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Abstract—Hybrid programming combining task-based and
message-passing models is an increasingly popular technique
to exploit multi-core clusters. The Task-Aware MPI (TAMPI)
library integrates both models enabling the safe overlap of
computation and communication tasks using two-sided MPI
communications. Two-sided primitives combine data transfers
with implicit synchronizations, but one-sided models usually
offer more efficient data transfers decoupling synchronizations.
MPI offers four distinct one-sided synchronization modes, while
GASPI is a PGAS API providing one-sided operations with
remote notifications for fine inter-process synchronizations.

In this paper, we study the challenges of integrating MPI and
GASPI one-sided operations with the OpenMP and OmpSs-2
tasking models. We propose and implement several extensions
to the GASPI and OmpSs-2 programming models, which
are leveraged by a new library called Task-Aware GASPI
(TAGASPI). The TAGASPI library allows the efficient and
safe use of one-sided operations with remote notifications
inside tasks. Both TAGASPI and TAMPI transparently manage
communications issued by tasks and allow these to overlap
with computation tasks naturally, following a data-flow model.
These libraries are complementary and can be mixed in the
same application.

Our experience porting several mini-apps to this hybrid
model shows that TAGASPI helps leverage one-sided commu-
nications with similar complexity to pure and hybrid two-sided
MPI approaches. We show that our hybrid one-sided approach
outperforms the pure MPI strategies, but it also surpasses the
TAMPD’s performance when stressing communication phases,
e.g., increasing the communication parallelism and reducing
the communication tasks’ sizes.
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I. INTRODUCTION

The current trends of HPC system architecture show that
present and future supercomputers will remain composed
of thousands of compute nodes, and each node featuring an
increasing amount of processing cores. Two key elements to
achieve high scalability in such systems are communicating
data between nodes from different cores simultaneously and
overlapping computations and communications.

The Message Passing Interface (MPI) [1] is the main pro-
gramming model in distributed environments. Most scientific
applications use MPI to exploit both inter- and intra-node
parallelism. However, MPI is not always the best choice
for exploiting intra-node parallelism in modern multi-core
processors. Pure MPI applications tend to be less flexible

and more sensitive to load imbalance and differences in the
performance of cores.

Hybrid parallel programming [2]-[4] is a traditional
practice in the HPC community that mitigates the afore-
mentioned issues. This technique combines distributed
and shared-memory programming models, like MPI and
OpenMP [5], to exploit inter- and intra-node parallelism,
respectively. However, they are commonly combined fol-
lowing a simple but often suboptimal strategy called fork-
join, where the computation phases are parallelized using
OpenMP and MPI communications are mostly sequential.
Some advanced techniques can be used to overlap compu-
tation and communication, like double buffering, but they
usually increase the complexity of the application.

The hybrid technique that is currently gaining importance
and does not increase the complexity is the taskification of
both computation and communication phases without clos-
ing the parallelism in between. Tasks declare data dependen-
cies on the data buffers that they are processing or communi-
cating, defining a correct task execution order. This strategy
follows a data-flow execution model that allows the natural
overlap of computation and communication tasks. The Task-
Aware MPI (TAMPI) library [6] [7] was recently proposed
to safely and efficiently allow this taskification strategy for
tasks that call two-sided MPI operations (e.g., MPI_Recv and
MPI_Isend), wWhether blocking or non-blocking. With this
library, computation and communication tasks can naturally
overlap, while TAMPI transparently manages low-level com-
munication aspects (e.g., the progress of MPI requests).

Currently, the TAMPI library only supports two-sided
operations; thus one-sided communication primitives cannot
be safely used inside tasks. Nevertheless, one-sided or RMA
models allow processes to directly access the local memory
of other remote processes with no intervention of the remote
side. One-sided communication decouples data transfers
from synchronization and can leverage RDMA hardware
support, which is present in most modern network fabrics.
These models minimize the overheads and complexities
of two-sided interface implementations by removing the
message tag matching, the message queuing, and the in-
ternal data buffering. Moreover, supporting multi-threaded
communications efficiently in two-sided interfaces is more
challenging than in one-sided.

The MPI standard defines one-sided operations to read and



write remote memory, along with multiple synchronization
modes. However, it does not define a fine-grained mecha-
nism to notify the remote side when the data has arrived
on the remote memory. Several studies [8] [9] propose a
lightweight notification mechanism, but it is not standardized
yet. GASPI [10] defines a simple RMA interface with fine-
grained remote notifications and can be mixed with MPIL.

We aim at integrating the simple GASPI one-sided model
with tasking programming models, such as OmpSs-2 [11].
To that end, we have developed a new library called Task-
Aware GASPI that enables calling one-sided operations
inside tasks safely and efficiently. Our proposal could also
efficiently integrate one-sided MPI with tasking models once
remote notifications [8] are included in MPI.

In this work, (1) we discuss the challenges of integrating
MPI and GASPI one-sided operations with OpenMP and
OmpSs-2 tasking models; (2) we design and implement
the new library Task-Aware GASPI (TAGASPI) [12] that
safely and efficiently supports one-sided GASPI operations
inside OmpSs-2 tasks; (3) we extend GASPI with a fine-
grained local completion waiting mechanism; (4) we study
the interoperability between TAGASPI and TAMPI on the
same application; (5) we extend OmpSs-2 to simplify the de-
velopment of one-sided task-based applications; and (6) we
perform an exhaustive performance evaluation of TAGASPI
against two-sided MPI-only and TAMPI approaches.

II. BACKGROUND

A. Remote Memory Access (RMA) in MPI

MPI has a one-sided RMA interface [1] [13] to access
the local memory of other processes exposed through MPI
windows. It defines the vMp1_put and MPI_Get operations
to write/read data to/from another process’ memory. MPI
has two main one-sided synchronization modes. The active
mode requires the receiver process to expose its memory
explicitly before being accessed by other processes, whereas
the passive mode makes all processes expose their memory
permanently. Each mode is divided into two different sub-
modes [13]. The active mode has the sub-mode with stronger
synchronization, named fence sub-mode, where all processes
in an MPI window synchronize with MPI_win_fence. In
contrast, the passive mode has the sub-mode with lower
synchronization, called global shared lock, where processes
can freely access the remote memories, and the user has to
perform the required synchronizations to keep the memory
consistency across processes. Ranks can transfer data using
MPI RMA operations and use two-sided communication
to notify the target rank about the completion of remote
accesses [13]. MPI defines several synchronization methods
for this sub-mode, such as MPI_win_flush that waits for
the remote completion of all RMA operations issued by the
current process targeting a specific rank.

