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Abstract—RISC-V has emerged as a viable solution on
academia and industry. However, to use open source hardware
for safety-critical applications, we need a deep understanding
of the way in which well established mechanisms for testing
and reliability could be integrated and deployed on the RISC-
V ecosystem, and we need a clear knowledge on how such an
ecosystem can be leveraged to improve security. This paper
includes four contributions presenting the potential of RISC-V
in security research, the way in which RISC-V can be hardened
against power analysis attacks, how to implement, using RISC-
V, software and hardware/software solutions for dual core lock
step, and how to perform system-level testing in the RISC-V
ecosystem.

Index Terms—RISC-V, Security, Side Channel Attacks, Relia-
bility, Testing

I. INTRODUCTION

RISC-V has emerged as a viable solution on academia and
industry. Pushed by the success of RISC-V, many other open
source hardware projects have started and it is certainly to
be expected that even more of them will start in the near
future. However, to use open source hardware for safety-
critical applications, we need a deep understanding of the
way in which well established mechanisms for testing and
reliability could be integrated and deployed on the RISC-V
ecosystem, and we need a clear knowledge on how such an
ecosystem can be leveraged to improve security. To this end,
this paper includes four contributions and addresses issues
related with the use of RISC-V based architecture in the
context of security, reliability and testing.

The first contribution, provided by Frank Giirkaynak from
ETH Zurich, summarizes the reasons behind the success of
RISC-V and discusses its potential as a platform for research-
ing and developing secure solutions. Among the reasons that
makes RISC-V a suitable platform for security research there
are: the community that is supporting it and the way in

which the governance is organized, the fact it was designed
and developed to be easily extended, and the fact that it is
accessible.

The second contribution, provided by Elke De Mulder, He-
lena Handschuh and Mike Hutter from Rambus, after a short
introduction on side-channel attacks, presents an overview
of the state of the art industrial and academic approaches
for making RISC-V robust against these attacks. Reported
approaches include gate-level masking in hardware, software
only based solutions, instruction set extensions for DPA-
resistant coprocessors and protocol level solutions. The con-
tribution concludes discussing testing strategies for assessing
the robustness achieved by the protections.

The third contribution, provided by Jaume Abella, Sergi Al-
caide, Francisco Bas and Leonidas Kosmidis from Barcelona
Supercomputing Center (BSC) and by Carles Hernandez from
Universitat Politecnica de Valencia (UPV) focuses on safety-
related systems that require high integrity. It presents a RISC-
V based implementation of a dual core LockStep system. In
these systems, two cores provide redundancy with sufficient
independence, but the the number of user-visible cores is
halved. This issue is addressed by SW-only and HW/SW
solutions to enable diverse redundancy without needing strict
dual core LockStep.

The fourth contribution, provided by Jens Anders, Steffen
Becker, Nourhan Elhamawy, Ilia Polian, and Stefan Wagner
from University of Stuttgart, and by Matthias Sauer from
Advantest Europe, describes the specific challenges in making
system level testing part of an open ecosystem enabled by
the RISC-V instruction set, where some of the information
required may not exist. The contribution will present the first
results on coverage achieved by structural and system-level
test approaches on RISC-V processor and its submodules.



II. POTENTIAL OF RISC-V IN SECURITY RESEARCH

As an open instruction set architecture (ISA), RISC-V is
attracting considerable amount of attention both from the
industry and academia. This popularity is also mirrored in
security research where an increasing number of publications
and projects are built around RISC-V based solutions. This
despite the fact that RISC-V is by far not the first available
open-source ISA, as of 2021 does not yet have a market
share to compete with more established commercial ISAs like
ARM and Intel, and arguably does not inherently offer added
security that can not be replicated by other ISAs. It is therefore
important to discuss what makes RISC-V suited for security
research.

A. RISC-V has a thriving community

One common misconception around open source is that
being open is its key ingredient. This unfortunately is not true.
There are far too many open source projects, most of which do
not enjoy the type of popularity and reach of (as an example)
Linux, GNU C compiler, Apache, and RISC-V. What makes
an open source project, relevant and attractive is actually its
user base.

An open source project gains popularity not only through
technical merit, but also through its governance and its main
supporters. RISC-V was originally developed as an internal
project of the University California Berkeley between 2010-
2015 [1]. In 2015, the RISC-V foundation, with 36 found-
ing members (that included large corporations like Google,
IBM, Nvidia, Qualcomm and Western Digital), took over the
maintenance of the ISA description [2]. The foundation, and
its broad support from the industry allowed RISC-V to get a
considerable head start and contributed to its popularity.

