De-RISC: the First RISC-V Space-Grade Platform
for Safety-Critical Systems

Nils-Johan Wessman®, Fabio Malatesta®, Jan Andersson®, Paco GomezY, Miguel Masmano¥,
Vicente Nicolau¥, Jimmy Le Rhun*, Guillem Cabo'¥, Francisco Bas'*#, Ruben Lorenzof,
Oriol Salaf, David Trilla®, Jaume Abella

§Cobham Gaisler, Sweden
tBarcelona Supercomputing Center (BSC), Spain

Abstract—The increasing needs for performance in the space
domain for highly autonomous systems calls for more powerful
space MPSoCs and appropriate hypervisors to master them.
These platforms must adhere to strict reliability, verifiability and
validation requirements since spacecraft for deep space missions
are exposed to a harsh environment. Systems must undergo
screening and tests against standards for electronic components
and software. Unfortunately, currently available space-grade
processor components do not meet requirements related to safety
that are becoming increasingly important in space applications.

This paper presents the De-RISC platform, consisting of
Cobham Gaisler’s RISC-V based SoC, and fentISS’ XtratuM
Next Generation hypervisor. The platform implements the open
RISC-V Instruction Set Architecture, and leverages space SoC
IP by Cobham Gaisler, space hypervisor technology by fentISS,
multicore interference management solutions by the Barcelona
Supercomputing Center, and end user experience and require-
ment guidance by Thales Research and Technology. At its
current state, the platform is already complete and integrated,
and starting its validation phase prior to reaching commercial
maturity by early 2022. In this paper, we provide details of the
platform and some preliminary evidence of its operation.

I. INTRODUCTION

Performance requirements for safety and mission-critical
systems in the space market grow noticeably to satisfy the
needs of increasingly autonomous spacecraft. However, such
performance increase must occur within specific boundary
conditions such as attaining high integrity levels while al-
lowing mixed criticality operation and providing appropriate
performance validation and diagnosis means for system vali-
dation and safety measure implementation purposes. Last but
not least, export restrictions can impose further constraints on
the technologies that can be used for a successful commer-
cialization of space hardware and software.

Multicore processors have arisen as a suitable baseline
platform on which to reach high performance levels while
respecting boundary conditions for the space market. In par-
ticular, the main features that multicores offer are as follows:

e Multicores offer good performance scalability by adding
cores (subject to a proper provision and management of
shared resources).

« Reliability solutions for one core can be naturally repli-
cated in all cores. Moreover, multicores offer intrinsic
redundancy across cores.

However, they are normally implemented using proprietary
Instruction Set Architectures (ISAs), such as x86, Arm and

YfentISS, Spain

*Thales Research and Technology, France
HUniversitat Politecnica de Catalunya (UPC), Spain

SPARC to name a few, and specially for the space market,
where SPARC and PowerPC ISAs are particularly popular.
Alternative ISAs, such as RISC-V [15], which have been
devised to remove proprietary constraints, are not yet adopted
for space products.

Moreover, support for performance validation and
performance-related safety measures are scarce — if any
— since they were not needed for single-core processors
and hence, they have not been inherited for multicores.
Performance validation of multicore interference can only
occur either indirectly building on end-to-end execution times,
or partially inferring it from full execution time traces which,
nevertheless, may only be obtained with intrusive means,
thus destroying the timing behavior intended to be observed.
Regarding safety measures to control such interference, they
need to build necessarily on pure software means, thus with
important overheads at runtime.

On the software side, a number of hypervisors and real-time
operating systems (RTOSs) have become industry-ready in
recent years on top of multicores for space safety and mission-
critical systems, thus completing the hardware/software plat-
form upon which to build space applications. However, those
hypervisors and RTOSs necessarily inherit the same ISA as
the underlying Multiprocessor System-on-Chip (MPSoC), thus
with the same issues related to export restriction.

Overall, while multicores and the corresponding hypervi-
sors/RTOSs for the space domain are already commercial, they
build on proprietary ISAs, thus with non-negligible export re-
strictions, and lack appropriate support for effective multicore
interference performance validation and control.

This paper presents the De-RISC platform, which stands
for Dependable Real-time Infrastructure for Safety-critical
Computer Systems. De-RISC is the first RISC-V based plat-
form including the Cobham Gaisler’s NOEL-V SoC and the
fentISS’ XtratuM hypervisor. In particular, De-RISC combines
multiple technologies and solutions that effectively overcome
the challenges for their effective adoption in safety and
mission-critical space systems. De-RISC’s main features are
as follows:

1) It builds upon a NOEL-V based MPSoC by Cobham
Gaisler, delivering competitive performance, incorpo-
rating appropriate reliability measures for its use in
space, and implementing the RISC-V ISA to reduce to
a minimum export restrictions.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/SCC49971.2021.00010

2) It incorporates fentISS’ XtratuM hypervisor and LithOS
RTOS, both of them already qualified for some ISAs, but
ported to RISC-V in the context of De-RISC to deliver
a complete hardware/software platform usable for space
systems.

3) Hardware support to manage multicore interference is
incorporated in the form of the Safe Statistics Unit
(SafeSU) by the BSC, which provide specific means
to monitor and control multicore interference as needed
for performance validation and to implement appropriate
safety measures.

4) De-RISC platform is undergoing a thorough validation
guided by Thales’ requirements from the end user per-
spective, and being assessed with a space use case.

The platform, currently implemented and integrated, is un-
dergoing its first validation steps with the aim of reaching
commercial maturity (on FPGA) by March 2022. In the scope
of this paper, we introduce the main elements of the De-RISC
platform along with some evidence of the effective operation
of each of its components.

The rest of this paper is organized as follows. Section II
reviews relevant space and RISC-V technologies. Section III
presents the NOEL-V based MPSoC including the SafeSU.
Section IV presents XtratuM hypervisor and LithOS RTOS.
Section V introduces benchmarks and space use cases used for
performance validation of the De-RISC platform. Section VI
summarizes this work.

