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ABSTRACT

Deep Neural Network (DNN) frameworks use distributed training

to enable faster time to convergence and alleviate memory capac-

ity limitations when training large models and/or using high di-

mension inputs. With the steady increase in datasets and model

sizes, model/hybrid parallelism is deemed to have an important

role in the future of distributed training of DNNs. We analyze the

compute, communication, and memory requirements of Convolu-

tional Neural Networks (CNNs) to understand the trade-offs be-

tween different parallelism approaches on performance and scala-

bility. We leverage our model-driven analysis to be the basis for an

oracle utility which can help in detecting the limitations and bot-

tlenecks of different parallelism approaches at scale. We evaluate

the oracle on six parallelization strategies, with four CNN models

and multiple datasets (2D and 3D), on up to 1024 GPUs. The re-

sults demonstrate that the oracle has an average accuracy of about

86.74% when compared to empirical results, and as high as 97.57%

for data parallelism.
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1 INTRODUCTION

DNNs are achieving outstanding results in a wide range of appli-

cations, including image recognition, video analysis, natural lan-

guage processing [45], understanding climate [21], and drug dis-

covery [50], among many others. In the quest to increase solu-

tion accuracy, researchers are increasingly using larger training

datasets as well as larger and deeper DNN models [3, 17, 54]. In

addition, applying Deep Learning (DL) in new domains, such as

health care and scientific simulations, introduce larger data sam-

ples and more complex DNN models [26]. Those trends make the

DNN training computationally expensive for a single node. There-

fore, large-scale parallel training on high-performance computing

(HPC) systems or clusters of GPUs is becoming increasingly com-

mon to achieve faster training times for largermodels and datasets [3].

When training a specific DNN model on an HPC system, there

are two prominent strategies for parallelizing the training phase

of DL: data and model parallelism. It is important to note that de-

spite the early investigation of model parallelism in DL [9], those

efforts were premature and remained far from production deploy-

ments, since data parallelism was simple and sufficient. However,

the growth in datasets and models far outgrows the increase in

compute capability [17]. Accordingly, scaling data parallelism can

be limited by the memory capacity and the communication over-

head. First, we elaborate on the memory capacity issue. In data

parallelism, the entire model is duplicated for each compute node.

Therefore, training larger and deeper neural networks have to deal

with the memory capacity limits. A notable case is in the area of

language modeling at which models are increasingly approaching

$ (100�) parameters [38] (ex: GPT-3 has 175B parameters [4]). In

addition, for sample sizes with higher dimensions, e.g., 3D scien-

tific data sets [33] and videos, the memory capacity would also

https://doi.org/10.1145/3431379.3460644


limit the number of samples that can be concurrently processed by

a GPU [31] hence, restricting the scaling of data parallelism. Sec-

ond,we elaborate on the communication overhead. A major bottle-

neck when scaling data parallelism is the large-message Allreduce

collective communication for the gradient exchange at the end of

each iteration [18, 53]. Several active efforts try to optimize the

Allreduction collective algorithm for supporting largemessages on

specific network architectures inHPC systems [2, 34, 53]. However,

even with those algorithms, communication remains a bottleneck

when the size of the models increases. Moving to model or hybrid

parallelism is one of the ways to reduce this communication over-

head [14].

Given those issues with data parallelism and the growing scale

of training, researchers are tackling different bottlenecks across

the different components necessary for distributed DNN training.

Table 1 shows a summary of the recent approaches in scaling dis-

tributed DNN training, split into components and training phases.

Despite those efforts, data parallelism is not feasible for all

cases. Thus, it is important to understand the limitations and scala-

bility of large scale model and hybrid parallelism training of DNNs.

In this work, we focus on the HPC aspects of scaling six dif-

ferent strategies for model and hybrid parallelism in CNNs dis-

tributed training. Innovations in DL theory (e.g., optimizers) are

out of the scope of this paper. While most works in the literature

focus on improving the performance of one single parallelism strat-

egy for one specific framework; our study functions as the basis

for a tool, named ParaDL, capable of modeling and predicting the

performance of a large set of configurations for CNN distributed

training at scale. In addition, ParaDL also helps to reveal the prac-

tical limits and bottlenecks of different parallel strategies in CNN

training .

Our main contributions in this work are as follow:

• We formally define the main parallel strategies (See Section 3),

including hybrid ones, and provide a comprehensive analysis of

the compute, communication, andmemory footprintwhen train-

ing CNNs for inputs of any dimension.

• We propose an oracle (ParaDL) 1 that projects the ideal perfor-

mance of distributed training of CNNs, broken down by train-

ing phases. This helps in favoring a parallel strategy on a given

system (See Section 4) and aids in identifying optimization op-

portunities in frameworks.

• We implement all parallelization strategies to validate ourmodel,

except for: a) data parallelism (already supported by most DL

frameworks), and b) using an existing pipeline implementation.

• We show the utility of ParaDL in exposing performance and scal-

ability trade-offs. The accuracy of ParaDL (86.74% on average

and up to 97.57% ) is demonstrated by conducting a wide range

of experiments for different CNNmodels, parallel strategies, and

datasets, on up to 1, 024 GPUs (See Section 5).

2 BACKGROUND

2.1 Phases of Distributed Training of DNNs

2.1.1 Stages of Distributed Training. DNNs are made up of a net-

work of neurons (represented as nodes) that are organized in layers

1https://github.com/TruongThaoNguyen/paraDL-analysis

(a model). A DNN is trained by iteratively updating the weights of

connections between layers in order to reduce the error in predic-

tion of labelled datasets. That is, for a given dataset of � samples,

a DNN is trained to find out the model weights F for which the

loss function ! is minimized. Distributed training of a DNN can

be divided into four phases: (IO) I/O and pre-processing, (FB) a

forward phase at which the samples pass through the entire net-

work, followed by a backward phase (back propagation) to com-

pute the gradients, (GE) the gradient exchange (if needed) and

(WU) updating the weights. Specifically, the samples are picked

up from the dataset randomly in batches of size � (mini-batch).

The training process is then performed on those batches of sam-

ples iteratively by using an optimization algorithm such as the

SGD, in which, weights are updated with a learning rate d via

F8C4A+1 ← F8C4A − d 1
�

∑

8 ∈�0C2ℎ

(

3!
3F

)

8
. The process is then re-

peated, until convergence, in epochs that randomize the order at

which the input is fed to the network.

2.1.2 Componentsof Distributed Training. To optimize for the per-

formance and efficiency of training at large-scale, researchers in-

troduce improvements to themethods, algorithms and design across

entire training components which includes:AP- application (Deep

Learning models and datasets),TA-training algorithms (ex: SGD or

second order methods), PA-parallel strategies (model of computa-

tion and communication), FR-framework and SY-systems.

2.2 Notation

We summarize our notation in Table 2. In a�-layer CNN model, a

convolution layer ; mainly needs these tensors:

• The input of layer ; with # samples, each sample include �;
channels, each channel is a tuple of 3-dimension: G; [#,�; , -

3
;
].

In a 2-dimension layer, we replace-3
;
with [,; , �; ], i.e., G [#,�; ,,;×

�; ]. In a clear context, we omit the layer index ; and the dimen-

sion 3 , i.e., G [#,�,- ].

• The output (activation) of layer ; with # samples and �; output

channel ~; [#, �; , .
3
;
].

• The weight F; [�; , �; ,  
38<
;
] with �; filters. Each filter has �;

channels and size of  3
;
. In some case, we omit the filter size

(also known as kernel size), e.g., F; [�; , �; ].

• The bias 18; [�; ].

• The activation gradients 3!
3~;
[#, �; , .

3
;
].

• The weight gradients 3!
3F;
[�; , �; ,  

3
;
]

• The input gradients 3!
3G;
[#,�; , -

3
;
].

We adapt non-Conv layers with the above tensors (we extend the

notation in [14]). For channel-wise layers, such as pooling or batch-

normalization, we require no further adaption. A fully-connected

layer with input G [#,�,, ×� ] and � output can be expressed as

a convolution layer where the size of filters is exactly similar to

the size of the input layer, i.e., F [�, �,, × � ], with padding and

stride set to 0 and 1, respectively. Thus, the output will become

~ [#, �, 1 × 1]. For element-wise layers, such as ReLU, the number

of filters � is equal to the number of channels� . For layers without

weight, such as pooling and ReLU, the weight becomesF [�, �, 0].

https://github.com/TruongThaoNguyen/paraDL-analysis


Table 1: Recent progress (and examples) in scaling distributed training of DNNs, across different training components and phases. Training

components: AP- application (models and datasets), TA-training algorithms, PS-parallel strategies (computation and communication), FR-

framework and SY-computer systems. Training phases: IO-I/O and pre-processing, FB-a forward and backward propagation, GE-the gradient

exchange (if needed) and WU-updating the weights. •: related components. X: related training phases. Explanation in remarks.

Approaches
Components Training Phases

Additional Remarks
AP TA PS FR SY IO FB GE WU

Optimization methods ◦ • ◦ ◦ ◦ - - - X Second order methods [37] (fewer epochs to converge, but longer iterations and more memory).