It is also important to note that, the RISC-V foundation,
and later RISC-V International does not manage or make
available any open-source RISC-V implementations but only
manages the standard specifications. This turned to be a
key point in the success RISC-V. The ISA essentially ties
the efforts between the software infrastructure (compilers,
emulators, operating system ports, development tools) and
hardware implementations together, but does not dictate how
each can be implemented, significantly reducing disagreements
on implementation details. In addition, while the ISA is free,
it allows processors implementing the RISC-V ISA to be
designed without licensing restrictions thereby allowing both
open source and commercial implementations.

The last factor in the popularity of RISC-V is undoubtedly
the timing. The continuous development in microelectronics
industry has resulted in a phenomenal degree of integration
where System-on-Chips (SoC) that feature several processor
cores have become commonplace. This relegated the proces-
sors from the main part of high-end IC design to a commodity
building block. The RISC-V ISA and its early implementations
were available just at the time where individual processor
cores were both more in demand, and their individual technical
properties started to be less critical. Many projects, products
needed a processor here and there to do the job, and RISC-V

was increasingly up to the task more of the time than less.
As a result, in 10 years, under the stewardship of RISC-V
International RISC-V has amassed a large community that
remains very actively involved.

B. RISC-V has been developed with extensions in mind

From the beginning RISC-V has put a large emphasis
on being flexible and extensible. The ISA (like some other
commercial ISAs) is designed around a base ISA that contains
only a handful of instructions. This can be extended by
additional modules. RISC-V defines actually three families
of this base ISA for 32, 64 and 128 bit architectures. The
additions (usually with a single letter to describe them) can be
combined to form more capable architectures, so for example
RV32IMCEF, defines a processor with the 32 bit Integer base
with extensions for Multiplication, Compressed instructions
and single-precision Floating point support.

All extensions are being governed by working groups and
are ratified by RISC-V members after a review process. While
the process is open and transparent, it takes quite a bit of
time until an extension is ratified. As an example, the vector
extension for RISC-V was proposed in 2015, and the official
v1.0 version is still being refined [3].

But what makes RISC-V more flexible is the fact that
portions of the instruction encoding space have been reserved
for user extensions. Users are free to develop their own
instructions, and as long as they use the reserved space,
their implementation will maintain compatibility with standard
RISC-V. This allows users to experiment with various exten-
sions while continuing to benefit from the RISC-V ecosystem.
As a recent example, the authors in [4] suggest and evaluate
the use of an additional fence . t instruction to flush all state
holding micro-architectural components to mitigate timing-
channel attacks in a 64 bit RISC-V core. Such experiments
and results are then used in working groups to argue and in
some cases ratify new and/or modified extensions.

Since there is no official or canonical RISC-V imple-
mentations, RISC-V is not encumbered with implementation
decisions that affect the rest of the system. For example,
replacement policies used for caches (or even the memory
hierarchy), the type of branch prediction or the interconnect
subsystem are not part of the RISC-V ISA description. This
has allowed many completely different RISC-V implementa-
tions that cover a much larger micro-architectural space than
any other commercial ISA. In other words, RISC-V has to put
effort to remain flexible enough to support the diversity of its
implementations, which make it much more amenable to be
adapted and extended in new ways.

C. RISC-V is accessible

As described above, RISC-V has a large user base, a
stable governing body and support from major industrial and
academic users. In a very short time frame RISC-V has risen
from a tool for teaching computer architecture classes to a
well-liked and used processor system that has established
firmly itself.



As an open source ISA, there are many available RISC-V
implementations that are being made available as open source
hardware (as opposed to many commercial RISC-V offerings),
some with significant industry backing such as those from
Western Digital [5], OpenHW Group [6], LowRISC [7],
and some popular implementations by UC Berkeley [8], IIT
Madras [9], ETH Zurich [10], Charles Pappon [11] and Claire
Wolf [12], covering a wide range of implementation languages,
styles and targets. This diversity ensures that no matter what
the background and application field, it is possible to find
a suitable, mature open source hardware implementation of
RISC-V to use.

In fact, the openness of RISC-V implementations has proven
to be one if its main assets. Even commercial companies that
develop their own proprietary processors realize that concepts
and ideas can easily be demonstrated on an open RISC-V
platform. This allows companies to co-operate with others
without divulging any company secrets. Development and
evaluation is performed on an open RISC-V platform that is
unencumbered by any restrictions. Once the viability of the
idea has been demonstrated, the company can then continue
to adapt the techniques internally on their own architectures.