II. STATE OF THE ART

De-RISC platform consists of a RISC-V MPSoC, hypervisor
and RTOS. Therefore, this section presents the state of the
art on space MPSoCs, RISC-V microprocessors, and hypervi-
sors/RTOSs suitable for the space domain.

A. Space-grade microprocessors

Mega-constellations and Low Earth Orbit (LEO) missions
are either exposed to lower levels of radiation than deep
space missions or build upon redundancy at component or
system level. Therefore, they can afford using Commercial
Off-The-Shelf (COTS) devices since experiencing depend-
ability problems in a single spacecraft is, to some extent,
affordable. Instead, deep space missions normally build upon
a single spacecraft, and thus, they need space-grade FPGAs
or radiation-hardened ASSP devices.

Existing European devices meeting deep space mission
needs (i.e. space-qualified) are implementations of processors
using the SPARC ISA. Two main component vendors exist
for those devices, namely Microchip (formerly Atmel) and
Cobham Gaisler. The latter produced introduced the widely
used SPARC V7 ERC32 components. In a later generation of
products, Atmel shipped the AT697F device, which includes
a LEON2FT core with some basic peripheral interfaces such
as PCI, UART and GPIO, but lacking interfaces like MIL-
STD-1553B and SpaceWire, which are widely used in space-
craft avionics. Those interfaces, however, are available in the
Cobham Gaisler’s GR712RC device, which includes a dual-
core LEON3FT processor [4], thus with a more advanced
architecture and peripheral interfaces than the AT697F. The

Cobham Gaisler GR740 device outperforms GR712RC since it
includes the quad-core LEON4FT processor [5], and includes
additional interfaces to further improve the integration level
of avionics and through that reduce cost, area and power
requirements.

The US market offers also several space-grade micropro-
cessors, mostly based on the PowerPC ISA. Among those
devices we can find the DDC/Maxwell SCS750 board, as
well as the RAD750 and RADS5545 devices by BAE Sys-
tems. Some of those devices have been indeed used even
in European missions, such as GAIA (Global Astrometric
Interferometer for Astrophysics), which is a space observation
mission from the European Space Agency (ESA). Later results
show that Cobham Gaisler’s GR740 device delivers enough
performance to meet the demands of GAIA and hence, replace
non-European components in that mission [7]. The MPSoC
presented in this paper as part of the De-RISC platform, builds
upon GR740 technology and improves it, further delivering
higher performance.

There are other efforts to produce space-grade micropro-
cessors such as the H2020 DAHLIA European project. Even-
tually, those devices will reach commercial maturity, but for
now their performance is not yet known.

B. RISC-V microprocessors and cores

Due to its non-proprietary nature, RISC-V ISA has attracted
the interest of many institutions, which have developed their
own SoCs and cores implementing the RISC-V ISA. Through
the RISC-V International web portal one can already find 94
cores and 39 SoCs or SoC platforms [15]. Andes, UC Berke-
ley, SiFive, Codasip, Syntacore, CloudBEAR, ETH Zurich/U.
Bologna, and Microchip are some of the institutions with a
larger offering of cores and SoCs. For instance, UC Berkeley
and SiFive offer cores and SoCs based on the Rocket one,
LowRISC offers the Ibex core, and ETH Zurich and the
University of Bologna offer the Ariane and PULPino SoCs.
These cores and SoCs, due to the long activity record in the
RISC-V arena of the institutions behind them, have become
highly popular.

In general, those designs do not offer those features needed
for use in safety-related real-time systems, and even less for
the space domain, where, on top of safety requirements, the
reliability requirements are large due to the harsh environ-
ment for operation (e.g. deep space). Among the components
available, we identify two of them as relevant in the context of
the De-RISC SoC: SiFive’s E76-MC embedded processor [16]
and Cobham Gaisler’s NOEL-V core [6]. The E76-MC offers
some features relevant for safety-related systems, but it misses
still many others such as watchdog, domain-specific interfaces,
etc. The NOEL-V processor core, instead, implements all
features needed to be used in space operation. This is the core
integrated in the De-RISC SoC by Cobham Gaisler, which is
already offered publicly.

C. Space-grade hypervisors and RTOSs

Hypervisors have been deployed in conventional space
missions for many years. However, the advent of the so called
‘NewSpace’ brings further opportunities to hypervisors for the

space domain. Differently to conventional satellites, NewSpace
satellites are much lighter (e.g. less than 200 kg instead of few
tonnes), smaller, cheaper and less power hungry, and tens,
hundreds and even thousands of them are deployed in each
mission [18]. Therefore, the number of satellites where space
hypervisors can be deployed grows drastically.

In the context of European space missions, fentISS’ Xtra-
tuM hypervisor is the most popular one. XtratuM guarantees
spatial and temporal isolation, as needed for space safety-
related real-time systems, thus allowing the efficient deploy-
ment of mixed-criticality applications on top of it [10]. Xtra-
tuM has already been deployed in 76 satellites of 3 different
missions already in space, and it is the hypervisor to be used
as part of a number of NewSpace and conventional missions
to be launched over the next 5 years. GMV-Portugal offers
its Air hypervisor, which has been evaluated in two projects
for single-core and multicore SoCs [11] proving its feasibility
and sufficient performance. Air is planned to be deployed as
part of the INFANTE project. Sysgo’s PikeOS [2] is already
in the race to be used in space missions, but to the best of our
knowledge, PikeOS has not been launched on a space mission
so far.

US hypervisor technology has also been used in space
missions. Lynx Software Technologies offers the LynxSecure
separation kernel hypervisor meeting the needs of applications
with strong safety and security requirements. Wind River’s
hypervisor, analogously to XtratuM, offers support for mixed
criticality applications so that they can be integrated onto
the same platform without requiring recertification of critical
applications. Green Hill’s Integrity RTOS, despite not being a
hypervisor, meets the most stringent requirements in terms of
reliability and security, as needed for space missions.

Among all those hypervisors, XtratuM is the first one
reaching commercial maturity for space applications on RISC-
V as part of its integration and validation in the De-RISC
platform presented in this paper.

