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 10 

HIGHLIGHTS  11 

• PM2.5 exposure can be obtained even at sites with no monitoring stations. 12 

• Remotely sensed data can be used for spatial prediction on air quality modelling. 13 

• Thermal anomalies are important to modelling air quality at wildfire scenarios. 14 

• PM2.5/ PM10 ratio could be used in areas with limited monitoring stations. 15 

 16 

ABSTRACT 17 

Particulate matter with aerodynamic diameter <2.5 µm (PM2.5) is one of the main 18 

pollutants generated in wildfire events with negative impacts on human health. In 19 

research involving wildfires and air quality, it is common to use emission models. 20 

However, the commonly used emission approach can generate errors and contradict the 21 

empirical data. This paper adopted a statistical approach based in evidence of ground 22 

level monitoring and satellite data. An hourly PM2.5 spatio-temporal model based on a 23 

dynamic linear modelling framework with Bayesian approach was proposed in a 24 

territorial context with a reduced number of monitoring stations for particulate matter. 25 



The model validation is complicated by the fact that all monitoring stations are used in 26 

the model calibration. The novel validation method proposed considered both the 27 

particulate matter with aerodynamic diameter <10 µm (PM10) recorded as daily value 28 

from 24-h mean every six days as well as the PM2.5/PM10 ratio. Modelling was carried 29 

out to provide satisfactorily the exposure level of PM2.5 in a case study of wildfire event. 30 

 31 

Keywords: Wildfire; Spatial modelling; Environmental statistics; Air quality; Particulate 32 

matter. 33 

 34 

1. Introduction  35 

Wildfires are an ecological disturbance with climatic, social and economic impacts on a 36 

global, regional and local scale (Amraoui et al., 2015; Hirschberger, 2016; Nunes et al., 37 

2016). Wildfires are a natural significant source of air pollution (Smith, 1990; Bravo et 38 

al., 2002; Sapkota et al., 2005). Wildfire emissions can be higher than those emitted by 39 

specific activity sectors (e.g., the transport sector). However, wildfire emissions are 40 

released into the atmosphere only a few times during short periods (Martins et al., 2012).  41 

Particulate matter from wildfires is highly visible, affects ambient air quality, and has 42 

various effects on human health (Ward and Smith, 2005; Reinhardt et al., 2001; Knorr et 43 

al., 2012; Fann et al., 2018). Much of the increase in PM concentration during wildfires 44 

is primarily observed in the fine fraction (PM2.5) (Sapkota et al., 2005; Mathur, 2008).  45 

PM2.5 from wildfires has the greatest effect on visibility and radiation transfer. It can act 46 

as condensation nuclei for fog formation that may last for several days or months 47 

(Robock, 1991; Nichol, 1997; Legg and Laumonier, 1999; Ward, 1999; Reinhardt et al., 48 

2001). PM2.5 is preferentially transported over long distances because these particles are 49 

both too small to settle by gravity and too large to coagulate. Furthermore, particles in the 50 



fine fraction are capable of penetrating deeper into the lungs and have been associated 51 

with increased mortality and morbidity (Wilson and Spengler, 1996; Pope III et al., 2003; 52 

Morris, 2001; Metzger et al., 2004). Despite the importance of PM2.5, the PM2.5 data is 53 

less commonly available than PM10 (Walsh and Sherwell, 2011; Chu et al., 2014). 54 

Knowing this problem, the World Health Organization (WHO, 2010) proposed a method 55 

to obtain annual levels of PM2.5 by country, using PM10 and PM2.5/PM10 ratio. 56 

A better knowledge of the spatial distribution of particulate matter on wildfire events is 57 

crucial to understanding the resulting environmental and socio-economic impacts 58 

(Martínez et al., 2009; Nunes et al., 2016). In this sense, numerous studies have modeled 59 

levels of PM2.5 during wildfire events. Among the most important studies are those 60 

models that seek to estimate the emissions of PM2.5 using different information sources, 61 

such as land use, vegetation inventories, types of forest, chemistry analyses, and other 62 

information (Wiedinmyer et al., 2006; Hodzic et al. 2007; Martins et al. 2012, Koplitz et 63 

al., 2018). The emission estimates of PM2.5 in wildfires use a set of fixed source profiles 64 

over multiple locations in a period of time. This can result in error even if representative 65 

source profiles are used (Wang et al., 2012; Watson et al., 2015; Ying et al., 2018). These 66 

limitations can contradict the empirical evidence of ground level monitoring (Lee et al., 67 