Open hardware platforms have also provided researchers,
especially in the security field, unprecedented access to the
internals of the processor. Implementation details of processors
that remained hidden, either intentionally or due to lack of
documentation became accessible to all that are reasonably
proficient with the languages that the open hardware has
been described. This has facilitated systematic analyses of the
systems, rather than ad-hoc methods that had to guess how
certain functions were implemented.

Of course, there is the most obvious asset that open source
RISV-V implementations have provided security researchers:
they have the ability to make any and every change to
a working processor and directly evaluate the efficacy of
their proposed changes and compare the implementation cost
directly. Instruction set extensions, additional accelerators,
adding checksums, tags for control flow integrity, every
possible countermeasure, hardening feature can directly be
implemented on the actual running system and evaluated.

In summary, The major attraction of RISC-V as vehicle
for research in computer architecture related fields is actually
the combination of these three effects. It has a large user
base, it is designed to be extendable, is not tied to a specific
implementation, and a diverse set of mature open source
implementations are available for researchers to use.

III. THWARTING DIFFERENTIAL POWER ANALYSIS
ATTACKS ON RISC-V PROCESSORS

Side-channel attacks (SCA) on cryptographic implemen-
tations are a class of attacks which make use of physical
information collected from a device executing said imple-
mentation. We will only focus on passive side-channels. The
most common are power, timing and electromagnetic radia-
tion. Those easily measurable quantities depend on what is
happening inside the device under test (DUT). This entails

that in the case where a cryptographic implementation is
running on the DUT, the side-channels contain information
on the internal state of the algorithm, therefore breaking the
original cryptanalytic assumption that the only information
an attacker has at hand are inputs and/or outputs to an
algorithm. Indeed, the side channels contain information about
the intermediate states of the cryptographic block throughout
the entire computation and those intermediate states typically
only depend on a partial key instead of the full key like the
output would. A typical side-channel attack combines side-
channel information, intermediate state values, cryptanalytic
and statistical techniques to verify guesses of a partial key
in timing, simple power analysis (SPA) or differential power
analysis attacks (DPA) [13].

Software (SW) as well as hardware (HW) implementations
are vulnerable to Side-channel Analysis (SCA) attacks, but
protecting software implementations has the additional diffi-
culty in that they run on processors of which the implemen-
tation is typically unknown to the developer. This can lead
to a whole array of, at first sight, inexplicable leakage. It
is a problem which is being studied in academia [14]-[21],
but a generic, provable solution for the problem has not been
found yet. While some of the leakage can be explained with
knowledge of the ISA of the processor, other leakage can
only be explained by knowing the exact micro-architectural
implementation of the processor and the exact sequence of
low level code which is being executed. The leakage can
occur inside or be caused by all processor elements that
handle secret data including, but not limited to the Arithmetic-
Logic-Unit (ALU) in the data path, the register bank, internal
and external memory, the control path, the branching unit,
JTAG etc. All components need to be analyzed and protected
carefully. In the following section we will exclude leakage
caused by speculative execution, the so called Meltdown and
Spectre-like attacks [22], [23] and focus on the traditional DPA
style attacks. Similarly, we will exclude fault attacks, for more
information on those see o.a. [24].

A. Problem description

There are several classes of leakage, for the sake of sim-
plicity we distinguish three different types: direct-value, value-
combination ( overwrite leaks ) and circuit-level leakage. By
using masking, a well-known countermeasure against passive
SCA, where, rather than doing calculations on real values, the
values are split under some operand into uniformly distributed
shares and the calculations are performed on those shares in
such a way that the result can be reconstructed afterwards,
direct value leaks are avoided. A common masking scheme
is dt"-order Boolean masking, where d shares combined with
the Boolean XOR operation create the real value, = being
processed, 1 P xa B ... Pxry = .

Value combination leakage occurs when all shares of a
secret get combined in the processor. A simple example is
the overwrite of the two shares of a 2"¢ order Boolean
masking scheme in the register bank, but this process can
occur at multiple other locations, like data transfers on a



bus. A typical countermeasure is to randomly precharge or
clear registers as in [25]. Since the actual flow of a share
throughout the processor is not known, even a carefully written
software implementation cannot always avoid this effect and
as a consequence code cannot be ported easily between CPUs.

