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Abstract. We prove a removal lemma for systems of linear equations over

finite fields: let X1, . . . , Xm be subsets of the finite field Fq and let A be

a (k × m) matrix with coefficients in Fq ; if the linear system Ax = b has

o(qm−k) solutions with xi ∈ Xi, then we can eliminate all these solutions by

deleting o(q) elements from each Xi. This extends a result of Green [Geometric

and Functional Analysis 15(2) (2005), 340–376] for a single linear equation in
abelian groups to systems of linear equations. In particular, we also obtain an

analogous result for systems of equations over integers, a result conjectured by

Green. Our proof uses the colored version of the hypergraph Removal Lemma.

1. Introduction

In 2005, Green [6, Theorem 1.5] proved the so-called Removal Lemma for abelian
groups. It roughly says that if a linear equation over an abelian group has not many
solutions then one can delete all the solutions by removing few elements. This Re-
moval Lemma for groups has its roots in the well–known Triangle Removal Lemma
of Ruzsa and Szemerédi [13] (see also [3] and [10] for generalizations and applica-
tions of this important result in combinatorics) which says that if a graph with n
vertices has only o(n3) triangles, then it can be made triangle–free by removing
only o(n2) edges.

In [7], the authors gave a purely combinatorial proof, by using the Removal
Lemma for graphs, of Green’s algebraic version of the Removal Lemma for linear
equations. This allows an extension of the result to non-abelian groups. In the same
paper, the authors considered some extensions of the result to systems of equations
in abelian and non–abelian groups which could be proved along the same lines.
However to extend the result to general linear systems, the graph representation
used in the mentioned paper presented serious limitations. Instead, the extensions
to hypergraphs of the removal lemma, which have been recently proved by Nagle,
Rödl, Schacht [11], Gowers [5] or Tao [18], seem to be the natural tool to achieve
this goal.

Our main result is the following:

Theorem 1 (Removal Lemma for systems of equations). For all positive integers
k and m, k ≤ m, and every ε > 0, there exists δ > 0 such that the following holds:
Let F = Fq be the finite field of order q and X1, . . . , Xm be subsets of F , let A be
a (k ×m) matrix with coefficients in F and let b be a vector in F k.
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If there are at most δqm−k solutions of the system Ax = b , x = (x1, . . . , xm),
with xi ∈ Xi, then there exist sets X ′1, . . . , X

′
m with X ′i ⊆ Xi and |Xi \ X ′i| ≤ εq

such that there is no solution of the system Ax = b with xi ∈ X ′i.

Using the little o-notation, Theorem 1 asserts that if there are o(qm−k) solutions
of the system Ax = b with xi ∈ Xi, then there exist sets X ′i ⊆ Xi such that
|Xi \ X ′i| = o(q) and there is no solution of the system Ax = b with xi ∈ X ′i.
Throughout the paper, we will use more precise formulations without the little
o-notation, but we occasionally use this notation if no confusion can arise.

By a standard argument Theorem 1 implies an analogous result in the integers.
In particular it provides a proof of the following result conjectured by Green [6,
Conjecture 9.4]:

Theorem 2. Let k and m be integers with k ≤ m and let A be an integer k ×m
matrix of rank k. For every ε > 0, there exists δ > 0 with the following property.
Let X ⊆ [N ], and suppose that there are at most δNm−k vectors x in Xm for which
Ax = 0. Then X = B ∪ C, such that there are no solutions of the system Ax = 0
with x ∈ Bm and |C| ≤ εN .

Proof. Let c(A) be twice the sum of the absolute values of the coefficients in A plus
1. Let p be a prime such that c(A) ·N ≤ p ≤ 2c(A) ·N .

By the choice of p, there is a natural bijective correspondence between the solu-
tions of the linear system Ax = 0 in Fp with x ∈ Xm and the ones in the integers.

