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Homophily in the adoption of digital proximity tracing apps shapes the evolution of epidemics
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We study how homophily of human physical interactions affects the impact of digital proximity tracing on
the epidemic evolution. Analytical and numerical results show the existence of different dynamical regimes with
respect to the mixing rate between adopters and nonadopters, revealing a rich phenomenology in terms of the
reproduction number as well as the attack rate. We corroborate our findings with Monte Carlo simulations on
different real contact networks. Our results indicate that depending on infectivity and adoption, mixing between
adopters can be beneficial as well as detrimental for disease control.
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Preventing disease outbreaks is one of the greatest chal-
lenges humanity has faced in its history [1]. One of the
techniques employed to fight epidemics is identifying and
eventually testing or isolating the contacts of infected individ-
uals, which is generally referred to as contact tracing [2]. In
the past, contact tracing was employed to combat the spread
of smallpox, tuberculosis, human immunodeficiency virus
(HIV), or Ebola [3–6], to name a few. Correspondingly, great
efforts have been devoted to analyze the efficacy of manual
contact tracing [7–16]. More recently, the advent of digital
proximity tracing (DPT) apps, and their successful large-
scale implementation to prevent the spread of severe acute
respiratory syndrome coronavirus 2 (SARS-COV-2) [17–20],
sparked numerous studies that analyzed how this novel tech-
nology impacts disease propagation. Many of these studies
were tailored for SARS-COV-2 and quantified the impact of
DPT apps [21–29]. However, also a variety of more theoretical
studies unveiled the physics behind DPT [30–33].

A question which has yet to be addressed is how ho-
mophilic adoption between individuals affects the efficacy
of DPT. Empirical studies suggest that the voluntary adop-
tion of DPT apps strongly varies among the population. It
was shown to correlate with age, income, and nationality
[29,34,35]. Adoption is particularly low among socioeco-
nomically marginalized classes [34]. Accordingly, due to the
similarity of social contacts, usually referred to as homophily
[36], app adoption is much more probable for contacts of
an app user (adopter) compared to a random individual. As
a matter of fact, in Switzerland around 70% of the contacts
among adopters were found to use the app as well, while on
average, national adoption is only 20% [19]. This discrep-
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ancy is in line with experimental studies that indicate how
homophily importantly affects health behavior [37,38]. Such
evidence lets us theorize that this is another manifestation of
how human behavior crucially shapes the course of epidemics
[39,40].

Our goal here is to follow this hypothesis and unveil how
the homophilic adoption of DPT apps affects disease propa-
gation. For this aim, we extend a model recently introduced
by Bianconi et al. [31]. The model is very convenient due
to its simplicity, while it captures the essential ingredients
of the dynamics. As a first step, we consider a mean-field
case in which we control the interaction rate among adopters
and nonadopters. This simple setup shows different regimes
in which the homophilic adoption can be beneficial as well
as detrimental. Furthermore, we analytically show how the
reproduction number, i.e., the number of secondary infections
caused by an infected individual, is minimized for a specific
value of homophily. In a second step, we analyze the impact of
homophily on a real-world primary-school network. The net-
work exhibits the same dynamical regimes and thus underpins
the theoretical results.

To prove our hypothesis, we consider the standard
susceptible-infected-recovered (SIR) model, with transmis-
sion probability λ, infectious period τ , and contact rate k.
For convenience we define β = λτ . Accordingly, in the ab-
sence of an intervention, i.e., app adoption, and assuming
homogeneous mixing, the basic reproduction number of the
disease is given by R0 = βk. We fix the fraction of adopters as
T ∈ [0, 1]. Furthermore, we parametrize the mixing relation
between adopters and nonadopters, i.e., the contact matrix K
(often referred to as the who-acquires-infection-from-whom
matrix [2]), with a parameter α ∈ [0, 1]. We denote the en-
tries of K as ki j with i, j ∈ {A, N}, where A and N refer
to adopters and nonadopters, respectively. The parameter α

fixes the contact rate between adopters and nonadopters as
kAN = αk(1 − T ). In other words, α interpolates from com-
plete homophily (α = 0) to random mixing (α = 1).