III. DE-RISC MPSoC

The De-RISC MPSoC architecture has been designed anal-
ogous to those of processors in the commercial domain. In
particular, the De-RISC MPSoC includes one General-Purpose
Processing (GPP) cluster, although the MPSoC is ready to
include additional GPP elements if space permits. A GPP is a
multicore in itself and, in the case of the De-RISC MPSoC, its
GPP includes 4 NOEL-V cores. Varying the number of GPPs
and cores per GPP is possible, and ultimately the choice of the
most efficient tradeoff depends on the target technology and
expected application needs. The schematic of the De-RISC
MPSoC is shown in Figure 1.

As shown, the GPP cluster includes, apart from the 4
NOEL-V cores with their respective per-core caches (see
Section III-A), a bus infrastructure interfacing cores with
components external to the cluster, such as the shared L2
cache and the IO subsystem (see Section III-B). The GPP
also includes a debug support module (see Section III-C), the
SafeSU to manage multicore interference (see Section III-D),
and Performance Monitoring Counters (PMCs). PMCs offer

GPP subsystem

NOEL-V |I\[.‘EL-V

GPP bus infrastructure

NOEL-V| | NOEL-V

oug fuppo i
| Module I
| Safesl |
|

v

Level-2
Cache

High-Speed Interconnect
providing QoS

Level-3
Cache

DDRx memory
controller

Boot memory
controller

Yy
External
communication
interfaces

External DRAM External NVRAM

Fig. 1. De-RISC MPSoC.

the usual events such as instruction counts, and cache access
counts per cache and type (read/write, hit/miss).

Beyond the L2 cache, the De-RISC MPSoC includes a high-
speed interconnect offering quality-of-service (QoS) support.
This interconnect is intended to ease the extension of the
MPSoC by attaching further GPP clusters and accelerators
to it. However, the De-RISC MPSoC, in its first release (the
one described in this paper and currently under validation),
includes a single GPP, as said before, and no accelerator
subsystem since it will be released in a FPGA rather than
as an ASIC. While FPGA space is limited, future ASIC im-
plementations will offer extra space for additional computing
engines (either GPPs or accelerators), as shown in Figure 2.

Finally, the aforementioned interconnect is attached to a
shared L3 cache which, in turn, is connected to the DDR
memory controller and to the boot memory controller.

Note that the MPSoC (mainly its peripherals) as well as
the NOEL-V cores inherit the fault-tolerance support from the
LEON processor family, thus allowing for seamless correct
operation despite faults by correcting errors by hardware
means. Upon the detection of an uncorrectable error, execution
stops to avoid propagating them beyond the actual component
affected.

A. NOEL-V RV64 processor core

The Cobham Gaisler’s NOEL-V processor core is a 64-
bit processor implementing the RISC-V ISA. Its pipeline,
shown in Figure 3, is dual-issue in-order, and includes floating
point units (supporting floats and doubles), four fully pipelined
integer units (two of them in late stages to minimize stalls),
support for integer multiplications and divisions, support for

i :

SoC

GPP Element — GPP Element -~
o
PP El NOEL-V FT NOELV FT subsystem
AEEEHN Russsorn e
Sraves oo e ersarss | [Srster
[Mamuiene.] [~wmoeme] LIUART. Timer) —
— PMCs DC. PMCs Multi-channel FPGA
controller supervisor
SMAP
GH Level-2 Cache GPl I Level-2 Cache | UAESV"I'AW.
MIL-STD-15538 <+
Level-z Cache 4 I I Level2 Cache 4 | I
I v i - cesDs 32-bit PCI e~
1 TMITC controller
o
High-Speed Interconnect M
providing QoS M 1011001000
u —>
FC controller Elpfe"l-'gﬁ
I I I I I eyl | (R)GMII
m HSSL
. (SPFi SRIO)
secure boot | Level-3 Cache ::ostrmler contraller | [—=5>
Accelerator 8 lanes
Cluster DDRx memory||Paraliel and spPi
Controlier || FlashiEEPROM [| NAND Fiash CAN-FD SpaceWire
W. EDAC Controllers controller router
External Boot ONFI FPGA 2x AIB 12 ports
DRAM memory NAND fabric 10
Fig. 2. Envisioned ASIC implementation of the De-RISC MPSoC.
/
FPU exception
mul / div CSR write
o || secose rogister ALUD | memory | late ALUO register
access write-back
ALU1 late ALU1

branch

late branch

Fig. 3. NOEL-V processor core pipeline.

atomics, a Memory Management Unit (MMU), Physical Mem-
ory Protection (PMP), advanced branch prediction units, return
address stack, and separate data (DL1) and instructions (IL1)
first level cache memories whose size is configurable. The
cache controller includes a store buffer allowing back-to-
back execution of store instructions, thus reaching a sustained
throughput of one store instruction per cycle. The Advanced
High-performance Bus (AHB) interface to connect to the GPP
bus supports wide data transactions to allow for fast store data
transmissions, and fast cache line refill.

Note that, apart from being integrated as part of the De-
RISC MPSoC, the NOEL-V processor model is also provided
in the Cobham Gaisler IP library (GRLIB). The GRLIB is an
integrated set of IP cores that can be connected to the on-chip
bus with an appropriate plug&play method and is available in
a free open-source version.

B. Communication interfaces and peripherals

Usual peripherals such as timer units, system UARTs and
interrupt controllers are included in the De-RISC MPSoC.

Those follow standard specifications to guarantee portability
across SoCs and software compatibility with drivers matching
specifications.

The IO subsystem is architected in a modular way so that
the particular IO interfaces implemented can be tailored to
match application needs, thus varying the type and number of
interfaces integrated. Those include standard interfaces, but
also those specific for the space domain, and include the
following ones:

High-Speed Serial Link support through SpaceFibre con-
trollers.

SpaceWire communication links, connected to an on-chip
router.

10/100/1000 Mbit Ethernet interfaces.

MIL-STD-1553B support.

Controller Area Network Flexible Data-Rate (CAN-FD)
interface.

UART interfaces with DMA support.

SPI master/slave.

I2C master/slave.

¢ GPIO interface.

