
Convergence of Deep Learning and High
Performance Computing: Challenges and Solutions

Doctoral Thesis
Albert Njoroge Kahira

Supervisors: Dr. Leonardo Bautista Gomez
Dr. Rosa M Badia

Dissertation submitted to the Department of Computer Architectures (DAC) in
partial fulfilment of the requirements for degree of Doctor of Philosophy in

Computer Architectures

Barcelona (Spain)
July 2021

The project that gave rise to these results received the support of a fellow-
ship from the ”la Caixa” Foundation (ID 100010434). The fellowship code is
LCF/BQ/DI17/11620059.

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Skłodowska-Curie grant agree-
ment No. 713673.

To my mum and dad
For being the most passionate and supportive people throughout my education

&

To all scientists
We stand on your shoulders and see the future

Acknowledgments

This thesis is the result of years of hard work that would not have been possible
without the support of numerous people. In this inconclusive list, I would like to
mention a few of those people.

First, I would like to express my deep gratitude to my supervisors, Dr Leonardo
Bautista and Dr Rosa Badia. Their comments, feedback and encouragement,
made this possible. I am grateful for the opportunities they created to develop
myself as a researcher and for the many talks we had during lunch hours and in
conferences. And for the times I was convinced about quitting, they taught me
never to give up.

I would also like to thank my pre-defence and defence committee; Prof. Jordi
Torres, Dr Marc Casas, Dr Antonio Pena, Dr Naoya Maruyama and Dr Prasanna
Balaprakash. I truly appreciate the time they took to read my thesis and the
feedback that helped shape the final document.

I would like to thank Dr Mohamed Wahib, Dr Truong Thao Nguyen and everyone
at Matsouka Lab for the three months I spent in Japan. They were great hosts that
guided me through what ended up becoming the core part of my thesis. I would
also like to thank my undergraduate and graduate professors, especially Dr Gulay
Yalcin, who encouraged me to pursue a PhD and introduced me to research. I am
forever indebted to her.

My sincere gratitude to the Workflows and Distributed Computing group mem-
bers at Barcelona Supercomputing Center(BSC). Especially Dr Francisco Javier
Conejero, who helped me fix all the problems I had with PyCOMPSs and taught
me a lot about distributed computing. I would like to thank everyone at Barcelona
Supercomputing Center who helped me in one way or another. From my relocation
to Barcelona and the many administrative procedures that followed.

iii

I am grateful for the friends and colleagues we spent years together in the
same office at BSC. Especially members of the Computer Architecture For Parallel
Paradigms Group. Julian Pavon, Kai Keller, Dr Behsad Selami, Sawsane Ochtal,
Saber Nabavi, Elvis Rojas, Mikel Cortes(who pro-read the Spanish summary) and
the group leaders, Dr Osman Unsal and Dr Adrian Christal. Though I belonged to
a different group, I felt at home in the Nexus 1 302 office and later in the Til.lers
office.

I would like to thank the la Caixa Foundation for giving me the incredible op-
portunity to do a PhD in an excellent facility. The staff at la Caixa foundation
were extremely helpful in both the transition and the years that followed through
numerous training. I would also like to thank the over 70 la Caixa fellows who
started this PhD together, especially those in Barcelona. I am genuinely humbled
to call myself a la Caixa fellow and be part of the la Caixa family.

I am privileged to have incredible people in my life who have been really sup-
portive and walked with me through this journey: Dr Milena Sulzbach, Nikolaos
Triantafyllou, Elena Marban, Paul Njoroge, Joel Moriasi, Aisha Navizale and espe-
cially Polet Njeri, who put up with me in my worst times.

Finally, I would like to thank my family, who, despite having no idea what I do,
supported me nevertheless and encouraged me to finish. I am incredibly grateful
to my late father, who was my pillar in my education, encouraging me all through
and helping me discover my true potential. Deepest gratitude to my mother for the
support and listening to me on the many times I told her how stressed I was.

iv

Abstract

Deep Learning has achieved outstanding results in many fields and led to
groundbreaking discoveries. With the steady increase in datasets and model
sizes, there has been a recent surge in Machine Learning applications in
High-Performance Computing (HPC) to speed up training. Deep Neural Network
(DNN) frameworks use distributed training to enable faster time to convergence
and alleviate memory capacity limitations when training large models or using
high dimension inputs. However, training DNN in HPC infrastructures presents a
unique set of challenges: scalability, IO contention, network congestion and fault
tolerance. Solving these problems is particularly challenging and unique due to
DL applications’ nature and the history of adaptation of DL in HPC. This thesis
addresses scalability and resilience challenges by looking at different parts of the
Machine Learning Workflow.

We first address hyper-parameters optimisation (HPO), which is one of the most
time consuming and resource-intensive parts of a Machine Learning Workflow.
We present a HPO scheme built on top of PyCOMPSs, a programming model
and runtime which aims to ease the development of parallel applications for
distributed infrastructures. We show that PyCOMPSs is a robust framework that
can accelerate the process of Hyperparameter Optimisation across multiple
devices and computing units. We perform a detailed performance analysis
showing different configurations to demonstrate the effectiveness of our approach.

We then analyse the compute, communication, and memory requirements
of DNNs to understand the trade-offs of different parallelism approaches on
performance and scalability. We leverage our model-driven analysis to be the
basis for an oracle utility that can help detect the limitations and bottlenecks of

v

different parallelism approaches at scale.

While significant effort has been put to facilitate distributed training by DL frame-
works, fault tolerance has been largely ignored. We examine the checkpointing
implementation of popular DL platforms. We evaluate the computational cost of
checkpointing, file formats and file sizes, the impact of scale, and deterministic
checkpointing. We provide discussion points that can aid users in selecting a
fault-tolerant framework to use in HPC. We also provide take-away points that
framework developers can use to facilitate better checkpointing of DL workloads in
HPC.

Keywords: Machine Learning, High Performance Computing, Parallel and
Distributed Computing.

vi

Resumen

El Deep Learning ha logrado resultados sobresalientes en muchas aplicaciones
y ha dado lugar a descubrimientos revolucionarios. Con el aumento constante
del tamaño de las colecciones de datos y de los modelos, ha habido un
reciente desarrollo de aplicaciones de Machine Learning en computación de alto
rendimiento (HPC) que se enfocan en reducir el tiempo de entrenamiento de
los modelos diseñados. Las librerı́as de Deep Neural Networks (DNN) utilizan
el entrenamiento distribuido para reducir el tiempo de convergencia y aliviar las
limitaciones de capacidad de memoria al entrenar modelos grandes o al utilizar
entradas de gran dimensión. Sin embargo, capacitar a DNN en infraestructuras
de HPC presenta una serie única de desafı́os: escalabilidad, contención de
E / S, congestión de la red y tolerancia a fallas. Resolver estos problemas es
particularmente desafiante y único debido a la naturaleza de las aplicaciones
DL y la historia de adaptación de DL en HPC. Esta tesis aborda los desafı́os de
escalabilidad y resiliencia al analizar el flujo de trabajo completo del Machine
Learning.

Primero abordamos la optimización de hiper-parámetros (HPO), que es una de
las partes del flujo de trabajo de Machine Learning que consume más tiempo
y recursos. Presentamos un esquema HPO construido sobre PyCOMPSs,
un modelo de programación que tiene como objetivo facilitar el desarrollo de
aplicaciones paralelas para infraestructuras distribuidas. Demostramos que Py-
COMPSs es un marco robusto que puede acelerar el proceso de optimización de
hiper-parámetros en múltiples dispositivos y unidades informáticas. Realizamos
un detallado análisis de rendimiento que muestra diferentes configuraciones para
demostrar la efectividad de nuestro enfoque.

vii

Luego, analizamos los requisitos de computación, comunicación y memoria de
las DNN para comprender las compensaciones de los diferentes enfoques de
paralelismo en el rendimiento y la escalabilidad. Aprovechamos nuestro análisis
basado en modelos como base de una utilidad de Oracle que puede ayudar
a detectar las limitaciones y los cuellos de botella de diferentes enfoques de
paralelismo a escala.

Si bien se ha realizado un esfuerzo significativo para facilitar el entrenamiento
distribuido por los marcos de DL, la tolerancia a fallas se ha ignorado en gran
medida. Examinamos la implementación de puntos de control de plataformas
DL populares. Evaluamos el costo computacional de los puntos de control, los
formatos y tamaños de los archivos, el impacto de la escala y los puntos de control
deterministas. Proporcionamos puntos de discusión que pueden ayudar a los
usuarios a seleccionar un marco tolerante a fallas para usar en HPC. También
proporcionamos puntos de referencia que los desarrolladores de marcos pueden
utilizar para facilitar un mejor control de las cargas de trabajo de DL en HPC.

Palabras clave: Machine Learning, High Performance Computing, Parallel and
Distributed Computing.

viii

Table of Contents

Abstract v

Resumen vii

Acronyms xvii

1 Introduction 1

1.1 Motivation . 4

1.2 Challenges . 6

1.3 Objectives . 8

1.4 Thesis Contributions . 9

2 Background 13

2.1 Deep Learning . 13

2.2 Parallelism in Deep Learning . 14

2.2.1 Data Parallelism . 14

2.2.2 Model Parallelism . 15

2.3 Deep Learning Frameworks . 16

2.3.1 Chainer . 16

2.3.2 PyTorch . 17

2.3.3 Tensorflow . 17

2.3.4 Horovod . 18

2.4 Datasets . 18

2.4.1 Mnist . 18

2.4.2 Cifar . 18

ix

2.4.3 ImageNet . 19

2.4.4 CosmoFlow . 19

2.5 High Performance Computing . 19

2.5.1 MareNostrum . 20

2.5.2 ABCI . 22

2.6 Related Work . 22

3 Accelerating Hyperparameter Optimisation with PyCOMPSs 25

3.1 Introduction . 25

3.2 Background and Related Work . 27

3.2.1 Background . 28

3.2.2 State of the Art . 28

3.3 PyCOMPSs . 30

3.4 Approach . 33

3.5 Experiments . 36

3.6 Results and Discussion . 38

3.6.1 Application Analysis . 39

3.6.2 HPO Results . 40

3.6.3 Discussion . 41

3.7 Conclusion . 42

4 An Oracle for Guiding Large-Scale Training of Deep Neural Networks
45

4.1 Introduction . 45

4.2 Background and Notation . 50

4.2.1 Related Work . 52

4.3 Strategies for Distributed Training 52

4.3.1 Data parallelism . 53

4.3.2 Spatial parallelism (height-width-depth) 55

4.3.3 Model-horizontal parallelism (filter/channel) 56

4.3.4 Model-vertical (layer) parallelism 58

4.3.5 Hybrid parallelism . 58

x

4.4 Performance and Memory Analysis 60

4.4.1 Sequential . 60

4.4.2 Spatial parallelism . 61

4.4.3 Layer parallelism . 62

4.4.4 Filter parallelism . 63

4.4.5 Channel parallelism . 63

4.4.6 Hybrid parallelism (Data + Filter) 64

4.5 Performance Projection of Different Parallel Strategies 65

4.5.1 Overview of ParaDL . 65

4.5.2 Assumptions and Restrictions 66

4.5.3 Performance and Memory Projection 67

4.5.4 Empirical Parametrization 70

4.5.5 Implementation . 71

Implementation Details . 71

Accuracy and Correctness 72

4.6 Evaluation . 73

4.6.1 Methodology . 74

Selected Models and Datasets 74

Evaluation Environment . 74

Configurations of Experiments 74

4.6.2 ParaDL’s Projection and Accuracy 75

4.6.3 Parallelism Limitations and Bottlenecks 78

Communication . 78

Memory Capacity . 81

Computation . 83

Scaling limitation . 86

4.6.4 Other Observations . 86

The Rise of Hybrid Parallelism 86

Staging and I/O Overhead 87

Distributed Inference . 88

4.6.5 Summary of our Analysis 88

xi

4.7 Conclusion . 89

5 A Study of Checkpointing in Large Scale Training of Deep Neural Net-
works 91

5.1 Introduction . 91

5.2 Background . 93

5.2.1 Checkpointing in DNN Training 93

Chainer Checkpoint implementation 93

PyTorch checkpoint implementation 94

TensorFlow Checkpoint implementation 94

5.2.2 Deterministic Behaviour of DNN Training 95

5.3 Related Work . 96

5.4 Methodology . 98

5.4.1 Evaluation Environment . 98

5.4.2 Experiments . 99

5.5 Results and Evaluation . 99

5.5.1 Computational Cost of Checkpointing 100

5.5.2 Checkpoint File Size and Format 102

5.5.3 Checkpointing at Scale . 104

5.5.4 Deterministic Checkpointing 105

5.6 Discussion . 109

5.6.1 Checkpoint file format . 109

5.6.2 Checkpoint implementations 109

5.6.3 Checkpoint scalability . 110

5.6.4 Deterministic behavior in DNN 110

5.6.5 Data parallel vs model parallel 110

5.7 Conclusion . 111

6 Conclusion 113

6.1 Summary of Achievements . 113

6.2 Notable Observations . 114

6.3 Behind the Scenes . 115

xii

6.4 Future Outlooks . 116

A Publications and Dissemination 117

A.1 Publications . 117

A.2 Workshops, Summer Schools and Talks 118

A.3 Research Collaboration . 118

A.4 Grants . 118

xiii

xiv

List of Figures

1.1 History of Artificial Intelligence . 2

1.2 40 Year Microprocessor Trend . 3

1.3 Relative speedup, accuracy and number of nodes(GPUs) in recent
years . 6

2.1 Data Parallelism . 15

2.2 Horizontal Model Parallelism . 16

2.3 Vertical Model Parallelism . 16

2.4 CosmoFlow Data Sample . 20

2.5 Top 500 Performance Development 21

2.6 ABCI System Architecture . 22

3.1 COMPSs Architecture . 31

3.2 Application Structure . 33

3.3 Tasks graph . 34

3.4 Running a single task on a single core 36

3.5 Multiple tasks on a single Node . 37

3.6 Multiple tasks on multiple nodes 38

3.7 MNIST Hyperparameter optimisation using Grid Search 40

3.8 CIFAR10 Hyperparameter optimisation using Grid Search 41

3.9 Time Vs Cores . 42

4.1 Sequential implementation on a single PE 53

4.2 Data parallelism . 55

4.3 Spatial parallelism . 56

xv

4.4 Channel parallelism (partition the model horizontally) 57

4.5 Filter parallelism (partition the model horizontally) 58

4.6 Layer parallelism (partition the model vertically) 58

4.7 Hybrid parallelism (example of filter on top of data parallelism) . . 59

4.8 Overview of ParaDL . 66

4.9 Prediction Accuracy of ParaDL with Imagenet for Data Parallelism 76

4.10 Prediction Accuracy of ParaDL with Imagenet for Filter Parallelism 77

4.11 Prediction Accuracy of ParaDL with Imagenet for Channel Parallelism 78

4.12 Prediction Accuracy of ParaDL with Imagenet for Data+Filter Paral-
lelism . 79

4.13 Prediction Accuracy of ParaDL with Imagenet for Data+Spatial Par-
allelism . 80

4.14 Prediction Accuracy of ParaDL with Imagenet for Pipeline Parallelism 81

4.15 Prediction Accuracy of ParaDL with CosmoFlow for Data+Spatial . 82

4.16 Spatial + data scaling with CosmoFlow. The labels show the speedup

ratio of spatial+data over the pure spatial strategy 83

4.17 Network congestion of ResNet-50, 512 GPUs, data parallelism (upper)

and VGG16, 64 GPUs, filter parallelism (lower). 84

4.18 Computation time per epoch with PyTorch. Weight update is not trivial in

large models and dataset. 85

4.19 Computation breakdown of filter parallelism, ResNet-50. Implementation

of convolution layers does not scale well. 85

4.20 Spatial + data scaling with CosmoFlow. The labels show the speedup

ratio of spatial+data over the pure spatial strategy. 87

4.21 Staging overhead. Labels show (model, parallel strategy, samples/GPU).

d:data, f:filter, df:(data+filter), ds:(data+spatial). 88

5.1 Distributed Training Process. 96

5.2 Deterministic PyTorch distributed training. 106

5.3 Performance of distributed training by each of the DL frameworks. 108

xvi

Acronyms

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

DNN Deep Neural Networks

GPU Graphics Processing Unit

TPU Tensor Processing Unit

ANN Artificial Neural Network

HPC High Performance Computing

IoT Internet of Things

xvii

Chapter 1

Introduction

We stand on the brink of a technological revolution that will fundamentally
alter the way we live, work and relate to one another

Klaus Schwab

Machine Learning is a set of methods that can automatically detect patterns in
data and then use the uncovered patterns to predict future data or other kinds of
decision-making [1]. In the last two decades, Machine Learning (ML) has become
a major driving force for Artificial Intelligence (AI) and has gained popularity
across numerous domains, which has, in turn, led to countless ML applications [2]
[3]. ML now powers many industries such as self-driving cars, recommendation
systems, computer vision and natural language processing. As a result, ML
has changed and will continue to the way we live, communicate, shop, travel,
healthcare and even politics.Deep Learning (DL) is a subset of ML based Artificial
Neural Network (ANN). DL has become a method of choice, and Deep Neural
Networks (DNN) has achieved superior accuracy than traditional methods in areas
such as computer vision.

The idea of machines that can learn and therefore acquire some level of intel-
ligence has been around since the 1950s when Alan Turing first proposed the
Turing Test in his paper, Computing Machinery and Intelligence [4]. Over the

1

Figure 1.1: History of Artificial Intelligence

years, scientists and engineers have worked relentlessly to achieve some form
of intelligence, as Turing described. Early attempts, such as Eliza by MIT Artifi-
cial Intelligence Laboratory, showed that intelligence such as natural language
understanding was complex and could not be scripted. However, later inventions
would be based on those founding principles, and ML would emerge as the critical
driver of AI. Figure 1.1 shows a brief history of Artificial Intelligence, highlighting
key achievements and inventions since the 1950s. Even though the progress has
been continuous, key breakthroughs have happened in the last two decades. This
is due to several factors that we address in details below.

First is groundbreaking learning algorithms starting with the Perceptron. A
Perceptron is a mathematical model of a biological neuron and the building block
of ANN, first introduced in 1957 by Frank Rosenblatt. Despite much enthusiasm at
its inception, the perceptron did not achieve much and faced criticism because it
could not learn complex patterns. It led to a period of little or no research in ANN,
popularly called the AI winter. It later emerged that most of the limitations of the
perceptron could be overcome by combine several perceptrons. This was called
Multi-Layer Perceptron (MLP) and could solve more complex problems, including
the XOR function. Combined with Back-propagation training algorithm by Rumel-
hart et al. 1986 [5] it led to renewed interests in Artificial Neural Networks. Further

2

Figure 1.2: 40 Year Microprocessor Trend
Source: NVIDIA

advancements such as better activation functions, more complex optimisation
algorithms and combining more ANN layers eventually led to Deep Learning which
is today responsibly for the remarkable results across multiple domains.