We apply Theorem 1 with F = Fp and Xi = X for all i to obtain the result. �

A natural application of Theorem 2, which indeed motivated the extension of the
removal lemma to hypergraphs, is the proof of the celebrated Theorem of Szemerédi
on the existence of k–term arithmetic progressions in sets of integers with positive
density. Actually Theorem 2 proves the strengthening by Varnavides [19] that a set
of integers in [1, n] with positive density contains Ω(n2) arithmetic progressions of
length k. This is so because the linear system which defines a k–term arithmetic
progression in a set X has |X| trivial solutions (corresponding to constant k–term
progressions) which can only be removed by deleting all elements in X. Theorem 1
provides the analogous statement in the finite field context.

Corollary 3. For every positive integer k and every ε > 0, there exists δ > 0 such
that if a subset X of the elements of the q-element field Fq contains at most δq2

arithmetic progressions of length k, then the set X has at most εq elements.

Corollary 3 above can also be proved by using the construction from Frankl and
Rödl [4] and the hypergraph removal lemma (see [12]).

Our proof of Theorem 1 follows the main idea of the one presented in [7]. When
the system is reduced to one equation our construction coincides with the one in
that paper, thus it can be viewed as its natural generalization. As we have already
mentioned, we use the edge-colored version of the hypergraph Removal Lemma, see
Theorem 4 in Section 2, which follows from a more general result of Austin and
Tao [1, Theorem 2.1].

Independently of us, Conjecture 9.4 from [6] was proved by Shapira [14] (see also
[15]) whose method also yields a different proof of Theorem 1. Shapira’s proof also
reduces the problem to finding an appropriate representation of the system by a
hypergraph in which one can identify certain subgraphs with solutions, and uses the
colored version of the hypergraph Removal Lemma (Theorem 4) as our proof does.
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However, his proof involves O(m2)–uniform hypergraphs where our proof involves
(k + 1)–uniform hypegraphs. The two proofs follow a common approach but they
differ in the particular ideas used to represent systems by hypergraphs.

We note that Theorem 1 might also be derived from the main result in Szegedy
[17]. There the author proves a Symmetry Removal Lemma and describes a frame-
work to apply it to Cayley Hypergraphs. Theorem 1 would follow from the Symme-
try Removal Lemma once the conditions of validity within this setting are properly
verified.

Let us also mention that the conclusion of Theorem 1 can be proven in a sub-
stantially easier way if we assume that every k columns of the matrix are linearly
independent; we have reported on this result in [8]. Candela [2] has proved, inde-
pendently of us, this result too.

2. The hypergraph Removal Lemma and outline of the proof

Let us recall some definitions on hypergraphs. A k–uniform hypergraph K is a
collection E = E(K) of k–subsets, called edges of K, of a ground set V = V (K). An
edge–coloring of K with r colors is a map c : E(K)→ {1, 2, . . . , r}. The hypergraph
K is said to be t-partite if there is a partition of V in t parts and every edge in E
intersects each part in at most one vertex.

Let H and K be two r–edge colored k–uniform hypergraphs. We say that K
contains a copy of H if there is an injective homomorphism f from H to K, that is,
there is an injective map f : V (H)→ V (K) which preserves edges and their colors.
Two such maps f, f ′ are equivalent if there is an automorphism g of H such that
f ′(H) = fg(H) and the number of copies of H in K is the number of equivalence
classes of maps. Two copies of H in K are said to be edge disjoint if so are the
images of the corresponding maps. We say that K is H–free if there is no copy of
H in K.

Our main tool for the proof of Theorem 1 is the following version of the hy-
pergraph Removal Lemma which follows from a more general result of Austin and
Tao [1, Theorem 2.1].

Theorem 4 (Austin and Tao [1]). Let H be an edge-colored (k + 1)-uniform hy-
pergraph with m vertices. For every ε > 0 there exists δ > 0 with the following
property.

