
gem5+rtl: A Framework to Enable RTL Models Inside a

Full-System Simulator

Guillem López-Paradís
guillem.lopez@bsc.es

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

Barcelona, Spain

Adrià Armejach
adria.armejach@bsc.es

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

Barcelona, Spain

Miquel Moretó
miquel.moreto@bsc.es

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

Barcelona, Spain

ABSTRACT

In recent years there has been a surge of interest in designing cus-
tom accelerators for power-efficient high-performance computing.
However, available tools to simulate low-level RTL designs often
neglect the target system in which the design will operate. This
hinders proper testing and debugging of functionalities, and does
not allow co-designing the accelerator to obtain a balanced and
efficient architecture.

In this paper, we introduce gem5+rtl, a flexible framework that
enables simulation of RTL models inside a full-system software
simulator. We present the framework’s functionality that allows
easy integration of RTL models on a simulated system-on-chip
(SoC) that is able to boot Linux and run complex multi-threaded
and multi-programmed workloads. We demonstrate the framework
with two relevant use cases that integrate a multi-core SoC with a
Performance Monitoring Unit (PMU) and the NVIDIA Deep Learn-
ing Accelerator (NVDLA), showcasing how the framework enables
testing RTL model features and how it can enable co-design taking
into account the entire SoC.

KEYWORDS

gem5, RTL, System-On-Chip (SoC), Accelerators, Heterogeneous
computing, Simulation, Verilator, GHDL

1 INTRODUCTION

Existing Systems-on-Chip (SoCs) are becoming increasingly com-
plex, incorporating a growing number of hardware blocks to their
designs. These blocks can range from domain-specific accelerators
to smaller designs that provide additional monitoring or security
capabilities. Most of these blocks are developed independently to
be later integrated into a number of different SoCs with different
characteristics. Therefore, these hardware blocks are often tested
and designed in isolation, without a comprehensive view of the
target platform they are going to be integrated into.

Current tools to perform functional testing and design space ex-
ploration analysis of these hardware blocks are typically simulation-
based. The main drawback is that these simulation frameworks are
restricted to testbenches that feed the interfaces of the block in
isolation. As a consequence, they do not model all the potential
interactions and restrictions that may arise when new hardware is
integrated into a complex SoC with a complete software stack.

Thus, there is a clear need for tools that enable testing these hard-
ware blocks both in terms of the implemented functionality and the
expected performance they will provide on an existing SoC. These
tools should be able to deliver a comprehensive hardware/software

ecosystem where all the main components of the SoC are present
with a working software stack. In addition, it would be desirable
that Register-Transfer Level (RTL) designs already implemented in
Hardware Description Languages (HDLs) such as Verilog or VHDL
could be integrated into the simulated system with minimal effort,
namely without requiring extra porting implementation work.

In this paper, we introduce the gem5+rtl framework, a flexible
infrastructure that enables easy integration of existing RTL models
with the popular full-system gem5 simulator [25]. gem5+rtl en-
ables to perform functional testing and design space exploration
studies of existing RTL models on a full-system environment that
models an entire SoC able to boot Linux and run complex multi-
threaded workloads. This paper makes the following contributions:

• We provide a framework that enables easy integration of
existing RTL hardware blocks within an SoC for full-system
simulations. The framework provides an RTLObject class
with the necessary functionality to communicate with any
of the SoC components via standard gem5 timing ports and
packets. This class has a clean application interface with the
actual RTL model, which is converted to a C/C++ shared li-
brary by leveraging the Verilator [34] andGHDL [17] toolflows.
As a result, we support the most used HDL’s in industry and
academia: VHDL and Verilog/System Verilog.

• We demonstrate how to use the framework to integrate ex-
isting RTL models into a full-system simulated SoC. For this
purpose, we employ an in-house Performance Monitoring
Unit (PMU) design, and the NVIDIA Deep Learning Accel-
erator (NVDLA) accelerator. For the latter, we are able to
integrate up to four NVDLA instances on the same SoC with
eight cores and a multi-level cache hierarchy.

• We evaluate the main functionalities of the PMU and vali-
date the results with the statistics obtained from the gem5
simulation, which enables early testing on a system with
multiple hardware components connected to the PMU. In ad-
dition, we perform a design space exploration that integrates
multiple NVDLA accelerator instances on an SoC that fea-
tures different memory technologies. We find out that each
NVDLA instance has to support at least 64 in-flight memory
requests to perform well on the evaluated workloads; and
that as the number of NVDLA instances increases, certain
memory technology configurations become a bad design
choice as they fail to deliver sufficient memory bandwidth.

The rest of the document is organized as follows. Section 2 pro-
vides context for our work and discusses current approaches for
simulating RTL modules. Section 3 describes our framework to
enable RTL models in gem5, while Section 4 presents two relevant

1

The final publication is available at ACM via http://dx.doi.org/10.1145/3472456.3472461



use cases based on a PMU and the NVDLA. Section 5 explains the
experimental methodology, and Section 6 presents our evaluation of
the proposed use cases. Finally, Section 7 describes the related work,
and Section 8 summarizes our contributions and main findings.

2 MOTIVATION AND BACKGROUND

There is a growing interest in designing low-level hardware blocks
based on Hardware Description Languages (HDLs) such as Verilog
and VHDL. This interest comes from multiple sources, for exam-
ple: (i) from domain-specific areas that demand low-power high-
performance solutions; (ii) from modifications to existing hardware
designs that can be acquired via licenses such as Arm-based Intel-
lectual Property (IP) blocks; or (iii) from the myriad of proposals
based on the RISC-V ISA coming from both academia and industry.
In addition, given the area and power constraints in today’s designs,
the motivation to implement small hardware blocks in HDLs to
accurately measure their area and power costs is appealing in order
to understand if certain design choices are appropriate.

Therefore, there is a clear need to have tools to quickly test the
functionality of these hardware blocks on a realistic target system
that includes all the agents that may impact their behavior in the
target System-on-Chip (SoC) design.

2.1 Existing Solutions based on Software

Simulators

Among the computer architecture community, gem5 [25] is one of
the most well-known full-system simulators. gem5 supports multi-
ple ISA’s such as Armv8, x86_64, and recently RISC-V; as well as
in-order and out-of-order core models and multi-level cache hier-
archies. It can emulate peripheral devices and boot an unmodified
Linux kernel to run multi-threaded and multi-process workloads.
Full-system simulators like gem5 are flexible and easy to extend,
but performance estimations are not cycle-accurate as they are
based on high-level models. Moreover, obtaining accurate area and
power estimations is even more challenging, as tools based on event
counts like McPAT [23] are the best option. In addition, gem5 is
open-source and has a large community with contributions from
academia and industry, and is a good starting point for early design
exploration before moving onto the HDL domain.

There have been proposals to extend gem5 to use it as a pre-
HDL tool in order to enable co-design of accelerators while taking
into account the dynamic interactions within an SoC design. This
enables to design efficient and balanced accelerator microarchi-
tectures. In this category, gem5-Aladdin [33] and PARADE [12]
propose frameworks that combine the full-system features of gem5
and accelerator models generated from C code. The former obtains
these C models from a pre-RTL tool called Aladdin [32], which
takes high-level language descriptions and data dependence graph
representations of the accelerator as inputs, and the latter uses
High-Level Synthesis (HLS) tools. These approaches go one step
beyond gem5 models, but once the design of the target hardware
block is polished, an HDL implementation of the design is needed.

