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Ensembles with long-range interactions between particles are promising for revealing strong quan-
tum collective effects and many-body phenomena. Here we study the ground-state phase diagram
of a two-dimensional Bose system with quadrupolar interactions using a diffusion Monte Carlo tech-
nique. We predict a quantum phase transition from a gas to a solid phase. The Lindemann ratio
and the condensate fraction at the transition point are γ = 0.269(4) and n0/n = 0.031(4), corre-
spondingly. We observe the strong rotonization of the collective excitation branch in the vicinity
of the phase transition point. Our results can be probed using state-of-the-art experimental sys-
tems of various nature, such as quasi-two-dimensional systems of quadrupolar excitons in transition
metal dichalcogenide (TMD) trilayers, quadrupolar molecules, and excitons or Rydberg atoms with
quadrupole moments induced by strong magnetic fields.

Manipulation of the short-range interactions in ultra-
cold quantum gases has proven to be an efficient and
productive way to generate novel many-body phases [1–
3]. Even more evolved scenarios are realized in gases with
long-range interactions such as dipolar ones [4–6]. Dipo-
lar particles interact with each other via anisotropic and
long-range forces, which drastically changes the struc-
ture of many-body phases in these systems both in the
free space and lattices [4–7]. Remarkable progress in ex-
periments with ultracold gases of large-spin atoms [8–
11] and polar molecules [12–14] has opened up fascinat-
ing prospects for the experimental observation of novel
quantum phases, which are induced by the character of
the dipolar interaction. Examples include, in particular,
rotonization [15–19], crystallization [20–22], and super-
solidity for both dilute [23–32] and dense [20, 21, 33–
37] dipolar systems. However, the interactions between
atomic dipoles are typically weak. This fact has stimu-
lated the exploration of novel platforms with both strong
interparticle interactions and sufficient tunability. Exam-
ples include long-lived excitons in solid-state systems [38–
45]. Remarkable advances in experiments with monolay-
ers of semiconducting transition metal dichalcogenides
(TMDs) [46, 47] make them interesting for revealing non-
conventional quantum phenomena [48–52] in the regimes
that are beyond what can be achieved with ultracold
gases. TMD systems host long-lived excitons since the
overlap between wavefunctions of electrons and holes lo-
cating in separate layers is suppressed, and the separation
results in the appearance of the exciton dipole moment as
it was predicted [38, 39]. Dipolar excitons in solid-state
systems might manifest rotonization [20, 37, 53, 54] and
supersolidity [37].

Quadrupolar interactions present a peculiar example

of non-local interactions between particles [55–57], which
can be fine-tuned using external fields. This makes
quadrupolar systems a promising platform for performing
the quantum simulation and revealing novel many-body
phases and unconventional quantum states [55–57]. Ex-
perimental realizations of quadrupolar ensembles include
quadrupolar molecules, whose interaction is induced and
tuned by external fields, and quadrupolar excitons in
solid-state systems. Quadrupolar species of particles ac-
quiring electric quadrupole moments, such as Cs2 [58]
or Sr2 [59, 60], are available in experiments. Moreover
they are stable against collapse and ultracold chemical
reactions at high densities, which are shortcomings for
experiments with dipolar molecules [12–14]. Recent stud-
ies of TMD systems [61] have shown the rich many-body
physics, which is induced by the nature of quadrupo-
lar interactions. We also note that classical quadrupo-
lar interactions arise in soft matter in the description of
nematic colloids. Their properties, including phase tran-
sitions, have been extensively studied in Refs. [62–68].
Besides, quadrupoles play an essential role in astrophys-
ical objects in ultrastrong magnetic fields, e.g., on the
surface of neutron stars [69]. However, a detailed micro-
scopic study and ab initio simulations of the quadrupole
many-body system are still lacking.