Let K be an edge colored (k + 1)-uniform hypergraph with M vertices. If the
number of copies of H in K (preserving the colors of the edges) is at most δMm,
then there is a set E′ ⊆ E(K) of size at most εMk+1 such that the hypergraph K ′

with edge set E(K) \ E′ is H–free.

The general idea of the proof is to associate to the linear system Ax = b, where
A has size k × m, a pair of edge-colored (k + 1)-uniform hypergraphs H and K.
The hypergraph H has m edges and m vertices, and K is an m-partite hypergraph
with mq vertices. The edges of H and of K are defined in such a way that there
is a correspondence between copies of H in K and solutions of the linear system in
X1 × · · · ×Xm. More precisely, each solution gives rise to exactly qk edge disjoint
copies of H in K.

The bound on the number of solutions of our linear system translates to the fact
that K contains o(qm) copies of H. At this point we apply the Removal Lemma
for hypergraphs, Theorem 4, to find a set E′ of edges with size o(qk+1), such that,
by removing E′ from K we delete all copies of H.
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Since the qk copies of H corresponding to the same solution are edge–disjoint, a
pigeonhole argument allows us to find o(q) elements from each set Xi whose removal
eliminates all the solutions of the system of equations.

3. Reductions of the system

The key point in our argument is the construction of the auxiliary hypergraphs
H and K. Before we explain the details of this construction, we show that we can
assume some properties of the given linear system Ax = b. In what follows, M i

denotes the i–th column of a matrix M and Mj denotes its j–th row.

Lemma 5. Theorem 1 holds if it can be proved under the following assumptions.

(i) The matrix A has the form A = (Ik|B) where Ik is the identity matrix.
(ii) b = 0.
(iii) m ≥ k + 2.
(iv) Every two rows of B are linearly independent.
(v) Each row of B has at least two non-zero entries.
(vi) No column of A is the zero vector.

Proof. We will establish these properties sequentially and assume the previous ones
at each step.

(i) Observe that, by the nature of the statement of Theorem 1, there is no
loss of generality in assuming that the matrix A has full rank k. Indeed,
choose δ to be the minimum δk′ , k

′ = 1, . . . , k, where δk′ is the constant
for full rank k′×m matrices. Consider a k×m matrix A. If the rank k′ of
the matrix A is smaller than k but the rank of the matrix (A|b) is k′ + 1,
then there is no solution of the system Ax = b at all and there is nothing
to prove. Otherwise, let A′ be a full-rank k′ ×m submatrix A′ and b′ the
subvector b with entries corresponding to the rows of A′. Observe that if
the system Ax = b has at most δqm−k solutions, then the system A′x = b′

has at most δk′q
m−k′ solutions and the statement follows.

By an appropriate choice of basis, the matrix A can be assumed to be
of the form A = (Ik|B), where Ik denotes the k × k identity matrix.

(ii) If A is written in the form (Ik|B), then the general statement of Theorem
1 follows by applying it to the system Ax = 0 once we replace the given
first k sets X1, . . . , Xk by X1− b1, · · · , Xk− bk, where b = (b1, . . . , bk) (and
leave the remaining sets Xk+1, . . . , Xm unchanged.)

(iii) Note that if m = k + 1 then Theorem 1 trivially holds with δ = ε. Indeed,
for each element a ∈ Xk+1 there is at most one solution to the system
Ax = 0 with last coordinate a; since the number of solutions is at most δq,
there must be at most εq = δq elements in Xk+1 which belong to a solution
of Ax = 0 with x ∈ X1×· · ·×Xk+1; by deleting these elements from Xk+1,
we delete all the solutions. Thus, we can assume that m ≥ k + 2.

