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In this work, we consider, from the numerical point of viewpaundary-initial value problem for non-simple porous
elastic materials. The mechanical problem is written asupleal hyperbolic linear system in terms of the displacement
and porosity fields. The resulting variational formulatierused to approximate the solution by the finite element oteth
and the implicit Euler scheme. A discrete stability propenid a priori error estimates are proved, from which thegdline
convergence of the numerical scheme is deduced under adeqgalarity conditions. Finally, some numerical simidas

are presented to show the accuracy of the finite element sckardied previously, the evolution of the discrete energy
and the behavior of the solution.
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1 Introduction

The porous structure of the materials has a great influentteeibehavior of elastic materials. For this reason, it hanbe
developed in a relevant way the study of porous-elastic nadge Nunziato and Cowin [14] proposed a non-linear theory
with a matrix material which is elastic and where the inieest are void of material. Cowin and Nunziato [4, 14] derived
the linear theory. A systematic development for this thezamy be found in the book of lesan [7]. We can see a porous-
elastic material as the combination of the macroscopicsira (the elastic deformation) and the microscopic stmecfthe
porosity). They are coupled and it is of interest to know hbe introduction of a dissipative mechanism in one of these
structures is carried out to the other component. A big dtyaoit contributions in this line has been obtained in theergc
years (see, among others, [8-10,12,13,15-17]).

The introduction of higher order gradients in the basic plasés of elasticity has also been considered in the second
part of the last century. It seems that it was motivated bydessre to obtain more detailed models for the response of the
materials to stimuli. The works of Green-Rivlin [5], MindI[11] or Toupin [18] should be considered in this line as salve
pioneering contributions. The theories including secoratlignt of the displacement are usually called strainigrad
theories.

We here want to center our attention to the linear strainigragborous-elasticity, in the case that we consider second
gradient of the displacement and second gradient of then®fuaction field among the independent variables. Thisrtheo
has been recently proposed by lesan [6], and the purpobkésqgidper is to analyze numerically this problem when sévera
dissipation mechanisms are introduced in the system. ftiigt@rest to determine how the solutions decay in time is thi
case.

The paper is structured as follows. In Section 2, we deschibebasic equations we are going to work with and we
derive the variational formulation of this mechanical gesh. An existence and uniqueness result proved in [1] idlezxta
Then, in Section 3 we introduce a fully discrete approxioratly using the finite element method and the implicit Euler
scheme. A discrete stability property and a priori erroinestes are shown. The linear convergence of the approxamati
is derived under suitable additional regularity condiiofrinally, in Section 4 some numerical simulations are gt
to demonstrate the accuracy of the algorithm, the discretegy decay and the behavior of the solution depending on the
viscosity coefficient.

* Corresponding author E-majbse.fernandez@uvigo.es, Phone: +34 986 818 746, Fax: +34 986 818 352
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2 J. Baldonedo, J.R. Fernandez, A. Magafa, and R. Quiletafih a priori error analysis of a porous strain gradientelo

2 The porous-elastic model

First of all, we recall the evolution and constitutive edoas which govern the theory we are going to deal with. Weofell
the guidelines proposed by lesan [6].
Our analysis is focused in the one-dimensional problem sefevolution equations are

p'u:TJ;_,uwwa

Here,u is the displacementy is the fraction of volumer is the stressy is the hyperstress, is the equilibrated stress
vector,o is the equilibrated hyperstress tensor gritie equilibrated body force. As usualstands for the mass density
and.J for the product of the mass density by the equilibrated iagaind both are assumed to be positive.

The primary constitutive equations are given by

T = aug; + b(P + ﬁ‘pmm + a*uz;
= K1Ugg + Yz + K Uz,

X = YUgy + QPg,

o= Buy + do + Kapez,

g = _buw - 690 - d(Pzz - 6*90

The conditions for the constitutive coefficientsh, 5, k1, v, «, d, k2, KT, a*, £ and¢™ will be stated below.

Without loss of generality, we suppose that the spatiabtdeiz lies in the interval0, ¢] and that the time goes fron
to T, whereT > 0 denotes the final time.