Normalization • ◦ ◦ ◦ ◦ - X - - Cross-GPU Batch-normalization [55] (requires extra communication) and Group Normalization [51].

Pre-trained model • • ◦ ◦ ◦ - X - -
A big model, that is pre-trained on a big generic dataset, such as Google BiT [24] can be fine-tuned for any task, even if only few

labeled samples are available.

Allreduce optimization ◦ ◦ • ◦ • - - X - Reduce the communication time by considering the specific network architectures of HPC systems [2, 34, 53] (data parallelism)

Sparsification ◦ • • ◦ ◦ - X X X
Reducing the computation volume [29] or/and communication message size [39] by skipping the computing/transferring of non-

important weights/gradients, instead only performing on the significant ones (mainly for data parallelism).

Memory optimization ◦ ◦ ◦ • ◦ - X X X Reduce required memory by using lower precision (quantization) [43], gradient checking point [6], out-of-core methods [49],

Network architecture ◦ ◦ ◦ ◦ • X - X -
Increasing number of GPUs intra node, i.e., up to 16 GPUs in DGX-2. High-throughput inter-node network topology such as

HyperX [10] or BiGraph [12].

Model/hybrid parallelism

(our target in this work)
◦ ◦ • ◦ ◦ X X X X

Castello et al. [5] analyzed the communication trade-offs in some model parallel strategies. Hybrid parallelism are proposed in

[15] (spatial with data) and [14] (channel/filter with data). [19, 56] explored different parallelization schemes on per-layer basis.

Table 2: Parameters and Notation
� Data set size

� Mini batch size

� Number of iterations per epoch. � = �
�

� Number of epochs

� Number of layers

G; Input of a layer ;
~; Output (activation) of layer ;
F; Weight of layer ;
18; Biases of layer ;
,; /�; Width / Height of input of layer ;
�; Number of input channels of layer ;
�; Number of output channels of layer ; , e.g., number of filters in conv. layer

�,; / �,; Forward / Backward propagation action of layer ;
[�1, . . . , �= ] =-dimensions array with size of�1 ×�2 × · · · ×�=

-3
;

a 3-dimension tuple (array) presents an input channel. In a 2-D convolu-

tion layer,- 2
;
is a Cartesian product of,; × �;

.3
;

a 3-dimension output channel

 3
;

a 3-dimension filter. In a 2-D convolution,  2
;
=  × 

? Total number of processes elements (PEs)

( Number of segments in pipeline parallelism

U Time for sending a message from source to destination

V Time for injecting one byte of message into network

X Number of bytes per item, e.g., input, activation, weight

W Memory reuse factor

The sequential implementation of CNN requires the following

steps for each layer :

(IO) G [#,�,- ] ← �$ (dataset, B) in the first layer

(FB) ~ [#, �,. ] ← �, (G [#,�,- ], F [�, �, ])

(FB) 3!
3G [#,�,- ] ← �,30C0 (

3!
3~ [#, �,. ], F [�, �,  ])

(FB) 3!
3F [�, �,  ] ← �,F486ℎC (

3!
3~ [#, �,. ], G [#,�,- ])

At the end of each iteration, weights of all layers are updated:

(WU) F [�, �,  ] ←,* ( 3!3F [�, �,  ], d)

3 STRATEGIES FOR DISTRIBUTED TRAINING

Training CNNs using a single processing element (PE) is compu-

tationally expensive, e.g., training ResNet-50 over a single V100

GPU requires 29 hours. Hence distributed training on HPC sys-

tems is common for large models and datasets. Parallelizing of

training process should be done by splitting different dimensions.

In this work, we cover four basic parallel strategies that differ in

the way we split the data and model dimensions in the training

of CNNs: (1) distributing the data samples among PEs (data paral-

lelism), (2) splitting the data sample by its spatial dimension such as

width or height (spatial parallelism) [13], (3) vertically partitioning

the neural network along its depth (layer parallelism) and overlap-

ping computation between one layer and the next layer [17] (also

known as pipeline parallelism), and (4) horizontally dividing the

neural network in each layer by the number of input and/or out-

put channels (channel and filters parallelism) [13, 15]. In addition,

a combination of two (or more) types of the mentioned parallelism

strategies is named as hybrid parallelism (e.g., Data+Filter paral-

lelism and Data+Spatial parallelism, or df and ds respectively for

short, are some examples of hybrid parallelism).

In this work, when presenting tensors such as G , ~, and F , we

use the ∗ symbol to present a dimension for which its values are

replicated between processes. To emphasize that a tensor’s dimen-

sion is partitioned among different PEs, we use the number of pro-

cesses ? . For example, in data parallelism, G [?, ∗, ∗] implies that

the input G is split equally in dimension # (number of samples)

and partitioned to ? PEs. The other dimensions such as � and -

are replicated. The arrow
�;;A43D24
←−−−−−−−−− presents Allreduce communi-

cations.

It is important to note that the notation and analysis in this pa-

per are general to input tensors of any dimension (1D, 2D, and, 3D).

Input tensors of higher dimensions are also valid in our analysis

since they can be represented as 3D tensor with the extra dimen-

sions as component vector(s) (e.g. CosmoFlow [31] has 4D input

represented as a 3D tensor plus a vector at each cell). Finally, the

parallel strategy can alternatively be viewed as a domain decompo-

sition problem: a recurring problem in HPC applications. Accord-

ingly, we formulate the notation and analysis to be interpretable

as domain decomposition schemes.

3.1 Data parallelism

The entire model is replicated on ? different PEs, e.g., GPUs (Fig-

ure 1(b)) and the dataset is scattered into sub-datasets to each PE.

Then the forward and backward phases are computed indepen-

dently, using those different partitions of the dataset, i.e., in amicro-

batch � ′ = �
? at each iteration. In the gradient exchange phase, an

Allreduce operation is required to aggregate the weight gradients,

i.e.,
∑?
8=1

(

3!
3F

)

8
. We define operations at the processing element 8

in data parallelism as:

(IO) (G)8 [?, ∗, ∗] ← �$ (sub-dataset8 , �
′) in the first layer.

(FB) (~)8 [?, ∗, ∗] ← �, (G8 [?, ∗, ∗], F [∗, ∗, ∗])

(FB) ( 3!3G )8 [?, ∗, ∗] ← �,30C0 ( (
3!
3~ )8 [?, ∗, ∗], F [∗, ∗, ∗])

(FB) ( 3!3F )8 [∗, ∗, ∗] ← �,F486ℎC ( (
3!
3~ )8 [?, ∗, ∗], (G)8 [?, ∗, ∗])



(a) Sequential implementation on a single PE

(b) Data parallelism

(c) Spatial parallelism splits the input G and output ~ on either width (as
shown in this figure), height or both dimensions

(d) Layer parallelism (partition the model vertically with pipeline implemen-
tation)

(e) Filter parallelism (partition the model horizontally)

(f) Channel parallelism (partition the model horizontally)

(g) Hybrid parallelism (example of filter on top of data parallelism)

Figure 1: Different strategies for distributed training of CNNs. Red

solid lines refer to communication

(GE) 3!
3F [∗, ∗, ∗]

�;;A43D24
←−−−−−−−−−

∑?
8=1

(

( 3!3F )8 [∗, ∗, ∗]
)

(WU) F [∗, ∗, ∗] ←,* ( 3!3F [∗, ∗, ∗])

3.2 Spatial parallelism (height-width-depth)

All the PEs work on the same batch of samples. First, one leader

PE loads those samples at each iteration and then distributes to

other PEs. Note that, the spatial dimension � ,, (and � as in 3-D

convolution layer), of G , ~, 3!
3G

and 3!
3~

are split among ? PEs (Fig-

ure 1(c)). That is ? = ?F × ?ℎ × ?3 where ?F , ?ℎ, ?3 ≤ , , � ,

� , respectively. Each process thus performs the forward and back-

ward operation locally. For a convolution layer, when a filter of

size  ×  where  > 1 is placed near the border of a partition,

each PE requires remote data for computing. Thus, a small number

(e.g.,  2 ) of rows and/or columns will be transferred from logically-

neighboring remote PEs (halo exchange) [13]. The exchanged data

size (i.e., halo(G; )) depends on how each spatial dimension is split,

and the stride length. For example, a processing element 8 needs a

halo exchange for its partial input (G)8 to get (G)8+ when comput-

ing the output (~)8 in the forward phase. In the backward phase,

the computation of ( 3!
3G
)8 requires a halo exchange on the cor-

responding ( 3!
3~
)8 . To compute the weight gradients requires the

(G)8+, yet no more halo exchange is required since the exchanged

values of (G)8 can be reused. In the weight update phase an Allre-

duce is performed for the sum of 3!
3F

.

(IO) G [∗, ∗, ∗] ← �$ (dataset, �)

(IO) (G)8 [∗, ∗, ? ]
(20CC4A
←−−−−−−− G [∗, ∗, ∗] in the first layer.