(iv) Suppose on the contrary that rows Bi and Bj of B are not linearly indepen-
dent, say Bi = λBj . This implies that every solution of the system Ax = 0
satisfies xi = λxj . Therefore we can replace Xi by Xi ∩ (λ ·Xj), delete the
j-th equation together with the j-th variable, and apply our theorem in the
resulting setting: the obtained system contains one less equation and one
less variable.
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(v) We may assume that any row Bi of B has at least two non-zero entries.
Otherwise the i–th equation would read xi + bi,jxj = 0 for some j ∈ [k +
1, . . . ,m]. As in the preceding paragraph, we can replace the set Xj by

Xj ∩
(
−b−1

i,j ·Xi

)
and consider the system obtained by eliminating the i-th

equation and the i-th variable.
(vi) Suppose that A has a zero column, say Am = 0. Set δ to be εδ′ where

δ′ obtained for k′ = k and m′ = m − 1. If the set Xm contains at most
εq elements, we can delete all elements of the set Xm and no solution
of the system is left. Otherwise, if the system Ax = b has at most δqm−k

solutions, then the system A′x′ = b, where A′ is the matrix obtained from A
by deleting the m-th column, has at most δqm−k/(εq) = δ′qm−1−k solutions
and we can apply the statement for m′ = m− 1 and k′ = k.

�

4. Hypergraph representation and proof of Theorem 1

Let Ax = 0 be a linear system, where A is a k × m matrix with entries in F
satisfying the properties (i)–(vi) of Lemma 5. For the hypergraph representation
of the system Ax = 0 we shall use an auxiliary matrix associated to the matrix A
which is described in Lemma 6 below. The support of a vector x ∈ Fn, denoted by
s(x), is the set of coordinates with a nonzero entry.

Lemma 6. Let A = (Ik|B) be a (k ×m)-matrix with coefficients in Fq satisfying
the properties (i)–(vi) of Lemma 5. There are an (m×m) matrix C and m pairwise
distinct (k + 1)-subsets S1, . . . , Sm ⊆ [1,m] with the following properties:

(1) AC = 0
(2) rank(C) = m− k (maximal under the first condition).

Moreover, there is an ordering of the columns of B such that

(3) For every i, s(Ci) ⊆ Si and i ∈ s(Ci).
(4) For every i, there exists a subset S′i ⊆ Si with |S′i| = k and Si \ S′i ⊆ s(Ci)

such that the set of columns {Cj , j ∈ [1, . . . ,m] \ S′i} has rank m− k.

The proof of Lemma 6 is postponed to Section 5. We now proceed to define a
suitable hypergraph representation of the linear system which leads to a proof of
Theorem 1.

Let C be the matrix associated to A and S1, . . . , Sm be the (k + 1)–subsets of
[1,m] satisfying the properties stated in Lemma 6.

The hypergraph H is the (k + 1)–uniform edge–colored hypergraph with vertex
set {1, 2, . . . ,m} and with edges S1, S2, . . . , Sm, where the edge Si is colored i.

The hypergraph K is the (k + 1)–uniform m–partite edge–colored hypergraph
with vertex set Fq × [1,m] and with the following edge set. For every u ∈ Xi, K
contains an edge {(aj , j), aj ∈ Fq, j ∈ Si} if and only if∑

j∈Si

Cijaj = u,

and this edge is colored by i and labeled by u. Since the support s(Ci) is nonempty
and |Si| = k + 1, K contains precisely qk edges colored by i and labeled by x for
each x ∈ Xi.

We next show that the hypergraphs K and H have the needed properties for the
proof.
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Claim 1. If H ′ is a copy of H in K, then x = (x1, . . . , xm) is a solution of the
system, where xi is the label of the edge colored by i in H ′.

Proof. Since H ′ is a copy of H, it has m vertices and an edge of each color. By
Lemma 6 (3) we have i ∈ Si for each i which implies ∪mi=1Si = [1,m]. Hence the
vertex set of H ′ is of the form {(a1, 1), (a2, 2), . . . , (am,m)}. By the construction
of K, it holds that Ca = x where a = (a1, a2, . . . , am). Hence, 0 = ACa = Ax and
x is a solution of the system. �

Claim 2. For any solution x = (x1, . . . , xm) of the system Ax = 0 with xi ∈ Xi,
there are precisely qk edge–disjoint copies of the edge–colored hypergraph H in the
hypergraph K.

