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Abstract—Achieving the equilibrium between scalability, sus-
tainability, and security while keeping decentralization has
prevailed as the target solution for decentralized blockchain
applications over the last years. Several approaches have been
proposed by multiple blockchain teams to achieve it, Ethereum
being among them. Ethereum is on the path of a major protocol
improvement called Ethereum 2.0 (Eth2), implementing Sharding
and introducing the Proof-of-Stake (PoS). As the change of
consensus mechanism is a delicate matter, this improvement will
be achieved through different phases, the first of which is the
implementation of the Beacon Chain. As Ethereuml, Eth2 relies
on a decentralized peer-to-peer (p2p) network for the message
distribution. Up to date, we estimate that there are around 5.000
nodes in the Eth2 main net geographically distributed. However,
the topology of this one still prevails unknown. In this paper, we
present the results obtained from the analysis we performed on
the Eth2 p2p network. Describing the topology of the network,
as possible hazards that this one implies.

Index Terms—Blockchain, Ethereum2, Eth2, Beacon Chain,
Sharding, Monitoring, Proof of Stake, P2P Networks, Scaling

I. INTRODUCTION

Ethereum [1] is a mature decentralized web infrastructure
that has proved reliability and had led the growth of decen-
tralized applications. It features an ecosystem for decentralized
applications based on a general purpose virtual machine [2]
and its dedicated programming language [3]. This ecosystem
holds certain characteristics, which has generated a large
community of developers that have proposed new methods to
tackle some of the limitations affecting the Ethereum protocol.

The Ethereum Foundation together with the Ethereum com-
munity have been working on the development of the second
generation of Ethereum, Ethereum 2.0 (Eth2). The approach
proposed in the Eth2 protocol tackles both: the scalability chal-
lenge by introducing sharding, and the sustainability challenge
by changing the consensus protocol to Proof-of-Stake (PoS).
This ambitious project is divided into different phases because
of its complexity. The first phase (phase 0) is the Beacon Chain
[4] launched on December 2020.

Eth2 aims to create a major network of nodes that will
provide the infrastructure for sharding. The different developer
teams have been working over the last two years to generate
Eth2 client implementations, each client targeting a specific
type of user. This variety of clients, together with the low
computing-power required by the Eth2 protocol, offers to most
of the users the possibility to join the network.

In contrast to the Ethereum] client, the Eth2 one is divided
in two main parts, the Beacon Node and the Validator. The
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beacon node, or node, performs all kind of interactions with
the Eth2 network. It establishes the connections with other
nodes, exchanges the messages, downloads the blocks and
maintains the view of the Beacon Chain as the view of the
Shards that the validator is performing at, building among
them the entire network. On the other hand, the validator is
in charge of the logical part, generating the attestations on the
received blocks, as well as proposing the blocks when needed.
To perform its duties, the validator needs to follow the current
state of the Chain, and to be in constant communication with
a Beacon Node that provides such information.

A project with this complexity level completely relies on the
healthiness of the network. To propagate the messages between
the nodes of the network, Eth2 relies on the GossipSub
p2p protocol [5]. The protocol is based on the exchange of
messages and metadata between peers distributed in meshes,
achieving the message propagation within the targeted time-
margins and minimizing wasteful bandwidth consumption.
Given the Eth2 network requirements and the interaction
between the clients, it is important to monitor critical points for
possible attacks. In this paper, we present a complete analysis
of the p2p network of the Eth2 main net. The analysis offers
a general overview of the network composition, becoming the
first analysis on the recently launched Eth2 main net.

The remainder of this paper is organized as follows. Sec-
tion II discusses the background and related work. Section III
exposes the protocols involved on the Eth2 project. Section IV
explains the methodology used for our study and evaluation.
Section V shows and analyzes the results obtained by our
tool, including the client and geographical distribution find-
ings that this work presents. In Section VI we discuss the
possible hazards that the Eth2 network could face. Finally,
Section VII concludes this work and presents some possible
future directions.

II. BACKGROUND

Distributed applications among p2p networks have gained
popularity with the pass of time over the last two decades.
Starting in the 2000s, distributed file systems emerged with
the launch of the first p2p network, Gnutella [6]. Since back
then, the idea of propagating information through the network
by using p2p connections among peers has served as the base
to develop modern distributed blockchain applications such as
Bitcoin, Ethereum or Monero.

