for the month of study (January

2013) in which can be seen that there is no significant trend and appears to be stationary;

Linear regression equations have been calculated for checking the previous hypothesis:

• Cumulative Sum Corrected vs Dates: y = 0.09–x - 4061.9

• Mean Load vs Dates: y = 0.002–x - 84.623

 As can be seen, the values of the slope in the linear regression equation are close

to zero, so the data is probably stationary and would not need any transformation.

Furthermore, can be identified that there are some peaks every 48 values that represent 1

day (resolution each 30 min), so seasonality in the data can be expected.

Augmented Dickey Fuller test gives the following results:

ADF Statistic: -11.895104

p-value: 0.000000

Critical Values:

 1%: -3.435

 5%: -2.864

 10%: -2.568

 With that information, can be confirmed that data is stationary so d parameter has

will be set to 0, and dataset does not need any transformation for the ARIMA execution.

Artificial Intelligence applied to demand forecasting Page. 31

0

10

20

30

40

50

60

A
gr

eg
ga

te
d

 L
o

ad
 C

u
rv

e
(k

W
h

)

Dates (hour)

Cumulative Sum Corrected Lineal (Cumulative Sum Corrected)

0

0.2

0.4

0.6

0.8

1

1.2

M
ea

n
 L

o
ad

 (
kW

h
)

Dates (hour)

Mean Load Lineal (Mean Load)

Figure 17. Aggregated Load Curve January 2013

Fig 18. Mean Load January 2013

Page. 32 Main Report

Step 2: Determine p and q through Autocorrelation: ACF and PACF.

 Through this step the ACF and PACF has been developed for the data frame

created in previous steps.

Fig 19. Autcorrelation Function Plot

 ACF gives us valuable information about the behaviour of our time series dataset.

Also, it helps us to define the order of the parameters p and q. These values are taken as

an initial indicative and must be used as a starting point of the iterations. Analysing Figure

19 (ACF) we conclude the following statements:

- Strong decay starts after a few lags (2 or 3) that means dataset might be forecast

with both parts Auto Regressive and Moving Average Parameters

- Autocorrelation enters to non-significative zone at 8th lag.

- After 11th lag there appears to be some significant values, but they appear later and

seem to be part of noise and show us periodicity in our data set. Must be taken in

care later for Seasonality.

 ACF analysis concludes that parameter q has an order of 8 because it enters to

non-significance band at 9th lag. Order of the p parameter (AR part) must be defined after

analysing PACF plot.

Artificial Intelligence applied to demand forecasting Page. 33

Fig 20. Partial Autocorrelation Function Plot

 PACF gives the information to define exactly the order of p and q, in this case its

concluded that after 5th lag there is no values greater than 0,05 in exception of values from

18th to 20th; however, values from 18th to 20th lag might be noise of the data set because

they appear after a big number of values that are between the significancy band and are

not considered. Furthermore, applying rules and characteristics explained in section. 4.2.1

has been decided that parameter p have an order of 6 (5 + 1).

 P, d, and q values defined before will be used in the project as hypothesis for

appliance of ARIMA model.

Step 3: Check Accuracy of the model.

 In this step accuracy of the model defined in previous sections (p=8, d=0, q=6) is

checked, to do so, error performance indicators (RMSE, MAPE, MSE and MAE), Aikaike’s

Information Criterion (AIC) and Bayesian Information Criterion (BIC) are calculated. A study

has been made varying values of p and q in a range of ± 2, so different options has been

studied.

 One month time compilation (January 2013) is very high, and volume of data must

be reduced for studying the performance of different ARIMA parameters. So, it has been

decided to focus in the first 2 weeks of January 2013. From these two weeks it has been

decided that the first 10 days (01/01 - 10/01) will be used for training the ARIMA model and

the 4 resting days (11/01 - 14/01) will be used for model validation.

Page. 34 Main Report

Table 3 Study of different ARIMA Distribution performance indicators

ARIMA
COEFS

RMSE MAPE MSE MAE AIC BIC

(6, 0, 5) 2,35 8,85 5,53 1,76 3000,93 3059,55

(6, 0, 6) 2,33 6,73 5,42 1,75 3011,98 3075,11

(6, 0, 7) 2,33 6,60 5,42 1,71 3009,63 3077,26

(7, 0, 4) 2,29 6,53 5,24 1,70 3005,48 3064,09

(7, 0, 5) 2,31 6,78 5,35 1,73 3003,01 3066,14

(7, 0, 6) 2,38 6,76 5,64 1,77 3004,45 3072,08

(7, 0, 7) 2,35 6.66 5,51 1,74 3012,19 3084,34

(8, 0, 6) 2,41 6.91 5,80 1,80 3009,46 3081,61

(8, 0, 7) 2,36 6,73 5,55 1,75 3015,73 3092,38

(9, 0, 7) 2,335 6,71 5,43 1,74 3013,42 3094,58

 Red colour numbers represent the minimum values of each performance indicator;