This parametrization does not allow for disassortativity.
However, since the empirical evidence clearly indicates a
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positive correlation between social contacts and app adop-
tion, we disregard this possibility. Eventually, the remaining
contact rates follow from the balance equation T kAN =
(1 − T )kNA and the average contact rate k = kAA + kAN =
kNN + kNA. Accordingly, K has the following entries,

kAN = α(1 − T )k, (1)

kNA = αT k, (2)

kAA = [1 − α(1 − T )]k, (3)

kNN = [1 − αT ]k. (4)

With these definitions, the adoption homophily h, i.e., the
probability that during a contact both individuals are either
adopters or not, reads

h = 1

k
[T kAA + (1 − T )kNN] = 1 − 2αT (1 − T ). (5)

The dynamical model introduced by Bianconi et al. [31]
is based on the assumption that app users infected by other
app users do not further transmit the disease. This assump-
tion requires us to define additional variables to follow the
dynamical evolution in comparison to the standard SIR model.
Namely, we define IAA(t ) and IAN(t ) as the number of newly
infected (incidence) adopters at generation t , which were
infected by adopters and nonadopters, respectively. For non-
adopters such a distinction is not necessary, therefore IN(t )
simply refers to the newly infected nonadopters at generation
t . Together with the number of susceptible adopters SA(t )
and nonadopters SN(t ) at generation t , the discrete dynamical
equations then read

IN(t + 1) = β[kNNIN(t ) + kANIAN(t )]
SN(t )

NN
, (6)

IAN(t + 1) = βkNAIN(t )
SA(t )

NA
, (7)

IAA(t + 1) = βkAAIAN(t )
SA(t )

NA
, (8)

SN(t + 1) = SN(t ) − IN(t + 1), (9)

SA(t + 1) = SA(t ) − IAA(t + 1) − IAN(t + 1). (10)

where NA and NN indicate the number of adopters and non-
adopters, respectively, in the population. The final attack rate,
i.e., the number of recovered individuals, is found by summing
the number of newly infected (then recovered) individuals
over all generations.

As the classical SIR model, this dynamical system does not
allow for an explicit solution of the nontrivial, stationary state.
However, the model allows us to calculate the reproduction
number R after app adoption (intervention) but in the absence
of preexisting immunity. For R > 1, the disease initially in-
vades the population whereas for R < 1 it immediately dies
out. The reproduction number can be calculated through the
next-generation matrix [41,42] (NGM)—here, equivalent to
the Jacobian of the dynamics evaluated in the disease free

equilibrium—which is given by

NGM = β

⎛
⎝kNN kAN 0

kNA 0 0
0 kAA 0

⎞
⎠. (11)

The spectral radius of NGM represents the effective reproduc-
tion number R. By inserting the explicit expressions of the K
matrix entries, one gets

R = R0

2

[
1 − αT +

√
(1 − αT )2 + 4α2T (1 − T )

]
. (12)

Not surprisingly, R has a monotonous dependence on adoption
T as well as on the basic reproduction number of the disease
R0. However, R exhibits a nontrivial dependence on the mix-
ing rate α. Precisely, solving dR

dα
= 0 with respect to α yields

α∗ = 1 −
2
3 − T
4
3 − T

. (13)

Straightforward calculations also show that dR
dα

|α=0 < 0 is
always met. Accordingly, whenever α∗ � 1, the reproduction
number has its smallest value at α = 1. The condition α∗ < 1
leads to a critical value T ∗ = 2/3 above which no local mini-
mum exists. Figure 1(a) shows the reproduction number R as
a function of α for low adoption (T < T ∗). The dependence
of α∗ on T is also indicated.

This nonmonotonous dependence on the mixing rate α

distinguishes contact tracing from classical immunization
problems such as vaccination [43]. Assuming perfect immu-
nization, all the entries of the NGM will be zero, except the
one among not immunized individuals (nonadopters). Accord-
ingly, the dependence on α will be monotonous and mixing
will always reduce the reproduction number.

Furthermore, Eq. (12) provides a critical parameter range
in which eradication is possible, i.e., R < 1. Since our focus is
the effect of homophily, we express the condition for eradica-
tion as a function of α. In other words, for any α ∈ (α−

c , α+
c ),

we have R < 1, where

α±
c = 1

2R0(1 − T )

[
1 ±

√
1 − 4

1 − T

T
(R0 − 1)

]
. (14)

The existence of two physical solutions of αc implies
that increasing mixing may not only push the system below
threshold, but also push it above for α > α+

c , and thus hinder
eradication. This possibility emerges from the existence of a
local minimum in the reproduction number with respect to the
mixing rate α.