Proof. Fix a solution x = (x1, . . . , xm) of Ax = 0 with xi ∈ Xi, 1 ≤ i ≤ m. First,
we will show that there is a copy of H in K in which the edge colored i has label
xi, 1 ≤ i ≤ m.

Since the matrix C has rank m− k and satisfies AC = 0, the columns in C span
the solution space in Fm and thus there is a vector u = (u1, . . . , um) with x = Cu.
In particular,

xi =< Ci, u >=

m∑
j=1

Cijuj =
∑
j∈Si

Cijuj ,

where the second equality follows from Lemma 6 (3). Therefore, for every i, the set
{(uj , j), j ∈ Si} is an edge of K colored i and labeled xi. It follows that the edges
{(uj , j), j ∈ Si}, i = 1, . . .m, span a copy of H in K.

Since the kernel of C is k-dimensional, there are qk vectors u satisfying x = Cu,
and each of them corresponds to a copy of H in K. We next verify that these qk

copies are edge–disjoint.
Let e = {(aj , j), j ∈ Si} be an edge of K colored by i and labeled xi ∈ Xi.

We show that all the qk copies of H in K contain different edges colored by i and
labeled xi for each i. By Lemma 6 (4), there is a subset S′i ⊆ Si of size k such that
{Cj , j 6∈ S′i} is a set of m− k linearly independent solutions of the system Ax = 0.
Hence, we may find a vector u = (u1, . . . , um) with x = Cu such that uj = aj for
each j ∈ S′i. Moreover, as the element j ∈ Si \S′i is such that Cij 6= 0, we must also
have uj = aj for each j ∈ Si and the copy of H associated to this u contains the
edge e. Thus, for each edge colored i and labeled xi there is a copy of H associated
to x in K which contains this edge.

Since there are qk such edges and there is the same number of copies of H
associated to the solution x, no two copies can share the same edge colored i and
labeled xi. By applying the same argument to each of the colors 1, . . . ,m, we
conclude that the qk copies of H associated to the solution x are edge–disjoint. �

We now proceed with the proof of Theorem 1.

Proof of Theorem 1. Let H be the family of (k + 1)–uniform edge colored hyper-
graphs with m vertices and m edges. Note that H has a finite number of members.
Set ε′ = ε/m and, for each H ∈ H let δH be the quantity obtained from Theorem 4
applied to H. Choose δ to be the smallest such δH .

Assume that the matrix A and the vector b have the form described in Lemma 5,
and that the number of solutions of the system Ax = b is at most δqm−k. Let H and
K be the hypergraphs constructed in this section. By Claims 1 and 2, K contains
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at most δqm ≤ δHqm copies of H. By the Removal Lemma for colored hypergraphs
(Theorem 4), there is a set E′ of edges of K, |E′| ≤ ε′qk+1 such that, by deleting
the edges in E′ from K, the resulting hypergraph is H-free.

The sets X ′i are constructed as follows: if E′ contains at least qk/m edges colored
with i and labelled with xi, remove xi from Xi. In this way, the total number of
elements removed from all the sets Xi together is at most m · |E′|/qk ≤ εq. Hence,
|Xi \X ′i| ≤ εq as desired. Assume that there is still a solution x = (x1, x2, . . . , xm)
with xi ∈ X ′i. Consider the qk edge–disjoint copies of H in K corresponding to x.
Since each of these qk copies contains at least one edge from the set E′ and the
copies are edge–disjoint, E′ contains at least qk/m edges with the same color i and
the same label xi for some i. However, such xi should have been removed from
Xi. �

5. Proof of Lemma 6

In this section, we prove Lemma 6 by explicitly constructing a matrix C with
the required properties.