ARIMA coefficients with the lowest error indicator is (7, 0, 4). In the case of AIC and BIC

the lowest value is 3000,93 (6, 0, 5) and 3059,55 (6, 0, 5) very similar to the value of (7, 0,

4) distribution 3005,48 and 3064,09. So it’s been decided that ARIMA coefficient that will

be used for future forecasting will be (7, 0, 4).

5.1.3.2. ARIMA FORECASTING

 ‘Statsmodels’ is the Python3 package that includes ARIMA model used for the

forecasting in this project. The parameters for the long term ARIMA forecasting are (7, 0, 4)

defined in the previous sections; run time for the case study applying ARIMA with 2 months

of training (January 2012 – 2013) and performing the 1-month forecasting (January 2014)

is 11574,4 seconds which corresponds to approximately 3,5 hours.

ERROR PERFORMANCE INDICATORS:

ARIMA COEFS RMSE MAE MSE MAPE

(7, 0, 4) 2,98 2,30 8,91 9,70 %

Artificial Intelligence applied to demand forecasting Page. 35

ARIMA MODEL SUMMARY:

 Autoregressive constants (L1, L2, L3, L4, L5 and L6) and Moving Average

constants (L1, L2, L3 and L4) are non-significative (P-value > 0.05) and ARIMA model can

be optimised to obtain more accurate results. However, error performance indicators are

low and acceptable since a long-term forecast does not need an extremely high accuracy

but must be able to foresee the highest demand peaks and changes in consumption. As

shown below, this model can foresee these demand pics and shapes itself to the energy

demand. Furthermore, error is stationary and is considered white noise because p-value in

Dickey Fuller test is 0,00:

ADF Statistic: -13.157155

p-value: 0.000000

Critical Values:

 1%: -3.435

 5%: -2.864

 10%: -2.568

 The following figures show the results obtained from Week 1 and Week 2 of January

2014:

Page. 36 Main Report

Fig 21. ARIMA Forecast Week 1 – 2 January 2014

0

5

10

15

20

25

30

35

40

45

50
A

gg
re

ga
te

d
 L

o
ad

 C
u

rv
e

(k
W

h
)

Dates (hours)

Real Vaues Forecast

-15

-10

-5

0

5

10

Er
ro

r
(k

W
h

)

Dates (hour)

Fig 22. ERROR ARIMA Forecast Week 1 – 2 January 2014

Artificial Intelligence applied to demand forecasting Page. 37

5.1.3.3. SARIMA – (P, D, Q) s PARAMETER DEFINITION

 For an accurate forecast is needed to study seasonality in the dataset. Seasonality

can be studied with the results of ACF and PACF plots in a longer period. However, in

ARIMA Box & Jenkins methodology was focused in a period of 2 weeks to estimate

parameters p, d and q; those parameters will be used for SARIMA forecast as p, d, q coming

from ARIMA. Period taken for seasonality analysis is 2 months, and for ACF and PACF has

been taken 60 lags, study is performed to the Aggregated Load Demand.

 One of the main troubles when performing long-term forecasting with SARIMA is

that is difficult converge for its complex equations and high number of parameters; the

resources in this project are limited in terms of computer calculation capacity so its been

decided that for SARIMA forecasting to reduce the data resolution in the dataset from 30

minutes to 2 hours.

Page. 38 Main Report

Fig 24. Partial Auto Correlation Plot J-F 2013

Fig 23. Autocorrelation Plot J-F 2013

Artificial Intelligence applied to demand forecasting Page. 39

 As shown in Autocorrelation plot there is evidence of seasonality each 12 lags, that

corresponds a period of 1 day, so there is a measure 2 hours, so the parameter s will take

value of 12.

 To determine the auto regression, moving average and integration parameters, a

12 -value differencing is applied to the initial data. Once the differencing is done, the study

is repeated using the Box & Jenkins technique to determine the P, D and Q values of the

seasonality.

Auto-Regressive Parameter (P) and Moving Average Parameter (Q): In order to

determine both parameters it has been analysed the ACF and PACF of the data with the

differentiation applied.