Figure 1(b) shows the attack rate as a function of α and the
basic reproduction number R0. The solid line indicates α−

c .
While the attack rate monotonously increases with R0, the
latter separates three different dynamical regimes regarding
the dependence of the attack rate on α, as indicated by the
dashed lines.

In Fig. 1(c) we escrutinize these three regimes by present-
ing the attack rate as a function of α following the dashed
lines. We categorize these regimes, in ascending order with
respect to R0, as critical, intermediate, and saturated. Close
to threshold (critical), the attack rate decreases with the mix-
ing between adopters and nonadopters. In the intermediate
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(a) (c)
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FIG. 1. (a) Reproduction number R normalized with respect to the basic reproduction number R0 for different values of adoption T below
T ∗. Dots indicate the minimum at α∗, while the dashed line shows its variation for T ∈ [0.1, 0.55]. (b) Numerical solution of the dynamics for
the attack rate as a function of α and R0. The solid line indicates the threshold α−

c for which R = 1. Colored, dashed lines denote the dynamical
regimes: critical, intermediate, and saturated. Adoption was fixed as T = 0.7. For these parameter values we have α+

c > 1. (c) Top panels show
the attack rate and the reproduction number for the different regimes defined in (b). The specific attack rates for adopters and nonadopters are
reported in the bottom panels. Black diamonds indicate α−

c , at which R = 1.

regime, instead, we observe a nonmonotonous dependence of
the attack rate on α. Finally, far from the epidemic threshold,
in a saturated regime, the attack rate always increases with α.

The variety of regimes stems from the competition be-
tween two processes. On the one hand, as mixing increases,
adopters provide protection to nonadopters. This is illustrated
by a decreasing reproduction number R [top-right panel in
Fig. 1(c)] and attack rate among nonadopters [bottom-right
panel in Fig. 1(c)]. On the other hand, protection vanishes
inside the adoption cluster [bottom-left panel in Fig. 1(c)].
Adoption and infectivity, i.e., the basic reproduction number
R0, then determine which of these two processes holds the
upper hand. For low coverage, complete, homophilic adoption
is more beneficial, since random mixing does not provide
any protection—neither to nonadopters nor to adopters. In
contrast, for high coverage, a random distribution of adopters
acts as a firewall for nonadopters and enables us to immu-
nize the population. The same interplay causes the minimum
at α = α∗ in the reproduction number R. As illustrated in
Fig. 1(a), the lower the adoption coverage, the more the ho-
mophily (lower α∗), i.e., the clustered protection, necessary to
minimize R.

However, whether a given adoption is sufficient to pre-
vent the infection of nonadopters is determined by the basic
reproduction number R0. Far from the critical threshold, in
the saturated regime, the attack rate among nonadopters only
slowly varies with the reproduction number R. Accordingly,
mixing increases the attack rate. In contrast, close to the
threshold, in the critical regime, the attack rate among non-
adopters strongly varies with a decrease in the reproduction
number. Therefore, mixing is beneficial and allows us to
push the system below the critical point, from which then
also adopters benefit. Finally, in the intermediate regime, the

system switches between critical and saturated, wherefore we
observe a nonmonotonous dependence with respect to α.

We kept the coverage of the app T fixed in the above
analysis of the different regimes. To investigate the effect of
coverage, we fix the basic reproduction number R0 and vary α