Here we predict a quantum phase transition from a
gas to a crystal in a single-component two-dimensional
(2D) Bose system with centrally symmetric quadrupolar
interactions at zero temperature. We employ a diffu-
sion Monte Carlo (DMC) technique for calculating the
parameters of the phase transition and to study the ef-
fects of strong correlations in the gas phase. Our results
are in the quantitative agreement with predictions based
on the quantum hydrodynamic (HD) model. We ob-
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Figure 1. The macroscopic limit of the energy E/S (scaled

with classical n7/2 dependence) for the gas (circles) and the
crystal (triangles) as a function of the dimensionless density
nr20 (the energy E is measured in the dimensionless units
~2/mr20). The position of the transition point, nr20 = 2.10(7),
is indicated by the arrow. Inset: the quantity (E−µN)/S−ε0
as a function of the dimensionless density in the vicinity of
the phase transition where ε0 is an offset. The tangent dot-
ted line indicates the coexistence regime of two phases, its
width is ∆nr20 = 0.026(4). The fitting function is E/(NE0) =

Ecls/(NE0) +A1(nr20)7/4 +A2(nr20)5/4 +A3(nr20)3/4. Fitting
coefficients are A1 = 7.944, A2 = −0.388, A3 = 1.332 for
gas at 0.8 < nr20 < 3 and A1 = 6.1478, A2 = 2.4524, A3 =
0.9878 for crystal at 1.6 < nr20 < 3.4, where Ecls/(NE0) =

A0(nr20)5/2 with A0 = 2.359746 is the ground-state energy of
a classical crystal.

serve a roton-maxon character of the collective excitation
branch. The predicted results can be probed in state-of-
the-art experiments with ultracold atoms (e.g., Rydberg
atoms), molecular ensembles and TMD systems.

The Hamiltonian of a homogeneous system of N
bosons with the quadrupolar interaction is as follows:

H = − ~2

2m

N∑
i=1

∆i +
Q2

ε

N∑
j<k

1

|rj − rk|5
, (1)

where m is the particle mass, ri is the 2D position of
i-th particle, Q is the quadrupolar moment and ε is the
dielectric constant.

It is convenient to rewrite Hamiltonian (1) in a dimen-
sionless form by expressing all the distances in units of
r0 = 3

√
mQ2/~2ε and energies in units of E0 = ~2/mr20.

The characteristic quadrupolar length r0 is directly pro-
portional to the quadrupole-quadrupole s-wave scatter-
ing length, as/r0=(eγE/3)2/3 = 0.706383 with γE =
0.577 . . . the Euler constant. We calculate the zero-
temperature phase diagram of the system in terms of

the dimensionless density nr20, where n is the 2D density
of the system.

In order to find the system properties we resort to the
DMC technique [71] based on solving the Schrödinger
equation in imaginary time and allowing one to obtain
the exact ground-state energy. The convergence is sig-
nificantly improved by using an importance sampling for
which we chose the trial wave function in the Nosanow-
Jastrow product form [20]. Using the standard prescrip-
tion, each particle in the solid phase is localized close to
its lattice site by a one-body Gaussian term of variable
width. An infinite width is used in the gas phase which
results in a wave function having translational invariance.
We chose the two-body Jastrow term as

f2(x) =

 C1K0(2x−3/2/3), x ≤ xc,
C2 exp(−C3/x− C3/(L̄− x)), xc ≤ x ≤ L̄/2,
1, L̄/2 ≤ x,

(2)
where x=r/r0, L̄ = L/r0, L is the length of the small-
est side of the simulation box and xc is the variational
parameter (matching point between the two-body scat-
tering solution at short distances and the phononic long-
range decay [70]). Coefficients C1, C2, C3 are fixed by
the condition of the continuity of the function and its
first derivative.

The thermodynamic limit is then reached by increas-
ing the number of particles while keeping the density
n = N/(Lx×Ly) fixed and performing extrapolation
to N → ∞ [72, 73]. We simulate systems containing
N = 100, 144, 256, 484 and 1156 particles in a simulation
box of size Lx × Ly with periodic boundary conditions.
We use a square box with equal sides Lx = Ly for sim-
ulation of the gas phase and a rectangular box commen-
surate with an elementary cell of a triangular lattice for
the solid phase.