Second is developments in hardware. In 1965, Gordon Moore predicted that
the number of transistors in Integrated Circuits (IC) would double each year. He
would later revise the prediction to 2 years, and this prediction has held to date.
However, challenges such as overheating to increased density led Processors de-
signers to develop multi-core chips. This continuous increase in computing power
meant that early developments in Neural Networks could now be implemented.
Despite these developments and increased computing power, it was impossible to
train large models or use the vast amounts of data that were becoming increas-
ingly available. In early 2009, [6] showed that GPUs, traditionally developed for
gaming and graphics applications, could significantly scale learning algorithms
and surpass multi CPUs. This could be done by leveraging the fact that GPUs are
massively parallel and ideal for matrix multiplication. These early work would later
lead to the development of more advanced Graphics Processing Unit (GPU) and
most recently Tensor Processing Unit (TPU) that can significantly bring down the
training time of advanced learning algorithms. Figure 1.2 created by Nvidia shows
hardware trends in the last 40 years.

3

Third is increased amounts of data. Since the mainstream adaptation of
Information Systems and widespread use of the internet, the amount of data
generated every day has increased tremendously. Today, it is estimated that
we generate about 2.5 Quintillion bytes of data every day. For instance, more
than 300 Million Photos are uploaded on Facebook every day, and millions of
emails are sent daily. The amount of data generated will continue to increase with
technologies such as Internet of Things (IoT) and driver-less cars. These massive
amounts of data are at the core of improved accuracy that surpasses humans
in complex tasks such as computer vision that we witness today. In the paper,
The unreasonable effectiveness of data [7], Halevy et al. argued that even with
reasonably average algorithms, more data significantly improved the performance
of a Machine Learning Model. With this data, ML algorithms can identify complex
relationships in data and generate meaningful insights that would otherwise be
impossible or not computationally feasible using traditional statistical approaches.

1.1 Motivation

DNNs today achieve outstanding results in a wide range of applications, including
image recognition, video analysis, natural language processing [8], understanding
climate [9], and drug discovery [10], among many others. Mathuriya et al. [11]
with the Cosmoflow project showed the usefulness of Deep Learning at scale to
measure cosmological parameters from density fields. Deep Learning is therefore
a potential tool to determine the physical model that describes our universe. Most
recently, DeepMind used DL to create AlphaFold [12], a program that can solve one
of biology’s most significant challenges, accurately predicting protein structures
from their amino-acid sequence. This discovery can revolutionise medicine and
drug development by understanding the nature of diseases and molecules that
make up the human body.

Recent trends in DL include huge DNN models and very large training datasets
[13, 14, 15]. This is in the quest to increase solution accuracy and solve more
challenging problems. In addition, applying Deep Learning (DL) in new domains,
such as health care and scientific simulations, introduces larger data samples and
more complex DNN models [16]. When trained over a large amount of data, these
models’ sheer size and complexity make them harder to converge in a reasonable
amount of time. Furthermore, despite significant breakthroughs in GPU memory,

4

memory size remains relatively small with respect to model sizes. For example,
Huang et al. [15] reported that GPUs memory has only increased from 12 GB in
2014 to 40 GB in 2020 while the DL models increased approximately 36x in terms
of the number of parameters. Due to these reasons, parallelism in DL is inevitable.

Parallalelism in Deep Learning has generally focused on 4 aspects; Instruction
Level Parallelism(ILP) and other low level parallelism(e.g. parallelel convolutions),
Data Parallelism, Model Parallelism, and most recently Hyper Parameter Optim-
isation(HPO). Low level parallelism techniques came into prominence after Alex
et al [17] demonstrated that Deep Learning models could be trained faster and
efficiently using GPU implemenation of the convolution operation. Prior to that,
GPUs were traditionally used for graphics intensive applications such as gamming
applications. To leverage multiple GPUs and reduce training times, Raina et al
[6] developed general principles for massively parallelizing unsupervised learning
tasks using GPUs. Today, multi GPU training generally is generally done with
either Data Parallelism or Model Parallelism. Due to the large number of hyper-
parameters required in DNNs, HPO process has also been parallelised to search
through the huge parameter space. While early efforts in parallellism focused on
intra-node parallelism, this soon became insufficient due to the limited number of
computing devices (e.g. GPUs) that can be packed in a single node. As a result,
DL has now turned to High Performance Computing (HPC)

Large-scale training on HPC systems or clusters of GPUs is now becoming
increasingly common to achieve faster training time for larger models and data-
sets [13] and alleviate memory constraints. Training ML models in these systems
cuts months or even weeks of training to a few hours or even minutes and facilitates
faster prototyping and research in ML. Figure 1.3 shows the relative speedups,
the accuracy, and the number of nodes used in notable milestones of training
DNNs, specifically for 90-epoch training of ResNet50 with ImageNet. It is evident
and clear that HPC is now the key driver of DL. In fact, in the last few years, we
have seen HPC systems such as AI Bridging Cloud Infrastructure (ABCI) built
explicitly for DL workloads. HPC systems’ power will continue to increase, with an
eventual breakthrough to an exascale system expected in 2023 as shown in figure
2.5. However, achieving maximum performance and capitalising on the power
of HPC is not obvious.In the following section, we discuss the challenges in the
convergence of DL and HPC.

5

Figure 1.3: Relative speedup, accuracy and number of nodes(GPUs) in recent years

1.2 Challenges

The first challenge is Scaling. Scaling Machine Learning in current HPC systems
and future exascale systems is a complex problem due to DL applications’ unique
nature, the history of adaptation of DL in HPC and typical HPC challenges such
as communication, IO contention, network congestion and fault tolerance. For
instance, data parallelism, which involves duplicating the model into multiple
nodes/GPUs with each model processes a mini-batch and an Allreduce collective
operation for weight update, is well established and almost the default method
for parallelism in DL. However, despite promising results from data parallelism
in scaling training across multiple nodes, as the number of computing nodes
increases, e.g., up to 2048 GPUs for Resnet-50, the communication becomes a
bottleneck due to the Allreduce collective operation. Furthermore, data parallelism
is impractical for large models since the model has to be replicated in every device.
On the other hand, getting good performance with model parallelism given multiple
computing devices is non-trial and non-obvious. Furthermore, there are multiple
stages in a Machine Learning Workflow that all require different scaling strategies.
For instance, scaling hyperparameter optimisation requires a different set of tools
and methods. Scaling and extracting the optimum performance from HPC systems
for ML applications, therefore, demands advancement along multiple research
directions such as model/data parallelism, model/data compression, distributed

6

optimisation algorithms for DL convergence, synchronisation strategies, efficient
communication and specific hardware acceleration.

The second challenge is Performance Modelling and consequently deciding
the right parallelism strategy. Performance modelling is one way to understand
the scaling behaviour of parallel applications[18]. Using performance modelling,
we can understand how performance changes as different parameters change.
This helps us to understand scaling limitations, performance bottlenecks and the
right parallelism strategy. Several parallelism strategies have been proposed over
the years, and combinations of two or more also exist. Researchers spend too
much time trying out different parallelisation strategies, which often becomes
obsolete with a change in model architecture or dataset. There is no clear way to
determine which approach to use for a given model or dataset. On the other hand,
performance modelling for DL is an extremely difficult task that involves analysing
memory, communication and performance of multiple systems and testing with a
multitude of models.

The third challenge is Framework Limitations. Deep Learning frameworks
are the core of Deep Learning and need to process multi-dimensional and multi-
channel data at scale. However, most DL frameworks are not built with HPC in
mind, and therefore, they are not able to leverage the full power of HPC. Table
1.1, shows some of the most common DL frameworks. We observe that most of
the DL frameworks are not HPC ready(i.e require extensive engineering effort to
support distributed training) and almost always require another library to support
distributed computing in HPC.

The fourth challenge is Fault tolerance. HPC clusters are susceptible to un-
recoverable hardware and software failures that can ruin days or even weeks of
training time. As we move towards exascale, meantime to failure is expected to
increase [19]. Most Deep Learning frameworks implement some fault tolerance
mechanism such as checkpointing to save the training state at a certain point.
However, these are not implemented with HPC in mind. Furthermore, for DL, it is
not just a defence mechanism against failures but a fundamental component of
training DL models used in techniques such as transfer learning. It is therefore
important to understand how existing frameworks cope with failures, especially in
HPC.

7

Framework Language/API Features HPC Ready

Tensorflow C++, Python, Java
Eager execution
Computational graph model

7

PyTorch C++, Python
Dynamic Graphs
Strong GPU support
Define by run

7

Chainer Python
Define by run
Highly intuitive

X

MXNet C++, Python, Java
Lean
Flexible and Scalable

X

Keras Python
Easy Python Intergration
Easier programability

7

CNTK C++, Python, C#
Support for Apache Spark
Simple intergration with Azure Cloud

X

DL4J Java
Robust and flexible
Support for apache Hadoop and Spark

Table 1.1: Selected Deep Learning Frameworks and Key Features

1.3 Objectives

Optimum utilisation of HPC for DL is a complex endeavour that demands advance-
ment along multiple research directions. It also requires tools to aid researchers
and ML developers in abstracting distributed computing’s intricate details and
focusing more on building better ML applications. This thesis looks at the conver-
gence of DL and HPC. The objectives are two-fold. On one hand, the objective
is to study the challenges, limitations and bottlenecks, and limitations of current
and future HPC systems when running DL workloads; on the other hand, it is to
provide and engineer tools that can alleviate these challenges. Below we discuss
the objectives in details.

The first objective of this thesis is to provide a tool to perform Hyperparameter
Optimisation(HPO) at scale. HPO is the process of finding the right set of paramet-
ers for a DL model from a large space of parameters. These parameters include
learning rate, number of layers, batch size, etc. Due to the large search space,
HPO takes a long time and involves multiple runs. The objective is to develop a
tool that can massively scale this process in a HPC cluster and search through
the vast space in a short time, in turn reducing the prototyping time.

8

The second objective is to develop a tool to aid in the selection of the right
parallelism strategy when draining DNNs in HPC. Developing such a tool is complex
because performance modelling in HPC requires factoring in many variables and
applications have to run along many other applications from different users with
different requirements which introduces congestion. To develop the performance
model, we first define the main parallel strategies and use that analysis as the
basis of the tool. We then implement all the parallel strategies to test the tool.

The third objective is to spark research interest in checkpointing for DL work-
loads in HPC and provide research directions for checkpointing tools. As DL
workloads become increasingly common in HPC, we observe that checkpointing
implementations in DL frameworks that have for long been considered sufficient
as no longer sufficient. We explore different DL frameworks to identify key insights
that can be used to develop more advanced schemes.

1.4 Thesis Contributions

In this section, we provide a summary of the key contributions and chapters of
this thesis. These contributions are presented as three separate self sustaining
chapters based on three papers published in peer reviewed journals and con-
ferences. Each chapter contains several contributions and findings. Combined,
these chapters address the challenges and solutions in the convergence of Deep
Learning and High Performance Computing.

Chapter 2 gives a background of Deep Learning, HPC and a survey of ML
in HPC. This chapter is essential in that it covers the key concepts required to
understand the contents of this thesis. It helps to make this document a self
sustaining document. The related work covered is brief because we provide
further related work in each chapter.

Chapter 3 presents a Hyperparameter Optimisation Scheme developed on top
of PyCOMPSs to aid in scaling Hyperameter Optimisation(HPO) in HPC. We
first conducted a literature review of existing work on ML in HPC and realised
that, despite being a key component of the ML workflow, existing HPO tools are
primarily built for a single node. However, HPO is one of the most time and
compute consuming phases of the ML workflow. A careful evaluation also shows
that HPO is, in some sense, a low hanging fruit for scaling because it essentially
involves running the same experiment with different parameters to identify the best

9

performing. Therefore, we can run each experiment on a node with the possibility
of running as many experiments as there are nodes concurrently. We leverage a
task-based programming model called PyCOMPSs and propose a scheme that
significantly accelerates HPO in clusters. This scheme is framework agnostic,
robust, scalable and with all essential features for HPO, such as early stopping
and visualisation dashboards.

Chapter 4 is the core of this thesis and provides paraDL. We first present formal
definitions of main parallel strategies in CNN training and then propose paraDL, an
oracle that projects the ideal performance of distributed training of CNNs. To create
paraDL, we first define the main parallel strategies include hybrid strategies. We
conduct a comprehensive analysis of the compute, communication and memory
footprint for training CNNs. We then use this as the basis of the oracle and validate
this by implementing all strategies defined and conduct exhaustive experiments up
to thousands of GPUs. We show the utility of paraDL in exposing performance and
scalability trade-offs achieving accuracies of up to 97.5%. This utility can be used
by Machine Learning developers, framework developers and system architects.
We also point out other observations such as the rise of hybrid parallelism and the
need for distributed inference.

Chapter 5 covers checkpointing for ML in HPC. This is the third and final contri-
bution of this thesis and is essentially a study of fault tolerance of ML applications
in HPC. As mentioned earlier, though HPC can reduce weeks of training, HPC
systems are susceptible to both hardware and software errors that could ruin this
training. For this reason, checkpointing is a widely used technique in HPC to save
the state of computation at time intervals and resume in case of failure. Though
checkpointing is implemented in almost all frameworks, the implementations are
not suitable for HPC, as our study shows. The first reason is that they introduce
a considerable overhead because checkpointing is mainly performed by a single
node. The second reason is model and data parallelism requires different check-
pointing techniques, while most of the frameworks only support checkpointing for
data parallelism. With the increasing growth of model parallelism, deep learn-
ing frameworks will require more sophisticated checkpointing implementations
such as those available for typical HPC applications. Our contribution is we show
the overheads that currently exist in checkpointing and identify possible areas of
improvement.

10

Finally, in chapter 6 we recap the key contributions of this thesis and provide
some details of the work behind the scenes that led to this thesis. We also provide
details of future work. All tools developed and proposed in this thesis are
open source and publicly available to the research community. All imple-
mentations for testing purposes are also publicly available. This is also a
contribution of this thesis.

11

12

Chapter 2

Background

In this chapter, we present a detailed background of Deep Learning and key
concepts around the topic that are relevant to understand the remainder of this
thesis.

2.1 Deep Learning

Deep Learning is a subset of Machine Learning that uses Deep Neural Networks
(DNNs). To understand DNNs, we first need to understand Artificial Neural Net-
works(ANNs), the building units of DNNs. ANNs are computational model inspired
by neurons. ANN consists of interconnected neurons that process information. A
standard ANN consists of an input layer, a hidden layer and an output layer. DNN
are ANNs with many hidden layers that can solve many computationally complex
problems such as character recognition, image compression, speech recognition,
and computer vision. DNNs are attractive for these sort of problems due to their
continuous learning behaviour from given data.

The current state of the art DL results from years of research and development
by both the engineering and research community. From the pioneering work by [20]
that lead to the concept of Artificial Neural Networks (ANN) to the groundbreaking
work by Paul J. Werbos that created the backpropagation algorithm and renewed
interest in Artificial Intelligence. Backpropagation led to Deep Neural Networks
(DNN) and Deep Learning (DL) that would later outperform humans in computer
vision using Convolutional Neural Networks (CNN) [21]. Today, DL is widely used

13

and can outperform humans in many tasks such as image and object recognition
and recently playing Go [22].

Training DNNs is hard and generally involves iteratively updating the weights
of the layers to reduce the error on prediction. This is done in two steps, forward
propagation and backward propagation. In forward propagation, the network is
fed an input, and the model predicts the output. With this output and known ground
truth (in the case of supervised learning), a backward pass is performed, and
weights are updated using an optimisation algorithm such as Stochastic Gradient
Descent(SGD). When training a DNN from scratch, weights are first randomly
initialised. However, newer techniques such as transfer learning can reduce
training times by starting with a previously trained model.

Another important step in training DNNs is Hyperparameter Optimisation(HPO),
sometimes called Hyperparameter search. This is the process of finding the
correct/best combination of parameters to achieve optimum accuracy. Such
parameters include batch size, number of layers in a model, learning rate or
even the optimisation algorithm(optimiser). This generally involves training a
model multiple times and observing the accuracy and loss curves.

2.2 Parallelism in Deep Learning

Due to their nature, DNNs are computationally very intensive applications. When
huge data sets are involved, training DNNs could take days. Because of this, DNNs
are now deployed in high-performance computing (HPC) systems where they
leverage the high computational power and massive parallelism offered by HPC
systems. It is widely agreed that ANN and AI applications’ future implementations
will continue to be deployed in HPC systems and large data-centres. When training
a specific DNN model on an HPC system, there are two prominent strategies for
parallelizing the training phase of DL: data and model parallelism.

2.2.1 Data Parallelism

In data parallel, the model is duplicated into multiple nodes/GPUs. Each model
process a mini-batch and computes its gradients and loss for the data it possesses.
The models then share gradients through all reduce to obtain average global
gradients. Though preferred for its ease of implementation and good results, data

14

Figure 2.1: Data Parallelism

parallelism has several challenges, such as accuracy degradation with increasing
batch size. Communication overhead from Allreduce operation and limited model
sizes because models can’t be bigger than Node/GPU memory are also limiters
for data parallelism. Figure 2.1 shows data parallelism. The rectangles represent
the different layers which the red arrows represent communication.

2.2.2 Model Parallelism

Model parallelism divides the model into disjoint subsets, and each subset is
assigned on a dedicated GPU. Each GPU is liable for the updates of the designated
model layers. Model parallelization is appropriate when the model is huge to be
fitted into a single GPU due to memory capacity. Nevertheless, split the model
into subsets is not an easy task because it could generate load imbalance issues
limiting the scaling [23, 24]. There are several approaches to splitting a model,
such as vertically (shown in figure 2.3), horizontally (shown in figure 2.2), across
channels/filters or combining one or two methods called hybrid. Model parallelism
is discussed extensively in Chapter 4

15

Figure 2.2: Horizontal Model Parallelism

Figure 2.3: Vertical Model Parallelism

2.3 Deep Learning Frameworks

Over the years, numerous DL frameworks have been developed to support training
and deployment and DL applications. Almost all major DL frameworks provide
some support for distributed training of DNNs. The choice of a DL framework is
critical when training ML models in HPC. As mentioned in chapter 1, most DL
frameworks are require modifications to fully optimise HPC. In this work, we focus
on 3 state of the art frameworks common in HPC ; Chainer [25], PyTorch [26],
and TensorFlow [27, 28]. All these DL frameworks provide support for GPUs and
allow libraries like CUDA, CuDNN and NCCL. In this section we highlight selected
frameworks that are used in this work.

2.3.1 Chainer

Chainer [29] is an open-source Python framework introduced in 2015. The creators
of Chainer define it as a ”powerful, flexible and intuitive deep learning framework”.
It uses a Defined-by-Run scheme, i.e. Chainer stores the computing history
rather than the logic of programming. In the ”Define phase”, a computational
graph is constructed (instantiation of a neural network object based on a model

16

definition). Then, in the ”Run phase”, the model is trained by minimizing the loss
function using optimization algorithms. To support GPUs, Chainer implements
CuPy (Open-source matrix library accelerated with NVIDIA CUDA) [30] that is a
package similar to NumPy. For parallelism and especially multi-node parallelism,
Chainer comes packaged with ChainerMN, [31] that allows multi-node distributed
DL parallel training and use of technologies such as NVIDIA NCCL and CUDA
Aware MPI.

2.3.2 PyTorch

PyTorch [26] is a tensor DL framework based on the Torch framework [32] and is
deeply integrated with Python. PyTorch performs executions of dynamic tensor
computations with GPU acceleration and automatic differentiation. Also, PyTorch
provides an array-based programming model implementing the NumPy library,
extending the Python multiprocessing module (e.g., moving tensor data between
processes through shared memory and not through the communication channel),
and allows the implementation of data parallelism in distributed training with CUDA
and CuDNN support. Though Tensorflow supports Multi-node execution, most
practitioners rely on Horovod(discussed below) for multi-node execution.