B. GASPI One-Sided Interface

The GASPI standard [10] defines one-sided operations to
write/read from other rank’s memory (e.g., gaspi_write),
exposed through memory segments similar to MPI windows.
GASPI defines the gaspi_write_notify that writes and no-
tifies the target process. The notification arrives at the remote
side just after the data is written in the remote memory. This
feature along with a function to wait for remote notifications
constitute a fine-grained mechanism to notify and check
the remote completion of one-sided operations. One-sided
operations must be submitted to a specific communication
queue. Queues are used to multiplex communications. Post-
ing operations to the same queue and target rank guarantees
the order of arrival at the remote side [10]. Lastly, GASPI
defines the coarse-grained gaspi_wait to wait for the local
completion of all RMA operations posted to a given queue,
indicating when local communication buffers can be reused.

C. Task-Aware MPI (TAMPI) Library

The MPI and OpenMP standards were not designed
to efficiently perform MPI communications from multiple
OpenMP tasks simultaneously [14] [6]. The Task-Aware
MPI (TAMPI) library [6] [7] overcame this limitation by en-
abling the safe and efficient taskification of communications,
allowing the overlap of computation and communication
tasks that use blocking or non-blocking two-sided MPI
operations (including both point-to-point and collectives).
TAMPI supports non-blocking MPI operations by bind-
ing their MPI requests to tasks through the TaMPI_Twait
function. This non-blocking asynchronous function has the
same parameters as the mMpT_wait. A task can call that
function to bind its completion to the finalization of the
MPI request passed as a parameter. Due to its asynchronous
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Figure 1.  The flow of user tasks in a hybrid application with some
tasks calling TAGASPI and TAMPI services. User tasks calling TAMPI and
TAGASPI operations delay their completion (and release of dependencies)
until their operations finalize. The polling tasks of these libraries are shown
with dashed lines since they are transparent to the user.



nature, the function returns immediately without specifying
whether the operation already finalized or not. The calling
task continues but will not complete until (1) it finishes
its execution and (2) all its bound MPI operations finalize.
Figure 1 shows that behavior. In OpenMP and OmpSs-2, the
data dependencies of a task are released just after the task
completes. The non-blocking TamMp1_1wait relies on the fact
that the user annotates the communication tasks with the
send buffers as input dependencies and the receive buffers
as output dependencies. When one of these tasks completes,
its dependencies on the communication buffers are released,
and its successor tasks become ready to consume/reuse them.

The TAMPI library relies on the task external events
API [6], present in OmpSs-2 [11], that allows tasks to bind
their completion to the fulfillment of some external events.
Figure 1 shows that tasks that finished the execution but
have pending events (e.g., outstanding bound MPI requests)
are kept in the finished state (gray tasks) until their events
fulfill, when they complete and release their dependencies.

III. TASK-AWARE RMA COMMUNICATIONS

We aim at enabling a data-flow model that safely, effi-
ciently, and effortlessly combines tasking models and one-
sided operations. In this way, hybrid applications can fully
taskify both computation and communication phases, con-
necting the tasks through the data dependencies on the
buffers they are processing. Moreover, communication and
computation tasks can naturally overlap, mainly thanks to the
transparent scheduling and management of the tasking run-
time system. But fine-grained and lightweight asynchronous
RMA operations are the key elements to achieve efficient
one-sided communication from multiple tasks in parallel.

The TAMPI library [6] already integrates two-sided MPI
operations with tasking models. Thus, the first line of investi-
gation is to explore an approach to make TAMPI support the
RMA model offered by MPI. As explained in Section II-A,
the MPI model defines four different synchronization modes
for RMA communication. The first drawback to make MPI
RMA operations task-aware is that all RMA synchronization
functions are blocking. However, TAMPI relies on the non-
blocking request-based variants of the MPI functions to
implement its task-awareness. Moreover, this lack of non-
blocking variants collides with the asynchronous philosophy
of our proposal. This topic is not new; Zounmevo et al. [15]
propose an MPI extension with non-blocking synchroniza-
tions. By standardizing these non-blocking variants, TAMPI
could directly support all RMA modes.

However, this extension would not be enough to reach our
objectives since most MPI RMA modes are very rigid and
synchronous, hindering the efficient integration with tasking
models. For instance, the fence mode requires opening/clos-
ing window epochs before/after performing RMA operations
through that window, acting as parallelism barriers. Simple
benchmarks can implement custom techniques mitigating

those barriers, but it would be challenging in large appli-
cations with dynamic and irregular communication patterns.

The MPI RMA mode that better matches our objective
is the global shared lock mode, which enforces less syn-
chronization. However, the lack of a lightweight mechanism
to notify the remote completion on the target side when
performing an RMA operation is still a significant draw-
back. Commonly, the notification is implemented using a
point-to-point communication between the sender and target
rank [13].

MPI_Put(buffer, nelems, MPI_INT, dst, offset, nelems, MPI_INT, win);
MPI_Win_flush(dst, win);
MPI_Send(NULL, 0, MPI_INT, dst, tag, comm);

The code above exemplifies this notifying technique for
the sender process, showing how the sender notifies that the
data has arrived in the receiver’s memory. The sender rank
writes data on the receiver’s memory using an MpPI_prut and
then flushes the window to wait for the remote completion
of that RMA operation. After that, the sender knows that
the data already arrived at the receiver side, so it sends an
empty two-sided message. The receiver only has to wait
for the message with a matching mMp1_recv. Notice that
this notification could be an MpI_put on a remote flag.
Belli et al. [8] explain that this pattern requires an extra
round-trip communication between the ranks during the
flush. Internally, the flush operation requires the receiver
to send an ack message to the sender indicating that the
remote operation completed. Then, the sender sends an
explicit MPI message back to the receiver indicating the
same information. This extra round-trip communication and
the MPI two-sided message for the notification undermine
the use of RMA operations. Notice also that the flush is
very coarse-grained because it waits for all the operations
targeting a rank. The performance impact is negligible when
the RMA messages are large enough but will become critical
in our target scenario with fine-grained messages.

Belli et al. [8] propose an MPI extension to include a
lightweight notification mechanism for efficiently solving
this case. They present the MPI_Put_notify to write data
to a target rank followed by a notification. This function
requires an additional parameter indicating the tag that will
use to notify the target rank. The receiver rank can register
the waiting of the notification with the tag using a function
that generates an MPI request. Then, it can wait for the
notification arrival by calling MPI_wait on that request.

By standardizing the non-blocking synchronizations [15]
and remote notifications [8], TAMPI could provide a fine-
grained RMA integration with tasking models without any
significant change on the library. However, in this paper, we
design and implement our approach based on the GASPI
model [10] because it already provides all these properties.
We can combine GASPI and MPI in hybrid applications to
use GASPI for one-sided and MPI for two-sided primitives.
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Figure 2. The software architecture for task-based hybrid applications that
use our approach for one-sided and TAMPI for two-sided communications.

