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Abstract

This study presents a Deep Learning-based solution to identify and classify cells in breast
cancer images with HER2 staining, a staining that affects the cell membrane. For this
purpose, a semantic segmentation approach has been followed, training a U-Net on a
dataset with 105 HER2-stained images. Subsequently, a post-processing with morphological
segmentation algorithms has been applied in order to quantify the cells and calculate the
HER2-associated score assigned to each patient. Satisfactory results have been obtained,
achieving with the best model an F1-score of 0.744 for cell detection and a 90% accuracy in
the quantification of the HER2 score, both in the validation set. Therefore, the results
demonstrate that it is a good method for the analysis of this type of biomarker and that it can
provide support to pathologists.

Keywords: Breast Cancer, semantic segmentation, U-Net, HER2, image processing.
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Resum

En aquest estudi es presenta una solució basada en Deep Learning per identificar i
classificar les cèl·lules d’imatges de càncer de mama tenyides amb HER2, una tinció que
afecta la membrana cel·lular. Amb aquest propòsit, s’ha seguit un enfocament de
segmentació semàntica, entrenant una xarxa U-Net en un dataset de 105 imatges amb
tinció HER2. Posteriorment, s’ha aplicat un post-processament amb algorismes morfològics
de segmentació per tal de quantificar les cèl·lules i calcular el score associat al HER2 que
s’assigna a cada pacient. S'han obtingut resultats satisfactoris, aconseguint amb el millor
model un F1-score de 0.744 per a la detecció de cèl·lules i una precisió del 90% a la
quantificació del score HER2, ambdós en el conjunt de validació. Per tant, els resultats
demostren que és un bon mètode per a l’anàlisi d’aquest tipus de biomarcadors i que pot
proporcionar suport als patòlegs.
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Resumen

En este estudio se presenta una solución basada en Deep Learning para identificar y
clasificar las células de imágenes de cáncer de mama teñidas con HER2, tinción que afecta
la membrana celular. Para ello se ha seguido un enfoque de segmentación semántica,
entrenando una U-Net en un dataset con 105 imágenes con tinción HER2. Posteriormente
se ha aplicado un postprocesado con algoritmos morfológicos de segmentación por tal de
poder cuantificar las células y calcular el score asociado al HER2 que se asigna a cada
paciente. Se han obtenido resultados satisfactorios, consiguiendo con el mejor modelo un
F1-score del 0.744 para la detección de células y un 90% de accuracy en la cuantificación
del score HER2, ambos en el conjunto de validación. Por lo tanto, los resultados
demuestran que es un buen método para el análisis de este tipo de biomarcador y que
puede dar soporte a los patólogos.
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1. Introduction

1.1. Motivation

Breast cancer is one of the most common diseases worldwide and only in Catalonia, 5,408
new cases were detected in 2020 [1]. For this reason, it is important to correctly diagnose
this cancer to give adequate oncological treatment to each patient and save lives, as early
detection of cancer and appropriate treatment can significantly improve cancer survival. In
addition, with the increase of artificial intelligence, it is relevant to combine these two fields to
obtain more satisfactory results and to be able to continue advancing with the treatment of
cancer. This is the context of Digipatics, which is where this work is included.

The project described in this project consists of developing algorithms for histology image
analysis in the context of breast cancer. Different types of protein-based stains can be used
in breast cancer histology imaging, and the biomarker of interest in this project is specifically
related to HER2 receptors. HER2 receptor protein is expressed on the cell membrane of
human mammary tissues, adopting different patterns of the intensity of staining and
membrane completeness which are translated into different cancer assessments[2].

The detection of these different degrees of cancer can be obtained by developing Deep
Learning and Computer Vision models in order to segment the nuclei of the cells and to be
able to classify them using a semantic segmentation approach.

1.2. Project Objectives

As stated in the title, an analysis of HER2 receptor proteins in breast cancer histology
images needs to be performed. The objective of the analysis is to identify the nuclei of the
cells with semantic segmentation models and to estimate statistical parameters related to
the intensity of staining of the membrane around each cell.

Therefore, the project aims to identify and classify the subtype of cancer most indicated
according to the cells present in the images of a specific patient so that doctors can apply a
type of treatment or another.

First of all, a semantic segmentation model will be developed to identify the cells' nuclei and
classify them into the 4 possible cell types depending on their membrane intensity. Once this
is achieved, a HER2 score will be calculated based on a criterion associated with HER2
tests. This score will determine which oncologic treatment should be applied to each patient.

The approach begins at pixel-level by doing the semantic segmentation, then continues at
cell-level as the cells are classified and statistics are calculated with this classification and
ends at image-level by classifying each image to a specific type of cancer, based on their
HER2 score.
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The project main goals are:

1. Understand the medical motivation behind the task

2. Develop semantic segmentation models to identify nuclei cells.

3. Perform cell classification into 4 types of cells depending on the intensity of staining.

4. Compute the HER2 score of each image, based on the statistical parameters and

criteria that correspond to the HER2 test.

1.3. Digipatics project

Digipatics is a 4-year project that aims to optimize the anatomopathological diagnosis in the
network of hospitals of the Institut Català de la Salut (ICS) through the digitization of the
images of the samples and the use of artificial intelligence. It is an ambitious project as it
specifically tries to optimize resources and improve the quality of the diagnostic process of
patients, for example having a pathologist workstation with the ability to take measurements,
create annotations, use image processing tools and apply quantification and computer vision
algorithms on images, among other things [3].

The application of artificial intelligence is conceptualized in this project as a key piece in the
pathologist's diagnostic support, allowing the application of different algorithms to the work
samples according to their typology. The Universitat Politècnica de Catalunya, more
specifically the Image and Video Processing Group (GPI), is involved in the development of
these computer vision algorithms. Other companies are participating in the project such as
3DHistech and Palex. The overview of the project organization is shown in Figure 1.

Figure 1: DigiPatics organization flow

When talking about different sample types, it refers for example to the fact that within breast
cancer histology images there are different types of staining depending on the biomarker
used. For this reason, in the Digipatics team at GPI, each member has his own project,
which is based on approaching the stains/biomarkers (Ki-67, ER, PR, HER2, etc.) that apply
to them. This specific work consists of performing semantic segmentation (pixel-level
approach) in the HER2 images.

8



The models developed and to be developed in the future by GPI include both more classical
image processing and segmentation models using, for example, morphological algorithms
such as watershed and advanced Deep Learning models. In fact, the first ones, those based
on more classical image processing algorithms, are the first version of the expected results
as they do not require a large dataset annotated by specialist pathologists. Therefore, these
first types of algorithms also serve as a basis for the second ones, since in some cases, the
results obtained are used as initial annotations to be checked and corrected by pathologists
in order to create the Ground Truth (GT) for the supervised Deep Learning models.

Since work is carried out in this framework (Digipatics project), there is already previous
work on the identification of cell nuclei with semantic segmentation in other stains but that
can be used as a reference for HER2 staining.
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2. Medical background

2.1. Breast cancer
In 2020, breast cancer has become the most common cancer worldwide. More than 2.2
million new cases and 685,000 deaths have been detected due to breast cancer, mostly in
women. It is estimated that the lifetime risk of developing breast cancer is approximately 1 in
8 women, and breast cancer represents the leading cause of death by disease in women. It
is also a fact that every year the incidence and number of new breast cancer cases increase,
especially in Western countries [5]. However, it is one of the cancers with the lowest
mortality rate. Between the 1980s and 2020, age-standardized breast cancer mortality in
high-income countries fell by 40% [4]. Every year, there is an improvement in this aspect
thanks to therapies and breakthroughs such as medical image processing.

Breast cancer is the uncontrolled growth of breast cells. To better understand breast cancer,
it must be understood how any cancer develops. The organs that constitute our body are
made up of cells, which normally divide in an orderly process to replace and renew those
already old or dead. Each cell has a series of control mechanisms that regulate this process,
mainly marked by genes. Genes are found in the nucleus of cells, which acts as the "control
room" of each cell. Over time, mutations can activate certain genes and deactivate others in
a cell. When a cell is altered or modified, it starts an uncontrolled division, producing more
cells of the same type and resulting in a tumor[6].

These tumors can be benign or malignant. The latter are the ones that produce cancer and
can spread beyond the original tumor to other parts of the body. The term breast cancer
refers to a malignant tumor that has developed from breast cells [4].

As mentioned above, breast cancer is always caused by a genetic abnormality (an error in
the genetic material). Only 5-10% of cases are the result of an abnormality inherited from the
mother or father. In contrast, 85-90% of breast cancer cases are caused by genetic
abnormalities linked to the aging process and the natural wear and tear of life. For this
reason, breast cancer is more common in women around 50 years of age [6].

2.2. IHC stains

Different diagnostic tests can be performed to detect breast cancer, such as mammography,
echography, magnetic resonance imaging, computed axial tomography (CT), biopsy, etc.
The biopsy is the most important test since it allows a definitive diagnosis to be made. It
consists of extracting a small amount of tissue for microscopic analysis. This allows knowing
the type of cells and the characteristics of the tumor. These data are very important in
determining the prognosis and deciding the most appropriate treatment type [9].