2.3.3 Tensorflow

TensorFlow [27, 28] is an open-source library for machine learning that supports
various applications with a focus on training and inference in deep neural net-
works. It originated f the Google Brain project and was based on a system called
DistBelief [33]. It is cross-platform and can run on multiple architectures made
up of both CPUs, GPUs, or combinations. Additionally, it can run on mobile
devices, embedded platforms, and TPUs (tensor processing units), which are
specialised hardware to perform calculations with tensors. TensorFlow’s name is
derived from multidimensional data arrays called tensors, with which computations
are performed to express them as dataflow graphs. This graph represents both
the computation in an algorithm and the state in which the algorithm operates.
TensorFlow uses highly optimised pre-existing libraries such as cuBLAS (matrix
multiplication) or CuDNN to obtain better performance during training. In more
recent versions, TensorFlow includes by default the high-level API Keras [34] which

17

allows for more agile and faster experimentation using abstractions and building
blocks.

2.3.4 Horovod

Horovod is a distributed deep learning training framework for TensorFlow, Keras,
PyTorch, and Apache MXNet.It implements distributed training using MPI as a
communication mechanism. The first implementation was based on the bandwidth-
optimal ring-allreduce algorithm proposed by Baidu [35]. This framework performs
gradient reduction across models and employs inter-GPU communication via the
MPI Allreduce algorithm with the possibility of using NCCL (NVIDIA Collective
Communications Library). NCCL implements multi-GPU and multi-node collective
communication primitives that are optimised for NVIDIA GPUs [36].

2.4 Datasets

Several datasets are used in this thesis. In this section we provide the details of
the datasets though each dataset is also discussed in the relative chapters.

2.4.1 Mnist

MNIST[37] is one of the most popular datasets used in Machine Learning education
and research. It is a database of handwritten digits from the US Census Bureau
with a training set of 60,000 samples and a test set of 10,000 samples. The
images are 28x28 pixels (784 features) and each image is labelled with the digit it
represents. MNIST is no longer considered an ideal dataset for DL as it is relatively
easy to train and more advanced datasets are available.

2.4.2 Cifar

Cifar10 and Cifar100 [38] are labeled subsets of the 80 million tiny images dataset.
They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The
CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000
images per class.

18

2.4.3 ImageNet

ImageNet [39] is a large-scale ontology of images built upon the backbone of the
WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets
of WordNet with an average of 500-1000 clean and full resolution images. The
dataset has over 14 million images spread over 21 thousand groups or classes
(synsets). Some of the key milestones and breakthoughs in DL were in the
ImageNet Large Scale Visual Recognition Challenge, or ILSVRC which is an
annual computer vision competition held between 2010 and 2017.

2.4.4 CosmoFlow

The CosmoFlow project aims to process large 3D cosmology datasets on modern
HPC platforms [40]. The CosmoFlow dataset which consists of data from around
10,000 cosmological N-body dark matter simulations. All data for this set is stored
in the HDF5 format, with one file per universe/simulation (1GB per file). A sample
of the 3D cube is shown in Figure 2.4

2.5 High Performance Computing

Computing plays a critical role in science. The use of computers to solve complex
scientific problems and simulations led to high-performance computing systems
to provide more computing power through distributed computing. To achieve this,
large problems are broken down into smaller problems, and each is computed
in a separate computing unit. Information is exchanged between the compute
units through a network and specific software such as Message Passing Interface
(MPI).

HPC generally involves aggregating hundreds or thousands of computing nodes.
Though early supercomputers were primarily based on CPUs, recent develop-
ments have seen a significant increase in GPU based supercomputers or a com-
bination with specific accelerators. Since 1993, there is a list of the 500 most
powerful computer systems that is maintained and updated twice a year. Figure
2.5 shows performance trends in HPC since 1990s. This work was primarily
conducted on two state of the art supercomputers. Below we discuss the details
of each.

19

Figure 2.4: CosmoFlow Data Sample

2.5.1 MareNostrum

MareNostrum4 is a supercomputer based on Intel Xeon Platinum processors from
the Skylake generation. It is a Lenovo system composed of SD530 Compute
Racks, an Intel Omni-Path high performance network interconnect and running
SuSE Linux Enterprise Server as operating system. Its current Linpack Rmax
Performance is 6.2272 Petaflops. This general-purpose block consists of 48
racks housing 3456 nodes with a grand total of 165,888 processor cores and 390
Terabytes of main memory. Compute nodes are equipped with:

• 2 sockets Intel Xeon Platinum 8160 CPU with 24 cores each @ 2.10GHz for
a total of 48 cores per node

• L1d 32K; L1i cache 32K; L2 cache 1024K; L3 cache 33792K

• 96 GB of main memory 1.880 GB/core, 12x 8GB 2667Mhz DIMM (216 nodes
high memory, 10368 cores with 7.928 GB/core)

20

Figure 2.5: Top 500 Performance Development
Source: Top 500

• 100 Gbit/s Intel Omni-Path HFI Silicon 100 Series PCI-E adapter

• 10 Gbit Ethernet

• 200 GB local SSD available as temporary storage during jobs

Most of the experiments on MareNostrum supercomputer were performed on
the CTE-Power cluster. CTE-POWER is an experimental cluster based on IBM
Power9 processors, with a Linux Operating System and an Infiniband intercon-
nection network. CTE-POWER has 54 compute node, each with the following
configurations:

• 2 x IBM Power9 8335-GTH @ 2.4GHz

• 512GB of main memory distributed in 16 dimms x 32GB @ 2666MHz

• 2 x SSD 1.9TB as local storage

• 2 x 3.2TB NVME

• 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.

• Single Port Mellanox EDR

• GPFS via one fiber link 10 GBit

21

Figure 2.6: ABCI System Architecture

2.5.2 ABCI

AI Bridging Cloud Infrastructure (ABCI), is an open computing infrastructure for
both developing AI technology and bridging AI technology into the industry and the
real world, constructed and operated by National Institute of Advanced Industrial
Science and Technology (AIST). Figure 2.6 shows the architecture of ABCI. The
ABCI system consists of 1,088 compute nodes with 4,352 NVIDIA V100 GPU
accelerators and other computing resources, shared file systems and ABCI Cloud
Storage with total capacity of approximately 40 PB, InfiniBand network that con-
nects these elements at high speed, firewall, and so on. It also includes software
to make the best use of these hardware.

2.6 Related Work

Though each chapter discusses related work specific to that chapter, in this section,
we present related about Machine Learning in HPC in general. [41] developed de-
velop a procedure for setting minibatch size and choosing computation algorithms.
They also derived lemmas for determining the quantity of key components such as
the number of GPUs and parameter servers.

Several researchers have also looked into fault tolerance for Deep Learning in
HPC. Amatya et al [42] specifically addressed the problem of permanent faults
and highlighted the need for fault tolerant MPI specification. They presented an
in-depth discussion on the suitability of different parallelism types (model, data and

22

hybrid); a need (or lack thereof) for check-pointing of any critical data structures;
and most importantly, consideration for several fault tolerance proposals (user-level
fault mitigation (ULFM), Reinit) in MPI and their applicability to fault tolerant DL
implementations.

Asaadi et al [43] conduct a comparative study of Deep Learning frameworks
in HPC environments. They compare performance of different frameworks and
support for different architectures. They also study the HPC-specific features of
provided by different frameworks.

On performance modelling, Yan et al [44] observed that the correct choice for
model and data partitioning and overall system provisioning is highly dependent
on the DNN and distributed system hardware characteristics. These decisions
currently require significant domain expertise and time consuming empirical state
space exploration. They developed a performance models that quantify the im-
pact of this partitioning and provisioning decisions on overall distributed system
performance and scalability. They then used the performance models to build a
scalability optimizer that efficiently determines the optimal system configuration
that minimizes DNN training time.

Several surveys have also been done. For instance [45] performed a broad
and thorough investigation on challenges, techniques and tools for scalable DL
on distributed infrastructures. This incorporates infrastructures for DL, methods
for parallel DL training, multitenant resource scheduling and the management
of training and model data. They also analysed and compared 11 current open-
source DL frameworks and tools and investigate which of the techniques are
commonly implemented in practice. Finally, we highlight future research trends in
DL systems that deserve further research

In another survey, [46]. BEN-NUN et al addressed the challenge of training
DNN and described the problem from a theoretical perspective, followed by ap-
proaches for its parallelization.They presented trends in DNN architectures and
the resulting implications on parallelization strategies. Finally they reviewed and
modeled the different types of concurrency in DNNs: from the single operator,
through parallelism in network inference and training, to distributed deep learn-
ing.They also discussed asynchronous stochastic optimization, distributed system
architectures, communication schemes, and neural architecture search. Based on
those approaches, they extrapolated potential directions for parallelism in deep
learning

23

24

Chapter 3

Accelerating Hyperparameter
Optimisation with PyCOMPSs

As mentioned in Chapter 2, several parts of the Machine Learning workflow can be
parallelised and accelerated by HPC. In this chapter, we present a HPO scheme
built on top of PyCOMPSs, a programming model and runtime which aims to
ease the development of parallel applications for distributed infrastructures. We
show that PyCOMPSs is a powerful framework that can accelerate the process of
Hyperparameter Optimisation across multiple devices and computing units. We
also show that PyCOMPSs provides easy programmability, seamless distribution
and scalability, key features missing in existing tools. Furthermore, we perform a
detailed performance analysis showing different configurations to demonstrate the
effectiveness of our approach.

3.1 Introduction

To facilitate and accelerate both research and application of ML, numerous tools
and libraries have been developed. ML frameworks such as Tensorflow [47],
PyTorch [48] and Caffe [49] enable developers to train and deploy complex models.
Most of these advanced frameworks focus on training and deployment. However,
before training, two important things have to be decided. The architecture of the
model and the configuration of the model. Arriving at the right model for a specific
dataset is a complex process, that does not only require skilled engineers but
is also time consuming and compute intensive. Interestingly though, the time

25

consumed to train the model as well as the effectiveness (accuracy) of the model
heavily depends on a set of parameters selected prior the training procedure. This
set of parameters is called hyperparameters.

The process of finding the correct combination of parameters for a certain
model is called Hyperparameter Optimisation (HPO), sometimes refereed to as
Hyperparameter Tuning (HPT). It is one of the key parts in a machine learning
workflow. The most common hyperparameters include number of epochs, batch
size, learning rate, optimiser, and sometimes specific model parameters such as
number of layers. Finding the correct combination of these parameters is non trivial
and manual tuning is both difficult and sometimes impossible as the best solution
is not always obvious. Furthermore, in most cases HPO takes the longest time
as it is not only computationally intensive but also involves multiple trainings. As
such, there has been significant research interest in HPO. Research in this domain
has generally taken two paths, 1) Algorithms for HPO 2) Tools to implement and
execute these algorithms. Further details of both are discussed in section 3.2, but
our focus is on the latter.

Numerous tools for HPO have been developed as is evident in section 3.2. An
in-depth look into most of these tools reveals 3 major issues that this chapter will
address. First, most existing HPO tools are sequential. Those that are parallel
constrain the user to a single node and those that span multiple nodes involve
complex cluster configuration. Considering that most, if not all, HPO algorithms
are embarrassingly parallel, these processes can be significantly accelerated by
exploiting both parallelism and distributed execution. Second, recent trends in DL
show an increase in the size of models. This not only translates to an increase
in the number of hyperparameters(to magnitudes of hundreds) but also requires
skillful partitioning and usage of available computing resources as one model can
span across several devices and take training time in magnitude of days. Long
execution times also raises the important question of fault tolerance.

Third, there has been a proliferation of Machine Learning applications in High
Performance Computing (HPC). However, not much has changed in ML workflows,
especially for HPO. Since HPO is an integral part of the ML workflow, there is
a need for a HPO scheme and tool that can leverage the full power of HPC
such as very high inter-node communication, HPC file systems, heterogeneous
computing and scalability. However such a tool should not come with a steep
learning curve or increased overhead in programmability. A study of current trends

26

and existing literature reveals that an ideal HPO tool should therefore have the
following characteristics.

• Parallel : Intra-node task parallelization

• Distributed : Distribute tasks across multiple nodes

• Scalable : Speed up as the number of nodes increases

• Robust : Guarantee a certain degree of fault tolerance

• Framework agnostic: It should not be constrained to a specific framework

• It should also provide essential features such as early stopping and visual-
isation dashboards to enable researchers make sense of the output.

Taking into consideration the above mentioned, this chapter presents a robust
HPO scheme, built on top of PyCOMPSs, to accelerate HPO. PyCOMPSs [50] is
the Python binding of COMPSs, a programming model and runtime which aims
to ease the development of parallel applications for distributed infrastructures,
such as Clusters and Clouds. A detailed description of PyCOMPSs is provided in
section 3.3. The contributions of this chapter can be listed as follows.

• We present a robust scheme for HPO in HPC clusters and grid with minimum
changes to the code.

• We implement grid search and random search using PyCOMPSs to demon-
strate the usage.

• We present an alternative tool for both HPO and other ML workloads that
are embarrassingly parallel.

The remainder of this chapter is divided as follows, section 3.2 gives a look into
existing tools and previous work on HPO, section 3.3 introduces the PyCOMPSs
framework, in section 3.4, we explain how to implement HPO using PyCOMPSs,
then we provide details of the experiments performed in section 3.5 and discuss
the results in section 3.6 . Finally section 3.7 gives a conclusion and future work.

3.2 Background and Related Work

In this section, we give a brief background of ML and HPO. We then review and
discuss existing tools for HPO. The list covered is by no means exhaustive but
every attempt has been made to cover the most popular tools.

27

3.2.1 Background

Even though the idea of a machine capable of learning and mimicking human
intelligence was proposed in the early 1950s, its only recently that we have seen
significant progress and commendable results. One factor for this is the invention
or Artificial Neural Networks (ANNs) and back-propagation, the algorithm used to
train these ANNs. The other factor is a major surge in the amount of data available.
These combined with increased computing power have made Deep Learning a
major research research topic in Computer Science. A subset of this research has
been tools and algorithms for HPO.

In algorithms for HPO, the most popular ones are Exhaustive Grid Search
and Random Search. Exhaustive Grid search involves trying out all possible
combinations and comparing the result using a metric such as loss or accuracy.
This approach is feasible when there is a small set of hyperparameters. However,
it becomes impossible and unrealistic with a larger search space. Random search
[51] was proposed by Bergestra et al and has become more common. Rather than
search through the entire search space, combinations of parameters are picked
randomly. Empirical results show that random research is more efficient than grid
search and arrives at parameters that are good or better at a fraction of the time
required by grid search.

Though random search is a superior algorithm in many cases, several other
approaches have been proposed. Gaussian Process and Tree-structured Parzen
Estimator were proposed by Bergstra et al [52] for Deep Belief Networks. Bayseian
optimisation is another approach that essentially builds a surrogate model to
approximate the ideal trained model by using different hyperparameters. It’s
practical usage and implementation is presented by Snoek et al [53] .The tools
discussed below implement one or several of these algorithms.

3.2.2 State of the Art

Madrigal et al [54] did a review of existing tools HPO using a computer vision
application. They analysed and compared 4 tools for multiple object tracking
applications: MCMC, SMAC, TPE and Spearmint. These tools were analysed
in terms of stability, performance and usability with the goal of helping making

28

informed decisions when choosing a tool and method for HPO. We discuss other
tools not mentioned in that work.

Scikit-learn [55] is perhaps one of the most popular machine learning tools. It
combines many of the state of the art algorithms in an easy to use way. Scikit-learn
provides both exhaustive grid search and randomized parameter optimisation and
uses cross validation to evaluate the best performing parameters. Furthermore
scikit-learn computations can can also be run in parallel by setting the number of
jobs. However, scikit-learn does not provide multi-node support and is not efficient
for complex tasks such as deep learning.

Sherpa [56] is a hyper-parameter optimisation tool geared towards HPO for
computationally expensive tasks such as deep learning. It includes several HPO
algorithms such as random search, grid search, Bayesian optimisation and local
search. Even though Sherpa is intended to run in a multi node environment, doing
so requires scheduler and mongoDB. Besides the extra overhead introduced by
MongoDB, scheduler configuration is a complex task in HPC.

Shadho [57] developed by Kinnison et al is a general purpose massively scal-
able hardware-aware distributed hyperparameter optimisation tool. Shadho cal-
culates the relative complexity of each search space and monitors performance
on the learning task over all trials. These metrics are then used as heuristics to
assign hyperparameters to distributed workers based on their hardware. Shadho
achieves double the throughput of a standard distributed hyperparameter optimiz-
ation framework by optimizing SVM for MNIST using 150 distributed workers.

Hyperopt [58] by Bergstra et al is another tool for serial and parallel HPO over
awkward search spaces. It includes random search and Tree of Parzen Estimators
(TPE) algorithms. Like Sherpa, HyperOpt also requires mongoDB for parallel
execution.

Kopt and Tolos are HPO tools specifically built for Keras. Kopt is based on
Hyperopt and requires mongoDB to parallelise on multiple workers. Both are
constrained to specific frameworks.

Tune [59] is a unified framework for model selection that allows straightforward
scaling in large clusters. Each training is referred to as a trial and an experiment is
a collection of trials. Tune is built on top of Ray [60] framework

29

Google Cloud Machine Learning Engine is part of the larger family of Google
products for machine learning. However, the product is heavily dependent on
Google infrastructure and is neither open source nor free.

As we shall show in the following sections, PyCOMPSs not only enables the
design of more complex workflows with little programming effort, it also handles
job management, data transfers dependencies and reuse of memory objects from
one task to the next if they use the same object. These key features are not only
missing from existing tools, but implementing them in existing job schedulers such
as slurm requires multiple reservations and a serious developers effort.

3.3 PyCOMPSs

PyCOMPSs [50] is a task based programming model that enables the parallel
execution of existing Python sequential applications, with minimal impact on the
development effort, in distributed environments. To do this it offers an interface for
parallelizing that uses Python decorators to identify the methods to be considered
as tasks, and a small API for synchronization. Formally, PyCOMPSs is the Python
binding of COMPSs 1 (Figure 3.1), which relies on the COMPSs runtime and
communicates with it whenever a task is detected or its execution requested.

In order to enable the parallelization, the runtime builds a data dependency graph
of the tasks that make up the application at execution time. To this end, the task
parameters and its direction are taken into account to determine the dependencies
among tasks. The runtime is responsible of keeping track of the tasks and respect
the dependencies in order to guarantee the validity of the execution, that is, to
produce the same result as if is executed sequentially. Consequently, the runtime
that can exploit the inherent parallelism of the application at task level and can
execute the application in a distributed environment, such as grids, clusters, clouds,
and container managed clusters. To achieve this, the runtime is able to schedule
the tasks in the available computational resources, acting as an interface with the
different computing resources, and transferring the data when needed. COMPSs
also supports Java and C++ applications.