We find a quantum phase transition from a gas to a
solid phase at zero temperature. In order to demonstrate
its presence, we calculate the lowest energy in a state with
translational symmetry (i.e. gas) and a state in which the
translational symmetry is broken (i.e. solid). The phase
transition density is obtained as the crossing between the
energies of the two states. The two equations of state are
shown in Fig. 1, where for convenience the energy E is
scaled with the system area S and density as (E/S)/n7/2.
For small values of the dimensionless density nr20 the en-
ergetically favorable state is a gas whereas the solid phase
remains metastable. As the density is increased, the sys-
tem experiences a first-order quantum phase transition
to a triangular lattice phase. We estimate the transi-
tion density to be nr20 = 2.10(7) (see Fig. 1) with the
width of the coexistence of the phases ∆nr20 = 0.026(4).
There are remarkable differences as compared to a dipo-
lar system which has a significantly larger critical density,
nr2dd ≈ 290 in dipolar units rdd = 3.17as[20]. The differ-
ence becomes even more evident in terms of the s-wave
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Figure 2. (a) Typical examples of the pair correlation function
in gas (dashed line) and solid (solid line) phases at the density
nr20 = 2.2 obtained for N = 144 particles. (b) Static structure
factor in the vicinity of the phase transition in gas (circles)
and triangular solid (triangles) phases. Symbols, DMC data;
lines, linear phonons asymptotic S(k) = ~k/(2mc) where the

speed of sound c =
√
n/m d2(E/S)/dn2 is obtained from the

equation of state, see Fig. 1. Vertical arrow shows the po-
sition of the macroscopic peak in the crystal. Insets show
snapshots of the particles’ coordinates in gas (left) and solid
phases (right). Polygons indicate a frustrated (left) and per-
fect (right) hexagonal short-range ordering present in gas and
solid phases, correspondingly.

scattering length, as the critical density is na2s ≈ 1.05 for
quadrupoles, na2s = 2900 for dipoles and nas ≈ 0.33 for
hard disks[75].

The Lindemann ratio quantifies the fluctuations of par-
ticles in a crystal and is defined as follows

γ =

√∑N

i=1
〈(ri − rlatti )2/b2〉, (3)

where b = (4/3)1/4/
√
n is the triangular lattice period.

We find the Lindemann ratio to be γ = 0.269(4) at the
transition point. In the limit of high density, the po-
tential energy dominates and the energy gradually ap-
proaches that of a perfect classical crystal corresponding
to the horizontal line in Fig. 1. For comparison, we also
show in Fig. 1 the first correction to the classical crystal
energy arising from the zero-point motion in harmonic
approximation, E/S = Ecls/S +An11/4.

In order to quantify the two-body correlations we cal-

culate the pair distribution function,

g2(r)=

2π∫
0

dϕ

2π

Lx∫
0

Ly∫
0

ds

LxLy
〈Ψ̂+(s)Ψ̂+(r+s)Ψ̂(r+s)Ψ̂(s)〉,

(4)
where ϕ is the polar angle of the vector r. We show
characteristic examples in Fig. 2. Close to the transi-
tion point, the short-range correlations are very similar
in both phases (see Fig. 2a for separations smaller than
the mean interparticle distance). Instead there are qual-
itative differences for larger separations r. In the gas
phase, g2(r) approaches a constant value already after a
few oscillations. Instead, the oscillations continue further
in the solid phase, signaling the presence of the diagonal
long-range order.