Therefore, introducing the constitutive equations in® élolution equations we find that the resulting linear sysié
equations is the following:

p’LL = QUgqy + b(Pz — RlUggzx — NPrxx — ,{{ullll + a*um, (1)
JP = Nugze — bug + 6(Pzz — &p — Kooz — £,

where we have simplified the notation definipg- v — 5 andd = o — 2d.

We note that from the linear system (1) we can obtain thrdereifit problems with porosity: porous-hyperviscoelastic
problems (assuming that # 0 anda* = £* = 0), porous-viscoelastic problems (assuming tifag 0 andx} = £* = 0)
and weak viscoporous-elastic problems (assuming&hat 0 anda* = x7 = 0). Proceeding in an analogous way, we
could also analyze the hyperviscoporosity and viscoptyasises, which are rather similar to the hyperviscoelastit
viscoelastic ones with porosity.

The following set of boundary and initial conditions are wspd, for a.ex € (0,¢) andt € (0,T):

u(0,t) = u(l,t) = uz(0,8) = uy (¢, t) =0, 2
@(Ovt) = ‘pw(ovﬁ) = (p(e,ﬁ) = (Pz(evt) =0, @

and
u(@,0) = ugl), (z,0) =w(x), (x,0)=polx), @(z,0)=1vo(x). ®)
The constitutive coefficients satisfy the following conafits:
p>0 J>0, a>0, Kk >0, ky>0, a&>0b> 0Ok >n*>>0. (4)

In what follows, we obtain the variational formulation othbove mechanical problem. Lét= L?(0, /), and denote
by (-,-) the scalar product in this space, with corresponding nfprnijy. Moreover, let us denot& = H'(0,¢) and
V = HZ(0,¢), with norms|| - ||z and|| - ||y, respectively.

Let us denote by = @ andv = ¢ the velocity and porosity speed. Therefore, integratingpdsts it leads to the
following variational formulation for problem (1), (2) ard).

Find the velocity fieldv : [0,7] — V and the porosity speed : [0,7] — V such that(0) = vy, ¥(0) = 4o, and, for
a.e.t € (0,7)andw, r €V,

p(i}(t), w) + a(ux(t), wx) + ’il(uxﬂt(t)v wzz) +a” (Urﬂ (t), wz) + “T (Umm(t)a wmc)

= b(pa(t), w) + 1(Paz(t), wa), (5)
T (t),r) + 6(pa(t),12) + k2 (Pua(t), Tax) + € (Y(L), ) + E(p(t), )
= —N(uzz(t),72) — blux(t),7), (6)

Copyright line will be provided by the publisher
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where the displacement and the porosity fieland, are recovered from the equations:

u(t):/o v(s) ds + uyp, gp(t):/o P(s)ds + po. (7)

Proceeding as in [1], we could prove the following result ethstates the existence of a unique solution to the above
problem.

Theorem 2.1 Assume that the constitutive coefficients satisfy condit{d). If we also assume that one of the coeffi-
cientsa™, k7 or £* is positive, then there exists a unique solution

u, ¢ € C*([0,T); L*(0,£)) nC*([0,T]; H(0,£)) N C°([0, T]; H*(0, £))

to problem (1)-(3). Moreover, if we also assume thiat4 0, then the energy of the problem decays exponentially.

It was also proved in [1] that, in the hyperviscosity case. (¥ = ¢* = 0), the energy decays in a slow way. Moreover,
for the weak viscoporosity case*(= ] = 0), if Jk1 = pr2 then the energy decays exponentially but, on the contrary,
the energy decays in a slow way.

3 Fully discrete approximations: an a priori error analysis

In this section, we introduce the fully discrete approxiimabf variational problem (5)-(7). First, in order to obitahe
spatial approximation, we assume that the intejva] is divided intoM subintervalsiy = 0 < a1 < ... < apr = £ of
lengthh = a,11 — a; = ¢/M. Therefore, to approximate the variational sp&Geve define the finite dimensional space
V" c V given by
Vh = {wh e c(]0,4); w|[ EPg([ai,aiH]) i=0,...,M—1,
1ig1

w"(0) = wh(ﬁ) = wy(0) = wi(¢) = 0},
wherePs([a;, a;+1]) represents the space of polynomials of degree less or emjtfalete in the subintervéd,;, a;1]; i.e.
the finite element spadé” is made ofC' and piecewise cubic functions. Here> 0 denotes the spatial discretization
parameter. Furthermore, let the discrete initial datav?, o andy{ be defined as

h _ ph h _ ph h _ ph h _ ph
UO*P U, Ch) *P Vo, 900773 ©o, 1/}0*7) 1/)07

whereP" is the classical finite element interpolation operator dvei(see [3]).