(FB) (G)8+ [∗, ∗, ? ]
ℎ0;>
←−−−− (G)8 [∗, ∗, ? ]

(FB) (~)8 [∗, ∗, ? ] ← �, ( (G)8+ [∗, ∗, ? ], F [∗, ∗, ∗])

(FB) ( 3!3~ )8+ [∗, ∗, ? ]
ℎ0;>
←−−−− ( 3!3~ )8 [∗, ∗, ? ]

(FB) ( 3!3G )8 [∗, ∗, ? ] ← �,30C0 ( (
3!
3~ )8+ [∗, ∗, ? ], F [∗, ∗, ∗])

(FB) ( 3!3F )8 [∗, ∗, ∗] ← �,F486ℎC ( (
3!
3~ )8 [∗, ∗, ? ], (G)8+ [∗, ∗, ? ])

(GE) 3!
3F [∗, ∗, ∗]

�;;A43D24
←−−−−−−−−−

∑?
8=1

(

( 3!3F )8 [∗, ∗, ∗]
)

(WU) F [∗, ∗, ∗] ←,* ( 3!3F [∗, ∗, ∗])

3.3 Model-horizontal parallelism

Amodel parallel variant in which each layer of the neural network

model is equally divided by the number of output (filters � ) or in-

put channels (channels�) and distributed on ? PEs. Each PE keeps

a portion of the weights of a given layer and partially computes

the output in both the forward and backward phases. For example,

the filter parallelism of a convolution layer [15] is illustrated in Fig-

ure 1(e). Each PE 8 keeps �? filters and computes �? corresponding

channels of the output activation. That is, | (~)8 | = # × |. | ×
�
? . Af-

ter finishing the forward computation of each layer, the PEs have

to share their local output, i.e., ~ =

⋃?
8=1(~)8 (via an Allgather op-

eration). After finishing the backward computation of each layer,

the processes also have to share their gradient of the input (pass it

to the preceding layer), i.e., 3!
3G

=

∑?
8=1(

3!
3G
)8 (an Allreduce opera-

tion2). Because each PE performs the weight-update on its portion

of weights, the gradient-exchange phase is skipped.

2In the backwardphase, because a given layer ;−1 only requires to use one partition of

the layer ; ’s input gradients, i.e.,3!3G [∗, ?, ∗], it is possible to perform a Reduce-Scatter

instead of an Allreduce operation [14].



(IO) G [∗, ∗, ∗] ← �$ (dataset, �)

(IO) (G)8 [∗, ∗, ∗]
�20BC
←−−−−− G [∗, ∗, ∗] in the first layer.

(FB) (~)8 [∗, ?, ∗] ← �, ( (G)8 [∗, ∗, ∗], F [∗, ?, ∗])

(FB) ~ [∗, ∗, ∗]
�;;60Cℎ4A
←−−−−−−−−−

⋃?
8=1

(

(~)8 [∗, ?, ∗]
)

(FB) ( 3!3G )8 [∗, ∗, ∗] ← �,30C0 ( (
3!
3~ )8 [∗, ?, ∗], F [∗, ?, ∗])

(FB) 3!
3G [∗, ∗, ∗]

�;;A43D24
←−−−−−−−−−

∑?
8=1

(3!
3G )8 [∗, ∗, ∗])

)

(FB) 3!
3F [∗, ?, ∗] ← �,F486ℎC ( (

3!
3~ )8 [∗, ?, ∗], (G)8 [∗, ∗, ∗])

(WU) F [∗, ?, ∗] ←,* ( 3!3F [∗, ?, ∗])

Channel parallelism [14] (Figure 1(f)) is similar to filter paral-

lel strategy but it requires an Allreduce in the forward pass and

Allgather in the backward pass.

(FB) (~)8 [∗, ∗, ∗] ← �, ( (G)8 [∗, ?, ∗], F [?, ∗, ∗])

(FB) ~ [∗, ∗, ∗]
�;;A43D24
←−−−−−−−−−

∑?
8=1

(

(~)8 [∗, ∗, ∗]
)

(FB) ( 3!3G )8 [∗, ?, ∗] ← �,30C0 ( (
3!
3~ )8 [∗, ∗, ∗], F [?, ∗, ∗])

(FB) 3!
3G [∗, ∗, ∗]

�;;60Cℎ4A
←−−−−−−−−−

⋃?
8=1

(

( 3!3G )8 [∗, ?, ∗]
)

3.4 Model-vertical (layer) parallelism

Amodel parallel variant at which the CNN is partitioned across its

depth (number of layers �) into ? ≤ � composite layers, where

each composite layer is assigned into one PE, as shown in Fig-

ure 1(d). We consider the pipeline implementation of this model

parallelism (first proposed by GPipe [17]). The mini-batch is di-

vided into ( segments of size �( . In each stage, the forward compu-

tation of a composite layer 8-th on a data segment B is performed

simultaneously with the computation of composite layer (8 + 1)-th

on the data segment B − 1 and so on. The backward computation

is done in reversed order.

3.5 Hybrid parallelism

We have defined four different main parallel strategies which split

the dimension # ,, × � (×�), � , � , and � , respectively. Without

loss of generalization, a layer also can be split by the size of ker-

nel  ×  . However, in practice  is so small that parallelizing by

dividing  would not give any benefit. Therefore, we focus on the

mentioned main strategies. A hybrid parallelism is a combination

of two (or more) strategies. For example, Figure 1(g) illustrates the

data+filter parallelism. In which, ? PEs are arranged into ?1 groups

of size ?2 =

?
?1 . This hybrid strategy implements the filter paral-

lelism inside each group and data parallelism between groups. For

a PE 1 ≤ 8 ≤ ?2 in a group 1 ≤ 9 ≤ ?1:

(IO) (G) 9 [?1, ∗, ∗] ← �$ (sub-dataset9 , �
′)

(IO) (G)8 9 [?1, ∗, ∗]
�20BC
←−−−−− (G) 9 [?1, ∗, ∗] in the first layer

Filter parallelism inside a group of ?2 PEs:

(FB) (~)8 9 [?1, ?2, ∗] ← �, ( (G)8 9 [?1, ∗, ∗], F [∗, ?2, ∗])

(FB) ~ 9 [?1, ∗, ∗]
�;;60Cℎ4A
←−−−−−−−−−

⋃?2
8=1

(

(~)8 9 [?1, ?2, ∗]
)

(FB) ( 3!3G )8 9 [?1, ∗, ∗] ← �,30C0 ( (
3!
3~ )8 9 [?1, ?2, ∗], F [∗, ?2, ∗])

(FB) ( 3!3G ) 9 [?1, ∗, ∗]
�;;A43D24
←−−−−−−−−−

∑?2
8=1

(3!
3G )8 9 [?1, ∗, ∗])

)

Data parallelism between ?1 groups :

(FB) ( 3!3F ) 9 [∗, ?2, ∗] ← �,F486ℎC ( (
3!
3~ )8 9 [?1, ?2, ∗], (G)8 9 [?1, ∗, ∗])

(GE) 3!
3F [∗, ?2, ∗]

�;;A43D24
←−−−−−−−−−

∑?1
9=1

(

( 3!3F ) 9 [∗, ?2, ∗]
)

(WU) F [∗, ?2, ∗] ←,* ( 3!3F [∗, ?2, ∗])

Figure 2: Overview of ParaDL

Another example of hybrid parallelism is the combination of

data and spatial or channel parallelism [14]. Furthermore, the hy-

brid strategy could be more complex when applying different par-

allel strategies for different layers [19, 25].

4 PERFORMANCE PROJECTION OF
DIFFERENT PARALLEL STRATEGIES

4.1 Overview of ParaDL

In this section we introduce our oracle (ParaDL). Through the in-

formation that we can get beforehand, such as the dataset, model,

supercomputer/cluster system specification, and user’s constraints

(e.g., maximum number of involved PEs), ParaDL calculates the

computation and communication time to project the overall per-

formance (as described in Figure 2). If the strategy differs as the

number of nodes increases, ParaDL would breakdown the execu-

tion time of different strategies as the number of PEs changes, i.e.

scaling the number of PEs. ParaDL can be used for the following

purposes:

• Suggesting the best strategy for a given CNN, dataset, and re-

source budget (especially when data parallelism is not feasible).

• Identifying the time and resources to provision from a system

(we partially relied on ParaDL in this paper for that purpose

when conducting our empirical experiments in Section 5).

• Comparison of projections with measured results to detect ab-

normal behavior (we relied on ParaDL for this purpose in our

analysis of network contention in Section 4.3).

• Identifying limitations of parallel strategies, shortcomings of frame-

works, and bottlenecks in systems (we relied on ParaDL for this

purpose in our discussion in Section 5.3).

• As an education tool of the parallel strategies that would im-

prove the understanding of parallelism in DL

Frameworks that are used for DL are comprised of complex and

interleaved layers of optimized functions. A pure analytical model

of parallel strategies in CNNs would, therefore, be impractical. In

this paper we adopt a hybrid analytical/empirical modeling ap-

proach at which we: (i) use analytical modeling for functional re-

quirements driven by the parallelism strategies (Section 4.3), and

(ii) empirical parametrization for functions not related to the par-

allel strategy being deployed (more details in Section 4.4). Finally,

we quantify the accuracy of the oracle with a large empirical eval-

uation in Section 5.

4.2 Assumptions and Restrictions

The study in this paper is based on the following assumptions.