Note that, except the parallel PCI interface, the De-RISC
MPSoC includes all IO interfaces available in the GR740
microprocessor, including those that would be typically im-
plemented in an external FPGA. In the case of the De-RISC
MPSoC, all of them are included on-chip.

Finally, regarding the memory interface, the De-RISC MP-
SoC supports DDR3 SDRAM with a strong Error Detection
and Correction (EDAC) code that tolerates even failures of
complete external memory components. NOR and MRAM
flash memory devices are supported for boot, which is also
possible through the SPI interface. Additionally, NAND Flash
memory is also supported as a means of having non-volatile
memory storage, which is of particular importance in the space
domain.

C. Debug Module

The De-RISC MPSoC includes debug module compatible
with the RISC-V debug specification. The debug capabilities
include the following:

o Debug connections over several interfaces (including
JTAG, Ethernet, and CAN).

« Hart Run Control.

+ GPR and CSR register access.

o Program buffer for tracing purposes.

o Triggers (match and instruction count).

D. SafeSU

Last but not least, a novel component of the De-RISC MP-
SoC when compared with existing space MPSoCs, is its Safe
Statistics Unit (SafeSU for short), which provides a number
of features to monitor and control multicore interference, thus
easing the adherence to specific safety requirements related
to real-time, as well to their verification and validation. In
particular, the SafeSU includes 3 main features, as described
next: (1) the Request Duration Counter, RDC [3], for multi-
core interference bounding during verification stages, (2) the
Cycle Contention Stack, CCS [12], for multicore interfer-
ence measuring during testing (validation) stages, and (3) the
Maximum-Contention Control Unit, MCCU [3], for multicore
interference monitoring and controlling during operation.

1) RDC: Request Duration Counter: The RDC [3] allows
measuring the highest latency observed for different types
of accesses occurring in the AHB component (e.g. a bus)
where it is attached to. For instance, in the case of the De-
RISC platform, the RDC can monitor the highest latency
experienced by read and write operations segregating across
data and instruction cache misses, and across read and write
operations for the former. Measuring those latencies with a test
campaign consisting of different stress tests allows obtaining
estimates of the highest latency for each type of event. Those
highest latencies can then be used for Worst-Case Execution
Time (WCET) estimation to obtain reliable upper bounds to
the execution time of real-time tasks.

Additionally, the RDC module of the SafeSU has been
extended so that it can be programmed with specific values
(e.g. typically the highest latencies per each event type) and
used as a safety measure during operation by triggering an

interrupt if the latency observed for any event exceeds the pre-
programmed upper bound latency for such event. This is useful
to identify whether there is some relevant risk of violating any
deadline during operation.

2) CCS: Cycle Contention Stack: The CCS [12] measures
the actual interference experienced by each core broken down
across the cores causing them, thus being a valuable “blaming”
mechanism. Figure 4 provides a schematic of the CCS. It is
implemented as a table of NxN counters, where [V is the core
count (4 cores in the case of the De-RISC MPSoC). Counters
in a column indicate how much interference a specific core has
experienced broken down across contenders, whereas counters
in a row indicate how much interference a specific core has
caused on each other core. Every cycle, if a specific core is
using the shared bus, its grant signal of the AMBA AHB
protocol is used to choose the row of counters to update. For
each core with the request signal activated (also from the AHB
protocol), its counter in that row is incremented. Note that,
whenever a core is granted access to the bus, it has both its
grant and request signals set, so the corresponding counter in
the diagonal will be incremented reflecting how many cycles
a specific core has been using the bus effectively.

The CCS can be used both, during validation stages to as-
sess whether pairwise interference is within expected bounds.
Note that without the breakdown low interference across
some cores could hide excessive interference among others,
thus potentially letting undesired behavior escape undetected.
The CCS, however, is particularly useful during operation to
support safety measures since, upon a deadline overrun, it
allows identifying the core(s) causing excessive interference
and hence, apply appropriate correction actions (e.g. switching
to a different pre-computed task scheduling).

3) MCCU: Maximum-Contention Control Unit: The
MCCU [3] organization is analogous to that of the CCS, with
NxN counters. However, differently to the CCS, the MCCU
is not intended to measure interference but to check whether
it exceeds predefined bounds. In particular, users can program
the MCCU setting the interference quota that each core can
cause in each other core. Whenever such quota is exhausted,
the MCCU raises an interrupt so that software layers can take
appropriate corrective actions. Such a feature is particularly
relevant in mixed criticality scenarios where tasks with specific
(high) criticality levels may need protection against shared
resource clogging by lower criticality tasks.

The MCCU can operate in two different modes, being each
one devised for a different phase of the product lifecycle. If
upon an event in which a core ¢; causes interference in a
core cj, the MCCU counters are decreased by the maximum
latency such event could have (e.g. as given by the RDC),
then the MCCU fits timing validation needs. In this case,
interference events are assumed to cause the maximum inter-
ference possible, thus exhausting quotas as fast as realistically
possible, hence indicating whether deadline violations could
be possible. If, instead, the MCCU uses actual interference to
decrease quotas (e.g. interference recorded in the CCS), then
the MCCU can be used as a safety measure during operation.
In that case, interrupts are only raised when interference has
effectively exceeded quotas.

—

i L]

—{ core[1, 1] }—-| core[1, 2] }—-| core[1, 3] }—->| core[1, 4] |
| |

—{ core‘2,1] }—-| core’2, 2] }—-| core‘2,3] }—->| core[2, 4] |

|
—{ core[3, 1] }—-| core[3, 2] }—-I core[3, 3] }—->| core[3, 4] |

. A ‘ .
—{ coref4, 1] }—-| coref4, 2] }—-I coref4, 3] }—->| coref4, 4] |

Fig. 4. High-level schematic of the CCS.

———
—
3
Grant_ed g |
core id (]
D
: |
—
Dijkstra
3,00
2,50
2,00
150 1236 1,42
1,00 1,04
1,00
0,50
0,00
Test 1 Test 2 Test 3 Test 4

Fig. 5. Normalized execution time for Dijkstra on De-RISC MPSoC.