A third class of leakage is circuit-level leakage, at the gate
level. In CMOS, a Boolean gate usually does not only make
a bit transition in every clock cycle but the gate output can
toggle several times depending on the value and signal arrival-
times of the inputs. These glitches are a substantial contributor
to the dynamic power consumption and they can create strong
leakage. Masking techniques are necessary that split up the
computation into independent processing streams or domains.
Examples are techniques that are based on secure Multi-Party
Computation (MPC) or Threshold Implementations (Consol-
idated Masking Schemes, Domain-oriented Masking, etc.).
Any cross-domain link (or interconnection) between hardware
components that stores or processes all shares of a secret will
cause leakage.

A pure software solution can become quite expensive due
to the need of a high order masking scheme or due to
a significantly larger design time when the implementation
needs to be small and fast. To demonstrate the challenge of
creating a software only solution, we will describe some of the
leakage which can occur by a simple Boolean masked AND
operation with 2 shares as described in Alg. 1.

Algorithm 1 Boolean Masked AND
Require: Boolean masked value X as (Xo, X1) such that X, @
X1 =X and value Y as (Yo,Y1) such that Yo @Y1 =Y
Ensure: (Zy,Z1) such that Zo ® Z1 = Z with Z =X AY
1: Generate a random value M

2 Zo=21=M
3:T=XoAYo
4: 21 =721 T
5:T=X1/ Yy
6: Z1=71DT
7. T=XoAY1
8 Zh=710T
9 T=X1/ "Y1
10: Zr=216T

Every intermediate is independent of the secret values X,Y
or Z, we therefore do not expect direct-value leaks. But taking
a look at which values are consecutively computed upon by
the AND logic part of the CPU, one can see that X in
Step 3 and X; in Step 5 are consecutively used as the left
side of an AND operation which means that we have to see
whether the Hamming distance of these values are not related
to any secret. Unfortunately, the Hamming distance equals
X which is a secret, hence the algorithm will have to be
rewritten to take this into account. A little less straightforward
is that the values of 7" in Steps 3 and 5 are not entirely
decorrelated from the value X because of the use of the AND
operation which means that updating the register associated
with consecutive 7" values will cause side-channel leaks. In this
case, the software developer will have to keep this in mind and
find a suitable solution. The end result is either an algorithm

Pipeline Unit
S SLTTER » Debug
--------------- BranCh sessevenrrrrense
: Predictor :
v v
IF D » OF -» EX > WB #:-eereeee » CSR Block
A A A A
. ......... H .
: Masking
Register File — aeeeceeecnancienaad s
: PRNG
iMem dMem
v A
AXI Master

External Bus
S (ax)

v

Fig. 1. SCA-hardened processor from [28].

which will require significantly more instructions and/or the
usage of more registers or memory, thereby wasting important
resources. On top of this, the development cycle will be longer
because every change in software needs to be tested against
side-channel leakage again.

B. Solutions in literature

In [26] the authors describe the design of a SCA-hardened
and flexible processor design based on the open-source V-scale
RISC-V processor, a single-issue in-order 3-stage pipeline
design. The processor can be synthesized to protect against
SCA attacks of arbitrary attack order. The solution describes
how the ALU operations are protected by using domain-
oriented masking (DOM). DOM is introduced in [27]. The 3-
stage pipeline is transformed into a 4-stage pipeline by creating
a separate decode and execute stage. Care has been taken that
there is no accidental leakage through the addition of merging
buffers. A PRNG is added for the necessary randomness.
The memory interface is not protected. For efficiency reasons,
the division/multiplication unit, address calculation, and data
comparison for conditional jumps is not protected.

In [28], an instance of an SCA-hardened processor is
introduced based on a single-issue, in-order, 5-stage pipeline
architecture. A graphical representation of the processor is
given in Fig. 1. The blue elements are the parts which have
been altered to ensure DPA resistance. In contrast to [26] the
memory interface is also protected. This solution is designed
to be 1st-order DPA resistant and doubles the register file. The
ALU is protected similarly to [26] but uses a d 4+ 1 Threshold
Implementation [29] instead of DOM.

The authors of [30] follow a more heuristic approach. They
devised a flow which characterises and pinpoints the most
leaking modules in a processor, they demonstrate the principle



on RISC-V. After identification, they mitigate the leakage
by introducing a set of countermeasures without relying on
traditional masking techniques. Instead their countermeasures
vary from simple modifications of the HDL code ensuring
secure translation by the EDA tools, to obfuscating data and
address lines. Their goal is to reduce the leakage discovered
during the initial detection phase, therefore, while their design
approach can be applied to a wide variety of processors, the
reduction of the leakage is only partial due to the limitations
of the initial profiling phase.