Targeted models and datasets: our study covers all types of

layers used in production CNNs, and could hence be used for pro-

jecting the performance of any production CNN model, not just

the models we evaluate in the paper. We also support the input (i.e.

samples) to be of any dimension (as shown in Table 2).

Training time and memory estimation: Our study focuses

predominantly on the computation and communication time of the

CNN training, thus we assume that all the training data is available

in memory before starting the training process. In other words, in

this model we do not include the time for I/O.

One could conservatively estimate the memory required on a

per layer basis by assuming the memory buffers of the output of

layer ; are different from the memory buffers for the input of layer

; + 1, however, in reality both buffers being the same. Additionally,

in reality there is a variety of optimizations that frameworks im-

plement to reduce the memory used (See Table 1). Since those op-

timization methods are complexly intertwined and depend on the

framework implementations, without loss of generalization, we

propose a practical memory requirement estimation. More specifi-

cally, we start out from the naive memory projection that aggre-

gates layers, then we reduce that conservative upper bound to

reflect the actual memory optimizations happening inside frame-

works. We introduce a memory reuse factor W . The actual mini-

mum required memory, after all memory reuse optimizations are

applied, can be estimated by multiplying total naive required mem-

ory by W . This memory reuse factor can be derived from several

elaborate studies on model-level and layer-level memory profiling

of CNNs [20, 28].

Parallel strategies: all results in this paper, unless otherwise

stated, are for the de facto scaling approach in DL: weak scaling.

The mini-batch size scales with the number of PE, hence the num-

ber of samples per PE remains constant. In addition, unless men-

tioned, we do not actively optimize for changing the type of paral-

lelism between different layers in a model, i.e., different layers do

not have different parallel strategy. However, there can be cases

at which a different type of parallelism is used, in order to avoid

performance degradation. For instance, the fully connected layer

in spatial parallelism is not spatially parallelized, since that would

incur high communication overhead for a layer that is typically a

fraction of the compute cost of convolution layers [25].

4.3 Performance and Memory Projection

In this section, we estimate the total training time in one epoch

and maximum memory per PE for the mentioned main parallel

strategies, including hybrid. Let �,; , �,; denote the time to per-

form the computation of forward and backward propagation for

one sample and let,*; denote the time for weight update per it-

eration at layer ; 3.)0A (?,<),)06 (?,<), and)?2? (<) stand for the

time of transferring a data buffer of<-size between ? PEs via an

Allreduce, Allgather, and a peer-to-peer scheme, respectively. In

data parallelism, the training includes both computation and com-

munication time. Each PE processes a micro batch size � ′ = �
? in

this case. The time for FW and BW in one iteration is 1
? of the

3In pipeline, each PE 8 keeps �8 layers of the model given that
∑?

8=1�8 = � . Let
�,�8 , �,�8 and,*�8 denote the time for performing the forward, backward, and

weight update computation of group 8 per sample.

single-process. Thus the total computation time in one epoch be-

comes:

)30C0,2><? =

�

?

�
∑

;=1

(�,; + �,; ) +
�

�

�
∑

;=1

(,*; ) (1)

Because PEs have to share their gradients at the end of each

iteration, the time for communication is ��)0A (?,
∑�
;=1
|F; |). Con-

sidering the memory footprint, in data parallelism we duplicate

the entire model on ? different PEs. Each PE processes a partition

of the dataset in a microbatch of � ′ = �
? samples. A layer ; needs

memory to store its input � ′ |G; |, activation �
′ |~; |, weights |F; |,

bias |18; |, the gradients �
′ | 3!
3G;
|, � ′ | 3!

3~;
|, and | 3!

3F;
|. Overall, if each

item of the input, activation, weight and gradients are stored in X

bytes, the maximum required memory at one PE is:

"30C0 =

�
∑

;=1

X (�′ ( |G; | + |~; |) + |F; | + |18; | + �
′ ( |

3!

3G;
| + |

3!

3~;
|) + |

3!

3F;
|) (2)

In theory, the computation time can be estimated by observing

the dataset and CNNmodel (e.g., FLOP counts and the computation

speed of each PE). For modeling the communication time, there ex-

ist various derived / specific analytical performancemodels, e.g., as

in the survey of Rico Gallego et. al. [40]. To keep the performance

modeling generic, we choose to use the Hockney U − V model, in

which, the peer-to-peer communication time of transferring ames-

sage of size < is modeled by )?2? (?,<) = U + <V . Time for a

message send from a source to a destination is U (also known as

startup time) and the time to inject one byte of data into the net-

work is V . We follow the common practice in DL communication

libraries such as NCCL [35] to use a ring-based algorithm for all the

collective communication operation with large message sizes and

a tree-based algorithm for small message sizes. In the ring-based

algorithm, a logical ring is first constructed among ? PEs based on

the system network architecture. Then, each PE partitions its <-

size data buffer into ? segments of size <? . Each PE then sends one

data segment to the successive PE and receive another segment

from the preceding PE along the ring, i.e., a total of ? − 1 steps

for Allgather and 2(? − 1) steps for Allreduce. Thus)0A (?,<) and

)06 (?,<) can be modeled by 2(? −1)(U +<? V) and (? −1)(U +<V),

respectively. Based on this communicationmodel, we also estimate

the total training time in one epoch and the maximummemory re-

quired per PE for the mentioned parallel strategies. We summarize

our analytical model in Table 3 4. The details of this analysis can

be found in the Appendix of this paper.

Contentionmodeling: Ideally, in a systemwithout contention,

the start up time U of a given pair is estimated as the total switch-

ing latency, which depends on the number of intermediate switch-

ing elements. In addition, V is the inverse of the minimum link

bandwidth on the routing path between two PEs (the bottleneck

link). However, network congestion is one of the biggest problems

facing HPC systems today, affecting system throughput and per-

formance. To address the contention effects we introduce the use

of a contention penalty coefficient q , which divides the bandwidth

of a link by the number of communication flows q sharing this

4We note that the proposed communication model can naturally be extended for dif-
ferent Allreduce schemes or algorithms, such as Parameter Server or tree-based algo-
rithms. For example, when message sizes are small, communication time with tree-
based algorithms can be estimated as 2(log(?) + :) (U +<<

2: V) where a message is

divided into : chunks to communicate in a pipeline [42].



Table 3: Computation, Communication, and Memory Analysis Summary (per epoch)
Computation Time)2><? Communication Time)2><< Maximum Memory Per PE Number of PEs ?
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(
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link at each step of collective communications [23]. In our analyt-

ical model, we only consider the self-contention caused by all the

communication flows of the training process itself, e.g., a link is

shared between different groups in hybrid parallelism strategies.

The contention coefficient can be estimated analytically by using

dynamic contention graphs [30]. It is important to note that we

do not intend to model the contention caused by congested net-

works due to a large number of applications running at the same

time in a shared system. Such kind of external contention affects

all parallelism strategies and do not reflect the baseline fundamen-

tal performance of each parallelism strategy. In addition, the base-

line performance predicted by our analytical model can be comple-

mented with a congestion impact factor, which can be empirically

estimated as in [7], in order to predict the real-world performance

in production environments.

4.4 Empirical Parametrization

As mentioned earlier, we rely on a hybrid of analytical modeling

and empirical parametrization for ParaDL. To reduce the impact

of noise associated with black-box empirical modeling [8], we seg-

ment the experiments used to inspect the target parameters. We

are thus able to distinguish between effects of noise on the mea-

surements and actual runtime change because of parameter influ-

ence. The empirical parameters are (as defined in Table 2):

• Computation parameters (�,; , �,; , and ,*; ): It is impor-

tant to note that processors, CPUs and GPUs, rarely perform

close to their peak performance. We empirically profile the av-

erage computation time per sample of each layer (or group of

layers) on the target architecture to get a more accurate result.

Such profiling can be performed easily and quickly beforehand.

Furthermore, the empirical compute time, per a given layer on

a given processor, is available in DL databases of models [28].

• Communication parameters (U and V): The interconnect hi-

erarchy of modern computing systems, the algorithms used by

communication libraries, and the communication technologies

(such as GPUDirect [36]) may lead to differences in the latency

and bandwidth factors U and V . Thus, we empirically measure

the communication time of collective communication patterns,

such as Allreduce, with different message size, number of in-

volved processing elements on a specific computing system. Those

empirical measurements can be derived from well-known tools

Table 4: Implementation Overview(X: customized; - : untouched)

Parallelism
strategy

Conv Pooling BNorm / LNorm ReLU FC

Data - - - - -

Spatial X X - - X

Filter / Channel X - - - X

for performance of systems, e.g., OSUMicro-Benchmarks orNCCL-

test [27]. We then use those benchmark results to interpolate

U and V . It is important to note that U and V become different

when changing the number of processing elements in a hier-

archical computing architecture, e.g. intra-node, intra-rack and,

inter-rack communication.

It is important to emphasize that the empirical parameters in our

model are invariant to the implementation of the parallelism strate-

gies, i.e., values of empirical parameters could change when mov-

ing from one framework to another, yet values of the analytical pa-

rameters would not. Finally, to simplify the portability of ParaDL

between different frameworks and systems, we include the follow-

ing with the ParaDL utility: a) detailed instructions of using the

benchmarks used for gathering the empirical parameters we use,

and b) pointers to DL model and layers databases from which the

user could get empirical breakdown of compute and memory re-

quirement at the granularity of layers.