Fig 25. Autocorrelation Plot

Fig 16. Partial Autocorrelation Plot

• Autocorrelation Function: Very strong decay and enters to non-significance band at

3th lag. That means Q = 2.

• Partial Autocorrelation Function: After 1st lag there is no values outside the non-

significance band so P = 2.

Page. 40 Main Report

Integration parameter (D): Figure 27 shows the graph with the values of ‘Aggregated

Load Demand’ vs ‘Dates’. At first glance it seems that the data is stationary, and it is

checked with the linear regression equation and with the Dickey fuller test:

• Linear Regression equation: y = -0.0014x + 59.524

• Augmented Dickey Fuller Test:

ADF Statistic: -4.858278

p-value: 0.000042

Critical Values:

 1%: -3.440

 5%: -2.866

 10%: -2.569

 The slope of linear regression equation is remarkably close to zero and Augmented

Dickey Fuller Test with a p-value of 0.000042 confirms that data is stationary so D

parameter will be 0.

Artificial Intelligence applied to demand forecasting Page. 41

Figure 27. Differentiation 12 lags Stationarity Study January - February 2013

y = -0.0014x + 59.524

-20

-15

-10

-5

0

5

10

15

20

A
gg

re
ga

te
d

 L
o

ad
 D

em
an

d
 (

kW
h

)

Dates (hour)

Differentiation 12 lags Lineal (Differentiation 12 lags)

Page. 42 Main Report

5.1.3.4. SARIMA FORECASTING

 ‘Statsmodels’ package in python3 is the package used for developing the forecast

in this project. Model SARIMA (7, 0, 4) x (2, 0, 2)12 defined in the previous sections is used

for forecasting, the execution time of this model with data of January 2012 – 2013 as a

training and January 2014 for testing is 4408,93 s what is approximately 1 hour and 13

minutes. We must consider that the amount of data has been reduced to 2 hours instead

of 30 minutes that is why the execution time is lower than ARIMA.

ERROR PERFORMANCE INDICATORS

SARIMA COEFS RMSE MAE MSE MAPE

(7, 0, 4) x (2, 0, 2)12 3.00 2.37 8.99 10.50%

SARIMA MODEL SUMMARY

 There are some constants of the model that are non – significative (p-value > 0,05),

the algorithm can be optimised and should have similar results with less constants that will

Artificial Intelligence applied to demand forecasting Page. 43

reduce the execution time. However, RMSE of the model equals to 3,00, so it is considered

a good model for long-term demand forecasting. As shown below, the model can foresee

demand pics and shapes itself to the energy demand. Furthermore, error is stationary and

is considered white noise because p-value in Dickey Fuller test is 0,000017:

ADF Statistic: -5.061181

p-value: 0.000017

Critical Values:

 1%: -3.449

 5%: -2.870

 10%: -2.571

The following figures show the results obtained from Week 1 and Week 2 of January 2014:

Page. 44 Main Report

0

10

20

30

40

50
Lo

ad
 D

em
an

d
 (

kW
h

)

Dates (hour)

Forecasting Real Values

-10

-8

-6

-4

-2

0

2

4

6

8

10

Tí
tu

lo
 d

el
 e

je

Dates (hour)

Fig 28. SARIMA Forecast Week 1 - 2 January 2014

Fig 29. ERROR SARIMA Forecast Week 1 - 2 January 2014

Artificial Intelligence applied to demand forecasting Page. 45

5.1.4. NEURAL NETWORKS FORECASTING

 For the development of long-term energy demand forecasting with neural networks,

an MLP model and an RNN have been developed. The development of both neural

networks is based on the aforementioned data.

 Neural networks can offer a lot of help when data scientists deal with more complex

but still very common problems such as, time series forecasting. Many different studies

have been published during last few years about performance of NN depending on the type

of cell, activation functions and optimization algorithms applied to short term and long-term

demand forecasting. Recurrent neural networks — specifically long short-term memory

(LSTM) networks and gated recurrent units (GRUs) — are good at extracting patterns in

input data that span over relatively long sequences[16].

 In order to test different NNs, three Neural Networks have been developed. Two

RNN based on LSTM and a simple RNN and 1 MLP. The main purpose consists in

comparing the results of a similar structure between both RNN and MLP and study the

performance of the NN depending on the activation function, type of cell and optimizer.

 In the experiment the number of steps ‘n’ (n values used to determine the ‘n+1’

value) has been determined to 20 and a learning rate of 0,005.

