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Abstract In this paper we study the metric dimension problem in maximal
outerplanar graphs. Concretely, if β(G) denotes the metric dimension of a
maximal outerplanar graph G of order n, we prove that 2 ≤ β(G) ≤ d 2n5 e
and that the bounds are tight. We also provide linear algorithms to decide
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whether the metric dimension of G is 2 and to build a resolving set S of size
d 2n5 e for G. Moreover, we characterize all maximal outerplanar graphs with
metric dimension 2.
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1 Introduction

Let G = (V,E) be a finite connected simple graph. For two vertices u, v ∈ V ,
let d(u, v) denote the length of a shortest path in G from u to v. If S =
{x1, . . . , xk} is a set of vertices ofG, we denote by r(u|S) the vector of distances
from u to the vertices of S, that is, r(u|S) = (d(u, x1), . . . , d(u, xk)). We say
that a vertex x ∈ V resolves a pair of vertices u, v ∈ V if d(u, x) 6= d(v, x). A
set of vertices S ⊆ V is a resolving set of G if every pair of distinct vertices of
G are resolved by some vertex in S. Therefore, S is a resolving set if and only
if r(u|S) 6= r(v|S) for every pair of distinct vertices u, v ∈ V (G). The elements
of r(u|S) are the metric coordinates of u with respect to S. A resolving set S of
G with minimum cardinality is a metric basis of G. The metric dimension of
G, denoted by β(G), is the cardinality of a metric basis. The metric dimension
problem consists of finding a metric basis.

Resolving sets in general graphs were first studied by Slater [21] and
Harary and Melter [16]. Since then, computing resolving sets and the met-
ric dimension of a graph have been widely studied in the literature due to
their applications in several areas, such as network discovery and verifica-
tion [1], robot navigation [18], chemistry [5] or games [6]. The reader is re-
ferred to [3, 4, 10–15, 17, 19, 25] and the references therein for different results
and variants of the metric dimension problem of graphs.

It is well-known that the metric dimension problem in general graphs is NP-
hard [18]. The problem remains NP-hard even when restricting to some graph
classes such as bounded-degree planar graphs [7]; split graphs, bipartite graphs
and their complements, and line graphs of bipartite graphs [9]; interval graphs
and permutation graphs of diameter 2 [11]. Polynomial algorithms are known
for trees [18]; outerplanar graphs [7]; chain graphs [10]; k-edge-augmented
trees, cographs and wheels [9]. A weighted variant of the metric dimension
problem in several graphs, including paths, trees, and cographs, can be also
solved in polynomial time [9].

While the algorithms to solve the metric dimension problem in trees, wheels
or chain graphs are linear, the time complexity of the algorithm given in [7]
for an outerplanar graph of order n is O(n12). Thus, an interesting problem
for such graphs is how to find more efficiently a not very large resolving set.
Recall that a graph G is outerplanar if it can be drawn in the plane without
crossings and with all the vertices belonging to the unbounded face.

In this paper, we focus on studying the metric dimension problem in max-
imal outerplanar graphs. A maximal outerplanar graph, MOP graph for short,
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is an outerplanar graph such that the addition of an edge produces a non
outerplanar graph. In particular, given a MOP graph G of order n ≥ 3 we
show that 2 ≤ β(G) ≤ d 2n5 e and that the bounds are tight. The lower bound
is shown to be tight in Section 2. Moreover, all MOP graphs with metric di-
mension 2 are characterized. We also provide in that section a linear algorithm
to decide whether the metric dimension of a MOP graph is 2. The tightness
of the upper bound is shown in Section 3.1 by exhibiting a family of MOP
graphs attaining the given bound. Section 3.2 is devoted to show that the
metric dimension of a MOP graph G is at most d 2n5 e, by building in linear
time a resolving set S for G such that |S| = d 2n5 e. In [20], it is conjectured that
β(G) ≤ d 2n5 e for a maximal planar graph G, hence we are answering in the
affirmative this conjecture for the particular case of MOP graphs. We conclude
the paper with some open questions in Section 4. An extended abstract of this
work has appeared at the 17th Spanish Meeting on Computational Geometry
(EGC 2017).

To finish this section, we recall some well-known properties of MOP graphs.
A MOP graph G of order at least 3 is biconnected, Hamiltonian and always
admits a plane embedding such that all vertices belong to the unbounded
face and every bounded face is a triangle. Unless otherwise stated, we assume
throughout the paper that the MOP graph has order at least 3 and we are
given this plane embedding of G. Thus, G can be seen as a triangulation of a
convex polygon. Every edge on the boundary of the unbounded face belongs
to only one triangle of G and any other edge (called diagonal) belongs to two
triangles. The removal of the endvertices of a diagonal makes the graph to be
disconnected. G always has at least 2 vertices of degree 2 and when removing
any of them (if |G| ≥ 4), the resulting graph is a MOP graph. From these
properties, it is straightforward to see the following result:

...

a1 ak

bkb1

a1 ak

(a) (b)

a2 ak−1

Fig. 1 (a) Given a 2-tree G with metric dimension 2, a minimal induced 2-connected
subgraph containing the basis {a1, ak}, as claimed in [2]. (b) A 2-tree with metric basis
{a1, ak} whose minimal induced 2-connected subgraph containing a1 and ak is different
from the claimed subgraph in [2]

Remark 1 Let G be a MOP graph and let xy be a diagonal of G. If u and z
are two vertices belonging to different components of G\{x, y}, then d(u, z) ≥
min{d(u, x), d(u, y)}+ 1.
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2 MOP graphs with metric dimension two

Given a MOP graph G, its metric dimension must be greater than one, as
paths are the only graphs with metric dimension one (see for example [5]). In
this section, we characterize MOP graphs with metric dimension two.

There are several papers in the literature devoted to study properties of
graphs with metric dimension two and to characterize such graphs for cer-
tain families of graphs. In [23], the authors give a general characterization
for a graph G to have metric dimension two, based on the distance partition
{U1, U2, . . . , Uk} of the vertices of G, where vertices belonging to Ui are at
distance i from a distinguished vertex v. They also give a O(n2D4) algorithm
to check whether the metric dimension of a graph of order n is two, where D
is the diameter of the graph. In [18], the authors show several properties that
a graph with metric dimension two must satisfy.

Graphs with metric dimension two have been characterized for some fam-
ilies of graphs. In particular, unicyclic graphs [8] and Cayley graphs [24]. An
incorrect characterization of the 2-trees with metric dimension 2 is given in [2].
Starting with a triangle, a 2-tree is formed by repeatedly adding vertices of
degree 2 in such a way that each added vertex u is connected to two vertices v
and w which are already adjacent. Thus, the family of 2-trees includes MOP
graphs as a subfamily.

In [2], the authors define a family F of 2-trees such that a 2-tree G belongs
to F if G satisfies a set of twelve conditions, and they claim that a 2-tree G
has metric dimension 2 if and only if G belongs to F . When proving that a
2-tree G with metric dimension two must belong to F , the authors claim in
one of the cases that the shape of the minimal induced 2-connected subgraph
of G, containing the two vertices a1 and ak of the basis of G, is as shown
in Figure 1(a): Two vertices of degree two (a1 and ak), two vertices of degree
three (b1 and bk), a set of quadrilaterals with one of the two possible diagonals,
and at most one vertex of degree five in the path a1, a2, . . . , ak. But, part (b)
of Figure 1 exhibits a 2-tree G (in fact a MOP graph) with metric dimension
two, being {a1, ak} the only basis of G, and the minimal induced 2-connected
subgraph of G containing a1 and ak is precisely G, contradicting the shape
claimed in [2]. As a consequence, their claimed characterization cannot be used
to characterize MOP graphs with metric dimension 2.

