
Global/local motion planning based on Dynamic Trajectory
Reconfiguration and Dynamical Systems for Autonomous Surgical

Robots

Narcı́s Sayols1, Alessio Sozzi2, Nicola Piccinelli3, Albert Hernansanz1,
Alicia Casals1, Marcello Bonfè2 and Riccardo Muradore3

Abstract— This paper addresses the generation of collision-
free trajectories for the autonomous execution of assistive tasks
in Robotic Minimally Invasive Surgery (R-MIS). The proposed
approach takes into account geometric constraints related to
the desired task, like for example the direction to approach the
final target and the presence of moving obstacles. The developed
motion planner is structured as a two-layer architecture: a
global level computes smooth spline-based trajectories that
are continuously updated using virtual potential fields; a local
level, exploiting Dynamical Systems based obstacle avoidance,
ensures collision free connections among the spline control
points. The proposed architecture is validated in a realistic
surgical scenario.

I. INTRODUCTION

In the longstanding debate on the features of robots against
those of humans, the capability to move in unknown or
dynamic environments is a central aspect. This feature is
normal for humans, that typically live and work in such
environments and excel in interacting with moving objects,
while its achievement by robots is quite challenging and
require advanced sensing technologies (i.e. to detect objects
and estimate/predict their motion) and fast reasoning, plan-
ning and control systems. The presence of humans in the
operational space of a robot further complicates its dynamic
motion adaptation. Indeed, their behaviour may be difficult
to predict precisely even if they are supposed to execute a
known task. On the other hand, the knowledge about the
task to be performed by both humans and robots may allow
to introduce simplifying assumptions (e.g. a phase of the
task may require the presence of a human in a subset of the
available workspace) and ease the design of dynamic and
reconfigurable robot motion planners.

For the latter reason, the manufacturing industry is the
domain that has promoted more, so far, the raise of human-
robot collaborations (i.e. the so-called 4th Industrial Rev-
olution) in terms of workspace sharing or even physical

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 779813
(SARAS).

1N. Sayols, A. Hernansanz and A. Casals are with
the Universitat Politècnica de Catalunya, Barcelona, Spain
{narcis.sayols,albert.hernansanz,alicia.casals}@upc.edu

2A. Sozzi and M. Bonfè are with the Depart-
ment of Engineering, University of Ferrara, Italy
{alessio.sozzi,marcello.bonfe}@unife.it

3N. Piccinelli and R. Muradore are with the Depart-
ment of Computer Science, University of Verona, Italy
{nicola.piccinelli,riccardo.muradore}@univr.it

interaction [1], with a strong emphasis on collision avoidance
for human safety [2]. Another domain in which human
safety is the primary concern and robots are more and more
employed is medical surgery. Indeed, the use of teleoperated
robotic systems is a gold standard for Minimally Invasive
Surgery (MIS) since the commercial release of the well-
known daVinci R© system (Intuitive Surgical, Inc.) almost
20 years ago. Nowadays, the most appealing and debated
challenge in robotic surgery is the introduction of certain
levels of autonomy in robot behaviour [3], [4], implying
technical advances in collision-free motion planning and
physical environment interaction. Indeed, in the surgery
domain, such tasks are further complicated, especially in case
of operations involving soft tissues, because the dynamics of
non-rigid anatomical environments is much more difficult to
predict than in manufacturing plants and because contacts
with objects with unknown/variable viscoelastic properties
are more difficult to control.

On the other hand, the growth of investments in re-
search and development projects for autonomous surgical
robotics demonstrates the confidence and the expectations
of the medical community on the benefits of such technolo-
gies. Examples of such projects are given by EU funded
I-SUR (Intelligent Surgical Robotics, see [5]), MURAB
(MRI and Ultrasound Robotic Assisted Biopsy, see [6]) and
SARAS (Smart Autonomous Robotic Assistant Surgeon, see
https://saras-project.eu). In particular, the objective
of the latter is to develop assistive surgical robots, au-
tonomously operating in the same workspace of either a
teleoperated surgical robot or a manually driven surgical tool.