2008; Richardson et al., 2018; Majdi et al. 2019).  68 

Alternatively, emissions can be modeled by applying statistical models to particulate 69 

matter levels observed at monitoring stations. For instance, Dynamic Linear Models 70 

(DLM) are commonly used in air quality modelling and have been widely reviewed 71 

(Shaddick and Wakefield, 2002; Cocchi et al., 2007; Cameletti et al., 2011; Fassò and 72 

Finazzi, 2011; Sahu, 2012). DLM can be extend over a territory including sites where 73 

there are no monitoring stations using the Gaussian Field (GF) principles (Blangiardo et 74 

al., 2013). This statistical approach allows one to calibrate and validate the model with 75 



empirical evidence of ground level monitoring. However, it is usually used with a large 76 

number of monitoring stations to calibrate and then validate the model. For example, 77 

Cameletti et al. (2013) presented a daily spatio-temporal model of PM10 using 24 stations 78 

to calibrate and 10 stations to validate the model. Sahu (2012) presented a dayli maximum 79 

8-hour average ozone levels modelling with 117 monitorins stations to calibrate and 12 80 

stations to validate the proposed model.   81 

Considering that DLM have not been applied and evaluated in wildfires events, this article 82 

aims to modelling hourly spatio-temporal evolution of PM2.5 concentrations on wildfire 83 

event, using DLM with Stochastic Partial Differential Equations (SPDE) as application 84 

of GF principles. The proposal is tested with an application to the common situation of a 85 

reduced number of monitoring stations available for calibrating and validating the 86 

application of the model in a certain region and temporal scale, but with additional 87 

stations with PM10 observations available.  We propose the use of PM2.5 observations for 88 

model calibration, in a standard way, assuming that the number of stations does not allow 89 

for splitting, and the use of additional PM10 data for model validation. The approach 90 

presented requires the presence of monitoring stations with both PM2.5 and PM10 data, 91 

which connects PM2.5 modeling with trends given by data from PM10 monitoring stations 92 

using the ratio PM2.5/PM10.  Temporal resolution of both datasets can differ but time 93 

spanning should be the same. The case study presented in this work involves one-month 94 

with hourly data of 5 monitoring stations for PM2.5 and daily data every six days of 6 95 

stations for PM10 with, three stations shared by both data sets. The proposal improves in 96 

spatial and temporal scale the method proposed by WHO to obtain PM2.5 (WHO, 2010).  97 

The remainder of this article is presented as follows. Section 2 provides the site and 98 

wildfire descriptions, datasets used, and a brief background to spatio-temporal model 99 

using both DLM and SPDE approaches with their application. Section 3 provides the 100 



results. Section 4 provides a discussion, while Section 6 provides the principals 101 

conclusions. 102 

 103 

2. Data and Methodology 104 

2.1. Site description 105 

Quito is situated in a narrow valley in the Andean mountains at 2,800 m.a.s.l. It has an 106 

area of 4,230.6 km2 and 2,240,000 inhabitants (EMASEO, 2011). The temperature 107 

inversions are common events in Quito due to the complex topography and high solar 108 

intensity (Jurado and Southgate, 1999). The particulate matter monitoring network in 109 

Quito and adjacent areas includes eight stations (Table 1). Five of these eight monitoring 110 

stations collected hourly (h) observations of PM2.5. Also, six of these eight monitoring 111 

stations collected daily observations of PM10 every six days (6-d). Location and quality 112 

control processes of monitoring stations were stablished by the Environmental Agency 113 

of Quito following the criteria for air quality monitoring set by the Environmental 114 

Protection Agency of the United States (USEPA) (Secretaria de Ambiente del DMQ, 115 

2017).  116 

Table 1. Main parameters of stations used in the calibration and validation model 117 
Station Name Location Elevation 

(m.a.l.s.) Pollutants Station code 

For calibration      
Carapungo 78°26'50" W, 0°5'54" S 2851 PM2.5 (h) PM10 (6-d) ST_1 
Belisario 78°29'24" W, 0°10'48" S 2835 PM2.5 (h) PM10 (6-d) ST_ 2 

Cotocollao 78°29'59,2" W, 0°06'38,8" S 2739 PM2.5 (h) - ST_3 
Centro 78°30'50.4" W, 0°13'17.6" S 2820 PM2.5 (h) - ST_4 