We next give a characterization for MOP graphs with metric dimension
two, based on embedding graphs with metric dimension 2 into the strong
product of two paths. The strong product of two paths of order n, Pn � Pn,
has the cartesian product [0, n − 1] × [0, n − 1] as set of vertices and two
different vertices (i, j) and (i′, j′) are adjacent if and only if |i′ − i| ≤ 1 and
|j′−j| ≤ 1. The distance between two vertices of this graph is d((i, j), (i′, j′)) =
max{|i′ − i|, |j′ − j|}. We will consider the representation of this graph in
the plane identifying vertex (i, j) with the point with cartesian coordinates
(i, j). In this representation, a path of length k between two vertices (i, j) and
(i′, j′) such that d((i, j), (i′, j′)) = k is contained in the rectangle having (i, j)
and (i′, j′) as opposite vertices and sides parallel to lines of slope 1 and −1
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Fig. 2 Left: A graph G with metric basis S = {1, 3}. The metric coordinates of the vertices
are: r(1|S) = (0, 2), r(2|S) = (1, 1), r(3|S) = (2, 0), r(4|S) = (3, 1), r(5|S) = (2, 1), r(6|S) =
(3, 2), r(7|S) = (3, 3), r(8|S) = (2, 3), r(9|S) = (1, 3), r(10|S) = (1, 2) and r(11|S) = (2, 2).
Right: The representation G∗ of G as a subgraph of Pn � Pn with respect to S. Vertex v
in G is mapped to vertex v∗ in G∗ such that the cartesian coordinates of v∗ are the metric
coordinates of v

passing through these vertices. A set of four vertices of Pn � Pn of the form
{(i, j), (i, j+ 1), (i+ 1, j+ 1), (i+ 1, j)}, for some i, j ∈ [0, D], is a unit square.
Three vertices of Pn � Pn are pairwise adjacent if and only if they all belong
to a unit square and, in such a case, the edges joining them form a triangle
with two consecutive sides one of a unit square and the diagonal joining them.

Let G be a graph with metric dimension 2 and let S = {u, v} be a metric
basis of G. It is straightforward to see that G is isomorphic to a subgraph of
the strong product Pn � Pn. See Figure 2 for an example. Indeed, we iden-
tify vertex x ∈ V (G) with vertex (x1, x2) ∈ V (Pn � Pn), where (x1, x2) =
r(x|S) = (d(x, u), d(x, v)). Recall that if two vertices w1 and w2 of G are adja-
cent and d(w0, w1) = d for some vertex w0, then d(w0, w2) ∈ {d− 1, d, d+ 1}.
Thus, if x and y are adjacent vertices in G, then |d(x, u) − d(y, u)| ≤ 1 and
|d(x, v) − d(y, v)| ≤ 1, hence r(x|S) and r(y|S) are adjacent in Pn � Pn. We
denote by G∗ this representation of G, that is, V (G∗) = {r(x|S) : x ∈ V (G)}
and r(x|S)r(y|S) ∈ E(G∗) if and only if xy ∈ E(G). We say that G∗ is the
representation of G as a subgraph of Pn � Pn with respect to S, and vertex
(i, j) is placed onto the point with cartesian coordinates (i, j).

For every d ≥ 1, consider the set Ad = {(i, j) ∈ [0, n − 1] × [0, n − 1] :
i + j ≥ d, |j − i| ≤ d} (see Figure 3 left). The following properties can be
easily derived.

Proposition 1 Let G be a graph with metric dimension 2, and let S = {u, v}
be a metric basis of G such that d(u, v) = d. Consider the representation G∗

of G as a subgraph of Pn�Pn with respect to S. The following properties hold:

(1) S∗ = {(0, d), (d, 0)} is a metric basis of G∗ and all the vertices of G∗ are
in Ad.

(2) There is only one shortest ((0, d), (d, 0))-path in G∗, and its vertices are
the points (i, j) such that i+ j = d.

(3) Three vertices of G∗ are pairwise adjacent if and only if they all belong to
a unit square.
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(d, 0)

(0, d)

Fig. 3 Left: Illustrating Proposition 1. The shortest path from (0, d) to (d, 0) and the set
Ad, which is in the shaded region. Right: Examples of horizontal and vertical MOP zigzags

Proof (1) If d = d(u, v), then r(u|S) = (0, d) and r(v|S) = (d, 0). If x ∈ V (G),
then r(x|S) = (x1, x2) = (d(x, u), d(x, v)). On the one hand, x1 = d(x, u) ≤
d(x, v) + d(u, v) = d(x, v) + d = x2 + d and x2 = d(x, v) ≤ d(x, u) + d(u, v) =
d(x, u) + d = x1 + d, hence |x1 − x2| ≤ d. On the other hand, x1 + x2 =
d(x, u) + d(x, v) ≥ d(u, v) = d.

(2) There is only one path of length d joining (0, d) and (d, 0) in Pn�Pn, and
its vertices are {(i, j) : i+j = d}. Thus, it is also the only shortest path between
(0, d) and (d, 0) in G∗ because we already know that dG∗((0, d), (d, 0)) = d.

(3) It is also obvious, because three pairwise adjacent vertices of Pn � Pn
belong to a unit square. ut

For n ≥ 5, we say that a MOP graph G is a MOP zigzag if G has two
vertices of degree 2, two vertices of degree 3, each one of them adjacent to
a different vertex of degree 2, and the rest of the vertices have degree 4. See
Figure 3 right for some examples of MOP zigzags. One can see a MOP zigzag
as a MOP graph in which the diagonals form a zigzag path connecting the two
vertices of degree 3. For n = 3, 4, we consider a triangle and a quadrilateral
with a diagonal as MOP zigzags, respectively.

Given the representation G∗ of a graph G, we say that an edge e ∈ E(G∗)
is horizontal if e = (i, j)(i+1, j), for some i, j ≥ 0; vertical if e = (i, j)(i, j+1),
for some i, j ≥ 0; 1-slope diagonal if e = (i, j)(i + 1, j + 1), for some i, j ≥ 0;
and (−1)-slope diagonal if e = (i, j + 1)(i+ 1, j), for some i, j ≥ 0. A vertical
MOP zigzag with base line a vertical edge (i, j)(i, j + 1) (see Figure 3 right)
is a subgraph of the strong product induced by the set of vertices {(i+ k, j +
k) : 0 ≤ k ≤ r} ∪ {(i + k, j + 1 + k) : 0 ≤ k ≤ s}, for some r ≥ 1 and
s ∈ {r − 1, r}, and a horizontal MOP zigzag with base line a horizontal edge
(i, j)(i+1, j) is a subgraph of the strong product induced by the set of vertices
{(i + k, j + k) : 0 ≤ k ≤ r} ∪ {(i + 1 + k, j + k) : 0 ≤ k ≤ s}, for some r ≥ 1
and s ∈ {r − 1, r}.

For any integer k ≥ 1, let Vk = {(i, j) : i+ j = k}. The following theorem
characterizes the MOP graphs with metric dimension 2. Any of these MOP
graphs consists of a base graph similar to the one shown in Figure 4(c) and
several MOP zigzags joined to this base graph (see Figure 4(d)).
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Theorem 1 Let G be a MOP graph. Then, β(G) = 2 if and only if there is a
representation G∗ of G as a subgraph of the strong product of two paths such
that for some d ≥ 1,

(1) V (G∗) ⊆ Ad, Vd ∩ Ad ⊆ V (G∗), and E(G∗) contains the edges of the
shortest path joining (0, d) and (d, 0).

(2) Vd+1 ∩ Ad ⊆ V (G∗) and for each (i, j) ∈ Vd+1 ∩ Ad, E(G∗) contains the
edges (i, j)(i− 1, j) and (i, j)(i, j − 1).

(3) For every pair of vertices (i, j + 1) and (i+ 1, j) of Vd+1 with i, j ≥ 1, we
have either (i, j+1)(i+1, j) ∈ E(G∗) or {(i, j+1)(i+1, j+1), (i+1, j)(i+
1, j + 1), (i, j)(i + 1, j + 1)} ⊆ E(G∗). Moreover, if (i, j + 1)(i + 1, j) ∈
E(G∗) belongs to two triangles of G∗, then (i + 1, j + 1) ∈ V (G∗) and
{(i, j + 1)(i+ 1, j + 1), (i+ 1, j)(i+ 1, j + 1)} ⊆ E(G∗).

(4) Any other vertex or edge of the graph belongs to a vertical or horizontal
MOP zigzag with base line the edge (0, d)(1, d), or the edge (d, 0)(d, 1), or
any other edge of G from those described in the preceding items with an
endpoint in Vd+1 and the other in Vd+2, with the additional condition that
two distinct maximal vertical or horizontal MOP zigzags do not share any
edge.

Proof Let us see first that if a MOP graph has metric dimension 2, then it
satisfies items (1)-(4). Item (1) is a consequence of Proposition 1 (see Fig-
ure 4(a)).