5.1.4.1. RECURRENT NEURAL NETWORK – DEFINITION.

 Development of Recurrent Neural Networks has been based on the study of Long

Term Load Forecasting with Hourly predictions based on LSTM developed in the Delhi

Technological University[17]. This study proposes a 3-layer with 15 LSTM cells tuned by an

exhaustive search approach for hyper parameters applying a learning rate of 0,01 using the

activation function ‘ReLu’.

 For the purpose of this work, two types of recurrent neural network have been

developed, in both cases the Keras library within the tensorflow framework have been used,

applying a reduction of cells between the hidden layers without Dropout and one Dense

Layer as output layer:

1. Simple RNN Cells: Made up of 1 input layer (400 cells), two hidden layers (300

and 100 cells) and 1 output layer (Dense layer).

2. LSTM Cells: Made up of 1 input layer (400 cells), two hidden layers (300 and 100

cells) and 1 output layer (Dense layer).

Page. 46 Main Report

DATA PREPARATION

 The initial data frame has a resolution of 30 minutes, for the simplification of the

problem and to be able to correctly run the neural network models (Simple RNN and LSTM)

the data has been organized in a matrix form with a resolution of 1 hour, thus obtaining a

row per day - month - year and a column for each hour of the same day.

Fig 30. Matrix form of data - Aggregated Load Demand (kWh)

 Next step consists in separate data between train data (January 2012 – January

2013) and test data (January 2014), once data is separated its normalized to improve neural

network performance using MinMaxScaler() from sklearn.

 As mentioned, it has been decided to use the previous 20 values to determine the

21st, train and test data frames are splitted and transformed to sequences. A requirement

of LSTM and SimpleRNN cells is that the input data is a 3D array ‘(batch_size,

time_steps, seq_len)’. In this case X is the input of the Neural Network and Y is the

data validation:

Training Set X (2, 25, 24) and Y (2, 24)

Dimensions of the test set with training data needed for predictions:

(91, 24)

Testing Set X (31, 25, 24) and Y (31, 24)

Methodology of study

 This section describes the methodology used to study the performance of the

RNNs; in this case, the structure of the neural network is already defined and the

parameters that will vary are the activation function and the learning algorithm

(optimization). In this algorithm for all the examples a learning ratio of 0,005 is applied.

 Three activation functions (ReLu, Tanh and Sigmoid) and three learning algorithms

(Adam, AdaGrad and RMSprop) are considered and a maximum of 2000 epochs are

Artificial Intelligence applied to demand forecasting Page. 47

permitted. The performance is measured considering the errors (RMSE, MAE, MAPE,

MSE) of each model applied in each type of neural network, the number of epochs without

overfitting and the total execution time.

 To avoid overfitting an early stopping function has been applied with a patience of

20 values, that means that if in 20 values the mean squared error is stationary it stops, apart

from avoiding overfitting it improves the total time execution.

 Furthermore, graphical representation of the values has been evaluated to avoid

repetitive models.

RNN FORECASTING RESULTS

 Table 4 shows the values of the performance indicators for the Simple RNNs.

 Green values have a normal behaviour and are considered for the comparation with

other methodologies; however, white ones show a strange behaviour when are plotted and

are omitted. Next figure shows the strange behaviour (all days are practically identical) of

RMSProp ‘Sigmoid’ during the first week test:

 Best results in SimpleRNN are performed by the learning algorithm RMSProp and

with the activation function ‘ReLu’ with a RMSE value of 7,30, an execution time of 14,56

seconds and 92 epochs. Next graphs show the behaviour of the green ones the first two

weeks of the month:

Table 4. Simple RNN performance indicators

Fig 31. RMSProp Sigmoid W1

RMSE MAE MSE MAPE EXEC TIME (seconds) EPOCHS

Adam 'relu' 20 8.23 6.70 67.71 13.59% 38.85 516

Adam 'tanh' 20 8.16 6.58 66.64 10.53% 47.76 724

Adam 'sigmoid' 20 8.39 6.85 70.38 11.26% 93.12 1581

AdaGrad 'relu' 20 7.60 6.27 57.83 14.22% 111.54 2000

AdaGrad 'tanh' 20 8.56 6.78 73.29 15.19% 31.66 436

AdaGrad 'Sigmoid' 20 8.15 6.56 66.47 10.48% 116.90 2000

RMSProp 'relu' 20 7.30 6.12 53.33 13.86% 14.56 92

RMSProp 'tanh' 20 8.45 6.68 71.33 10.89% 10.58 67

RMSProp 'Sigmoid' 20 6.89 5.69 47.42 14.09% 10.99 70

R
N

N
 S

IM
PL

E

Page. 48 Main Report

Fig 32. Simple RNN Forecast Week 1.