Los Chillos 78°27'18,8" W, 0°17'49,5" S 2453 PM2.5 (h) PM10 (6-d) ST_5 
For validation      

Tumbaco 78°24'00'' W, 0°12'36'' S 2331 - PM10 (6-d) ST_1V 
Tababela 78°20'33'' W, 0°11'23'' S 2506 - PM10 (6-d) ST_2V 
Jipijapa 78°28'48'' W, 0°09'36'' S 2781 - PM10 (6-d) ST_3V 

 118 

2.2. Wildfire event description  119 

September 2015 was a month when wildfires in Quito were frequent and wide, with 14 120 

September the most outstanding day. In the previous 15 years, no other pollution event 121 



had been more remarkable than this one (Espinosa, 2018). Figure 1 shows the complete 122 

wildfire event in red colour that occurred on September 2015, for this purpose we used 123 

the data product MCD14A1 (Thermal anomalies/Active Fire) from MODIS- Terra/Aqua 124 

sensor platform.  Additionally, it shows the administrative boundary of Quito (yellow 125 

polygon) with the five monitoring stations to calibrate the model (green triangles), and 126 

three stations to validate the model (yellow dots). 127 

 128 
Figure 1. Wildfire event (in red color) on September 2015 (MCD14A1 from MODIS- 129 

Terra/Aqua sensor platform) in Quito (yellow polygon), with the monitoring stations to 130 

calibrate (green triangles) and validate (yellow dots) the model. The stations labels in 131 

the map refer to the “Station code” column in Table 1. 132 

 133 

2.3. Data  134 

2.3.1. PM2.5 and PM10 data 135 
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Monitoring hourly values of PM2.5 and PM10 were compiled from Air Quality Network of 136 

Quito for each monitoring site showed in the Table 1. However, the PM10 levels were 137 

recorded as daily value from 24-h mean every six days.  For PM2.5 and PM10 level data, 138 

Thermo Fisher Scientific EPA standard method was used (Zalakeviciute at al., 2019).  139 

 140 

2.3.2. Meteorological data 141 

The significant meteorological covariates used in this paper were air temperature (K), 142 

pressure (mb), radiation (W∙m-2), and surface temperature (K). The meteorological data 143 

was hourly compiled from the meteorological assimilation system based on satellite data. 144 

The Modern-Era Retrospective analysis for Research and Applications version 2 145 

(MERRA-2). MERRA-2 published many analysis products used in atmospheric and air 146 

quality modelling (Kuo, 2017; Qin et al., 2018). The results presented in this article are 147 

derived from three data products: (1) air temperature (M2I1NXLFO.5.12.4), (2) radiation 148 

(M2T1NXRAD.5.12.4), and (3) pressure (M2T1NXSLV.5.12.4). These data products 149 

had a spatial resolution of 0.5°´0.625° lat-lon, and temporal resolution of 1 hour. Soil 150 

surface temperature variable was used as an indicator of fire events (Bailey and Murray, 151 

1980; Jolly et al., 2015; Liu et al., 2019). This variable (MAT1NXSLV) was hourly 152 

collected from MERRA Data Assimilation System 2-Dimensional, using the Goddard 153 

Earth Observing System Data Assimilation System Version 5 (GEOS-5 DAS). The soil 154 

surface temperature data had a spatial resolution of 0.5°´0.667° lat-lon, and temporal 155 

resolution of 1 hour. 156 

 157 

2.4. Statistical model: DLM and SPDE approaches.  158 

The dynamic linear modelling approach is described below. Let 𝑦#$	denote the observed 159 

generic pollutant concentration at spatial location 𝑠 (𝑠 = 1,… , 𝑆)	on hour 𝑡 (𝑡 = 1,… , 𝑇). 160 



If	𝑦#$	denote particulate matter, Blangiardo et al. (2013) suggest applying the natural 161 

logarithmic transformation in order to stabilize the variances, and to make the distribution 162 

of PM data approximately normal. The observation equation is assumed as  163 

𝑦#$ = 	𝑋#$ ∙ 𝛽 +	𝜃#$ + 𝑣#$. (1) 164 

In this model, 𝑣#$ represents the measurement error which is assumed to be independent 165 

and distributed 𝑁 0, 𝜎78 . The measurement error variance, 𝜎78, also is called the nugget 166 

effect (Cressie 1993). The vector 𝛽is a vector of regression coefficients and 𝑋#$ represents 167 

a vector of regressors that change temporally (large-scale component including 168 

meteorological and geographical covariates). For covariates selection in DLM approach, 169 

two suggested criteria were used: The Deviance Information Criterion (DIC) defined by 170 