Once the tissue sample is obtained from the biopsy, a few steps are performed before
proceeding to the histopathological analysis. The histopathological analysis is defined as the
detailed analysis of a biopsy tissue sample performed by a pathologist. The technique is
called Formalin-Fixed Paraffin-Embedded (FFPE)[8]. The main steps are:
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1. Fixing: a fixative liquid is applied to the sample to preserve the morphology, increase
the consistency and prevent the tissue from degrading. The liquid that is almost
universally used is formalin, and it is important to wait the necessary time to allow the
formalin to penetrate the tissue.

2. Macroscopic carving: the sample is cut in multiple sections in order to examine it and
select the pieces for the histological study.

3. Processing: the sample is dehydrated in alcohols and rinsed with xylol.
4. Embedding: the processed sample is embedded in a block of paraffin that after a

while it hardens.
5. Histological cuts or sectioning: very fine cuts (slices) are chopped with a microtome

and deposited on a glass piece.
6. Staining: it is essential to be able to see the slices correctly. The most commonly

used staining techniques are hematoxylin and eosin (H&E) and
immunohistochemical staining (IHC).

Finally, each stained slice is scanned and the Whole Slide Images (WSI) are generated. The
WSI are large digital images that present multiple cylinders, which are sections of tissue.

H&E staining is applied in most hospitals and laboratories as it is the gold standard, easy to
apply, and very useful. For this reason, the images with this stain are used for viewing
cellular and tissue structure detail. Specifically, ICS pathologists use them to detect tumor
areas because the nuclei show condensation patterns of hematoxylin staining that vary
according to cell type and cancer type and are very important from a diagnostic point of
view[10].

If cancer is detected in the H&E images, the images are then analyzed with
immunohistochemical (IHC) stains. IHC is used in histology to detect specific protein
markers that can help accurately classify and diagnose tumors. While H&E is nonspecific,
IHC targets a specific protein marker or markers. It uses antibodies to detect the localization
of proteins and other antigens in tissue sections. Antigens are proteins that are inside or on
the surface of a cell. Areas, where proteins or antigens are detected, will turn brown, and the
more of them the darker. This allows revealing whether a protein is present and also the
relative amount of the protein. This information plays a key role in oncological treatment
planning[11].

Biomarkers can be used to characterize various subtypes of tumors, how fast the cancer is
growing, how likely the cancer is to spread through the body, how effective certain
treatments are, or how likely the cancer is to recur. The main biomarkers used in IHC for
breast cancer prognosis are Marker of Proliferation KI-67 (KI-67), estrogen receptor (ER),
progesterone receptor (PR), and Human Epidermal growth factor Receptor (HER2). The first
three stain the nucleus of cells, while HER2 stains the cell membrane.

For each staining, a score is calculated taking into account the number of positive cells
(receptor cells for that hormone/protein) and negative cells (normal). In the case of HER2,
more parameters are taken into account, which will be explained in more detail below, since
it is the biomarker of interest in this work. However, the problem is that not only the cells of
interest are detected, but also areas where these metrics do not apply. These areas are
stroma, necrosis, inflammation, etc.
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a) b)
Figure 2: Images with HER2 staining containing stroma (all area under the red lines)

The most problematic is the stroma as it is very common in breast cancer histology images.
Fibroblasts, immune cells, pericytes, and inflammatory cells are the most common types of
stromal cells[12]. The difficulty with stroma is that since they are cells, they can be confused
with cells from tumoral areas. However, when calculating the scores of each marker they
should not be taken into account. For example, subfigure 2a) illustrates how the stromal
nuclei below the red line look very similar to those above, which are normal cells.

2.3. HER2
The biomarker of interest in this project is HER2, so it is necessary to explain what it is and
how it is taken into account when making the oncological diagnosis. HER2 (human
epidermal growth factor receptor 2) is a gene that produces HER2 receptor proteins. HER2
proteins are receptors on mammary cells that are found scattered throughout the cell
membrane. In normal amounts, HER2 receptor proteins help control how a healthy breast
cell grows, divides, and repairs itself. They do this by transmitting signals that direct cell
growth, from the outside of the cell to the nucleus inside the cell[14].

But in some cases of breast cancer (about 20%), the HER2 gene is amplified, i.e. it does not
work correctly and makes many copies of itself. All of these extra HER2 genes tell the
breast cells to produce too many HER2 receptor proteins. With excessive amounts of HER2
receptor proteins, the cells receive too many signals telling them to divide, multiply and grow
faster than normal cells, thus contributing to cancer growth and progression. More precisely,
the overexpression of HER2 is associated with a more aggressive disease, a higher
recurrence rate, and increased mortality[13].

Immunohistochemical (IHC) analysis indicates whether there is too much HER2 protein in
the cancer cells. The results of IHC analysis can be: 0 (negative), 1+ (also negative), 2+ (
equivocal), or 3+ (positive - overexpression of HER2 protein). This classification is made
based on IHC staining, which as previously mentioned occurs at the cell membrane. To
describe HER2 positivity, a criterion is followed that takes into account the intensity of the
staining, the completeness of the cell membrane, and the percentage of positive tumor cells
(10%). The tree decision followed to assign a score to a patient is shown in Figure 3.
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Figure 3: HER2 scoring criteria

The order of priority of score assignment is the order from left to right shown in Figure 3. If
there are more than 10% of type 3 cells, i.e. with complete and intense membrane staining,
a score of 3 is assigned directly, even if there are also more than 10% of type 2 cells.

Figure 4 shows images of patients with a score of each type in order to see the differences.
These differences are quite visible at first glance, as the membrane staining increases with
higher scores.

a) Score 0 b) Score 1 c) Score 2 d) Score 3
Figure 4: Examples of images belonging to patients with the corresponding score.

The most difficult area of interpretation is cases that fall on the borderline between an
intensity level of “1+” and “2+”.

● If the IHC result is 0 or 1+, the cancer is considered HER2-negative. These cancers
do not respond to treatment with drugs that target HER2.

● If the IHC result is 3+, the cancer is HER2-positive. These cancers are usually
treated with drugs that target the HER2 protein such as trastuzumab.

● If the IHC result is 2+, the HER2 status of the tumor is unclear, and is called
"equivocal". This means that it is necessary to test the HER2 status with another test
such as fluorescence in situ hybridization (FISH) to clarify the result.
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Inaccurate HER2 test results can cause patients diagnosed with breast cancer to not receive
the right treatment. If a breast cancer is HER2 positive but test results incorrectly classify it
as HER2 negative, doctors will be unlikely to recommend drugs that work against
HER2-positive breast cancers, although the woman would need to take them as she could
potentially benefit from those drugs. The opposite is also true, and doctors may recommend
anti-HER2 treatments, although the woman will be unlikely to benefit from them and will be
exposed to the risks of the drugs. It must also be taken into account that drugs targeting
HER2 proteins are very costly, so the most accurate results are needed to provide the best
treatment to patients and optimize resources.

Currently, ICS pathologists assess and interpret the results of the IHC test by visual
inspection of images. This has two disadvantages, the first is that it is very time-consuming if
done in a detailed way by counting cells; the second and more important is that when
evaluated qualitatively, there can be a lot of variability between pathologists. This is why
making a tool that allows pathologists to quantify these evaluations by calculating a score
based on the cells present in the images is of great help.
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3. State-of-the-art

3.1. Segmentation
Image segmentation is a process that consists of dividing an image into several regions
(groups of pixels) called segments. More specifically, segmentation is a pixel classification
process that assigns a category to each pixel in the analyzed image. Segmentation has
always been very useful in the medical field in order to detect possible pathologies in
medical images. It has a huge impact as it helps to approach this problem in a more granular
way and obtain more accurate results.

Classical segmentation techniques separate segments based on the homogeneity of pixels,
whether based on color, intensity, or texture. In such a way that pixels within a category are
homogeneous and pixels in different segments are different. These techniques include
watershed, active contours, k-means, binarization, etc.

Over the past few years, the use of Deep Learning (DL) for this type of task has meant a
new generation of segmentation models, obtaining much higher results as it is a supervised
technique. Moreover, one of the advantages is that DL allows to create segments in the
image based on human knowledge, i.e. pixels can be classified based on whether they
belong to a semantic object.

There are two major types of segmentation based on Deep Learning, semantic
segmentation and instance segmentation. In semantic segmentation, all objects of the same
type are assigned the same class label, while in instance segmentation, similar objects are
assigned their own independent label. As shown in Figure 5, in the semantic segmentation
all persons have the same class, while in the instance segmentation each one is assigned a
different class. Even so, it should not be forgotten that the classification is done at the pixel
level.

Figure 5: Semantic segmentation (left) and Instance segmentation (right) [23]

3.2. Semantic segmentation

3.2.1. Previous work

Initially, simpler Convolutional Neural Networks were used to classify each pixel individually
[20] but now architectures with convolutional encoder-decoder are used. Medical image
segmentation is one of the most common uses of segmentation, and for this reason, there
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are multiple models that were initially developed for this task and that are also currently used
outside the medical context. This would be the case of U-Net [21] or V-Net [22], two of the
most popular architectures.