The application context of SARAS is laparoscopic MIS, a
kind of surgery in which tools are inserted into the abdomen
of a patient through so-called trocars. In this scenario, motion
planning of the assistive robots must cope with the dynamics
of human driven tools and of patient’s organs, which are
predictable only within a short time horizon. Therefore, the
robot trajectories must be generated with an adaptive and re-
active strategy. Planning methods based on random sampling
may not fulfil the timing constraints, even though several
solutions are proposed in the literature to speed up replanning
and online path adaptation [7]. Moreover, they inherently
produce non deterministic behaviours, not compatible with
such a safety critical application. Conversely, purely reactive
solutions (i.e. based on the instantaneous computation of
the desired motion towards a target or avoiding an obstacle,

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 8483

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on September 23,2021 at 12:01:48 UTC from IEEE Xplore. Restrictions apply.

as in [8] or [9]) may not allow to fully control the shape
of generated paths or the way in which the final target
is approached, which is instead relevant for the proper
execution of some surgical tasks (e.g. suturing, resecting).

In this paper, we aim to address the generation of collision-
free trajectories for surgical robots in laparoscopic MIS as-
sistive tasks, using a two-level approach merging the benefits
of an offline geometric path construction method with those
of online trajectory reconfiguration and reactive adaptation.
At a global level, the path is built according to the initial
knowledge on the operating scene and the requirements of
the surgical tasks. Then, the path defined in terms of a set of
control points and an interpolating Catmull-Rom spline [10])
is reconfigured with respect to the dynamic environment with
an approach based on artificial potential fields, inspired by
the seminal work on Elastic Strips [11]. Finally, a local level
computes the robot trajectory, preserving its collision-free
property even in presence of obstacles with small diameter
(i.e. the manually driver surgical instruments), by enforcing
a velocity modulation technique derived from the Dynamical
Systems (DS) based approach of [9].

It is important to highlight that all of these planning meth-
ods are specifically reworked to take into account the peculiar
kinematic constraints of laparoscopic surgical robots. Indeed,
the previously mentioned trocar imposes a constraint on the
degrees of freedom (DOFs) of the surgical tool, so that
the latter can rotate around the insertion point (also called
Remote Center of Motion, RCM), but can only translate
along the direction connecting its tip and the insertion point
itself. The main contributions of the paper are the following:

• the usage of depth maps to ensure the reachability of all
control points during the trajectory taking into account
the tool geometry in real-time,

• the two-level approach to motion planning: a global dy-
namic force field trajectory reconfiguration to compute
control points (CPs) and a local planner to ensure the
obstacle avoidance between two consecutive CPs,

• an extension of the DS-based approach to obstacle
avoidance for a robot geometrically modelled as a rod
constrained by an RCM, which is suitable for surgical
laparoscopic MIS.

II. DYNAMIC TRAJECTORY PLANNER

The SARAS control system is subdivided into several
modules. As shown in Figure 1 given the desired task, the
workspace geometrical representation and current pose of
the robot the system is able to plan and control the task
execution.

The state machine controller determines the high level
control actions to be executed by the autonomous robots,
the robot trajectories are defined by a sequence of two
modules. The first, called Dynamic trajectory reconfigurator,
generates a trajectory defined by a set of free of collision
CPs using the current and goal points as well as collision
risk information provided by collision risk estimator module.
The second one, called local modulation planner, computes

Fig. 1. Block diagram of all control modules of SARAS control system.

free collision trajectories between each consecutive pair of
CPs.

A. Dynamic Trajectory Reconfiguration

The dynamic trajectory reconfiguration (DTR) module
starts with the computation of an initial smooth trajectory
(C1 third order polynomial) from the current tool position
to the destination pose (which can be either fixed or dynam-
ically updated). When the destination pose is over a surface,
the trajectory reaches the point following the normal to the
surface (in the destination pose) and imposing the second
derivative of the trajectory in the goal pose equal zero. The
output of the module is a set of control points equally spaced
all along the initial trajectory. The number of control points
depends on the length of the initial trajectory.