Let us prove now (2). Recall that every edge of a MOP graph belongs to at
least one triangle. Let (i, j − 1)(i− 1, j) be an edge of the ((0, d), (d, 0))-path
(and thus, i+ j−1 = d). The only triangle of the strong product with vertices
in Ad containing this edge is that with vertices (i, j − 1), (i− 1, j) and (i, j).
From here, the second item follows (see Figure 4(b)).

(d, 0)(d, 0)

(a) (b) (c) (d)

(0, d)

(d, 0)

(0, d)

(d, 0)

(0, d)(0, d)

Fig. 4 An example of a MOP graph G with metric dimension 2. If the vertices of a basis
are at distance d, then G can be represented as a subgraph G∗ of the strong product Pn�Pn

such that all vertices of G∗ belong to the shaded region. Vertices described in Theorem 1
(1), (2), (3) and (4) are added in (a), (b), (c) and (d), respectively. Observe that all vertices
of G∗ belong to the unbounded face

To prove item (3), take (i, j) ∈ Vd. By item (2), we know that (i, j)(i, j +
1) and (i, j)(i + 1, j) are edges of G∗. Notice that the edges of the shortest
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((0, d), (d, 0))-path belong to exactly one triangle of G∗, thus, any other edge
incident to (i, j) ∈ Vd belongs to two triangles of G∗. Therefore, the edges
(i, j)(i, j + 1) and (i, j)(i + 1, j) belong to two triangles of G∗, and there are
only two possibilities, either (i, j + 1)(i + 1, j) ∈ E(G∗) or {(i, j + 1)(i +
1, j + 1), (i + 1, j)(i + 1, j + 1), (i, j)(i + 1, j + 1)} ⊆ E(G∗). In addition, if
(i, j+ 1)(i+ 1, j) ∈ E(G∗) belongs to two triangles, the only possibility is that
(i+1, j+1) ∈ V (G∗) and {(i, j+1)(i+1, j+1), (i+1, j)(i+1, j+1)} ⊆ E(G∗)
(see Figure 4(c)).

Finally, let us prove item (4). Let t be the number of triangles of the MOP
graph G. The vertices and edges described in the preceding items (1), (2) and
(3) induce a MOP graph, G∗0, with t0 triangles.

If t = t0, then G∗0 = G∗ and we are done. Suppose now that t > t0. In such
a case, one of the edges of G∗0 limiting only one triangle in G∗0 must belong to
two triangles in G∗. Let e0 = xy be one of these edges and let z be the third
vertex of the triangle in G∗0 containing the endpoints of e0. By definition of
G∗0, e0 must be a horizontal edge or a vertical edge. Besides, (0, d), (d, 0) and z
belong to the same component in G∗−{x, y}. Assume that e0 = (i, j)(i+ 1, j)
if e0 is a horizontal edge, and e0 = (i, j)(i, j + 1) if e0 is a vertical edge, with
i, j ≥ 0. By Remark 1, we have that the third vertex of the other triangle of
G∗ limited by e0 must be (i+ 1, j + 1).

Let G∗1 be the graph obtained by adding to the graph G∗0 the vertex (i +
1, j + 1) and the edges joining (i + 1, j + 1) with the endpoints of e0. Notice
that one of the edges added to G∗0 is a 1-slope diagonal edge, and the other
one is a horizontal edge if e0 is vertical, or a vertical edge if e0 is horizontal.

Now, if G∗ = G∗1, we are done. Otherwise, there is an edge e1 belonging to
exactly one triangle in G∗1 and to two triangles in G∗. By Remark 1, there is
no 1-slope diagonal edge (i, j)(i + 1, j + 1), with i + j ≥ d + 1, limiting two
triangles in G∗. Hence, e1 must be a horizontal edge or a vertical edge and
we proceed as for e0. We repeat this procedure until we have added t − t0
triangles to G∗0. Observe that the new triangles added to G∗0 form a vertical
or horizontal MOP zigzag with one of the considered base lines, since the
triangles recursively added to G∗0 share vertical or horizontal edges.

Finally, it is not possible that two maximal vertical or horizontal MOP
zigzags share an edge e. Indeed, in such a case, the edge e should be a 1-slope
diagonal edge e = (i, j)(i+ 1, j + 1), with i+ j ≥ d+ 1, and G∗ − {(i, j), (i+
1, j + 1)} would be connected, a contradiction because e is not an edge of the
unbounded face (see Figure 4(d)).

Now, we are going to prove that every graph satisfying (1) to (4) is a
MOP graph with metric dimension 2. By construction, a graph satisfying
conditions (1)-(4) is a biconnected plane graph with all vertices belonging
to the unbounded face and any other face is a triangle. Therefore, G is a
MOP graph. Moreover, d((0, d), (i, j)) = i and d((d, 0), (i, j)) = j. Indeed, it
is easy to give a path of length i from (0, d) to (i, j) using some vertices of the
shortest (0, d)− (d, 0) path; all the vertices (i′, j′) such that i′ ≤ i, j′ ≤ j and
i′− j′ = i− j; and vertex ((d+ i− j)/2, 1+(d− (i− j))/2) ∈ Vd+1, whenever d
and i− j have the same parity and with i− j 6= −d (see Figure 5). In a similar
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(0, d)

(d, 0)

(i, j)

(d, 0) (d, 0)

(i, j)

(0, d) (0, d)

(i, j)

Fig. 5 A (0, d) − (i, j) path of length i when i − j and d have distinct parity (left); when
i− j and d have the same parity and i− j 6= −d (center) and when i− j = −d (right)

way, a path of length j from (d, 0) to (i, j) can be given. Thus {(0, d), (d, 0)}
is a resolving set. Since G is not a path, we have β(G) = β(G∗) = 2. ut

If G is a MOP graph with metric dimension 2, we denote by G∗0 the graph
induced by the vertices and edges described in items (1)-(3) of Theorem 1.

Deciding whether the metric dimension of a MOP graph is 2 can be done
in linear time, as the following theorem shows.

Theorem 2 Given a MOP graph G of order n we can decide in linear time
and space whether the metric dimension of G is 2.

Proof It is obvious for n = 3. From now on, suppose that n ≥ 4.
If G is a MOP zigzag, then one can easily check that its metric dimension

is 2, since two of the four vertices of degree 2 and 3 chosen in a suitable
way form a resolving set. Thus, we may assume that G is not a MOP zigzag
and we may also assume that the vertices of G are clockwise ordered along
its boundary. From Theorem 1, the representation of a MOP graph G with
metric dimension 2 consists of the graph G∗0 together with some vertical and
horizontal MOP zigzags joined to G∗0. Note that every vertical or horizontal
MOP zigzag finishes in a vertex of degree 2 in G.

Given G, in the first step of the algorithm we calculate for every vertex
v of degree 2 the maximal MOP zigzag around v, denoted by Gv. The set of
vertices of Gv is the maximal set of consecutive vertices Sv = {u, . . . , v, . . . , w}
of G around v such that the subgraph induced by Sv is a MOP zigzag. By
definition, uw is an edge of Gv, that will be denoted by ev. This subgraph can
be calculated by alternately exploring the vertices preceding and following v
(see Figure 6).

Since calculating Gv only depends on its size, and two maximal MOP
zigzags around two vertices v and v′ of degree 2 are edge-disjoint, this first
step only requires linear time and space. Notice that if G has metric dimension
2 and v is a vertex of degree 2, then the edge ev = uw of Gv must be a vertical
or horizontal edge on the boundary of G∗0, or a (−1)-slope diagonal edge of
G∗0. This last case (see for example the fourth MOP zigzag when moving along
the border of G∗0 from (0, d) in Figure 4(d)) only happens when the triangle
defined by the vertices (i, j+ 1), (i+ 1, j) and (i+ 1, j+ 1) belongs to G∗0, with
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w

v

u x u w

v

x

ev
ev

Fig. 6 Examples of maximal MOP zigzags around v. On the left, vertices x and u are
nonadjacent and, on the right, vertices x and w are nonadjacent

(i, j+ 1), (i+ 1, j) ∈ Vd+1, and only one of the edges (i, j+ 1)(i+ 1, j+ 1) and
(i+ 1, j)(i+ 1, j + 1) is the base line for a MOP zigzag that contains v.

Let S = {u1, u2, . . . , uk} be the set of vertices of degree 2 or 3 of G,
clockwise ordered when moving along the boundary of G. From Theorem 1,
we deduce that, if G has metric dimension 2, then a metric basis of G is formed
by two consecutive vertices ui and ui+1 in S (where uk+1 = u1). Thus, in the
second step of the algorithm, we check if the set {ui, ui+1} is a metric basis of
G, for every i ∈ {1, . . . , k}.