The mechanism that PyCOMPSs provides to declare a method as a task is the
@task decorator, which can be used over any function, instance method or class

1compss.bsc.es

30

Figure 3.1: COMPSs Architecture

method. In this decorator, hints to specify characteristics of the function parameters
or hints for the scheduler can be included. For example, the returns keyword into
the @task decorator can be used to specify the type/number of return elements,
the name of a parameter with its type (e.g., FILE) or their directionality (e.g., IN,
OUT, INOUT), and priority=True for the scheduler so that it tries to schedule that
task as soon as possible, among others.

Moreover, PyCOMPSs also provides a set of decorators which can be placed on
top of @task in order to: define task constraints @constraint, define the task as an
external binary, MPI or OmpSs executable @binary, @mpi, @ompss respectively,
declare multiple implementations for the same task @implement (this decorator
allows the runtime to choose the most appropriate task considering the resources),
nesting tasks @compss, or even multi node tasks @multinode.

Listing 3.2 shows an example of the experiment task, which receives an IN
parameter (config - since its direction is not explicitly defined, default is taken)
and returns a single integer value. In addition, a constraint has been defined,

31

declaring that the task requires one core and one GPU.In a nutshell, key strengths
of PyCOMPSs that empower its usage for HPO, include the following:

Programmability: PyCOMPSs follows the natural Python way of programming
and all a user has to do is add decorators to existing code. Furthermore, in the
absence of PyCOMPSs, the program executes sequentially as it would and all
PyCOMPSs directions are ignored. This is particularly important because new
users can get up and running within no time hence encouraging adaptability.

Seamlessly Distributed: Cluster management and distributed computing
can be a complex task that adds a significant overhead to machine learning
researchers. PyCOMPSs takes the burden of cluster configuration from the
researcher. For instance, if the user wants to use multiple nodes for HPO, they
only need to set the number of nodes for the entire job and PyCOMPSs seamlessly
manages this resources and allocates tasks based on the requirements of each
task.

Resource Management: PyCOMPSs manages all available resources ac-
cordingly. The user can exclusively determine the type and number of computing
resources for a particular task. Furthermore and very important for machine
learning, PyCOMPSs supports heterogeneous resources. As such, for compute
intensive deep learning applications, each task can will be assigned a number of
CPUs and a GPU. If further, a task has built-in parallelism, PyCOMPSs will not
interfere with this. PyCOMPSs also enforces CPU and GPU affinity and therefore
prevents tasks from competing for same resources.

Fault Tolerance: A sequential application has a single point of failure. De-
pending on where the failure happens, this could be a wastage of both time and
resources. For long running applications such as HPO, its important to ensure
continuity in case of failure. Fault tolerance in PyCOMPSs is supported in two
ways. If a task fails for whatever reason, an attempt is made to start the task
again. Secondly if a computing unit fails or becomes unavailable for whatever
reason, PyCOMPSs restarts this task in another computing unit. This is especially
important in machine learning where some tasks are bound to fail during execution
due to long execution times.

32

3.4 Approach

In this section present our approach to implement HPO using PyCOMPSs. First we
explain how to structure the application, then give programming details and finally
we explain what PyCOMPSs does behind the scenes to distribute the application.

Figure 3.2: Application Structure

As mentioned earlier, HPO is essentially running multiple trainings with different
configurations to determine the one that generalises best. In most cases, training
doesn’t have to run all the way to the end as one can tell how a model is training
after several epochs/iterations. However, there are instances of premature conver-
gence and Deep Double Descent [61]. Therefore it is important to test a wide set
of parameters. Multiple runs are generally independent of each other. Traditionally,
one would just launch one training after the other and make observations. If they
have several computers available, one could launch multiple trainings on different
computers. We build our HPO tool based on these principles.

On the general structure, at the very top we have an application, which is the
entire HPO process. A JSON file containing all the hyperparameters and their
values is passed to this application at start. Training and observing a model is an
experiment and can be defined as a task in PyCOMPSs terms. The application
will therefore be made up of multiple tasks that will be executed either on the same

33

node or across multiple nodes. Each task requires a unique set of hyperparamet-
ers, we call this config, that is passed to the task as a parameter. This configs are
generated, depending on the algorithm selected, from the list of hyperparameters
contained in the JSON file that was passed to the application. A sample config file
is shown in Listing 3.1. A high level overview of the structure and flow is shown in
figure 3.2.

Listing 3.1: A simple config file
{

”optimizer”: [”Adam” ,”SGD”, ”RMSprop”],
”num epochs”: [20, 50, 100],
”batch size”: [32, 64, 128]

}

From the structure show in Figure 3.2 programming entails very few changes to
existing sequential code. To make each experiment a task, executable in parallel
with other tasks, we simply add the @task decorator from the PyCOMPSs API
before the method/function. We also use the @constraint decorator to assign
the type and number of computing resources to each task, e.g CPU or GPU. We
then launch the tasks in a loop passing a different config to each task. The code
in Listing 3.2 summarises how to implement HPO in PyCOMPSs.

1

2

d1v2

sync

d1v2

3

4

d3v2 d3v2

5

6

d5v2 d5v2

7

8

d7v2 d7v2

9

10

d9v2 d9v2

11

12

d11v2d11v2

13

14

d13v2d13v2

15

16

d15v2d15v2

17

18

d17v2d17v2

19

20

d19v2d19v2

21

d21v1

graph.experiment
graph.visualisation

graph.plot

Figure 3.3: Tasks graph

When we launch this application using using PyCOMPSs (to launch we use
runcompss application.py json file), a dynamic graph is created and all de-
pendencies are established. A sample graph for one of the experiments is shown
in Figure 3.3. PyCOMPSs then assigns computational resources based on the
requirements for each task. When not using a Parallel File System (PFS) such
as IBM’s General Parallel File System (IBM GPFS) then the data required by the
task is copied to the specif node that the task will be executed. Otherwise all

34

tasks can read and write to the PFS. Its important to note that most HPC clusters
are equipped with PFS.If no further resources are available, tasks wait for the
resources.

Tasks are then executed in workers independently and in parallel to completion.
A task can utilise its own internal parallelism if its designed to do so, for instance,
Tensorflow executes tensor operations in parallel. Furthermore, for tasks that
require multiple GPUs within the same node, this could be easily achieved using
the Frameworks internal data/model parallel support. In fact, this could also be
a tunable parameter. The case for trainings that require multiple GPUs across
multiple nodes has not been explored in this work. In case a task fails for whatever
reason (such as node failure), the runtime tries to start the same task in the same
node, if it fails again, its restarted in another node. This way, PyCOMPSs ensures
fault tolerance. The failure of task does not affect the other tasks unless there are
some dependencies.

Listing 3.2: Implementing HPO with PyCOMPSs

PyCOMPSs modulesls
from pycompss.api.task import task
from pycompss.api.api import compss_wait_on
from pycompss.api.constraint import constraint

def create_model(config):
New model created every time with different parameters
Model parameters can be set here from the config file (i.e optimisers)
...
...
return model

@constraint(processors=[{'ProcessorType':'CPU', 'ComputingUnits':1}, {'ProcessorType':'GPU', 'ComputingUnits'
:1}])

@task(returns=int)
def experiment(config):

Trainign parameters can be set here (ie No of Epochs)
model = create_model(config)
model.train(config)
return val_acc

def main():
args = get_args()
configurations = process_config(args.config)

for config in configurations:
experiment_result = experiment(config)
results.append(experiment_result)

35

results = compss_wait_on(results)

if __name__ == ' main ':
main()

On completion, each task returns the result which can be a performance meas-
ure such as validation loss or accuracy and training history. For immediate and
interactive action, the performance measure returned can be visualised using
another task. When all tasks are completed, we plot the graphs showing the
performance of each experiment. To do this, we use the comps wait on over the
list of results of all the experiments that synchronizes and ensures all results are
available for plotting.

3.5 Experiments

To demonstrate the usage and effectiveness of our scheme, we designed and
performed several experiments using popular machine learning benchmarks ,
MNIST [37] and CIFAR 10 [38]. The experiments are performed at the MareN-
ostrum 4 supercomputer. Each node has two Intel Xeon Platinum chips, each
with 24 processors, a total of 48 per node. For GPU implementations, we perform
experiments on both MinoTauro cluster, which has 2 K80 NVIDIA GPU Cards
and 2 Intel Xeon E52630 v3 (Haswell) 8-core processors and CTE IBM POWER9
cluster which has 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20
cores and 4 threads/core, total 160 threads per node and 4 x GPU NVIDIA V100
(Volta) with 16GB HBM2.

Figure 3.4: Running a single task on a single core

When tracing is set (this is done using a simple flag), PyCOMPSs generates
a set of traces that help in application analysis. This is because PyCOMPSs is
instrumented with Extrae, an instrumentation package that captures information
during the program execution and generates paraver traces. Paraver [62] is a

36

powerful tool that provides detailed quantitative analysis of program performance.
We run the first set of experiments with tracing set. From the traces generated, X
axis is the time while Y axis is the resource (i.e cores and nodes).

Figure 3.5: Multiple tasks on a single Node

The first experiment is to make sure and show that each task respects the
resources given and CPU affinity is enforced. For this, we launch just one task and
assign one core in a node with 48 cores. This is done using the MNIST data set
as it is not a very compute intensive task. The traces are shown in the Figure 3.4.
The task takes around 29 mins to run to completion and its constrained to a single
core. Even though tensorflow’s default behavior is to span across all available
resources, PyCOMPSs is able to enforce CPU affinity and the application has
access to only the resources allocated.

The next experiment is to see how tasks are distributed across cores in a single
node. For this we launch the full MNIST HPO experiment using grid search. From
the configuration file, 27 different experiments are created. The search space is
number of epochs, batch size the optimiser, 3 parameters for each. Since the
worker takes half of the cores in a node, 24 cores are left for the tasks. As such,
not all tasks will run in parallel. However, the next task is assigned a computational

37

(a) 28 Nodes (b) 14 Nodes

Figure 3.6: Multiple tasks on multiple nodes

unit as soon as one is available as shown by the event flags. The traces are shown
in Figure 3.5.

The final experiment is to demonstrate HPO across multiple nodes. For this we
choose a much bigger dataset, CIFAR10. A total of 27 experiments are created to
be distributed across 27 nodes. However, during job submission, we request an
extra node for the worker to make sure that all the tasks run in parallel. We assign
48 cores to each task (the total number of cores in a node) and let Tensorflow take
care of internal parallelism. We also repeat this experiment with half the number
of nodes. The traces are shown in the Figure 3.6.

Both tracing and graph generation create a performance overhead. These two
features can easily be turned off by a simple flag when launching the application.
Ideally we do not need the traces in HPO, but they are important to show deeper
details of the application. As such, we repeat the second and last experiment with
traces turned off. We also execute the same experiment on the GPU cluster, as
ideally, training is done on GPU. We also repeat the experiments with different GPU
and CPU configurations. In these experiments we only measure the execution
time. Results for those executions are presented in Section 3.6.

3.6 Results and Discussion

In this section we provide detailed analysis of our tool and the results of the
experiments. We first do a performance analysis and resource utilisation by
looking at the traces generated. The objective is to show the effectiveness of
PyCOMPSs in task parallelism and resource management. The first experiment

38

tested that PyCompss can properly manage the hardware resources available in
the supercomputer.

3.6.1 Application Analysis

From Figure 3.5, several observations can be made. First, the tasks take different
times to complete with some taking almost half the time. This is due to the different
number of epochs from the configuration file. Second, from the event flags, 24
tasks were started at the same time. The remaining tasks are started as soon
as a new resource is available, in this case cores 4, 10 and 16 from node 2. The
entire application takes 207 minutes. However, as will be shown later, this is not
entirely necessary and the process can be stopped as soon as one task achieves
a specified accuracy.

In Figure 3.6(a), each task runs on its own node as specified and all tasks run
in parallel. The first node seems empty as it is used by the worker. Like in the
previous case, some tasks finish earlier than others. This means that it is possible
to run the same application with half the number of nodes for almost the same
amount of time as the nodes remain idle for the tasks that complete. This is shown
in Figure 3.6(b). Clearly, this is a better utilisation of resources. It is important to
note that no code changes are required to run across multiple nodes, the user just
has to request more nodes when submitting the job. Scaling from a single node to
multiple nodes is seamless.

Figure 3.9 shows the time taken to complete the MNIST (CPU nodes) and
CIFAR (GPU node) experiment using different configurations. By increasing the
number of cores for each task, there is a continuous decrease in the time taken.
However in the case of a single node, the time starts to increase after 4 cores. This
is because assigning more cores than the total available means that some tasks
will be waiting for resources. If the total number of cores available is the same or
close to the number of cores requested by the application, the execution becomes
sequential and therefore takes a longer time. One should therefore increase the
number of nodes as they increase the number of cores per task to create a bigger
pool of resources. This is evident when using two nodes as the time taken by the
application continues to decrease.

There is a very significant time difference in the GPU Node. The GPU node
has 4 GPUs and 160 cores. We assign each task a single GPU (therefore only 4

39

Figure 3.7: MNIST Hyperparameter optimisation using Grid Search

parallel tasks) and continuously increase the number of CPU cores. When using a
single core, the time taken is even higher than that of CPU node. The explanation
for this is that even though deep learning is significantly accelerated by GPUs, in
our set up data preprocessing takes place in the CPU. Therefore a powerful GPU
with just a single core is irrelevant as it will be idle more of the time. Increasing the
number of cores brings down the time for the entire HPO process to less than an
hour even though only 4 tasks run in parallel. Also important to note is that for the
GPU node, we run the CIFAR10 dataset, which is much bigger in size. This is to
create a noticable difference as the MNIST dataset is too small.

3.6.2 HPO Results

When all the tasks are done, we plot the results the same figure for easier com-
parison. Figure 3.7 shows the result of HPO for MNIST dataset after the entire
application has completed. In this run, our config has the following hyperparamet-
ers: Optimizers (Adam ,SGD,RMSprop), Epochs(10, 20, 50) and Batch size (32,
64, 128). MNIST is a relatively simple application that generalises well after just a
few epochs. Most of the combinations of hyperparameters are able to attain above

40

90% accuracy. For such task, early stopping is of paramount significance as it
makes no sense to continue with other tasks after one has achieved the desired
accuracy.

Figure 3.8: CIFAR10 Hyperparameter optimisation using Grid Search

CIFAR 10 is a slightly bigger and more complex benchmark in comparison
with MNIST. Figure 3.8 shows the results of HPO for CIFAR 10 dataset. Most of
the experiments perform well on the given hyperparameters. We include even
hyperparameter combinations that would obviously give low accuracy to show and
visualise such cases as they provide useful information as well. As mentioned
earlier, random search would be a better alternative in this case as its possible to
determine a good set of hyperparameters with just a few experiments.

3.6.3 Discussion

In this chapter, our main focus was to provide a scheme and tool for HPO in HPC
clusters. Though we have demonstrated the usage using primarily one algorithm,
this scheme provides the user with the flexibility to choose and implement any
HPO algorithm. Furthermore, even though all the experiments are implemented
with Tensorflow, our scheme does not constrain the user to any framework. We
focus on structuring the application rather than the inner details of the application.

41

Figure 3.9: Time Vs Cores

Besides easy programmability as evident in listing 3.2, our scheme scales with
an increase in the number of both cores and nodes. We tested scalability up to
27 nodes as shown in the traces. The time taken for the entire HPO even when
using an algorithm such as grid is drastically brought down with an increase in the
number of resources. Furthermore, our tool provides the much needed flexibility in
resources management. By specifying the number of GPUs and CPUs for a task,
one can come up with an optimal number and type of resources depending on the
task.

3.7 Conclusion

In this chapter we have presented a HPO scheme based on PyCOMPSs as an
alternative tool for Hyperparameter Optimisation. We have shown that we can
span multiple trainings across multiple nodes in a supercomputer and reduce the
entire HPO process to days or hours instead of weeks. We have shown that our
scheme is not only simple and easy to implement but provides all the features for
a HPO tool discusses in section 3.1.

42

We hope to provide researchers with an alternative tool to accelerate HPO in
complex infrastructures such as supercomputers and cloud. Furthermore, we
provide a framework agnostic tool with a easy implementation. Even though we
intend to support exhaustive grid search and random search, different algorithms
can easily be implemented. We further present PyCOMPSs as a framework that
enables seamless distributed computing to the machine learning community to
facilitate further discussions and innovation around the subject. For future work,
we are developing a library that puts together all key algorthms in HPO in an easy
to use way. This library will enable the user to perform HPO over any search space
by simply calling a function and specifying the algorithm.

43

44

Chapter 4

An Oracle for Guiding Large-Scale
Training of Deep Neural Networks

With the steady increase in datasets and model sizes, model/hybrid parallelism is
deemed to have an important role in the future of distributed training of DNNs. In
this chapter, we analyse the compute, communication, and memory requirements
of Deep Neural Networks (DNNs) to understand the trade-offs of different parallel-
ism approaches on performance and scalability. We leverage our model-driven
analysis to be the basis for an oracle utility which can help in detecting the limita-
tions and bottlenecks of different parallelism approaches at scale. We evaluate
the oracle on six parallelization strategies, with four CNN models and multiple
datasets (2D and 3D), on up to 1024 GPUs. This chapter is the core of this thesis

4.1 Introduction

DNNs are achieving outstanding results in a wide range of applications, including
image recognition, video analysis, natural language processing [8], understanding
climate [9], and drug discovery [10], among many others. In the quest to increase
solution accuracy, researchers are increasingly using larger training datasets as
well as larger and deeper DNN models [13, 14, 15]. In addition, applying Deep
Learning (DL) in new domains, such as health care and scientific simulations,
introduce larger data samples and more complex DNN models [16]. Those trends
make the DNN training computationally expensive for a single node. Therefore,
large-scale parallel training on high-performance computing (HPC) systems or

45

clusters of GPUs is becoming increasingly common to achieve faster training time
for larger models and datasets [13].

When training a specific DNN model on an HPC system, one of the challenges
is to figure out the optimal large-scale parallel strategy. There are two prominent
strategies for parallelizing the training phase of DL: data and model parallelism. It is
important to note that despite the early investigation of model parallelism in DL [63],
those efforts were premature and remained far from production deployments, since
data parallelism was simple and sufficient. However, the growth in datasets and
models far outgrows the increase in compute capability [15]. Accordingly, scaling
data parallelism can be limited by the memory capacity and the communication
overhead.

First , we elaborate on the memory capacity issue. In data parallelism, the entire
model is duplicated for each compute node. Therefore, training larger and deeper
neural networks have to deal with the memory capacity limits. A notable case is
in the area of language modeling at which models are increasingly approaching
O(100B) parameters [64] (ex: GPT-3 has 175B parameters [65]). In addition,
for sample sizes with higher dimensions, e.g., 3D scientific data sets [40] and
videos, the memory capacity would also limit the number of samples that can
be concurrently processed by a GPU [66]. Hence, restricting the scaling of data
parallelism.

Second we elaborate on the communication overhead. A major bottleneck
when scaling data parallelism is the large-message Allreduce collective communic-
ation for the gradient exchange at the end of each iteration [67, 68]. As the number
of computing nodes increases, e.g., up to 2048 GPUs for Resnet-50 as in, the com-
munication becomes a bottleneck due to the Allreduce collective operation. Several
active efforts try to optimize the Allreduction collective algorithm for supporting
large messages on specific network architectures in HPC systems [68, 69, 70].
Researchers also reported reducing the size of transmitted data such as quantiz-
ation [71, 72] and sparsification [73, 74, 75] by using fewer bits to represent the
model weights or gradients (known as quantization) [71, 72], or by skipping the
transfer of the trivial gradients and instead only share the significant gradients
(known as sparsification) [73, 74, 75]. However, even with those algorithms, com-
munication remains a bottleneck when the size of the models increases. Moving
to model or hybrid parallelism is one of the ways to reduce this communication
overhead [76].