Previous works [7] [8] [9] pointed that decentralized p2p
networks by nature tents to self-organize through the usage of



methods like the Distributed Hash Tables (DHT) [10], acquir-
ing unique properties and layouts that can directly affect the
performance, reliability, scalability, and sometimes anonymity
of the applications that rely on them. They emphasized the
importance that the topology of the overlay network had,
proposing methods that would help to dig and discover the
topology of the first p2p networks.

As discussed in [11], the size of the p2p networks con-
stantly grows as the size of the information that gets shared,
leaving the previous approaches and methods outdated. In this
approach, the authors included in the analysis non-intrusive
techniques able to track: the available nodes over time, the
traffic volume, and the host distribution in the network.

With the popularization of blockchain technology over the
last decade, new distributed protocols based on blockchain
technology appeared, e.g. Bitcoin and Ethereum. The im-
pact of these decentralized protocols has augmented in the
industrial and academic fields as shown in [12], triggering
remarkable attention on the p2p networks that they rely on.

Previous works [13] [14] [15] provide compelling insights
into the actual p2p networks of the most prominent Blockchain
protocols, Bitcoin and Ethereum. In these works, the authors
show methods to track the number of nodes on the overlay,
dig into the peer discovery over the network, and even some
light message exchange of information among the peers. In
this paper, we present the p2p network analysis over the Eth2
main net performed with our developed network crawler tool
that we name Armiarma.

The proposed approach leverages some previous ideas in
[16], [17] and [18], such as network crawlers as a tool to
exploit possible network weaknesses that might be a hazard
for the integrity of the protocol. As explained in those papers,
the information about the connections between the nodes that
form the network is as important as the information about the
nodes them-self. In this approach, we generate a study on the
new Eth2 p2p network, including the analysis of:

« the discovered topology of the Eth2 p2p network overlay.

« the distribution between the client types that are available

to participate in the network.

o network traffic insights from the GossipSub protocol.

III. ETH2 NETWORK ECOSYSTEM

On a large decentralized blockchain that involves so many
nodes and clients, the security and integrity of the protocol
relies on the healthiness of the network. Being able to debug
from inside all the occurring events, offers the possibility to
get an in-depth view of the network status and might even help
to prevent performance issues as well as more serious network
reliability problems or even security vulnerabilities. Escaping
from the complex and tedious work of generating specific
test cases for each of the clients, the community have tried
to develop tools to interact easily with the network, without
having to operate as a full client.

A. Rumor

Rumor is an interactive shell script tool for debugging and
testing the interaction between the Eth2 clients. Originally

started as a Eth2 networking tool written in Go, Rumor was
designed as an alternative to become the common platform
for testing the different Eth2 nodes in a less effort and
time-consuming way. By offering a set of commands that
can replicate most of the Eth2 network protocol interactions,
Rumor offers the abstraction from the code implementation
that makes setting a custom node, possible by simply tipping
a few commands.

The platform is based on an environment close to the
Bash shell that eases the test building labour, where some of
the Bash syntax (e.g., variables and control flow statements)
are accepted. Along with the scripting capabilities, Rumor
includes a complex system of sub-environments (known in
Rumor as actors) that allows to generate different nodes with
different properties simultaneously. The different nodes dis-
tributed along the different actors share the common environ-
ment, which perform as link between them. This environment
settles the possibility for the peers to exchange information,
needed to perform a synchronization of actions based on
constantly occurring events. The governance over the node
specs and its conduct makes Rumor the appropriate tool for
testing and debugging the Eth2 clients and their behaviour
under different conditions. The variety of commands that
Rumor offers is still on a developing stage, but it already
includes most of Eth2 networking specs such:

e Generate a ENR identity for the node needed to partici-
pate on some of the Eth2 protocols.

o The Eth peer discovery protocol dv5.1.

o Generate a peer database or peerstore of the connected
and discovered peers.

o Establish a connection with a given peer.

o Exchange Status and Metadata of the Beacon State with
the connected peers.

o Listen and publish messages on the GossipSub p2p
protocol used in Eth2.

e Send and respond to RPCs from and to the peers.

The different hosts configurations and behaviour strategies
can be deployed in different ways. If the desired test is not
too long, it can be launched from the rumor shell by typing
the commands in the desired order. For more repetitive tasks
or tests, the platform offers the possibility to read the list of
commands from a given file (e.g., script.rumor). For more
complex tasks, Rumor also offers the option to add a test-plan
into a service, allowing the test-case to behave as a server.