Secondly, we consider a uniform partition of the time in&f0, 7', denoted by) = ¢ty < t; < ... < ty = T, with
step sizek = T'/N and node$,, = nk forn=0,1,..., N.

Therefore, using the well-known implicit Euler scheme, filléy discrete approximations of the above variationallpro
lem are the following.

Find the discrete velocity"* = {v*}N_ < V" and the discrete porosity speed* = {y*}~ < V" such that

ok = ob, ik =l and, for allw®, * € V*andn =1,..., N,
p((op" —vp )k, w") + a((uF)a, w )+H1((UZ")M, )+a (U3*)z, wg)
+“I((ng)mvwgz) = b((‘Pn z, W ((‘sz)z (8)
TR = onE ) k") +0((00" o z)+f€2((s&2k)mv M)Jrﬁ (¥t ")
+§(§07};k’rh) = _n((uzk)zzv :c) - b(( Up, ) h) (9)

where the discrete displacement and the discrete por@&itandy”* are now recovered from the equations:
Wi =l Rl = Rl (10)

Itis straightforward to obtain that this fully discrete pitem has a unique solution applying the well-known Lax Malgr
lemma and the required assumptions on the constitutiverpseas.
We will prove now a discrete stability property.

Lemma 3.1 Let the assumptions of Theorem 2.1 hold. Then, the sequémtes”*, "% )"*} generated by discrete
problem (8)-(10), satisfy the stability estimate:

lon® 13 + lun®lI% + len I3 + leR* I3 < C,

whereC' is a positive constant which is independent of the dis@#tin parameters andk.

Copyright line will be provided by the publisher



4 J. Baldonedo, J.R. Fernandez, A. Magafa, and R. Quiletafih a priori error analysis of a porous strain gradientelo

Proof. Taking"* as a test function in variational equation (8) we find that

p((pF — ot ) [k, oy )+a((UZk)zv( M) + 1 ((un) ez, (03 )ez) + a*((03%) 2, (01F)2)
+r1((vy k)mxv (Uzk)zr) - b(( “n )zv( Zk)) - U((Sﬁﬁk)mxa (vﬁk)x) =0.

Therefore, taking into account that

(Cas >/k wy = L {flon I — ol 3,

<<u2k>x, )e) = 1%;{ (N (A n%r+—n<u — bt a3}
(U, (0 )aw) = S @B Yaalld = N a1+ 11l = ),
M((PE aws (08)2) = =05 ) (V).

and using several times Cauchy'’s inequality
1
ab§6a2+4—b2, a,b,e € R, e >0, (11)
€

after some easy algebraic manipulations we find that

a
2 { ol = ol n@}+—{m%ﬂm%fm#z»mﬁww%fuﬁnm%}
ads _ nk
I I e [ P [P
< O I3 + 0B 13 ) = n((@hE)e, (@2 )aa): (12)
Proceeding in a similar form we obtain the following estigsator the discrete porosity speed:
J )
ﬂQW?M~4Wﬁﬂ@}+—{M JelF = I Dally + I (PhF = @hE )13 }
+ 2L aalld = NPEE ol + (B = @b aall} }
sc@w%»mAwwﬂﬁ)fmw%nmw%»» (13)

Combining the estimates (12) and (13) we have
J
2 {lole113 - n%zm}+—{w#m wplm}
a

o { IR = Il )l + 1l =l )al3 )
)l = ol + 1l = i ol

1)
+5-{ et
+2{le

P aally = PR aally + I (PEF = OEE )uol }

hk hk hk
I3 = IenE D=l + Nl (en” - sonfl)zl\%}

2
< C(IhEYa I3 + 013 + kel + 102413
_77((‘Pn )as (V Zk)m) - U((UZk)m, (%’ik)z)

Now, observing that

n((@ﬁk)m (ng)zr) + n((UZk)m, (7/}Zk)x) = %(((‘Pn )as (U Zk)zz) - ((@Zﬁl)ma (Ufzk—l)zz)
H((hE = PR o (= w1 )aa)),

taking into account thatx; > 7 we have

J n
ﬁl\(%’i’“ — ol ey + H( £ eall3 + k((%’i’“ — ol ey (ulF —ul? )pe) > 0.