46

The third issue is the degradation in convergence accuracy when the mini-
batch size increases [77, 78]. In recent years, many successful efforts have been
dedicated to increase the mini-batch size without (or with small) loss in accuracy
in DNNs [79, 80, 67, 68]. For example, work in [68] reports that the mini-batch
size reach up to 81K, when training ImageNet [81] on Resnet-50 using Stochastic
Gradient Descent (SGD) with up to 2048 GPUs. It helps to reduce the training time
from 29 hours, on a single V100 GPU, down to 74.7 seconds [68]. However, there
is no empirical evidence or theoretical proof that ensures that techniques such as
LARS [82] and LAMB [83], can work well with other different datasets and models.

47

A
pp

ro
ac

he
s

C
om

po
ne

nt
s

Tr
ai

ni
ng

P
ha

se
s

A
dd

iti
on

al
R

em
ar

ks
A

P
TA

P
S

FR
S

Y
IO

FB
G

E
W

U

O
pt

im
iz

at
io

n
m

et
ho

ds
◦
•
◦
◦
◦

-
-

-
X

S
ec

on
d

or
de

rm
et

ho
ds

[8
4]

(fe
w

er
ep

oc
hs

to
co

nv
er

ge
,b

ut
lo

ng
er

ite
ra

tio
ns

an
d

m
or

e
m

em
or

y)
.

N
or

m
al

iz
at

io
n

•
◦
◦
◦
◦

-
X

-
-

C
ro

ss
-G

P
U

B
at

ch
-n

or
m

al
iz

at
io

n
[8

5]
(r

eq
ui

re
s

ex
tra

co
m

m
un

ic
at

io
n)

an
d

G
ro

up
N

or
m

al
iz

at
io

n
[8

6]
.

P
re

-tr
ai

ne
d

m
od

el
•
•
◦
◦
◦

-
X

-
-

A
bi

g
m

od
el

,t
ha

ti
s

pr
e-

tra
in

ed
on

a
bi

g
ge

ne
ric

da
ta

se
t,

su
ch

as
G

oo
gl

e
B

iT
[8

7]
ca

n
be

fin
e-

tu
ne

d
fo

ra
ny

ta
sk

,e
ve

n
if

on
ly

fe
w

la
be

le
d

sa
m

pl
es

ar
e

av
ai

la
bl

e.
A

llr
ed

uc
e

op
tim

iz
at

io
n

◦
◦
•
◦
•

-
-

X
-

R
ed

uc
e

th
e

co
m

m
un

ic
at

io
n

tim
e

by
co

ns
id

er
in

g
th

e
sp

ec
ifi

c
ne

tw
or

k
ar

ch
ite

ct
ur

es
of

H
P

C
sy

st
em

s
[6

8,
69

,7
0]

(d
at

a
pa

ra
lle

lis
m

)

S
pa

rs
ifi

ca
tio

n
◦
•
•
◦
◦

-
X

X
X

R
ed

uc
in

g
th

e
co

m
pu

ta
tio

n
vo

lu
m

e
[8

8]
or

/a
nd

co
m

m
un

ic
at

io
n

m
es

sa
ge

si
ze

[7
5]

by
sk

ip
pi

ng
th

e
co

m
pu

tin
g/

tra
ns

fe
rr

in
g

of
no

n-
im

po
rt

an
tw

ei
gh

ts
/g

ra
di

en
ts

,i
ns

te
ad

on
ly

pe
rfo

rm
in

g
on

th
e

si
gn

ifi
ca

nt
on

es
(m

ai
nl

y
fo

rd
at

a
pa

ra
lle

lis
m

).
M

em
or

y
op

tim
iz

at
io

n
◦
◦
◦
•
◦

-
X

X
X

R
ed

uc
e

re
qu

ire
d

m
em

or
y

by
us

in
g

lo
w

er
pr

ec
is

io
n

(q
ua

nt
iz

at
io

n)
[7

1]
,g

ra
di

en
tc

he
ck

in
g

po
in

t[
89

],
ou

t-o
f-c

or
e

m
et

ho
ds

[9
0]

,

N
et

w
or

k
ar

ch
ite

ct
ur

e
◦
◦
◦
◦
•

X
-

X
-

In
cr

ea
si

ng
nu

m
be

ro
fG

P
U

s
in

tra
no

de
,i

.e
.,

up
to

16
G

P
U

s
in

D
G

X
-2

.
H

ig
h-

th
ro

ug
hp

ut
in

te
r-

no
de

ne
tw

or
k

to
po

lo
gy

su
ch

as
H

yp
er

X
[9

1]
or

B
iG

ra
ph

[9
2]

.

M
od

el
/h

yb
ri

d
pa

ra
lle

lis
m

(o
ur

ta
rg

et
in

th
is

w
or

k)
◦
◦
•
◦
◦

X
X

X
X

C
as

te
llo

et
al

.[
93

]a
na

ly
ze

d
th

e
co

m
m

un
ic

at
io

n
tra

de
-o

ffs
in

so
m

e
m

od
el

pa
ra

lle
ls

tra
te

gi
es

.
H

yb
rid

pa
ra

lle
lis

m
ar

e
pr

op
os

ed
in

[9
4]

(s
pa

tia
lw

ith
da

ta
)a

nd
[7

6]
(c

ha
nn

el
/fi

lte
rw

ith
da

ta
).

[9
5,

96
]e

xp
lo

re
d

di
ffe

re
nt

pa
ra

lle
liz

at
io

n
sc

he
m

es
on

pe
r-

la
ye

rb
as

is
.

Ta
bl

e
4.

1:
R

ec
en

tp
ro

gr
es

s
(a

nd
ex

am
pl

es
)

in
sc

al
in

g
di

st
rib

ut
ed

tra
in

in
g

of
D

N
N

s,
ac

ro
ss

di
ffe

re
nt

tra
in

in
g

co
m

po
ne

nt
s

an
d

ph
as

es
.

48

Given those issues with data parallelism and the growing scale of training,
researchers are tackling different bottlenecks across the different components
necessary for distributed DNN training. Table 4.1 shows a summary of the recent
approaches in scaling distributed DNN training, split into components and training
phases. Training components: AP- application (models and datasets), TA-training
algorithms, PS-parallel strategies (computation and communication), Training
phases: IO-I/O and pre-processing, FB-a forward and backward propagation,
GE-the gradient exchange (if needed) and •: related components. X: related
training phases. Despite those efforts, data parallelism is not feasible for all
cases. Thus, it is important to understand the limitations and scalability of large
scale model and hybrid parallelism training of DNNs.

In this work, we focus on the HPC aspects of scaling six different strategies
for model and hybrid parallelism in CNNs distributed training. Innovations in DL
theory (e.g., optimizers) are out of the scope of this thesis. While most works in
the literature focus on improving the performance of one single parallelism strategy
for one specific framework; our study functions as the basis for a tool, named
ParaDL, capable of modeling and predicting the performance of a large set of
configurations for CNN distributed training at scale. In addition, ParaDL also helps
to reveal the practical limits and bottlenecks of different parallel strategies in CNN
training .

Our main contributions in this work are as follow:

• We formally define the main parallel strategies (See Section 4.3), including
hybrid ones, and provide a comprehensive analysis of the compute, com-
munication, and memory footprint when training CNNs for inputs of any
dimension.

• We propose an oracle (ParaDL) A demo of ParaDL is available at the follow-
ing link: http://tiny.cc/paraDL. that projects the ideal performance of
distributed training of DNNs, broken down by training phases. This helps
in favouring a parallel strategy on a given system and aids in identifying
optimisation opportunities in frameworks or system libraries.

• We implement all parallelization strategies to validate our model, except for:
a) data parallelism (already supported by most DL frameworks), and b) using
an existing pipeline implementation.

49

http://tiny.cc/paraDL

• We show the utility of ParaDL in exposing performance and scalability trade-
offs. The accuracy of ParaDL (86.74% on average and up to 97.57%)
is demonstrated by conducting a wide range of experiments for different
CNN models, parallel strategies, and datasets, on up to 1, 024 GPUs (See
Section 5.5).

4.2 Background and Notation

As mentioned in Chapter 2, DNNs are made up of a network of neurons (represen-
ted as nodes) that are organised in layers (a model). A DNN is trained by iteratively
updating the weights of connections between layers in order to reduce the error
in prediction of labelled datasets. That is, for a given dataset of D samples, a
DNN is trained to find out the model weights w for which the loss function L is
minimized. Distributed training of a DNN can be divided into four phases: (IO) I/O
and pre-processing, (FB) a forward phase at which the samples pass through the
entire network, followed by a backward phase (back propagation) to compute the
gradients, (GE) the gradient exchange (if needed) and (WU) updating the weights.
Specifically, the samples are picked up from the dataset randomly in batches of
size B (mini-batch).

The training process is then performed on those batches of samples iteratively
by using an optimization algorithm such as the SGD, in which, weights are updated
with a learning rate ρ via witer+1 ← witer − ρ 1

B

∑
i∈Batch

(
dL
dw

)
i
. The process is then

repeated, until convergence, in epochs that randomize the order at which the input
is fed to the network.

To optimize for the performance and efficiency of training in large-scale, re-
searchers introduce improvements to the methods, algorithms and design across
entire training components which includes: AP- application (Deep Learning mod-
els and datasets), TA-training algorithms (ex: SGD or second order methods),
PA-parallel strategies (model of computation and communication), FR-framework
and SY-systems.

We summarise our notation in Table 4.2. In a G-layer CNN model, a convolution
layer l mainly needs these tensors:

• The input of layer l with N samples, each sample include Cl channels, each
channel is a tuple of d-dimension: xl[N,Cl, Xd

l]. In a 2-dimension layer, we

50

replace Xd
l with [Wl, Hl], i.e., x[N,Cl,Wl ×Hl]. In a clear context, we omit the

layer index l and the dimension d, i.e., x[N,C,X].

• The output (activation) of layer l with N samples and Fl output channel
yl[N,Fl, Y

d
l].

• The weight wl[Cl, Fl, Kdim
l] with Fl filters. Each filter has Cl channels and size

of Kd
l . In some case, we omit the filter size (also known as kernel size), e.g.,

wl[Cl, Fl].

• The activation gradients dL
dyl

[N,Fl, Y
d
l].

• The weight gradients dL
dwl

[Cl, Fl, K
d
l]

• The input gradients dL
dxl

[N,Cl, X
d
l].

We adapt non-Conv layers with the above tensors (we extend the notation
in [76]). For channel-wise layers, such as pooling or batch-normalization, we
require no further adaption. A fully-connected layer with input x[N,C,W × H]

and F output can be expressed as a convolution layer where the size of filters is
exactly similar to the size of the input layer, i.e., w[C,F,W ×H], with padding and
stride set to 0 and 1, respectively. Thus, the output will become y[N,F, 1× 1].For
element-wise layers, such as ReLU, the number of filters F is equal to the number
of channels C. For layers without weight, such as pooling and ReLU, the weight
becomes w[C,F, 0].It is also possible to express a fully-connected layer with a
flattened strategy (although we do not use such way in this work). Assume that the
output of the previous layer is ypre[N,Fpre,W ×H]. We flattened the input, output
as x[N,C = Fpre ×W × H, 1 × 1], x[N,F, 1 × 1], respectively. Thus the weight
becomes w[C,F, 1× 1].

The sequential implementation of CNN requires the following steps for each
layer :

(IO) x[N,C,X]← IO(dataset, B) in the first layer

(FB) y[N,F, Y]← FW (x[N,C,X], w[C,F,K])

(FB) dL
dx [N,C,X]← BWdata(

dL
dy [N,F, Y], w[C,F,K])

(FB) dL
dw [C,F,K]← BWweight(

dL
dy [N,F, Y], x[N,C,X])

51

At the end of each iteration, weights of all layers are updated:

(WU) w[C,F,K]←WU(dLdw [C,F,K], ρ)

4.2.1 Related Work

Gholami et al. [94] investigated the efficiency of hybrid data and spatial paral-
lelism. Castello et al. [93] analyzed the communication trade-offs in some model
parallel strategies. Jia et al. [96] showed that different parallelism strategies for
different layers can give some performance advantage, for some models. Dryden
et al. [76] proposed the use of channel/filter parallelism with data parallelism.
They demonstrated improved scaling of ResNet50/ImageNet, mainly due to the
effectiveness of intra-node segmented collectives. Huang et al. [15] proposed the
use of pipeline parallelism for a single node with multi-GPUs. Recent work [95, 96]
explored different parallelization schemes on per-layer basis. The parallelization
strategy then becomes an optimization problem to choose the best solution among
different permutations of layer-wise parallelization options. The authors suggested
a graph search heuristic to find optimal strategies. However, the search heuristic
can be a bottleneck since it grows exponentially with the number of potential config-
urations per layer. Oyama et al [97] presented scalable hybrid-parallel algorithms
for training large-scale 3D convolutional neural networks and s showed that good
weak and strong scaling can be achieved using up to 2K GPUs. In summary, the
related work for studying parallelism in training has typically been limited in scope
to applying individual parallel strategies on specific choices of model/dataset.

4.3 Strategies for Distributed Training

Training DNNs using a single processing element (PE) is computationally expens-
ive, e.g., training ResNet-50 over a single V100 GPU requires 29 hours. Hence
distributed training on HPC systems is common for large models and datasets.
Parallelizing of training process should be done by splitting different dimensions.
In this work, we cover four basic parallel strategies that differ in the way we split
the data and model dimensions in the training of CNNs: (1) distributing the data
samples among PEs (data parallelism), (2) splitting the data sample by its spatial di-
mension such as width or height (spatial parallelism) [98], (3) vertically partitioning
the neural network along its depth (layer parallelism) and overlapping computation

52

between one layer and the next layer [15] (also known as pipeline parallelism), and
(4) horizontally dividing the neural network in each layer by the number of input
and/or output channels (channel and filters parallelism) [94, 98]. In addition, a com-
bination of two (or more) types of the mentioned parallelism strategies is named
as hybrid parallelism (e.g., Data+Filter parallelism and Data+Spatial parallelism,
or df and ds respectively for short, are some examples of hybrid parallelism).

In this work, when presenting tensors such as x, y, and w, we use the ∗ symbol
to present a dimension for which its values are replicated between processes. To
emphasize that a tensor’s dimension is partitioned among different PEs, we use
the number of processes p. For example, in data parallelism, x[p, ∗, ∗] implies that
the input x is split equally in dimension N (number of samples) and partitioned to
p PEs. The other dimensions such as C and X are replicated. The arrow Allreduce←−−−−−
presents Allreduce communications.

It is important to note that the notation and analysis in this chapter is general
to input tensors of any dimension (1D, 2D, and, 3D). Input tensors of higher
dimensions are also valid in our analysis since they can be represented as 3D
tensor with the extra dimensions as component vector(s) (e.g. CosmoFlow [66]
has 4D input represented as a 3D tensor plus a vector at each cell). Finally, the
parallel strategy can alternatively be viewed as a domain decomposition problem:
a recurring problem in HPC applications. Accordingly, we formulate the notation
and analysis to be interpretable as domain decomposition schemes.

Figure 4.1: Sequential implementation on a single PE

4.3.1 Data parallelism

The entire model is replicated on p different PEs, e.g., GPUs (Figure 4.2) and the
dataset is scattered into sub-datasets to each PE. Then the forward and backward

53

D Data set size
B Mini batch size
I Number of iterations per epoch. I = D

B

E Number of epochs
G Number of layers
xl Input of a layer l
yl Output (activation) of layer l
wl Weight of layer l
Wl / Hl Width / Height of input of layer l
Cl Number of input channels of layer l
Fl Number of output channels of layer l, e.g., number of filters in conv. layer
FWl / BWl Forward / Backward propagation action of layer l
[A1, . . . , An] n-dimensions array with size of A1 ×A2 × · · · ×An

Xd
l a d-dimension tuple (array) presents an input channel. In a 2-D convolution layer, X2

l

is a Cartesian product of Wl ×Hl

Y d
l a d-dimension output channel
Kd

l a d-dimension filter. In a 2-D convolution, K2
l = K ×K

p Total number of processes elements (PEs)
S Number of segments in pipeline parallelism
α Time for sending a message from source to destination
β Time for injecting one byte of message into network
δ Number of bytes per item, e.g., input, activation, weight
γ Memory reuse factor

Table 4.2: Parameters and Notation

phases are computed independently, using those different partitions of the dataset,
i.e., in a micro-batch B′ = B

p
at each iteration. In the gradient exchange phase, an

Allreduce operation is required to aggregate the weight gradients, i.e.,
∑p

i=1

(
dL
dw

)
i
.

We define operations at the processing element i in data parallelism as:

(IO) (x)i[p, ∗, ∗]← IO(sub-dataseti, B′) in the first layer.

(FB) (y)i[p, ∗, ∗]← FW (xi[p, ∗, ∗], w[∗, ∗, ∗])

(FB) (dLdx)i[p, ∗, ∗]← BWdata((
dL
dy)i[p, ∗, ∗], w[∗, ∗, ∗])

(FB) (dLdw)i[∗, ∗, ∗]← BWweight((
dL
dy)i[p, ∗, ∗], (x)i[p, ∗, ∗])

(GE) dL
dw [∗, ∗, ∗] Allreduce←−−−−−−

∑p
i=1

(
(dLdw)i[∗, ∗, ∗]

)
(WU) w[∗, ∗, ∗]←WU(dLdw [∗, ∗, ∗])

54

Figure 4.2: Data parallelism

4.3.2 Spatial parallelism (height-width-depth)

All the PEs work on the same batch of samples. First, one leader PE loads those
samples at each iteration and then distributes to other PEs. Note that, the spatial
dimension H, W (and D as in 3-D convolution layer), of x, y, dL

dx
and dL

dy
are split

among p PEs (Figure 4.3). That is p = pw × ph × pd where pw, ph, pd ≤ W , H,
D, respectively. Each process thus performs the forward and backward operation
locally. For a convolution layer, when a filter of size K × K where K > 1 is
placed near the border of a partition, each PE requires remote data for computing.
Thus, a small number (e.g., K

2
) of rows and/or columns will be transferred from

logically-neighboring remote PEs (halo exchange) [98]. The exchanged data size
(i.e., halo(xl)) depends on how each spatial dimension is split, and the stride
length. For example, a processing element i needs a halo exchange for its partial
input (x)i to get (x)i+ when computing the output (y)i in the forward phase. In
the backward phase, the computation of (dL

dx
)i requires a halo exchange on the

corresponding (dL
dy

)i. To compute the weight gradients requires the (x)i+, yet no
more halo exchange is required since the exchanged values of (x)i can be reused.
In the weight update phase an Allreduce is performed for the sum of dL

dw
.

(IO) x[∗, ∗, ∗]← IO(dataset, B)

(IO) (x)i[∗, ∗, p]
Scatter←−−−− x[∗, ∗, ∗] in the first layer.