E. Stress tests

We perform an initial stress test of the SoC using the three
benchmarks described in Section V-A, namely Dijkstra, LD-
DL1hit and LD-L2miss. In particular, we use Dijkstra as task
under analysis in the first set of experiments (see Table I), and
the other two benchmarks as contenders, varying the number
of contenders of each type as shown in the following table,
with increasing interference.

TABLE I
DIJKSTRA WORKLOADS
TEST | Core 0 Core 1 Core 2 Core 3
Test1 Dijkstra | LD-DL1hit | LD-DL1hit | LD-DLIhit
Test2 Dijkstra | LD-DL1hit | LD-DL1hit | LD-L2miss
Test3 Dijkstra | LD-DL1hit | LD-L2miss | LD-L2miss
Test4 Dijkstra | LD-L2miss | LD-L2miss | LD-L2miss

In particular, fest/ corresponds to the case where Dijkstra
experiences no interference in the access to memory since
all contenders keep data local in their respective core-local
DL1. Test2 replaces LD-DL1hit by LD-L2miss in Core 3, thus
with high interference but only from one core. Test3 moves
from one to two memory-aggressive contenders. Finally, Test4
includes three memory-aggressive contenders.

Figure 5 shows the normalized execution time for Dijkstra
in those 4 scenarios. As shown, as the number of memory
contenders (LD-L2miss micro-benchmarks) increases, so does
the execution time. However, Dijkstra is not memory intensive,

LD-L2miss
3,00
2,64 =70

2,50
2,00 1,69
1,50

1,00
1,00
0,50 I
0,00

Test5 Test 6 Test 7 Test 8

Fig. 6. Normalized execution time for LD-L2miss on De-RISC MPSoC.

and hence, the impact in execution time due to multicore
interference is low. Hence, our preliminary conclusion is that
the SoC allows scaling performance for applications taking ad-
vantage of local caches despite having aggressive contenders.

TABLE II
LD-L2MISS WORKLOADS
TEST | Core 0 Core 1 Core 2 Core 3
Test5 LD-L2miss | LD-DLIhit | LD-DLIhit | LD-DLIhit
Test6 LD-L2miss | LD-DLIhit | LD-DLIhit | LD-L2miss
Test7 LD-L2miss | LD-DL1hit | LD-L2miss | LD-L2miss
Test8 LD-L2miss | LD-L2miss | LD-L2miss | LD-L2miss

Analogous tests have been performed replacing Dijkstra by
LD-L2miss as unit of analysis, as shown in Table II. These
tests are expected to expose much higher multicore interfer-
ence since the task under analysis is memory intensive by
performing sustained read operations from memory (missing
in all cache levels). As shown in Figure 6, the slowdown expe-
rienced by LD-L2miss is much higher than that experienced by
Dijkstra. For instance, with 3 contenders, Dijkstra execution
time increases by 1.42X whereas LD-L2miss execution time
increases by 2.76X. However, despite the much higher slow-
down due to the saturation of the target shared resource (DDR
memory), LD-L2miss still achieves some performance gains
with respect to the single-core case where all 4 copies had
been run serially in a single core, thus with an accumulated
execution time of 4X w.r.t. a single execution in isolation [13].

Hence, we note that the SoC throughput increases w.r.t. the
single-core setup even when using programs highly aggressive
in the use of shared resources.

Overall, our preliminary results already evidence that the
De-RISC MPSoC integration has been successful, and perfor-
mance trends are appropriate. Part of our future work as part of
the validation phase consists of performing a much larger test
campaign with the aim of validating each individual feature in
the MPSoC, as well as their integration. The results shown in
this paper are preliminary results and additional results will be
made available after implementation of planned upgrades to
the De-RISC platform’s bus infrastructure and Level-2 cache.

IV. DE-RISC HYPERVISOR

Within the software stack of De-RISC, the XtratuM Next
Generation (XNG) hypervisor [10] and the ARINC-653 com-
patible LithOS run-time, both by fentISS, have been ported
successfully to the hardware RISC-V architecture.

XNG is a complete rewrite of the XtratuM hypervisor that
builds on the fentISS accumulated expertise after working
for more than 13 years in the development of the XtratuM
variants.

Making use of the mechanisms provided by the hardware,
XNG provides time and space isolated execution environ-
ments, also known as partitions and minimizes the interference
between cores caused by the access to common resources.

A. XNG Overview

The XtratuM building blocks provide the services needed
by safety-critical systems such as:

o hypervisor and partition management: through the invo-
cation of hypercalls;

« support for normal and system partitions: a normal par-
tition can manage and monitor its own state whereas
a system partition can manage and monitor the overall
system and other partitions;

o resource virtualization: through the Partition Virtual Ex-
ecution Environment (PVEE), making virtual resources
available to a partition as if it were the only one using
a given resource in the system (CPU, FPU, interrupt
controller,...);

« temporal partitioning: based on a cyclic scheduling policy
that can be selected among a set of configurable schedules
during the hypervisor initialization;

o spatial partitioning: based on the support provided by
the hardware, typically the Memory Management Unit
(MMU);

« Inter-Partition Communication (IPC): through sampling
and queuing ports, inspired in the ARINC-653 standard
and implemented via messages as contiguous blocks of
data of finite length;

o the Health Monitor (HM) service: which detects faults in
the hardware and in XNG itself and responds according
to the specified configuration;

« observability of the system: mandatory in space domain
applications, through xci, xcon and xtraceviewer observ-
ability development tools;

2 n \
Lithos ~ CGgest

Multicore RISC-V reference board developed in the project

Fig. 7. XtratuM running on top of the De-RISC hardware platform.

e and the XtratuM Configuration File (XCF): a set of
XML files to allow the system integrator to configure
the system, that is, the hypervisor, the partitions, the
scheduling, the health monitor events/actions, the tracing
facilities, the resource allocation to each partition and to
the hypervisor, or the IRQs and/or I/O devices delegation
to a partition, among others.