2.2 Existing Solutions based on FPGAs

Despite good progress on fast and general FPGA-based simula-
tors [10, 22, 29, 35], these frameworks require substantial invest-
ment in specialized FPGA boards [37], are difficult to use for ar-
chitectural exploration and extremely tedious to modify; as they
involve complex FPGA toolchains with long compilation times.
Moreover, these frameworks usually focus on specific subsystems,
since simulating entire SoCs can be prohibitive. Their use is typi-
cally restricted to the last stages of the design cycle.

To overcome the problem of making big investments in FPGA
equipment, Firesim [21] proposes to take advantage of the EC2
F1 instances of Amazon Web Services (AWS) that have Xilinx
FPGA’s [31]. Firesim is an open-source full-system hardware sim-
ulator accelerated through FPGA’s that can simulate from small
hardware modules to complex multi-node systems. Besides, Firesim
relies on a domain-specific language called Chisel [7] to describe
the hardware design. Chisel is compiled to automatically generate
HDL code in Verilog; however, this code is not readable by develop-
ers and any change to the HDL requires dominating Chisel, which
hinders the use of Firesim.

2.3 Existing Solutions based on HDL

Simulators

In order to bring a hardware design into reality, whether the syn-
thesis target is an FPGA or an ASIC, an RTL model is needed due
to the level of precision it expresses. It is the standard in industry
and academia, providing good power and area estimations. The
two main HDLs used today are VHDL and Verilog. One of the main
disadvantages of RTL models is the long development time needed,
added to the verification process required. Additionally, the method-
ology to work with RTL is tedious, usually requires closed-source
tools with expensive licenses, and simulations are very slow.

To overcome the limitations of HDL simulator tools, a number
of open-source simulation platforms have been proposed. Two of
the most well-known within the community are Verilator [34] and
GHDL [17]. GHDL directly translates VHDL into machine code,
resulting in a good simulation speed. Until recently, co-simulation
with GHDL was not possible and to our knowledge, it has not been
interfaced with any simulator like gem5 until now. Verilator trans-
lates Verilog and System Verilog into C++, which eases integration
with other simulation tools. It is actively used in the industry, even
outperforming some commercial simulators [2, 34].

PAAS [24] also uses gem5 and Verilator with the focus of sim-
ulating FPGA-based accelerators, where Verilator and gem5 run
independently and communicate through Inter Process Commu-
nication (IPC). This infrastructure is specially designed for FPGA-
based accelerators and is less flexible for other use-cases that require
frequent inter-connection with gem5-simulated blocks, e.g. adding
a new cache in RTL connected to the cores of gem5 would be very
difficult to simulate and incur a large communication overhead
between the two simulators. Therefore, we propose gem5+rtl, an
easier and cleaner interface with Verilator to integrate RTL models
within the SoC, leading to better usability.

Finally, Verilator has also been integrated with Multi2Sim [15,
36], again targeting FPGA-based systems that integrate an FPGA
within a multi-core system via bus-based architectures. However,

2



C/C++ Model Wrapper RTL Object gem5 classes

gem5 Simulator FrameworkShared LibraryRTL Model
1 2 3

GHDL

Verilator

VHDL

Verilog
System Verilog

Figure 1: The gem5+rtl framework has three main blocks: 1) RTL models; 2) a shared library that includes the C++ model

generated with Verilator, and 3) gem5 extensions to communicate with the shared library.

the latter proposal cannot support an OS and is restricted to only
bus-based architectures. gem5+rtl overcomes the mentioned lim-
itations, offering a simple and clean interface between gem5 and
Verilator, and for the first time, between GHDL and gem5.

2.4 On-going Challenges to Simulate Hardware

Designs

Multiple approaches exist to model and simulate hardware designs.
From high-level language representations, to pre-HDL models that
are based on a combination of high-level descriptions, and finally,
the use of HDLs. The latter provide much higher levels of accuracy
in terms of performance, area, and power estimations, and are
starting to become widely available. However, simulating in HDL
environments is tedious, and often the simulation is restricted to
the actual design, missing all the interactions that exist within a
SoC. This fact limits the possibilities when testing the features and
capabilities of the models, and hinders co-designing with the SoC
to achieve a balanced and efficient system architecture.

By combining the flexibility of a full-system software simulator
like gem5 and the accurate C/C++ models provided by Verilator
and GHDL, our framework enables a standard way of inserting any
hardware design written in RTL (including Verilog, SystemVerilog
or VHDL) into a simulated SoC with a full software stack running
on top of it. The following section describes the framework in detail,
which makes use of the existing gem5 ports and packets infrastruc-
ture to seamlessly allow the connection of hardware models with
any SoC component simulated within gem5. This enables testing
and debugging of small hardware blocks functionalities, as well as
doing design space exploration performance studies that take into
account a full SoC hardware/software infrastructure.

3 GEM5+RTL FRAMEWORK

Next, we introduce gem5+rtl, a flexible framework that enables
simulation of RTL models inside a full-system software simulator
like gem5. First, we provide a general overview of the framework
(Section 3.1). Then, we describe in detail the three main components
in gem5+rtl (Sections 3.2-3.4). Finally, we discuss some relevant
features in the framework and provide some connectivity illustra-
tive examples (Section 3.5).

3.1 General Overview

Figure 1 shows an overview of the gem5+rtl framework. This
framework has three main building blocks:

(a) RTL Models: The first component consists in using Verilator or
GHDL to convert an RTL model written in VHDL, Verilog or
SystemVerilog into a C/C++ model. Such RTL models do not
require any modification to be integrated into the SoC.

(b) Shared Library: Once the C/C++ model of the RTL design is
ready, a wrapper to interact with it is required. This wrapper
and the C/C++ RTL model are then combined into a shared
library that is integrated with gem5.

(c) Gem5 Simulator Framework: On the gem5 side, we provide a
generic framework to ease the integration of a wide range of
potential hardware blocks, which may require different needs
in terms of connectivity. To achieve this, we have defined a
generic RTLObject class. This object comes bundled with all the
functionality needed to interact with a simulated gem5 SoC.

The following sections describe these components in detail.

3.2 RTL Models

The main objective of gem5+rtl is to integrate unmodified RTL
models into a full-system simulator. To do so, we make use of Veri-
lator to convert an RTL model written in Verilog or SystemVerilog
into a C++ model, and GHDL to convert from VHDL to a C model.

3.2.1 Verilog/System Verilog. Verilator requires to specify the top
module, the intermediate compiler to be used, the language of the
output model (C++ or SystemC), and the RTL files’ locations. In
addition, it can receive extra parameters to decrease simulation
time via multi-threading, or enable features like checkpointing.

Verilator also provides usability features for the generated C++
models. For example, the possibility to output trace waveforms
from the C++ RTL model, both in FST and VCD format, which
is needed for debugging purposes. Since these traces can become
enormous, they can be enabled and disabled from the command
line or dynamically within the simulation.