(FB) (x)i+[∗, ∗, p] halo←−− (x)i[∗, ∗, p]

(FB) (y)i[∗, ∗, p]← FW ((x)i+[∗, ∗, p], w[∗, ∗, ∗])

(FB) (dLdy)i+[∗, ∗, p] halo←−− (dLdy)i[∗, ∗, p]

55

(FB) (dLdx)i[∗, ∗, p]← BWdata((
dL
dy)i+[∗, ∗, p], w[∗, ∗, ∗])

(FB) (dLdw)i[∗, ∗, ∗]← BWweight((
dL
dy)i[∗, ∗, p], (x)i+[∗, ∗, p])

(GE) dL
dw [∗, ∗, ∗] Allreduce←−−−−−−

∑p
i=1

(
(dLdw)i[∗, ∗, ∗]

)
(WU) w[∗, ∗, ∗]←WU(dLdw [∗, ∗, ∗])

Figure 4.3: Spatial parallelism

4.3.3 Model-horizontal parallelism (filter/channel)

A model parallel variant in which each layer of the neural network model is equally
divided by the number of output (filters F) or input channels (channels C) and
distributed on p PEs. Each PE keeps a portion of the weights of a given layer
and partially computes the output in both the forward and backward phases. For
example, the filter parallelism of a convolution layer [94] is illustrated in Figure 4.5.
Each PE i keeps F

p
filters and computes F

p
corresponding channels of the output

activation. That is, |(y)i| = N × |Y | × F
p
. After finishing the forward computation

of each layer, the PEs have to share their local output, i.e., y =
⋃p
i=1(y)i (via

an Allgather operation). After finishing the backward computation of each layer,
the processes also have to share their gradient of the input (pass it to the pre-
ceding layer), i.e., dL

dx
=
∑p

i=1(
dL
dx

)i (an Allreduce operation1). Because each PE
performs the weight-update on its portion of weights, the gradient-exchange phase
is skipped.

1In the backward phase, because a given layer l − 1 only requires to use one partition of the
layer l’s input gradients, i.e.,dLdx [∗, p, ∗], it is possible to perform a Reduce-Scatter instead of an
Allreduce operation [76].

56

Figure 4.4: Channel parallelism (partition the model horizontally)

(IO) x[∗, ∗, ∗]← IO(dataset, B)

(IO) (x)i[∗, ∗, ∗]
Bcast←−−− x[∗, ∗, ∗] in the first layer.

(FB) (y)i[∗, p, ∗]← FW ((x)i[∗, ∗, ∗], w[∗, p, ∗])

(FB) y[∗, ∗, ∗] Allgather←−−−−−−
⋃p
i=1

(
(y)i[∗, p, ∗]

)
(FB) (dLdx)i[∗, ∗, ∗]← BWdata((

dL
dy)i[∗, p, ∗], w[∗, p, ∗])

(FB) dL
dx [∗, ∗, ∗] Allreduce←−−−−−−

∑p
i=1

(
dL
dx)i[∗, ∗, ∗])

)
(FB) dL

dw [∗, p, ∗]← BWweight((
dL
dy)i[∗, p, ∗], (x)i[∗, ∗, ∗])

(WU) w[∗, p, ∗]←WU(dLdw [∗, p, ∗])

Channel parallelism [76] (Figure 4.4) is similar to filter parallel strategy but it
requires an Allreduce in the forward pass and Allgather in the backward pass.

(FB) (y)i[∗, ∗, ∗]← FW ((x)i[∗, p, ∗], w[p, ∗, ∗])

(FB) y[∗, ∗, ∗] Allreduce←−−−−−−
∑p

i=1

(
(y)i[∗, ∗, ∗]

)
(FB) (dLdx)i[∗, p, ∗]← BWdata((

dL
dy)i[∗, ∗, ∗], w[p, ∗, ∗])

(FB) dL
dx [∗, ∗, ∗] Allgather←−−−−−−

⋃p
i=1

(
(dLdx)i[∗, p, ∗]

)

57

Figure 4.5: Filter parallelism (partition the model horizontally)

4.3.4 Model-vertical (layer) parallelism

A model parallel variant at which the CNN is partitioned across its depth (number
of layers G) into p ≤ G composite layers, where each composite layer is assigned
into one PE, as shown in Figure 4.6. We consider the pipeline implementation of
this model parallelism (first proposed by GPipe [15]). The mini-batch is divided
into S segments of size B

S
. In each stage, the forward computation of a composite

layer i-th on a data segment s is performed simultaneously with the computation
of composite layer (i+ 1)-th on the data segment s− 1 and so on. The backward
computation is done in reversed order.

Figure 4.6: Layer parallelism (partition the model vertically)

4.3.5 Hybrid parallelism

We have defined four different main parallel strategies which split the dimension
N , W ×H (×D), F , C, and G, respectively. Without loss of generalization, a layer
also can be split by the size of kernel K ×K. However, in practice K is so small
that parallelizing by dividing K would not give any benefit. Therefore, we focus
on the mentioned main strategies. A hybrid parallelism is a combination of two
(or more) strategies. For example, Figure 4.7 illustrates the data+filter parallelism.

58

In which, p PEs are arranged into p1 groups of size p2 = p
p1

. This hybrid strategy
implements the filter parallelism inside each group and data parallelism between
groups. For a PE 1 ≤ i ≤ p2 in a group 1 ≤ j ≤ p1:

(IO) (x)j [p1, ∗, ∗]← IO(sub-datasetj , B′)

(IO) (x)ij [p1, ∗, ∗]
Bcast←−−− (x)j [p1, ∗, ∗] in the first layer

Filter parallelism inside a group of p2 PEs:

(FB) (y)ij [p1, p2, ∗]← FW ((x)ij [p1, ∗, ∗], w[∗, p2, ∗])

(FB) yj [p1, ∗, ∗]
Allgather←−−−−−−

⋃p2
i=1

(
(y)ij [p1, p2, ∗]

)
(FB) (dLdx)ij [p1, ∗, ∗]← BWdata((

dL
dy)ij [p1, p2, ∗], w[∗, p2, ∗])

(FB) (dLdx)j [p1, ∗, ∗]
Allreduce←−−−−−−

∑p2
i=1

(
dL
dx)ij [p1, ∗, ∗])

)
Data parallelism between p1 groups :

(FB) (dLdw)j [∗, p2, ∗]← BWweight((
dL
dy)ij [p1, p2, ∗], (x)ij [p1, ∗, ∗])

(GE) dL
dw [∗, p2, ∗] Allreduce←−−−−−−

∑p1
j=1

(
(dLdw)j [∗, p2, ∗]

)
(WU) w[∗, p2, ∗]←WU(dLdw [∗, p2, ∗])

Figure 4.7: Hybrid parallelism (example of filter on top of data parallelism)

Another example of hybrid parallelism is the combination of data and spatial or
channel parallelism [76]. Furthermore, the hybrid strategy could be more complex
when applying different parallel strategies for different layers [99, 95]. For instance,
the parallel strategy of Transformer networks in Megatron-LM [100] partitions a
general matrix multiply (GEMM) with filter-wise and then partitions the next GEMM
channel-wise.

59

4.4 Performance and Memory Analysis

In this section, we investigate the performance and memory requirements of
different parallelism strategies when training a DNN on a specific system.

4.4.1 Sequential

The training time of one epoch in the sequential implementation (serial) of a
CNN includes only the time for computation:

Tserial =

I∑
1

B

G∑
l=1

(
FWl +BWl

)
+

I∑
1

G∑
l=1

(
WUl

)

= D

G∑
l=1

(
FWl +BWl

)
+
D

B

G∑
l=1

(WUl)

(4.1)

Considering the memory footprint:

Mserial = 2δ

G∑
l=1

(
B(|xl|+ |yl|) + |wl|

)
(4.2)

In the following, we estimate the total training time and maximum memory per
PE for the mentioned basic parallelism strategies and one hybrid strategy. De-
tails about other assumptions and restrictions factored in these estimations are
discussed in section 4.5.2.

In this strategy, the training time includes both computation and communication
time. Each PE processes a micro batch size B′ = B

p
in this case. The time for

computing at layer l in one iteration for forward and backward phase is 1
p

of the
single-process. Thus the total computation time in one epoch becomes:

Tdata,comp =

I∑
1

G∑
l=1

(B
p
(FWl +BWl) +WUl

)

=
D

p

G∑
l=1

(FWl +BWl) +
D

B

G∑
l=1

(WUl)

(4.3)

Because PEs have to share their gradients at the end of each iteration, the
time for communication is D

B
Tar(p,

∑G
l=1 |wl|). i.e., an Allreduce operation with a

ring-based algorithm, the time for communication is:

Tdata,comm = 2
D

B
(p− 1)

(
α+

∑G
l=1 |wl|
p

δβ
)

(4.4)

Clearly, data parallelism has the benefit of reduction in computation time by 1
p

at
the price of communication time.

60

Considering the memory footprint, in data parallelism we duplicate the entire
model on p different PEs. Each PE processes a partition of the dataset in a
microbatch of B′ = B

p
samples. A layer l mainly needs memory to store its input

B′|xl|, activation B′|yl|, weights |wi|, the gradients B′| dL
dxl
|, B′| dL

dyl
|, and | dL

dwl
|. Some

models with a huge number of parameters may require significant memory for
”bias” such as in a fully-connected layer. We consider to not formally show such
memory requirement to make our analysis easy to follow. Overall, if each item
of the input, activation, weight and gradients are stored in δ bytes, the maximum
required memory at one PE is:

Mdata =
G∑
l=1

δ(B′(|xl|+ |yl|) + |wl|+B′(|
dL

dxl
|+ |

dL

dyl
|) + |

dL

dwl
|)

= 2δ
G∑
l=1

(B
p
(|xl|+ |yl|) + |wl|

) (4.5)

4.4.2 Spatial parallelism

As mentioned in the previous section, the spatial dimensions of x, y, dL
dx

and dL
dy

are split among p PEs so that the memory at one PE is:

Mspatial = 2δ

G∑
l=1

(
B

(|xl|+ |yl|)
p

+ |wl|
)

(4.6)

Because each PE performs a computation with the size of the spatial dimensions
as a fraction 1

pw
, 1
ph

, and 1
pd

of the sequential implementation. This reduces the
computation time of forward and backward phase of a layer by p = pw × ph× pd
times Thus, the computation time is:

Tspatial,comp =

I∑
1

B

G∑
l=1

(
FWl

p
+
BWl

p
) +

I∑
1

G∑
l=1

(
WUl

)

=
D

p

G∑
l=1

(FWl +BWl) +
D

B

G∑
l=1

(WUl)

(4.7)

The communication time includes the time to perform the Allreduce operation to
share the weight gradients (similar to data parallelism) and the time to perform the
halo exchange of each layer. For a layer l, a PE needs to send/receive the halo
regions with the logically-neighboring PE(s). Thus the total time for halo exchange
is

Tspatial,halo = 2
D

B

G∑
l=1

(Tp2p(B(halo(|xl|))) + Tp2p(B(halo(|
dL

dyl
|))))

= 2
D

B

G∑
l=1

(2α+Bδβ(halo(|xl|) + halo(|
dL

dyl
|)))

(4.8)

61

In which halo() presents the size of data exchanged per batch. The exchanged
data size depends on how each spatial dimension is split.

4.4.3 Layer parallelism

In this strategy, a DNN model is split into p composite layers (or group). Let
gi denote the group assigned to PE i. That is, each PE i keeps Gi layers of the
model given that

∑p
i=1Gi = G. Let FWGi

, BWGi
, and WUGi

denote the time for
performing the forward, backward, and weight update computation of group i, i.e.,
FWGi

=
∑

l∈gi(FWl), BWGi
=
∑

l∈gi(BWl), and WUGi
=
∑

l∈gi(WUl).

Pure implementation processes a batch of B samples at the first node and then
sequentially pass the intermediate activation (gradients) through all p nodes in
each iteration. Hence, the time for computation is:

Tlayer,comp =

I∑
1

(B

p∑
i=1

(FWGi
+BWGi

) +

p∑
i=1

(WUGi
))

= D

G∑
l=1

(FWl +BWl) +
D

B

G∑
l=1

(WUl)

(4.9)

This approach does not reduce the computation time but it is helpful if the memory
footprint at one node is limited. In practice, a pipeline implementation is used to
reduce the computation time.

In a pipeline implementation, the mini-batch is divided into S segments of size
B
S

. In one stage, the computation of a layer group (or PE) gi on a data segment s
is performed simultaneously with the computation of layer group gi+1 on the data
segment s−1, and so on. Thus, the time for each stage can be approximated by the
maximum computation time of layer groups, i.e., maxpi=1(FWGi

) or maxpi=1(BWGi
).

In general, a pipeline implementation of p PEs with S data segments requires
(p + S − 1) stages per iteration that leads to the total computation time of one
epoch as:

Tpipe,comp ≈
D(p+ S − 1)

S
(

p
max
i=1

(FWGi
) +

p
max
i=1

(BWGi
+

p
max
i=1

(WUGi
)) (4.10)

Considering the communication in this strategy, each PE i has to pass forward/-
backward the output/input’s gradients to the next/previous PE in a peer-to-peer
communication scheme which costs Tp2p(B|yGi

|) and Tp2p(B| dLdxGi
|), where yGi

and
xGi

denote the output of the last layer and input of the first layer of a group layer gi,

62

respectively. In the pipeline fashion, the communication time of each stage can
be approximated by maxp−1i=1 Tp2p(B|yGi

|) and maxpi=2 Tp2p(B| dLdxGi
|). In the case of

|xl| = |yl−1|, the total time for communication in one epoch (I = D
B

iterations) is
summarized in:

Tpipe,comm ≈ 2
D(p+ S − 2)

B

(
p−1
max
i=1

(
α+

B

S
|yGi
|δβ
))

(4.11)

For the memory footprint, because each PE i stores a different set of layers, the
maximum required memory in one PE is:

Mpipe = 2δ
p

max
i=1

(
2

Gi∑
l=1

(
B(|xl|+ |yl|) + |wl|

))
(4.12)

4.4.4 Filter parallelism

In this strategy, the computation time is reduced p times, yet the time for com-
munication at a layer l becomes more complex, since it includes (1) an Allgather
at the forward phase (except layer G)2 that costs Tag(p,

B|yl|
p

), and (2) an Allreduce
at the backward phase (except layer 1) that costs Tar(p,B| dLdxl |) = Tar(p,B|xl|). In
the case of |xl| = |yl−1|, the total time for communication in I = D

B
iterations is:

Tfilter,comm = 3
D

B
(p− 1)

G−1∑
l=1

(α+
B|yl|
p

δβ) (4.13)

In this strategy, each PE keeps only 1
p

the filters (weight) of each layer. However,
PE i needs to communicate with other PEs to share its local partial activations,
hence requiring memory to store the entire activation |yk|. The required memory
at each PE is:

Mfilter = 2δ
G∑
l=1

(
B(|xl|+ |yl|) +

|wl|
p

)
(4.14)

4.4.5 Channel parallelism

Similar to the filter parallelism, channel parallelism splits the DL models hori-
zontally, i.e., by the number of input channels C. Thus, the computation time, and
the required memory at each PE are same as those of filter parallelism

Mchannel = 2δ

G∑
l=1

(
B(|xl|+ |yl|) +

|wl|
p

)
(4.15)

2Each process i transfers |(yl)i[∗, p, ∗]| = |yl|
p values for one sample in layer l, and a total of

B |yl|
p values for the entire batch.

63

Tchannel,comp = Tfilter,comp =
D

p

G∑
l=1

(
FWl +BWl

)
+

D

pB

G∑
l=1

(WUl) (4.16)

The communication is performed in a different pattern that includes (1) an Allreduce
at the forward phase (except layer G) that costs Tar(p,B|yl|), and (2) an Allgather

at the backward phase (except layer 1) that costs Tag(p,
B| dL

dxl
|

p
). Similar to filter

parallelism, we get the total communication time:

Tchannel,comm = 3
D

B
(p− 1)

G−1∑
l=1

(α+
B|yl|
p

δβ) (4.17)

4.4.6 Hybrid parallelism (Data + Filter)

We consider an example of hybrid parallelism: the combination of data and filter
parallelism in which we use p1 data parallelism groups in p = p1 × p2 PEs. We
apply filter parallelism inside each group and data parallelism between groups.
Each group will process a partition of the dataset, i.e., D

p1
samples. Each PE then

keeps one part of filters of each layer, e.g., F
p2

filters, so that the required memory
is:

Mdf = 2δ

G∑
l=1

(B
p1

(|xl|+ |yl|) +
|wl|
p2

)
(4.18)

Each PE hence performs 1
p2

of the computation at each layer with a mini-batch
of B

p1
. The computation time is:

Tdf,comp =

I∑
1

B

p1

G∑
l=1

(FWl

p2
+
BWl

p2

)
+

I∑
1

G∑
l=1

(
WUl

p2
)

=
D

p

G∑
l=1

(
FWl +BWl

)
+

D

Bp2

G∑
l=1

(WUl)

(4.19)

In this strategy, the communication includes intra-group and inter-group com-
munication, which correspond to the cases of filter and data parallelism. The total
communication time of one iteration includes Tag(p2,

B|yl|
p2

) and Tar(p2, B| dLdxl |) at
each layer and Tar(p1,

∑G
l=1

|wl|
p2
|) when update, respectively. The total communica-

tion time becomes:

Thybrid,comm = 3
D

B
(p2− 1)

G−1∑
l=1

(α+
B|yl|
p

β)+

2
D

B
(p1− 1)(α+

∑G
l=1 |wl|
p

β)

(4.20)

We summarize our analytical model in Table 4.3.

64

Computation Time Tcomp Communication Time Tcomm Maximum Memory Per PE Number of PEs p

Serial D
∑G

l=1

(
FWl +BWl

)
+ D

B

∑G
l=1(WUl) 0 2γδ

∑G
l=1

(
B(|xl|+ |yl|) + |wl|

)
p = 1

Data D
p

∑G
l=1(FWl +BWl) +

D
B

∑G
l=1(WUl) 2D

B
(p− 1)

(
α+

∑G
l=1 |wl|

p
δβ
)

2γδ
∑G

l=1

(
B
p
(|xl|+ |yl|) + |wl|

)
p ≤ B

Spatial D
p

∑G
l=1

(
FWl +BWl

)
+ D

B

∑G
l=1(WUl)

2D
B

(
(p− 1)(α+

∑G
l=1 |wl|

p
δβ)+∑G

l=1

(
2α+B(halo(|xl|) + halo(| dL

dyl
|))δβ

)) 2γδ
∑G

l=1

(
B

(|xl|+|yl|)
p

+ |wl|
) p = pw × ph ≤

minGl=1(Wl ×Hl)

Layer
(Pipeline)

D(p+S−1)
S

(
maxpi=1(FWGi

)

+maxpi=1(BWGi
)
)
+maxpi=1(WUGi

)
) 2

D(p+S−2)
B

(
maxp−1

i=1

(
α+ B

S
|yGi
|δβ
)) 2γδmaxpi=1

(∑Gi
l=1

(
B(|xl|+ |yl|)

+|wl|
)) p ≤ G

Filter D
p

∑G
l=1

(
FWl +BWl

)
+ D

Bp

∑G
l=1(WUl) 3D

B
(p− 1)

∑G−1
l=1 (α+

B|yl|
p

δβ) 2γδ
∑G

l=1

(
B(|xl|+ |yl|) + |wl|

p

)
p ≤ minGl=1(Fl)

Channel D
p

∑G
l=1

(
FWl +BWl

)
+ D

Bp

∑G
l=1(WUl) 3D

B
(p− 1)

∑G−1
l=1 (α+

B|yl|
p

δβ) 2γδ
∑G

l=1

(
B(|xl|+ |yl|) + |wl|

p

)
p ≤ minGl=1(Cl)

Data +
Filter

D
p

∑G
l=1

(
FWl +BWl

)
+ D

Bp2

∑G
l=1(WUl)

3D
B
(p2− 1)

∑G−1
l=1 (α+

B|yl|
p

δβ)+

2D
B
(p1− 1)(α+

∑G
l=1 |wl|

p
δβ)

2γδ
∑G

l=1

(
B(|xl|+|yl|)

p1
+
|wl|
p2

) p = p1× p2 ≤
B ×minGl=1(Fl)

Table 4.3: Computation, Communication, and Memory Analysis Summary (per epoch)

4.5 Performance Projection of Different Parallel
Strategies

4.5.1 Overview of ParaDL

In this section we introduce our oracle (ParaDL) . Through the information that
we can get beforehand, such as the dataset, model, supercomputer/cluster system
specification, and user’s constraints (e.g., maximum number of involved PEs),
ParaDL calculates the computation and communication time to project the overall
performance (as described in Figure 4.8). If the strategy differs as the number
of nodes increases, ParaDL would breakdown the execution time of different
strategies as the number of PEs changes, i.e. scaling the number of PEs. ParaDL
can used for the following purposes:

• Suggesting the best strategy for a given CNN, dataset, and resource budget
(especially when data parallelism is not feasible).