Figure 7 shows a typical configuration with XtratuM run-
ning on top of the hardware platform. The block diagram
illustrates a XtratuM-based system architecture with three
partitions running on it. Partition number 1 contains the
XtratuM Run-time Environment (XRE) together with an ap-
plication. The other two partitions (2 & 3) are managed by
their corresponding guest operating systems, executing their
respective application(s).

XRE is a C library component provided together with
XtratuM for simplifying the interaction of the application code
with the low-level management required by the PVEE, which
is a virtual representation of the underlying hardware. XRE
allows the execution of bare metal applications over XNG
without the need of any guest operating system.

In the partition number 2, LithOS is running as a para-
virtualized guest operating system which uses the services
provided by XtratuM to offer an ARINC-653 APEX to the
concurrent applications running on top. ARINC-653 Appli-
cation/Executive (APEX) is a standard interface for avionic
software applications allowing to build partitioned systems.
While XtratuM provides the partitioning and inter-partition
communication mechanisms, LithOS builds on top of them to
provide a complete run-time solution by including processes,
inter-process communication, synchronization mechanisms,
error handling and other functions expected from an ARINC-
653 compliant run-time. Thus, the combination of XtratuM
and LithOS allow a user to build partitioned systems based on
ARINC-653.

The partition number 3 is managed by a third-party guest
operating system, such as RTEMS or Linux. To run any other

guest OS, a so-called Board Support Package (BSP) specific to
the De-RISC platform is required. The BSP is a software layer
that interfaces the guest operating system with the hypervisor
and hardware.

B. XNG HM: the key for software safety

XNG incorporates the latest hypervisor services developed
by fentISS to match the needs of safety-critical systems.
Specifically, the Health Monitor (HM) service allows the
system integrator to define a Fault Detection, Isolation, and
Recovery (FDIR) policy specific for the system and for each
partition event. This policy is defined in the XCF.

The HM is in charge of detecting (the event), reacting (with
an action) and reporting (in the HM log) fault states from
either the hardware, the partitions or internally generated by
the hypervisor. It aims at discovering faults at an early stage,
trying to solve or confine the faulty subsystem to avoid a
failure or to reduce its potentially harmful effects.

The operation of the HM is described as follows:

1) Faults are reported to the HM service as HM events:
Regardless of which is the component that reports the
fault, each event has an associated faulting element,
either the hypervisor or any of the configured partitions.

2) When the faulty element is a partition, the HM applies
a mapping function to convert from architecture-specific
events to generic events, thus easing the development of
portable partitions.

3) The HM logs the generic event and the associated
information in the logging space.

4) The HM executes an action configured in the XCEF,
which can be a specific action for each HM event.
Specific actions can also be configured for each event
and every partition.

5) Partitions can access the HM logs to process the col-
lected information according to the system needs.

The HM events can be grouped in two categories, hypervisor
events and partition events. The hypervisor events include:

« hypervisor-generic events, raised when certain execution
conditions are detected, e.g. due to internal sanity or
robustness checks;

« architecture specific events, caused by the notification
of a processor exception during the execution of the
hypervisor.

The partition events comprise:

« partition-generic events, which are not directly raised by
the hypervisor but raised by the partition by means of the
invocation of the specific hypercall;

« architecture specific events, which indicate a fault in
the partition detected by the notification of a processor
exception.

The HM actions are grouped in the following categories:

« actions changing the execution state of the partitions (e.g.
halting or warm/cold resetting it), thus affecting just the
partition for which the HM event is reported.

o Actions changing the execution state of the hypervisor
(e.g. halting or warm/cold resetting it), thus affecting the
complete system.

When the HM detects an unrecoverable situation, executes
a transition to a safe halt state automatically. During this
transition, the hypervisor does not rely on any component
external to the CPU itself. In this state, the hypervisor executes
an endless loop with IRQs disabled, waiting for an external
entity to solve the situation (e.g. a watchdog time-out resetting
the whole system).

An illustrative example available at the official De-RISC
YouTube channel (accessible through De-RISC website [8])
shows the behavior of the XtratuM HM service. In this
example, shown in Figure 8, four partitions are running in
the on-board computer (OBC) of a micro satellite:

e a critical partition (P0), executing the telemetry and
telecommand (TM/TC) subsystem;

« another critical partition (P1), running the Attitude and
Orbit Control System (AOCS);

¢ a non-critical partition, (P2) corresponding to the satellite
payload (e.g. image acquisition and processing);

o one more critical partition (P3) that monitors the OBC.

Imagine that, due to a bug in P2, at some point during the
image processing execution an access is attempted to a mem-
ory area belonging to partition P1 (critical AOCS partition).
The access could write some data in the Pl memory area,
possibly corrupting the value of one or more variables used
to control the satellite orbit. This could cause the propulsion
subsystem to act accordingly, based on a incorrect positioning
data, causing the loss of the satellite and the mission.

To avoid this situation, the system integrator can configure
the HM to catch this event and to act accordingly. In the
example, the HM is configured to cold reset P2 (payload
partition) when this event occurs, while P3 is monitoring
the HM log to detect recurrences of this HM event in P2.
When P3 detects that P2 has caused more than three HM
events of this type, it switches the system scheduling to a
safe schedule (previously defined by the system integrator). In
this scheduling, P2 is not included for the sake of the system
safety. Having the system in a safe state, PO (TM/TC partition)
notifies the ground segment about the faulty behavior of the
payload partition.

C. XNG software development tools

XtratuM development tools have also been ported to support
the De-RISC architecture. These are divided in basic software
development tools and advanced integration tools. The basic
tools include configuration tools (xcparser, elfbdr) and observ-
ability tools (xci, xcon, Xxtraceviewer) whereas the advanced
integration tools comprises XPM (XtratuM Project Manager)
and the Xoncrete scheduling analysis tool.

D. ECSS development process

The XNG and LithOS porting have been carried out fol-
lowing partially the ECSS development process to ease the
future space qualification at ECSS level B. This will make the
hypervisor ready for the aerospace market almost right after
the project completion.