B. Node Discovery Protocol v5

As a decentralized platform, Eth2 tries to avoid any point
of centralization inside the proposed protocol. The networking
area, and more specifically the peer discovery, is not an
exception to this rule. The implemented GossipSub protocol,
despite being a protocol oriented to a message propagation
on decentralized applications, does not offer any kind of
peer discovery service. Leaving that application in charge of
this task. Eth2 developed its own node discovery protocol,
Discovery 5 (dv5), currently on its 5.1 version [19].



Dv5 focuses on the Ethereum Node Records (ENR) ex-
change along the peers. These node records are recorded in
a DHT. This DTH offers the possibility to sample and search
along the generated database, allowing to easily update the
node record of a specific peer if modifications are detected. As
entry point to the dv5 protocol, the nodes can start searching
for others that publicly advertise themselves on specific topics,
or as an alternative that improves the performance, a first
connection with boot-nodes is possible.

The peer discovery service is essential for the network
in general. New peers joining the network need connections
from where synchronize the chain. Peers that are already
on the network also need to update from time to time their
information source, ensuring that they are properly following
the head of the chain. Furthermore, to increase the resilience
of the network to Sybil attacks, dv5 provides a list of nodes
on the network that the node could connect at any point.

IV. METHODOLOGY

The approach proposed in this paper tackles the lack of
information about the performance of the GossipSub protocol
and the peers on the Eth2 main net. The developed tool,
Armiarma, is built on top of Rumor and it offers a simple
yet powerful method that provides meaningful data about the
p2p network and the Eth2 clients. The tool is divided into two
parts, the Armiarma crawler and the Armiarma analyzer, as
shown in figure 1 and described bellow.

A. Armiarma Crawler

Armiarma Crawler is the data gatherer part of the tool.
The crawler has been based on the Eth2 client debugging
tool Rumor, and its performance is linked to its ability to
discover and peer with nodes from the Eth2 network. The
crawler is a specific use case of Rumor, described in Figure 1.
On top of Rumor, we build the custom host, that together with
the modifications compiled in its repository [20], provides a
simplification of the data gathering, data processing and test
reproducibility processes. The crawler can be directly launched
from the tool, building autonomously the necessary environ-
ment to operate before it executes the chain of commands that
will initialize the custom host.
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Fig. 1: Scheme of Armiarma. Armimiarma additions to Rumor
in blue.

The initialization process starts with the host set up assign-
ing the IP and ports that will be used by the host. Followed

by the ENR generation, the Eth2 ENR identity gets generated
from the host info and by specifying the network that we
want to belong to. Once we advertise on the ENR of the
crawler that we participate on the Eth2 main net [21], a Beacon
Node is faked. Claiming to be at the genesis state prevents
the crawler from being penalized for not offering services
from the beacon chain, such as block synchronizations. To
successfully fake an Eth2 client and being accepted by the
rest of the peers, the custom host has been set up to be at
the genesis state of the Beacon Chain. After setting the host,
the GossipSub p2p protocol is initialized, joining the main
topics from the Eth2 specs. The PubSub protocol [22] Rumor
GossipSub implementation has been modified [20] to store all
the data gathered from the peers we get connected to, getting
from each of them:

1) Information about the peer: Peer Id, Node Id, Client
Type and Client Version, Pubkey, MultiAddress, IP,
Country, City and Latency.

2) The connection/disconnection events with the timestamp
of each event.

3) A Counter of every message we have received from each
peer on the five main GossipSub topics of Eth2:

¢ BeaconBlock

« BeaconAggregate AndProof
o VoluntaryExit

« ProposerSlashing

« AttesterSlashing

Once the host is fully initialized, the peer discovering
protocol dv5 [19] and the connectall Rumor services are
launched. This way, all the peers that we are able to find
through the dv5 protocol are recorded into a peerstore and
we attemp to connect with them. From all of those peers
that we establish a connection, the crawler would start to get
the messages from the GossipSub topics previously joined,
generating as well the metrics previously mentioned. To save
the metrics, a new fucntionality has been added, to exporting
the recorded data into the previously defined test-project.