Given a pair (ui, ui+1), this can be done as follows. Suppose that there
are di − 1 vertices between ui and ui+1 when traveling clockwise along the
boundary of G. Note that using these vertices, checking (and building) if a
graph G∗0 as described in items (1), (2) and (3) of Theorem 1 exists can be
done in O(di) time and space. If such a graph G∗0 exists, the rest of the vertices
of G∗ must belong to vertical and horizontal MOP zigzags joined to G∗0. This
can be again checked in O(di) time by visiting clockwise the edges on the
boundary of G∗0. Indeed, an edge ev associated with a vertex of degree 2 of
those calculated in the first step must be a vertical, horizontal or (−1)-slope
diagonal edge of G∗0. Besides, it can be checked if all vertices of G appear in
G∗0 or in a maximal MOP zigzag joined to G∗0, since the number of vertices of
G∗0 and of each maximal MOP zigzag is known. Therefore, as

∑
di = n, this

second step also requires linear time and space. ut

3 Upper bound on the metric dimension of MOP graphs

In this section, we show that β(G) ≤ d 2n5 e for any MOP graph G of order
n. We also show that, for some special MOP graphs of order n, their metric

dimension is d 2(n−2)5 e. Hence, the upper bound d 2n5 e is tight when n is a
multiple of 5.

In the figures, we will assume that the vertices of a MOP graph G are
placed on a circle labeled clockwise from 1 to n. The edges will be drawn on
or inside the circle as segments or arcs.
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x1

x3
(1, 1, 1)

(1, 2, 2)

(2, 2, 2)

x2

(2, 2, 1)

Fig. 7 The fan F1,6. Black vertices form a metric basis S. For a vertex not in S, its metric
coordinates are given

3.1 Fan graphs

We first study the metric dimension of a special family of MOP graphs, the
fan graphs. A fan graph of order n, denoted by F1,n−1, is a MOP graph such
that one of the vertices is connected to the n − 1 remaining vertices. For
n = 3, 4, 5, 6, one can easily verify that β(F1,n−1) = 2. For n = 7, we have
β(F1,6) ≥ 3. This result follows from the fact that n ≤ β + Dβ for a graph
with metric dimension β and diameter D (see [18]). As F1,6 has diameter 2, if
it had metric dimension 2, then n would be at most 6. In addition, the three
black vertices of Figure 7 form a metric basis for F1,6, so β(F1,6) = 3.

In the following theorem, we prove that β(F1,n−1) = d 2(n−2)5 e, for n ≥ 8.
The proof is based on locating-dominating sets. Given a graph G = (V,E),
let N(u) be the set of neighbors of u in G, that is, N(u) = {v : uv ∈ E(G)}.
A set S ⊆ V is a dominating set if every vertex not in S is adjacent to some
vertex in S. A set S ⊆ V is a locating-dominating set, if S is a dominating
set and N(u) ∩ S 6= N(v) ∩ S for every two different vertices u and v not in
S. The location-domination number of G, denoted by λ(G), is the minimum
cardinality of a locating-dominating set. It is easy to show that any locating-
dominating set is a resolving set. Thus, β(G) ≤ λ(G).

Theorem 3 Let n ≥ 8. Then,

β(F1,n−1) =

⌈
2(n− 2)

5

⌉
.

Proof Observe that β(F1,n−1) ≥ 3, because F1,n−1 is not a path and graphs
with metric dimension 2 and diameter 2 have order at most 6. Suppose that
the vertices of F1,n−1 are labeled so that n is the vertex of degree n− 1, and
let P be the path of order n− 1 induced by vertices from 1 to n− 1.

We first prove that β(F1,n−1) ≤
⌈ 2(n−2)

5

⌉
. In [22], it is shown that a path

of order n−2 has a locating-dominating set of size
⌈ 2(n−2)

5

⌉
such that at least

one endpoint of the path does not belong to it. Using this fact, we derive
that the path of order n − 2 induced by the vertices from 2 to n − 1 has a

locating-dominating set S of size
⌈ 2(n−2)

5

⌉
such that 2 /∈ S. We claim that S is

a resolving set for F1,n−1. On the one hand, as n ≥ 8, then |S| ≥ 3, so n is the
only vertex at distance 1 from every vertex of S. On the other hand, 1 is the
only vertex at distance 2 from every vertex of S, because of the choice of S.
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Finally, every other vertex has different vector of distances to S because their
neighborhoods in S are different, so that the 1’s in the vectors of distances to
S are located in different places. Consequently, S is a resolving set of F1,n−1,

and hence β(F1,n−1) ≤
⌈ 2(n−2)

5

⌉
.
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Fig. 8 The set of black vertices is a metric basis of the fans of order 15, 16, 17, 18 and 19

We now prove that β(F1,n−1) ≥
⌈ 2(n−2)

5

⌉
. Let S be a metric basis of F1,n−1.

Since d(i, n) = 1 for 1 ≤ i ≤ n − 1, vertex n belongs to S only if it has the
same coordinates as another vertex i with respect to the set S \ {n}. Then,
(S\{n})∪{i} is also a metric basis of F1,n−1. Hence, we may assume that n /∈ S
and n is the only vertex with all metric coordinates 1, because β(F1,n−1) ≥ 3.
Since F1,n−1 has diameter 2, all metric coordinates of vertices not in S are 1 or
2. There is at most one vertex with all metric coordinates 2. If there is no vertex
with all metric coordinates 2, then S is also a locating-dominating set of the

path P of order n− 1. Hence, β(F1,n−1) ≥ λ(Pn−1) =
⌈ 2(n−1)

5

⌉
≥
⌈ 2(n−2)

5

⌉
. If

there is one vertex i0 with all metric coordinates 2, then S must be a locating-
dominating set for P − i0. If i0 ∈ {1, n−1}, then P − io is a path of order n−2

and β(F1,n−1) ≥ λ(Pn−2) =
⌈ 2(n−2)

5

⌉
. If i0 ∈ {3, . . . , n − 3}, then P − i0 has

two connected components that are paths of order r = i0−1 and s = n−1−i0
respectively, with r + s = n− 2, and we have

β(F1,n−1) ≥ λ(Pr) + λ(Ps) =

⌈
2r

5

⌉
+

⌈
2s

5

⌉
≥
⌈

2(n− 2)

5

⌉
.

Finally, if i0 = 2, then 1 6∈ S and 1 would also be at distance 2 from every
vertex in S, a contradiction. Therefore, i0 6= 2 and, analogously, i0 6= n−2. ut

It can be easily verified that if n is 5k, 5k + 1 or 5k + 2 for some k, then
S = {2 + 5r : 0 ≤ r < bn/5c} ∪ {4 + 5r : 0 ≤ r < bn/5c} is a metric basis of
F1,n−1, and if n is 5k + 3 or 5k + 4 for some k, then S = {2 + 5r : 0 ≤ r <
bn/5c} ∪ {4 + 5r : 0 ≤ r < bn/5c} ∪ {n − 1} is a metric basis of F1,n−1 (see
Figure 8).

3.2 Upper bound

The main goal of this section is to show that every MOP graph G = (V,E) of
order n has a resolving set S of size d 2n5 e that can be built in linear time. For
this purpose, we will begin with a certain set S of vertices of size d 2n5 e. If S is a
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resolving set, we are done. Otherwise, we will describe how S can be modified
to obtain a resolving set of the same size. We will refer to the vertices belonging
to S as black vertices, and vertices not in S as white vertices. Recall that the
vertices of G are placed on a circle and labeled clockwise from 1 to n, so that all
the edges are drawn inside the circle. A run will be a maximal set of consecutive
vertices of the same color along the circle. We will denote by [i, j] the set of
vertices {i, i+1, . . . , j−1, j}, if i < j, and the set {i, i+1, . . . , n, 1, . . . , j−1, j},
if i > j.

We next prove some technical results.

Lemma 1 Let G be a MOP graph of order n and i, j ∈ [1, n]. If i, j, i − 1
and j + 1 are four different vertices, then i and j are resolved by either i− 1
or j + 1 (mod n).