3.2.2 VHDL. GHDL requires more effort in the build process and it
is more difficult to replicate Verilator’s behavior. It requires the top
module to be a file similar to a testbench that will interact with the
actual hardware block intended to be simulated. We offer a simple
top file to easily adapt it to the needs of different hardware blocks.
GHDL also offers the feature of generating waveforms, but these
cannot be dynamically enabled/disabled at runtime.

3.3 gem5+rtl Shared Library

Once the C/C++ model of the RTL design is ready, a wrapper to
interact with the generated model is required. This wrapper is
similar to a testbench, in the sense that it has the functionality to
communicate with the C++ model interfaces.

The gem5+rtl framework requires this wrapper to implement
two additional simple functions: tick and reset. Both are employed
by the generic gem5 infrastructure, the former to signal when a
clock tick takes place and the latter to reset the state of the modeled
hardware. The wrapper and the C++ RTL model are then combined
into a shared library. This significantly helps with gem5 integration,

3



CPU

RTL Object
as L1 D L1 I

L2

CPU

RTL
Object

RTL
Object

RTL
Object

DRAM

CPU

RTL
Object L1 I

L2

L1 D

(a) Cache configuration (c) NVDLA configuration(b) PMU configuration

Figure 2: Different connectivity options within the SoC of a

simulated gem5+rtl system.

and draws a clear separation line betweenwhat needs to be provided
for each RTL model and the generic framework that we provide
on the gem5 side. By having an independent shared library, gem5
can be compiled independently from Verilator. As a result, it does
not require recompilation if the shared library changes, when, for
example, trying new features of a new version of Verilator.

3.4 Changes to Gem5 to Support RTL Models

On the gem5 side, we provide a generic framework to ease the
integration of a wide range of potential hardware blocks, whichmay
require different needs in terms of connectivity. To achieve this, we
have defined a generic RTLObject class. This object comes bundled
with all the functionality needed to interact with a simulated gem5
SoC, including a number of predefined timing ports that enable
seamless connectivity with the main hardware blocks of the SoC.
Minor adjustment might be needed depending on the complexity
of the hardware module to integrate. The following sections have
additional details on the provided functionality.

The RTLObject class is meant to act as an abstraction layer
between the RTL model defined in the shared library, and the gem5
simulated SoC. Next, we describe the main features of this class:
• A set of timing ports to seamlessly connect with other gem5
objects. The class currently supports a total of four ports, two
towards the CPU side and two towards the memory side of the
SoC hierarchy. This includes all the necessary functionality to
send and receive packets using gem5’s timing infrastructure.
Adding more ports is trivial, but most hardware blocks will find
the provided ones sufficient.

• Functionality to connect to a TLB object for address translation.
This can be an existing object in the SoC or one specifically added
to be used by the integrated RTL model.

• A tick event function that is called at the same frequency as the
simulated SoC core objects. However, a parameter can be used to
change the frequency with respect to the core in order to adapt
to that of the integrated hardware block.

• Like all gem5 objects, it has an associated python class file used
to instantiate and connect all the simulated objects within the
SoC via the mentioned timing ports.
The shared library wrapper must implement two functions, tick

and reset. The function tick from the shared library is invoked from
the RTLObject side inside its own tick event. The data necessary to
perform a tick on the RTL model side is passed as a parameter of the
function via a void pointer to a predefined data structure. Similarly,
the data produced on the RTL model side that is needed on the
gem5 side is returned on another data structure at the end of the

tick function. Therefore, the gem5 RTLObject and the shared library
need to define these data structures and to have the necessary code
to populate and consume their fields.

3.5 gem5+rtl Connectivity Examples

Figure 2 shows three examples illustrating different connectivity
options with the SoC of a simulated gem5+rtl system. We enable a
myriad of connectivity scenarios starting from small hardware mod-
ules such as a PMU or a cache, up to bigger IP’s like an accelerator
or even a small core connected to the memory hierarchy.

The gem5+rtl components have been designed to provide such
flexibility in the inclusion of RTL models in the full system sim-
ulator. In this paper, we demonstrate the utility of the proposed
framework by integrating two relevant use cases to a modeled SoC:
a PMU model (see Figure 2 (b)) and the NVIDIA Deep Learning
Accelerator (NVDLA) (see Figure 2 (c)). The next section describes
the implementation of such case studies in detail.

4 GEM5+RTL USE CASES

Verification is an essential part of the process of developing a hard-
ware design and probably the hardest and more time consuming.
Different methods can be employed, but simulation-based tech-
niques are the most popular. These methods are not as accurate as
FPGA-emulated systems, but it is a convenient first step to do func-
tional verification of a design. One of the problems when verifying
a hardware block is that the validation environment is usually con-
strained to the block itself. Therefore, interactions that might only
surface at the system level might not be stressed. For this reason, we
use gem5 to model full system setups and then insert RTL models
to be able to check these interactions and test functionalities. In
this context, our first use case is a Performance Monitor Unit (PMU)
for which we test its main functionalities and validate its results.

Our second use case focuses on using our framework to perform
design-space exploration studies on the integration of a hardware
accelerator into the architecture of an existing SoC. Numerous hard-
ware accelerators are designed in isolation and can be integrated in
existing SoCs. However, their requirements in terms of, for exam-
ple, memory bandwidth can determine how the integration occurs
or the memory technology to be employed. To this end, we use
our framework to perform a design space exploration analysis to
connect multiple NVDLA accelerators into a SoC. Our tool enables
to determine the right memory hierarchy configuration and to
evaluate the trade-offs between different memory technologies.

Finally, GHDL has been tested with a bitonic sorting accelerator
written in VHDL.We have used this example to develop the support
for this tool in gem5, which is very similar to the one for Verilator.

4.1 Debugging RTL Models on a Full-System

Environment

We integrate an in-house PMU Verilog model with the simulated
gem5 processor core. In the past, this synthesizable PMU has been
integrated in the Cobham-Gaisler LEON3 [11] family of processors,
which is a representative platform in space domain. It provides a
configurable number of counters to monitor events, programmable
event thresholds to generate interrupts, and the possibility to have
multiple cores connected to the PMU. It is interfaced through the

4



PMU
PMU

RTLObject
gem5 Enable events

Interrupt

Read AXI
Write AXI

PM
U

 W
ra

pp
er

Shared Library

Figure 3: Internal wrapper and gem5 connections for the

PMU hardware block.

Arm Advanced eXtensible Interface (AXI) protocol [5] for reading
and writing the counters, and its configuration. The events are
specified by a one-bit signal, rising up the signal on any cycle adds
one to the event counter.

Figure 3 shows the necessary connections between the wrapper
and the C++ RTL model inside the shared library. The wrapper
communicates with the RTLObject on the gem5 side via structs
that are exchanged every tick. The tick function inside the wrap-
per receives an input struct with the necessary information to be
sent to the PMU model, that is, the AXI read/write input and the
event_enable[0-19] bits. Upon completion of the tick function, an
output struct is filled so that the RTLObject receives the information
returned on the AXI read/write channels and the interrupt signal.

To use the PMU, it first needs to be configured by enabling
the events to be monitored. Additionally, thresholds for specific
events can be programmed by specifying a mask and a threshold
value. This is done by writing to configuration registers via AXI
commands. When a threshold is reached, the PMU generates an
interrupt and resets the threshold counter.