We materialize our proposal through a new external
library called Task-Aware GASPI (TAGASPI) [12]. This
library is inspired by the TAMPT’s philosophy but targets the
efficient and safe execution of one-sided operations inside
tasks. Figure 2 shows the software architecture that we target
for hybrid task-based applications, which can use one-sided
(TAGASPI), two-sided (TAMPI) communications or both.
These task-aware libraries are compatible with each other so
that user applications can use their services simultaneously,
even in the same communication tasks. Hybrid applications
work on top of both task-aware libraries calling their public
interfaces, although they can also call standard GASPI and
MPI functions. In the background, TAGASPI and TAMPI
communicate transparently with the GASPI and MPI li-
braries and use the services of the tasking runtime system.

IV. TASK-AWARENESS FOR GASPI

This section explains the design and implementation of
the novel Task-Aware GASPI library, its common use-cases,
and the extensions needed in the GASPI standard.

A. Task-Aware GASPI Library

The Task-Aware GASPI (TAGASPI) is a new external
library that targets the efficient and safe execution of one-
sided hybrid GASPI+OmpSs-2 applications, maintaining the
asynchronous philosophy of RMA communications. Our
library allows tasks to perform fine-grained RMA operations
and asynchronous waiting of remote notifications in parallel.
Its services also simplify user applications’ programmability
compared to the significant changes needed to mix tasks
and other RMA models. This library works above both
GASPI and OmpSs-2 and transparently uses their APIs to
orchestrate the task-awareness of communications.

The code of TAGASPI is publicly available in [12]. Appli-
cation developers can link their applications to the TAGASPI
library and call the API functions that it exposes, which
we explain next. The library provides the Tacasp1.nh header
where declares all public methods and types. The functions
tagaspi_proc_init and tagaspi_proc_term initialize and
finalize both GASPI and TAGASPI libraries, respectively.

Our library provides a task-aware variant for each GASPI
RMA operation, e.g., tagaspi_write_notify. Our variants,

B 250w um s w R —

int xA = (int *) malloc(Nxsizeof(int)); // A is inside local_seg
#pragma oss task depend(in: A[0:N]) label(write data)

tagaspi_write_notify(local_seg, local_off,
dest, remote_seg, remote_off, Nxsizeof(int),
/% Notification id & value /10, 1, queue);

// A[O;N] cannot be reused here!

}

#pragma oss task depend(inout: A[0:N]) label(reuse)
updateBuffer(A, N);

Figure 3. Example of using tagaspi_write_notify inside a task.
which are non-blocking and asynchronous, are intended
to be called by tasks and behave similarly to the non-
blocking TavMp1_iwait [6]. A TAGASPI operation initiates
the corresponding RMA operation, returning immediately
but binding (and delaying) the completion of the calling
task to the local finalization of the issued RMA operation.
The task continues running, assuming that the operation
might not be completed yet, and can finish the execution
at any moment. Although it can finish executing, the task
will not complete until its operations finalize. That delays
the release of its data dependencies. Figure 1 shows how
tasks calling TAGASPI operations delay their completion
and release of dependencies until their operations finish.
In the background, TAGASPI manages all in-flight RMA
operations and periodically checks their finalization. Then,
it transparently completes the finished tasks that had pending
operations (in gray in Figure 1) once these operations end.

A communication task cannot assume that its issued
TAGASPI operations have finished because that condition
is guaranteed only once the task completes. Thus, the
communication task itself cannot consume/reuse the com-
munication buffers; only successor tasks can consume/reuse
them safely. Users should annotate the tasks with the proper
dependencies on the buffers that these are processing. For
instance, to consume the data read remotely by a task that
called tagaspi_read, we need this task to declare an output
dependency on the local buffer (i.e., where the data will
be stored) and another successor task declaring an input
dependency on the same buffer acting as the consumer.

The same occurs to know when a local buffer can be
safely reused after writing data from that buffer to re-
mote memory. Figure 3 has an example of a task calling
tagaspi_write_notify. The first task issues a write+notify
to a remote rank taking buffer a as the data source (contained
in segment local_seg at offset 1ocal_off), and a notifica-
tion with id 10 and value 1. The function returns right after
issuing the RMA operation and binding the calling task’s
completion to the local finalization of the operation. Notice
that the task declares buffer A as an input dependency (2 is
the data source). Thus, TAGASPI will transparently release
that dependency once the task finishes its execution and the
operation locally completes. Once released, the second task
will become ready and will reuse buffer a eventually.

A task could issue multiple one-sided operations and may
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int «B = (int x) malloc(N = sizeof(int)); // B corresponds to segment seg

#pragma oss task depend(out: B[0:N], notified) label(wait data)
tagaspi_notify_iwait(seg, 10, &notified);

#pragma oss task depend(in: B[0:N], notified) label(process)
processBuffer(B, N, &notified);

Figure 4. Example of using tagaspi_notify_iwait inside a task.

even perform unrelated computations in between. Notice we
obsolete the standard gaspi_wait function (Section II-B)
because now TAGASPI internally checks the local comple-
tion of task-aware RMA operations. In this way, we have
removed the complexity of managing and waiting operations
on communication queues. The application developers can
focus on exposing the application’s parallelism and are
responsible just for deciding the queue where to post the
operations.

Next, we explain the mechanism to wait for the comple-
tion on the target rank of an operation, named remote com-
pletion, which indicates the target rank that the operation has
completed and the data is already on its local memory. The
remote completion is especially useful in communication
patterns where the target rank needs to know when the data
arrives. As stated in Section II-B, GASPI guarantees that the
notification of a write+notify will arrive at the remote side
right after the data is written in the remote memory.

Our library offers the non-blocking function tagaspi_-
notify_iwait that initiates an asynchronous waiting of a
notification. Only tasks should call this function, and its
asynchronous behavior is similar to the one described for
RMA previously. The completion of the calling task is
delayed until the notification from the origin rank arrives
(Figure 1). The function accepts a pointer parameter to
where the notified value will be stored upon arrival.

Figure 4 shows an example of calling tagaspi_notify -
iwait inside a task. The first task calls this new function to
asynchronously wait for the arrival of the notification with
identifier 10. Upon arrival, TAGASPI will store the notified
value in the notified variable. Note that the task declares an
output dependency on this variable and another output de-
pendency on buffer 8. This code represents the receiver part
that matches with the sender’s code shown in Figure 3. The
notification’s arrival implies that the data sent by the sender
rank (Figure 3) has already been written in the local buffer
B (contained in segment seg in Figure 4). At that point, and
if the first task has finished the execution, TAGASPI will
complete the task and release its data dependencies. Then,
the second task will become ready and will read and process
the data received in buffer B8 eventually. The notification
value, stored in notified, could be consumed too.