Spiegelhalter et al. (2002), and the Watanabe-Akaike Information Criterion (WAIC) 171 

introduced by Watanabe (2013), who calls it the widely-applicable information criterion. 172 

Gelman et al. (2014) presents a good theoretical explanation of these criteria as well as a 173 

historical and analytic comparison between them.  174 

The term 𝜃#$ is the realization of the latent spatio-temporal process (true unobserved 175 

levels of generic pollutant on hour 𝑡 at site 𝑠), and it is a dynamic autoregressive first-176 

order model with coefficient 𝑎, given by 177 

𝜃#$ = 𝑎 ∙ 𝜃#,$:; + 𝑤#$. (2) 178 

The last equation is termed the system equation, and the criteria described by Cameletti 179 

et al. (2013) are assumed, with 𝑡 = 2,… , 𝑇 and 𝑎 < 1 and 𝜃#,; derived from the 180 

stationary distribution 𝑁 0, 𝜎?8/(1 − 𝑎8 ).	Therefore 𝑤#$ has a normal distribution with 181 

zero mean and variance–correlation matrix S, 𝑁(0,	S=𝜎?8S). The dense 𝑆×𝑆 correlation 182 

matrix (S) uses elements given by the Matérn function, which depends on the Euclidean 183 

spatial distance and is parameterized by 𝜌	(for more details, see Cressie 1993, Lindgren 184 

et al. 2015, and Cameletti et al. 2013). 185 



For the purpose of spatial prediction of a generic pollutant for sites without monitoring 186 

stations, we used the SPDE approach. This uses a finite element representation to define 187 

the Mátern field (i.e. a GF with Mátern covariance function, 𝜃 𝑠 ) as a linear combination 188 

of basis functions defined on a triangulation of the domain D. This approach consists of 189 

dividing the domain into a set of triangles that do not intersect but are joined only through 190 

a vertex. First, the triangulation is generated between the location of the monitoring 191 

stations, and then vertices are added to obtain a triangulation that allows spatial 192 

predictions (Cameletti et al., 2013). The basis function representation of the Matérn field 193 

𝜃(𝑠) is given by  194 

𝜃 𝑠 = 𝜓GH
GI; 𝑠 wG   (3) 195 

where n is the vertices number, 𝜓G 𝑠  are the basis functions that are chosen to be 196 

piecewise linear on each triangle (is 1 at vertex l and 0 at all other vertices), and wG are 197 

Gaussian distributed weights (The height of each triangle, i.e., the value of the spatial 198 

field at each triangle vertex). The values in the interior of the triangle are determined by 199 

linear interpolation. This representation establishes the link between the Gaussian field 200 

𝑇 𝑠  and the Gaussian Markov Random Field (GMRF) defined by the Gaussian weights 201 

to which a Markovian structure can be given (for more details, see Lindgren et al., 2015, 202 

Cameletti et al., 2013).  203 

 204 

2.5. Methodology 205 

The available monitoring stations of PM2.5 are used to calibrate the model. The model 206 

calibration considers an hourly temporal scale. The model parameters from model 207 

calibration are: the vector of regression coefficients (𝛽), the true unobserved logarithmic 208 

levels of generic pollutant on day 𝑡	at station	𝑠 denoted by 𝜃#$, the measurements error 209 

variance (𝜎78), spatial variance (𝜎?8), and the coefficients 𝑎 and 𝜌.  210 



As all PM2.5 monitoring stations were used in the model calibration, we developed a 211 

method for estimating PM2.5 concentration at additional validation stations (Walsh and 212 

Sherwell, 2011; Chu et al., 2014). A similar approach was proposed by World Health 213 

Organization, 2010. Our approach considered the equal or similar behavior of particulate 214 

matter between nearby points in local and regional studies (Munir, 2017; Xu et al., 2017; 215 

Zhao et al., 2019). 216 

The proposed method had two elements. The first element was the PM2.5/PM10 ratio based 217 

on the daily mean value of PM2.5 calculated for the same days when the daily PM10 values 218 

were collected (Marcazzan et al., 2011; Chu et al., 2015; Li et al., 2017). The PM2.5/PM10 219 

ratio was calculated from monitoring stations that had both PM2.5 and PM10 observation 220 