DTR module is also in charge to eventually recompute
at each control step the initial CPs. This continuous tra-
jectory reconfiguration is necessary to ensure collision free
trajectories in a dynamic workspace (deformable tissues and
other laparoscopic tools which moves in the workspace). The
reconfiguration of the control points {CP0, . . . ,CPn} is
done using artificial potential fields [12], [13].

Each CP is described as a mass affected by attraction
and repulsion forces generated by the different elements
of the workspace (repulsion forces following the minimum
distance vectors between SARAS tool and each obstacle) and
the original trajectory CPs (attraction forces from modified
to original CPs positions). The result is a smooth locally-
modified trajectory.

At every control step the collision risk at each CP is
computed and the corresponding forces are applied following
the rules below:
• repulsion forces created by the obstacles in the plane

perpendicular to the trajectory gradient,
• an attraction force to the initial position of the CP if

the obstacle force is zero,
• an attraction force to the farthest among the direct

neighbour CPs to ensure the coherence in the move-
ment of the CPs.

In order to ensure the collision avoidance for all the
geometry of the tool (not only the tip) a Depth Map 2D
matrix of the workspace around tool direction in each CP
is computed: DMk for the k-th CP. The tool movement

8484

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on September 23,2021 at 12:01:48 UTC from IEEE Xplore. Restrictions apply.

restrictions imposed by RCM and the geometry of the tool
allow to transform the tridimensional workspace represen-
tation into spherical coordinates (r, θ, φ) with origin in the
tool RCM. The matrix element DMk

i,j is the maximum free
collision depth reachable by the tool in θi, φj direction in
the CPk. Each CPk is also transformed into its spherical
representation to be compared with its corresponding DMk

and detect if a collision occurs. If the comparison indicates a
collision, the corresponding CP receives an attraction force
in the direction of RCM.

Once the new collision free CPs are computed, DTR
generates an interpolation spline inspired by the Catmull-
Rom Spline, p(t) that goes through all n CPs

p(t) =

n∑
i=1

pi(t)1[ti−1,ti](t) (1)

where

1[ti−1,ti](t) =

{
[1, 1, 1] if t ∈ [ti−1, ti]
[0, 0, 0] if t /∈ [ti−1, ti]

(2)

and pi(t) satisfies the following conditions

pi(ti) = CPi for i = 1 . . . n (3)
pi(ti−1) = CPi−1 for i = 1 . . . n

ṗi(ti) = α(CPi+1 −CPi−1) for i = 1 . . . n− 1

ṗi+1(ti) = α(CPi+1 −CPi−1) for i = 1 . . . n− 1

ṗ1(t0) = g0

ṗn(tn) = gn

where g0 is the gradient of the trajectory at the current
point and gn the desired gradient at the goal point. α is a
parameter used to define the velocity of the trajectory in the
CP. Finally, the DTR module computes the new trajectory
evaluating the spline in the new CPs and sends the trajectory
coefficients to the local planner.

B. Collision Risk Estimation module

This module determines the Collision Risk CR between
the objects and tools inside the workspace. The collision risk
estimation module computes the minimum distance vectors
from tools to obstacles in all CPs describing a trajectory,
following the methodology described in [14]. The collision
risk is determined by the derivative of these vectors along a
period of time to foresee the proximity, in time, of a possible
collision.

The module requires the estimated trajectories of tools
and obstacles (set of predicted poses) and generates a vector
of CRijk , where i represents the i-th tool, j represents
the j-th obstacle and k the k-th predicted control points of
these trajectories. The evolution of CRij along k determines
the risk of two bodies (normally, a tool and an obstacle) to
collide.

The depth map technique described in Section II can
also be used to simplify and accelerate the computation
of the tools CRs. These minimum distance vectors, their
derivatives and the DMs are sent to the dynamic trajectory

Fig. 2. Example of generated depth map of a possible intersecting tool.
In this case the obstacle is represented by the green tool.

reconfiguration module to compute the new collision free tra-
jectory. Figure 2 shows an example of a DM in a workspace
with a laparoscopic tool as an obstacle.