For evaluation purposes, we have connected a PMU to the com-
mit instruction event of the core and to the L1D cache miss event.
In the case of L1D misses, these can only happen once at any given
cycle; however, the gem5 out-of-order core model we employ can
commit up to four instructions per cycle. To properly configure the
PMU, we have connected four event signals, making it possible to
properly count the number of committed instructions. Finally, we
have also connected the clock as a PMU event. This allows us to gen-
erate periodic interrupts by setting a threshold for this event, which
is used to print the mentioned events (committed instructions and
L1D misses). This use case enables to test the PMU functionalities
on a comprehensive hardware/software SoC environment.

4.2 Design-Space Exploration of the SoC

Integration

NVDLA is an open-source accelerator created by NVIDIA that tar-
gets frequent inference operations such as convolutions, activations,
pooling, and normalization. It is a flexible and scalable hardware
design that is aimed at being the standard in the community. Even
though it targets embedded systems, multiple NVDLA accelerators
can coexist to target systems with different requirements.

NVDLA is programmed using Verilog and different hardware
configurations are available as a result of its flexibility, but only
two are verified: nv_large and nv_small. The open-source release
includes support for UVM verification and includes traces of real

CSB
Wrapper

NVDLA
RTLObject
gem5

NVDLA
AXI

Responder
Wrapper

DBBIF

SRAMIF

IRQ

CSB
gem5

Shared Library

memory
side

cpu
side

Figure 4: Internal wrapper and gem5 connections for the

NVDLA hardware block.

applications such as the GoogleNet and AlexNet Convolutional
Neural Network (CNN) workloads.

NVDLA needs the following interfaces to connect to a SoC [26]:
• Configuration Space Bus (CSB) is a low bandwidth interface
for the processor to configure the NVDLA accelerator.

• External Interrupt (IRQ) is a 1-bit signal that reports the com-
pletion of operations and errors.

• Data BackBone (DBBIF) is a high-bandwidth AXI4-compliant
interface that is meant to be connected to a high-latency
memory such as the main memory of a SoC.

• SRAM Connection (SRAMIF) is a secondary interface to con-
nect with a small SRAM memory. The purpose of this small
memory is to increase performance in systems that require
high-performance.

Next, Figure 4 shows how the NVDLA hardware block is inte-
grated into the gem5+rtl framework. The NVDLA release comes
bundled with Verilator support, and includes wrapper classes de-
veloped by NVIDIA. These classes provide AXI and CSB interfaces
that, with minor modifications, can be used as part of the shared
library wrapper that communicates with the C++ RTL model.

Originally, the AXI wrapper models an ideal external main mem-
ory, which is now replaced by sending the requests to the RTLObject
via the output struct. Then, the RTLObject makes use of standard
gem5 ports to send these requests to the main memory of the sim-
ulated gem5 SoC. Similarly to the PMU, there is an input struct
passed as parameter to the wrapper tick function, with the data
necessary to feed the interfaces to the NVDLAmodel, and an output
struct with the data the RTLObject needs to communicate with the
rest of the simulated SoC.We have decided to connect both memory
interfaces (DBBIF and SRAMIF) to the main memory subsystem
of the simulated SoC. A better solution, and a possible extension
of this work, could hook a proper SRAM such as an scratchpad
memory to the SRAMIF interface or explore other fast memories.

Additionally, in a real system, an NVDLA accelerator should be
connected to the IOMMU for programmability and security reasons.
We have decided to bypass the IOMMU, as gem5 support for this
hardware unit is still in early stages and there is little documentation.
In addition, using an IOMMU requires a compliant device driver.

5 EXPERIMENTAL METHODOLOGY

This section describes the configuration of the simulation infrastruc-
ture, the benchmarks employed, and the experiments performed to
evaluate the two use cases with gem5+rtl.

1Obtained from a synthesis for the Xilinx FPGA KC705.

5



Table 1: Parameters for gem5+rtl full-system simulations.

Processor size 8 cores

Cores

3-wide issue/retire, 92-entry instruction queue,
192-entry ROB, 48 LDQ + 48 STQ, 2GHz

Private Caches

L1I: 64KB, 4-way, 2 cycle, 8MSHRs
LID: 64KB, 4-way, 2 cycle, 24MSHRs
L2: 256KB, 8-way, 9 cycle, 24MSHR, stride prefetcher

Last-Level Cache

16MB, 16-way, 64B lines, 8 banks, 32MSHRs per bank
Data bank access latency of 20 cycles.

NoC Coherent crossbar, 128-bit wide, 2 cycles

Main Memory

DDR4-2400: 2 ranks per channel, 16 banks per rank
8KB row-buffer, 128-entry write, 64-entry read buffers
per channel, 18.75GB/s peak bandwidth per channel

GDDR5: quad-channel, 16 banks/channel, 2KB row-buffer
128-entry write and 64-entry read buffers per channel
112GB/s peak bandwidth

HBM: 8 channels, 16 banks/channel, 2KB row-buffer
128-entry write, 64-entry read buffers per channel
128GB/s peak bandwidth

PMU Configured with 20 32-bit counters, 1GHz, 5k LUTs1

NVDLA nv_full config: 2048 8-bit MACs, 512 KiB buffer, 1GHz, 2M LUTs[1]

5.1 gem5+rtl Configuration

The gem5+rtl framework has been configured to model an Arm-
based SoC full-system environment that models the application, the
operating system, and the architecture in detail. The simulated sys-
tem runs Ubuntu 16.04 with Linux kernel version 4.15. We simulate
a contemporary SoC with eight out-of-order cores and a detailed
multi-level memory hierarchy. The simulator is extended with the
required RTLObject class to incorporate different RTL models. Ta-
ble 1 details the architectural parameters. Note that, for the NVDLA
use case, we will evaluate three different memory technologies.

5.2 Evaluated Benchmarks

5.2.1 PMU Case Study. We have created a simple benchmark com-
posed of three sorting algorithms that exhibit different computa-
tional patterns: QuickSort [20], SelectionSort [18], and BubbleSort[6].
We execute each of these algorithms one after the other.

Between each of them, we insert a 1-millisecond sleep call to
easily identify the end of each application phase when reading the
performance counters.We configure the PMU to generate interrupts
every 10,000 cycles. When these interrupts occur, the monitored
events are dumped. We monitor events that allow us to extract
instructions per cycle (IPC) and misses per kilo instruction (MPKI)
metrics, which we then compare with the ones gem5 outputs in its
statistics over the same interval.

We also evaluate the simulation time overhead when adding the
evaluated PMU model to gem5. The reported execution times are
the average over three simulations. We run our sorting benchmark
on the standalone gem5, using gem5 and the PMU model, and
gem5+PMU with waveform tracing enabled.

5.2.2 NVDLA Case Study. We program the accelerators by running
a simple user-level application on the simulated SoC host cores. This
application loads an NVDLA trace into main memory, containing
instructions and data, and then signals the accelerator to start
execution and waits until the accelerator finishes. We evaluate
two application traces provided by NVIDIA: (i) a small memory-
intensive convolution, sanity3; and (ii) the second convolution of

the GoogleNet CNN pipeline, which has more computations and
uses 3×3 filters.