(termed support stations). This assumption was made considering the equivalent 221 

methodology used in the PM monitors. With particulate matter, to accurately compare 222 

the data it will need to be from monitors where the agreement is strong enough to be used 223 

interchangeably in the model (Mehadi et al., 2019).  224 

The second element was a distance matrix between validation and support stations. The 225 

closest support station in the distance matrix was used for each validation station. This 226 

analysis allowed us to associate each validation station with a support station. After this 227 

analysis, the PM10 behavior was evaluated in the associated stations through a correlation 228 

analysis (Ito et al., 2001). The correlation analysis allowed us to assign the PM2.5/PM10 229 

ratio of a support station to its respective validation station. 230 

Then to estimate the daily PM2.5 concentration every six days (𝑃𝑀8.L
∗ ) based on the PM10 231 

concentration collected every six days (𝑃𝑀;N	(OP#)) and the PM2.5/PM10 ratio assigned to 232 

each validation station, we used the Equation 4 233 

𝑃𝑀8.L
∗ = 𝑃𝑀;N	(OP#)	𝑥

RST.U
RSVW

.  (4) 234 



The model evaluation had two stages: the first stage of evaluating the model calibration, 235 

and the second one of evaluating the model validation; for these purposes, the Nash-236 

Sutcliffe Efficiency Index (NSE), root-mean-square error (RMSE), and Pearson 237 

correlation coefficient were used. NSE (Eq. 5) is a widely used and potentially reliable 238 

statistic for assessing the goodness of fit of models. The NSE scale is from 0 to 1, whereby 239 

NSE = 1 means the model is perfect. NSE = 0 means that the model is equal to the average 240 

of the observed data, and negative values mean that the average is a better predictor 241 

(McCuen et al., 2006)  242 

𝑁𝑆𝐸 = 1 − YOP#Z:Y#[\Z
T

YOP#Z:YOP# T .  (5) 243 

Unlike RMSE, the NSE and Pearson correlation are independent of the scale of 244 

measurement of the variables. 𝑌𝑜𝑏𝑠[ denotes the observed hourly PM2.5 concentration in 245 

the calibration processes, and the daily 𝑃𝑀8.L
∗  values in the validation processes.  𝑌𝑠𝑖𝑚[ 246 

denotes simulated hourly PM2.5 concentrations in the calibration processes, and the 247 

simulated values of the daily mean PM2.5 concentration in the validation processes. The 248 

quality metrics for the general model and for each monitoring station were obtained. 249 

 250 

3. Results  251 

Our spatio-temporal model was applied to the five monitoring stations (S=5) having 252 

PM2.5 data on hour 𝑡 (T=720). As the SPDE approach is applied on a mesh, the 253 

triangulation proposed in this paper has 41 vertices, with each monitoring and validation 254 

stations given a vertex. Per Lindgren and Rue (2015), we used a comparative analysis 255 

between the results obtained from two meshes: the first one with 41 vertices, and the 256 

second one with 219 vertices. In the model calibration, the quality metrics (RMSE, NSE, 257 

and Pearson correlation coefficient) were equal for both meshes. The quality metrics were 258 

similar for both meshes in the model validation. Thus, the results were not influenced 259 



significantly by the mesh selection, and so we can be used the mesh with less number of 260 

vertices. We used the mesh with less number of vertices because the computational time 261 

required to fit the models are related to mesh size and model complexity at each vertex 262 

(Krainski et al., 2018). 263 

Figure 2(a) shows the five monitoring stations and three validation stations (points and 264 

triangles, respectively). This process also considered a 26 ´ 26 grid, with distance 265 

between each intersection of 4 km; in total, 676 intersections were used. Each intersection 266 

point contains 720 recorded data (hourly data during September) for each covariate 267 

defined in the model (see Figure 2(b)).  268 

  
(a) (b) 

Figure 2. (a) Triangulation of DMQ region using 41 vertices; (b) 26 ´ 26 grid with 269 
satellite data.  270 

 271 

The posterior estimates (mean, quantiles, and standard deviation) for hyperparameters 272 