The task only waits for one remote notification in the
previous example, but it could call tagaspi_notify_ iwait
multiple times to wait for different notification ids. The
library also defines the function tagaspi_notify_iwaitall
to wait for a consecutive range of notifications. Moreover,

int xA = (int x) malloc(Nxsizeof(int)); // A is inside local_seg

for (inti=0;i < iterations; ++i) {
#pragma oss task depend(out: ack_notified) label(wait ack)
tagaspi_notify_iwait(local_seg, 20, &ack_notified);

#pragma oss task depend(in: A[0:N], ack_notified) label(write data)
tagaspi_write_notify(local_seg, local_off,

dest, remote_seg, remote_off, N«sizeof(int),

/x Notification id & value x/10, 1, queue);

#pragma oss task depend(inout: A[0:N]) label(reuse)
updateBuffer(A, N);

}

Figure 5. Example of using tagaspi_write_notify inside a task
protected by another task that waits an acknowledgment (ack) notification.
This technique is useful in iterative producer-consumer patterns.

a task could mix calls of asynchronous waiting of no-
tifications with the issuing of one-sided communications,
such as tagaspi_write. The completion (and release of the
dependencies) of such a task would be delayed until all these
operations finish.

B. Supporting the Iterative Producer-Consumer Pattern

Many HPC applications have an iterative producer-
consumer communication pattern where a rank sends mul-
tiple data chunks to another remote rank in each iteration.
Usually, the communication buffers on the receiver rank are
the same across all iterations, so the target rank cannot
receive the chunk of iteration i until it has consumed
the same chunk received at the previous iteration i-1.
Otherwise, the newer chunk would overwrite the older one
before being consumed. Two-sided communication is not
affected by this issue because the receiving of data does
not start until the target process calls the receive function.
However, in one-sided, the receiver side does not take part
explicitly in the data transfer. Therefore, the sender must
acknowledge when it is safe to write the data chunk on the
receiver rank’s memory. In TAGASPI, we solve this issue
using a lightweight RMA notification to notify the sender
rank when it can safely initiate the remote write. Throughout
this text, we name this an ack notification.

We want to advance sending this ack notification to arrive
at the sender side as soon as possible so that this latter
can start the remote write without delays. The simplest way
for the receiver is to send the ack notification inside the
receiving task, which is the one waiting for the data chunk
and its notification. However, this is suboptimal because we
delay the sending of the ack notification and simulate a
two-sided rendezvous communication. The optimal moment
for sending the ack notification is inside the data consumer
task, just after processing the data, where we know we
will no longer use it. Supposing that the code in Figure 4
was inside a loop of iterations, we would place the call to
tagaspi_notify after line 7 (inside the task). Note that the
ack permits the sender to write the next iteration’s chunk.

Figure 5 shows the code on the sender side. We have
added a new task (wait ack) that declares an output de-
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Figure 6. Vertical timelme of an iteration in an iterative producer-consumer
pattern, where the sender rank (left) waits for the notification ack before
writing data into the receiver’s memory (right) using tasks and TAGASPI
services.

pendency on the ack_notified variable and asynchronously
waits for the ack notification sent by the receiver rank.
The task that writes to the remote memory (write data)
declares an input dependency also on ack_notified, SO
this latter task will not execute until the arrival of the ack.
Figure 6 shows the execution timeline of one iteration in
both processes. Black boxes represent the execution of tasks,
connected through data dependencies inside each process
(black dashed arrows), and some tasks communicating with
the other process (red arrows). Blue boxes represent when
TAGASPI, in the background, realizes that an issued RMA
operation was completed locally (local) or whether a remote
notification arrived (remote). This example uses a single data
chunk, but real applications will work with multiple chunks
in parallel. In Section V-A, we will show how to wait for
an ack notification without the extra task.

C. Fine-grained Local Completion in GASPI

The limitation that prevents implementing TAGASPI on
top of the GASPI standard is that this latter does not provide
a fine-grained wait mechanism for the local completion of
issued RMA operations. Instead, it provides the coarse-
grained gaspi_wait that waits for all the operations posted
to a given queue. However, for our approach, we need (1)
a mechanism to identify the RMA operations and (2) a new
API function to wait for some operations posted to a queue
and returning the identifiers of the completed ones.

We extend GASPI with a low-level API that exposes
the underlying requests created by GASPI RMA operations
but keeping the abstraction level. GPI-2 [16] divides each
GASPI operation into various low-level requests, e.g., a
write+notify uses two chained ibverbs requests. The requests
of the ibverbs API have a 64-bit id which we can later
retrieve when polling the completion of requests. Our idea
is to allow issuing GASPI operations with an optional 64-bit
tag and provide a new waiting API function returning the
tags of the low-level requests completed upon the call.

We define a constant for each operation (e.g., GASPI_op_-

wrITE) and a new API function gaspi_operation_submit.
The function, shown below, submits any GASPI operation
type, with a parameter for the operation type, the tag to
identify all the low-level requests created by that operation,
and all parameters that any operation may need (some may
be ignored). Another new function, gaspi_request_wait,
waits for the local completion of at most max_regs low-level
requests in the queue or until the timeout exceeds. It saves
the number of completed requests in the output parameter
and stores their tags and statuses (succeed or fail) in the
output arrays.

gaspi_return_t
gaspi_operation_submit(gaspi_operation_t operation, gaspi_tag_t tag,
/% All possible operation parameters... x/);

gaspi_return_t

gaspi_request_wait(gaspi_queue_id_t queue, gaspi_number_t max_reqs,
gaspi_number_t xcompleted_reqgs, gaspi_tag_t array_of_tags][],
gaspi_status_t array_of_statuses][], gaspi_timeout_t timeout);

D. Implementation of the TAGASPI Library

Our library requires the tasking model to provide the
external events API (Section II-C) to delay the completion
of communication tasks by binding them events. We also use
a mechanism to perform periodic checking of the pending
RMA operations and the arrival of remote notifications. We
have an internal task that periodically checks the completion
of those operations (red dashed task in Figure 1). When one
completes, it notifies the tasking system that the originating
task fulfilled an event. This polling task is transparent to the
application and runs every specific interval of time. In Sec-
tion V-B we will show more details about this mechanism.