We first define a family of auxiliary subsets T1, . . . , Tm. For each i let Ti be the
maximum k–subset of [i−m+ 1, i] in the lexicographic order such that the set of
columns {Aj , j ∈ Ti} (indices taken modulo m) has rank k.

Lemma 7. With indices taken modulo m, the following conditions hold:

(i) For each i ∈ [1,m] we have i 6∈ Ti−1.
(ii) For each i ∈ [2,m] we have i 6∈ Ti−2.

(iii) For each i the set Ti is obtained by adding i to Ti−1 and deleting some
element in Ti−1.

Proof. Note that the set of columns {Aj , j ∈ [1,m] \ {i}} span the column space
of A. This is clearly so for k + 1 ≤ i ≤ m since A1, . . . , Ak is the canonical base.
On the other hand, for 1 ≤ i ≤ k, it follows from Lemma 5(v) as every row of B
has (at least two) nonzero entries. The maximality of Ti−1 implies (i).

Similarly, it follows from Lemma 5(iv) applied to rows i−1 and i with 2 ≤ i ≤ k
that the set of columns {Aj , j ∈ [1,m] \ {i − 1, i}} also span the column space of
A. The same conclusion follows from Lemma 5(v) when i = k+ 1, and it is obvious
when k + 2 ≤ i ≤ m since the first k columns of A form the identity matrix. This
proves (ii).

By Lemma 5(vi) no column of A is the zero vector, so that i ∈ Ti for each i. It
follows from (i) and the maximality of Ti that the symmetric difference Ti∆Ti−1

has cardinality two. �

We now define the function g : [1,m] → [1,m] as g(i) = Ti−1 \ Ti (indices
taken modulo m). It follows from Lemma 7(iii) that the function g is well defined.
Moreover the following holds:

Lemma 8. We have:

(i) The function g is bijective.
(ii) There is an ordering of the columns of B such that g is increasing in [k +

1,m].

Proof. If g(r) = g(s) = i for some distinct r and s then i has been deleted twice in
the circular process described in Lemma 7(iii) but inserted only once, a contradic-
tion. This proves (i).
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We have Tk = [1, k] for every ordering of the columns Ak+1, . . . , Am. For each i =
k+1, . . . ,m] we may choose Ai to be a column for which the first nonzero coefficient
when expressed as a linear combination of the columns in the base corresponding
to Ti−1 occurs more to the left. This choice minimizes the value of g(i) and makes
the function g increasing in [k + 1,m]. �

We will assume that the last m− k columns of A are ordered in such a way that
g is increasing in [k + 1,m], a choice which is possible by Lemma 8(ii).

We can now define the matrix C. The j-th column of C has its support in
Tj−1 ∪ {j}. For i ∈ Tj−1, the entry Cij is the coefficient of Ai in the expression of
Aj in the base {Ai, i ∈ Tj−1}:

Aj =
∑

i∈Tj−1

CijA
i,

and Cjj = −1 (recall that, by Lemma 7(i), we have j 6∈ Tj−1.)
Clearly, each column of C belongs to the space of solutions of the system Ax = 0,

so that Lemma 6 (1) holds.
Since all the elements of Ti, i ∈ [k,m−1], are in [1, i], the submatrix of C formed

by the last m − k columns and the last m − k rows is an upper triangular matrix
with nonzero entries on the diagonal which implies that the rank of C is m − k.
This proves Lemma 6 (2)

By the definition of C the support of column Cj is included in Tj . For j = k we
have Tk = [1, k]. Since g is increasing in [k + 1,m] and, by Lemma 7(iii), each Tj
is obtained from Tj−1 by adding j and deleting g(j), the support of Cj is included
in [g(j), j] if j ∈ [k + 1,m]. For j ∈ [1, k], Lemma 7(iii) and the maximality of the
Ti’s imply that the support of Cj is included in [1, j] ∪ [g(j),m].