Copyright line will be provided by the publisher
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Thus, multiplying the previous estimates bynd summing up ta we find that

pllvl 115 + TIORRIS + all(uik)e 5 + mall () ez ll3 + 01 (225)2 15
+“2||(502k)m”%/+277(( Pn )zv( Zk)xx)

< Ch Y () I3 + o 1% + 1™ )ally + k13 )
j=1

+C (g1 + 1613 + b3 + b1 )-
Keeping in mind again thaix; > n? we obtain
/€1||(u2k)zz”%/ + 5”(‘sz)ZH% + 277(( Pn )wv( Z )oz) > Cl”(“#):ﬂ”% + C2||(902k)z||%/a

for given positive constants; andCs. Finally, if we use a discrete version of Gronwall’s inequyalsee [2]) we conclude
the discrete stability property. O

In the rest of the section, we will prove some a priori errdineates on the numerical errorg — v*, u,, — ul*,

Py, — ¥ andyp,, — k. Moreover, for a continuous functiohwe use the notatiof, = f(t,,).

Theorem 3.2 Let the assumptions of Theorem 2.1 still hold. If we denote:by, ¢, v) the solution to problem (5)-(7)
and by (u* v phF 4hPF) the solution to problem (8)-(10) , then we have the follovangriori error estimates, for all

—{w ] o) T h:{r;-‘ ;-V:OCV",
max {an — 0PI A+ 1 (un = w215 + [ (n = ™) aall3 + lon — 935

0<n<N

Hl(en = £E5Valld + on — hF)aally }
<0k2(|m (v = vg-1) /KL + ity = (g = wym0) /RIS + oy = I

by — (5 — i)kl + 195 — (05 — @) /EIIY + vy — 7“?”%/)

+C maxflon = wlly +C max, [l — v}

CVNfl

+7 3 Iy = wh = rer = W IF + Il =7 = Woyr = 7))
j=1

+C (Ilvo = w113 + llwo = ublI3 + 1o — v413 + lvo — b1 ),
whereC' is a positive constant which does not depend on paramétarsl k.

Proof. First, we obtain the error estimates for the velofdétlg. Therefore, we subtract variational equation (5)ratti
t = t,, for a test functionv = w" € V" ¢ V and discrete variational equation (8) to obtain

E)kw") 4 al(un = up®)e, wi) + ra((u Uhk)mwﬁz)
Zk)x,WQ) + K1 (v vhk)m,wﬁx) = b((on ‘Pn )zv h)

+a*(
+77((90n - @Zk)zzng) =0 V’LU e ‘/h7

and so, we have

p(n — (Uﬁk Iil)/k Un — ng) +a((un — uhk) (vn — Uhk) )
+r1((un — Zk)z s (Un — vzk)xx) a*((vn — vhk) (vn — Uﬁk)z)
+r1((vn — vﬁk)mm (vn — ng) z) = (( ‘Pn )ma Un — ng)
—1((pn — ‘sz)xxv (vn — Uzk)z)

= p(in — (ng - Uﬁk )/ ks vn — wh) +a((un — uzk)m (vn — wh)Z)
1 ((un — UZ’“)W (Un — wW")za) + ((Un - Uzk):m (vn, — wh)Z)
51 ((vn — vﬁk)m, (vn h)zz) (( - ‘sz)xa Un — wh)

777((9071 - @Zk)mmy ('Un - wh)x) vuh e Vh.
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6 J. Baldonedo, J.R. Fernandez, A. Magafa, and R. Quiletafih a priori error analysis of a porous strain gradientelo

Taking into account that
(0 — (vﬁk - vr’i’il)/k, Un — vr’ik) = (vn (vn — vn—1)/k,vn — vr’ik)
+((vn = va—1)/k = (UpF =0}k ) [k, v — 0] F),
1
((’Unf’l)n 1)/’“*(“216*”251)/]‘37%* Up ) > ﬂ{”vn*vthY ||vn 1*'0 ||Y}
((un uhk) (vn — Uﬁk)z) > ((un uhk) (tUn — (un — Un—1)/k)z)