III. LOCAL MODULATION PLANNER

The DTR guarantees that the spline control points are
collision free, but this property may not be preserved along
a trajectory segment between two adjacent control points.
From a practical point of view, it could be possible to
reduce the risk of collisions by increasing the number of
control points. Indeed, this operation would reduce the space
between such control points, but it would also increase the
computational effort for full trajectory reconfiguration, which
may not be compatible with the timing constraints of the
application.

On the other hand, the surgical scenario that we are
considering includes obstacles with a rod-like shape and a
very thin diameter (i.e. the surgical tools driven by the human
surgeon) and the latter may be smaller than the distance
between two adjacent control points. Therefore, a mechanism
to enforce collision free execution of the trajectory computed
by the DTR module is required.

In the proposed approach at each control step the trajectory
is locally modified by a reactive local planner based on the
algorithm outlined in [15]. This algorithm modulates the
desired velocity of the robot to obtain a new velocity which
drives the robot on a collision free trajectory.

The desired velocity of the robot ṗ (ti) can be computed
at the control step ti by deriving the spline of the original
trajectory with respect to time. The velocity ṗ (ti), which is
computed at the tip of the tool, is then scaled to obtain the
velocity ṗc of the point closest to the closest obstacle pc:

ṗproj = (ṗ ·m)
m

‖m‖
(4)

ṗres = ṗ− ṗproj (5)

ṗc =
‖pc − pt‖
‖m‖

ṗres + ṗproj (6)

where m = p − ptr, ptr is the insertion point of the
commanded tool, ṗproj and ṗres are the components of ṗ
in the direction of m and perpendicular to m respectively.

Since it is possible to model the laparoscopic tools as
capsules, i.e. cylinders with hemispheric terminations (as
described in [15]), the point on the axis of the tool closest to

8485

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on September 23,2021 at 12:01:48 UTC from IEEE Xplore. Restrictions apply.

the closest obstacle can be computed using the parameteri-
zation of the segments introduced in [16]. In case of moving
obstacles we also take into account their motion considering
the velocity of the robot relative to the obstacles

ṗrel = ṗc − ṗobs (7)

where ṗobs is computed as follows

ṗobs =

K∑
k=1

wk ṗo,k (8)

and where ṗo,k is the velocity of the point on the obstacle
closest to the robot. wk is a scalar value which weights the
influence of the k-th obstacle in relation to its distance from
the commanded tool. Each weight wk can be computed as

wk =

K∏
i=1,i6=k

Γi − 1

(Γk − 1) + (Γi − 1)
(9)

The scalar value Γk is the value of the analytic function that
describes the surface of the k-th obstacle in the point of the
tool closest to that obstacle. For capsule shaped obstacles,
Γk can be computed as follows

Γk =

3∑
i=1

(
kpa,i − kpc,i

kr

)2

− 1 (10)

where kpc,i is the point on the axis of the i-th obstacle closest
to the tool, kpa,i is the point on the axis of the tool closest
to the i-th obstacle and kr is the radius of the capsule. The
velocity ṗo,k should be computed in the closest point of the
k-th obstacle to the commanded tool; if the k-th obstacle
is a laparoscopic tool, it can be computed using Eqs. 4, 5
and 6, since it has the same insertion point constraint of the
commanded tool. The modulation matrix M is then applied
to the velocity ṗrel

ṗ
?

c = M ṗrel (11)

where ṗrel is the original velocity relative to the velocities of
the obstacles, and ṗ

?

c is the modulated velocity. The velocity
ṗ
?

c is then taken back into the robot reference frame using
the relation

ṗ
?

rel = ṗ
?

c + ṗobs (12)

and then scaled back to obtain the velocity at the tool tip
(with operations similar to the operations in Eqs. 4, 5, 6).
The modulation matrix M is constructed taking into account
all the obstacles in the scene

M =

K∏
k=1

Mk (13)

with Mk modulation matrix of the k-th obstacle and K the
number of the obstacles. Each modulation matrix Mk can
be computed as