5.3 Performed Experiments

5.3.1 PMU Case Study. We have evaluated the functional behav-
ior of the PMU with the sorting benchmark mentioned above. We
gather the PMU counter values every 10,000 cycles and plot IPC
and MPKI through time compared to gem5 statistics. We also evalu-
ate the simulation time overhead when adding the evaluated PMU
RTL model to gem5. The reported execution times are the average
over 3 simulations. We run our sorting benchmark on the stan-
dalone gem5 simulated SoC (gem5), using gem5 and the PMU RTL
model (gem5+PMU ), and gem5+PMU with waveform tracing en-
abled (gem5+PMU+waveform).

5.3.2 NVDLA Case Study. We then perform a design space explo-
ration study with a focus on the memory hierarchy. To this end,
we run an experimental campaign modifying the next parameters:

• Maximum inflight requests: The maximum number of per-
mitted in-flight memory requests from an NVDLA.

• Main memory technologies: We have chosen DDR4, GDDR5,
and HBM, being the most relevant nowadays.

• Memory channels: Number of memory channels for DDR4.
We use a fixed quad-channel configuration for GDDR5, and
for HBM a fixed eight-channel per stack.

• Number of NVDLA instances: We have evaluated SoC systems
that integrate 1, 2 and 4 NVDLA accelerators. When multiple
NVDLAs are present in the system, each of them executes a
separate instance of the same workload.

The goal is to determine the right amount of memory bandwidth
necessary to feed a particular number of NVDLA accelerators and
to see the trade-offs each of the memory technologies offer.

Finally, we also evaluate the simulation time overheads for this
use case. In this case we measure the execution time when run-
ning Verilator simulations with the provided NVDLA wrapper
(verilator), gem5 with NVDLA using a perfect memory model
(gem5+NVDLA+perfect-memory), and gem5 with NVDLA and the
DDR4 memory (gem5+NVDLA+DDR4).

6 EVALUATION

In this section we describe the evaluation performed using the
gem5+rtl framework. First we evaluate the PMU functionalities,
and then perform a design-space exploration study using theNVDLA.

6.1 PMU Functional Evaluation

As described in Section 5, we evaluate the PMU functionality by
registering a number of hardware events: (i) committed instructions,
(ii) L1D cache misses, and (iii) cycles. Every 10,000 cycles, we dump
and compare the values registered in the PMU with the ones from
gem5, shown in Figure 5.

Figure 5 shows IPC (y-axis) across time (x-axis) for a benchmark
that executes three sorting kernels. The solid line represents the
measurements done by the PMU, while the dotted line represents
those recoded by gem5 statistics. As can be seen in the figure, both
measurements are reporting the same IPC values. However, looking
at the data, we observe minor differences because of two reasons:

6



Time (ms) 

IP
C

0.0

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25

PMU gem5

Figure 5: IPCmeasurements over time (ms) for the PMU and

gem5 statistics on three sorting kernels separated by 1ms

sleep, easily observable by a region of IPC to 0.

(i) due to the 1-cycle delay of the PMU to record the events, and
(ii) because after an interrupt a reset takes place, which means some
events are lost during the few cycles the reset takes.

While these discrepancies are negligible and no visible differ-
ences are observed in the figure, gem5+rtl enabled us to study
these interactions and determine the exact number of events lost
due to the reset process. This is useful information for the PMU
designers, who may take some action if the reset process hinders
the target resolution of the PMU unit.

Looking at the actual IPC curves we can easily distinguish the
three sorting algorithms in the plot, as there is a 1𝑚𝑠 sleep call
between them, visible with an IPC of 0. QuickSort [20] is clearly
faster compared to SelectionSort [18] and BubbleSort[6], taking a
fraction of the time to sort 10× more elements. Additionally, we
have performed the same experiment on a Fujitsu A64FX [28] node
using perf, and we have observed the same curves for the three
kernels, but with different IPC values as our gem5 configuration is
not configured or meant to mimic the A64FX architecture.

Finally, Table 2 shows the simulation time overhead of gem5+rtl
normalized to a gem5 execution without the attached PMU RTL
model over three different array sizes (3, 30 and 60 thousand ele-
ments). We show results for a simulation that includes the PMU
RTLmodel (gem5+PMU ), and one that in addition has the waveform
tracing support enabled (gem5+PMU+waveform).

The overheads when adding the PMU model are of up to 1.24×
without waveform support. gem5+rtl is able to integrate the gen-
erated cycle-accurate C++ RTL model and simulate it with manage-
able overhead. This result is expected as the PMU RTL model is a
relatively small hardware block with limited interaction with the
whole SoC design. However, the overhead significantly increases
to up to 7.27× when waveforms are enabled. Therefore, the use of
waveforms needs to be minimized to avoid hefty simulation times.

6.2 NVDLA Design Space Exploration

Next, we evaluate the different trade-offs when integrating the
NVDLA accelerator into an exiting SoC. To do this, we use two
different workloads: Sanity3 and GoogleNet. As described in Sec-
tion 5, the parameters of the study include: (i) the number of allowed
in-flight memory requests for each NVDLA accelerator, (ii) the num-
ber of NVDLA instances integrated in the SoC, and (iii) the main

Table 2: Simulation time overhead when using gem5 and the

PMU RTL model (gem5+PMU ) and with waveform tracing

enabled (gem5+PMU+waveform) normalized to a gem5 exe-

cution without PMU. Simulations with three different array

sizes (3, 30 and 60 thousand elements).

Size

Configs 3k 30k 60k

gem5+PMU 1.09 1.18 1.24

gem5+PMU+waveform 3.16 6.44 7.27

memory technology employed in the SoC. The number of allowed
in-flight requests ranges from 1 to 240, the number of NVDLA in-
stances from 1 to 4, and the different main memory configurations
are: DDR4 with 1, 2, and 4 channels, a four-channel GDDR5, and an
HBM stack. These memory configurations offer different memory
bandwidth capabilities, as described in Table 1.

Figures 6 and 7 show the performance results normalized to
an ideal 1-cycle main memory with 1 (a), 2 (b), and 4 (c) NVDLA
accelerators for GoogleNet and Sanity3, respectively. Values close to
one represent scenarios where memory contention is not affecting
the performance of the NVDLA accelerators.

As can be seen in GoogleNet, when employing one NVDLA ac-
celerator (Figure 6 (a)) all memory technologies perform similarly,
providing sufficient bandwidth to feed the accelerator. The only
exception is DDR4-1ch, which falls a bit behind with 16 or more
maximum in-flight requests. In Sanity3 this observation holds as the
performance drops significantly with DDR4-1ch (see Figure 7 (a)).
Even the DDR4-2ch and DDR4-4ch setups fail to deliver comparable
performance with respect to the GDDR5 and HBM configurations
for 16 and 32 maximum in-flight requests. Nonetheless, if a maxi-
mum of 240 in-flight requests are allowed, the DDR4-2ch configu-
ration offers competitive performance, and a system with such a
memory configuration should be enough to host one NVDLA.