for different values of T . Figure 2 shows the attack rate as a
function of the reproduction number R. While colors indicate
different values of T , the mixing rate α is mapped to point
size. For high values of T (0.9 and 0.7), the system is in
between the intermediate and critical regime. Accordingly, we
find a local maximum, but the disease can also be eradicated,
R < 1. For lower values of T (0.5 and 0.3), we observe a local
minimum of the reproduction number since T < T ∗. This
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FIG. 2. Attack rate as a function of the reproduction number R
for different values of adoption T . The size of the points interpolates
between α = 0 and α = 1. We fixed the basic reproduction number
as R0 = 1.5.
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FIG. 3. Dependence of the attack rate on α as resulting from Monte Carlo simulations for the three dynamical regimes and four
different real-world networks. Each column refers to a different network, while rows indicate the critical, intermediate, and saturated regime,
respectively, from top to bottom. Note that different values of α can be accessed depending on adoption T and structural constraints of the
network. Dots indicate the median value, whereas the ribbon indicates first and third quartiles. Each point is obtained by averaging over
4×104 runs. From left to right, the networks have 780, 636, 212, and 226 nodes. For the saturated and critical regimes we fixed T = 0.30 and
T = 0.90, respectively. In the intermediate regime, T was fixed as 0.75, 0.72, 0.67, and 0.69 for the different networks (left to right). Specific
to each network we set β as 0.030, 0.085, 0.110, and 0.090.

local minimum in the reproduction number then causes an
additional minimum in the attack rate for T = 0.5. In contrast,
for T = 0.3 the attack rate only increases with α. Notably, due
to the nonmonotonous form of R, we observe different attack
rates for equal values of the reproduction number. Overall,
Fig. 2 illustrated how the three dynamical regimes can also
be reached by varying adoption T .

We corroborate our theory through Monte Carlo simula-
tions on a diverse set of real-world contact networks [44–47].
To transform the temporal networks into static, binary ones,
we threshold the aggregated weights. We distribute apps al-
gorithmically to control the value of α, which is calculated
through Eq. (5). The algorithm starts with a random distri-
bution of apps (α ≈ 1). Then, until the desired value of α is
reached (tolerance of 0.02), the roles of a randomly chosen
adopter and nonadopter are interchanged whenever this leads
to a decrease in α. By checking the average degree of adopters
and nonadopters, we guarantee that no correlation is created
between app adoption and number of contacts. Figure 3 re-
ports the results of Monte Carlo simulations for the attack
rate versus α. The curves, each corresponding to a different
value of T , show the nontrivial phenomenological change
through the three dynamical regimes of the epidemics, i.e.,
saturated, intermediate, and critical, as correctly identified by
our analytical model. For the smallest networks—workplace
and high school—the little dependence on α found for the
intermediate regime in the analytical model is likely to be
hidden by the stochastic fluctuations. However, despite their
small size, one can clearly distinguish three different regimes.

To sum up, we analyzed how the homophilic adoption
of DPT apps affects the disease dynamics. We unveiled the
existence of different dynamical regimes, originating from
a nontrivial dependence on the mixing rate. In the critical
regime, mixing is beneficial, may enable to push the system

below threshold, and thus eradicate the disease. Far from the
threshold, mixing is detrimental due to a waning protection
among app users. Finally, for an intermediate case, the system
switches between the two regimes with varying mixing rate,
and the dependence is nonmonotonous. Moreover, we discov-
ered a local minimum in the reproduction number, existing
whenever adoption is smaller than 2/3. Accordingly, an in-
creasing mixing rate may even push the system above the crit-
ical threshold and cause the disease to spread. Interestingly,
the different regimes in the attack rate can arise independently
on whether the reproduction has a local minimum or not.

We verified that the results are robust against the intro-
duction of imperfections in notification and isolation (see
Supplemental Material [48]). In this sense, the key ingredient
for the physics of DPT is the necessity that during a contact
both are adopters in order to reduce further transmission.
Additionally, the phenomenology remains unchanged, except
for a rescaling of R0, for additional heterogeneities in the
population as long as they do not correlate with app adoption.
At the cost of model tractability, the framework presented here
may be extended to analyze the role of possible correlations
with, for example, the reduction of contacts (social distancing)
or the adoption of other prophylactic measures (face masks).
In particular, if the aim was to empirically quantify the impact
of homophily, such extensions as well as to explicitly account
for the temporal nature of social contacts would be necessary.

Switching our focus to the real world, the adoption of DPT
apps is generally very low, between 20% and 40% [19,20].
Accordingly, it is very improbable to control the epidemic
with such low adoption. In this sense, our results indicate
that homophilic adoption is beneficial to this point. However,
if health authorities desire to actually contain the spread of
SARS-COV-2 through large-scale adoption, i.e., reach the
critical regime, overcoming homophily in health behavior—in
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particular, with respect to different socioeconomic classes—
will be crucial.
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