𝜎78, 𝜎?8 , r and a are shown in Table 2. The spatial variance has the most significant mean 273 

value in the proposed model. A similar result was obtained by Cameletti et al. (2013). We 274 

obtained a value of 27.190 km for the empirically-derived correlation range, which is the 275 

distance at which the correlation is close to 0.1. Considering the area of study, it is enough 276 

to cover a local territory in which there are limited monitoring stations. The empirically-277 

derived correlation range allows to check if the proposed method for the model validation 278 

between two nearby stations can be used.  279 



Table 2. Posterior estimates (mean, standard deviation, and quantiles). 280 
Parameter Mean SD 25% 50% 97.5% 

𝜎78 0.1650 0.00748 0.1509 0.1648 0.1803 
𝜎?8  0.2645 0.01662 0.2334 0.2639 0.2986 
r 27.190 1.9358 23.601 27.111 31.198 
𝑎 0.7565 0.01851 0.7188 0.7570 0.7914 

 281 

Table 3 shows the regression coefficients from the spatio-temporal model (mean, 282 

standard deviation, and quantiles). The posterior mean of the intercept is 2.751 on the 283 

logarithmic scale. The mean value of   the intercept means an average of PM2.5 284 

concentration of about 16 µg×m–3, after adjusting for covariates.  285 

In the proposed model, the altitude coefficient had the most significant posterior mean 286 

value (–0.32): altitude had an inverse influence on logarithmic PM2.5 concentration, i.e., 287 

the concentration of PM2.5 decreases with increasing altitude. This behavior has been 288 

widely studied (Viana et al., 2005; Ding et al., 2005; Si-Jia et al., 2016). Further, altitude 289 

had an inverse relationship with pressure (Chen et al., 2008). However, the mean value 290 

of pressure coefficient (0.04) had no important influence on logarithmic PM2.5 291 

concentration.  292 

The mean value of the UTMY coordinate coefficient (0.26) had an important direct 293 

influence on the logarithmic PM2.5 concentration. This behavior could be associated to 294 

forest fire location, as in this work, the most affected zones were in the northern strip. 295 

The mean value of air temperature coefficient (–0.24) had an important inverse relation 296 

with logarithmic PM2.5 concentration. Air temperature and radiation are linked to thermal 297 

inversion and air density; thus, the concentration of PM2.5 decreases with increasing air 298 

temperature and radiation (Hasheminassa et al., 2014).  299 

The mean value of surface temperature had less influence on the logarithmic PM2.5 300 

concentration. However, the surface temperature had a positive relationship with the 301 

concentration of PM2.5; in other words, the concentration of PM2.5 increases with 302 



increasing the surface temperature (Ward and Smith, 2005; Luhar et al., 2008, Gaetani et 303 

al., 2012). 	304 

Table 3. Regression coefficients (mean, standard deviation, and quantiles) 305 
Covariate Mean SD 2.5% 50% 97.5% 
Intercept 2.751 0.04 2.67 2.752 2.83 
Altitude -0.3237 0.05 -0.42 -0.32371 -0.223 
UTMX -0.08401 0.04 -0.16 -0.08400 -0.003 
UTMY 0.26322 0.03 0.19 0.26321 0.33 

Air Temp. -0.23953 0.04 -0.31 -0.23952 -0.16 
Pressure 0.03791 0.01 0.01 0.03792 0.064 

Radiation -0.1118 0.03 -0.17 -0.11179 -0.047 
Surface Temp. 0.0444 0.03 -0.01 0.0443 0.107 

 306 

Overall, the model calibration had an NSE of 0.83, an RMSE of 0.32, and a Pearson 307 

correlation coefficient of 0.92. These values show a good quality model and fitted values 308 

in the calibration stage (Ritter and Muñoz-Carpena, 2013). The quality model and fitted 309 

values for each monitoring stations at the calibration stage presented a similar behavior; 310 

the values obtained are showed in Table 4.  311 

Table 4. Quality analysis for each monitoring station 312 
Parameter EST_1  EST_2 EST__3 EST_4 EST_5 

NSE 0.82 0.79 0.80 0.81 0.82 
RMSE 0.24 0.32 0.26 0.39 0.37 

Pearson Correlation Coeff. 0.92 0.89 0.90 0.91 0.92 
 313 

The model validation used the PM2.5/PM10 calculated at three monitoring stations: ST_1: 314 

Carapungo, ST_2: Belisario, and ST_5: Los Chillos. Figure 3 shows the PM2.5/PM10 ratio 315 

behavior on the time (every six days) at support stations.  316 



 317 
Figure 3. PM2.5/PM10 ratio obtained every six days at support stations. 318 

 319 

Overall, ST_1 had the lowest PM2.5/PM10 ratio and the ST_5 had the highest ratio. The 320 

north of DMQ has more influence on PM10, while the south was influenced by PM2.5. 321 