A DOM ISA is proposed in [31] where a protected and
unprotected datapath coexist in the same processor and de-
pending on the sensitivity of the operations one or the other
can be chosen by the developer. To eliminate leakage the
two datapaths are kept completely separate. Earlier work [31]
provided custom instructions that support masking as well as
bitslicing and fault detection, all of which could be layered.
However, to use it, the software developer was burdened
with bitslicing the code and had to pay special attention in
allocating registers for their variables.

C. Testing

Testing a DPA-secure processor is not a trivial task. The
more complex a processor, the more modules and code se-
quences can create leakage. As with any testing, covering all
(corner) cases is a difficult task. Most of the papers listed here
use a form of Test Vector Leakage Assessment [32] (TVLA),
namely fixed-versus-random input testing. Since testing for
these processors is not yet standardized, it still requires quite
some knowledge and expertise from the developer, but the
TVLA framework provides a first step in easing the job
and is already being used by many organizations including
certification labs and development teams to assess the most
well-known cryptographic algorithm implementations against
side-channel leakage.

IV. SW-ONLY AND HW/SW SUPPORT FOR DIVERSE
REDUNDANCY FOR HIGH-INTEGRITY APPLICATIONS

The increasing popularity of RISC-V brings abundant op-
portunities to leverage hardware IP and software tools from
the RISC-V ecosystem for their use in many domains. Due to
this, industry for high-integrity and/or edge systems has started
developing their own hardware/software (HW/SW) platforms
on RISC-V [33]-[35]. However, whenever those systems in-
herit some safety requirements, specific support to implement
safety measures efficiently is needed. For the highest criticality
functionalities, those safety measures include some form of
diverse redundancy so that a single fault, despite affecting all
redundant elements, cannot lead to exactly the same error,
which might escape detection. However, RISC-V platforms
available do not offer support for diverse redundancy yet. In
this section, we present some ongoing research activities aim-
ing at closing this gap with so-called light lockstep solutions.
First, we provide some background on the problem of diverse
redundancy, then we introduce SW-only solutions, and finally

we present HW/SW approaches aiming to deliver such diverse
redundancy.

A. Background on Diverse Redundancy

Common Cause Failures (CCFs), in automotive terminol-
ogy [36], are those failures caused by a single fault that makes
safety measures, such as redundancy, ineffective. For instance,
two identical cores executing the same task redundantly fully
synchronized have the same state, and upon a common fault
(e.g. a voltage droop) could experience the same error. To
avoid CCFs, safety-related systems implement redundancy
with some form of diversity so that the risk of experiencing
identical errors in redundant elements is residual. In the case of
storage, this is usually achieved using Error Detection Codes,
in the case of communications using Cyclic Redundancy
Check codes, and in the case of computation using some form
of lockstepped execution where two or more identical cores
execute identical software but with some staggering (i.e. time
shift) so that cores’ state is sufficiently diverse.

To allow RISC-V platforms being adopted in safety-related
systems, some form of lockstepping support is needed. This
can be achieved with tight lockstepping, where only one re-
dundant core is visible at software level and the others can only
work in lockstep mode, as done, for instance, by the Infineon
AURIX microcontrollers for the automotive domain. Tight
lockstepping at core level can be implemented with different
flavors. For instance, one could compare the outcome of each
instruction or even each pipeline stage every cycle. However,
the most effective solution has been shown to compare only
off-core activity (e.g. requests visible in the interconnect) to
reduce the overheads while avoiding any visible impact due to
errors. This solution has been further extended with a periodic
dump of the register file contents to limit the time since an
error occurs until it is detected to ease the implementation of
simpler recovery means [37].

While this solution is highly effective to attain diverse
redundancy, it is inflexible since it does not allow using the
cores independently to run different tasks. An alternative is
using light lockstepping, where redundancy is created and
managed at software level, and independent cores are used
enforcing staggering either with SW-only means or with a
combination of HW/SW support. This section presents some
ongoing research efforts to deliver support for diverse redun-
dancy with light lockstepping, either with SW-only solutions
or HW/SW solutions.