Fig 33. Simple RNN Forecast Week 2.

Artificial Intelligence applied to demand forecasting Page. 49

Table 5 shows the results of the performance indicators for LSTM.

 Same analysis performed in SimpleRNN have been done for LSTM. As can be seen

for LSTM the execution time is higher than SimpleRNN due to the high number of epochs

performed during the test. Adam is the only learning algorithm that gives good results in

terms of the behaviour of the model once it is plotted; RMSprop ‘ReLu’ gave bad results it

is not taken into account, so the optimization didn’t perform correctly. Figure 34 shows the

strange behaviour of AdaGrad ‘tanh’ during the first week:

Fig 34. AdaGrad ‘tanh’ strange behaviour

 Best results in LSTM are a rmse value of 7,62, and execution time of 80,13 seconds

and 527 epochs, those are given by the learning algorithm Adam with the activation function

‘ReLu’. Next figures show the behaviour of the green ones the first two weeks of the month:

RMSE MAE MSE MAPE EXEC TIME (seconds) EPOCHS

Adam 'relu' 20 7.62 6.32 58.07 10.81% 80.13 527

Adam 'tanh' 20 8.19 6.83 67.12 11.30% 103.33 638

Adam 'sigmoid' 20 8.43 6.90 71.05 11.42% 182.25 1240

AdaGrad 'relu' 20 7.80 6.42 60.89 10.68% 263.39 2000

AdaGrad 'tanh' 20 7.87 6.37 61.90 10.42% 260.48 2000

AdaGrad 'Sigmoid' 20 8.15 6.56 66.40 10.49% 86.66 658

RMSProp 'relu' 20 NA NA NA NA NA NA

RMSProp 'tanh' 20 8.19 6.88 67.00 12.00% 40.82 109

RMSProp 'Sigmoid' 20 8.64 7.05 74.71 11.84% 24.03 65

LS
TM

 C
EL

LS

Table 5. LSTM Performance Indicators

Page. 50 Main Report

Fig 35. LSTM Normal Behaviour W2

Fig 36. LSTM Normal Behaviour Week 2

Artificial Intelligence applied to demand forecasting Page. 51

5.1.4.2. MULTIPLE LAYER PERCEPTRON NEURAL NETWORK

 Multiple Layer Perceptron is simpler than recurrent neural networks in its structure.

One of the objectives is to compare the results obtained by the MLP with RNN, so the RNN

previously designed has been adapted to a MLP. To do so, the same number of layers has

been used; 1 input layer (400 cells), 2 hidden layers (300 and 100 cells) and an output layer

(Dense layer), the main difference is that all layers are fully connected, so it has been done

with 3 dense layers.

 This way it will be possible to measure the computational speed and performance

of the different neural networks. Learning rate and number of previous steps is the same

decided in RNN with values of 0,005 and 20.

DATA PREPARATION

 In the case of the MLP the data has not been normalized since its typical activation

function as mentioned above is ReLu and performs well without data normalization.

 From the initial data frame we use the ‘Cumulative Sum Corrected’ column and split

it between the values according to the date with those to be used for training (January 20–

2 - January 2013) and those to be used for the test part (January 2014). The output before

transforming it to an array:

Train dataset

DayTime

2012-01-01 00:00:00 24.432

2012-01-01 00:30:00 15.216

2012-01-01 01:00:00 12.144

2012-01-01 01:30:00 11.952

2012-01-01 02:00:00 44.640

 ...

2013-01-31 21:30:00 36.472

2013-01-31 22:00:00 35.004

2013-01-31 22:30:00 32.580

2013-01-31 23:00:00 28.110

2013-01-31 23:30:00 21.943

Name: Cumulative Sum Corrected, Length: 2976, dtype: float64

Test dataset

DayTime

2014-01-01 00:00:00 22.890546

2014-01-01 00:30:00 19.056000

2014-01-01 01:00:00 16.698545

2014-01-01 01:30:00 15.674182

2014-01-01 02:00:00 15.021818

 ...

2014-01-31 21:30:00 32.216930

2014-01-31 22:00:00 33.353302

Page. 52 Main Report

2014-01-31 22:30:00 28.708465

2014-01-31 23:00:00 23.103628

2014-01-31 23:30:00 23.840372

Name: Cumulative Sum Corrected, Length: 1487, dtype: float64

 Input shape in Dense Layers is (batch_size, units), then the data frame values

should be divided into sequences of 20 values to predict the 21st. In this case, due to the

nature of the sequences, it is not necessary to modify the resolution of the problem to one

hour and it is kept at 30 minutes, which benefits since we have more data both for training

and for the test.