-DBG:0] hypervisor reset
Initialization of the TM/TC partition
Initialization of the AOCS partition
Initialization of the payload partition
Initialization of the monitor partition
System running with the nominal schedule
Sending/receiving TM/TC data

[P1] AOCS computing position/attitude
[P2] Acquiring image...
Processing image...

-DBG:0] HM event xHmMemoryViolation (7)
Initialization of the payload partition
Monitoring OBC
Error detected in payload partition: MEMORY_VIOLATION
Sending/receiving TM/TC data

[P1] AOCS computing position/attitude
[P2] Acquiring image...
Processing image...

-DBG:0] HM event xHmMemoryViolation (7)
Initialization of the payload partition
Monitoring OBC
Error detected in payload partition: MEMORY_VIOLATION
Sending/receiving TM/TC data

[P1] AOCS computing position/attitude
[P2] Acquiring image...
Processing image...

-DBG:0] HM event xHmMemoryViolation (7)
Initialization of the payload partition
Monitoring OBC
Error detected in payload partition: MEMORY_ VIOLATION
Detected P2 reset 3 times!

Faulty behaviour detected in the payload partition
Switching from the nominal schedule to the safe schedule...
Sending message "PAYLOAD_ERROR" to TM/TC partition
Sending/receiving TM/TC data
Received "PAYLOAD_ERROR" message from monitor partition
Sending information to the ground segment...

[P1] AOCS computing position/attitude

[P3] Monitoring OBC

[P@] Sending/receiving TM/TC data

[P1] AOCS computing position/attitude

[P3] Monitoring OBC

[PB] Sending/receiving TM/TC data

[P1] AOCS computing position/attitude

[P3] Monitoring OBC

- Partition2:0 @ 0x418000b8

- Partition2:0 @ 0x418000b8

- Partition2:0 @ 0x418000b8

Fig. 8. HM example available at the official De-RISC YouTube channel [8].

V. PERFORMANCE VALIDATION

Several test applications are in the process of being ported
onto the De-RISC platform with the aim of providing evidence
of its proper operation with relevant space application as well
as relevant benchmarks, as explained in this section.

A. Basic Validation

The first steps towards the validation of the De-RISC plat-
form consist of a number of tests to validate the functionality
of the processor core and its compliance with the RISC-V
ISA standard, and to measure its performance with reference
benchmarks. For the former, we build on those tests pro-
vided by RISC-V International, which have been successfully
passed. This gives evidence that the basic RISC-V ISA as
well as the extensions implemented work properly (e.g. M,
A, and FD extensions for integer multiply/divide, atomics and
float/double operation respectively).

Regarding performance, we have integrated some bench-
marks and obtained the following figures for the high-
performance configuration of the NOEL-V core at 80 MHz:

o« EEMBC CoreMark benchmark: 4.41 for CoreMark/MHz.

o Dhrystone benchmark: 144,092.2 Dhrystones/second.

e Whetstone benchmark (C Converted Double Precision

Whetstones): 14.3 Millions of Whetstones/second.

TABLE III
RAMSPEED (GENERIC) V2.6.0 RESULTS (INTEGER AND WRITING).

Block size Bandwidth Block size | Bandwidth
1 Kb | 458.82 MB/s 256 Kb | 68.64 MB/s

2 Kb | 469.82 MB/s 512 Kb | 53.75 MB/s

4 Kb | 475.54 MB/s 1024 Kb | 53.80 MB/s

8 Kb | 478.30 MB/s 2048 Kb | 53.82 MB/s

16 Kb | 478.79 MB/s 4096 Kb | 53.83 MB/s

32 Kb | 460.67 MB/s 8192 Kb | 53.81 MB/s

64 Kb | 445.98 MB/s 16384 Kb | 53.73 MB/s

128 Kb | 437.01 MB/s 32768 Kb | 53.57 MB/s

4,0
3,5
3,0
2,5 1
2,0 1
1,5 1
1,0 4
0,5 A
0,0 -

1 contender

B 3 contenders

NS
&

Fig. 9. Normalized execution time for EEMBC Autobench benchmarks on
De-RISC MPSoC.

We have also integrated RAMspeed (generic) v2.6.0 bench-
mark, whose results are shown in Table III.

Other benchmarks representative of a variety of applica-
tions, such as the TACLeBench benchmark suite [9] and
the EEMBC Autobench [14] have already been integrated.
[lustrative results in Section III-E use one of the TACLeBench
(Dijkstra). Since EEMBC Autobench are larger and more rep-
resentative than TACLeBench, we have collected some more
detailed results with those to assess the expected performance
when executing a variety of embedded applications. We have
set data footprints so that an intense use of shared resources
(cache memories and bus) is made. In particular, we consider
each benchmark running in isolation, with 1 contender and 3
contenders. Contenders are always the very same benchmark
evaluated to generate high contention scenarios (i.e. all cores
attempt to access shared resources at the same time). Execution
time results normalized w.r.t. the isolation case are shown in
Figure 9. As depicted, despite contention may be high, the
MPSoC effectively allows sharing resources with slowdowns
well below 2X and 4X with 1 and 3 contenders respectively,
thus achieving a significantly higher throughput than the one
that would be reached if running benchmarks serially in one
core.

Last but not least, a number of purpose-specific micro-
benchmarks have been developed to stress the use of different
resources in the MPSoC. For instance, two micro-benchmarks
performing sustained read accesses have been used in Sec-
tion III-E together with the aforementioned TACLeBench. One
performs sustained hits to the DL.1 (LD-DL1hit), whereas the
other misses in DL1 and L2 and accesses memory for each
load access (LD-L2miss).

B. Compute-intensive space application

Apart from those tests intended primarily to assess the
performance of a single core, described in previous subsection,
the multicore platform needs also being evaluated. For that
purpose, we have used two types of tests: one building on
the micro-benchmarks mentioned before, and another building
on a lossless multispectral image compression algorithm,
standardized by the Consultative Committee for Space Data
Systems as CCSDS-123 [17].