4.5 Implementation

4.5.1 Implementation Details. We implement data, channel, filter,

spatial and hybrid parallelism strategies using ChainerMN [1] for

distributed execution. AlthoughChainerMN provides a built-in im-

plementation for data parallelism and some minimum level of sup-

port for model parallelism, it is not sufficient for testing all the par-

allel strategies we study here (the same insufficiency also goes for

PyTorch, TensorFlow, and others). Substantial engineering effort

was required to modify and extend the existing implementation

and create ChainerMNX to support all forms of parallelism. This

extension included modifying existing communicators meant for

data parallelism to support hybrid parallelism. We also extended

existing convolutional layers to support filter/channel/spatial con-

volutions5. We mark our implementation for each type of targeted

layers and parallel strategies in Table 4.

5The code is publicly available here https://github.com/ankahira/chainermnx

https://github.com/ankahira/chainermnx


More specifically, we use the default implementation of Chainer

for data parallelism. Since the size of each dimension (i.e., � ,, ,

and/or �) limits the parallelism of spatial strategy, in this work,

we implement the spatial strategy for some first layers of a given

model until adequate parallelism is exposedwhile still maintaining

the maximum required memory per node within memory capacity.

We then implement an Allgather to collect the full set of activa-

tions before passing it to the following layers which perform sim-

ilar to the sequential implementation. For example, we aggregate

after the final convolution layer (before a fully-connected layer)

in VGG16, ResNet-50 and ResNet-152. For CosmoFlow, we aggre-

gate after the second convolution/pooling layer because most of

required memory footprint and compute are in those first two lay-

ers.

The minimum number of input channels � at each layer lim-

its the parallelism of channel strategy, e.g., only 3 input channels

for ImageNet. In this work we implement the channel parallelism

from the second layer. For hybrid strategies such as Data+Filter

(or Data+Spatial), we map the data parallelism inter-node. This

implementation is also used by Dryden et al. [14]. We leverage

ChainerMN with MPI support for both inter-node and intra-node

communication. To perform anAllreduce and update the gradients

in hybrid strategies, we use ChainerMN’s multi-node optimizer

which wraps an optimizer and performs an Allreduce before up-

dating the gradients. For the Data+Spatial parallelism, we perform

a reduce inside each node to a leader GPU, then perform an Allre-

duce between the leaders. These two Allreduce involve different

parallelization techniques (i.e., spatial in local and data in global).

For theData+Filter parallelism,we perform a segmented Allreduce,

e.g., disjoint subsets of GPU run Allreduces on different sets of

the weights, i.e., number of subsets equals to number of GPUs per

node.

4.5.2 Accuracy and Correctness. Weaim atmaking sure our imple-

mentation of different parallelism strategies have the same behav-

ior as data parallelism.We first compare the output activations/gra-

dients (in forward/backward phases) of each layer (value-by-value)

to confirm that the parallelization artifacts, e.g., halo exchange, do

not affect the correctness. Note that these new implementations

change only the decomposition of the tensors, and do not change

any operator or hyper-paramaters that have an impact on accu-

racy.

Second, in this work we assure that batch normalization (BN)

layers are supported in all parallel strategies since the accuracy

of training can be affected by the implementation of the BN lay-

ers [44, 55]. More specifically, for the data parallelism strategy, the

typical implementations of batch normalization in commonly used

frameworks such as Caffe, PyTorch, TensorFlow are all unsynchro-

nized. This implementation leads to data being only normalized

within each PE, separately. In typical cases, the local batch-size is

usually already large enough for BN layers to function as intended.

Yet in some cases, the local batch-size will be only 2 or 4 in each

PE, which will lead to significant sample bias, and further degrade

the accuracy. In this case, we suggest to use the synchronized BN

implementation as mentioned in [55], which requires a commu-

nication overhead for computing the global mini-batch mean. For

the spatial strategy, although performing batch normalization on

Table 5: Models and Datasets Used in Experiments
Model Dataset #Samples (Size) # Param. #Layers

ResNet-50 [16]
ImageNet [41] 1.28M (3×2262 )

≈ 25M 50
ResNet-152 [16] ≈ 58M 152
VGG16 [47] ≈ 169M 38

CosmoFlow [31] CosmoFlow [33] 1584 (4×2563 ) ≈ 2M 20

subsets of the spatial dimensions has not been explored, to the au-

thors knowledge, this computation requires no significant adjust-

ment [13]. More specifically, BN is typically computed locally on

each PE on its own portion of the spatially partitioned data.

In the filter and channel parallelism strategy, since all PEs keep

the same set of activations after performing the Allgather opera-

tion at each layer, the BN layer could be implemented as in the

sequential strategy. It could be implemented in a centralized fash-

ion, e.g., one PE performs the BN and then sends the result to other

PEs. Alternatively, each node could redundantly compute the BN

layer (distributed approach). In this work, we use the distributed

approach which does not require any communication overhead.

5 EVALUATION

In this section, we describe howwe conduct a wide range of experi-

ments to show the accuracy and utility of ParaDL in projecting the

performance of distributed training of CNNmodels under different

parallel strategies, including hybrid ones. We compare ParaDL pro-

jection results to the empirical measurements on a multi-petaflop

HPC system with thousands of GPUs. In addition, we characterize

the bottlenecks and limitations of different parallelization strate-

gies, and highlight relevant findings observed with the help of

ParaDL.

5.1 Methodology

SelectedModels andDatasets:We choose different CNNmodels

and datasets with different characteristics that affect performance

and memory requirements. They are summarized in Table 5.

Evaluation Environment: Experiments are performed on a

multi-petaflop supercomputer, with two Intel Xeon Gold 6148 Pro-

cessors and four NVIDIA Tesla V100 GPUs (16GB of memory per

GPU) on each compute node. The GPUs are connected intra-node

to the CPUs by PLX switches and PCIe Gen3 x16 links (16 GBps),

and together by NVLink (20 GBps). The compute nodes are con-

nected in a 3-level fat-tree topology which has full-bisection band-

width, and 1:3 over-subscription for intra-rack and inter-rack, re-

spectively (two InfiniBand EDR, e.g., 12.5 GBps, per compute node

and 17 compute nodes per rack).

Configurationsof Experiments:Weperform the experiments

of the parallel strategies using the framework Chainer [48] (v7.0.0),

ChainerMN [1] (the multi-node varient of Chainer), and CUDA

(v10.0).We also use the PyTorch (v1.5) implementation for the pipeline

strategy [22].We implement all communication functions based on

Nvidia’s NCCL library [35] (v2.4.8.1). The exceptions are at which

we use MPI (OpenMPI v2.1.6): a) the halo exchange of the spatial

strategy since P2P communication interfaces are not supported by

NCCL6, and b) the Allgatherv for the spatial strategy since NCCL

does not support Allgatherv.

6The latest version of NCCL now supports P2P communications.



Figure 3: Time breakdown of our analytical model (ParaDL) in comparison with measured runs. The label above each column shows the

projection accuracy. The x-axis is the number of GPUs. Filter/channel are strong scaling.(*)Values are total time since pipeline parallelism [22]

overlaps the computation and communication.

Figure 4: Prediction Accu-

racy of ParaDL with Cos-

moFlow for Data+Spatial

Figure 5: Spatial + data scaling with

CosmoFlow. The labels show the

speedup ratio of spatial+data over

the pure spatial strategy

An important performance factor is efficient device utilization

of GPUs. Thus, we conducted a series of test runs for each type

of parallelism and DL model to identify the optimal number of

samples per GPU (or node) that would efficiently utilize the de-

vice (marked as 1 in Figure 3). We observed that the performance

drops significantly when we train using a higher samples/GPU

number than the optimal one. This occurswhen the computational

load becomes too large to effectively utilize a single GPU. For Cos-

moFlow with spatial strategies, since we use only one sample per

node, i.e., 0.25 samples/GPU: we could not have the freedom to

tune the parameter 1. This is often the case for models using large

3D input datasets (increasingly common in scientific computing),

where data parallelism is simply not an option. Given that it was

not possible to get the empirical layer by layer time for CosmoFlow

running a sequential implementation with the 5123 data size, we

used 2563 sample sizes and multiplied the computation time by 8.

We confirmed with measurements that the strategy was accurate.

5.2 ParaDL’s Projection and Accuracy

This section discusses how close is the projection of the ParaDL or-

acle in comparison with the measured experiments. It is a complex

task to accurately project the performance of DL training, espe-

cially when scaling. More specifically, the following factors have

a significant effect on performance: contention on the PFS, the

effectiveness of the pipeline used for asynchronous data loading,

network contention, implementation quality, and overheads of so-

lution fidelity book-keeping. That being said, in this section we

aim to demonstrate that the presented oracle, despite the complex-

ities mentioned above, reasonably represents the reality of mea-

sured runs on an actual system (especially when scaling up to 1024

GPUs). In this comparison, we focus only on the computation and

communication time of the main training loop (the most time con-

suming part) and exclude other times from this study such as I/O

staging.