Training Set X_train (2956, 20) and Y_train (2956,)

Testing Set X_test (1487, 20) and Y_test (1487,)

Those are the shapes of the sequences introduced in the MLP for training and testing.

Methodology of study

 For the study case, RELU is the only activation function used in the MLP, and the

performance of the NN with the different learning algorithms it’s been measured. Same

parameters used in the study performed for RNN are used (learning rate applied = 0,005 ,

maximum number of epochs = 2000).

 The performance is measured considering the errors (RMSE, MAE, MAPE, MSE),

the number of epochs without overfitting and the total execution time. To avoid overfitting

an early stopping function has been applied with a patience of 20 values, which means that

if in 20 values the mean squared error is stationary it stops, apart from avoiding overfitting

it improves the total time execution.

 Furthermore, graphical representation of the values has been evaluated to avoid

repetitive models.

MLP FORECASTING RESULTS

Table 6 shows the performance indicators of MLP study case:

 As can be seen all three optimization models gave good results in terms of error

and execution time, clearly the worst is AdaGrad ‘relu’ 20 with an execution time of 84,49 s

and an RMSE of 2,32. The more accurate model is RMSprop ‘relu’ 20 with an RMSE of

2.13 and an execution time of 39,62 s but Adam ‘relu’ 20 is very fast and forecasting is also

accurate so we consider the best model to be Adam ‘relu’ 20. Following graphs show values

Table 6. MLP performance indicators

RMSE MAE MSE MAPE EXEC TIME (seconds) EPOCHS

Adam 'Relu' 20 2.27 1.71 5.16 7.20% 19.29 124

AdaGrad 'Relu' 20 2.32 1.76 5.40 7.04% 84.49 577

RMSprop 'relu' 20 2.13 1.62 4.52 7.05% 39.62 206

M
LP

Artificial Intelligence applied to demand forecasting Page. 53

predicted during the first 2 weeks of January 2014; as can be seen prediction clearly follows

the trend of the actual values apart from AdaGrad that is not accurate in the periods that

demand is low:

Page. 54 Main Report

Fig 37. MLP Forecast Week 1

Fig 38. MLP Forecast Week 2

Artificial Intelligence applied to demand forecasting Page. 55

5.1.4.3. NEURAL NETWORKS COMPARISON

 To make a comparison of which between different neural networks, best

configuration within the type of neural network (SimpleRNN, LSTM and MLP) has been

selected.

 Best configurations are selected considering the lowest RMSE, execution time and

number of epochs. From the performance indicators we can see how MLP networks

perform better than RNN having a much lower error (RMSEMLP = 2,27) compared to RNNs

(RMSERNN= 7,30). RNNs are more complex than MLPs, one of the causes of the

differentiation of performance between them can be the size of the data used; RNNs work

very well with large amount of data, and this is not the case since 2 months of training and

1 month of testing were used. The week-by-week forecasting for best configurations during

January 2014 are plotted below:

Table 7. Best configurations of Neural Networks

NEURAL NETWORK CONFIGURATION RMSE MAE MSE MAPE EXEC TIME EPOCHS

RNN SIMPLE RMSProp 'relu' 20 7.30 6.12 53.33 13.86% 14.56 92

LSTM CELLS Adam 'relu' 20 7.62 6.32 58.07 10.81% 80.13 527

MLP Adam 'Relu' 20 2.27 1.71 5.16 7.20% 19.29 124

Page. 56 Main Report

Fig 39. Neural Networks Comparison Week 1

Fig 40. Neural Networks Comparison Week 2

Artificial Intelligence applied to demand forecasting Page. 57

Figure 41. Neural Network Comparison Week 3

Figure 42. Neural Network Comparison Week 4

Page. 58 Main Report

5.1.5. DISCUSSION

 In chapter 5 forecast of Aggregated Load Demand using 2 Statistical methods

(ARIMA, SARIMA) and 3 Neural Networks (SimpleRNN, LSTM, MLP) in a winter

scenario have been created to compare the qualitative differences between models and

study the performance. The winter scenario designed corresponds into using January

20–2 – 2013 as training data, and January 2014 for testing.

 The results obtained from Neural Networks has been compared in section

5.1.4.3 where MLP shows a better performance than RNN (RMSEMLP=2,27, RMSERNN

= 7,30) so in order to compare NN with Statistical methods, MLP has been selected to

be compared with ARIMA an SARIMA to define the Advantages and Disadvantages of

each one.