Díaz and Pérez (2006) have explained that this behavior is due to the wind direction, as 322 

the wind crosses the territory from north to south. 323 

The second element for the validation model in our case study was the distance matrix 324 

between validation and support stations. It is showed in the Table 5.  325 

Table 5. Distance matrix between validation and support stations in km 326 
 ST_1V ST_2V ST_3V 

ST_1 14.161 15.851 7.882 
ST_2 10.806 17.069 3.217 
ST_3 15.728 19.572 5.871 
ST_4 11.872 18.944 7.427 
ST_5 10.763 17.265 15.406 

 327 

The associated stations were: ST_1V with ST_5, ST_2V with ST_1, and ST_3V with 328 

ST_2. As shown in Table 6, the PM10 correlation analysis of the associated stations gave 329 

adequate correlation coefficients (R2). These adequate correlations allowed us to assign 330 

the PM2.5/PM10 ratio from support stations to validation stations.  331 

Table 6. Associated stations and their correlation coefficients 332 
Validation 

station 
Support 
station 

Correlation Coefficient 
(R2) Linear equation 

ST_1V ST_5 0.697 PM;N:	fg_;i = 0.8432	 ∙ PM;N:	fgL + 10.288 

PM
2.5

/P
M

10
RA

TIO

DAYS	(SEPTEMBER)



ST_2V ST_1 0.999 𝑃𝑀;N:	mn_8o = 1.5586	 ∙ 𝑃𝑀;N:	mn; − 75.715 
ST_3V ST_2 0.966 PM;N:	fg_si = 0.75	 ∙ PM;N:	fg8 + 11.45 

 333 

The model validation in general had a Nash-Sutcliffe efficiency index of 0.50, an RMSE 334 

of 0.16, and a Pearson correlation coefficient of 0.78. The model proposed by Cameletti 335 

et al. (2013) to predict PM10 with a daily scale had the next quality metrics: an RMSE of 336 

0.5328, with a correlation coefficient of 0.7015, using a direct validation method at a 337 

large number of monitor stations to calibrate and validate the model.  338 

Table 7 shows the quality indices per each validation site. The validation site ST_2V 339 

presented the lowest NSE value (i.e., for this validation site will be better take the mean 340 

value to predict). 341 

Table 7. Quality analysis for each validation point 342 
Parameter ST_1V  ST_2V ST_3V 

NSE 0.28 -2.1 0.94 
RMSE 0.17 0.208 0.02 

Pearson Correlation Coeff. 0.78 0.79 0.99 
 343 

In the wildfire described in this work, the affected areas corresponded to the identified 344 

areas of recurrence of wildfires by Columba et al. (2016). In this work the most affected 345 

area by wildfire were located in the north. Four sites in the territory were randomly 346 

selected.  Figure 4 shows the hourly behavior of logarithmic PM2.5 concentration in 347 

September 2015 at randomly selected four sites at which there are no monitoring stations. 348 

Figure 4 shows high logarithmic PM2.5 concentrations in the central and north zones of 349 

DMQ (Site 1, Site 2, and Site 3), and low concentrations in the south of Quito (Site 4). 350 

Wildfires during September were continuous at different territorial extensions and 351 

intensities. The largest wildfires started on September 6, 14, and 28. The curves shown 352 

in the Figure 4 presented slight peaks around the indicated dates. However, the spikes are 353 

not noticeable due to the location of monitoring stations near to the paths in the urban 354 

area, and they can recorder levels of anthropogenic fine particulate matter, such as 355 



emissions from diesel vehicles. The dynamic presented in the Figure 4 is specifically 356 

intraday (hourly). 357 

 358 
Figure 4. Hourly logarithmic PM2.5 concentrations (µg/m3) at unknown pollution sites. 359 

 360 

Figure 5 shows the spatial logarithmic concentrations for PM2.5 at two times on 14 361 