Proof Observe that G cannot contain at the same time the edges (i, j+1) and
(j, i − 1) because they cross, whenever j + 1 6= i − 1 (mod n). Then, either
i− 1 or j + 1 resolves i and j. See Figure 9. ut

We have seen in Section 3.1 that a resolving set of the fan can be obtained
with alternating white runs of size 1 and 2 separated by black runs of size 1.
Such a set is not a resolving set for a general MOP graph G, however, these
kinds of sets will play an important role to construct a resolving set of G. This
leads us to the following definition.

ji

j + 1i− 1

Fig. 9 Vertices i and j are resolved either by i− 1 or j + 1

We say that an interval [i, j] is (1,2)-alternating if and only if all its white
runs have size one or two, black runs have size one and there are no consecutive
white runs of the same size.

Next lemma shows when two white vertices of a (1,2)-alternating interval
are not resolved by any black vertex of the interval.

Lemma 2 Let G be a MOP graph and let [i1, i2] be a (1,2)-alternating interval
such that the first and last vertices, i1 and i2, are black. Let S′ be the set of
black vertices in the interval. The following properties hold.

(1) Let i ∈ [i1, i2] belong to a white run of size 1. Then, r(i|S′) = r(j|S′) for
some j ∈ [i1, i2] if and only if j belongs to a white run of size 2 and one of
the four cases (a), (b), (c) or (d) of Figure 10 holds.

(2) Let i, j ∈ [i1, i2] belong to white runs of size 2. Then, r(i|S′) = r(j|S′) if
and only if one of the four cases (e), (f), (g) or (h) of Figure 10 holds.
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Fig. 10 The eight cases in which two white vertices i and j, squared in the figure, are not
resolved by black vertices

(3) If i ∈ [i1, i2] is a white vertex, then there is at most one white vertex
j ∈ [i1, i2] such that r(i|S′) = r(j|S′).

Proof Let us prove item (1). By Lemma 1, two white vertices belonging to
two different runs of size 1 are always resolved by vertices in S′. Suppose now
that i belongs to a white run of size 1 and j belongs to a white run of size
2. If r(i|S′) = r(j|S′), then, again by Lemma 1, either j is i + 2 and j is
connected to i − 1, or j is i − 2 and j is connected to i + 1 (see Figure 10
top). Suppose first that j = i + 2 and j is connected to i − 1, so that i − 1
and i + 4 are black and i + 3 is white. Since j is connected to i − 1, we have
that 2 ≤ d(i, i+ 4) = d(j, i+ 4) ≤ 2. Hence, vertex i− 1 is connected to i+ 3
and to i + 4. Depending on which edge belongs to G, either (i − 1, i + 1) or
(i, i + 2), we have Cases (a)–(b) of Figure 10. Conversely, if Cases (a) or (b)
hold, then for any black vertex i′ ∈ [i1, i2], the distances from i′ to i and j are
equal because the shortest path from i′ to i or j goes through either i− 1 or
i+ 4, and in these cases the distances from i and j to i− 1 (resp. to i+ 4) are
the same. Thus, r(i|S′) = r(j|S′). For the other case, that is, when j = i− 2
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and j is connected to i+ 1, we have by symmetry that r(i|S′) = r(j|S′) if and
only if Cases (c)–(d) of Figure 10 hold. Therefore, we have proved (1).

We now prove item (2). By Lemma 1, it is clear that two white vertices
i and i + 1 belonging to the same white run are resolved by either i − 1 or
i + 2. Suppose now that i and j belong to different white runs of size 2 and
r(i|S′) = r(j|S′). In such a case, by Lemma 1, if i − 1 is a black vertex,
then j − 1 is a black vertex, and there is an edge connecting i and j − 1
and another edge connecting j and i − 1. Also notice that, because of the
assumption made in the hypothesis, i + 2 and j + 2 are black vertices. Since
2 ≤ d(i, j + 2) = d(j, j + 2) ≤ 2, the only possibility for these two distances to
be equal is that vertex i− 1 is connected to both j+ 1 and j+ 2. Analogously,
taking into account that 2 ≤ d(j, i+ 2) = d(i, i+ 2) ≤ 2, we derive that vertex
j−1 must be connected to i+1 and i+2. Depending on which edge belongs to
G, either (i, j) or (i−1, j−1), we have Cases (e)–(f) in Figure 10. Conversely, if
Cases (e)–(f) hold, then one can easily check that r(i|S′) = r(j|S′), as there are
always shortest paths from i and j to any other black vertex passing through
either i−1 or j−1. Cases (g)–(h) of Figure 10 appear by symmetry when i+1
is black instead of i − 1. Therefore, (2) follows. Finally, item (3) is a direct
consequence of items (1) and (2). ut

Before proving the main result of this section, we give some additional
definitions. The vertex of degree two of Case (c) will be called a special vertex.
Let G = (V,E) be a graph. Given two subsets S ⊂ V and W ⊂ V we say
that S arranges W if every pair of distinct vertices with at least one of them
belonging to W is resolved by some vertex in S. If W consists of only one
vertex u, we say that S arranges u. Observe that, by definition, if S1 arranges
W1 and S2 arranges W2, then S1∪S2 arranges W1∪W2. We next prove another
technical lemma and the main result of this section, Theorem 4.

Lemma 3 If G = (V,E) is a MOP graph of order n, then there is a set
S0 ⊂ V = [1, n] of black vertices such that |S0| = d 2n5 e, {2} is a white run
of size 1, the interval [4, n] is (1, 2)-alternating and S0 arranges the white run
{2}.

Proof Suppose that n = 5k + t, t ∈ {0, 1, 2, 3, 4}, for some k ≥ 1. If t ∈
{0, 1, 2, 3}, we begin defining S0 as the set of size

⌈
2n
5

⌉
that consists of all

the vertices of [1, n] of the form 5j + 1 and 5j + 3. Vertices in S0 are colored
black and the rest, white. If {2} is arranged by S0, we are done. Otherwise,
by Lemmas 1 and 2, {2} is the white run of size 1 of some of the subgraphs
(a)–(d) of Figure 10. If we renumber all the vertices by rotating one place
counterclockwise their labels, and update their colors according to the set S0,
the new vertex with label 2 forms a white run of size 1 not belonging to any
of the subgraphs (a)–(d) of Figure 10. Hence, S0 arranges {2}. If t = 4, we
define S0 as the set formed by vertex 1 and all the vertices of [1, n] of the form
5j + 3 and 5j + 5, with j ≥ 0. Then, {n}, {2} and {4} are three consecutive
white runs of size 1 separated by black vertices. By Lemma 1, S0 arranges 2,
and the interval [4, n] is (1, 2)-alternating. ut
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Theorem 4 If G = (V,E) is a MOP graph, then there exists a resolving set
S ⊂ V such that |S| = d 2n5 e. Moreover, S can be computed in linear time.

Proof The general procedure to obtain a resolving set for G is the following.
We begin with the set S := S0 defined in the proof of Lemma 3 that arranges
the white run {2} of size 1. If S0 is a resolving set forG, we are done. Otherwise,
we explore clockwise the white runs of S. Suppose that, after exploring the
first h runs, S is a set consisting of d 2n5 e vertices which is a candidate to be
a resolving set for G. If the next white run is not arranged by S because it
belongs to some of the subgraphs shown in Figure 10, then we define a new set
S′ by removing some vertices in S and including new ones, such that |S′| = |S|
and all explored white runs are arranged by S′. Then, we update the set S,
S := S′, and continue the exploration.

More precisely, suppose that, in a generic step of the exploration, the ver-
tices in the interval I = [1, i− 1] have already been explored. Then, we denote
by S the set of d 2n5 e black vertices of G and by W the set of white vertices of
I, that is, W = I \ S.

We then prove that I and S satisfy the following invariant.

Invariant If I = [1, i− 1], S ⊆ V and W = I \ S, then:

Property P1. |S| = d 2n5 e and S arranges W .
Property P2. Vertex i is white, vertices 1 and i−1 are black (that is, {1, i−1} ⊆

S and i /∈ S), and [i, n] is an (1, 2)-alternating interval.
Property P3. For every white vertex w ∈W \ {i− 2} and every white special

vertex l ∈ V \ I, there exists a black vertex v ∈ S ∩ (I \ {i− 1}) such that
v resolves w and l.

Obviously, by Property P1, S will be a resolving set of size d 2n5 e for G after
exploring all white runs. Properties P2 and P3 are technical facts that will be
needed to proceed with the proof.