Figure 3 shows the oracle’s projections versus the measured

runs for different parallel strategies using three different models

(a fourth model is shown in Figure 4). We ran all the permuta-

tions of possible configurations but plot only some of them because

of space limitations. The figure is divided in three rows, one for

each CNN model, and six columns, one for each parallelism strat-

egy. The parameter 1 shows the mini-batch size for each case. As

mentioned in Section 5.1, the mini-batch size is set to achieve the



highest device occupancy on GPUs. The x-axis shows the number

of GPUs, up to the scaling limit of the specific parallel strategy

(e.g., maximum number of filters). More specifically, we scale the

tests from 16 to 1024 GPUs for data and hybrid parallelism, from

4 to 64 GPUs for filter/channel parallelism, and up to 4 GPUs for

pipeline parallelism. The y-axis shows the iteration time for each

case. The iteration time is calculated as an average of 100 iterations

excluding the first iteration which normally involves initialization

tasks. To get a more detailed analysis, we decompose the execution

time into computation and communication. The oracle prediction

is shown in blue as stacked bars, i.e., computation+communication,

and the measured empirical results are shown in orange. In this fig-

ure, we report the best communication times obtained during our

experiments, as this represents the peak performance the hardware

can deliver and leave aside occasional delays due to external fac-

tors such as network congestion coming from other apps, system

noise and, overheads due to correctable errors, among others. A

detailed analysis on network congestion is given on Section 5.3.1.

The labels above each column show the projection accuracy in per-

centage, i.e., 1 - ratio of the absolute value of the difference with

respect to the total measured time. Similarly, Figure 4 shows the

accuracy for CosmoFlow in the case of Data+Spatial parallelism.

Note that the reason CosmoFlow is only run on the Data+Spatial

hybrid configurations is because the sample size is so large that it

cannot run with any other parallel strategy.

The accuracy of ParaDL predictions for the different parallel

strategies are 96.10% for data parallelism, 85.56% for Filter, 73.67%

for Channel, 91.43% for Data+Filter, 83.46% for Data+Spatial and

90.22% for pipeline across all CNN models. In general, this repre-

sents an overall accuracy of 86.74% for ParaDL, across all paral-

lelism strategies and CNN models, and up to 97.57% for data par-

allelismon VGG16. CosmoFlow shows an accuracy of 74.14% on

average.

It is important to note that the overall average accuracy drops

significantly due to some few outliers in which the communica-

tion timemeasured is substantially higher than the prediction from

ParaDL. For instance Data+Spatial for ResNet-152 with 512 GPUs

shows an accuracy of 62% due to network congestions. Interest-

ingly, the same configurationwith 1024GPUs shows amuchhigher

accuracy (i.e., 83% for Data+Spatial ResNet-152) including the com-

munication part, demonstrating that the ParaDL oracle is highly ac-

curate, even at large scale (i.e., 1024 GPUs). Section 5.3.1 includes a

detailed analysis of the network congestion leading to the few out-

liers where themachine was oversubscribed. Note that the commu-

nication time of ParaDL for Data+Filter shown in Figure 3 is calcu-

lated with a contention penalty coefficient of 2×, e.g., contention

caused by two disjoint Allreduces that share the same InfiniBand

link for inter-node communication. The high accuracy reported

show that our analytical model fits well to the real performance.

5.3 Parallelism Limitations and Bottlenecks

In this section we use a combination of observations from ParaDL

projections and empirical results to highlight some important points:

(i) inherent to the parallel strategies themselves (limitations), and

(ii) those caused by other components such as the framework im-

plementation or system architecture (bottlenecks). This helps users

in avoiding these limitations, and framework programmers in pri-

oritizing their efforts for improvements. We group these limita-

tions and bottlenecks into four categories.

5.3.1 Communication. It is well-known in literature that paral-

lel training introduces communication overhead. Those overheads

have different forms and patterns for different parallel strategies.

There is the gradient exchange at the end of each iteration in data

and spatial parallelism (GE-Allreduce). There can also be extra com-

munication in the forward and backward passes of other parallel

strategies: the layer-wise collective communication in filter/chan-

nel (FB-Allgather and FB-Allreduce), layer-to-layer communication

in pipeline (FB-layer), and the halo exchange in spatial (FB-Halo).

Gradient Exchange: Similar to data parallelism, spatial requires

a gradient exchange to aggregate the weights. This collective com-

munication, i.e., Allreduce, has significant impact on performance,

and can become a limitation. Another point worth mentioning is

the hierarchal implementation of Allreduce in hybrid strategies

such as Data+Filter (df ) and Data+Spatial (ds). These two types

of Allreduce (data and hybrid parallelism) are different as they in-

volve different parallelization techniques. In ds, we perform a re-

duce inside each node to leader GPUs first, then perform a global

Allreduce between the leaders. However such implementation leads

to a higher overhead, e.g., time for Allreduce is more than 2× as

those of data. Alternative ways to address this issue are to use mul-

tiple leaders instead of only one [34] or to use segmented allre-

duces, i.e., smaller, concurrent allreduces among disjoint sets of

GPUs [14]. We use the former strategy for ds and the latter for df.

Thesemethods are not trivial to implement and they require signif-

icant engineering effort. ParaDL has proven accurate at modeling

those communications and can be used to choose an implementa-

tion strategy based on ParaDL’s projected communication times.

Layer-wise collective communication: unlike data parallelism, fil-

ter and channel parallelism require multiple collective communica-

tion rounds at each layer. The communication time depends on the

activation size × batch size, i.e., O(�
∑�
;=1
|~; |), as well as the depth

of DLmodel, i.e.,
∑�
;=1
(?−1)U as reported in our analytic model. In

our experiments with ImageNet, even though the total activation

sizes are smaller than the number of weights, yet with a batch size

of ≥ 32 samples, the communication time of filter/channel is larger

than that of data parallelism (See Figure 3). Note that because this

communication overhead is attributed to the forward and back-

ward phases, Allreduce optimization techniques such as sparsifi-

cation are no-longer valid. Instead, a hybrid which combines filter

and channel (plus data) parallelismmay help tomitigate this limita-

tion by reducing the number of communication calls [46] or using

a smaller segmented Reduce-Scatter [14].

Peer to Peer communication: The halo exchange in spatial par-

allelism and the activation passing between composite layers in

pipeline are performed in a P2P fashion, which are expected to

have small communication times. However, ParaDL shows that the

communication time of FB-Halo is non-trivial and this was con-

firmed by the empirical results. For example, in ResNet-50, 128

GPUs, the time of FB-Halo is approximately 60% of the gradient

exchange Allreduce, which is substantially higher than initially ex-

pected. This bottleneck appears because the framework uses the

MPI library instead of NCCL (NCCL allows GPUs to communicate



Figure 6: Network congestion of ResNet-

50, 512 GPUs, data parallelism (upper) and

VGG16, 64 GPUs, filter parallelism (lower).

Figure 7: Computation time per epoch

with PyTorch. Weight update is not trivial

in large models and dataset.

Figure 8: Computation breakdown of filter

parallelism, ResNet-50. Implementation of

convolution layers does not scale well.

directly instead of via CPU, i.e., GPUDirect). We plugged differ-

ent network parameters in ParaDL (See Section 4.4) for MPI and

NCCL and we confirmed the difference, both theoretically and em-

pirically.

Network Congestion: In our empirical experiments, we try to

avoid the issue of congestion as much as possible by running sev-

eral times for each data point. However, as shown in Figure 3,

we still observe network congestion when approaching 1K GPUs.

We did a detailed analysis for several of the runs. In Figure 6 we

show the time for Allreduce communication for data parallelism

of ResNet-50 with 512 GPUs and an Allgather communication for

filter parallelism of VGG16 with 64 GPUs. We noticed that most

data points align well with the expected theoretical bandwidth pre-

dicted by our analytical model (blue line), yet network congestion

caused by other jobs in the system can lead to some outliers that

push the average communication time up to four times higher than

expected. This overhead can not be avoided especially for large-

scale training, e.g., 100s-1000s GPU, in a shared HPC system. It

could, however, be mitigated at the system level by switching to a

full-bisection bandwidth rather than having 1:3 over-subscription.

5.3.2 MemoryCapacity. Wehighlight specific caseswhenmem-

ory requirements become an issue in different strategies.

Redundancy in Memory: Different memory redundancies could

emerge in different parallel strategies. In the spatial and channel/-

filter strategies the activations (i.e. input/output channels) are di-

vided among nodes, however this does not reduce the memory re-

quirements of holding the weight tensors since their weights are

not divided among PEs (as in our analytical model). This becomes

an issue for larger models. One alternative proposed in ZeRO [38]

is to split the weights as well as the activations. However, this

comes at the cost of extra communication of 50% since twoAllgath-

ers of the weights are needed in the forward and backward passes.

In pipeline, the memory required for a single layer could be prohib-

itive. For example, ComsoFlow’s first Conv layer generates more

than 10GB of activation tensor when the input size is 4× 5123. Ac-

cordingly, for those kind of models the pipeline strategy would be

unfeasible and one has to resort to other parallel strategies (e.g., use

Data+Spatial for CosmoFlow as shown in Figure 5). Additionally,

since samples are fed in a pipelined fashion, the memory required

is proportional to the number of stages, and would hence become a

bottleneck in deep pipelines, unless we apply gradient checkpoint-

ing at the boundary of the partition [17, 32], which comes with the

overhead of recomputing the activations within each partition.