B. Armiarma Analyzer

While Armiarma crawler is focused on the interaction with
the p2p network, recording into a database all the events
and peer information, Armiarma analyzer gets in charge of
performing an analysis on the raw information gathered. At the
moment, the raw data parsing gets done by the crawler itself,
exporting periodically the final metrics into a csv file. This
exported metrics compiles the individually processed data for
each of the nodes. During this parsing process, the format of
several items gets sorted or modified, aiming to ease further the
data analysis. One of those format modifications corresponds
to the count of the recorded connections and disconnections
events, that serves to obtain the total connection time of
each peer. The analysis of the metrics gets performed in a
subsequent moment when the user executes the commands on
the tool. For that the Analyzer will work over the metrics
from the given project-folder. In the analysis, the analyzer
performs some filtering and analysis methods producing as
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result human-readable graphs. The obtained compilation of
graphs and their insights will be discussed in section V.

V. ANALYSIS

In order to test the capabilities of the tool, we performed an
experiment in which we let the crawler run for several days
collecting as much data as possible. The crawler has been set
on a cloud server with limited resources, trying to replicate a
low-computational power environment. The machine hosting
the tool has 2 Intel Cores at 2.3GHz and 7GB of RAM, 50 GB
of storage, and 250 Mbps of network bandwidth. The exact
running period of the experiment is from 2021-06-19 to 2021-
06-26. The discussion of the results obtained from the analysis
has been divided into the three subsections described below.

A. Eth2 Network Analysis

In blockchain protocols, the network’s security relies on a
high number of nodes working together. The network has a
margin of peers that can go offline without necessarily leading
to the protocol crash. Eth2 needs at least 66% of the validators
actively attesting blocks to finalize [23].

The first part of the analysis consists of having the crawler
get a list of peers and connect to them. From the aggregation
of 17516 peers discovered by the dv5 protocol over the seven
days of crawl, the crawler could connect with only 8980 of
them. We were expecting a higher connection rate. However,
temporary disconnections or validators migrating from one
client to another could not be the only reason for the non-
connected peer ratio. The current implementation of the Eth2
main clients does not tent to keep the previous public keys
for the beacon node whenever this one is rebooted. This
choice increases the privacy of the validator hosted behind
the node but also increases the chances of counting no longer
active peers. It is possible then that the previously mentioned
8980 connected peers measurement includes double-counted
or rebooted peers. The observed distribution could also be
affected by a non-port forwarding configuration by some of
the non-connected peers. Those peers stay under the protection
of the ISP firewalls, preventing us from initiating the peering
handshake.

At the moment, we estimate that around 5000 unique active
nodes are participating in the network. However, from the
peers we managed to connect with, only 4415 of the successful
connections were actively started by the crawler, while the
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other 4565 of the peerings were incoming ones, as we can
appreciate in Figure 2. As previous works [8] [10] points out,
the base of some p2p network it’s likely to rely on a small
portion of peers from the entire network. Often called core-
peers or super-peers, these peers compound the nucleus of
the network. These are peers that it is easy to connect with
and transmit information reliably. The 4415 peers we managed
to connect and exchange data easily could represent a good
portion of that nucleus of the network. Previous work [24]
shows that in a network such as the Eth2 (based on PoS), peers
must show stability. This is expected since the disconnection
of validators leads to economic slashing. From now on, we
will refer to those peers that show stability as steady-peers.

Taking a closer look, in Figures 3, we can observe that from
all the peers we tried to connect, the ones that failed reported
different errors as a result of the dialing attempt. In the figure,
we appreciate that 1081 of the peers reset the connection, 4132
of them reported an uncertain error, while 7812 of the peers
reported a timeout error in the attempt to dial a connection.

We can categorize two kinds of peers in this group: the
active, reachable, and stable ones, and the active but not
reachable peers. The first ones provided most of the messages
that we saw. Meanwhile, the second type could reach the
crawler via opportunistic requests and drop the connections
once a reply is received. Furthermore, we note that the crawler
does not fulfill all the functionalities of a full node. Therefore,
requests for chain information or blocks are directly dropped
from our side. Despite this apparent difference between the
peer types, we also see in Figure 4 differences in the time
we have been connected to the peers. These variations are
related to the pruning process of the GossipSub protocol. This
process aims to keep a predefined number of peer connections.
Several client implementations reduce the maximum number
of peers the node can connect to keep the computing power
and network bandwidth low.