September 2015 (the most outstanding wildfire), for which MODIS information was 362 

available directly. We used the data product MOD14A1 (Thermal anomalies/Active Fire) 363 

from MODIS-Terra sensor platform in the morning (10h30), and MYD14A1 (Thermal 364 

anomalies/Active Fire) from MODIS-Aqua sensor platform in the afternoon (13h30).   In 365 

two cases, the high levels of PM2.5 were located in the northwest of Quito. The main 366 

reason for this is that the fire magnitude in the north was larger and more prolonged than 367 

in the center and south area at Quito. Figure 6 shows the highest hourly logarithmic 368 

concentration of PM2.5 at the most outstanding wildfire (14 September 2015, 16:00).  369 
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Figure 5. (a) Thermal anomalies/Active Fire (MOD14A1 from MODIS-Terra) at 10h30 370 
(left), and the predicted logarithmic PM2.5 concentration at 11h00 (right) on 14 371 

September; (b) Thermal anomalies/Active Fire (MYD14A1 from MODIS-Aqua) at 372 
13h30 (left), and the predicted logarithmic PM2.5 concentration at 14h00 (right) on 14 373 

September.  374 
 375 

 376 
Figure 6. Model results on 14 September at 16:00 (maximum level, global analysis) 377 
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  378 

4. Discussion 379 

The soil surface temperature variable with hourly temporal resolution (MAT1NXSLV 380 

from MERRA Data Assimilation System 2-Dimensional) was used in the proposed model 381 

as an indicator of fire events; despite the proper behavior of the model, the main limitation 382 

of this variable is that it cannot distinguish between recently extinguished and active 383 

wildfires. Thermal Anomalies/Active Fire products from MODIS (Terra: MOD14A1, 384 

Aqua: MYD14A1, and Terra-Aqua: MCD14A1) could be used in further studies as 385 

indicator of wildfire on the proposed model. However, Thermal Anomalies/Active Fire 386 

products have high spatial resolution but low temporal resolution. For this reason, in 387 

further studies is necessary use complementary spatio-temporal models of Thermal 388 

Anomalies/Active Fire with hourly resolution developed in the last years. The  389 

(Veraverbeke et al., 2014; Xie et al., 2018; Yao et al., 2018; Ban et al., 2020). 390 

The spatial resolution of ground-based monitoring records generally is not sufficient for 391 

the management of risks associated with wildfires, however we proposed a validation 392 

method to estimate daily PM2.5 concentration in local territories using available daily data 393 

of PM10 and PM2.5/ PM10 ratio from support stations. An hourly resolution data of PM10 394 

and PM2.5/ PM10 ratio could be used in further studies. Alternatively, satellite images of 395 

variables related to PM2.5, such as Aerosol Optical Depth (AOD), can provide a valuable 396 

alternative to the coarse spatial resolution of ground monitoring network measurements 397 

(Kumar et al., 2013; Xie et al., 2015, Ma et al., 2016; Geng et al., 2018). Numerous 398 

statistical approaches have been used to estimate the relationship between AOD and PM2.5 399 

with daily resolution, however, due to hourly-varying meteorological variables, that 400 

relationship changes over time and space. Hence, it is required use approaches with high 401 

temporal resolutions (Liu et al., 2019; Mirzaei et al., 2020). Thermal Anomalies/Active 402 



Fire and AOD data must have the appropriate temporal (hourly) and spatial resolution 403 

(less than 0.25º) to calibrate and validate the proposed model. Additionally, it must to 404 

considering the principals temporal and spatial limitations (e.g. cloud obscuration) (Ying 405 

et al., 2018; Zhang et al., 2018). 406 

 407 

5. Conclusions 408 

An air quality model was developed to obtain the hourly spatio-temporal behavior of 409 

PM2.5 on a wildfire event using few monitoring stations. An advantage of our model is 410 

the low computational cost required, which can be beneficial for a swift response against 411 

of the environmental and health risk. To overcome the limitation of few monitoring 412 

stations, we have developed a novel method to validate the model. The validation method 413 

presented here produced adequate quality metrics that are comparable to the direct 414 

methods. The validation model proposed in this article worked well in a local scale on 415 

daily temporal scale, where the behavior of particulate matter is similar between two 416 

nearby points; and the spatial variation of the meteorological covariates is slight in a small 417 

city. The validation method proposed in this work improves the method by the World 418 

Health Organization to obtain PM2.5 levels in cities and localities in Latin America and 419 

the Caribbean. Because they use a regional PM2.5/PM10 ratio with annual periodicity  420 

Our model proposed is capable of describing PM2.5 pollution levels in places where there 421 

are no monitoring stations, under the conditions of a wildfire as determined by satellite 422 

information. The proposed model to determine PM2.5 levels in wildfire event can be an 423 

interesting tool for managing environmental and health risks. 424 
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