The order parameter differentiating two phases is the
height of the peak in the static structure factor

S(k) =

∫
〈ρ̂(r)ρ̂(s)〉eik(r−s)drds/N, (5)

at the reciprocal lattice period kL = 2π
√
n(4/3)1/4 of

the triangular crystal, where ρ̂(r) is the density operator
and 〈· · · 〉 denotes ground state averaging. The charac-
teristic feature of a crystalline phase is that the value
of S(kL) is linearly proportional to the number of parti-
cles and the peak becomes macroscopic in the thermody-
namic limit. This should be contrasted to the behavior in
the gas phase in which the static structure factor always
remains finite, see Fig. 2 for characteristic examples. In
that case, S(k) is a monotonous function of momentum at
low densities and it becomes non-monotonous (i.e. a peak
is formed) in the regime of strong quantum correlations.
The height of the peak increases as the density is incre-
mented and the phase transition from the gas to the crys-
tal happens when the critical value, S(k)max = 1.6(1), is
reached. There is a discontinuity in the order parameter,
S(kL), across the phase transition point which is typical
behavior for the first-order phase transition. At the same
time, the low-momentum behavior, S(k) = ~k/(2mc), is
more similar in the two phases which reflects a relatively
minor change of the speed of sound c across the transition
[ compare two dashed straight lines at small momenta in
Fig. 2b].

The appearance of the short-range ordering in the gas
phase in the vicinity of the critical density can be seen
from the snapshots shown in the inset of Fig. 2b. The
snapshot of the gas phase indicates the formation of a
local triangular lattice with vacancies and dislocations,
whereas a defect-free triangular lattice is observed in the
ground state of the solid phase.

The coherence properties are quantified by the conden-
sate fraction which is reported in Fig. 3. We have veri-
fied that in a finite-size system, the long-range behavior
of the one-body density matrix (OBDM) g1(r) is well re-
produced by the hydrodynamic theory of Ref. [74]. We
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Figure 3. The condensate fraction n0/n in the macroscopic
system as the function of the density in gas and solid phases.
Circles, extrapolation of Quantum Monte Carlo data to ther-
modynamic limit performed by using hydrodynamic theory
[QMC+HD: input S(k)&g1(L/2)] of Ref. [74]; red line, fit
n0/n = exp

[
−(B0 +B1(nr20)B2)−2/4

]
in the region 0.8 ≤

n ≤ 2.8, where B0 = −0.301, B1 = 0.639, and B2 = −0.154.
The discontinuity at the phase transition is shown with ar-
rows.

use the HD theory for the extrapolation of the OBDM
in order to obtain the condensate fraction according to
n0/n = limr→∞ g1(r). We observe a strong condensate
depletion as the density nr20 is increased, so the value
n0/n becomes fairly small close to the gas-solid transi-
tion. Even if the condensate fraction is small, n0/n =
0.02 – 0.04 conceptually it is important that it experi-
ences a sudden discontinuous jump from a finite value in
the gas phase to zero value in the solid phase. In other
words, the condensate fraction is another order param-
eter and together with the height of the structure fac-
tor both order parameters are discontinuous across the
first-order phase transition. Both order parameters have
exactly the same critical point and as a consequence a
supersolid (simultaneous presence of both order parame-
ters) is absent in the present system.

The rotonization of the excitation spectrum is yet an-
other non-trivial effect that might be present in strongly-
correlated systems and it deserves special attention [15–
19]. Indeed, rotonization of the collective excitation
branch may potentially lead to the spontaneous estab-
lishing of crystalline order and formation of supersolid.
One of the possible mechanisms for supersolidity of dipo-
lar systems is its formation near the gas-solid phase tran-
sition [20, 21, 37]. Here we make evident the rotonization
of the spectrum in the quadrupolar system by analyzing
the Feynman relation which provides the upper bound
for the lowest border of the excitation spectrum,

εk =
~2k2

2mS(k)
, (6)

in terms of the static structure factor S(k). Our re-
sults for the excitation spectrum shown in Fig. 4 in-
dicate the strong rotonization of the collective excita-
tion branch near the phase transition. By introducing

Figure 4. Characteristic examples of the excitation spectrum
in the gas phase as obtained from Feynman relation. The for-
mation of a pronounced roton minimum is observed as den-
sity is increased and the transition to the solid phase is ap-
proached.

a small fraction of vacancies one can expect the forma-
tion of a quadrupolar supersolid in the strongly interact-
ing regime [37], which is similar to the vacancy-induced
Andreev-Lifshitz mechanism [76–80].