Mk = EkDk
(
Ek
)−1

(14)

where
Ek =

[
nk ek,1 ek,2

]
(15)

ek,ij =


−∂Γk

∂ξki
if j = 1

∂Γk

∂ξk1
if j = i 6= 1, i ∈ 1 . . .m-1, j ∈ 1 . . .m-1

0 if j 6= 1, j 6= i
(16)

and

Dk =


1− ωk

|Γk|
1
ρ

0 0

0 1 + ωk

|Γk|
1
ρ

0

0 0 1 + ωk

|Γk|
1
ρ

 (17)

where wk are the weights introduced in (9). The vector nk

is the normal to the surface of the k-th obstacle computed in
the point of the axis tool closest to that obstacle. This vector
can be obtained using the relation

nk = kpc − kpa (18)

where kpc is the point on the axis of the obstacle closest to
the tool and kpa is the point on the axis of the tool closest
to the obstacle.

Since the modulation deviates the motion of the robot
from the original trajectory, at the end of the modulation
it is necessary to recompute the spline to obtain a new C1

trajectory which connects the new position of the robot with
the following control point. This new spline will be used in
the next control step ti+1 to compute the desired velocity.

IV. CASE STUDY AND EXPERIMENTAL VALIDATION

The proposed solution has been tested in the context of
semi-autonomous surgery using the experimental setup de-
veloped in the EU funded project SARAS. The experimental
setup shown in Figure 3 consists of:
• a daVinci surgical platform which has three independent

arms. Two of them are called the Patient-Side Manipu-
lators (PSM) and move the robotic tools. The third one
is called Endoscopic Camera Manipulator (ECM) and
holds the stereo endoscope. The master console has two
controllers, called Master Tool Manipulators (MTM),
that allow the surgeon to teleoperate the tools. The
whole system is interfaced using the dVRK framework.

• two SARAS robotic arms, designed by Medineering
GmbH. Each SARAS arm is composed of a 7 dof
passive serial manipulator (SBS) holding a 4 dof manip-
ulator (EGS). The EGS is a parallel manipulator which
allows the creation of a virtual remote centre of motion
and it holds the assistant laparoscopic tool. The SARAS
robots are positioned in order to have the surgical
scenario completely contained in their workspaces and
to avoid singularities.

A surgical procedure is subdivided into several tasks
(called phases) and our collision avoidance and motion
planning module have been used to perform one of them.
The task consists of pushing down the bladder during the

8486

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on September 23,2021 at 12:01:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. SARAS experimental setup.

Fig. 4. Finite state machine for bladder pushing task in RARP surgery.

prostatectomy. The description of the full surgical procedure,
in the context of the SARAS project, can be found in [17]. In
the bladder pushing phase the assistant surgeon, in our case
the autonomous system, performs the sequence of actions
shown in Figure 4.

A. Common reference frame

The DTR and the DS module need a common reference
frame to work properly. This reference frame is built using
multi-robot base frame calibration. We built a calibration
platform with a set of known points placed on a circum-
ference with a known radius. Each arm records the relative
position of the fiducial points moving the end effector and
touching them. After that, we fit a plane for each point set
and use it to create the base transformation for each arm.

B. Finite state machine

Robotic Assisted Radical Prostatectomy (RARP) can be
described as a set of structured surgical tasks composed of
atomic surgical actions or sub-tasks. This surgery description
generates a decomposition into two complexity levels. These
sub-tasks can be common to several surgical tasks. Each task
(bladder manipulation in this case study) can be described
as a finite state machine containing all atomic surgical
actions augmented with two control states to resolve critical
situations.

Figure 4 illustrates the finite state machine of a robot
interacting with the bladder in RARP surgery. The FSM is
composed of the following states:
Idle Initial state to start the bladder manipulation.
Appro Approximation to the desired bladder surface where

the force will be applied. Defined by a smooth trajec-
tory, the end-effector of the tool reaches the destination
pose in the direction of the normal to the surface at that
point.

Push Tool pushes the bladder surface with a straight trajec-
tory to a pre-defined depth.

Hold Tool remains to push the bladder and adapting pose if
a bladder movement occurs.

Release Antagonic to Push action. The tool describes a
straight trajectory to let the bladder free.

Depart Antagonic to Appro, tool departs from the contact
point following the normal restriction and reaches a pre-
defined safe pose.