B. SW-only Diverse Redundancy

SW-only diverse redundancy builds upon the creation of
redundant processes at software level, so that both of them
receive the same — redundant — input data, and return their
results for comparison in a safe CPU. Such a solution has been
investigated in [38] in the context of a platform combining
a moderate performance CPU with native (tight) lockstep
support, and a high-performance multicore based on Arm cores
without any HW lockstep support. Without loss of generality,
the rest of the section focuses on dual-core lockstep solutions,
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although analogous reasoning applies for any other number
of cores. The solution builds on creating three threads (see
Figure 2):

o Monitor. The monitor is the one spawning the redundant
computation threads (head and trail), and monitoring and
enforcing staggering between them.

o Head thread. The head thread executes the functionality
without any specific control for the sake of achieving
diverse redundancy.

o Trail thread. The trail thread executes the functionality
redundantly with some staggering (delay) w.r.t. the head
thread. Therefore, if the staggering at any point is too
short, it is stalled for a while.

Since the monitor lacks any form of redundancy, it needs
to run in a native lockstepped core, which may be in a
separate microcontroller, as in [38], or may also be in the
same microcontroller. The monitor spawns the head and trail
threads into two other cores, which do not implement tight
lockstepping support. Then, the monitor performs the follow-
ing steps periodically every T.pcck cycles:

1) Collects the instructions executed count (/C) from both
threads, so0 ICheqq and 1C:,qi1.

2) Computes the difference between both counters and
compares it against a threshold I iqgger-

a) If the head thread is sufficiently ahead from the
trail one, then both threads continue the execu-
tion. Formally, execution continues normally if
(Ichead - ICtrail) > Istagger-

b) Else, if the trail thread is too close to the head
one, then the monitor stalls the trail thread during
the next monitoring period (S0 Tepecr; cycles).
Formally, the trail thread is stalled if (/Cheaa —
Ictrail) < Istagger~

3) Finally, the monitor sleeps until the remaining time until
elapsing Tepecr Cycles.

This mechanism guarantees that the trail thread cannot catch
up with the head thread as long as the instruction threshold
Istagger 18 large enough so that, even if the head thread
stalls completely and the trail thread executes at the maximum
possible speed, the trail thread cannot catch up with the head
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Fig. 3. Schematic of the HW/SW lightweight lockstep.

thread since one monitoring period until the next one. This
implies that executing Iiqgger instructions must require at
least Te.pecr plus the time to detect that the current staggering
is too low and stalling the trail thread. Therefore, there is a
direct relationship between both values, which must be traded
off. In particular, the higher T,pcck, the lower the monitoring
overhead since the monitor executes less often. However, this
makes Isiqgger grow, so that the overall execution time will
increase since, once the head thread finishes its execution, the
trail thread still has to execute at least Igiqq4ge, instructions.
Due to the time required to collect the instruction counts from
the cores where the head and trail threads execute, and to stall
the trail thread if needed, it has been shown that 7., should
typically correspond to between 100us and 1ms.

This solution, which so far has been proven doable on
Arm-based architectures [38] is currently being ported onto
RISC-V platforms in the context of the ECSEL FRACTAL
project [35]', targeting edge systems with some form of safety
requirement.

C. HW/SW Diverse Redundancy

While the SW-only solution can be used on RISC-V multi-
cores without any specific hardware support, it imposes some
constraints in terms of staggering that make it poorly efficient
for short tasks. For instance, if a task requires less than
Teheck cycles to execute, the SW-only solution imposes full
serialization of the head and trail threads. Hence, it T,jcck
matches Ims, tasks taking less than 1ms are fully serialized
and their overall execution time doubles.

To tackle this limitation, HW/SW solutions can be devel-
oped where, instead of having a software monitor polling the
other cores via software to collect their instruction counts,
and sending a stop signal to the trail thread via software,
this process is implemented by hardware means in a hardware

This work has received funding from the ECSEL Joint Undertaking (JU)
under grant agreement No 877056. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and Spain, Italy,
Austria, Germany, France, Finland, Switzerland.



monitor module. The HW monitor has direct access to the
instruction counts from the two cores being monitored, and
reads those values without interfering with the execution of
the cores. If the staggering is too low, then it can simply stall
the pipeline of the trail thread with the appropriate hardware
signal. Since this process can be performed in a very short
time and without interfering the execution of the head and
trail threads, T,.pecr can be set typically to tens or hundreds
of cycles, thus typically imposing a staggering of less than
1us.

Moreover, by performing the monitoring task in a specific
module, monitoring does not need an extra core. On the
other hand, such module requires internal diverse redundancy
to avoid CCFs in the monitor, so it must be implemented
following the same principles as tight lockstepped cores.
However, such module is expected to be tiny, thus leading
to negligible relative cost.

Finally, if the HW monitor is extended with capabilities to
compare the outputs from the redundant execution, then the
need for a native tight lockstepped core is fully removed.