The encoder-decoder convolutional models consist of two parts as the name suggests: the
encoder and the decoder. The encoder compresses the input to a latent-space
representation, which consists of a vector that is able to capture the semantic information of
the input that is useful to predict the output. The decoder attempts to predict the output from
this latent-space representation. In the encoder, the resolution is reduced and in the
decoder, it is increased [23].

It is common to use semantic segmentation models for cell identification in medical imaging,
and in general, very satisfactory results are obtained [24]. There is also work done in which
HER2 is considered, and attempts are made to achieve HER2 score by segmentation. Saha
et al [26] in 2018 presented the Her2Net semantic segmentation model, an encoder-decoder
architecture in which both nuclei and membranes of cells were identified. Their goal was to
score HER2 images and they achieved this with good results, F1-score of 93.08%.
Khameneh et al [25], also dealt with IHC images with HER2 staining, and what they did was
segmenting the cell membranes using convolutional neural networks.

3.2.2. U-Net

In 2015, Ronneberger et al, [27] introduced U-Net, a convolutional neural network (CNN)
that was initially presented for biomedical image segmentation. It has become a very popular
architecture and has been adapted for a wide variety of segmentation problems. It is a
U-shaped encoder-decoder architecture, hence its name (see Figure 6).

Figure 6: U-net architecture

It consists of two distinct parts, an encoder network (contraction) and a decoder network
(expansion). The encoder is a traditional CNN with a stack of convolutional and max-pooling
layers to lower the resolution. It is used to get a lower-dimensional representation of the
image, which represents a context. The second part is the decoder, which samples this
low-dimensional representation to produce the output segmentation mask. Transposed
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convolutions are used for sampling and are combined with convolutional layers. In addition,
the encoder and decoder are concatenated in the decoder part after each block by skip
connections. The main advantage of skip connections is that it combines the encoded and
decoded outcomes per depth layer to allow a consistent separation between the foreground
(pixels to be predicted as white) and the background (pixels to be predicted as dark).

Typical convolutional neural networks such as VGG or ResNet are often used in the encoder
since they are already consolidated architectures that are known to work well. These
networks can also be used pre-trained so that there is transfer learning, thus avoiding
overfitting and improving results, especially when little data is available.

3.3. Metrics
To evaluate semantic segmentation models, various quantitative metrics are used to
measure the accuracy of the model. While these metrics are often used to compare models
and decide which model performs better, it is also necessary to analyze the results
qualitatively, since the visual quality of the predictions is important.

The simplest metric is pixel accuracy, which basically calculates the percentage of pixels that
have been correctly classified. However, it is not a very good metric for evaluating semantic
segmentation models because when there is a class imbalance problem it is not very useful.
For example, in images in which it is desired to detect cells, there is usually a majority class
which is the background, so if the prediction classified all pixels as background, the model
would still obtain a fairly good pixel accuracy.

To address this problem, there are alternative metrics used to evaluate semantic
segmentation models. One of them is the F1-score which is obtained from the Precision and
Recall, using a harmonic mean. It is normally used for binary segmentation but can be used
when there is more than one class by averaging the F1-scores of all classes. They are
defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2*𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛*𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

TP refers to the number of True Positives, FP to False Positives, and FN to False Negatives.
Positive refers to pixels that do not belong to the background, i.e. that represent an object
per se, such as a cell. As it takes this into account, it is fine if the classes are unbalanced
and there are many background pixels, since the metric looks mainly at the pixels that do not
belong to the background.

Another popular metric for image segmentation is the Intersection over Union (IoU) or
Jaccard Index. IoU is the area of intersection between the predicted segmentation and the
Ground Truth (GT) divided by the area of union between the predicted segmentation and the
GT. It has a range of values between 0 and 1, but normally a value of 0.7 is already
considered very good, so an IoU of 0.5 is quite acceptable. It is defined as:

𝐼𝑜𝑈 =  |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|
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A and B denote the ground truth and the prediction, respectively.

Although there are more, the last of the most commonly used metrics is the Dice
Coefficient, which is widely used for medical image analysis. It is computed as 2 * the Area
of Overlap divided by the total number of pixels in both images. It is related to the IoU, in the
sense that if one is higher in a model, the other will also be higher. It is defined as:

𝐷𝑖𝑐𝑒 =  2|𝐴 ∩ 𝐵|
|𝐴| + |𝐵|

A and B denote the ground truth and the prediction, respectively.
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4. Methodology and experiments

4.1. Proposed solution
As previously described, this work aims to use semantic segmentation to identify the nuclei
of cells in HER2 images and classify them according to the intensity and completeness of
the membrane staining. These cells will have to be counted and a score computed from
them, so it is necessary to have each cell as a unique instance. This problem could have
been approached in different ways, such as semantic segmentation or object detection to
end up achieving instance segmentation.

In the end, a semantic segmentation approach (pixel-level approach) has been chosen
because in general, the cells are separated from each other as connected components.
Therefore, it is possible to go from the semantic segmentation result to having each cell as
an instance by easily counting connected components. It is also worth noting that HER2 is a
membrane staining, so between nuclei there is almost always a visible membrane
separating them and making them less overlapping. It is true that as the semantic
segmentation is done at the pixel level, some nuclei that are very close can overlap or join,
especially in images where there are many cells of type 0, which are those where no
membrane staining is observed.

Even so, the predictions made with the semantic segmentation model are post-processed to
have each cell as a unique instance, even the overlapping ones. What is done is to use the
watershed algorithm together with the distance transformation, which will be explained later
on, and thus get a label for each cell. Once each cell is an independent object with its own
class, the HER2 score of each image is computed taking into account the HER2 test criteria.

It may seem surprising, but the GT does not contain any labeling of cell membranes, only of
nuclei. However, the goal is to classify the pixels of the nuclei to the corresponding class
based on their membrane intensity. The semantic segmentation neural network is able to do
this because the convolutional layers of the U-Net encoder are able to capture the
information of the membranes surrounding the nuclei, by convolving throughout the image.

4.2. Dataset

4.2.1. Description
To train the semantic segmentation model it is necessary to have a ground truth (GT)
dataset since it is supervised learning. At the beginning of the project, the GT was not
available but over the weeks it was generated.

Working with Whole Slide Images (WSI) is very difficult because they are very large images.
In addition, not all areas of the WSI are of interest, so sections of these WSI, called tiles,
have been selected. The tiles are where the tumoral cells are found, which are the cells that
end up being useful for calculating the patient's HER2 score. The size of these tiles is
1500x1500 pixels.
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The definitive dataset contains 105 IHC images (tiles) with HER2 staining of 12 different
patients with the different HER2 scores described in Figure 3. In fact, there are 2 patients
with score 0, 4 with score 1, 3 with score 2, and 3 with score 3. It is worth noting that not all
patients have the same number of tiles available.

The goal of the image processing algorithm is to be able to identify the nuclei of the cells and
classify the cells into one of the HER2 levels or classes mentioned depending on their
membrane staining intensity and completeness. In addition, an extra class is also introduced
which refers to non-tumoral cells such as stroma. The classes are as follows:

● 0: No membrane staining is observed
● 1: Faint, partial staining of the membrane
● 2: Weak to moderate complete staining of the membrane
● 3: Strong, complete staining of the membrane
● Extra: stroma

It should be noted that the number of cells of each type in an image or patient is what
determines the patient's HER2 score. That is, if there are more than 10% of type 3 cells, the
patient will be assigned a score of 3. It will always be kept the score of the highest class that
has more than 10% of cells of that class.

In each GT image, the nuclei of the cells present are labeled with a unique identifier and
each nucleus has one of the previously mentioned classes assigned to it depending on the
cell type. With this dataset, a semantic segmentation with 5 classes can be performed, plus
the background class that refers to what does not correspond to nuclei. Figure 7 shows 2
examples of the images and their respective GT.

a) b)
Figure 7: Tiles with their corresponding GT. The colors represent the class of each cell. The color code used for

the GT is:
cyan: class 0, blue: class 1, green: class 2, red: class 3, yellow: stroma.

The GT of this dataset has been generated by Adrià Marcos, a teammate of the DigiPatics
project with the help of some professors. He has done it using morphological segmentation
algorithms followed by manual adjustments for each image and taking into account the
staining of the cell’s membranes.
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4.2.2. Ground Truth versions
The Ground Truth (GT) of the dataset has been evolving a lot during the course of the work
and as it was mentioned before, at the beginning there was no GT available, so it has been
modified a lot. It is important to emphasize that the final version used in this work is not
definitive since it has not yet been fully corrected by the pathologists. However, it has been
generated following their criteria, so they may not be the perfect or definitive annotations, but
they are partially correct. The DigiPatics project is a longer-term project, so the GT available
will be adequate in the future. In addition, annotation campaigns are being carried out with
ICS specialists, but it has to be taken into account that it is a slow and laborious process.