pair interaction na2s γ S(k)max n0/n

quadrupoles 1.05 0.269(4) 1.6(1) 0.031(4)
hard disks [75] 0.33 0.279(1) 1.54(2) —
helium [81, 82] — 0.254(2) 1.7(1) 0.04(1)
dipoles [20] 2900 0.230(6) 1.7(1) 0.017(6)
Yukawa [83] — 0.235(15) — —
Coulomb [84] — 0.24(1) — —

Table I. Critical values at the gas-solid phase transition in
different physical systems: gas parameter na2s, Lindemann
ratio γ in crystal phase, the height of the first peak in the
structure factor S(k)max in the gas phase, and the condensate
fraction n0/n in the gas phase.

It is important to find the properties at the quantum
phase transition point. In the crystal phase, the value
of the Lindemann ratio is found to be equal to γ =
0.269(4). In the gas phase, the height of the first peak
in the static structure factor is S(k)max = 1.6(1) and
the condensate fraction is quite small, n0/n = 0.031(4).
It is instructive to confront the values at the critical
point with ones obtained in different 2D bosonic sys-
tems. Table I summarizes what is known in the liter-
ature for other interactions: short-range (hard-disks, he-
lium, Yukawa), extended-range (dipoles) and long-range
(Coulomb) ones. The value of the Lindemann ratio is
very similar across all systems, even if the interactions
are very different and the order of gas and crystal phases
is even inverted in the Coulomb case. Also we find that
S(k)max and the condensate fraction n0/n are rather sim-
ilar in the gas phase at the transition point. Moreover,
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Figure 5. Schematic illustration of possible experimental re-
alizations.

our results on the calculation of the condensate fraction
of the 2D gas of quadrupoles at T = 0 are in the quantita-
tive agreement with quantum-field hydrodynamics [74].

As a possible realization of our model, we analyze typ-
ical experimental schemes shown in Fig. 5. We assume
a semiconductor structure consisting of three layers sep-
arated by barriers. In configuration (a), a quadrupole
can be formed out of two holes in the middle layers and
two electrons each one in the outer layer. Pauli exclu-
sion principle does not allow the holes to be close and
their density profile forms a ring. Assuming a thin ring
of radius R and a total charge −2q in the central layer
and two point-like +q charges in the lateral layers, the
quadrupole moment is equal to

Q = 3qD2
√

1 + 2α(α− 1)/3, (7)

where D is the distance between the centers of the cen-
tral and lateral layers, α = R2/D2 and the hole charge
is q = e > 0. Configuration in Fig. 5b is obtained for the
specular case with the inverted charges, q = −e. Config-
uration in Fig. 5c assumes only a single charge 2q = −e
in the central layer (α = 0 in Eq. (7)) and half-charges
q = +e/2 in the outer layers. The physical realizations
are based on ZnSe quantum wells[85] with interlayer sep-
aration D = 6 nm and MoS2/MoTe2 monolayers[86, 87]
with D = 1.667 nm, according to the schemes shown in
Fig. 5. The critical densities of the gas-solid phase tran-
sition are realistic and correspond to (a) nc = 1.8 · 1011

cm−2, (b) nc = 2.6 · 1012 cm−2 and (c) nc = 1.3 · 1013

cm−2.
In conclusion, we have obtained the ground-state

phase diagram of two-dimensional bosons interacting via
quadrupolar potential at zero temperature. Energetic,
structural and coherent properties have been studied in
the vicinity of the gas-solid quantum phase transition.
We have demonstrated that the excitation spectrum ex-
periences a strong rotonization in the gas phase close
to the critical density. We have found an agreement
with quantum hydrodynamic calculations for the calcu-
lation of the condensate fraction. Our predictions can
be probed in experiments with TMD systems and ultra-
cold gases, where the technique for the observation of ro-
ton phenomena recently has been developed. Promising
candidates for the creation of such phases are quadrupo-

lar excitons in TMD layer structures [54, 61], where the
quantum phase transition for the two-component systems
has been observed [61], and Rydberg atomic ensembles.
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