Implementing the RMA operations in TAGASPI, like
tagaspi_write_notify, was straightforward. We show the
internal code of this operation in Figure 7. Once an appli-
cation task calls it, we retrieve the external event counter
of the calling task (line 2). We increase the number of its
events with the number of low-level requests that GASPI
will create for that operation (line 3), delaying the task
completion. The write+notify operation creates a low-level
request for the write and another for the notify. Then, we
submit the low-level GASPI operation by calling the new
gaspi_operation_submit and passing a representative of
the task as the operation tag (line 4). The representative
is the opaque pointer provided by the tasking runtime
system that identifies the task’s event counter. After that call,
the operation has been issued and the TAGASPI function
returns, so the task can freely finish its execution. Then,
in the background, the transparent polling task periodically
checks all the active GASPI queues of the current process
(line 7), looking for completed low-level requests using
gaspi_request_wait in a non-blocking manner (line 13).
We traverse the array of completed low-level requests (line
14) and decrease one external event from each event counter
that was codified as the low-level operation tag (line 15).



1

10
11
12
13
14
15
16
17

gaspi_return_t tagaspi_write_notify(...) {
void xcounter = get_current_event_counter();
increase_current_task_event_counter(counter, 2); // write + notify events
return gaspi_operation_submit(GASPI_OP_WRITE_NOTIFY, counter, ...);

void TAGASPI::pollRequests() { // called periodically by a polling task
gaspi_tag_t tags[MAX_REQS];
gaspi_status_t statsf]MAX_REQS];
gaspi_number_t ncomp;

for (int q = 0; g < TAGASPI::_maxQueues; ++q) {
gaspi_request_wait(q, MAX_REQS, &ncomp, tags, stats, GASPI_TEST);
for (int c = 0; ¢ < ncomp; ++c)
decrease_task_event_counter((void x) tags[c], 1);
}

}

Figure 7. Implementing tagaspi_write_notify inside TAGASPL
The tasking system transparently checks if that was the last
pending event of each task, and if so, it completes the task
and releases its data dependencies, as shown in Figure 1.

Implementing tagaspi_notify_iwait was also quite sim-
ple. When a task calls this function, we first check whether
the notification already arrived, and if so, we return directly
without adding any external event. Otherwise, we get the
current task’s event counter, and we increase its events
by one. Then, we get an auxiliary object to store the
information about the pending notification: the notification
id, the pointer to the location where to store the notified
value, and the pointer to the event counter. This object
must persist until the notification arrives, so we have a
custom allocator managing a pool of these objects that
uses a lock-free queue to keep the available ones. After
initializing the object, we simply insert it into a lock-free
multiple-producer-single-consumer (MPSC) queue holding
all pending notification objects, and the TAGASPI function
returns. In the background, the polling task also checks these
pending notifications periodically. This task first extracts
all the pending notification objects from the MPSC lock-
free queue and inserts them into a Boost intrusive list
(without dynamic allocations). Thus, the polling task can
work with an efficient list, and the possible contention of
the producers (communication tasks) does not affect the
polling one. Recent studies [17] show lower overhead and
contention in modern processors using this technique. The
polling task checks (non-blocking) the arrival of each pend-
ing notification in the list. Once a notification arrives, we
remove the notification object from the list and decrease the
event counter of the task that is waiting for that notification.
Again, the tasking system transparently completes the task
and releases its dependencies if that was its last event.

V. ADAPTING OMPSS-2 FOR HYBRID APPLICATIONS

A. Onready Action Clause

As explained in Section IV-B, many applications require
the receiver rank to notify the sender when it is safe to write
data to the receiver’s memory. We showed our solution for
these cases in Figure 5, where we had an additional task

S 0w u kW —

11
12

13

void ack_iwait(gaspi_segment_id_t seg, gaspi_notification_id_t notid) {
tagaspi_notify_iwait(seg, notid, NULL);

for (inti=0;i < iterations; ++i) {
#pragma oss task depend(in: A[0:N]) onready(ack_iwait(local_seg, 20))
tagaspi_write_notify(local_seg, local_off,
dest, remote_seg, remote_off, Nxsizeof(int),
/+ Notification id & value %/ 10, 1, queue);

#pragma oss task inout(A[O;N]) label(reuse)
updateBuffer(A, N);
}

Figure 8. Example of using tagaspi_write_notify inside a task
protected by an onready clause that waits an acknowledgment (ack)
notification. This simplifies the sender code shown in Figure 5.

waiting asynchronously for the receiver’s ack notification
just before the writer task. However, this solution is not the
most efficient for performance nor programmability, given
that we are adding an extra task before every writer task.

We propose a new task clause named onready that spec-
ifies a call to a user-defined function with any arguments.
The tasking runtime will call this function only once, at
any time after the task satisfies all its dependencies and
before running its task body. The function cannot assume
that it runs within a task context; it should not reach any
task scheduling point. Nonetheless, it can register external
events to the ready task to delay its execution until the
events are fulfilled. For instance, the callback could execute
TAGASPI operations or non-blocking TAMPI functions such
as tagaspi_notify_iwait and TAMPI_Twait. In this way, the
data dependencies allow tasks to define local dependencies
with other tasks on the same process, and the onready
clause allows them to define remote dependencies with other
processes (e.g., the arrival of a remote notification).

Figure 8 shows the new version of the sender code that
we showed in Figure 5. We removed the additional task that
waited for the ack notification (wait ack), and we moved
that ack waiting inside an onready callback on the writer
task, which is the one that writes data to the receiver’s mem-
ory. In this way, once the communication buffer a is ready,
the onready callback (ack_iwait) of the writer task will
be executed. The callback will wait asynchronously for the
ack notification, by calling tagaspi_notify_iwait, and will
transparently register an event that will delay the execution
of the writer task until the notification arrives. Upon arrival,
the task will become ready and will run eventually. However,
this would just be the worst-case scenario. Notice that if
the receiver rank advances enough the ack notification, this
latter could arrive much before the onready call, allowing
the writer task to be scheduled without delays.

B. Efficient and Dynamic Progress Checking

The task-aware libraries like TAGASPI require a service
in the background checking the pending operations periodi-
cally. The existing TAMPI library has been using the polling
services API [18] that allows registering a function that will
be called periodically and opportunistically by the tasking



runtime. However, this polling API does not allow setting
a polling frequency for each particular service. For this
reason, we propose a new way of implementing the polling
features. The idea is to have an isolated task inside TAGASPI
scheduled periodically to check the pending operations. This
task calls a new API function, named wait_for_us and
provided by the tasking model, that blocks the calling task
for a specific time in microseconds (uint64_t parameter).
The task stops during that time approximately and yields the
CPU to execute other tasks. The function returns the actual
time slept so that TAGASPI could take decisions based
on that. In TAGASPI, we spawn the polling task with the
nanos6_spawn_function API function [11], which creates a
task with an independent namespace of data dependencies
and has no relationship with any other existing task.