Let R ⊆ [1,m]× [1,m] be the area defined by the Ti’s, i.e, (i, j) ∈ R if and only
if either j ∈ [1, k] and i ∈ [1, j] ∪ [g(j),m] or j ∈ [k + 1,m] and i ∈ [g(j), j] (see
Figure 5 for a typical portrait of R.)

Figure 1. An example of the area R in matrix C which corre-
sponds to the permutation g(1, 2, 3, 4, 5, 6, 7, 8) =
(3, 4, 6, 7, 8, 1, 2, 5).

We define the family {S1, . . . , Sm} of (k + 1)-subsets of [1,m]: Si is the set of
indices j such that Ci,j ∈ R. In other words, the sets Si are obtained by reading
off the area R by rows:

Si =

{
g−1([1, i]) ∪ [i, k], i ∈ [1, k]
g−1(Ti) ∪ {i}, i ∈ [k + 1,m].
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By the definition of g, the support of the row Ci is contained in Si for every i ∈ [1,m]
and none of the rows is zero (the entry in the main diagonal is −1).

Let us show that |Si| = k + 1.
It follows from the definition of g that g(i) 6∈ Ti. Since g is a bijection, Si has

indeed cardinality k + 1 for i ∈ [k + 1,m]. On the other hand, we can not have
1 ≤ g(j) ≤ i ≤ k for j ∈ [i, k] since this would imply Tk 6= [1, k], a contradiction.
Thus g−1([1, i]) and [i, k] are disjoint and Si has also cardinality k+ 1 for i ∈ [1, k].

Let us now show that the sets Si are pairwise distinct.
Recall that the region R contains in a column j ∈ [1, k] the rows [1, j]∪ [g(j),m].

It follows from Lemma 7(ii) that j 6∈ Tj−2 for j = 2, ..., k + 1, which implies
g(j − 1) > j. Hence Sj does not contain j − 1 but it does contain j. On the other
hand, the column j ∈ [k+ 1,m] contains in the region R the rows [g(j), j], so again
Sj contains j but does not contain j − 1.

Let j < j′. If j′ ≤ k then {j′ − 1, j′} ⊆ [j, k] ⊆ Sj , which implies Sj 6= Sj′ . If
j′ > k then, either j′ 6∈ Sj or, as g is increasing in [k + 1,m], {j′ − 1, j′} ⊆ Sj ,
which again implies Sj 6= Sj′ .

In order to prove the last part of Lemma 6, we show that the columns {Cj , j 6∈
Si} form a set of m−k−1 linearly independent vectors. Together with Lemma 6 (2)
and (3), this fact implies Lemma 6 (4) and completes the proof of the Lemma.

Let C ′ = {Cj : j 6∈ Si} be the submatrix of C formed by the columns with
indices not in Si. We divide this matrix into four parts: the upper left UL = {Crs :
r < i, s ∈ [1, i]\Si} formed by the first i−1 rows of C and the columns with index
at most i, the upper right UR = {Crs : r < i, s ∈ [i+1,m]\Si} formed by the same
rows and the remaining columns, the lower right LR = {Crs : r ≥ i, s ∈ [1, i] \Si}
formed by the last m − i + 1 rows and the columns with index at most i and the
lower left LR = {Crs : r ≥ i, s ∈ [i+ 1,m] \ Si} with the remaining entries.

By our construction of the matrix C, UR is an all-zero matrix, while, as discussed
in the proof of Lemma 6 (2), the columns Cj with j ∈ [i + 1,m] \ Si are linearly
independent because the columns Cj , j ∈ [k + 1,m], are linearly independent. On
the other hand, again by the construction of C, UL is an upper triangular matrix
(maybe with the steps higher than one). It follows that the columns of C ′ are
linearly independent. This completes the proof of Lemma 6.
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