The first version of the GT consisted of ellipses that represented the nuclei of the cells and
were not assigned any class so that only cell nuclei identification could be done. Since the
nuclei were not classified into any particular class, only binary segmentation was possible.
Moreover, the nuclei did not have a definite shape but were ellipses that did not perfectly
match the actual shape of the nuclei. This first dataset was the basis for adjusting the model
and its initial hyperparameters even though it was very simple.

Afterward, a GT was available with the nuclei annotation well defined and classified each of
them to one of the 4 classes of nuclei according to the HER2 criteria. During the following
weeks, this GT was modified with feedback from the pathologists. Although they did not
correct the GT itself, they did give indications such as lowering the number of class 3 cells.
With these indications, it has been adjusted until the current GT has been established. Even
so, the current GT also has the stroma class added, and the stroma nuclei are assigned to
this extra stroma class described above.

4.2.3. Stroma masks
Stroma is a major challenge when calculating the statistics and score of each image.
Although it should not be taken into account in the calculation, stroma cells can be confused
with type 0 cells, i.e. cells without membrane staining and therefore without HER2 receptor
proteins. For this reason, it is important to treat stroma properly by identifying and eliminating
it from the scoring calculation. One of the ways, already discussed, is to have a separate
class of cells in the GT and classify it as a cell type. However, the GT is not yet definitive,
and it has not been verified that this extra class of GT includes all cells belonging to the
stroma.

Therefore, there is a different option for the stroma treatment, which consists of having
masks that cover the entire area belonging to the stroma. These masks are binary and have
been generated by binary semantic segmentation by Professor Montse Pardàs. More
specifically, a U-Net has been used to generate them (see Figure 8). These masks can be
applied to the GT, and all cells that are touching the area considered as stroma are marked
as stromal cells.
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Figure 8: Images with their corresponding stroma mask

The stroma masks are not definitive either and may need to be refined with feedback from
pathologists, but at least there are two sources of GT for stroma and the results with both
options can be compared, the one obtained by individual stroma cell detection and the one
obtained with the stroma mask. The two approaches for identifying stroma are not quite the
same but they are similar, i.e. they mark as stroma almost the same cells.

The Precision, Recall and F1-score metrics are used to quantify this discrepancy. As these
metrics are used to compare the GT with the prediction, an analogy is made with the two
images corresponding to the stroma sources. For example, the metrics are calculated by
considering the image with the stroma encoded as an extra class as GT and the image using
the stroma mask as prediction. Thus, a low Recall means that the stroma mask detects
fewer nuclei than the stroma class present in the GT, and a low Precision means the other
way around, that more nuclei are detected with the stroma mask. The F1-score averages the
Precision and Recall so it can be interpreted as a measure of similarity between the two
images.

Table 1 shows the results and it can be noted that Recall is significantly higher than
Precision, which means that the stroma masks assign more nuclei as stroma than the GT
stroma class. However, the F1-score is quite high so it means that there is not much
difference either.

Recall Precision F1-score

0.9682 0.8222 0.8892

Table 1: Results of metrics used to compare the two sources to detect stroma

In fact, this can be seen qualitatively in Figure 9. The stromal masks detect more stroma
than the GT class, since almost all the stromal cells in the GT are considered stromal by the
masks as well, but not all the stromal cells in the mask are found in the GT.

Figure 9: Comparison of the two sources of stroma. The color code is:
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green: cells considered stroma by both sources, red: cells only considered stroma by the stroma masks, blue: cells only
considered stroma by the class stroma present in the GT.

4.2.4. Partitions
Since Deep Learning models are used, it is important to divide the data into a training set, a
validation set, and ideally a test set. Due to the limited number of images available with GT, it
has been decided to have only a training and validation set, in order to have more images to
train and consequently get a model that learns better. The training and validation sets
represent approximately 80% and 20% of the data respectively, which translates into having
85 images for training and 20 for validation.

To make such a partition, there are several possible options considering that the 105 images
belong to 12 patients:

● The first option is to make a random partition regardless of which images belong to
which patient. Therefore, in the random partition, the different images of the same
patient are found in both the training set and the validation set.

● The second option is to partition by putting whole patients in the validation set, i.e. all
images of the same patient. In this way, it is possible to have a new patient to
validate the model, since the images of this patient will not have been used for
training. This serves to recreate a bit of what would happen in real life when a
pathologist introduces a completely new patient to the model.

These two partitions are motivated by the low variability of patients since only 12 patients are
available in the current dataset. It is true that in each image there are many cells and
therefore there is variability of cells, but not of patients. This is an aspect that should be
improved in future versions of the dataset.

Both options have been carried out in order to compare the results. Of course, it is expected
to obtain better results with the first option as all images of a patient are more or less similar.
So if some of them are used for training, when the model encounters a similar image when
validating it will be easier to segment it. In contrast, if the model has never seen an image of
that patient, it will be more difficult, but the generalization capacity of the model will be
shown.

Another important aspect to consider is that in the validation set there should be images of
all types of patients, i.e. patients with different scores, in order to have a reference for each
score. In the case of random partitioning, this is already achieved only by doing it randomly.
However, for the second option, it is necessary to select one patient of each type of score for
the validation set, taking into account that there remain enough images of each score in the
training set.

Once the two splits have been made, the class distributions of the pixels in the training set
can be analyzed to check if they are balanced.
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class distributions class 0 class 1 class 2 class 3 stroma

random partition 0.209 0.372 0.151 0.13 0.138

patient-based partition 0.206 0.385 0.149 0.141 0.119

Table 2: Class distributions (pixels) in the training set using random and patient-based partition

Table 2 indicates that not all classes have the same percentage of pixels, because, for
example, class 1 has the highest percentage. However, there is no class that is very poorly
represented, which could have posed a problem when training because the model would
have found it more difficult to classify the pixels of that class. So it is not a uniform
distribution but there is not a class imbalance problem either.

4.2.5. Data augmentation
To train DL models, many training images are needed for the model in question to learn well.
To build a powerful semantic segmentation model with very little training data (images), data
augmentation is usually required to improve the performance of deep neural networks. The
purpose of image augmentation is to create new training samples from existing data. For this
project, there is available a dataset of 105 labeled images which is a very limited number of
images. For this reason, it is necessary to use image augmentation.

Image augmentation artificially creates training images through different forms of processing
or a combination of multiple processing, such as random rotation, shifting, shearing, flipping,
etc. To do so, a Python library called Albumentations [7] is used to apply different Image
augmentation techniques. Spatial-level transformations will be applied, which are
transformations that will simultaneously change both an input image and the mask
associated with that image. More specifically, HorizontalFlip and ShiftScaleRotate
transformations are applied. The first one creates a horizontal symmetry of the image and
the second one, as the name indicates, consists in shifting, scaling and rotating the image
(See Figure 10). The shift factor range limit for both height and width is (-0.1,0.1), the scaling
factor range limit is (-0.1,0.1) and the rotation range in degrees is (-10, 10). They are small
numbers to avoid distorting the original image too much.

Figure 10: Data augmentation applied to an image (ShiftScaleRotate). The color code is:
red: class 0 cells, green: class 1 cells, blue: class 2 cells.
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4.3. Stroma approaches
As already mentioned, the stroma is one of the main problems in the analysis of IHC images
because although it is not used for the calculation of the score, it can be confused with class
0 cells. Therefore, 2 ways of detecting it have been generated, having it as a class of cells
and with stromal masks. Both options detect almost the same nuclei but not exactly the
same, so it is necessary to compare and even complement them. From the two GT sources
for the stroma, different approaches are derived.

In particular, three approaches to treat the stroma have been proposed:

1. Make the cell classification into 5 classes: the 4 cell types plus the stromal class, as it
comes in the cells GT, and without using the masks. In this way the semantic
segmentation network learns to classify stromal cells as such, distinguishing them
from tumoral cells. Once the prediction has been made, what is done to eliminate the
stroma is only to remove the nuclei predicted as stroma.

2. Apply the stromal masks on the GT: all the nuclei under the GT masks are removed.
Thus, the network learns not to detect the stroma since the stromal nuclei are no
longer found in the GT. It should be noted that the masks only apply to the GT so that
in future inference by the doctors, they will not need to be applied again.

3. Change the stromal cells of the GT to normal cells (type 0) and after prediction apply
the stromal mask. By doing this, the model does not have the difficulty of having to
distinguish between normal and stromal cells. The way to eliminate the stroma is to
apply the mask afterwards. This requires using the stroma mask segmentation
algorithm also in inference.

Initially, an extra approach had been proposed which consisted of applying the stroma
masks both in the original image and in the GT. In the original image, everything that fell
under the stroma mask was set to white or black so that only the cells of interest remained.
In the GT the same procedure as in approach 2 was followed. In this way, the network also
learned not to detect the stroma since it was not in the GT. The advantage was that the
model would have found it easier to learn since the stromal cells were also not found in the
original image (they are in black or white) so it did not have to learn to distinguish between
normal (type 0) and stromal cells which are the most similar. However, when testing the
approach, the results were not completely satisfactory, since the cells next to the stromal
zone, which had been blanked out in the original image, were misclassified. For this reason,
this option was discarded.