Memory Manager : DL frameworks typically include a memory

manager to reduce the overhead of frequent malloc and free. Since

GPUs typically operate in asynchronous execution model, there

are many CUDA kernels being launched at any given time in train-

ing.We observed a disparity between ParaDL andmeasured perfor-

mance that could be attributed to stalling kernels. Upon inspection,

we observed kernels thatwere launched asynchronously often stall

when requesting memory (in, Chainer as well as PyTorch). The

launched asynchronously launched kernels waiting for memory

to be available leads to heavy fluctuations in performance. Guided

by ParaDL to identify the fine-grained location of the performance

gap, we confirmed, for instance, that the implementation of Data+Spatial

parallelism of VGG16 (64 GPUs) could avoid out-of-memory issues

at the cost of a performance degradation of 1.5×.

5.3.3 Computation. We highlight the following limitations.

Weight update: most compute time in training typically goes to

the forward and backward pass. However, we observed with our

analytical model that for larger models the weight update starts to

become a significant portion of the compute time. For instance, we

measured weight update to take up to 15% for the VGG16 (shown

in Figure 7). Larger DL models, using ADAM optimizer in specific,

may need a higher computation time for weight. Especially, large

Transformer based models report up to 45% time on weight up-

date and more than 60% extra memory requirements since ADAM

requires four variables per weight [49]. One alternative to address

this is to shard the weight update among GPUs across iterations,

and Allgather the weights before forward/backward passes [52].

Workload Balancing: Pipeline can outperform data parallelism

with less communication by using P2P rather than a collective com-

munication. However, it is crucial that all stages in the pipeline

take roughly the same amount of time, since the training time

of a pipeline is limited by the slowest stage. Indeed, there may

be cases where no simple partitioning across the GPUs achieves

perfect load balance (e.g. networks with non-linear connections).

To further improve load balancing, a straight forward approach is

to use data parallelism inside a stage, i.e., hybrid of pipeline plus

data [32].



Computation Redundancy:This section discusses limits that could

arise from computational redundancy that is introduced for differ-

ent parallel strategies. Using ParaDL we found out that there was a

gap between analytical result and the measured time in filter/chan-

nel. Looking in detail, we saw that this was an implementation

issue in the framework including two factors i) the convolution

layer does not always scale as expected and ii) the computation

overhead, such as split/concat, is non-trivial. These non-trivial im-

plementation overheads are shown in Figure 8.

5.3.4 Scaling limitation. When scaling, there is a limit on the

number of GPUs for each of the model parallel strategies (last col-

umn of Table 3). For example, ? can not exceed the minimum num-

ber of filters of a layer in the model, i.e., 64 in the case of VGG16

and ResNet-50 with filter parallelism. Hybrid approaches have a

better scaling than those of pure model parallelisms. For example,

as shown in Figure 5, using Spatial+Data hybrid is an effective

scalable alternative (despite communication inefficiencies), since

it scales both in performance and GPU count (i.e. one could simply

expand the data parallel pool as much as new nodes are added).

Indeed, the curve shows a perfect scaling (note the logarithmic y-

axis).

5.4 Other Observations

This section discusses a few more points related to CNN training.

5.4.1 The Rise of Hybrid Parallelism. As mentioned, each of four

basic parallelism strategies has its own limitations. Using the hy-

brid strategies (Data+Model) helps to break/mitigate those limi-

tations, e.g., memory issue of data parallelism and communica-

tion and scaling limitation of model parallelism (Section 5.3). As

more datasets from the HPC field start to be trained by DL frame-

works, this type of hybrid parallel strategies will become increas-

ingly relevant because data parallelism will simply be not enough,

as shown in the case of CosmoFlow and its good scaling with ds

in Figure 5. In addition, hybrid strategies may drive to a better so-

lution in terms of performance. In accordance with other recent

reports [14], there are cases where data+filter (df ) hybrid can out-

perform data parallelism at large scale, as we also observed in some

of our experiments (we also noticed scenarios where pipeline out-

performs data parallelism).

5.4.2 Distributed Inference. Inference at large scale is becoming

increasingly demanded, given that for large models the inference

would also be distributed [4]. In smaller models, when latency of

inference matters in an application, the inference could also be

distributed (e.g., real-time prediction of Tokamak disruptions in

magnetically-confined thermonuclear plasma experiments [11]). Some

of the limitations and bottlenecks of distributed training discussed

previously also appear in distributed inference (See lines marked

with Y in column I of Table 6).

6 CONCLUSION

We propose an analytical model for characterizing and identify-

ing the best technique of different parallel strategies for CNN dis-

tributed training. We run a wide range of experiments with differ-

ent models, different parallel strategies and different datasets for

up to 1,000s of GPUs and compare with our analytical model. The

Table 6: Summary of detected limitations (L) and bottlenecks (B)

with the related training phases (X) and components (•). Those lim-

itations/bottlenecks may appear (Y/N) in distributed inference (I).

Related parallel strategies (×): d-data, s-spatial, p-pipeline, f/c-filter

and channel, df-hybrid Data+Filter, ds-hybrid Data+Spatial. FR-

Framework, SY-System. Training phases: IO-I/O and pre-processing,

FB-a forward and backward propagation,GE-the gradient exchange

(if needed) and WU-updating the weights.

Category L/B
Para. Strategies

FR SY
Training Phases

I Remarks

d s p f/c df ds IO FB GE WU

L × × - - × × ◦ ◦ - - X - N Gradient-exchange
L - - - × × - ◦ ◦ - X - - Y Layer-wise comm.
B - × × - - × • ◦ - X X - Y P2P communication

Commu-
nication

B × × × × × × ◦ • - X X - Y Network Congestion
B × × × × × × ◦ • X X X X Y Memory RedundancyMemory

Capacity B × × × × × × • ◦ X X X X Y Memory Stalling
L × × × × × × ◦ ◦ - - - X N Weight Update

L - - × - - - ◦ ◦ - X - X Y Workload Balancing
Comput-
-ation

B - - - × × - • ◦ - X - X Y Comp. Redundancy
Scaling L × × × × × × ◦ ◦ X X X X Y Number of PEs

results demonstrate the accuracy of ParaDL, as high as 97.57% , and

86.74% on average accuracy across all parallel strategies on multi-

ple CNN models and datasets on up to 1K GPUs.

The analytical model helped us uncover limitations and bottle-

necks of parallel training of CNNs (summary in Table 6). We ana-

lytically identify different bottlenecks that can appear in different

parallel strategies due to communication patterns that compensate

for different ways to split the tensors, and confirm those predic-

tions empirically. Finally, we identify memory and computational

pressure that arises from different redundancies in different paral-

lel strategies.
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A APPENDIX

A.1 Performance and Memory Analysis

The training time of one epoch in the sequential implementation

(serial) of a CNN includes only the time for computation:
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Considering the memory footprint:
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In the following, we estimate the total training time and maximum

memory per PE for the mentioned basic parallelism strategies and

one hybrid strategy.

A.1.1 Data parallelism. In this strategy, the training time includes

both computation and communication time. Each PE processes a

micro batch size � ′ = �
? in this case. The time for computing at

layer ; in one iteration for forward and backward phase is 1
? of

the single-process. Thus the total computation time in one epoch

becomes:
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�
∑

;=1

( �

?
(�,; + �,; ) +,*;

)

=

�

?

�
∑

;=1

(�,; + �,; ) +
�

�

�
∑

;=1

(,*; )

(5)

Because PEs have to share their gradients at the end of each

iteration, the time for communication is �
�)0A (?,

∑�
;=1
|F; |). i.e.,

an Allreduce operation with a ring-based algorithm, the time for

communication is:

)30C0,2><< = 2
�

�
(? − 1)

(

U +

∑�
;=1
|F; |

?
XV

)

(6)

Clearly, data parallelism has the benefit of reduction in computa-

tion time by 1
? at the price of communication time.

Considering the memory footprint, in data parallelism we du-

plicate the entire model on ? different PEs. Each PE processes a

partition of the dataset in a microbatch of � ′ = �
? samples. A layer

; needs memory to store its input � ′ |G; |, activation �
′ |~; |, weights

|F; |, bias |18; |, the gradients �
′ | 3!
3G;
|, � ′ | 3!

3~;
|, and | 3!

3F;
|. Overall, if

each item of the input, activation, weight and gradients are stored

in X bytes, the maximum required memory at one PE is:

"30C0 =

�
∑

;=1

X (�′ ( |G; | + |~; |) + |F; | + |18; | + �
′ ( |

3!

3G;
| + |

3!

3~;
|) + |

3!