Z emergency Special state that generates an alert message
to central teleoperation control warning indicating that
the only safe solution is an emergency escape trajectory
in Ztool, extracting the laparoscopic tool from the
workspace.

No solution Special state that generates a critical message
to central teleoperation control indicating that SARAS
robots cannot continue with the task. Consequently, an
external solution is required (e.g. altering main tool
trajectories, restricting access to some volume of the
workspace, etc.).

C. Software architecture

The overall control architecture is developed using
ROS (Robot Operating System, http://www.ros.org),
therefore the two parts of the proposed method explained in
the Sections II, III have been embedded into two C++ ROS
nodes. The dynamic trajectory planner is composed of two
threads:
• a thread working at 100 Hz which computes the spline

starting from the control points and the position com-
puted by the Local Modulation node. This node uses
the last DMs calculated until next one is updated,

• a thread working at 20 Hz which performs the CR and
the DMs.

The local modulation is also composed of two threads:
• a thread working at 200 Hz which modulates the de-

sired velocity of the spline computed by the Dynamic
Trajectory Planner node and computes the next position,

• a thread working at 20 Hz which sends the commands
to the robot. This frequency is determined by the robot
controller.

D. Results

The most challenging phases for a motion planner in the
bladder pushing task are undoubtedly the Appro phase and
the Depart phase since they need a trajectory planning in
the whole workspace. In this section, we show the results of
the experiments performed on the Appro phase of the task.

8487

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on September 23,2021 at 12:01:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. The initial trajectory computed by the DTR. The grey stick is the
commanded tool, the black stick is the dynamic obstacle and in red the
control points.

(a) Trajectory reconfiguration during the dynamic obstacle approach

(b) Trajectory reconfiguration while approaching the goal

Fig. 6. Trajectory reconfiguration example. The grey stick is the com-
manded tool, the black stick is the dynamic obstacle and in red the control
points adapted during the movement.

At the beginning of the approach, the robot starts fol-
lowing the initial spline computed by the global planner
(Figure 5, in red). During the execution of the trajectory,
one of the daVinci arms approaches the commanded tool
and then follows it for a short track, making the global
planner gradually adapt the control points of the original
trajectory into a new trajectory (Figure 6a and Figure 6b, in
red). In all of the segments of the trajectory between two
adjacent control points, the local planner reacts to possible
unaccounted obstacles ensuring the collision free movement
of the tool.

Figure 7 shows the evolution of the coordinates of the
tool tip and the obstacle tip in the common reference frame.
The goal is successfully reached and the evolution of the
robot testifies the smoothness of the commanded trajectory.
Finally, Figure 8 shows the distance d between the tool and
the obstacle during the movement: since the value is always
d > 0, the path is collision free.

For further details and the application of the proposed
approach in a realistic surgical scenario please refer to the
accompanying video.

0 5 10 15 20 25 30 35 40

-0.02

0

0.02

x (m)

0 5 10 15 20 25 30 35 40

0

0.05

0.1

y (m)

0 5 10 15 20 25 30 35 40

t (s)

0

0.05

0.1

z (m)

Fig. 7. Evolution of the cartesian coordinates of the commanded tool tip
(blue line) and obstacle tip (red line) during the movement. In yellow: the
coordinates of the goal.

0 5 10 15 20 25 30 35 40
t (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

d (m)

Fig. 8. Distance between the commanded tool and the obstacle during the
movement.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an innovative approach to
motion planning in a dynamic environment to be applied
in R-MIS. This motion planner is based on a two layer
architecture:
• a global planner which computes a smooth trajectory for

the execution of the task and updates its control points
accordingly to the obstacles using potential fields;

• a local planner which ensures obstacle avoidance
through the use of an analytical modulation matrix while
moving from a control point to the following one.

The proposed method has been successfully validated in
a realistic surgical scenario. As a future development, we
will extend the proposed method for the motion planning
of coordinated tasks performed by both of the tools of the
autonomous robotic assistant.

ACKNOWLEDGMENT

The authors would like to thank Johann Wigger, Sabine
Hertle and Medineering GmbH for the development of the
SARAS robots used in the experiments.