When integrating two NVDLA accelerators (Figures 6 and 7 (b)),
allowing at least 64 in-flight memory requests is a mandatory
requirement to avoid significant performance degradation. The
GoogleNet benchmark requires at least DDR4-4ch to attain the
same performance as the high-bandwidth memory configurations.
In the case of Sanity3, even with DDR4-4ch there is a noticeable
performance degradation with respect to GDDR5 and HBM. In this
case, SoC designers need to decide whether the performance in-
crease provided by GDDR5 andHBMmemory technologies is worth
the cost with respect to DDR4-4ch. gem5+rtl helps SoC designers
take informed design decisions by evaluating an existing hardware
RTL model on a full-system environment that would be very hard
to replicate in existing simulation-based testing environments. To
put things into perspective, the Jetson AGX Xavier Developer Kit
includes 2 NVDLA accelerators and has 137GB/s of peak memory
bandwidth [27]. The DDR4-4ch, GRRD5, and HBM configurations
have 74.96GB/s, 112GB/s, and 128GB/s respectively.

Finally, with four NVDLA accelerators (Figures 6 and 7 (c)), the
number of maximum requests need to be 240 to avoid performance
degradation on the Sanity3 benchmark. In this scenario, the use of
high-bandwidth memory is recommended as DDR4 fails to deliver

7



1 4 8 16 32 64 128 240
Maximum requests permitted

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
no

rm
al

iz
ed

to
id

ea
lm

em
or

y

DDR4-1ch
DDR4-2ch
DDR4-4ch

GDDR5
HBM

(a) Performance of the system with a single NVDLA accelerator.

1 4 8 16 32 64 128 240
Maximum requests permitted

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
no

rm
al

iz
ed

to
id

ea
lm

em
or

y

DDR4-1ch
DDR4-2ch
DDR4-4ch

GDDR5
HBM

(b) Performance of the system with two NVDLA accelerators.

1 4 8 16 32 64 128 240
Maximum requests permitted

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
no

rm
al

iz
ed

to
id

ea
lm

em
or

y

DDR4-1ch
DDR4-2ch
DDR4-4ch

GDDR5
HBM

(c) Performance of the system with four NVDLA accelerators.

Figure 6: Design-space exploration using the GoogleNet

benchmark. Normalized to an ideal 1-cycle main memory.

competitive performance. Even the GDDR5 and HBM technologies
see a performance drop with respect to the 2 NVDLA accelerators
from 0.81 to 0.74. Therefore, architecting an SoC with four NVDLA
accelerators requires higher bandwidth technologies such as HBM2
in order to fully utilize the available hardware.

We observe performance degradation when increasing the num-
ber of memory requests that the NVDLA can send with the DDR4-
1chmemory configuration. This behavior can be seen in Figures 6 (c),
7 (b), and 7 (c). We have confirmed that this is due to severe memory

1 4 8 16 32 64 128 240
Maximum requests permitted

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
no

rm
al

iz
ed

to
id

ea
lm

em
or

y

DDR4-1ch
DDR4-2ch
DDR4-4ch

GDDR5
HBM

(a) Performance of the system with a single NVDLA accelerator.

1 4 8 16 32 64 128 240
Maximum requests permitted

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
no

rm
al

iz
ed

to
id

ea
lm

em
or

y

DDR4-1ch
DDR4-2ch
DDR4-4ch

GDDR5
HBM

(b) Performance of the system with two NVDLA accelerators.

1 4 8 16 32 64 128 240
Maximum requests permitted

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
no

rm
al

iz
ed

to
id

ea
lm

em
or

y

DDR4-1ch
DDR4-2ch
DDR4-4ch

GDDR5
HBM

(c) Performance of the system with four NVDLA accelerators.

Figure 7: Design-space exploration using the Sanity3 bench-

mark. Normalized to an ideal 1-cycle main memory.

contention on the memory controller side. This is another example
of the insights we can gain when using the gem5+rtl framework.

Next, Table 3 shows the simulation time overhead of gem5+rtl
normalized to a standalone Verilator simulation employing the
wrapper that NVIDIA provides [1], namely nvdla.cpp2. This is
compared to two gem5 simulated systems that integrate a sin-
gle NVDLA accelerator, one simulating an ideal memory like the
one used as a baseline in the design-space exploration evaluation

2We have modified this C++ class to have less debug printing and to disable waveform
tracing, significantly improving simulation time.

8



Table 3: Simulation time overhead of gem5+rtl normalized

to a standaloneVerilator simulationwith a singleNVDLAac-

celerator. gem5+NVDLA+perfect has an ideal memory, while

gem5+NVDLA+DDR4 uses the DDR4-4ch configuration.

Sanity3 GoogleNet

gem5+NVDLA+perfect-memory 2.67 1.49

gem5+NVDLA+DDR4 3.12 1.54

(gem5+NVDLA+perfect-memory), and another one using the DDR4-
4ch memory configuration (gem5+NVDLA+DDR4).

Compared to the standalone Verilator execution, gem5+rtlwith
DDR4-4ch takes up to 3.12×more time with Sanity3. It has a higher
overhead because the actual benchmark runtime is shorter, which
makes the portion of time devoted to loading the trace into memory
more prevalent. The standalone Verilator execution does not have
this step as it reads the trace directly. Therefore, the simulation time
overhead with larger benchmarks likeGoogleNet is actually reduced
to just 1.54×. These simulation time overheads are expected as a full-
system SoC with a DDR4 main memory model is now simulated.

Thus, gem5+rtl enables design-space exploration studies that
can provide valuable insight when integrating hardware blocks into
an SoC with reduced simulation time overheads.

7 RELATEDWORK

Evaluation of RTL models can be done using different tools and at
different abstraction levels. From flexible software models in C++
that do not offer cycle accuracy but can obtain reasonable perfor-
mance estimations, to HDL simulators that model the behavior of a
given RTL model, very useful to discover functional bugs, and up to
full SoC emulation in a FPGA that can give a good understanding
of the overall performance of the system. Each of these solutions
can be used depending on the step of the hardware design cycle,
and sometimes are done in parallel if the group is big enough.

All the mentioned approaches are useful offering advantages
and disadvantages. Software models can be of big interest to easily
obtain performance numbers with big flexibility but since they are
not modeling RTL, the performance numbers need to be validated
and taken cautiously. RTL models are inevitably needed to create
the final ASIC or FPGA solution, with slow simulation times but
very useful to find functional bugs. Finally, FPGA emulation is time
consuming but offers good accuracy compared to others solutions,
and is a mandatory step in any design that targets an ASIC or FPGA.

7.1 Software Architectural Simulation

Software simulators offer great flexibility to model from small to
full-systems OS-capable SoCs. Written in high-level languages like
C++, usually achieve simulation speeds of a few kilo instructions
per second (KIPS). Numerous simulators have been proposed that
provide different levels of accuracy and simulation speed.

COTSon [4] is a full-system simulator decoupling functional
and timing simulation. Functional simulation relies on just-in-time
compilation of the simulated program. COTSon features several
levels of detail and supports sampling. In addition to performance,

ESESC [3] also includes models for power consumption and ther-
mal behaviour. ESESC is the first simulator applying time-based
sampling to simulation of multi-threaded applications.