 Forecasting results obtained in section 5.1.2, 5.1.3 and 5.1.4 show significant

differences for every model in terms execution time, in terms of accuracy statistical

models are quite similar (RMSE 2,98 – 3,00), NN show an accuracy a bit better than

statistical methods (RMSE 2,27). Furthermore, as can be seen in the following graphs

all 3 methods adapt correctly to the sharper changes of the aggregated load demand in

the peak hours from 18:00 to 22:00.

Fig 43. Aggregated Load Demand on 05-01-2014

Table 8. Comparison NN vs Statistical Methods

0

5

10

15

20

25

30

35

40

45

50

00:00:00 04:48:00 09:36:00 14:24:00 19:12:00 00:00:00 04:48:00

A
gg

re
ga

te
d

 L
o

ad
 D

em
an

d
 (

kW
h

)

ACTUAL MLP ARIMA SARIMA

RMSE MAE MSE MAPE EXECUTION TIME (s) Resolution

ARIMA 2,98 2,30 8,91 9,70 % 11574,4 30 min

SARIMA 3,00 2,37 8,99 10,50% 4408,93 2 hours

MLP 2,27 1,71 5,16 7,20% 19,29 30 min

Artificial Intelligence applied to demand forecasting Page. 59

 However, in terms of Execution Time NN, performs much better than statistical

methods. MLP in 19,29 s is capable of being training with the amount of data given and

give a more accurate prediction than Statistical Methods with the same resolution

(11574,4 s). In the case of SARIMA it has not been possible to perform a forecasting

with the resolution of 30 minutes due to the computational restrictions. SARIMA is a

more complex model than ARIMA and using ¼ (2 hours resolution) of the data used in

ARIMA or MLP (30 min resolution) it has an execution time of 4408,93 s.

 Depending on the type of cell we are using, the input data used in NN need to

be transformed or modified, so needs an extra time of data cleaning that in Statistical

methods is not necessary. Nevertheless, the computational efficiency and accuracy of

NN in big amounts of data, gives possibilities that cannot be performed in Statistical

methods.

 The following figures show week-by-week long-term energy demand forecasts

for the month of January 2014. As can be seen the SARIMA values do not adhere to the

energy demand curves as accurately as MLP or ARIMA although the error is similar, that

is because SARIMA does not have the same data resolution as the other forecasts:

Page. 60 Main Report

Fig 44. Stastistical models vs Neural Networks Week 1

Fig 45. Stastistical models vs Neural Network Week 2

Artificial Intelligence applied to demand forecasting Page. 61

Fig 46. Statistical models vs Neural Network Week 3

Fig 47. Statistical models vs Neural Network Week

Artificial Intelligence applied to demand forecasting Page. 63

Page 64 Main Report

6. OPEN RESEARCH QUESTIONS

 During the work of this thesis additional interesting questions arose, but, due to the

scope of the work some of them have to remain subject to future research. The focus has been

on the development of artificial intelligence methodologies to be applied to long-term demand

forecasting, in order to compare the statistical methods with the Neural Networks.

 Dataset used has only data of energy load demand, so it would be interesting to

combine this data with other datasets such as economic factors, or meteorological influence

in order to determine the influence in the energy demand. Furthermore, Recurrent Neural

Networks developed in the project could be and tested with bigger amounts of data to

determine the computational efficiency and be also compared with MLP in a big data

environment.

 Finally, Convolutional Neural Networks combined with RNN could be developed and

tested with other datasets to determine its performance since they haven’t been included in

the framework.

Artificial Intelligence applied to demand forecasting Page. 65

Conclusions

 Long-Term forecasting is crucial for planning and operations in the power sector. There

are not many published studies on long-term prediction as it is something new. However, there

are several published studies on short-term energy demand prediction. For the development

of the work different articles and studies have been analysed to finally develop a neural network

capable of making a long-term prediction in a reasonable time with the data set provided for

further comparisons with statistical methods.

 Statistical methods (ARIMA, SARIMA) have proven to be reliable and capable of giving

a good long-term forecast (RMSE = 2,98 – 3,00). Nevertheless, the run time is high and a

previous study of the data must be performed in order to select the parameters correctly. In

the study case data size is not very large and yet the run times have been quite large i.e.

ARIMA 3,5 hours. Therefore, if we were to use large data sizes the run time would increase or

model the might not converge.

 Neural Networks have proven to be better in accuracy by 25,56% than statistical

methods, and also in the execution time (NN: 19,29s, ARIMA: 11574,4s, SARIMA: 4408,93s).