8488

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on September 23,2021 at 12:01:48 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on humanrobot
collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248 – 266, 2018.

[2] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space
approach for evaluating distance to objects – with application to
human-robot collision avoidance,” J. of Intelligent and Robotic Sys-
tems, vol. 80, no. Suppl. 1, pp. 7–22, 2015.

[3] F. Ficuciello, G. Tamburrini, A. Arezzo, L. Villani, and B. Siciliano,
“Autonomy in surgical robots and its meaningful human control,”
Paladyn, Journal of Behavioral Robotics, vol. 10, no. 1, pp. 30–43,
2019.

[4] T. Haidegger, “Autonomy for surgical robots: Concepts and
paradigms,” IEEE Transactions on Medical Robotics and Bionics,
vol. 1, no. 2, pp. 65–76, May 2019.

[5] R. Muradore, P. Fiorini, G. Akgun, D. E. Barkana, M. Bonf, F. Boriero,
A. Caprara, G. De Rossi, R. Dodi, O. J. Elle, F. Ferraguti, L. Gasper-
otti, R. Gassert, K. Mathiassen, D. Handini, O. Lambercy, L. Li,
M. Kruusmaa, A. O. Manurung, G. Meruzzi, H. Q. P. Nguyen,
N. Preda, G. Riolfo, A. Ristolainen, A. Sanna, C. Secchi, M. Torsello,
and A. E. Yantac, “Development of a cognitive robotic system for
simple surgical tasks,” International Journal of Advanced Robotic
Systems, vol. 12, no. 37, pp. 1–20, 2015.

[6] M. E. M. K. Abdelaziz, D. Kundrat, M. Pupillo, G. Dagnino, T. M. Y.
Kwok, W. Chi, V. Groenhuis, F. Siepel, C. Riga, S. Stramigioli, and
G. Yang, “Toward a versatile robotic platform for fluoroscopy and
mri-guided endovascular interventions: A pre-clinical study,” in Proc.
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2019.

[7] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[8] A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[9] S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach
to realtime obstacle avoidance,” Autonomous Robots, vol. 32, no. 4,
pp. 433–454, 2012.

[10] E. Catmull and R. Rom, “A class of local interpolating splines,” in
Computer Aided Geometric Design, R. Barnhill and R. Riesenfeld,
Eds. Academic Press, 1974, pp. 317 – 326.

[11] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” The International Journal of
Robotics Research, vol. 21, no. 12, pp. 1031–1052, 2002.

[12] R. R. Murphy, “Potential fields methology,” in Introduction to AI
robotics (1st Ed.). MIT Press, 2000, pp. 105 – 153.

[13] N. Zhang, Y. Zhang, C. Ma, and B. Wang, “Path planning of six-
dof serial robots based on improved artificial potential field method,”
in 2017 IEEE International Conference on Robotics and Biomimetics
(ROBIO), Dec 2017, pp. 617–621.

[14] A. Hernansanz, A. Casals, and J. Amat, “A multi-robot cooperation
strategy for dexterous task oriented teleoperation,” Robotics and
Autonomous Systems, vol. 68, pp. 156 – 172, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889014003042

[15] A. Sozzi, M. Bonfè, S. Farsoni, G. De Rossi, and R. Muradore,
“Dynamic motion planning for autonomous assistive surgical robots,”
Electronics, vol. 8, p. 957, 2019.

[16] V. J. Lumelsky, “On fast computation of distance between line
segments,” Information Processing Letters, vol. 21, pp. 55–61, 1985.

[17] E. Oleari, A. Leporini, D. Trojaniello, A. Sanna, U. Capitanio, F. Dehó,
A. Larcher, F. Montorsi, A. Salonia, F. Setti, et al., “Enhancing surgical
process modeling for artificial intelligence development in robotics:
the saras case study for minimally invasive procedures,” in 2019 13th
International Symposium on Medical Information and Communication
Technology (ISMICT). IEEE, 2019, pp. 1–6.

8489

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on September 23,2021 at 12:01:48 UTC from IEEE Xplore. Restrictions apply.