The last approach seems to have a great advantage over the first two because the model
does not need to learn to distinguish the stroma and therefore can achieve better results with
tumoral cells. However, it also has a major disadvantage, which is that when new images
have to be inferred, the stroma mask of the image needs to be generated. This mask would
be needed to be applied to the prediction. Therefore, the inference would need to be made
with two neural networks in parallel and the result would need to be linked. It is as if the
model is not actually being taught to distinguish the stroma because this is the task of
another model that does only this, generating the stroma masks. Then these two models
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complement each other by applying these stroma masks to the predictions. With the first two
approaches, this is not necessary because the main model already learns by itself with the
GT to distinguish the stromal cells and to identify them or not to detect them at all.

4.4. Semantic segmentation

4.4.1. Model specifications
The model used to perform the semantic segmentation is the basic U-Net architecture, but
replacing the encoder with a ResNeXt network pre-trained on images from the ImageNet
dataset. The ResNeXt is a network that was originally created for the task of image
classification and the one used as an encoder has 50 layers with 22 million parameters [15].
The decoder itself has been trained from scratch with the corresponding images so that the
network learns the specific knowledge for this segmentation task. The fact of using a
pre-trained encoder is very useful in this work because the training image dataset is not very
large. With that, the network can use transfer learning to learn common basic characteristics
of the images to avoid overfitting and improve the training time.

The model has been developed in Pytorch and mainly using a specific library for semantic
segmentation models called segmentation_models_pytorch [16]. It has been trained on a
Google Colab server using a GPU.

The images that are passed to the model, called tiles, have a size of 1500x1500 pixels but
the model is designed to receive as input smaller images, so the resolution is lowered to
512x512 pixels. The input data is also preprocessed in order to have the images in the same
way as the ones used to pre-train the encoder. This preprocessing includes normalization
and permutation of image dimensions. According to the library documentation [16], better
results can be obtained, obtaining higher metrics and faster convergence.

As there will be 4 or 5 classes, depending on whether there is a stroma class or not, then it
is a multi-class semantic segmentation task. To enable the U-Net to train a multi-class
image, what has to be done is to separate and convert each class of the GT into a binary
image and then stack them. So when training, the model receives as GT as many stacked
binary images as classes. The output is the result of semantic segmentation for each of the
classes, i.e. a probability for each pixel to belong to each of the classes. To select which
class is predicted, for each pixel, what is done is to take the maximum value of probability
between classes, and then this probability value is rounded so that if it is less than 0.5 that
pixel is considered background, and otherwise to the corresponding class.

4.4.2. Training, hyperparameter tuning, and metrics
For training, several hyperparameters need to be defined, as well as the optimizer or loss
used to do the backpropagation of the neural network. To choose the best one for this task,
optimization has been done by testing different values for these hyperparameters.
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The loss used in the training is the Dice loss, one of the most used losses in segmentation.
This is because it is based on the Dice coefficient which is one of the metrics used to
evaluate the segmentation results [17]. The optimizer used is Adam's, which is also the most
common optimizer because it achieves convergence quickly. It is an extension of the
stochastic gradient descent algorithm.

The values of the hyperparameters have been chosen and optimized based on the
prediction results obtained in the model validation set. The range of hyperparameters tested
is shown below:

● Batch size: 2, 4, 6
● Learning rate: 0.0001, 0.0005, 0.0008, 0.001, 0.0025, 0.005

In each epoch of the training, the metrics are calculated for the training set, but also for the
validation set. This is done to select the model with the best validation metric, which does
not always have to be the one from the last epoch. The metric used to make this selection is
the F1-score at pixel level. As the F1-score is normally a metric for binary classification, and
this is a multi-class problem, what is done is to average the F1-score obtained from the
binary segmentation of each class. Apart from the F1-score, other metrics are also
computed with both sets, such as IoU, Dice coefficient, precision, and recall, but in the end,
the one used to choose the best model among all the epochs is the F1-score.

The main problem is that there are different approaches to treat stroma, and in each one,
different classes are detected, in one 5 classes are detected, in others 4, in some stroma is
detected and in others, it is not. It, therefore, makes these approaches difficult to compare
with each other. It is not the same to compare a metric of a prediction with 4 classes as with
5 since with fewer classes the metrics are more likely to be better. For this reason, an
F1-score is recalculated in a slightly different way than before and equalizes all approaches
to compare them. The way to equalize them is to remove the stroma in all cases, and it is
done as follows:

1. Approach 1: removing all the nuclei that have been predicted as stroma class.
2. Approach 2: it is not necessary to do anything because stroma is not detected in the

prediction.
3. Approach 3: the stroma mask is applied to the prediction to remove everything under

the mask.

The way to calculate the F1-score, in this case, is directly on the resulting image, having
already selected which class has each pixel. In this image, the F1-score of each class is
calculated and then averaged, but with a weighted average. This weighting is done
according to the number of pixels present in each class so that the F1-score of a class will
be weighted by the percentage of pixels of this class.

4.4.3. Results

Binary segmentation
The first results obtained were with the first dataset and GT available, which served only for
nuclei identification, and therefore binary segmentation. After performing a hyperparameter
optimization, the best model was obtained with 100 epochs, a learning rate of 0.005, and a
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batch size of 4. The model achieved a training F1-score of 0.863, and a validation F1-score
of 0.872, which means that the model generalized very well and without any overfitting. The
partition between the training and the validation set was random. The F1-score is also good,
concluding that the U-Net model is a good choice for nuclei identification.

Figure 11 shows some examples of this prediction, it can be seen that qualitatively the
results are also satisfactory. However, in subfigure b) we can see one of the problems that
the model presents, which is that as it does the segmentation at pixel level, some nuclei
overlap.

a) b)
Figure 11: Validation samples from the first experiment. For every pair of images and masks, the

image is located on the left side and the mask on the right. The colors of the segmentation are green
for the True Positives, red for the False Negatives, and Blue for the False Positives.

Multi-class segmentation with random partition
As the results were quite promising, it was decided to use the same model for the multi-class
dataset. The question is, knowing that the model can identify the nuclei well, to see if it is
able to classify the pixels of each nucleus to the corresponding class taking into account its
membrane. As discussed above, the point would be to know whether the convolutional
layers of the encoder are able to capture the information of membranes surrounding the cells

After several results with different versions of the GT, the final results were finally obtained
with the different stroma approaches. Random partitioning is the first one that was carried
out because it is the same as the one used for binary segmentation.

The results of the best models for each of the approaches are shown below. These results
are those of the network output without taking out the stroma in each case.

1. Approach 1 (5 classes including stroma):  100 epochs, learning rate (LR) 0.001,
batch size (BS) 4

2. Approach 2 (GT with no stroma, not detected in the prediction): 100 epochs, LR
0.0025, BS 4

3. Approach 3 (stroma cells converted to cells of type 0): 100 epochs, learning rate (LR)
0.001, batch size (BS) 4
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validation set F1-score IoU Dice coefficient Precision Recall

approach 1 0.6902 0.5345 0.688 0.6967 0.6881

approach 2 0.6934 0.5392 0.6919 0.683 0.7084

approach 3 0.7009 0.5499 0.6979 0.7114 0.6964

Table 3: Validation results for the best models with the 3 approaches using random partitioning.

As can be seen in Table 3, the results with multi-class are slightly worse than the results
shown above with binary segmentation, which was expected since the more classes, the
more difficult it is for the model to accurately match each class. Although the metrics are
lower, the results are qualitatively satisfactory as can be seen in Figure 12. Above all, the
most important thing to note is that despite the segmentation being done at the pixel level,
the model is able to identify the nuclei well and homogenize the class of all pixels of the
same nuclei. For this reason, the result is as intended since the ultimate goal is to be able to
count the nuclei of each type, so it is necessary to have each one as an instance and with a
class assigned. Anyway, not always absolutely all the pixels of a nucleus have the same
class, but in no case, very heterogeneous nuclei are seen.

These models are not perfect either and also make mistakes with the class of some cells as
seen in subfigure b). For example, in the lower right quadrant, the prediction predicts more
type 3 cells (red) than in the GT which predicts them as type 2 (green).

a)

b)
Figure 12: Results in validation tiles using approach 1 (random partitioning). The leftmost image refers to the
original, the middle one to the GT, and the rightmost one to the prediction made by the model. The color code

used for the GT and the prediction is:
cyan: class 0, blue: class 1, green: class 2, red: class 3, yellow: stroma.

Analyzing the results in Table 3 it appears that the best approach is the third one, but as
discussed above, these approaches are not yet comparable because these are from the
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output of the neural network, and therefore have not been equalized by removing the
stroma.

The next step is precisely that, all approaches are equalized by removing the stroma to be
able to compare them. The F1-score is calculated for each class as well as the weighted
average over the validation images. This is only done with the best model of each approach,
those shown in Table 4. It should also be noted that this is an F1-score at the pixel level as
well.

validation set F1-score class 0 F1-score class 1 F1-score class 2 F1-score class 3 Total F1-score
weighted

approach 1 0.785 0.634 0.615 0.732 0.714

approach 2 0.791 0.641 0.595 0.723 0.712

approach 3 0.812 0.657 0.606 0.727 0.732

Table 4: Validation results for the models with the 3 approaches using random partitioning and removing stroma.