This solution is currently being developed in the context of
a RISC-V platform for safety-critical systems in the context
of the H2020 SELENE project [34]%, targeting safety-related
space, railway and automotive systems.

V. TOWARDS BRIDGING THE GAP BETWEEN
SYSTEM-LEVEL AND STRUCTURAL TEST FOR THE RISC-V
PLATFORM

Microprocessors implementing the open RISC-V instruction
set and systems-on-chip on their basis are increasingly being
considered for safety-critical applications. A prerequisite for
their acceptance in domains such as automotive is the feasi-
bility of test procedures established in such domains. System-
level test (SLT) is widely employed by both semiconductor
manufacturers and system integrators to guarantee the required
quality levels, based on procedures, data formats and protocols
that have grown over time and are supported by multiple
parties. A transition from established platforms to an open
RISC-V ecosystem comes with several challenges. In this
section, we will discuss these challenges, present first ideas
for solutions, and outline further opportunities for system-level
test in the RISC-V context.

A. Manufacturing Test: From Structural to SLT

Following the unprecedented growth of sizes and complex-
ities of integrated circuits (IC) over the last decades, the
structural test approach has become predominant: A list of
faults according to a fault model is generated, and for each
of these faults, its non-presence in the circuit is verified by
applying a fest pattern that detects it. For sufficiently simple
fault models such as stuck-at faults, this approach keeps the
complexity of test generation and test application in check,
as the number of faults is linear in the size of the circuit.
Structural test normally makes use of design-for-test (DFT)

2This work has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no. 871467.

circuitry such as scan chains or test points, further reducing
its complexity.

System-Level Test (SLT) [40] follows a different principle.
The circuit under test is mounted on a board that mimics
the intended usage of the circuit in its actual application,
such as a smartphone or an electronic control unit of a
vehicle. The board includes memories and peripherals that are
usually not available during structural test using automated
test equipment (ATE). This allows the test engineer to use
functional workloads, such as operating system boot or apps
that would normally run on the target system, as test cases.
SLT has been reported to detect failing ICs that slip through
conventional testing [39]. We currently do not know with
certainty what leads to such “SLT-unique fails”, but possible
causes are unmodeled defects (e.g., “soft” timing errors),
systematic ATPG coverage holes and system-level effects such
as software-controlled clock- and power-domain interactions
[39].

Fig. 4 visualizes the role of SLT in a typical test flow. Most
companies use at least two test insertions before SLT: wafer
sort, where tests are applied to circuits on an undiced wafer,
and final test, applied to packaged chips. It is desirable to
identify a defective circuit during an as early test insertion
as possible to avoid the cost of, e.g., packaging a die that is
non-functional anyway. Test engineers speak of the “rule of
ten”: if a defective circuit escapes detection during a given
test insertion, the unnecessary costs for its further processing
and testing increases by roughly one order of magnitude (this
“rule of ten” extends into test escapes being delivered to the
customer).

SLT comes with significant costs. It has very long ap-
plication times that can go into minutes [41], [42]. As a
consequence, it is difficult to incorporate SLT into a struc-
tural testing framework, as determining by simulation which
faults have been detected during SLT would lead to a very
long simulation time. Moreover, scan chains and other DFT
are not used during SLT, and faults manifest themselves
by unexpected behavior patterns such as crashes or wrong
outcomes of a computation, complicating even the decision
whether a fault has been detected or not. For the same reason,
root-cause diagnosis becomes harder, necessitating machine-
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Fig. 4. Structural test and SLT within the quality-assurance flow [39]
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Fig. 5. SLT fault coverage evaluation flow; pentagons mark SLT-specific steps

learning approaches [43]. These costs are offset by its being
so close to actual system operation and its ability to identify
“test escapes” that would otherwise have been delivered to the
customer. In fact, SLT often serves as a “quality gate-keeper”
to estimate how well previously applied structural tests work.

B. Towards SLT for RISC-V Processors

The conventional structural test is well supported by elec-
tronic design automation (EDA) tools. State-of-the-art RISC-V
implementations are compatible with standard design flows,
which enables a straightforward use of conventional struc-
tural test procedures and design-for-testability approaches. In
contrast, SLT is more tightly bound to the specific processor
platform and typically makes use of features not readily
available in standard EDA tools. One SLT-related problem is
to estimate the fault coverage obtained when running software,
managed by an operating system, on the processor.