Blockchain networks are geographically distributed all
around the world. Having the peers distributed means that
the peers are less likely to get affected by the same type
of regional problems or events (e.g., National censorship).
In Figure 5, we can appreciate that almost half of the peer
distribution concentrates in two countries, the US (32,65%)
and Germany (10,37%). Note that for visualization purposes
the figure only displays countries with more than 100 peers
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over the 97 countries compiling the total list.

In a decentralized network such as Eth2, low latency
connections are essential for tracking every occurring event
as fast as possible. In this case, on the Eth2 Beacon Chain
protocol, there is a new Slot event every 12 seconds, which
means that every 12 seconds, a randomly chosen validator
will have the chance to propose a Beacon Block and therefore
receive the token reward. In Figure 8, we can observe the
Round Trip Time (RTT) of the latest connections that the
crawler recorded while being connected to the peers. The RTT
measures the time duration that it takes since we send a request
to the destination peer until we receive a response. The latency
between the destination peer and us is half of the RTT or lower.
We can observe that the majority of peers stay with an RTT
below three seconds!, having an outlier with a 67.049 seconds
RTT. Note that the crawling process was done from a node
located in Frankfurt and that the RTT includes the time the
requester took to process the request. Thus, peers situated on
the other side of the world, and peers with a higher work load
would usually report a higher latency, e.g., the outlier peer
with an IP from the Diisseldorf (See Section V-C).

B. Eth2 Clients Interaction

Currently, there are five Eth2 clients available to participate
on the network. With our tool, we were able to detect which
client is used by each connected peer, and it is even possible
to get the version they are using, as shown in Figure 6. Note
that unknown peers could participate on the network as boot
nodes, other crawlers, possible attackers, or just peers that did
not report their client in the metadata. Also, we could see
how many versions of each client are out there in the wild, as
shown in Table I. This is useful because we can observe over
a long period how client teams deploy new versions and how
fast users update their clients.

As we can see in Figure 6, Prysm is the most connected
client with 82.9% of the connected peers (7446 peers). In
contrast, in the Peerstore, we observe that 62.84% of the peers
use the TCP port used by Prysm clients (13000), showing that
most nodes in the Eth2 network are using Prysm Clients, but
in a lower percentage that the one observed by the crawler.

'Note that some peers do not have any measured RTT assigned because
the crawler didnot receive any answer from them.

2 Although it is possible to change the dialing port of the host in all the
clients, the percentage of users that change it to this one is low.
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distribution.

There are two main reasons for this disparity. First, the figure
does not show all the peers the crawler discovered, but only
those it managed to exchange peer metadata with.

Finally, issues related to port-forwarding also played a role
in preventing some connections. To better understand how the
client distribution represents the network, we calculated an
estimation based on the advertised port and the observed dis-
tribution from those peers with whom we exchanged metadata.
As shown in Figure 7, we can see that Prysm is the most
dominant client in the network, followed by Lighthouse and
Teku. This large disparity and lack of software decentralization
is somehow concerning (See Section VI).

TABLE I: Number of versions observed of each client.

Lighthouse | Teku | Nimbus | Prysm | Lodestar | Unknown
17 17 1 29 1 1

On the behavior comparison of the different clients with the
crawler, we can observe several differences. First, we compare
the average number of connections and disconnections for each
one of the clients, as shown in Figures 9 and 10. Please note
that the tool was not launched, prioritizing the quality of the
connections. It was prioritizing a larger number of connections
from the Peerstore nodes. We can appreciate how the client
distributions get mirrored in the number of dialed connections
and disconnections in the figures. Prysm is the client type with
a higher average in the perceived dialing events from those
identified peers of the same client, followed by Lighthouse,
Teku, Nimbus, and Lodestar in that order.

However, the number of connections does not equate to con-
nected time because clients could attempt multiple connections
while still disconnecting shortly after the connection has been
established. Therefore, we keep track of both connections and
disconnections, allowing us to have accurate total and average
connection times. Thus, we plot in Figure 11 the average
amount of time (in minutes) that each type of client was
connected to our network monitoring tool.

We can observe that the results that Figures 9 and 10 do
not match directly with the one observed in Figure 11. While
Prysm was showing a high level of activity on the dialing
events, the average time spent connected to our crawler gets
reduced to the second position. A similar relation can be ob-
served in the other clients with the clear exception of Lodestar.
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The surprising difference between the perceived dialing events
and the average connected time of Lodestar stands up. Despite
having a low connection ratio, Lodestar peers showed a high
level of stability on the performed connections. Several aspects
could influence the observed phenomenon.