Micro-benchmarks are deployed in a multicore setup in
different ways, combining those hitting and missing in the
different cache levels, with write and read operations, and
activating or deactivating L2 cache partitioning. By smartly
selecting the workloads, corner performance cases can be
assessed. Regarding the lossless multispectral image compres-
sion algorithm, it has been used not only to assess multicore
performance, but to evaluate the hypervisor and/or RTOS-
based resource management services. In particular, an instance
of the application is deployed in each core. Since the ap-
plication is data intensive, the four copies running together
contend for the access to the shared bus, shared cache and
main memory.

Overall, those workloads will serve the purpose of evaluat-
ing isolation techniques, as well as the features of the SafeSU
such as the CCS and the MCCU.

C. Representative Space system application set

The most general validation test consists of the deployment
of a single application using all the cores. In particular, a use
case application representative of a satellite system is being
deployed. The tasks of that application building on standard
inter-partition communication mechanisms.

The particular application used is the Command & Data
Handling Platform [1]. Such application is intended to be
deployed on a multicore, hence it is appropriate to assess
the impact of multicore interference, the degree of time
isolation provided by the De-RISC platform, and those De-
RISC platform components intended to provide safety services
related to real-time performance, such as the CCS and MCCU
part of the SafeSU. Given that the application has already been
used in the evaluation of the LEON4FT GR740 space-grade
microprocessor and XtratuM hypervisor in the context of the
EMC? ECSEL project, it will allow comparing such platform
against De-RISC one on a fair basis.

VI. CONCLUSIONS

Critical applications in the space domain have increas-
ing requirements due to their high autonomy and system
complexity. In particular, requirements relate to performance,
safety, validation, reliability and commercial needs. Existing
microprocessors effectively meet some of those requirements,
but to the best of our knowledge, none of them meets them
all.

This paper presents De-RISC, a new hardware and soft-
ware platform for space applications, meeting all the afore-
mentioned requirements. In particular, the De-RISC platform
includes a Cobham Gaisler’s MPSoC based on the NOEL-
V core, as well as fentISS’ XtratuM hypervisor, both of

them compliant with RISC-V ISA. Moreover, the MPSoC also
includes BSC’s SafeSU to manage multicore interference. Last
but not least, an extensive validation plan has been set to test
the different performance considerations of the platform. The
De-RISC platform is nowadays fully integrated and starting its
validation phase, and is expected to reach the market in early
2022.

ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement EIC-FTI 869945. BSC work has also
been partially supported by the Spanish Ministry of Science
and Innovation under grant PID2019-107255GB.

REFERENCES

[1] D. Andreetti, F. Federici, V. Muttillo, D. Pascucci, and L. Pomante.
Analysis and design of a command & data handling platform based on
the LEON4 multicore processor and PikeOS hypervisor, 2017. http:
//hdl.handle.net/11697/137061.

[2] Jan Bredereke. A survey of time and space partitioning for space
avionics. Technical Report, City University of Applied Sciences Bremen,
2017.

[3] J. Cardona, C. Hernandez, J. Abella, and F. J. Cazorla. Maximum-
contention control unit (mccu): Resource access count and contention
time enforcement. In 2019 Design, Automation Test in Europe Confer-
ence Exhibition (DATE), pages 710-715, March 2019.

[4] Cobham Gaisler. LEON3FT Fault-tolerant processor. https://www.
gaisler.com/index.php/products/processors/leon3ft (accessed Feb-2021).

[5] Cobham Gaisler. LEON4 processor. https://www.gaisler.com/index.php/
products/processors/leon4ft (accessed Feb-2021).

[6] Cobham Gaisler. NOEL-V processor. https://www.gaisler.com/index.
php/products/processors/noel-v (accessed Feb-2021).

[7] Cobham Gaisler. RTEMS SMP executive summary, development
environment for future leon multi-core. RTEMSSMP-
ES-001, 2, 2015. http://microelectronics.esa.int/gr740/
RTEMS-SMP-ExecSummary-CGAislerASD-OAR.pdf.

[8] De-RISC Consortium. De-RISC website, 2021.
derisc-project.eu/ (accessed Feb-2021).

[9] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Bjorn Lisper, Wolf-

gang Puffitsch, Christine Rochange, Martin Schoeberl, Rasmus Bo

Sorensen, Peter Wigemann, and Simon Wegener. Taclebench: A bench-

mark collection to support worst-case execution time research. In Martin

Schoeberl, editor, Proc. 16th International Workshop on Worst-Case

Execution Time Analysis (WCET’2016), pages 1-10. Schloss Dagstuhl

- Leibniz-Zentrum fuer Informatik, July 2016.

fentISS. XtratuM Hypervisor. https://fentiss.com/products/hypervisor/

(accessed Feb-2021).

B. Gomes, D. Silveira, L. Gouveia, and L. Mendes. Air hypervisor using

RTEMS SMP. In European Workshop on On-Board Data Processing

(OBDP2019), ESTEC (ESA), 2019.

J. Jalle et al. Contention-aware performance monitoring counter support

for real-time MPSoCs. In IEEE Symposium on Industrial Embedded

Systems (SIES), 2016.

J. Nowotsch and M. Paulitsch. Leveraging multi-core computing archi-

tectures in avionics. In 2012 Ninth European Dependable Computing

Conference, pages 132-143, 2012.

J. A. Poovey, T. M. Conte, M. Levy, and S. Gal-On. A benchmark

characterization of the eembc benchmark suite. IEEE Micro, 29(5):18—

29, 2009.

RISC-V International. RISC-V International website. https://riscv.org/.

SiFive Inc. SiFive E76-MC Manual v19.08p0, 2019. https://sifive.cdn.

prismic.io/sifive%2F08e49813-ffcc-4abc-9d70-ba2add7ebbe6_sifive+

e76-mc+manual+v19.08.pdf (accessed Feb-2021).

The Consultative Committee for Space Data Systems (CCSDS). Loss-

less multispectral and hyperspectral image compression recommended

standard. CCSDS 123.0-B-1, 2012.

Wikipedia. Small satellite, 2021. https://en.wikipedia.org/wiki/Small_

satellite (accessed Feb-2021).

https://www.

[10]

(11]

(12]

[13]

[14]

[15]
[16]

[17]

[18]