• Identifying the time and resources to provision from a system (we partially
relied on ParaDL in this thesis for that purpose when conducting our empirical
experiments in Section 5.5).

• Comparison of projections with measured results to detect abnormal behavior
(we relied on ParaDL for this purpose in our analysis of network contention in
Section 4.5.3).

• Identifying limitations of parallel strategies, shortcomings of frameworks, and
bottlenecks in systems (we relied on ParaDL for this purpose in our discussion in
Section 4.6.3).

65

• As an education tool of the parallel strategies that would improve the understand-
ing of parallelism in DL

Frameworks that are used for DL are comprised of complex and interleaved
layers of optimized functions. A pure analytical model of parallel strategies in
CNNs would, therefore, be impractical. In this chapter we adopt a hybrid ana-
lytical/empirical modeling approach at which we: (i) use analytical modeling for
functional requirements driven by the parallelism strategies (Section 4.5.3), and (ii)
empirical parametrization for functions not related to the parallel strategy being
deployed (more details in Section 4.5.4). Finally, we quantify the accuracy of the
oracle with a large empirical evaluation in Section 5.5.

Figure 4.8: Overview of ParaDL

4.5.2 Assumptions and Restrictions

The study in this chapter is based on the following assumptions.

Targeted models and datasets: our study covers all types of layers used in
production CNNs, and could hence be used for projecting the performance of any
production CNN model, not just the models we evaluate in the paper. We also
support the input (i.e. samples) to be of any dimension (as shown in Table 4.2).

Training time and memory estimation: Our study focuses predominantly on the
computation and communication time of the CNN training, thus we assume that

66

all the training data is available in memory before starting the training process. In
other words, in this model we do not include the time for I/O.

One could conservatively estimate the memory required on a per layer basis by
assuming the memory buffers of the output of layer l are different from the memory
buffers for the input of layer l + 1, however, in reality both buffers being the same.
Additionally, in reality there is a variety of optimizations that frameworks implement
to reduce the memory used (See Table 4.1). Since those optimization methods
are complexly intertwined and depend on the framework implementations, without
loss of generalization, we propose a practical memory requirement estimation.
More specifically, we start out from the naive memory projection that aggregates
layers, then we reduce that conservative upper bound to reflect the actual memory
optimizations happening inside frameworks. We introduce a memory reuse factor
γ. The actual minimum required memory, after all memory reuse optimizations are
applied, can be estimated by multiplying total naive required memory by γ. This
memory reuse factor can be derived from several elaborate studies on model-level
and layer-level memory profiling of CNNs [101, 102].

Parallel strategies: all results in this paper, unless otherwise stated, are for the
de facto scaling approach in DL: weak scaling. The mini-batch size scales with
the number of PE, hence the number of samples per PE remains constant. In
addition, unless mentioned, we do not actively optimize for changing the type of
parallelism between different layers in a model, i.e., different layers do not have
different parallel strategy. However, there can be cases at which a different type of
parallelism is used, in order to avoid performance degradation. For instance, the
fully connected layer in spatial parallelism is not spatially parallelized, since that
would incur high communication overhead for a layer that is typically a fraction of
the compute cost of convolution layers [99].

4.5.3 Performance and Memory Projection

In this section, we estimate the total training time in one epoch and maximum
memory per PE for the mentioned main parallel strategies, including hybrid. Let
FWl, BWl denote the time to perform the computation of forward and backward
propagation for one sample and let WUl denote the time for weight update per

67

iteration at layer l 3. Tar(p,m), Tag(p,m), and Tp2p(m) stand for the time of trans-
ferring a data buffer of m-size between p PEs via an Allreduce, Allgather, and
a peer-to-peer scheme, respectively. In data parallelism, the training includes
both computation and communication time. Each PE processes a micro batch
size B′ = B

p
in this case. The time for FW and BW in one iteration is 1

p
of the

single-process. Thus the total computation time in one epoch becomes:

Tdata,comp =
D

p

G∑
l=1

(FWl +BWl) +
D

B

G∑
l=1

(WUl) (4.21)

Because PEs have to share their gradients at the end of each iteration, the time
for communication is D

B
Tar(p,

∑G
l=1 |wl|). Considering the memory footprint, in data

parallelism we duplicate the entire model on p different PEs. Each PE processes
a partition of the dataset in a microbatch of B′ = B

p
samples. A layer l needs

memory to store its input B′|xl|, activation B′|yl|, weights |wi|, the gradients B′| dL
dxl
|,

B′| dL
dyl
|, and | dL

dwl
|. Some models with a huge number of parameters may require

significant memory for ”bias” such as in a fully-connected layer. We consider to
not formally show such memory requirement to make our analysis easy to follow.
Overall, if each item of the input, activation, weight and gradients are stored in δ
bytes, the maximum required memory at one PE is:

Mdata =

G∑
l=1

δ(B′(|xl|+ |yl|) + |wl|+B′(|
dL

dxl
|+ |

dL

dyl
|) + |

dL

dwl
|) (4.22)

In theory, the computation time can be estimated by observing the dataset and
CNN model (e.g., FLOP counts and the computation speed of each PE). For
modeling the communication time, there exists various derived / specific analytical
performance models, e.g., as in the survey of Rico Gallego et. al. [103]. To keep
the performance modeling generic, we choose to use the Hockney α− β model.
In which, the peer-to-peer communication time of transferring a message of size
m is modeled by Tp2p(p,m) = α +mβ. Time for a message send from a source to
a destination is α (also known as startup time) and the time to inject one byte of
data into the network is β. We follow the common practice in DL communication
libraries such as NCCL [36] to use a ring-based algorithm for all the collective
communication operation with large message sizes and a tree-based algorithm for
small message sizes. In the ring-based algorithm, a logical ring is first constructed
among p PEs based on the system network architecture. Then, each PE partitions

3In pipeline, each PE i keeps Gi layers of the model given that
∑p

i=1Gi = G. Let FWGi
, BWGi

and WUGi
denote the time for performing the forward, backward, and weight update computation

of group i per sample.

68

its m-size data buffer into p segments of size m
p

. Each PE then sends one data
segment to the successive PE and receive another segment from the preceding
PE along the ring, i.e., a total of p − 1 steps for Allgather and 2(p − 1) steps
for Allreduce. Thus Tar(p,m) and Tag(p,m) can be modeled by 2(p− 1)(α + m

p
β)

and (p− 1)(α+mβ), respectively. Based on this communication model, we also
estimate the total training time in one epoch and the maximum memory required
per PE for the mentioned parallel strategies. We summarize our analytical model
in Table 4.3 4.

Contention modelling: Ideally, in a system without contention, the start up
time α of a given pair is estimated as the total switching latency, which depends
on the number of intermediate switching elements. In addition, β is the inverse of
the minimum link bandwidth on the routing path between two PEs (the bottleneck
link). However, network congestion is one of the biggest problems facing HPC
systems today, affecting system throughput and performance. To address the
contention effects we introduce the use of a contention penalty coefficient φ, which
divides the bandwidth of a link by the number of communication flows φ sharing
this link at each step of collective communications [105]. In our analytical model,
we only consider the self-contention caused by all the communication flows of
the training process itself, e.g., a link is shared between different groups in hybrid
parallelism strategies. The contention coefficient can be estimated analytically
by using dynamic contention graphs [106]. It is important to note that we do
not intent to model the contention caused by congested networks due to a large
number of applications running at the same time in a shared system. Such kind of
external contention affects all parallelism strategies and do not reflect the baseline
fundamental performance of each parallelism strategy. In addition, the baseline
performance predicted by our analytical model can be complemented with a
congestion impact factor, which can be empirically estimated as in [107], in order
to predict the real-world performance in production environments.

4When message sizes are small, communication time with tree-based algorithm can be estim-
ated as 2(log(p) + k)(α+mm

2kβ) where a message is divided into k chunks to communicate in a
pipeline [104].

69

4.5.4 Empirical Parametrization

As mentioned earlier, we rely on a hybrid of analytical modeling and empirical
parametrization for ParaDL. To reduce the impact of noise associated with black-
box empirical modeling [18], we segment the experiments used to inspect the
target parameters. We are thus able to distinguish between effects of noise on the
measurements and actual runtime change because of parameter influence. The
empirical parameters are (as defined in Table 4.2):

• Computation parameters (FWl, BWl, and WUl): It is important to note that
processors, CPUs and GPUs, rarely perform close to their peak performance.
We empirically profile the average computation time per sample of each layer (or
group of layers) on the target architecture to get a more accurate result. Such
profiling can be performed easily and quickly beforehand. Furthermore, the
empirical compute time, per a given layer on a given processor, is available in
DL databases of models [101].

• Communication parameters (α and β): The interconnect hierarchy of modern
computing systems, the algorithms used by communication libraries, and the
communication technologies (such as GPUDirect [108]) may lead to differences
in the latency and bandwidth factors α and β. Thus, we empirically measure the
communication time of collective communication patterns, such as Allreduce,
with different message size, number of involved processing elements on a
specific computing system. Those empirical measurements can be derived from
well-known tools for performance of systems, e.g., OSU Micro-Benchmarks or
NCCL-test [109]. We then use those benchmark results to interpolate α and β.

• Memory parameters: In order to make the model more realistic and reflect
memory optimizations, we use the memory reuse factor γ as mentioned in
Section 4.5.2.

It is important to emphasise that the empirical parameters in our model are
invariant to the implementation of the parallelism strategies, i.e., values of empirical
parameters could change when moving from one framework to another, yet values
of the analytical parameters would not. Finally, to simplify the portability of ParaDL
between different frameworks and systems, we include the following with the
ParaDL utility: a) detailed instructions of using the benchmarks used for gathering

70

Table 4.4: Implementation Overview(X: customized; - : untouched)

Parallelism
strategy

Conv Pooling BNorm / LNorm ReLU FC

Data - - - - -
Spatial X X - - X

Filter / Channel X - - - X

the empirical parameters we use, and b) pointers to DL model and layers databases
from which the user could get empirical breakdown of compute and memory
requirement at the granularity of layers.

4.5.5 Implementation

Implementation Details

We implement data, channel, filter, spatial and hybrid parallelism strategies using
ChainerMN [31] for distributed execution. Although ChainerMN provides a built-
in implementation for data parallelism and some minimum level of support for
model parallelism, it is not sufficient for testing all the parallel strategies we study
here (the same insufficiency also goes for PyTorch, TensorFlow, and others).
Substantial engineering effort was required to modify and extend the existing
implementation and create ChainerMNX to support all forms of parallelism. This
extension included modifying existing communicators meant for data parallelism
to support hybrid parallelism. We also extended existing convolutional layers to
support filter/channel/spatial convolutions5. We mark our implementation for each
type of targeted layers and parallel strategies in Table 4.4.

More specifically, we use the default implementation of Chainer for data parallel-
ism. Since the size of each dimension (i.e., H, W , and/or D) limits the parallelism
of spatial strategy, in this work, we implement the spatial strategy for some first
layers of a given model until adequate parallelism is exposed while still maintain-
ing the maximum required memory per node within memory capacity. We then
implement an Allgather to collect the full set of activations before passing it to
the following layers which perform similar to the sequential implementation. For
example, we aggregate after the final convolution layer (before a fully-connected

5The code is publicly available here https://github.com/ankahira/chainermnx

71

https://github.com/ankahira/chainermnx

layer) in VGG16, ResNet-50 and ResNet-152. For CosmoFlow, we aggregate after
the second convolution/pooling layer because most of required memory footprint
and compute are in those first two layers.

The minimum number of input channels C at each layer limits the parallelism
of channel strategy, e.g., only 3 input channels for ImageNet. In this work we
implement the channel parallelism from the second layer. For hybrid strategies
such as Data+Filter (or Data+Spatial), we map the data parallelism inter-node.
This implementation is also used by Dryden et al. [76]. We leverage ChainerMN
with MPI support for both inter-node and intra-node communication. To perform
an Allreduce and update the gradients in hybrid strategies, we use ChainerMN’s
multi-node optimizer which wraps an optimizer and performs an Allreduce before
updating the gradients. For the Data+Spatial parallelism, we perform a reduce
inside each node to a leader GPU, then perform an Allreduce between the leaders.
These two Allreduce involve different parallelization techniques (i.e., spatial in
local and data in global). For the Data+Filter parallelism, we perform a segmented
Allreduce, e.g., disjoint subsets of GPU run Allreduces on different sets of the
weights, i.e., number of subsets equals to number of GPUs per node.

Accuracy and Correctness

We aim at making sure our implementation of different parallelism strategies have
the same behaviour as data parallelism. We first compare the output activations/-
gradients (in forward/backward phases) of each layer (value-by-value) to confirm
that the parallelization artifacts, e.g., halo exchange, do not affect the correct-
ness. Note that these new implementations change only the decomposition of the
tensors, and do not change any operator or hyper-paramaters that have an impact
on accuracy.

Second, in this work we assure that batch normalization (BN) layers are suppor-
ted in all parallel strategies since the accuracy of training can be affected by the
implementation of the BN layers [110, 85]. More specifically, for the data parallel-
ism strategy, the typical implementations of batch normalization in commonly used
frameworks such as Caffe, PyTorch, TensorFlow are all unsynchronized. This
implementation leads to data being only normalized within each PE, separately. In
typical cases, the local batch-size is usually already large enough for BN layers
to function as intended. Yet in some cases, the local batch-size will be only 2 or

72

4 in each PE, which will lead to significant sample bias, and further degrade the
accuracy. In this case, we suggest to use the synchronized BN implementation
as mentioned in [85], which requires a communication overhead for computing
the global mini-batch mean. For the spatial strategy, although performing batch
normalization on subsets of the spatial dimensions has not been explored, to the
authors knowledge, this computation requires no significant adjustment [98]. More
specifically, BN is typically computed locally on each PE on its own portion of the
spatially partitioned data.

In the filter and channel parallelism strategy, since all PEs keep the same set
of activations after performing the Allgather operation at each layer, the BN layer
could be implemented as in the sequential strategy. It could be implemented in
a centralized fashion, e.g., one PE performs the BN and then sends the result
to other PEs. Alternatively, each node could redundantly compute the BN layer
(distributed approach). In this work, we use the distributed approach which does
not require any communication overhead.

4.6 Evaluation

In this section, we describe how we conduct a wide range of experiments to show
the accuracy and utility of ParaDL in projecting the performance of distributed
training of CNN models under different parallel strategies, including hybrid ones.
We compare ParaDL projection results to the empirical measurements on a multi-
petaflop HPC system with thousands of GPUs. In addition, we characterize the
bottlenecks and limitations of different parallelization strategies, and highlight relev-
ant findings observed with the help of ParaDL. Finally, we discuss how the ParaDL
can aid framework developers and system builders in i) guiding the implementation
and possible optimizations of different parallel strategies in existing DL frameworks;
and ii) advising system architects on the best co-design choices for their system
depending on the workloads they plan to run.

73

4.6.1 Methodology

Selected Models and Datasets

We choose different CNN models and datasets with different characteristics that
affect performance and memory requirements. They are summarised in Table 4.5.

Table 4.5: Models and Datasets Used in Experiments

Model Dataset #Samples (Size) # Param. #Layers
ResNet-50 [21]

ImageNet [81] 1.28M (3×2262)
≈ 25M 50

ResNet-152 [21] ≈ 58M 152
VGG16 [111] ≈ 169M 38
CosmoFlow [66] CosmoFlow [40] 1584 (4×2563) ≈ 2M 20

Evaluation Environment

Experiments are performed on the ABCI supercomputer, a multi-petaflop super-
computer, with two Intel Xeon Gold 6148 Processors and four NVIDIA Tesla V100
GPUs (16GB of memory per GPU) on each compute node. The GPUs are connec-
ted intra-node to the CPUs by PLX switches and PCIe Gen3 x16 links (16 GBps),
and together by NVLink (20 GBps). The compute nodes are connected in a 3-level
fat-tree topology which has full-bisection bandwidth, and 1:3 over-subscription for
intra-rack and inter-rack, respectively (two InfiniBand EDR, e.g., 12.5 GBps, per
compute node and 17 compute nodes per rack).

Configurations of Experiments

We perform the experiments of the parallel strategies using the framework
Chainer [29] (v7.0.0), ChainerMN [31] (the multi-node varient of Chainer), and
CUDA (v10.0). We also use the PyTorch (v1.5) implementation for the pipeline
strategy [112]. We implement all communication functions based on Nvidia’s NCCL
library [36] (v2.4.8.1). The exceptions are at which we use MPI (OpenMPI v2.1.6):
a) the halo exchange of the spatial strategy since P2P communication interfaces
are not supported by NCCL6, and b) the Allgatherv for the spatial strategy since
NCCL does not support Allgatherv.

6The latest version of NCCL now supports P2P communications.

74

An important performance factor is efficient device utilization of GPUs. Thus,
we conducted a series of test runs for each type of parallelism and DL model to
identify the optimal number of samples per GPU (or node) that would efficiently
utilize the device. We observed that the performance drops significantly when we
train using a higher samples/GPU number than the optimal one. This occurs when
the computational load becomes too large to effectively utilise a single GPU. For
CosmoFlow with spatial strategies, since we use only one sample per node, i.e.,
0.25 samples/GPU: we could not have the freedom to tune the parameter b. This
is often the case for models using large 3D input datasets (increasingly common
in scientific computing), where data parallelism is simply not an option. Given that
it was not possible to get the empirical layer by layer time for CosmoFlow running
a sequential implementation with the 5123 data size, we used 2563 sample sizes
and multiplied the computation time by 8. We confirmed with measurements that
the strategy was accurate.