First, we should point out the different peering strategies
adopted by the clients while implementing the GossipSub
protocol. While some clients can adopt more strict approaches
to make sure their peers are contributing to pass information,
others like Lodestar seem to have more flexible approaches,
allowing for long connection periods.

In this case, we can see that the peering strategy we selected
for the tool also added a bias to the averages. By prioritizing
the number of connections over their quality, the tool drops the
chance to connect to a stable peer if more unidentified peers
are in the Peerstore. Thus, prioritizing for new peers instead
of stable ones, plus the number of incoming connections,
influences the connected time observed to each client.

On the other hand, computing the average of the metrics
could also affect the observed results. The connections, dis-
connections, and the connected time get calculated from the
aggregated connections and disconnections of all the nodes
from a client type, divided by the number of nodes from the
same type. The method used to obtain the averages leads
to disperse any outstanding peer from the most connected
client types. Meanwhile, for the lowest dialed client types,
this average can get biased as it happens with Lodestar.

The combination of the low number of connection events
and the low connected time on average for the Prysm nodes
leads us to think that many Prysm nodes are behind non-
forwarded ports or ISP firewalls. At the same time, it also
leads us to believe that incoming connections tend to be more
opportunistic than stable connections in the general term.

The time connected to a peer does provide some insight
into the stability of the client. Some clients might be more
aggressive than others pruning peers to avoid bad actors.
However, this does not say much about the different clients’
participation in the network. For that, we measure the total
number of Beacon Block, and Aggregate and Proof messages
received from each peer, grouping them by type of client.

As observed in Figures 12 and 13 and as it was expected, the
clients that in average have more stable connections tends to
share more messages. In an attempt to understand a little better
why Lodestar, Prysm, and Lighthouse are the most chatty of

Fig. 9: Average connections to peers
classified by client types.
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the clients, we studied the average RTT for each client. In
Figure 14 we can appreciate that Nimbus got over x4 RTT
and over x18 RTT for Lodestar with respect to the rest of
the clients. As previously mentioned, peers like the Lodestar
outlier exposed in Table II can significantly impact the average
RTT of the clients, in particular when a client has only a few
peers connected to the crawler.

Leaving the type of client aside, we also wanted to see if
all peers communicate in relatively similar amounts or if any
node is communicating significantly more than others. Thus,
we plot in Figure 15 the number of beacon Block messages
received from each peer.

One of the modifications that make this analysis unique is
the modification that Armiarma implements on the GossipSub
p2p protocol. The original protocol saves network bandwidth
consumption by only sending the metadata of a message with
nodes outside the mesh before sending the whole message. If
the receiver has not seen the message before, then it asks for
the entire message to be sent, if it has seen it before, then it
does not ask for it. In addition to that, even for peers inside
the mesh, if the message has already been seen, GossipSub
does not forward this to the client application. Thus, future
messages that have been seen from different peers will not be
received. Our modification on the GossipSub protocol allows
forwarding the message to the application even if the message
was seen before, allowing the crawler to keep track of all the
network traffic without increasing it.

In the results we can appreciate which nodes take the role of
steady-peers, situating themselves in the center of the overlay.
As we can see, two peers communicated over 2000 Beacon
blocks, while the large majority of the peers did not share
more than 100. More precisely, 90% of the BeaconBlocks
were received only by 0.31% of the peers, while 99.69% of
the peers transmitted less than 15 Beacon Blocks. The high
number of network traffic perceived from just the 0.31% of
the network highlights how the Eth2 p2p network still shares
the same network topology as the ones previously mentioned
on Section II. This topology also explains why some nodes
are more chatty and share faster than others.

In addition, we analyzed how many messages peers send
concerning the time they keep connected. A node transmitting
too many messages in a short connection time could signal a
deny of service (DoS) attack. In contrast, a node with a very
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Fig. 14: Average Round Trip Time (RTT)
classified by client types.

long connection but very few or no messages could signal
an attempt of an eclipse attack. The distribution is shown in
Figure 16. Note that in this figure, we count Beacon Blocks as
well as Proof Aggregations messages. The distribution shows
a dense cloud of peers that stayed connected between 0.01
and 1 minutes and transmitted between 0 and 1.000 messages.
Particularly interesting is the case of the dot in the top right
of the figure. This peer transmitted almost 230,000 messages
and stayed connected for around 1.5 hours. We could call this
a steady-peer because it shows an extremely stable connection
and participation on the beacon data transmission.