Table 4 indicates that the results when the stroma is excluded improve slightly in the 3
approaches and good metrics are achieved. It should be pointed out that the classes that are
better detected are 0 and 3, while 1 and 2 obtain a lower F1-score. According to the
feedback from the doctors, classes 1 and 2 are also more difficult for them to diagnose.
Qualitatively these results are confirmed as can be seen in Figure 13. In subfigure a) is
shown an image with all cells type 0, and all of them are detected as such, while in subfigure
b) there are cells of type 1, 2, and 3, and more errors are made, but without being a serious
problem. Also in Figure 13, it can be seen how all the stroma part is removed.

a)

b)
Figure 13: Results in validation tiles removing stroma and using approach 3 (random partitioning). The leftmost

image refers to the original, the middle one to the GT, and the rightmost one to the prediction made by the model.
The color code used for the GT and the prediction is:
cyan: type 0, blue: type 1, green: type 2, red: type 3.
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The best approach seems to be approach 3 as it gives a higher total F1-score, but this is
because the stroma mask is applied a posteriori, and the model does not have to learn to
distinguish the stroma. This is an advantage over the other two but has a major
disadvantage which is that the stroma mask will need to be generated when a new image
comes from the pathologist and the inference is made. Therefore this is a trade-off between
better results and complexity when inferring a new image. If the difference in results is very
significant, approach 3 could be chosen, but if the difference with the other approaches is
not very large, as in this case, perhaps it is not worth more complexity. To decide which
approach to use, it is also necessary to calculate the metrics at the cell level, because this is
what will be taken into account when calculating the HER2 score of the image.

Patient-based partition
As mentioned, it is important to make a patient-based partition in which entire patients are
put in validation, so that in the training there are no images of the patients used in validation.
This way it can be seen if the model can generalize well with new patients. The same
process of calculation of metrics is followed as in the random partitioning.

First, a hyperparameter optimization is performed and the results of the neural network
output are obtained. The hyperparameter optimization results for each approach can be
found in Annex 2. Some conclusions can be drawn from these results, such as that the LR
value is fundamental for the accuracy of the model, since significant differences can be seen
in the results with different LRs. For example, in some cases a higher LR value means a
considerable decrease in the metrics, since the least represented class is not detected
correctly. The BS does not have such an influence on the results; similar results are obtained
with the three BSs used (2, 4, 6) although in all cases, the BS of 4 is the optimum.

The results of the best models for each stroma approach are shown in Tables 5, 6, and 7. In
addition, the optimal hyperparameters are also specified for each one.

1. Approach 1 (5 classes including stroma):  100 epochs, learning rate (LR) 0.0008,
batch size (BS) 4

approach 1 F1-score IoU Dice coefficient Precision Recall

Training 0.7008 0.5432 0.6966 0.6979 0.7053

Validation 0.6415 0.4819 0.6369 0.6422 0.6426

Table 5: Best model output using approach 1 and patient-based partitioning

Figure 14: Loss graph and F-score graph for approach 1 and patient-based partitioning
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2. Approach 2 (GT with no stroma, not detected in the prediction): 100 epochs, LR
0.0025, BS 4

approach 2 F1-score IoU Dice coefficient Precision Recall

Training 0.7001 0.5435 0.6983 0.7025 0.7032

Validation 0.6549 0.4996 0.6534 0.6333 0.6859

Table 6: Best model output using approach 2 and patient-based partitioning

Figure 15: Loss graph and F-score graph for approach 2 and patient-based partitioning

3. Approach 3 (stroma cells converted to cells of type 0): 100 epochs, learning rate
(LR) 0.001, batch size (BS) 4

approach 3 F1-score IoU Dice coefficient Precision Recall

Training 0.7186 0.562 0.716 0.7037 0.7354

Validation 0.6819 0.5337 0.6793 0.6684 0.6972

Table 7: Best model output using approach 3 and patient-based partitioning

Figure 16: Loss graph and F-score graph for approach 3 and patient-based partitioning

The three approaches present some overfitting as can be appreciated in Figures 14, 15, and
16, which is normal considering that the validation images are relatively different from the
training images because they are from different patients. It should also be emphasized that
the results of the approaches with this partition are worse than those of the random partition,
especially for approaches 1 and 2, as shown in Tables 5 and 6. However, this is not
surprising since these are the approaches that have to learn to detect stroma, and therefore
it may be that the model has more difficulty in distinguishing stroma from type 0 cells. In
approach 3 (Table 7) the metrics also decrease a little, but much less, since it does not need
to make this distinction. Even so, the model generalizes quite well for new patients, which is
a good sign for when pathologists have to analyze a new image with this method.
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Precisely this decrease in the metrics in approaches 1 and 2 can be noted in Figure 17,
which is due to the fact that it does not correctly detect stroma and distinguish it from type 0
cells. Many cells that should be detected as stroma are detected as type 0. However,
although it is not shown in Figure 17, the model is able to identify the stroma when there are
no type 0 cells and stroma together. That is, when the stroma is found together with type 1,
2, and 3 cells, it is correctly distinguished.

a) Approach 1

b) Approach 2
Figure 17: Results in validation tiles using approaches 1 and 2 (patient-based partitioning). The leftmost image refers to the

original, the middle one to the GT, and the rightmost one to the prediction made by the model. The color code used for the GT
and the prediction is:

cyan: type 0, blue: type 1, green: type 2, red: type 3, yellow: stroma.

Although these partial results of the 3 approaches corresponding to the output of the neural
network already give a hint of what will happen when the stroma is removed because it is not
quite well detected in the first two approaches, it is necessary to remove it in all 3 cases to
be able to compare them. Table 8 shows the results after this equalization.

validation set F1-score class 0 F1-score class 1 F1-score class 2 F1-score class 3 Total F1-score
weighted

approach 1 0.801 0.533 0.567 0.65 0.708

approach 2 0.79 0.506 0.574 0.653 0.702

approach 3 0.865 0.573 0.606 0.66 0.76

Table 8: Validation results for the models with the 3 approaches using patient-based partitioning and removing
stroma

From Table 8 it can be concluded that the best approach, even eliminating the stroma in all
3, is the third one, since it achieves a significantly higher F1-score than the other two. It is
true that, as mentioned before, the third one is the most complex to infer, but here a very
significant difference can be seen in terms of results with respect to the other two. In the
random partitioning, this was not so evident, and the three approaches were more similar in
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terms of metrics, but with this partitioning, it can be appreciated. Even for approach 3, the
total weighted F1-score after removing stroma is higher in the patient-based partition than in
the random partition. This partition has been made thinking that this is what will happen
when it comes time for doctors, so there are several arguments in favor of approach 3.

Figure 18 presents the results of this approach after removing the stroma with the mask and
it can be observed that qualitatively they are good results. For example, in subfigure 1, when
applying the stroma mask once the prediction has been made, it can be seen that it is
correctly eliminated, unlike what happened with approaches 1 and 2.

a)

b)

c)
Figure 18: Results in validation tiles removing stroma and using approach 3 (patient-based partitioning). The

leftmost image refers to the original, the middle one to the GT, and the rightmost one to the prediction made by
the model. The color code used for the GT and the prediction is:

cyan: type 0, blue: type 1, green: type 2, red: type 3.

While everything suggests that the results are good and that approach 3 is the definitive
approach, it should not be forgotten that metrics are still being applied at the pixel level and
that the ultimate goal is to be able to count cells in order to calculate the HER2 score. It is
therefore required to analyze the results at the cell level to see if these results are
maintained when the comparison is made with whole cells and not pixels.
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It should be noted that from this point onwards the images from this partition are the ones
that will be used, as they offer results that are more similar to what will happen in the future
with the doctors.

4.4. Pixels to cells

4.4.1. Watershed and distance transform

So far, work has been done at the pixel level, and the results were quite good. In general,
the cell nuclei were detected and classified well even on a pixel-by-pixel basis. However, as
could be seen in the results, there are some problems. The most important one is that many
nuclei that are close to each other overlap, especially where the membrane between nuclei
is not very marked as it happens in type 0 and 1 cells. This is a problem because if the cells
are counted as the connected components present in the image, two overlapping nuclei will
be counted as 1 and not as 2. Another problem in the predictions obtained is that there can
be pixels with different classes in the same nucleus, - although in general, the pixels of the
nucleus are very homogeneous. Finally, the last problem is that in the background
sometimes small pixels are also detected as noise and it is necessary to remove them since
they do not count as another cell.

For all these reasons, it is necessary to move from pixels to cells and assign a unique class
to each of the identified cells. This is done with morphological algorithms, more specifically
with the watershed algorithm since it allows separating overlapping nuclei.