This polling mechanism is very flexible because we can
set a polling rate for each polling service. Although we did
not implement it yet, the polling task could dynamically
change the rate through the sleep time, e.g., depending on
the number of pending operations. For a fair comparison, we
have modified TAMPI to use the same mechanism to check
the in-flight MPI requests (yellow dashed task in Figure 1).

VI. EVALUATION

In this section, we evaluate the performance and pro-
grammability of the Task-Aware GASPI library in three
applications. In each one, we evaluate (1) an optimized
two-sided MPI-only approach, (2) a two-sided hybrid
MPI+OmpSs-2 variant that leverages TAMPI, and (3) a new
one-sided hybrid GASPI+OmpSs-2 variant that leverages
our novel TAGASPI library. In the MPI-only scenario,
recent studies [8] show that the two-sided MPI strategies
outperform standard one-sided MPI approaches (without
extensions), besides two-sided strategies are much easier
to implement. The objective of TAGASPI is to outperform
MPI-only and TAMPI approaches in cases where commu-
nications are fine-grained and have an important weight.
TAMPI and TAGASPI will show similar performance in
many scenarios because TAMPI provides high scalability [6]
[19] but will suffer higher contention (i.e., inside the MPI
library) when many tasks communicate concurrently.

We run our experiments in the Marenostrum4 supercom-
puter with up to 256 nodes (12288 cores). Each node has
two sockets Intel Xeon Platinum 8160 (2.10GHz) with 24
cores each (48 total cores), 96 GiB of memory, and an Intel
Omni-Path HFI Silicon 100 Series network. We also use 16
nodes (1024 cores) of the CTE-AMD cluster. Each node has
a single AMD EPYC 7742 (2.250GHz) with 64 cores (SMT
is disabled), 1TiB of memory, and a Mellanox InfiniBand
HDR100 network. We use the Intel 2017.4 compilers and
Intel MPI 2017.4 on Marenostrum4, while Intel 2018.4
and OpenMPI 4.0.5 on CTE-AMD. We extended the GPI-2
v1.4.0 [16] with the modifications proposed in Section IV-C
to support TAGASPL

A. Gauss—Seidel

We first use the iterative Gauss—Seidel method [20] that
solves the Heat equation [21], a parabolic partial differential
equation describing the heat distribution in a region over
time. This benchmark derives from the Gauss—Seidel in the
previous work [6] but using a 2-D matrix logically divided
into blocks. The matrix is distributed across ranks assigning
a consecutive set of rows to each one, so processes exchange
the boundary rows with the upper and lower neighbors.

We evaluate an optimized MPI-only version [6] that
uses non-blocking MPI primitives, advances their issuing
as soon as possible, and waits for them when necessary,
allowing the overlap of computation and communication.
We also evaluate the hybrid MPI+OmpSs-2 variant that
taskifies both computations and communications and lever-
ages the TAMPI non-blocking support (TaMpI_Iwait). We
develop a new hybrid version based on that taskification
but using TAGASPI for communication. Sender tasks use
tagaspi_write_notify to write and notify the receiver side,
while receiver tasks just wait asynchronously for the remote
notification calling tagaspi_notify_iwait. Sender tasks
multiplex communications by posting operations through the
multiple GASPI queues.

All variants work with a block size that controls the granu-
larity of computations and communications. Since MPI-only
spawns more processes, each one has a single row of blocks,
so the block size specifies the columns per block. The hybrid
variants have square blocks where the block size specifies
their rows and columns, altering the task granularity.

We evaluate this benchmark in Marenostrum4; the MPI-
only spawns 48 ranks/node, and the hybrid variants use one
rank/socket (24 cores/rank) to avoid NUMA effects. Figure 9
shows the strong scaling experiment using the optimal block
size of each variant. The upper figure shows the throughput’s
speedup, and the lower presents the parallel efficiency. We
compute the speedup with respect to the throughput of the
MPI-only variant in one node. We calculate the efficiency
with respect to each variant’s throughput in one node. Since
the input is very large, we use a 16x smaller input from 1
to 8 nodes. We compute the speedup and efficiency based
on the figure of merit (GUpdates/s).

The optimal block size is 1024 columns per block in
MPI-only and blocks of 512x512 elements in the hybrid
variants. The MPI-only performs slightly better with fewer
nodes but ends performing worse at 128 and 256 nodes.
The TAMPI version improves that performance in this latter
scenario, but TAGASPI is the one scaling better. At 256
nodes, TAGASPI outperforms MPI-only and TAMPI by
1.15x and 1.06x, respectively. Although these results are
already positive, this experiment works with optimal block
sizes and communications do not have an important weight.

We run another experiment to observe how the variants
behave when putting more pressure on communication.



256 T T z
128 | *’/j
64 y/ 4
32 - 8 -

16 B -

Speedup

1 8

0.5 . !

1.05 T T T T T
15— 2 :

0.95

0.9
0.85
0.8

0.75

Parallel Efficiency

07 L MPI-Only —+— |
' TAMPI —X—

0.65 - TAGASPI n

0.6 I I I 1 I I I
1 2 4 8 16 32 64 128 256
Nodes

Figure 9. The Gauss—Seidel’s strong scaling with a 256Kx128K matrix
and 1000 timesteps in Marenostrum4 from 1 to 256 nodes. Due to the
memory available in each node, we use a large input for the experiments
from 16 to 256 nodes, and a 16x smaller input (64Kx32K matrix and 1000
timesteps) for the experiments from 1 to 8 nodes.

Figure 10 shows their throughput at 128 nodes halving the
previous input and modifying the block size. Notice that
changing the block size implies changing the computation
and communication granularities, as well as the task gran-
ularity for the two hybrid versions. TAGASPI outperforms
the rest in all cases, especially for configurations with a
small block size, where the communication cost has a larger
impact. The lower performance of TAMPI for small block
sizes can be explained by the threading contention inside the
MPI library, which we will discuss in the following sections.
It is worth mention that the hybrid variants are also affected
by the tasking overheads when running with small block
sizes. However, for instance, TAGASPI using small blocks
of 128x128 still works at an acceptable 60% of the peak
throughput, while MPI-only is at 41% and TAMPI at 30%.
That means that TAGASPI could scale to even more nodes
with this same input using a small block size while keeping
reasonable performance.