TABLE II: Example of Gathered Information from a Peer

Data Type | Information
Client Type | Lodestar
Client Version | 0.30.2
Country | Germany
City | Diisseldorf
RTT | 67.049

Connections | 1
Disconnections | 1
Connected Time(min) | 86

Beacon Blocks | 430
Beacon Aggregations | 42508
Total Messages | 42938

C. Individual Peer Analysis

The previous analysis performed on the Eth2 network shows
a global view of the network. The gathered data can be used to
analyze peers individually. We could extract a large amount of
information regarding specific peers. To showcase an example,
we show on Table II the data extracted from one of the peers

Peers Connected

Fig. 15: Number of Beacon Blocks Re-
ceived from each Peer.
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5

Connected Time (Minutes)

Fig. 16: Total messages for Connected
Time.

in the network. We have omitted sensitive information for
security and privacy reasons as peer Id, node Id, the public
key, and IP related to the peer. This peer showed an unusually
high RTT, which caught our attention. Combining the tree
analysis that we presented can help us monitor and keep track
of nodes suspected of malicious behavior. This demonstrates
that the used techniques and the tool could be used for security
purposes and the network status study.

VI. DISCUSSION

This paper presents the observed geographical and client
distribution in the recently launched Eth2 Beacon Chain. We
found that although the platform incentivizes decentralization
for security purposes, decentralization is not entirely achieved
yet. The network crawler has identified that almost 43% of the
17,516 crawled nodes in the network are located in the US
and Germany, representing the opposite of a geographically
decentralized network. Previous works [25] have demonstrated
that the networking performance completely relies on the
location of the node. This means that nodes in regions far from
the mentioned two countries could be in disadvantage, which
could in turn lead to some level of geographical centralization.

In addition to the geographical distribution issue, the pre-
sented work displays that the network could be facing a critical
mono-client dependency. The performed estimations show that
about 62% of the network relies on the same single client
type, which could mean a finalization crisis if a vulnerability
or bug is found in this particular client. This is one of the most
critical points this crawler analysis highlights, because a bug
impacted that specific client in April 24th causing finalization
issues during multiple hours [26].



We also analyzed the number of validators in relation to
the number of Beacon nodes, and in relation to the number
of IP addresses observed in the network. With 179, 825 active
validators and 17,516 crawled peers in Eth2 at the moment,
we can estimate that there are around 10 validators on average
hosted behind each of the Beacon nodes. We also observe
that from the 6635 successfully identified peers (37% of the
peerstore), 530 share the same IP address with at least one
more node. In fact, we observed that 100 of the identified
IPs host more than 4 Beacon nodes at the same time. So far,
the analysis represents that 1.5% of the identified IPs host
9.8% of the identified validators. This again, points to a level
of decentralization lower than the ideal one targeted with the
transition from PoW to PoS.

Overall, this crawler analysis highlights several concerning
points for the recently launched Eth2 Beacon Chain. From
several perspectives, geographical-wise, implementation-wise
as well as the physical hosting of the Eth2 validators, we have
observed a not ideal level of decentralization. The target goal
was that anyone, anywhere with a low-power device, such as
Raspberry Pi, could participate in the Eth2 network. This is
technically feasible today, however in practice we observe a
completely different picture. One reason for this could be that
the network is still very young and Eth2 has not been fully
deployed yet. However, we believe it is important to boost the
efforts to guarantee a much higher level of decentralization.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented some of the results we
extracted from the Eth2 p2p network analysis. The collected
information, transparently gathered with our network monitor-
ing tool Armiarma, allowed us to get a solid overview of the
network state. Our results show the healthy behavior in the
network but also some concerns regarding decentralization.

The introduced study identified certain geographical, client,
and possible IP/Entities centralization degrees that could mean
a potential hazard at any point of the networks’ performance.
This work intends to report the inconsistencies that the net-
work is facing on its path towards this new Eth2.

Even though the presented analysis provided meaningful
network insights about the Ethereum?2 networks’ topology, we
are aware of the current limitations that the Armiarma tool
has. Our future plan is to extend the analysis with a deeper
track of the received messages, optimize the currently used
methods to achieve a larger number of identified peers, and
upgrade the tool towards a distributed crawling strategy that
would allow us to perceive more accurate peer information.
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