We begin verifying that Invariant holds for S = S0 and I = [1, 3]. By
Lemma 3, S0 arranges 2, and interval [4, n] is (1, 2)-alternating. Thus, Property
P2 obviously holds and Property P3 is true because in this case the set W \
{2} = ∅.

Assuming that Invariant is true for given sets I = [1, i− 1] and S, we next
show that it holds for new sets I ′ and S′ defined after exploring clockwise the
next white run r not belonging to I. We will distinguish whether r is already
arranged by S or not.

Suppose first that r is arranged by S. If r only consists of the white vertex i,
then one can easily check that Invariant holds for S′ = S and I ′ = I ∪ [i, i+1].
Indeed, as S arranges W and i, then S obviously arranges W ′ = W ∪ {i}.
Property P3 follows from the fact that a vertex in W satisfies Property P3,
and a special vertex l cannot be connected to i− 1, so i− 1 resolves i− 2 and
l. Hence, I ′ satisfies Property P3. If r consists of two white vertices, i, i + 1,
consider S′ = S and I ′ = I ∪ [i, i + 2]. Sets S′ and I ′ satisfy Property P1 of
Invariant, because S arranges W ′ = W ∪{i, i+ 1}. To see that Property P3 is
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true, notice that a special vertex l ∈ V \ I ′ is not connected to i − 1. Hence,
i− 1 resolves l and any of i− 2 and i.

Suppose now that r is not arranged by S. As S arranges W , the white
vertices not resolved by S must belong to the interval [i, n]. Lemma 2 can be
applied to the interval [i − 1, i], if n is white, or to the interval [i − 1, n], if
n is black, since the interval [i, n] is (1, 2)-alternating by Property 2. Hence,
r belongs to one of the subgraphs of Cases (a)-(h). Note that if r has size 1,
then r consists of vertex i, and if r has size 2, then r consists of vertices i and
i+ 1.

In each one of these 8 cases, the general framework to construct new sets
S′ and I ′ satisfying Invariant is the following. The set I ′ is obtained by adding
an interval [i, i′] to I, where i′ is a black vertex and the vertices of the run r
are in [i, i′]. Then, we interchange the colors of some vertices from [i − 1, i′],
so that the updated set S′ of black vertices satisfies |S′| = |S| = d 2n5 e, and
Invariant holds for the new sets I ′ = I ∪ [i, i′] and S′. To complete the validity
of Property P1, it is needed to show that S′ arranges W ′ after interchanging
some colors in I ′. This will be proved in two steps. First, we give a subset of S′

that arranges the set of new white vertices, X = W ′ \W . Secondly, we show
that every pair of white vertices x and y, with x ∈ W and y ∈ V \ X, that
was resolved by a vertex from S \ S′, is now resolved by a vertex from S′ \ S.
Property P2 follows, because we have not changed the colors of the vertices
from V \ I ′. Finally, to prove that the sets S′ and I ′ satisfy Property P3, it is
enough to show that it holds for the white vertices in (X \ {i′ − 1})∪ {i− 2}.
We next analyze the different cases.
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Fig. 11 Squared vertices have the same coordinates. Case (a): interchanging the colors of
i and i− 1, and j = i+ 2 and i+ 1. Case (b): interchanging the colors of i+ 1 and j = i+ 2

Case (a). The two vertices not resolved by S are i and j as shown in Figure 11
(a). In this case, we interchange the colors of vertices i and i−1 and the colors
of the vertices j(= i+ 2) and i+ 1. We claim that Invariant holds for the new
sets I ′ = I ∪ [i, i+ 4] and S′ = (S \ {i− 1, i+ 1}) ∪ {i, i+ 2}.

Let us see that S′ arrangesW ′ = W∪{i−1, i+1, i+3}. On the one hand, the
set S∗ = {i, i+2, i+4} arranges {i−1, i+1, i+3}, because r(i−1|S∗) = (1, 1, 1),
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r(i + 1|S∗) = (1, 1, 2) and r(i + 3|S∗) = (2, 1, 1), respectively, and the only
vertices adjacent to i+2 are precisely i−1, i+1 and i+3. On the other hand,
the shortest path from i′ ∈ [i + 5, i − 2] to i, i + 1 or i + 2 necessarily goes
through i − 1, so d(i′, i) = d(i′, i − 1) + 1 and d(i′, i + 2) = d(i′, i + 1). This
implies that, if i − 1 (resp. i + 1) resolves two vertices in [i + 5, i − 2] then i
(resp. i+ 2) also resolves them. In particular, S′ arranges W ′.

Let us see that Property P3 also holds. Take a special white vertex l in
V \ I ′. Property P3 clearly holds for the vertices of W \ {i − 2}. Moreover,
since d(l, i + 2) ≥ 3 and the distance from i + 2 to any of {i − 2, i − 1, i + 1}
is at most two, then we have that i + 2 resolves l and any white vertex of
{i− 2, i− 1, i+ 1}. Therefore, Property P3 is satisfied, and Invariant holds as
claimed.

Case (b). The two vertices not resolved by S are i and j as shown in Figure 11
(b). In this case, we only need to interchange the colors of vertices j(= i+ 2)
and i + 1. We claim that Invariant holds for the new sets I ′ = [1, i + 4] and
S′ = (S \ {i+ 1}) ∪ {i+ 2}. Notice that W ′ = W ∪ {i, i+ 1, i+ 3}.

The set S∗ = {i+2, i+4} arranges {i, i+1, i+3} because r(i|S∗) = (1, 2),
r(i+1|S∗) = (1, 3) and r(i+3|S∗) = (1, 1), and the only white vertices adjacent
to i+ 2 are precisely i, i+ 1 and i+ 3 (see Figure 11 (b)). Moreover, observe
that for a vertex i′ ∈ [i + 5, i − 2], we have d(i′, i + 2) = d(i′, i + 1) − 1, so if
i+ 1 resolves two vertices in [i+ 5, i− 2], then i+ 2 resolves them as well. As
a consequence, S′ arranges W .

Finally, to prove Property 3, note that the distance from i+ 2 to a special
vertex l ∈ V \ I ′ is at least 3. Thus, i+ 2 resolves the pairs formed by l and a
vertex from {i− 2, i, i+ 1}.
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Fig. 12 Squared vertices have the same coordinates. Case (c): Interchanging the colors of
i+1 and i+2, when i+3 is arranged by (S \ {i + 2}) ∪ {i + 1}. Case (d): Interchanging the
colors of i+ 1 and i+ 2

Case (c). In this case, the vertices not resolved by S are i+ 1 and i+ 3 (see
Figure 12 (c)). We begin by interchanging the colors of the vertices i+ 1 and
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i+ 2, and distinguish two cases depending on whether (S \ {i+ 2}) ∪ {i+ 1}
arranges i+ 3 or not.

Suppose first that i+3 is arranged by (S\{i+2})∪{i+1}. Then, Invariant
holds for the sets S′ = (S \ {i+ 2}) ∪ {i+ 1} and I ′ = I ∪ [i, i+ 4]. Note that
W ′ = W ∪ {i, i + 2, i + 3}. Indeed, observe that S∗ = {i − 1, i + 1} arranges
{i, i + 2}, because r(i|S∗) = (1, 1), r(i + 2|S∗) = (2, 1), and the only white
vertices at distance 1 from i+1 are i and i+2. Besides, d(i′, i+2) = d(i′, i+1)
for every vertex i′ ∈ [i+5, i−2], implying that every pair of vertices belonging
to [i + 5, i − 2] that were resolved by i + 2 are now resolved by i + 1. In
particular, S′ arranges W . Therefore, S′ arranges W ′, and Property P1 holds.
Since a special vertex l in V \ I ′ is not connected to either i− 1 or i+ 1, then
l together with a vertex from {i − 2, i, i + 2} are resolved by either i − 1 or
i+ 1. Then, Property P3 also holds.

Suppose now that (S \ {i+ 2})∪ {i+ 1} does not arrange i+ 3. Let us see
which vertex j has the same coordinates as i+ 3 in relation to this set. Notice
that by Property 3, since i+3 is a special vertex, for any vertex j ∈W \{i−2}
there is a vertex in I ∩ S resolving i+ 3 and j. Besides, i− 1 resolves the pair
i+3 and i−2, and i+1 resolves i+3 and any of i and i+2. Hence, j /∈ [1, i+2].
By Property P2, a vertex j ∈ [i+ 5, n] is adjacent to a black vertex j′, but j′

is not adjacent to i+ 3 unless j′ = i+ 4 and j = i+ 5. Then, i+ 6 is white and
i+ 7 is black (see Figure 13). Since 2 ≤ d(i+ 3, i+ 7) and d(i+ 5, i+ 7) ≤ 2,
we have that both distances are equal only when the edges (i + 4, i + 7) and
(i+ 4, i+ 6) belong to G.