%{| (1t = W)} = [ty = )l

((u 1 mza Un - 'Uylik)zz) > ((un - Uzk)mma (Un - (un - Un—l)/k)zz)
ST Lk o P L [ CHREVA  |

=l = (1 — )},
—n((¢n — ‘P?Lk)ma (vn — Uhk) ) =n((en — ‘Pn )wa( Un — vﬁk)zz),
and using several times Cauchy'’s inequality (11) it follows
2 { o = o813 = lons = 08,13} + 0((0n = @EF)as (00 = v2F)ar)
a
o { = )l = ot = w3
R1
{1l = )l = unms =l el 4+ ot = " = (s = k)
< C(llin = (Wn = va-1) /Kl + it = (= tn-1) /R + o — w3
(= W) ll3 + l[om = ORFI3 + 11t = b )aally + 1 on — )l
+(pn — on )mH2Y + ((vn — V-1 — (Uﬁk - UZEI))/kaUn - wh)) vuw" € V. (14)

Now, proceeding in an analogous way we obtain the followstieates for the porosity speed:
J
{0 = 63 = = I 4+ (W0 = Y8, (= )

4 hk hk hk hk
5 {1en = BNl = ono1 = CHEDally + ll(on — o = (o1 = GhE D)l |

K2
+—{|\<son — 1 )aall} = Ipn-1 — @b )ae I? }

(H"/’n - — 1) /kH%/ + H‘Pn - (‘Pn — ©n-1) /kH%/ + H"/’n - th%/
+l(pn — &) ||y+||¢n—¢ﬁk|\2y+||(90n—soﬁ Jaally + | (un — up) |l
Ut Yl (s — (5 S - rh>) vl e Vi (15)

Combining the estimates (14) and (15) we find that

P hk hk
L {lron = 0¥ = s = ol 13 |

5 {1t = wlF)ally = s = i )o }

= i) I3 = 1l et = w3+ 1t = 0l = (s = )13}
T A PN 3

bl = Vel — 1onor — el + o — b — (o — BhE el )
+ 22 {160 = )aalld = 1on1 = k5 el |

+n((on — ‘sz)xa (vn, — Uzk)zz) +n((Yn — wzk)zv (un — uzk)zz)

Copyright line will be provided by the publisher
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< C(H@n — (00 = V1) [RIIY + l[in — (un = wn—1) /KIS + on — w3

Hll(un = w23+ llvn = oR" 15 + [ (un = ul®)eall3 + (o0 = ©3F)ll3-
+[(en — Sﬁzk)zzH%’ + ((vn — vp—1 — (vﬁk - vﬁlil))/kvvn - wh)
Hllton = W — Yu1)/EIT + o0 — (0n = on1) /KI5 + llon — "5

g = GBI+ (W — Ynos — (W =l )b = 1))V, o e VP

Now, observing that

n((¢n — ‘sz)xa (vn — Uzk)zz) +n((¥n — 1/)Zk)x7 (un — uzk)zz)
=n((¢n — ‘sz)xa (Un = (un — Un—1)/K)az) + 1((¢n — (Pn — Pn-1)/k)a; (un — uzk)zz)

n
+=((en — ‘sz)xa (Un — Up—1 — (UZk - Ufzk—l))zz)

7 ((Pn = @1 = (7" = hE 1) (n — up)aa),
(o — e = i = (= b))
T(n — pn-1— (©1F = OB ), (tn — ul®) )

?((% — 1) (= ulF)ow) = ((Pne1 = O35 Dy (1 =l )aa)

((‘Pn - (sz - (‘Pn—l - @Zﬁl))za (Un - Uﬁk - (un—l - Uzlil))zz)}a

and taking into account that (thanks again to the condition> 7?)