Simulators base on dynamic binary translation are notorious
for their higher simulation speeds, at the expense of full-system
support, and are usually restricted to the ISA they execute on.
Sniper [9] belongs to this category and features a purely analytic
CPU model. Instead of modelling micro-architectural structures
within the CPU, it employs the mechanistic Interval Simulation
model [16]. Zsim [30] also uses dynamic binary translation, but
with a novel parallelization technique called bound-weave that
enables simulations of hundreds of cores. In addition, it provides
lightweight user-level virtualization to support certain complex
workloads that are usually restricted to full-system simulators.

For large-scale multi-node simulations of thousands of cores, the
level of abstraction needs to be raised to make simulations feasible.
In this context, MUSA [19] presents an end-to-end methodology
that combines different levels of abstraction. MUSA is able to model
the communication network, microarchitectural details, and system
software interactions. Simulations are based on multiple levels of
tracing, which difficults the integration of additional hardware.

Finally, the full-system simulator gem5 [8] features core models
with different levels of detail, ranging from a functional model to a
detailed superscalar OoO core. Besides others, gem5 supports the
x86 and ARM architectures, which are the most prevalent architec-
tures today. We chose gem5 to implement our framework as it has
all the necessary key features to interface hardware blocks into a
simulated SoC that can run a full software stack. In addition, it has
a big and growing community from both industry and academia.

7.2 HDL Simulators

Software simulation of RTL models is a necessary step for verifica-
tion purposes. It is usually slow, but offers high levels of accuracy
that are instrumental to detect functional bugs. Several HDL sim-
ulators exist some with commercial and others with free-to-use
licenses. To the best of our knowledge, GHDL has not been inter-
faced with any simulator such as gem5.

Verilator is an HDL simulator that is being used in industry and
academia environments. In academia, proposal like PAAS [24] and
HetersoSim [15] use Verilator focusing on the interactions of FPGAs
with the SoC. We differentiate from these simulators by targeting a
wider range of RTL Models, and by focusing on systems that are
not FPGA centric. In addition, gem5+rtl offers a tightly coupled
connection between the SoC and the RTL model, while PAAS relies
on inter-process communication. Table 4 compares these relevant
proposals with gem5+rtl in terms of features to highlight the main
differences.

In industry, there are existing commercial HDL simulators from
Cadence, Synopsis, and Mento Graphics that can also be inter-
connected with other full-system simulators. We chose Verilator
because it is open-source and offers a good level of performance
when compared to these commercial solutions. In fact, companies
like Tesla have recently decided to use Verilator internally [2].

9



Table 4: Related work comparison.

Features HeteroSim PAAS gem5+RTL

Verilog/SystemVerilog ✓ ✓ ✓

VHDL ✗ ✗ ✓

OS Support ✗ ✓ ✓

System software Support ✗ ✓ ✓

Not FPGA-centric ✗ ✗ ✓

7.3 FPGA-accelerated solutions

FPGA-accelerated solutions are of great interest in the last stages
of the design cycle for hardware components. However, these envi-
ronments are less flexible than software solutions and require the
entire design to be in RTL. For entire SoC simulations this can be a
challenging platform.

Our framework does not target an FPGA-accelerated environ-
ment such as Firesim [21]. FireSim has also been integrated with
the NVDLA accelerator [14], which requires editing the RTL code
of the SoC. gem5+rtl is less accurate at the entire SoC level, but
in exchange it offers more flexibility with a generic full-system
simulator that is easier to modify and work with. FireSim is also
fast in term of simulation time; however, we have seen that Ver-
ilator offers great support to speed-up simulations [13], and our
simulation times have been manageable for all our use cases.

On the commercial side, there are existing tools that offers FPGA
emulation with the capability to emulate entire SoC, such as Ca-
dence Palladium, Mentor Veloce, and Synopsys Zebu. These plat-
forms are too expensive for regular groups in academia and are
typically only available on commercial companies.

8 CONCLUSIONS

In this paper, we have introduced a flexible framework that enables
the simulation of RTL models inside a full-system software simu-
lator, gem5. The proposed framework enables the integration of
VHDL, Verilog and SystemVerilog models anywhere on the simu-
lated SoC design, which can boot Linux and run complex workloads.
As a result, we can evaluate two relevant use cases that interface a
PMU and the NVDLA accelerator into a multicore SoC. gem5+rtl
enables to test an RTL’s model features and perform early-stage
design space exploration studies of the entire SoC design.

We have used gem5+rtl to test the PMU functionalities and
study potential interactions that arise from interfacing with an
SoC. We have been able to observe and quantify small event count
discrepancies, that the reset functionality of the PMU introduces
with respect to the measurements performed by gem5. In addition,
we have evaluated the integration of up to four NVDLA accelerator
instances, finding that certain memory technologies might not
deliver sufficient bandwidth to feed the accelerators. gem5+rtl
helps SoC designers take informed design decisions by evaluating
RTL models on a full-system environment that would be very hard
to replicate in existing simulation-based testing environments.

The gem5+rtl framework is open-source and can be down-
loaded at https://gitlab.bsc.es/glopez/gem5-rtl

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feedback.
This research was supported by the European Union Regional De-
velopment Fund within the framework of the ERDF Operational
Program of Catalonia 2014-2020 with a grant of 50% of total cost
eligible under the DRACproject [001-P- 001723], by the Spanish gov-
erment (grant RTI2018-095094- B-C21 CONSENT), by the Spanish
Ministry of Science and Innovation (contracts PID2019-107255GB-
C21/AEI/10.13039/501100011033) and by the Catalan Government
(contracts 2017-SGR-1414, 2017-SGR-705). This work has also been
supported by the European Community’s Horizon 2020 Framework
Programme under the Mont-Blanc 2020 and EPI projects (grant
agreements n. 779877 and n. 826647); and by the Arm-BSC Center
of Excellence. G. López-Paradís has been partially supported by
the Agency for Management of University and Research Grants
(AGAUR) of the Government of Catalonia under Ajuts per a la
contractació de personal investigador novell fellowship No. 2021FI
B00994. A. Armejach has been partially supported by the Spanish
Ministry of Economy, Industry and Competitiveness under Juan
de la Cierva postdoctoral fellowship number IJCI-2017-33945. M.
Moretó has been partially supported by the Spanish Ministry of
Economy, Industry and Competitiveness under Ramón y Cajal fel-
lowship No. RYC-2016-21104.

REFERENCES

[1] 2018. NVDLA Github webpage. (2018). https://github.com/nvdla/hw
[2] Anandtech. 2019. Hot Chips 31: Tesla Solution for Full Self Driving Car.

(2019). https://www.anandtech.com/show/14766/hot-chips-31-live-blogs-tesla-
solution-for-full-self-driving

[3] Ehsan K. Ardestani and Jose Renau. 2013. ESESC: A fast multicore simulator
using Time-Based Sampling. In High Performance Computer Architecture, 2013
IEEE 19th International Symposium on. 448–459.

[4] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero, and Daniel
Ortega. 2009. COTSon: infrastructure for full system simulation. ACM SIGOPS
Operating Systems Review 43, 1 (2009), 52–61.

[5] ARM. 2011. AMBA AXI and ACE Protocol Specification. (2011). https://static.
docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf

[6] Owen Astrachan. 2003. Bubble Sort: An Archaeological Algorithmic Analysis.
In Proceedings of the 34th SIGCSE Technical Symposium on Computer Science
Education (Reno, Navada, USA).