If this situation happens, then i+ 3 and i+ 5 have the same coordinates in
relation to (S \ {i + 2}) ∪ {i + 1}. We remark that Property P3 is important
at this time to ensure that i+ 5 is the only vertex with the same coordinates
as i+ 3. Otherwise, if Property P3 does not hold, then a vertex x in W could
have the same coordinates as i+ 3, because i+ 2 could be the only vertex in
S to resolve i+ 3 and x.
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i
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Fig. 13 Case (c). Squared vertices have the same coordinates. When i+ 3 is not arranged
by (S \ {i+ 2}) ∪ {i+ 1}, the colors of i+ 3 and i+ 4 are interchanged

We interchange the colors of vertices i+3 and i+4, as shown in Figure 13,
and set I ′ = [1, i + 7] and S′ = (S \ {i + 2, i + 4}) ∪ {i + 1, i + 3}. Thus,
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W ′ = W∪{i, i+2, i+4, i+5, i+6}. The argument to prove that Invariant holds
for these new sets is similar to the previous ones, but a bit more elaborated.

Let us show that S′ arranges W ′. On the one hand, if S∗ = {i − 1, i +
1, i+ 3} ⊆ S′, then r(i|S∗) = (1, 1, 2), r(i+ 2|S∗) = (2, 1, 1) and r(i+ 4|S∗) =
(1, 1, 1). In addition, the only vertices at distance 1 from i+ 1 are i, i+ 2 and
i+ 4. Hence, S′ arranges {i, i+ 2, i+ 4}. On the other hand, for every vertex
i′ ∈ [i+5, i−2], we have d(i′, i+2) = d(i′, i+1) and d(i′, i+3) = d(i′, i+4)+1.
This implies that, any pair of vertices from [i + 5, i − 2] resolved by i + 2 or
i+ 4 is also resolved by i+ 1 or i+ 3. Therefore, since W ⊆ [i+ 5, i− 2] and
S arranges W , we derive that S′ arranges W . It only remains to prove that
S′ arranges {i + 5, i + 6}. Notice that i + 7 resolves the pair i + 5 and i + 6.
Moreover, by Property P2, a white vertex j in V \ I ′ is adjacent to a black
vertex j′. Since i+5 and i+6 cannot be connected to j′, then j′ resolves j and
any vertex of i+ 5 and i+ 6. Note that if j = i+ 8, then i+ 9 is such a vertex
j′. Finally, as S′ arranges W and {i, i+ 2, i+ 4}, a vertex from {i+ 5, i+ 6}
and a vertex from [1, i+ 4] are resolved by some vertex of S′. Hence, Property
P1 is satisfied.

To show that Property P3 holds, we only need to prove this property for
the vertices i− 2, i, i+ 2, i+ 4 and i+ 5. For a special vertex l in V \ I ′, its
distance to i + 3 is at least 3. Since the distance from i + 3 to i, i + 2, i + 4,
or i+ 5 is at most 2, vertex i+ 3 resolves l and any of these four vertices. The
pair l and i− 2 is resolved by i− 1, because l is not adjacent to i− 1.

Case (d). In this case, the vertices not resolved by S are i + 1 and i + 3
in the subgraph shown in Figure 12 (d). This case is symmetric to Case (b).
Following the same kind of arguments used in that case, one can easily prove
that Invariant holds for the sets I ′ = [1, i+ 4] and S′ = (S \ {i+ 2})∪ {i+ 1},
defined after interchanging the colors of vertices i+ 1 and i+ 2 (see Figure 12
(d)).
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Fig. 14 Cases (e) and (f): squared vertices have the same coordinates. Interchanging the
colors of i− 1 and i
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Case (e). In this case, the vertices not resolved by S are i and j in the
subgraph shown in Figure 14 (e). We interchange the colors of vertices i − 1
and i and we define I ′ = I ∪ [i, i + 2] and S′ = (S \ {i − 1}) ∪ {i}. Thus,
W ′ = W ∪ {i− 1, i+ 1} (see Figure 14 (e)).

Let us see first that S′ arranges W ′. On the one hand, the set S∗ = {i, i+2}
arranges {i − 1, i + 1}. Indeed, r(i − 1|S∗) = (1, 3), r(i + 1|S∗) = (1, 1), and
the only white vertices belonging to V at distance 1 from i are i− 1, i+ 1 and
j, but r(j|S∗) = (1, 2). On the other hand, d(i′, i) = d(i′, i − 1) + 1 for every
vertex i′ ∈ [j + 1, i− 2]. Hence, since W ⊆ [j + 3, i− 2], every pair of vertices
with at least one of them belonging to W and the other to [j + 3, i − 2] that
was resolved by i− 1 ∈ S is now resolved by i ∈ S′. It only remains to prove
that every pair formed by a vertex i′ from W and a white vertex j′ ∈ [i+ 3, j]
is resolved by some vertex of S′. This is true because, by Property P2, j′ is
adjacent to a black vertex in S′ ∩ [i + 3, j] that is not adjacent to i′. Hence,
Property P1 holds. To prove property P3, it suffices to check that it holds for
the vertices i− 1 and i− 2. If l ∈ V \ I ′ is a special vertex different from j− 2,
then d(l, i) ≥ 3. Hence, the pairs formed by l and a vertex from {i− 1, i− 2}
are resolved by i, whenever l 6= j−2. Suppose that l = j−2 is a special vertex.
If we take a black vertex j′′ 6= i − 1 in I, then d(j − 2, j′′) = 3 + d(i − 1, j′′)
and d(i− 2, j′′) ≤ d(i− 2, i− 1) + d(i− 1, j′′) = 1 + d(i− 1, j′′). Hence, j′′ ∈ I ′
resolves j − 2 and any of i− 1 and i− 2.

Case (f). In this case, the vertices not resolved by S are i and j in the
subgraph shown in Figure 14 (f). This case is very similar to the previous one.
By interchanging the colors of vertices i − 1 and i (see Figure 14 (f)), the
proof that sets I ′ = [1, i+ 2], and S′ = (S \ {i− 1}) ∪ {i} satisfy Invariant is
essentially the same as the proof done in Case (e), with small differences due
to the fact that the edge (i− 1, j − 1) now belongs to G instead of edge (i, j).

Case (g). In this case, the vertices not resolved by S are i + 1 and j + 1
in the subgraphs shown in Figure 15. We begin by interchanging the colors
of vertices i + 1 and i + 2. We distinguish two cases depending on whether
(S \ {i+ 2}) ∪ {i+ 1} arranges i+ 3 or not.

Suppose first that (S \{i+ 2})∪{i+ 1} arranges i+ 3 (see Figure 15, top).
We claim that S′ = (S \{i+2})∪{i+1} and I ′ = I∪ [i, i+4] satisfy Invariant.
Note that W ′ = W ∪ {i, i+ 2, i+ 3}.

On the one hand, the set S∗ = {i−1, i+1} arranges {i, i+2, j+1}. Indeed,
r(i|S∗) = (1, 1), r(i + 2|S∗) = (3, 1), r(j + 1|S∗) = (2, 1) and the only white
vertices adjacent to i+ 1 are i, i+ 2 and j + 1. We include here vertex j + 1
to ensure that j + 1 and a vertex in W are resolved. On the other hand, a
white vertex i′ ∈ [i + 4, j] is adjacent by Property P2 to a black vertex j′ in
this interval. Thus, j′ resolves any pair formed by i′ together with every white
vertex of W ⊆ [j + 3, i − 2] because the vertices of this last interval are not
adjacent to j′. In addition, since d(i′, i+ 1) = d(i′, i+ 2)− 1 for every vertex
i′ ∈ [j + 3, i− 1] and W ⊆ [j + 3, i− 1], every pair of vertices in this interval,
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Fig. 15 Case (g). Squared vertices have the same coordinates. Top: Interchanging the colors
of i + 1 and i + 2. Middle and bottom: Interchanging the colors of i + 1 and i + 2 and the
colors of i+ 4 and i+ 5

with one of them in W , that was resolved by i + 2 is now resolved by i + 1.
Hence, S′ arranges W . Besides, since a special white vertex l is not connected
to either i+ 1 or i− 1, and vertices i− 2, i and i+ 2 are adjacent to at least
one of them, Property P3 holds.