K1 1)
%H(“n - “Zk - (un—l - “Zﬁl))zzH%’ + %H(‘Pn - (sz - (‘Pn—l - (leil))wllg/
n
+—((pn — Sﬁzk = (pn-1— ‘leil))zv (un — qu = (up—1 — Ufzk—l))mc) >0,

k

multiplying the above estimates yand summing up ta it follows that

pllvn = vpfIl + all(un = up®)all3 + mull(un = ug®)aall3 + JTllvon — ¥n*I5

+0[[(pn — on")ally + r2ll(en — @15 ezl +20((0n = O3z, (un — upF))
<CkY (H@j — (v = vj—)/RIT + iy = (uj = wj0) /RIS + oy — w} |3
j=1

(= a3+ llog = o 15 + 1 (uy = wf*)aally + 1105 — )l
(@5 = @F)aally + (05 = vjm1 = (WFF = 0fE1)) k05 = w})
g — @ — -0 /KIS + 5 = (05 — -1 /KIS + 105 — 7} 115
iy = W1 + (5 = 1 = @8 = Wik )) k5 — 1))

+C(Ilo0 — 0B 13-+ lluo — w13 + g0 — V413 + g — #h13)  Vuh, 1 € V™.

Using again the conditiofi; > 7> we find that there exist two positive constatsandC such that

Kl (un — UZ’C)mHth: 5”(3071 - @Zk)z”% Jﬁﬁ((fn - Sﬁzk)zv (un — uzk)zz)
2 Cill(un — up")azlly + Coll(en —¢n")ally-
Copyright line will be provided by the publisher



8 J. Baldonedo, J.R. Fernandez, A. Magafa, and R. Quiletafih a priori error analysis of a porous strain gradientelo

Keeping in mind that

kZ(Uj — P — (v =Vl v = wh) = (00 — VRF v — W) + (0 — vo,v1 — wi)
n—1
hik h h
+ Z(Uj — 0", 05 —wi = (V41 — W),
7j=1

n

j=1
n—1
) (W — R =l — (0 = ),
j=1

and applying a discrete version of Gronwall’'s inequalitygsagain, [2]) we conclude the desired a priori error esésa
O

Remark 3.3 The estimates provided in the above theorem can be usedamabé convergence order of the approxi-
mations given by discrete problem (8)-(10). Hence, as amel& if we assume the additional regularity:

u, 0 € H*(0,T;Y) N H*(0,T;V)nC*(0,T]; H*(0, 1)), (16)

we obtain the linear convergence of the algorithm applymge results on the approximation by finite elements (see [3])
and previous estimates already derived in [2]. That s, wepcave that there exists a positive const@nt 0, independent
of the discretization parameteisandk, such that

mass {llun = of¥ v+ llum — bl + [n — ¥y + lon — by } < CCh+ ).

4  Numerical results

In this section, we present some numerical experiments aa she accuracy of the algorithm proved before and the
behavior of the solution in two distinct cases.

4.1 Numerical convergence

We start by showing the numerical convergence of the algoritFor this purpose we solve the fully discrete problem
implemented in Matlab. In order to be able to compare thdteaith a known analytical solution, we manufacture one of
the form:

u(z,t) = (1 —x)?z3e’, @a,t) = (1 —2)%2%e’ VY(z,t) € (0,1) x (0,1).
Then, we add to system (1) supply term&ndG in both variables (only for this particular study), suchttha
F = augy + bpz — K1Uazzz — NPzza — Kilooss + 0 Uza — pi,
G = Nugze — bUa + 0Pue — £ — K2Pazae — § 0 — J &,
and thus the established solution is verified. We chooseollening parameters for this example:
(=1, p=1, rkK1=1, a=1, b=1, n=1, k=1,
at=1, J=1, ko=1 6=2, £=2.
We note that the variational formulation of this modifiedlplem is rather similar to problem (5)-(6).
The numerical errors are then estimated as
max {an = ot lly + (= un®)ally + 1 (un = gF)aally + 90 — w0 lly

0<n<N
1(@n = ei)a v + 1en = @25 )azlly },

and they are shown in Table 1 for some values of the disctetizparametersd andk. The main diagonal of these errors
is plotted in Fig. 1, withh + £ in the horizontal axis. It can be seen that the linear corararg of the algorithm that was
proved before appears in the numerical example.
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hlk— |1x107' | 5x1072 1x102 5x1073 1x1073 1x10~4