B. MiniAMR

The second application is the miniAMR [22] [23], which
mimics the communication, refinement, and load-balancing
of larger adaptive mesh refinement applications. MiniAMR
simulates the physics conditions of a 3-D domain when
objects move across it. These objects create turbulent condi-
tions in the regions they are present and miniAMR increases
the simulation accuracy in those parts. The domain is
initially divided into 3—D blocks and distributed among pro-
cesses, but due to the dynamism of the simulation, turbulent
blocks are refined into smaller blocks and redistributed peri-
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Figure 10. The Gauss—Seidel’s throughput varying the block size with a
128Kx128K matrix and 500 timesteps in Marenostrum4 with 128 nodes.

odically. MiniAMR features multiple phases of computation
and communication interleaved, and then a refinement and
load-balancing phase periodically. Previous works [24] [19]
fully taskified its computation and communication phases
and some parts of the refinement and load-balancing [19],
using OmpSs-2 and TAMPI. We take that taskification as
the base and port the communication phases to TAGASPI.

Using RMA communication in miniAMR is not straight-
forward due to its dynamic and irregular communication
pattern. Processes can have multiple neighbors, but they
have only one memory buffer for sending and another for
receiving, where block boundary data is packed/unpacked
before/after the communication. Thus, it is difficult for
a process to know where it should write the boundary
block data in a neighbor process’ memory. For this reason,
we implement a sequential phase just after the refinement
and load-balancing stages where each pair of neighboring
processes agree on the unique remote offset and notification
identifier for each of the RMA messages that they will
exchange during regular communication phases. In this
way, sender tasks know precisely where they should write
their data on the remote side, whereas the receiver tasks
wait for the corresponding notifications. The communica-
tion phase follows an iterative producer-consumer pattern
(Section IV-B). The receiver side (consumer) must permit
any sender task (producer) before this latter writes to its
receiving buffer, preventing the overwrite of the data sent
in the previous iteration. We solve this issue by making
the receiver side send an ack notification once the data has
been unpacked from the receiver buffer. In turn, the sender
tasks asynchronously wait for the corresponding ack using
the onready clause (Section V-A). Although we need the
extra agreement phase after the refinement, the complexity of
the communication phases keeps very similar to the TAMPI
variant, where simple non-blocking MPI sends and receives
are used. Both TAGASPI services and the onready clause
strongly help keep the programmability and readability of
the code when using RMA communication.

We run the following experiments in Marenostrum4; the
MPI-only uses 48 ranks/node, and hybrids use 4 ranks/node
and 12 cores/rank. That is the optimal configuration for
hybrid approaches in miniAMR, given that the refinement



phase is not fully taskified [19]. In the TAGASPI variant,
we also use TAMPI during the load-balancing stage to
demonstrate that both libraries can work together. The load-
balancing stage represents a small portion of the total time
and does not present improvement opportunities, so we keep
this stage with tasks that call two-sided TAMPI services.

Firstly, we perform a strong scaling experiment with the
same input used in the previous study of miniAMR [19],
but we halve the number of computed variables (to 20
variables) to reduce the computational weight. The hybrid
variants send/receive/write each boundary block face from
a different task (separate messages). That is not the optimal
configuration (the optimal is around eight faces per message)
but provides very reasonable performance [19] and puts
more pressure on the communication phases. We show the
throughput speedup of the strong scaling on the upper part
of Figure 11 and the parallel efficiency on the lower part. We
compute the speedup with respect to the throughput of the
MPI-only variant in one node. We calculate the efficiency
with respect to each variant’s throughput in one node. Again,
since the input is very large, we use a 16x smaller input from
1 to 8 nodes. We compute the speedup and efficiency based
on the figure of merit (GUpdates/s). We show the results for
the whole algorithm time and the results assuming negligible
refinement time (marked as NR). The NR results are the
ones we would see in an ideal execution with the refinement
taking negligible time to run. These are useful to observe the
impact of the refinement phases [19].

In this case, TAGASPI achieves the best scalability and
efficiency; it improves both MPI-only and TAMPI by 1.41x
at 256 nodes. The efficiency of TAGASPI is significantly
better since it ends with an efficiency of 0.84, while MPI-
only is at 0.73 and TAMPI at 0.58 (non-refinement). As ex-
pected, the throughput assuming negligible refinement time
is significantly better in all variants because the refinement
has several sequential sections. Notice that TAMPI scales
well up to 32 nodes, but it starts decreasing the efficiency
from 64 nodes due to the high pressure on the communi-
cation. In those cases, TAMPI would need to increase the
communication granularity to mitigate that effect.

We perform another experiment with 128 nodes using
the previous input but varying the computed variables from
10 to 40 to see the impact on each variant. Figure 12
shows the throughput of each variant in this experiment.
Again, TAGASPI performs better in all configurations with
significant differences. MPI-only is barely affected by the
number of variables but has lower performance. The hy-
brid versions computing 10 variables show low throughput
because the small granularity of computation tasks brings
up the tasking runtime’s overheads. TAMPI improves as we
increase the computed variables and reduce the pressure on
the communication side. The largest differences are with
20 variables, where TAGASPI outperforms MPI-only and
TAMPI by 1.46x and 1.40x (non-refinement), respectively.
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During an analysis of the execution traces of the hybrid
variants with 20 variables, we observed that the tasks us-
ing TAGASPI communications are much faster than with
TAMPI. For instance, the sender and receiver tasks using
TAGASPI are around 5x and 100x faster than the TAMPI
ones, respectively. This difference is mainly explained by
the high contention inside the MPI library when calling
MPI_TIsend and MPI_Irecv concurrently from several tasks.
In contrast, the GASPI model allows GPI-2 [16] to imple-
ment communications with lower threading synchronization.
We will explain more details about the contention inside the
MPI libraries in the following application’s section.

C. Streaming

The last application is a new communication-intensive
benchmark that we call Streaming, inspired by the Pipelined



Stencil application [8]. This benchmark processes multiple
large chunks of data, and each participating compute node
has a different function that must apply to each chunk.
There are no data dependencies between elements of a
chunk when applying a function. From the first node, a
chunk moves across all the rest of the nodes, one by one,
applying each function to the chunk’s elements. We repeat
this process for each chunk, one after the other, following
a pipeline of chunk computations across the nodes. We can
specify a block size, which is the granularity of computations
and communications, as well as the granularity of tasks in
the hybrid variants. Blocks of a chunk can be processed
by a node concurrently. The computational weight and
communication pattern are the same independently from the
configuration of ranks per node. Each process receives/sends
data from/to a different node. They have a receive and a send
buffer with sufficient space to receive/send all the blocks
of a single chunk simultaneously. We have an optimized
MPI-only variant using non-blocking operations, a hybrid
taskified variant with non-blocking TAMPI, and our hy-
brid TAGASPI variant. The communication has an iterative
producer-consumer pattern, so the TAGASPI variant requires
ack notifications and uses the onready clause on writer tasks.