Suppose now that (S \ {i+ 2})∪ {i+ 1} does not arrange i+ 3. Let us see
which white vertex j′ has the same coordinates as i + 3 with respect to this
set. A vertex in the interval [j, i+1] is not adjacent i+4, thus j′ ∈ [i+2, j−2].
Moreover, j′ 6= i+ 2, because i+ 3 is not adjacent to i+ 1, and consequently,
j′ ∈ [i + 5, j − 2]. Observe now that if d(i + 3, i + 1) = d(j′, i + 1) = 2 then
d(i+ 3, i+ 2) = d(j′, i+ 2) = 1. Taking vertex i+ 2 as a black vertex, we can
apply Lemma 2 to the (1, 2)-alternating interval [i+ 2, n] (or [i+ 2, 1]), giving
rise to the only two possibilities shown in Figure 15, middle and bottom, for
a vertex j′ = i+ 5 to have the same coordinates as i+ 3.

Consider the case shown in Figure 15, middle: vertex i + 2 connected to
vertices i + 3, i + 4, i + 5, i + 6 and i + 7. In addition to the changes of color
of i + 1 and i + 2, we interchange the colors of vertices i + 4 and i + 5. We
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claim that the sets S′ = (S \ {i+ 2, i+ 4})∪{i+ 1, i+ 5} and I ′ = I ∪ [i, i+ 7]
satisfy Invariant. Note that W ′ = W ∪ {i, i + 2, i + 3, i + 4, i + 6}. The set
S∗ = {i − 1, i + 1, i + 5, i + 7} arranges {i, i + 2, i + 4, i + 6, j + 1}, since
{i, i+ 2, i+ 4, i+ 6, j+ 1} are the only white vertices adjacent to i+ 1 or i+ 5,
and r(i|S∗) = (1, 1, 3, 3), r(i + 2|S∗) = (3, 1, 1, 1), r(i + 4|S∗) = (4, 2, 1, 2),
r(i+ 6|S∗) = (4, 2, 1, 1) and r(j + 1|S∗) = (2, 1, 2, 2). On the other hand, i+ 3
has no black neighbor. Hence, any other white vertex i′ ∈ V \W ′ has at least
a black neighbor that resolves i+ 3 and i′. If i′ ∈W ⊆ [j+ 3, i− 2], then i+ 5
resolves i′ and i+ 3, because d(i′, i+ 5) ≥ 4, but d(i+ 3, i+ 5) = 2. Thus, S′

arranges i + 3. Finally, as S arranges W and W ⊆ [j + 3, i − 2], then S′ also
arranges W taking into account that (1) j+1 is already resolved from a vertex
in W , (2) for every vertex i′ ∈ [j + 3, i − 2], we have d(i′, i + 5) = d(i′, i + 4)
and d(i′, i+1) = d(i′, i+2)−1 and that (3) a black vertex adjacent to a white
vertex of V \ I ′ in the interval [i+ 8, j] cannot be connected to a vertex in W .
Therefore, S′ arranges W ′ and Property P1 holds.

To show that Property P3 holds we only need to resolve the pairs formed by
a special vertex l ∈ V \I ′ and one of the vertices from {i−2, i, i+2, i+3, i+4}
using a vertex from S′ ∩ [1, i+ 5]. Vertex i− 1 resolves l and any of {i− 2, i}
because l is not adjacent to i−1, and i+5 resolves l and any of {i+2, i+3, i+4}
because d(l, i + 5) ≥ 3. Therefore, Property P3 also holds, and Invariant is
satisfied, as claimed.

For the last case, the one shown in Figure 15, bottom, the analysis is very
similar to the previous one. Following the same steps as described in the two
previous paragraphs, one can prove that S′ = (S \{i+ 2, i+ 4})∪{i+ 1, i+ 5}
and I ′ = I∪[i, i+7] satisfy Invariant. The set W ′ is W∪{i, i+2, i+3, i+4, i+6}.
In this case, it can be shown that the set S∗ = {i−1, i+1, i+5, i+7} arranges
{i, i+2, i+3, i+4, i+6, j+1}. Moreover, for every white vertex i′ ∈ [j+3, i−2],
we have d(i′, i + 1) = d(i′, i + 2) − 1 and d(i′, i + 5) = d(i′, i + 4) − 1. Thus,
every pair of white vertices from [j + 3, i − 2] that was resolved by i + 2 or
i+ 4 is resolved now by i+ 1 or i+ 5. For every white vertex i′ ∈ [i+ 8, j], the
black vertex adjacent to i′ is not adjacent to a vertex in W ⊆ [j + 3, i − 2].
Hence, S′ arranges W .

Finally, to show that Property P3 holds we only need to resolve the pairs
formed by a special vertex l ∈ V \ I ′ and one of the vertices from {i− 2, i, i+
2, i+ 3, i+ 4} using a vertex from S′ ∩ [1, i+ 5]. All the vertices in {i− 2, i, i+
2, i+3, i+4} are adjacent to either i−1 or i+5, but a special vertex l ∈ V \I ′
is not adjacent to either i − 1 or i + 5, so i − 1 or i + 5 resolves l and any of
these five vertices. From this, Invariant holds as claimed.

Case (h). In this case, the vertices not resolved by S are i + 1 and j + 1 in
the subgraphs shown in Figure 16. The analysis of Case (h) follows the same
steps as Case (g), although there are small changes due to the fact that now
the edge (i+ 2, j + 2) belongs to G instead of the edge (i+ 1, j + 1).

If (S \ {i + 2}) ∪ {i + 1} arranges i + 3, it can be checked that S′ =
(S \ {i+ 2})∪ {i+ 1} and I ′ = [1, i+ 4] satisfy Invariant (see Figure 16, top).
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Fig. 16 Case (h). Squared vertices have the same coordinates. Top: Interchanging the colors
of i + 1 and i + 2. Middle and bottom: Interchanging the colors of i + 1 and i + 2 and the
colors of i+ 4 and i+ 5

If (S \ {i+ 2})∪{i+ 1} does not arrange i+ 3, arguing exactly as in Case (g),
we have that the vertex with the same coordinates as i+ 3 is j′ = i+ 5, and
one of the cases shown in the middle and bottom of Figure 16 holds. It can
be checked in both cases that the sets S′ = (S \ {i+ 2, i+ 4}) ∪ {i+ 1, i+ 5}
and I ′ = I ∪ [i, i+ 7] satisfy Invariant (see Figure 16, middle and bottom).

To finish the proof of the theorem, let us see that S can be computed in
linear time. Building S = S0 obviously requires linear time. Besides, for every
run r, we have to check if subgraphs (a)–(h) appear in G and, if it is the case,
to update S accordingly. All of this can be done in constant time. Therefore,
S can be computed in linear time. ut
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4 Conclusions

In this paper, we have studied the metric dimension problem for maximal
outerplanar graphs, and we have shown that 2 ≤ β(G) ≤ d 2n5 e for any maximal
outerplanar graph G. In relation to the lower bound, we have characterized all
maximal outerplanar graphs with metric dimension two, based on embedding
such graphs into the strong product of two paths. A first question is whether
this technique can be applied to characterize graphs with metric dimension
two in other families of graphs, as 2-trees or near-triangulations.

With respect to the upper bound, we have provided a linear algorithm to
build a resolving set of size d 2n5 e for any maximal outerplanar graph. A second
question is whether similar techniques as those described in the algorithm can
be used to find efficiently resolving sets for other families of graphs, as Hamil-
tonian outerplanar graphs or near-triangulations. For near-triangulations, the
conjecture is that there always exists a resolving set of size d 2n5 e for any near-
triangulation.
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Tejel are supported by project Gobierno de Aragón E41-17R (FEDER).

References

1. Beerliova, Z., Eberhard, F., Erlebach T., Hall, A., Hoffman, M., Mihalák, M., Ram,
L.S., Network discovery and verification, IEEE J. Sel. Areas Commun., 24, 2168–2181
(2006)

2. Behtoei, A., Davoodi, A., Jannesari, M., Omoomi, B., A characterization of some graphs
with metric dimension two, Discrete Mathematics, Algorithms and Applications, 9,
175027 (15 pages) (2017)
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