2x1072 0.33338 | 8.7111% 102 | 6.25846<10~ 3 | 3.69119%<10~ 3 | 2.86547% 102 | 2.83284<10~3
1x10~2 0.330723| 8.4455210~2 | 3.60285<10~2 | 1.03572 1073 | 2.1012810~* | 1.77524<10~*
5x10~3 0.330557| 8.4289<10~2 | 3.4366% 103 | 8.69558<10~* | 4.40456<10° | 1.13862% 10~ °
2x1073 0.330546| 8.42775<10~2 | 3.42835<10~3 | 8.56855¢10~* | 3.34037%10° | 1.21044<10~°
1.4x10~3 | 0.330552| 8.42705<102 | 3.4248% 103 | 8.6431210~* | 3.38834<10~° | 9.93172<10~?

Table 1 Numerical errors x 1000) for some values of the discretization parameters.

0.02

0.018 [

0.016

0.014 |

0.012

0.01[

0.008 -

Numerical error

0.006

0.004

0.002 |

O | | | | |
0 0.02 0.04 0.06 0.08 0.1

h+k

0.12

Fig. 1 Linear convergence of the algorithm.

4.2 Damping behavior in a viscoelastic case

In this section, we study differences in the behavior thgeaps for high and low values of the dissipation parameter. |
particular, we consider the porous-viscoelastic caseédinis phenomenon is similar in the porous-hypervisctielase).
We note that the viscoporosity case would lead to similanltes

For this study we consider the following parameters:

*

(=1, n=1 a" =1,

HQZL

K1 = 200,
§=2,

a=1,

£ =0,

b=1,
5* = 0.

p=1, J=1,

0=2,
The initial conditions are given by
u(z,0) = (1 —x)323,  o(z,0) = (1 —x)32® Vo€ (0,1).

Both cases are solved with a mesh sizé ef 0.025 and a time step of = 107°.
In the numerical results shown below we plot the discretegynef the system given by

0
B = 5 [ ol TR+ al(uh))? + € ()

+5((Sﬁ%k>a:)2 + “2((<sz)xx>2 + 2b(UZk)x<PZk + QU(UZ")M(@Z’% du.
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The first case we show is the one with = 10. In Fig. 2 we show the evolution of both variables at the ceate
the domain £ = 0.5) with time (left axis), along with the energy evolution (nigaxis). We can see that the evolution
of both the energy and the displacements are smooth and oracally decreasing because of the effect of dissipation.
The absence of oscillations with time indicates that thsigéion is high enough to obtain an overdamped system. The
porosity shows a more erratic behavior due to the couplingdsen both variables.

772 16 %107

@ )
3 2 13 3
Y 5
12 12
11 11
o0 ) ) ) | T 0 10 ) ) ) | T : 0
0 0.02 0.04 006 008 01 012 0.14 016 0.18 0.2 0 0.02 0.04 006 008 01 012 014 0.16 018 0.2
Time Time

Fig. 2 On the left: evolution of.(0.5,t) (dashed in blue, left axis) and energy (solid red, right)ax@n the right:¢(0.5, ¢) variable
(dashed in blue, left axis) and energy (solid red, right)axis

Secondly, we change the value of the dissipatiorito= 0.1. Fig. 3 shows the evolution of both variables at the
center of the domain, as before. Now, the behavior of bothlaiement field, and the energy is different. Regarding the
displacements, we can see oscillations with time. Thisused by the smaller dissipation value. These oscillatiorise
displacements cause the energy to present some flat regibas the displacement is reaching a maximum or a minimum.
The qualitative behavior of the porosity is similar to theyous case.

-3
g 10 16
0.01r 16
6
15 0.008
15
4 0.006
14 0.004
2 4
— 2 0.002 [
S 3 71:3 D 0 3 5
= (=] [}
Wy &
2+ -0.002 -
1o 1,
-0.004 -
-4+
11 -0.006 - 1y
6
-0.008 -
8 . . . T 0 -0.01 ! ! ‘ 0
0 002 004 006 008 01 012 014 016 018 0.2 0 002 004 006 008 01 012 014 016 018 02
Time Time

Fig. 3 On the left: evolution of.(0.5,t) (dashed in blue, left axis) and energy (solid red, right)ax@n the right:¢(0.5, ¢) variable
(dashed in blue, left axis) and energy (solid red, right)axis
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