Watershed is a classical segmentation algorithm that was first introduced in 1978 by Digabel
and Lantuejoul [18]. It is a region-based method that uses image morphology. The image on
which the watershed is applied is considered a topographic landscape with ridges and
valleys. The elevation values of the landscape are usually defined by the gray values of the
respective pixels, i.e. the image is treated as a surface where the light pixels are high
(mountain tops) and the dark pixels are low (valleys). So what the watershed does is to find
"catchment basins" and "basin ridge lines" in the image.

Figure 19. Principle of the watershed transform [19]

The algorithmic implementation usually relies on a flooding simulation. To efficiently use the
watershed, it is necessary to define some markers from which a flooding algorithm will be
applied. The markers are usually located in the minimums of the image, in the valleys. These
valleys are flooded until the water from different valleys (markers) joins together, which is
when barriers are created. These barriers represent the boundaries of the objects in the
image. Figure 19 shows the analogy with the water basins, in which catchment basins
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represent each one of the objects of an image to be segmented and watersheds represent
the separating lines of these objects. It should be noted that each of the objects is assigned
a different label.

First, it is necessary to choose the grayscale image on which the watershed will be applied.
Although the image obtained with the semantic segmentation model is a one-channel image,
and thus could be considered as grayscale, it cannot be applied to it because the
overlapping nuclei will not be separated due to the difficulty to choose the markers.

What is done is to binarize the image so that the background is separated from the identified
nuclei. Then the distance transform is applied, which consists of calculating the distance
from each pixel to the background. This results in an image that is inverted so that the points
of interest are minimums and the corresponding markers can be chosen.

In subfigure 20a) and 20b), a binarized image slice and the inverse of its distance transform
are shown respectively. As can be seen in b), the centers of the nuclei have a darker black
and therefore a lower pixel value. Even when there are 2 overlapping nuclei there is a
minimum in the center of each nucleus. Therefore to choose the markers for the watershed,
the local minima of the inverted distance image are selected.

a) b) c)
Figure 20: The left image represents the slice of a binarized prediction, the middle one the inverse of the result of

applying the distance transformation, and the right one shows the markers for the watershed.

The problem is that, depending on the shape of the nuclei, there can be many local minima
in the image and it is necessary to select the most important minima, those with contrast
higher than a parameter c, which are those located in the center of the nuclei. To obtain the
important minima, the value of the parameter c is added from the inverse of the distance
image, and a morphological filter is applied. This filter consists of a closing by reconstruction,
in which the inverted distance image and the distance image plus the contrast are passed,
so that only the minima of interest are reconstructed. The good thing about applying this
closing by reconstruction is that it also eliminates the noise that may be in the background of
the image.

These minima obtained with the contrast-based filter become the markers to make the
watershed. The value of the contrast parameter (c) has been chosen in such a way that the
obtained results are optimal. A very high value of c does not separate well the overlapping
cells, and a very low one creates an over-segmentation, so a medium value has been
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chosen, which corresponds to c=0.6. In subfigure 20c) these markers can be seen, and they
are quite satisfactory as they represent the center of the nuclei. Also, when there are two or
more overlapping nuclei, there is a marker for each nuclei center, which means that an
object will be created for each nucleus as desired.

Then, the watershed is applied on the inverted distance image, the one in subfigure 20b)
with the obtained markers. The result of the watershed is an image with a label assigned to
each segmented object (nucleus).

a) b) c)
Figure 21: Watershed results on image slices containing overlapping cells. The color code is random, each

segmented object in the image is assigned a different color in order to distinguish the nuclei obtained.

As can be seen in Figure 21, grouped nuclei are segmented quite well, even when there are
groups of more than 2 overlapping nuclei as in subfigure c). Of course, overlapping nuclei
are not always segmented well, for example in the case of nuclei that overlap a lot, because
the distance function will not be able to create a marker for each of the nuclei. Anyway, it is a
very valid result because the nuclei overlapping occurs mainly in images with type 0 cells,
which are not the ones that generate more problems when calculating the score for each
patient.

Once the cells have been identified as independent instances, their corresponding class has
to be assigned. By applying the watershed, the prediction made by the neural network has
been binarized, and therefore the identified cells have to retrieve the class assigned to them.
As not always all the pixels of a nucleus were of the same class, it is required to homogenize
the class of each nucleus. To do this, each nucleus identified by the watershed is taken and
the majority class (statistical mode) of the pixels that form is selected from the prediction
obtained by the neural network. Once this is done, the cells of each class can be counted
and the score can be calculated.

4.4.2. Cell-level metrics

By having the cells as independent instances, metrics can be calculated at the cell level and
not at the pixel level as it was done before. More specifically, the F1-score is computed with
cells, since the GT already has the cells as instances. Calculating this metric with cells is
more difficult as there is not as direct correspondence as with pixels, which are compared
pixel by pixel of an image.

37



For the cells, it is necessary to identify their centers, compare them, and look for
correspondences between the cells of the prediction and those of the GT. The center of the
cells is obtained by calculating the center of mass of the pixels that constitute the nucleus.

The calculation of this F1-score and the search for correspondences are included in a
function generated by Adrià Marcos, which has been modified a bit to adapt it to HER2 cells.
Briefly, it works by going through the list with the centers of the prediction, and for each one,
it looks for the nearest center of the GT. It does the same but in reverse, going through the
GT centers and looking for the closest one in the prediction, and removes the matches that
are too far apart. Then it selects only those correspondences that are 1 to 1, i.e. that match
between GT and prediction. There may be cells that are not detected in the prediction, or
vice versa, that are detected in the prediction and not in the GT, so these will have no
correspondence with any cell of the other image. Once these correspondences are obtained,
the confusion matrix is constructed, in which the class of the centers of both the GT and the
prediction are compared and added in the corresponding place of the confusion matrix.

When the confusion matrix is available, the F1-score of each class can be calculated and
then a weighted average of the classes can be computed, as was done for the F1-score at
the pixel level. However, it should be noted that this calculated F1-score only refers to one
image, and to obtain the F1-score of the whole dataset, the average F1-score of all the
images belonging to the set is performed.

This F1-score is very useful as it will allow evaluating the models obtained with the different
approaches more accurately since it is better to evaluate the results at the cell level than at
the pixel level.

4.4.3. Statistics and score computation

The final objective is to count the cells of each type, and using the HER2 test criteria,
calculate the HER2 score for each image. Simplifying, the score is obtained by selecting the
higher class with a percentage of cells greater than 10%. In other words, if there are more
than 10% of cells in class 3, score 3 is assigned, if there are less, but more than 10% of
class 2, score 2, if not, but more than 10% of type 1, score 1, and if there are less than 10%
in all classes except 0, score 0.

This is done at the image level and the patient's score information is available, but it can be
that not all the images of a patient correspond to the patient's score. For this reason, in the
end, in order to analyze and validate the performance of the model, the score obtained from
each image by the prediction will be compared with the score obtained from each image by
the GT. It is true that the GT is not yet optimal and needs to be improved with the annotation
campaigns planned with the doctors. However, the important thing is that the prediction
procedure followed is robust with the GT, so that in the future, when the GT is more accurate
and validated by pathologists, the model will learn as effectively as possible from it.

To obtain the final results, which is the score calculation, first, the distribution of cells of each
class in each image is created and then the 10% rule is applied. To evaluate and validate
these results, doing so by comparing the score is too general since it may be that for
example there are 9.8% of type 3 cells in the GT and therefore it is assigned a score of 2
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because it does not exceed 10%, but instead in the prediction, there are 10.1%, thus
assigning a score 3. In this example, it does not mean that the model is performing poorly,
but that it lies just at the transition point of the score. For this reason, it is preferable to
compare class distributions using the Mean Absolute Error (MAE).

The MAE is interpreted as the average difference in the distribution of cells in an image.
Note that the MAE is an error, the smaller the better. The MAE is not applied on percentages
(%), but on these values ranging from 0 to 1. As it is the average of all images of the
difference in the class distribution, the MAE has a range of values from 0 to 4 since there are
4 classes and the difference for each class can be at most 1. Also, since the error is being
calculated for numbers between 0 and 1, it will be a very small number.

This metric will complement the metrics considered so far, the F1-score at the pixel level and
the F1-score at the cell level, in order to compare the different approaches performed for the
treatment of stroma and decide which is the most valid.
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5. Final results
As mentioned above, the most relevant data partition is the patient-based one and therefore
all final results are obtained with this partition. The metrics to compare the 3 approaches are
metrics that are applied on the cells obtained with watershed, F1-score and MAE.

Table 9 shows the results of the average F1-score at the cell level and the MAE of the class
distribution of the 3 approaches in order to check if the conclusions drawn at the pixel level
hold. As can be observed, the difference between approaches 1 and 2 and 3 in terms of
F1-score is maintained. In fact, it can be seen that approaches 1 and 2 are quite similar in
terms of results, while the third one obtains significantly better results. Analyzing the MAE of
the 3, it is also concluded that 3 is the best. Even so, there is not as much difference as with
the F1-score with respect to the other approaches, since the MAE of approach 1 is similar to
that of approach 3.