Several published studies such as [11] or [17] refer to the great advantages of RNNs in terms

of accuracy and speed of calculation for long-term energy demand forecasts. According to the

results obtained, it has been seen how MLP led to better results than RNN, this is since RNN

are more complex. The size of the data used in this work is quite small, so in a bigger dataset

RNN would have a different behaviour and a better performance.

 In conclusion, all statistical models and neural networks tested have a good accuracy

and can be used for long-term demand forecasting. However, the simplicity of the Neural

Networks, along with its numerical and computational efficiency add great benefits to the

results.

Artificial Intelligence applied to demand forecasting Page. 67

Acknowledgments

I would like to express my sincere gratitude to Mònica Aragües Peñalba and Antonio

Emmanuel Saldaña for all guidance in this project, it could not be better. Moreover, I would like

to thanks to my family, friends, and partner for all the support and motivation received.

Page. 68 Main Report

Bibliography

[1] ARIMA by Box Jenkins Methodology for Estimation and Forecasting Higher

Education. Marilena Aura Din. Romanian – American University, January 2015. Page

4-12

[2] Engineering Statistics Handbook, 6.4.4.6.Box-Jenkins Model

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc446.htm - April 2012

[3] Engineering Statistics Handbook, 1.3.3.1.Autocorrelation

Plothttps://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm – April 2012

[4] Engineering Statistics Handbook, 6.4.4.6.3. Partial Autocorrelation Plot

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4463.htm - April 2012

[5] SERIES TEMPORALES: MODELO ARIMA, Santiago de la Fuente Fernandez,

Universidad Autónoma de Madrid – May 2021

[6] An introduction to the Akaike information criterion – March 2020

https://www.scribbr.com/statistics/akaike-information-criterion/

[7] An Intuitive Explanation of the Bayesian Information Criterion – July 2020

https://towardsdatascience.com/an-intuitive-explanation-of-the-bayesian-information-

criterion-71a7a3d3a5c5

[8] Maximum Likelihood Estimates: Class10,18.05 Jeremy Orlo and Jonathan Bloom –

April 2014

[9] Capítulo 10: Autocorrelación. Prof. Dr. José Luis Gallego Gómez – Universidad de

Cantabria – 2008

https://ocw.unican.es/pluginfile.php/1285/course/section/1583/tema10.pdf

[10]

Neural forecasting: Introduction and literature overview – Konstantinos Benidis,
Syama Sundar Rangapuram, Valentin Flunkert, Bernie Wang, Danielle Maddix,
Caner Turkmen, Jan Gasthaus, Michael Bohlke-Schneider, David Salinas, Lorenzo
Stella,Laurent Callot, Tim Januschowski - April 2020

Artificial Intelligence applied to demand forecasting Page. 69

[11] Recurrent Neural Networks for Time Series Forecasting: Current status and future
directions – Hansika Hewamalage, Christoph Bergmeir, Kasun Bandara - 2021
Faculty of Information Technology, Monash University, Melbourne, Australia

[12]

A Gentle Introduction to the Adam Optimization Algorithm for Deep Learning –
Jason Brownle – January 2021

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

[13]

An overview of gradient descent optimization algorithms – Adagrad. Sebastian
Ruder – January 2016

https://ruder.io/optimizing-gradient-descent/index.html#adagrad

[14]

Activation functions in Neural Networks – Geeks for Geeks. – October 2020

https://www.geeksforgeeks.org/activation-functions-neural-networks/

[15]

A Gentle Introduction to the Rectified Linear Unit (ReLU) – Jason Brownle – August
2020

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-
learning-neural-networks/

[16]

Machine Learning for Time Series Forecasting with Python

[17]

Long Term Load Forecasting with Hourly Predictions based on Long-Short-Term-
Memory Networks – Rahul Kumar Agrawal, Frankle Muchahary, Madan Mohan –
2021.Tripathi. Dept. of Electrical Engineering, Delhi Technological

[18]

Figure 6. https://www.researchgate.net/figure/ReLU-activation-
function_fig3_319235847

[19]

Figure 7. https://www.researchgate.net/figure/tanh-vs-logistic-
Sigmoid_fig6_338655469

[20]

Figure 8. https://abhigoku10.medium.com/activation-functions-and-its-types-in-
artifical-neural-network-14511f3080a8

[21]

Big Data for Open Innovation Energy Marketplace (BD4OPEM H2020)

https://cit.upc.edu/es/portfolio-item/bd4opem/