Figure 5 shows our flow for fault coverage analysis of
arbitrary SLT programs in a RISC-V processor. It goes through
the usual synthesis steps, yet the test patterns for each block
within the circuit are not obtained from an automatic test
pattern generation (ATPG) tool, but rather from the outcomes
of system-level simulation of the whole processor model with
an OS and apps running on it. Such simulation generates wave-
forms for internal signals within the processor. To calculate the
fault coverage in a specific module, we match the inputs of that
module within the processor’s netlist with system-wide signals
and record the waveforms on these signals in an extended
Value Change Dump (eVCD) file. The values from such eVCD
files are then translated into the format which the ATPG tool
can read, and the ATPG tool is invoked in fault-simulation
mode, taking external test patterns rather than generating them.

We applied the flow of Figure 5 to the CVA6 RISC-V
CPU [6] and several simple software applications. To perform
system-level simulation of an application, we compiled it for
the CVA6 CPU, resulting in an .elf” file, and loaded this
file into the main memory of the CVA6 CPU in the RTL
simulation model. Running the simulation generates eVCD
files that are, after a conversion, handed over to one of the
standard commercial ATPG tools.

Table I shows first results obtained for various submodules
of the CVAG6 core under four different programs: the Blinky
demonstration of the FreeRTOS, the “Hello,World” program,
the Minimal FreeRTOS boot and the Dhrystone benchmark.
The table shows, for each submodule, the total number of

stuck-at faults, the number of undetectable faults (as reported
by the ATPG tool), and the fault and fault efficiency (percent-
age of detected faults over all detectable faults). The fault effi-
ciency for patterns generated by the structural stuck-at ATPG
tool are shown in the last column of the table for comparison.
One sees that the coverage achieved by simple test programs is
actually not very high for many of the submodules. This is not
unexpected, because these programs are not optimized towards
using all functions of the CPU; for instance, they do not invoke
all RISC-V instructions. Interestingly, even the ATPG patterns
do not reach coverages close to 100% for many submodules.
While the results illustrates the applicability of our flow for
a detailed evaluation of given programs, it aslo highlights
the need for manually crafted or automatically generated SLT
software.

C. Potentials of an Open RISC-V Ecosystem for SLT

For an organization with an existing experience in SLT
based on a given (closed-source) platform, moving to a new
ecosystem will be associated with efforts and costs, simply
because solutions that have been created over decades may not
have an equivalent in the RISC-V universe. One can expect,
however, that such solutions will emerge over time, and will
be offered by commercial vendors or even put into the public
domain. The open nature of RISC-V provides an opportunity
to explore SLT-related problems in depth by many individual
players. The availability of widely or universally agreed-upon
standards can also simplify the communication between the
semiconductor makers, who are using SLT as part of their
outgoing quality control, and their customers, i.e., the system
integrators, for whom SLT is the cornerstone of incoming
quality assurance.

An interesting potential for SLT is given by the extensi-
bility of the RISC-V instruction set. Producers of systems
that need diagnostic observability or buit-in self-test (BIST)
features (such features can be demanded by functional safety
standards) could introduce new instructions dedicated to SLT.
For instance, each hardware module within the CPU could be
equipped with BIST circuitry that has to be used periodically.
With dedicated BIST instructions, the software could schedule
such tests itself, leveraging the knowledge which modules will
not be needed in the next future.

VI. CONCLUSIONS

To enable the use of RISC-V in safety-critical applications,
it is necessary to have a complete understanding of the way in
which well established mechanisms for testing and reliability
could be integrated and deployed on its ecosystem. It is
also fundamental to have a clear knowledge on how such an
ecosystem can be leveraged to improve security. This paper
summarized four contributions addressing issues related with
the use of RISC-V based architecture in the context of security,
reliability and testing
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TABLE I
FAULT EFFICIENCY FOR DIFFERENT SUBMODULES OF CVA6 RISC-V CPU AND DIFFERENT SLT APPLICATIONS

Module # Faults Fault efficiency
Total Undetectable Blinky Hello Minimal  Dhrystone \ Structural ATPG

commit_stage 6,770 974 23.07 25.08 23.07 23.07 61.62
controller 412 266 19.90 16.99 29.61 20.63 35.44
csr_regfile 60,484 3,593 14.79 15.49 14.79 14.78 91.13
frontend 102,140 510 06.25 06.09 06.25 06.34 50.35
id_stage 13,772 374 19.34 20.72 19.34 19.42 95.80

c.decoder 1,654 0 46.19 86.88 69.95 70.19 100

decoder 8,952 372 40.24  44.96 40.26 39.99 78.89
perf_counters 30,936 1,932 05.27 00.00 05.27 05.27 93.75
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