3F;
|)

= X

�
∑

;=1

(

2
�

?
( |G; | + |~; |) + 2 |F; | + |18; |

)

(7)

A.1.2 Spatial parallelism. As mentioned in the previous section,

the spatial dimensions of G , ~, 3!
3G

and 3!
3~

are split among ? PEs so

that the memory at one PE is:

"B?0C80; = X

�
∑

;=1

(

2�
( |G; | + |~; |)

?
+ 2 |F; | + |18; |

)

(8)

Because each PE performs a computation with the size of the spa-

tial dimensions as a fraction 1
?F , 1

?ℎ
, and 1

?3
of the sequential im-

plementation. This reduces the computation time of forward and

backward phase of a layer by ? = ?F × ?ℎ × ?3 times Thus, the

computation time is:

)B?0C80;,2><? =

�
∑

1

�

�
∑

;=1

(
�,;

?
+
�,;

?
) +

�
∑

1

�
∑

;=1

(

,*;

)

=

�

?

�
∑

;=1

(�,; + �,; ) +
�

�

�
∑

;=1

(,*; )

(9)

The communication time includes the time to perform the Allre-

duce operation to share the weight gradients (similar to data par-

allelism) and the time to perform the halo exchange of each layer.

For a layer ; , a PE needs to send/receive the halo regions with the

logically-neighboring PE(s). Thus the total time for halo exchange

is

)B?0C80;,ℎ0;> = 2
�

�

�
∑

;=1

()?2? (� (halo( |G; |) )) +)?2? (� (halo( |
3!

3~;
|) )))

= 2
�

�

�
∑

;=1

(2U + �XV (halo( |G; |) + halo( |
3!

3~;
|) ))

(10)

In which halo() presents the size of data exchanged per batch.

The exchanged data size depends on how each spatial dimension

is split.

A.1.3 Layer parallelism. In this strategy, a DNNmodel is split into

? composite layers (or group). Let 68 denote the group assigned to

PE 8 . That is, each PE 8 keeps �8 layers of the model given that
∑?
8=1�8 = � . Let �,�8

, �,�8
, and,*�8

denote the time for per-

forming the forward, backward, and weight update computation

of group 8 , i.e., �,�8
=

∑

; ∈68 (�,; ), �,�8
=

∑

; ∈68 (�,; ), and

,*�8
=

∑

; ∈68 (,*; ).

Pure implementation processes a batch of � samples at the first

node and then sequentially pass the intermediate activation (gra-

dients) through all ? nodes in each iteration. Hence, the time for

computation is:

);0~4A ,2><? =

�
∑

1

(�

?
∑

8=1

(�,�8
+ �,�8

) +

?
∑

8=1

(,*�8
))

= �

�
∑

;=1

(�,; + �,; ) +
�

�

�
∑

;=1

(,*; )

(11)

This approach does not reduce the computation time but it is help-

ful if the memory footprint at one node is limited. In practice, a

pipeline implementation is used to reduce the computation time.

In a pipeline implementation, the mini-batch is divided into (

segments of size �( . In one stage, the computation of a layer group

(or PE) 68 on a data segment B is performed simultaneously with

the computation of layer group 68+1 on the data segment B − 1, and

so on. Thus, the time for each stage can be approximated by the

maximum computation time of layer groups, i.e., max
?
8=1(�,�8

)

or max
?
8=1(�,�8

). In general, a pipeline implementation of ? PEs

with ( data segments requires (? + ( − 1) stages per iteration that

leads to the total computation time of one epoch as:

)?8?4,2><? ≈
� (? + ( − 1)

(
(

?
max
8=1
(�,�8

) +
?

max
8=1
(�,�8

+
?

max
8=1
(,*�8

)) (12)

Considering the communication in this strategy, each PE 8 has

to pass forward/backward the output/input’s gradients to the nex-

t/previous PE in a peer-to-peer communication schemewhich costs



)?2? (� |~�8
|) and)?2? (� |

3!
3G�8
|), where~�8

and G�8
denote the out-

put of the last layer and input of the first layer of a group layer

68 , respectively. In the pipeline fashion, the communication time

of each stage can be approximated by max
?−1
8=1 )?2? (� |~�8

|) and

max
?
8=2)?2? (� |

3!
3G�8
|). In the case of |G; | = |~;−1 |, the total time for

communication in one epoch (� = �
� iterations) is summarized in:

)?8?4,2><< ≈ 2
� (? + ( − 2)

�

( ?−1
max
8=1

(

U +
�

(
|~�8

|XV
)

)

(13)

For the memory footprint, because each PE 8 stores a different

set of layers, the maximum required memory in one PE is:

"?8?4 = X
?

max
8=1

(

�8
∑

;=1

(

2� ( |G; | + |~; |) + 2 |F; | + |18; |
)

)

(14)

A.1.4 Filter parallelism. In this strategy, the computation time is

reduced ? times, yet the time for communication at a layer ; be-

comes more complex, since it includes (1) an Allgather at the for-

ward phase (except layer �)7 that costs )06 (?,
� |~; |
? ), and (2) an

Allreduce at the backward phase (except layer 1) that costs)0A (?, � |
3!
3G;
|) =

)0A (?, � |G; |). In the case of |G; | = |~;−1 |, the total time for commu-

nication in � = �
� iterations is:

)5 8;C4A ,2><< = 3
�

�
(? − 1)

�−1
∑

;=1

(U +
� |~; |

?
XV) (15)

In this strategy, each PE keeps only 1
? the filters (weight) of each

layer. However, PE 8 needs to communicate with other PEs to share

its local partial activations, hence requiring memory to store the

entire activation |~: |. The required memory at each PE is:

"5 8;C4A = X

�
∑

;=1

(

2� ( |G; | + |~; |) +
2 |F; |

?
+ |18; |

)

(16)

A.1.5 Channel parallelism. Similar to the filter parallelism, chan-

nel parallelism splits the DL models horizontally, i.e., by the num-

ber of input channels � . Thus, the computation time, and the re-

quired memory at each PE are same as those of filter parallelism

"2ℎ0==4; = X

�
∑

;=1

(

2� ( |G; | + |~; |) +
2 |F; |

?
+ |18; |

)

(17)

)2ℎ0==4;,2><? = )5 8;C4A ,2><? =

�

?

�
∑

;=1

(

�,; + �,;

)

+
�

?�

�
∑

;=1

(,*; ) (18)

The communication is performed in a different pattern that in-

cludes (1) an Allreduce at the forward phase (except layer G) that

costs)0A (?, � |~; |), and (2) an Allgather at the backward phase (ex-

cept layer 1) that costs )06 (?,
� | 3!3G;

|

? ). Similar to filter parallelism,

we get the total communication time:

)2ℎ0==4;,2><< = 3
�

�
(? − 1)

�−1
∑

;=1

(U +
� |~; |

?
XV) (19)

7Each process 8 transfers | (~; )8 [∗, ?, ∗] | =
|~; |

? values for one sample in layer ; , and

a total of �
|~; |

? values for the entire batch.

A.1.6 Hybrid parallelism (Data + Filter). We consider an example

of hybrid parallelism: the combination of data and filter parallelism

in which we use ?1 data parallelism groups in ? = ?1 × ?2 PEs.

We apply filter parallelism inside each group and data parallelism

between groups. Each group will process a partition of the dataset,

i.e., �?1 samples. Each PE then keeps one part of filters of each layer,

e.g., �?2 filters, so that the required memory is:

"3 5 = X

�
∑

;=1

( 2�

?1
( |G; | + |~; |) +

2 |F; |

?2
+ |18; |

)

(20)

Each PE hence performs 1
?2 of the computation at each layer

with a mini-batch of �
?1 . The computation time is:

)3 5 ,2><? =

�
∑

1

�

?1

�
∑

;=1

( �,;

?2
+
�,;

?2

)

+

�
∑

1

�
∑

;=1

(
,*;
?2
)

=

�

?

�
∑

;=1

(

�,; + �,;

)

+
�

�?2

�
∑

;=1

(,*; )

(21)

In this strategy, the communication includes intra-group and

inter-group communication, which correspond to the cases of fil-

ter and data parallelism. The total communication time of one iter-

ation includes )06 (?2,
� |~; |
?2 ) and )0A (?2, � |

3!
3G;
|) at each layer and

)0A (?1,
∑�
;=1
|F; |
?2 |) when update, respectively. The total communi-

cation time becomes:

)ℎ~1A83,2><< = 3
�

�
(?2 − 1)

�−1
∑

;=1

(U +
� |~; |

?
V)+

2
�

�
(?1 − 1) (U +

∑�
;=1
|F; |

?
V)

(22)

We summarize our analytical model in Table 3.


	Abstract
	1 Introduction
	2 Background
	2.1 Phases of Distributed Training of DNNs
	2.2 Notation

	3 Strategies for Distributed Training
	3.1 Data parallelism
	3.2 Spatial parallelism (height-width-depth)
	3.3 Model-horizontal parallelism
	3.4 Model-vertical (layer) parallelism
	3.5 Hybrid parallelism

	4 Performance Projection of Different Parallel Strategies
	4.1 Overview of ParaDL
	4.2 Assumptions and Restrictions
	4.3 Performance and Memory Projection
	4.4 Empirical Parametrization
	4.5 Implementation

	5 Evaluation
	5.1 Methodology
	5.2 ParaDL's Projection and Accuracy
	5.3 Parallelism Limitations and Bottlenecks
	5.4 Other Observations

	6 Conclusion
	References
	A Appendix
	A.1 Performance and Memory Analysis