We evaluate the Streaming on Marenostrum4, using 48
ranks/node for MPI-only and two ranks/node (24 cores/rank)
in hybrid runs. The upper part of Figure 13 shows the
throughput of each variant when varying the block size with
64 nodes. We also show the standard deviation in each point
as error bars. In this case, the MPI-only is the variant that
performs better in general, but TAGASPI almost reaches
it when using blocks of 2K or more. TAMPI achieves its
peak performance with 8K block size but has significantly
worse performance than TAGASPI with smaller block sizes.
TAGASPI does not outperform MPI-only because Intel MPI
is specially optimized for the Intel Omni-Path networks and
the PSM2 APIL In contrast, the ibverbs API (leveraged by
GPI-2 [16]) is emulated in this fabric.

We demonstrate that TAGASPI can outperform MPI-only
by running on the CTE-AMD cluster that has an InfiniBand
network. We show the throughput with 16 nodes in the
lower part of Figure 13. MPI-only uses 64 ranks/node, and
the hybrid variants use one rank/node (64 cores/rank). In
this case, TAGASPI significantly outperforms both TAMPI
and MPI-only. For instance, with blocks of 4K, TAGASPI
improves MPI-only and TAMPI by 1.53x and 2.14x, respec-
tively. Moreover, the MPI-only variant suffers from more
considerable variability in this system.

The TAGASPI variant significantly outperforms TAMPI’s
in small and medium block sizes, as in the previous applica-
tions. These differences are mainly because of the contention
inside the MPI library when communicating in parallel from
several tasks. Implementing an efficient locking strategy
for the mp1_THREAD_MULTIPLE level in the MPI libraries is
challenging, although there have been many improvements
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Figure 13. The Streaming’s throughput varying the block size in Marenos-
trum4 with 64 nodes (upper) and CTE-AMD with 16 nodes (lower). The
upper computes 250 chunks of 768K elements each and the lower with 250
chunks of 1024K elements.

during the last years. We analyze why the TAMPI vari-
ant performs poorly with small block sizes by comparing
the time spent inside MPI using different block sizes in
Marenostrum4. The TAMPI version almost reaches the peak
throughput with block size 8192 and drops nearly to half
with 2048. In this case, we have observed that the total time
inside MPI (among all threads of an MPI rank) with block
size 2048 increases up to 27x the MPI time with block size
8192. An analysis with the Intel VTune profiler has reported
that the wait time inside the MPI library’s locking system
increases enormously when using the small block size.
Specifically, the wait time is dedicated to acquiring a lock
shared between the most time-consuming MPI functions
called by this application (MPI_Isend and MPI_Irecv) and
TAMPI internally (MPI_Test and MPI_Testsome).
Leveraging TAMPI or TAGASPI requires setting the
frequency in which their transparent polling task checks the
completion of their communications. The optimal value of
this frequency depends on the communication intensity of
the user application, the communication software stack, and
the HPC system hardware. In Marenostrum4, the optimal
values for the frequency of the TAMPI and TAGASPI
polling task are running every 150us for Gauss—Seidel
and miniAMR, and 50us for Streaming. In CTE-AMD,
Streaming needs the TAGASPI task to run every 50us, and
TAMPI needs a dedicated core (Ous). Streaming requires
more frequency due to its high communication intensity.
Lastly, we want to mention that our Task-Aware GASPI
library is being used in Saiph [25] [26], which is a Domain-
Specific Language (DSL) that facilitates the simulation of
physical phenomena from the Computational Fluid Dynam-



ics (CFD) domain in HPC systems. Macia et al. [27] extend
Saiph with a new back-end that generates a hybrid task-
based GASPI+OmpSs-2 variant of a high-level application
and internally leverages the TAGASPI library to perform
one-sided communications.

VII. RELATED WORK

We designed our task-aware features based on one-
sided operations with lightweight notifications provided by
GASPI. The concept of remote notifications is widely used
in other PGAS and RMA models. For instance, some PGAS
models like the Fortran CoArrays [28] are implemented
using a similar concept. Belli et al. [8] propose extending
the one-sided MPI interface with notifications, as well as
Sergent et al. [9]. Recent studies [29] describe the lack
of remote notifications in MPI as one of its major draw-
backs. Once the MPI standard extends one-sided operations
with notifications, we will be able to apply our task-aware
features to fine-grained one-sided MPI communication with
competitive performance.

Some studies optimize applications using hybrid GASPI
and OpenMP approaches. The common strategy is to issue
one-sided operations concurrently and wait for their com-
pletion from the master thread. The next computation phase
starts once all operations complete. This fork-join approach
is usually suboptimal since the synchronization point after
the parallel region limits both the intra- and inter-node
parallelism. Thébault et al. [30] use the fork-join strategy to
parallelize irregular applications with tasks. Moller et al. [31]
also mix GASPI and OpenMP tasks with a similar strategy in
an electromagnetic simulation application. However, to the
best of our knowledge, no studies efficiently integrate tasks
with GASPI enabling a true data-flow execution model.

Schuchart et al. [32] present the concept of global de-
pendencies among tasks that run on different processes
and based on the DASH PGAS model [33]. Tasks can
declare both local and remote dependencies so that inter-
process synchronizations can be defined as dependencies
among tasks at different processes. Our approach allows
implementing more fine-grained inter-process synchroniza-
tions and complex communication patterns and requires
much less effort from developers when porting their ap-
plications to our approach. The HabaneroUPC++ [34] inte-
grates the Habanero-C async-finish tasking model with the
UPC++ [35] PGAS model. This model has the previous
drawbacks, but it also treats each communication as a task,
which could bring overhead issues due to an excessively
fine-grained tasking. This latter issue is also present in
HCMPI [36], which integrates Habanero-C tasks with MPI,
but it does not support one-sided operations.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the challenges of integrat-
ing the one-sided interfaces of MPI and GASPI with tasking

models. We have designed and implemented the Task-Aware
GASPI library to efficiently support GASPI operations
called by OmpSs-2 tasks in a fine-grained way. We have
extended both GASPI and OmpSs-2 to implement our library
and allow programmability enhancements in one-sided ap-
plications. We show significant performance improvements
against MPI-only and hybrid TAMPI approaches, such as
a 1.40x speedup in miniAMR. As future work, we expect
the remote notifications (or similar) to be standardized in
MPI so that we can efficiently integrate one-sided MPI with
tasks through the TAMPI library. We also plan to investigate
about dynamically adapting the running frequency of the
TAGASPI polling task based on the workload, e.g., the
number of outstanding operations.
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