These results indicate that the third is the best one and will therefore be the definitive model
to be used.

validation set average F1-score (cell-level) MAE class distributions

approach 1 0.6779 0.1833

approach 2 0.6845 0.2183

approach 3 0.7443 0.1778

Table 9: Results for the models with the 3 approaches using patient-based partitioning at the cell level.

With this model, the cells of each image can be counted and the score belonging to the
image can be calculated. Figures 22, 23, 24, and 25 show examples of patients with different
scores, their respective class distributions (in %) and the score assigned according to the
10% HER2 rule. These statistics are compared with those of the GT.

Figure 22 shows an image of a patient with Score 0, and it can be noticed that both the GT
and the prediction classify all his cells as type 0, so that the desired Score is achieved very
accurately (see Table 10). The same occurs with Figure 23, which belongs to a patient with
Score 3. The proposed solution classifies 100% of the cells as type 3, as does the GT, which
also has almost all of them as type 3 (see Table 11).

It is true that for all images of patients with a score of 0 or 3, the GT and the prediction give
the correct score since almost always the vast majority of the cells present in the image are
type 0 or 3 respectively.

40



a) GT b)   Prediction
Figure 22: Results of nuclei classification in a patient with a HER2 score of 0. The centers of each cell are shown on top of the
original image to check if they correspond to the real nuclei. The colors refer to the assigned class of that cell. The color code

used for the GT and the prediction is: cyan: class 0, blue: class 1, green: class 2, red: class 3.

Number of cells (percentage) → class 0 class 1 class 2 class 3 score

GT 298 (100%) 0 (0%) 0 (0%) 0 (0%) 0

Approach 3 299 (100%) 0 (0%) 0 (0%) 0 (0%) 0

Table 10: Statistics corresponding to the images from Figure 22.

a) GT b)   Prediction
Figure 23: Results of nuclei classification in a patient with a HER2 score of 3. The colors used are the same as in Figure 22.

Number of cells (percentage) → class 0 class 1 class 2 class 3 score

GT 3 (2.4%) 4  (3.3%) 1  (0.8%) 115  (93.5%) 3

Approach 3 0 (0%) 0 (0%) 0 (0%) 125 (100%) 3

Table 11: Statistics corresponding to the images from Figure 23.

In the case of patients with scores 1 and 2, the results are a bit more confusing. As can be
seen in Figure 24, which is a patient with a score of 1, the class distribution is a little
different, since in the GT there are more cells of type 0 (cyan), while in the prediction all
these cells are shown as type 1, so the class distributions are a little different. However, the
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score is the same for the GT as for the prediction, score 2, since the percentage of type 2
cells is similar and greater than 10%.

Figure 24: Results of nuclei classification in a patient with a HER2 score of 1. The colors used are the same as in
Figure 22.

Number of cells (percentage) → class 0 class 1 class 2 class 3 score

GT 41 (20.5%) 119 (59.5%) 40 (20%) 0 (0%) 2

Approach 3 3 (1.6%) 146 (76%) 43 (22.4%) 0(0%) 2

Table 12: Statistics corresponding to the images from Figure 24.

Figure 25 shows an image of a patient with a score of 2 and also differences between the
GT and the prediction can be appreciated. First of all, the prediction shows fewer type 1 cells
(blue) and more type 2 cells (green), a fact that is corroborated in Table 13. Another
important difference is that the score is different, with the prediction detecting 10.1% of type
3 cells and the GT 9.5%. It is clear that the difference is not meaningful but since it is
precisely at the transition point of the score, a different score is assigned. This is a problem
because when doctors want to infer and calculate the score, this can happen, that there are
only 0.1% of cells above the score change (10%) and a higher score is assigned.
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Figure 25: Results of nuclei classification in a patient with a HER2 score of 2. The colors used are the same as in
Figure 22.

Number of cells (percentage) → class 0 class 1 class 2 class 3 score

GT 5 (2.6%) 63  (33.2%) 104  (54.7%) 18  (9.5%) 2

Approach 3 2 (1.1%) 28 (15.7%) 130 (73%) 18 (10.1%) 3

Table 13: Statistics corresponding to the images from Figure 25.

Although not all examples can be shown here, they are quite representative, so the images
of patients with scores 0 and 3 are very robust and the difference between prediction and GT
is minimal. On the other hand, for those with scores 1 and 2, there are more differences
between GT and prediction and the score obtained can sometimes be on the borderline,
making it difficult to decide whether it is good or not.

However, in 20 validation images, in all but two cases, the score of the prediction and the GT
is the same, meaning an accuracy of 90%. So in this sense, the results are quite
satisfactory. Another point to note is that the GT available, as has already been commented
on multiple occasions, is not definitive and therefore with a more accurate GT more
robustness can be obtained.
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6. Conclusions
This project has been developed to provide a solution to a problem of great importance in
the field of oncological diagnosis. In general, the results have been satisfactory, and after
analyzing them some conclusions can be drawn.

First of all, the main approach of using semantic segmentation for cell detection and
classification has turned out to be good. Even if the goal was to count whole cells,
developing a semantic segmentation model that classifies pixels individually and not whole
cells has been convenient. In fact, it has been shown that U-Net has been able to detect and
classify pixels of cell nuclei quite well, as very homogeneous and fairly well-defined nuclei
were obtained.

Two different partitions between training and validation data have been performed to test the
model, the random and the patient-based one. It was found that the latter provided slightly
inferior results because it was validation data from new patients. However, the model was
also able to generalize well for new patient images, and therefore this second patient-based
partition was taken as a reference because it is the one that most closely resembles what
will happen in a real scenario with doctors, who will enter images of completely new patients
never seen in training.

Also, it has been seen that stroma is one of the main problems of the images to be analyzed.
In fact, two different GT sources have been generated to detect the stroma, and it has not
been possible to choose one of the two by the doctors, so the best solution was to
complement them. After testing 3 approaches for stromal treatment it has been concluded
that the best one is approach 3 which consists in trying to detect stromal nuclei as class 0
nuclei and subsequently applying the stromal mask. With this approach an F1-score of 0.76
has been achieved at the pixel level.

Another thing that has been concluded is that it is easy to go from pixel-level to cell-level by
applying algorithms such as watershed, without the need to use other neural networks. The
watershed has been able to assign each nucleus an individual label even to those that were
overlapping, thus obtaining the cells as instances. The results at the cell level were similar,
approach 3 was the best, obtaining an F1-score of 0.744 at the cell level.

With the cells of each class quantified, the HER2 score of each image could be calculated
very satisfactorily with 90% accuracy. Therefore, this solution is quite reliable considering
that it is a first approximation to the HER2 quantification problem and that the available
dataset is not yet definitive. However, it is sure that in the future it is a system that will
provide doctors an aid to their diagnoses.

So the future steps are clear, to adapt the system to the new GT that is coming soon, as a
result of an annotation by the pathologists. In addition, it will have to be integrated into the
doctors' viewer so that they can use it, although within the DigiPatics project there are
already other institutions that are responsible for helping with this integration.
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Annex 1: Work plan
A Gantt diagram was created during the first weeks to aid in the planning of the entire
project. The goal was to break the project into smaller work packages that would contain
some tasks. Generally speaking, this plan, which was modified in the critical review, has
been followed to a large extent. It is true that the GT that was available changed many times
and therefore the model had to be retrained multiple times, re-optimizing the
hyperparameters.
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Annex 2: Hyperparameter optimization
The hyperparameter optimization results for the semantic segmentation model, with the 3
stroma approaches and with the patient-based partitioning, are shown below.

The 3 approaches are not comparable with each other because the stroma has not been
removed yet, but within the same approach the results with the different hyperparameters of
batch size (BS) and learning rate (LR) can be compared.

Some conclusions may be derived from these findings, such as the fact that the LR value is
critical for the model's correctness, as considerable changes in results can be noticed when
different LRs are used. For example, in some models, a greater LR value results in a
significant drop in metrics because the least represented class is not effectively detected.
The BS has little effect on the outcomes; similar results are achieved with the three BSs
tested (2, 4, and 6), however, the BS of 4 is the best in all cases.

Batch size Epochs LR stroma approach F-score valid

4 80 0.0005 1 (5 classes) 0.6408

4 100 0.0008 1 (5 classes) 0.6415

4 100 0.001 1 (5 classes) 0.5305

6 100 0.0008 1 (5 classes) 0.6388

2 100 0.0008 1 (5 classes) 0.6399

4 100 0.0008 2 (no stroma) 0.6451

4 100 0.001 2 (no stroma) 0.6527

4 100 0.0025 2 (no stroma) 0.6549

4 100 0.005 2 (no stroma) 0.544

4 100 0.0005 3 (stroma as class 0) 0.6634

4 100 0.0008 3 (stroma as class 0) 0.6807

4 100 0.001 3 (stroma as class 0) 0.6819

4 100 0.0025 3 (stroma as class 0) 0.674

6 100 0.0008 3 (stroma as class 0) 0.6743

2 100 0.0008 3 (stroma as class 0) 0.672

6 100 0.001 3 (stroma as class 0) 0.6764

2 100 0.001 3 (stroma as class 0) 0.6752
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