[7] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,
and K. Asanović. 2012. Chisel: Constructing hardware in a Scala embedded
language. In DAC Design Automation Conference 2012.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7.

[9] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simulation. In
High Performance Computing, Networking, Storage and Analysis, 2011 International
Conference for. 1–12.

[10] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson, J. Keefe,
and H. Angepat. 2007. FPGA-Accelerated Simulation Technologies (FAST): Fast,
Full-System, Cycle-Accurate Simulators. In MICRO.

[11] Cobham-Gaisler. 2006. LEON3FT Fault-tolerant processor. (2006). https://www.
gaisler.com/index.php/products/processors/leon3ft

[12] J. Cong, Z. Fang, M. Gill, and G. Reinman. 2015. PARADE: A cycle-accurate
full-system simulation Platform for Accelerator-Rich Architectural Design and
Exploration. In ICCAD.

[13] Embecosm. 2019. High Performance SoC Modeling with Verilator.
(2019). https://www.embecosm.com/appnotes/ean6/embecosm-or1k-verilator-
tutorial-ean6-issue-1.html

[14] Farzad Farshchi, Qijing Huang, and Heechul Yun. 2019. Integrating nvidia
deep learning accelerator (nvdla) with risc-v soc on firesim. arXiv preprint
arXiv:1903.06495 (2019).

[15] L. Feng, H. Liang, S. Sinha, and W. Zhang. 2017. HeteroSim: A Heterogeneous
CPU-FPGA Simulator. IEEE Comput. Archit. Lett. (Jan 2017).

10

https://github.com/nvdla/hw
https://www.anandtech.com/show/14766/hot-chips-31-live-blogs-tesla-solution-for-full-self-driving
https://www.anandtech.com/show/14766/hot-chips-31-live-blogs-tesla-solution-for-full-self-driving
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
https://www.gaisler.com/index.php/products/processors/leon3ft
https://www.gaisler.com/index.php/products/processors/leon3ft
https://www.embecosm.com/appnotes/ean6/embecosm-or1k-verilator-tutorial-ean6-issue-1.html
https://www.embecosm.com/appnotes/ean6/embecosm-or1k-verilator-tutorial-ean6-issue-1.html


[16] Davy Genbrugge, Stijn Eyerman, and Lieven Eeckhout. 2010. Interval simulation:
Raising the level of abstraction in architectural simulation. In High Performance
Computer Architecture, 2010 IEEE 16th International Symposium on. 1–12.

[17] Tristan Gingold. 2007. Ghdl. (2007). http://ghdl.free.fr/
[18] Martin A. Goetz. 1963. Internal and Tape Sorting Using the Replacement-Selection

Technique. (1963), 6.
[19] T. Grass, C. Allande, A. Armejach, A. Rico, E. Ayguade, J. Labarta, M. Valero,

M. Casas, and M. Moreto. 2016. MUSA: A Multi-level Simulation Approach for
Next-Generation HPC Machines. In SC ’16. 526–537.

[20] C. A. R. Hoare. 1962. Quicksort. Comput. J. 5, 1 (01 1962), 10–16.
[21] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, and D. Lee et al. 2018.

FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the
Public Cloud. In 45th ISCA. 29–42.

[22] A. Khan, M. Vijayaraghavan, S. Boyd-Wickizer, and Arvind. 2012. Fast and
cycle-accurate modeling of a multicore processor. In ISPASS.

[23] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In MICRO ’09.

[24] T. Liang, L. Feng, S. Sinha, and W. Zhang. 2007. PAAS: A system level simulator
for heterogeneous computing architectures. In FPL.

[25] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, et al. 2020. The gem5 Simulator: Version 20.0+. CoRR abs/2007.03152
(2020).

[26] NVIDIA. 2018. Integrator’s Manual. (2018). http://nvdla.org/hw/v1/integration_
guide.html

[27] NVIDIA. 2019. Jetson AGX Xavier and the new era of autonomous machines.
(2019). http://info.nvidia.com/rs/156-OFN-742/images/Jetson_AGX_Xavier_
New_Era_Autonomous_Machines.pdf

[28] Tetsuya Odajima, Yuetsu Kodama, Miwako Tsuji, Motohiko Matsuda, Yutaka
Maruyama, and Mitsuhisa Sato. 2020. Preliminary Performance Evaluation of
the Fujitsu A64FX Using HPC Applications. In 2020 IEEE International Conference
on Cluster Computing (CLUSTER). 523–530.

[29] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer. 2011. HAsim: FPGA-
based high-detail multicore simulation using time-division multiplexing. In 17th
HPCA. 406–417.

[30] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: fast and accurate microar-
chitectural simulation of thousand-core systems. In ACM SIGARCH Computer
Architecture News, Vol. 41. 475–486.

[31] Amazon Web Services. 2016. Amazon EC2 F1 instances. (2016). https://aws.
amazon.com/ec2/instance-types/f1/

[32] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014.
Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large
Design Space Exploration of Customized Architectures. In 41st ISCA.

[33] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Wei, and D. Brooks. 2012. Co-designing
accelerators and SoC interfaces using gem5-Aladdin. In MICRO ’16.

[34] W. Snyder. 2012. Verilator the fast free verilog simulator. (2012). http://www.
veripool.org

[35] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, and K. Asanovic.
2010. RAMP gold: An FPGA-based architecture simulator for multiprocessors. In
DAC. 463–468.

[36] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli. 2012.
Multi2Sim: A Simulation Framework for CPU-GPU Computing. In PACT.

[37] John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu, Christoforos
Kozyrakis, James C Hoe, Derek Chiou, and Krste Asanovic. 2007. RAMP: Research
accelerator for multiple processors. IEEE Micro 27, 2 (2007), 46–57.

11

http://ghdl.free.fr/
http://nvdla.org/hw/v1/integration_guide.html
http://nvdla.org/hw/v1/integration_guide.html
http://info.nvidia.com/rs/156-OFN-742/images/Jetson_AGX_Xavier_New_Era_Autonomous_Machines.pdf
http://info.nvidia.com/rs/156-OFN-742/images/Jetson_AGX_Xavier_New_Era_Autonomous_Machines.pdf
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
http://www.veripool.org
http://www.veripool.org

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Existing Solutions based on Software Simulators
	2.2 Existing Solutions based on FPGAs
	2.3 Existing Solutions based on HDL Simulators
	2.4 On-going Challenges to Simulate Hardware Designs

	3 gem5+rtl Framework
	3.1 General Overview
	3.2 RTL Models
	3.3 gem5+rtl Shared Library
	3.4 Changes to Gem5 to Support RTL Models
	3.5 gem5+rtl Connectivity Examples

	4 gem5+rtl Use Cases
	4.1 Debugging RTL Models on a Full-System Environment
	4.2 Design-Space Exploration of the SoC Integration

	5 Experimental Methodology
	5.1 gem5+rtl Configuration
	5.2 Evaluated Benchmarks
	5.3 Performed Experiments

	6 Evaluation
	6.1 PMU Functional Evaluation
	6.2 NVDLA Design Space Exploration

	7 Related Work
	7.1 Software Architectural Simulation
	7.2 HDL Simulators
	7.3 FPGA-accelerated solutions

	8 Conclusions
	Acknowledgments
	References