4.6.2 ParaDL’s Projection and Accuracy

This section discusses how close is the projection of the ParaDL oracle in com-
parison with the measured experiments. It is a complex task to accurately project
the performance of DL training, especially when scaling. More specifically, the
following factors have a significant effect on performance: contention on the PFS,
the effectiveness of the pipeline used for asynchronous data loading, network
contention, implementation quality, and overheads of solution fidelity book-keeping.
That being said, in this section we aim to demonstrate that the presented oracle,
despite the complexities mentioned above, reasonably represents the reality of
measured runs on an actual system (especially when scaling up to 1024 GPUs).
In this comparison, we focus only on the computation and communication time of
the main training loop (the most time consuming part) and exclude other times
from this study such as I/O staging.

Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 show the oracle’s projections versus
the measured runs for different parallel strategies using three different models (a
fourth model is shown in Figure 4.15). The label above each column shows the
projection accuracy. The x-axis is the number of GPUs. Filter/channel are strong
scaling.(*)Values are total time since pipeline parallelism [112] overlaps the computation
and communication.

75

Figure 4.9: Prediction Accuracy of ParaDL with Imagenet for Data Parallelism

We ran all the permutations of possible configurations but plot only some of them
because of space limitations. Each figure is divided in three columns, one for each CNN
model. The parameter b shows the mini-batch size for each case. As mentioned in
Section 5.4, the mini-batch size is set to achieve the highest device occupancy on GPUs.
The x-axis shows the number of GPUs, up to the scaling limit of the specific parallel
strategy (e.g., maximum number of filters). More specifically, we scale the tests from 16 to
1024 GPUs for data and hybrid parallelism, from 4 to 64 GPUs for filter/channel parallelism,
and up to 4 GPUs for pipeline parallelism. The y-axis shows the iteration time for each
case. The iteration time is calculated as an average of 100 iterations excluding the first
iteration which normally involves initialization tasks. To get a more detailed analysis, we
decompose the execution time into computation and communication. The oracle prediction
is shown in blue as stacked bars, i.e., computation+communication, and the measured
empirical results are shown in orange. In this figure, we report the best communication
times obtained during our experiments, as this represents the peak performance the
hardware can deliver and leave aside occasional delays due to external factors such
as network congestion coming from other apps, system noise and, overheads due to
correctable errors, among others. A detailed analysis on network congestion is given on
Section 4.6.3. The labels above each column show the projection accuracy in percentage,
i.e., 1 - ratio of the absolute value of the difference with respect to the total measured time.
Similarly, Figure 4.15 shows the accuracy for CosmoFlow in the case of Data+Spatial
parallelism. Note that the reason CosmoFlow is only run on the Data+Spatial hybrid

76

Figure 4.10: Prediction Accuracy of ParaDL with Imagenet for Filter Parallelism

configurations is because the sample size is so large that it cannot run with any other
parallel strategy.

The accuracy of ParaDL predictions for the different parallel strategies are 96.10% for
data parallelism, 85.56% for Filter, 73.67% for Channel, 91.43% for Data+Filter, 83.46% for
Data+Spatial and 90.22% for pipeline across all CNN models. In general, this represents
an overall accuracy of 86.74% for ParaDL, across all parallelism strategies and CNN
models, and up to 97.57% for data parallelismon VGG16. Cosmoflow shows an accuracy
of 74.14% on average.

It is important to note that the overall average accuracy drops significantly due to some
few outliers in which the communication time measured is substantially higher than the
prediction from ParaDL. For instance Data+Spatial for ResNet-152 with 512 GPUs shows
an accuracy of 62% due to network congestions. Interestingly, the same configuration
with 1024 GPUs shows a much higher accuracy (i.e., 83% for Data+Spatial ResNet-152)
including the communication part, demonstrating that the ParaDL oracle is highly accurate,
even at large scale (i.e., 1024 GPUs). Section 4.6.3 includes a detailed analysis of the
network congestion leading to the few outliers where the machine was oversubscribed.
Note that the communication time of ParaDL for Data+Filter shown in Figure 4.12 is
calculated with a contention penalty coefficient of 2×, e.g., contention caused by two
disjoint Allreduces that share the same InfiniBand link for inter-node communication. The
high accuracy reported show that our analytical model fits well to the real performance.

77

Figure 4.11: Prediction Accuracy of ParaDL with Imagenet for Channel Parallelism

4.6.3 Parallelism Limitations and Bottlenecks

In this section we use a combination of observations from ParaDL projections and em-
pirical results to highlight some important points: (i) inherent to the parallel strategies
themselves (limitations), and (ii) those caused by other components such as the framework
implementation or system architecture (bottlenecks). This helps users in avoiding these
limitations, and framework programmers in prioritizing their efforts for improvements. We
group these limitations and bottlenecks into four categories.

Communication

It is well-known in literature that parallel training introduces communication overhead.
Those overheads have different forms and patterns for different parallel strategies. There
is the gradient exchange at the end of each iteration in data and spatial parallelism
(GE-Allreduce). There can also be extra communication in the forward and backward
passes of other parallel strategies: the layer-wise collective communication in filter/channel
(FB-Allgather and FB-Allreduce), layer-to-layer communication in pipeline (FB-layer), and
the halo exchange in spatial (FB-Halo).

Gradient Exchange: Similar to data parallelism, spatial requires a gradient exchange
to aggregate the weights. This collective communication, i.e., Allreduce, has significant
impact on performance, and can become a limitation. Another point worth mentioning is

78

Figure 4.12: Prediction Accuracy of ParaDL with Imagenet for Data+Filter Parallelism

the hierarchal implementation of Allreduce in hybrid strategies such as Data+Filter (df) and
Data+Spatial (ds). These two types of Allreduce (data and hybrid parallelism) are different
as they involve different parallelization techniques. In ds, we perform a reduce inside each
node to leader GPUs first, then perform a global Allreduce between the leaders. However
such implementation leads to a higher overhead, e.g., time for Allreduce is more than 2×
as those of data. Alternative ways to address this issue are to use multiple leaders instead
of only one [70] or to use segmented allreduces, i.e., smaller, concurrent allreduces among
disjoint sets of GPUs [76]. We use the former strategy for ds and the latter for df. These
methods are not trivial to implement and they require significant engineering effort. ParaDL
has proven accurate at modeling those communications and can be used to choose an
implementation strategy based on ParaDL’s projected communication times.

Layer-wise collective communication: unlike data parallelism, filter and channel parallel-
ism require multiple collective communication rounds at each layer. The communication
time depends on the activation size × batch size, i.e., O(B

∑G
l=1 |yl|), as well as the depth

of DL model, i.e.,
∑G

l=1(p− 1)α as reported in our analytic model. In our experiments with
ImageNet, even though the total activation sizes are smaller than the number of weights,
yet with a batch size of ≥ 32 samples, the communication time of filter/channel is larger
than that of data parallelism (See Figure 4.11 and 4.10) . Note that because this commu-
nication overhead is attributed to the forward and backward phases, Allreduce optimization
techniques such as sparsification are no-longer valid. Instead, a hybrid which combines

79

Figure 4.13: Prediction Accuracy of ParaDL with Imagenet for Data+Spatial Parallelism

filter and channel (plus data) parallelism may help to mitigate this limitation by reducing the
number of communication calls [100] or using a smaller segmented Reduce-Scatter [76].

Peer to Peer communication: The halo exchange in spatial parallelism and the activation
passing between composite layers in pipeline are performed in a P2P fashion, which
are expected to have small communication times. However, paraDL shows that the
communication time of FB-Halo is non-trivial and this was confirmed by the empirical
results. For example, in ResNet-50, 128 GPUs, the time of FB-Halo is approximately 60%

of the gradient exchange Allreduce, which is substantially higher than initially expected.
This bottleneck appears because the framework uses the MPI library instead of NCCL
(NCCL allows GPUs to communicate directly instead of via CPU, i.e., GPUDirect). We
plugged different network parameters in paraDL (See Section 4.5.4) for MPI and NCCL
and we confirmed the difference, both theoretically and empirically.

Network Congestion: In our empirical experiments, we try to avoid the issue of con-
gestion as much as possible by running several times for each data point. However,
as shown in some results, we still observe network congestion when approaching 1K
GPUs. We did a detailed analysis for several of the runs. In Figure 4.17 we show the
time for Allreduce communication for data parallelism of ResNet-50 with 512 GPUs and
an Allgather communication for filter parallelism of VGG16 with 64 GPUs. We noticed
that most data points align well with the expected theoretical bandwidth predicted by our
analytical model (blue line), yet network congestion caused by other jobs in the system can
lead to some outliers that push the average communication time up to four times higher

80

Figure 4.14: Prediction Accuracy of ParaDL with Imagenet for Pipeline Parallelism

than expected. This overhead can not be avoided especially for large-scale training, e.g.,
100s-1000s GPU, in a shared HPC system. It could, however, be mitigated at the system
level by switching to a full-bisection bandwidth rather than having 1:3 over-subscription.

Memory Capacity

We highlight specific cases when memory requirements become an issue in different
strategies.

Redundancy in Memory : Different memory redundancies could emerge in different par-
allel strategies. In the spatial and channel/filter strategies the activations (i.e. input/output
channels) are divided among nodes, however this does not reduce the memory require-
ments of holding the weight tensors since their weights are not divided among PEs (as in
our analytical model). This becomes an issue for larger models. One alternative proposed
in ZeRO [64] is to split the weights as well as the activations. However, this comes at
the cost of extra communication of 50% since two Allgathers of the weights are needed
in the forward and backward pass. In pipeline, the memory required for a single layer
could be prohibitive. For example, ComsoFlow’s first Conv layer generates more than
10GB of activation tensor when the input size is 4× 5123. Accordingly for those kind of
models the pipeline strategy would be unfeasible and one has to resort to other parallel
strategies (e.g., use Data+Spatial for CosmoFlow as shown in Figure 4.20). Additionally,
since samples are feed in a pipelined fashion, the memory required is proportional to the

81

Figure 4.15: Prediction Accuracy of ParaDL with CosmoFlow for Data+Spatial

number of stages, and would hence become a bottleneck in deep pipelines, unless we
apply gradient checkpointing at the boundary of the partition [15, 113], which comes with
the overhead of recomputing the activations within each partition.

Memory Manager : DL frameworks typically include a memory manager to reduce the
overhead of frequent malloc and free. Since GPUs typically operate in asynchronous
execution model, there are many CUDA kernels being launched at any given time in
training. We observed a disparity between ParaDL and measured performance that could
be attributed to stalling kernels. Upon inspection, we observed kernels that were launched
asynchronously often stall when requesting memory (in, Chainer as well as PyTorch).
The launched asynchronously launched kernels waiting for memory to be available leads
to heavy fluctuations in performance. Guided by ParaDL to identify the fine-grained
location of the performance gap, we confirmed, for instance, that the implementation of

82

Figure 4.16: Spatial + data scaling with CosmoFlow. The labels show the speedup ratio of
spatial+data over the pure spatial strategy

Data+Spatial parallelism of VGG16 (64 GPUs) could avoid out-of-memory issues at the
cost of a performance degradation of 1.5×.

Computation

We highlight the following limitations. Weight update: most compute time in training
typically goes to the forward and backward pass. However, we observed with our analytical
model that for larger models the weight update starts to become a significant portion of
the compute time. For instance, we measured weight update to take up to 15% for the
VGG16 (shown in Figure 4.18). Larger DL models, using ADAM optimizer in specific, may
need a higher computation time for weight. Especially, large Transformer based models
report up to 45% time on weight update and more than 60% extra memory requirements
since ADAM requires four variables per weight [90]. One alternative to address this is to
shard the weight update among GPUs across iterations, and Allgather the weights before
forward/backward passes [114].

83

Figure 4.17: Network congestion of ResNet-50, 512 GPUs, data parallelism (upper) and
VGG16, 64 GPUs, filter parallelism (lower).

Not only FW and BW require huge computation. For a big model, WU become a problem.
This points related to all the strategies. NEED a figure show the relative time of (weight
update) over the total time. (Figure 4.18).

Workload Balancing: Pipeline can outperform data parallelism with less communication
by using P2P rather than a collective communication. However, it is crucial that all
stages in the pipeline take roughly the same amount of time, since the training time of
a pipeline is limited by the slowest stage. Indeed, there may be cases where no simple
partitioning across the GPUs achieves perfect load balance (e.g. networks with non-linear
connections). To further improve load balancing, a straight forward approach is to use
data parallelism inside a stage, i.e., hybrid of pipeline plus data [113].

84

Figure 4.18: Computation time per epoch with PyTorch. Weight update is not trivial in
large models and dataset.

Figure 4.19: Computation breakdown of filter parallelism, ResNet-50. Implementation of
convolution layers does not scale well.

85

Computation Redundancy: This section discusses limits that could arise from com-
putational redundancy that is introduced for different parallel strategies. Using ParaDL
we found out that there was a gap between analytical result and the measured time in
filter/channel. Looking in detail, we saw that this was an implementation issue in the
framework including two factors i) the convolution layer does not always scale as expected
and ii) the computation overhead, such as split/concat, is non-trivial. These non-trivial
implementation overheads are shown in Figure 4.19.

Scaling limitation

When scaling, there is a limit on the number of GPUs for each of the model parallel
strategies (last column of Table 4.3). For example, p can not exceed the minimum number
of filters of a layer in the model, i.e., 64 in the case of VGG16 and ResNet-50 with filter
parallelism. Hybrid approaches have a better scaling than those of pure model parallelisms.
For example, as shown in Figure 4.20, using Spatial+Data hybrid is an effective scalable
alternative (despite communication inefficiencies), since it scales both in performance and
GPU count (i.e. one could simply expand the data parallel pool as much as new nodes
are added). Indeed, the curve shows a perfect scaling (note the logarithmic y-axis).

4.6.4 Other Observations

We briefly discusses further notable point of distributed DNNs.

The Rise of Hybrid Parallelism

As mentioned, each of four basic parallelism strategies has its own limitations. Using the
hybrid strategies (Data+Model) helps to break/mitigate those limitations, e.g., memory
issue of data parallelism and communication and scaling limitation of model parallelism
(Section 4.6.3). As more datasets from the HPC field start to be trained by DL frameworks,
this type of hybrid parallel strategies will become increasingly relevant because data
parallelism will simply be not enough, as shown in the case of CosmoFlow and its good
scaling with ds in Figure 4.20. In addition, hybrid strategies may drive to a better solution in
terms of performance. In accordance with other recent reports [76], there are cases where
data+filter (df) hybrid can outperform data parallelism at large scale, as we also observed
in some of our experiments (we also noticed scenarios where pipeline outperforms data
parallelism).

86

Figure 4.20: Spatial + data scaling with CosmoFlow. The labels show the speedup ratio of
spatial+data over the pure spatial strategy.

Staging and I/O Overhead

Figure 4.21 shows the staging overhead per iteration of different cases of (DL model,
parallel strategy). Because each case loads different number of samples/GPU, we expect
to see differences between ResNet-50 and VGG16 (64 vs. 32 samples) and a similar
difference between ResNet-50 and ResNet-152 (both use 64 samples). We noticed during
our experiments that in the spatial and filter parallelism implementations, the samples
are loaded on a leader process, which then distributes (part of) the samples to the other
GPUs. This staging process evidently adds a significant amount of time, especially in a
large-scale run or when the sample sizes are large. For example, I/O time can be as high
as 6.7× of communication and computation times in the case of CosmoFlow. Note that this
is not a fundamental limitation of spatial/model parallelism, but simply an implementation
issue of the data loaders of the underlying framework. (i.e., Chainer). Other frameworks
(e.g., TensorFlow, PyTorch) also have the same issue.

87

Figure 4.21: Staging overhead. Labels show (model, parallel strategy, samples/GPU).
d:data, f:filter, df:(data+filter), ds:(data+spatial).

Distributed Inference

Inference at large scale is becoming increasingly demanded, given that for large models
the inference would also be distributed [65]. In smaller models, when latency of inference
matters in an application, the inference could also be distributed (e.g., real-time prediction
of Tokamak disruptions in magnetically-confined thermonuclear plasma experiments [115]).
Some of the limitations and bottlenecks of distributed training discussed previously also
appear in distributed inference (See lines marked with Y in column I of Table 4.6).

4.6.5 Summary of our Analysis

In this section we summarise our main findings. A compact version of the limitations
and bottlenecks that paraDL helped us uncover is summarised in Table 4.6. Those
limitations/bottlenecks in the table may appear (Y/N) in distributed inference (I). Re-

88

lated parallel strategies (×): d-data, s-spatial, p-pipeline, f/c-filter and channel, df-hybrid
Data+Filter, ds-hybrid Data+Spatial. FR-Framework, SY-System. Training phases: IO-I/O
and pre-processing, FB-a forward and backward propagation, GE-the gradient exchange
(if needed) and WU-updating the weights.

• Our analytical model projects ideal performance and gives consistent accuracy (over
85% in average) on a wide range of models and datasets on up to 1K GPUs.

• We analytically identify different bottlenecks that can appear in different parallel
strategies due to communication patterns that compensate for different ways to split
the tensors, and confirm those predictions empirically (See Table 4.6).

• We identify memory and computational pressure that arise from different redundan-
cies in different parallel strategies.

Category L/B
Para. Strategies

FR SY
Training Phases

I Remarks
d s p f/c df ds IO FB GE WU

L × × - - × × ◦ ◦ - - X - N Gradient-exchange
L - - - × × - ◦ ◦ - X - - Y Layer-wise comm.
B - × × - - × • ◦ - X X - Y P2P communication

Communication

B × × × × × × ◦ • - X X - Y Network Congestion
B × × × × × × ◦ • X X X X Y Memory RedundancyMemory

Capacity B × × × × × × • ◦ X X X X Y Memory Stalling
L × × × × × × ◦ ◦ - - - X N Weight Update
L - - × - - - ◦ ◦ - X - X Y Workload BalancingComputation
B - - - × × - • ◦ - X - X Y Comp. Redundancy

Scaling L × × × × × × ◦ ◦ X X X X Y Number of PEs

Table 4.6: Summary of detected limitations (L) and bottlenecks (B) with the related training
phases (X) and components (•).

4.7 Conclusion

In this chapter, we propose an analytical model for characterizing and identifying the best
technique of different parallel strategies for CNN distributed training. We run a wide range
of experiments with different models, different parallel strategies and different datasets for
up to 1,000s of GPUs and compare with our analytical model. The results demonstrate
the accuracy of ParaDL, as high as 97.57% , and 86.74% on average accuracy across all
parallel strategies on multiple CNN models and datasets on up to 1K GPUs.

89

The analytical model helped us uncover limitations and bottlenecks of parallel training
of CNNs (summary in Table 4.6). We analytically identify different bottlenecks that can
appear in different parallel strategies due to communication patterns that compensate for
different ways to split the tensors, and confirm those predictions empirically. Finally, we
identify memory and computational pressure that arises from different redundancies in
different parallel strategies.

90

Chapter 5

A Study of Checkpointing in Large
Scale Training of Deep Neural
Networks

In this chapter, we examine the checkpointing implementation of popular DL platforms.
We perform experiments with three state-of-the-art DL frameworks common in HPC:
Chainer, PyTorch, and TensorFlow. We evaluate the computational cost of checkpointing,
file formats and file sizes, the impact of scale, and deterministic checkpointing. Our
evaluation shows some critical differences in checkpoint mechanisms and exposes several
bottlenecks in existing checkpointing implementations. We provide discussion points that
can aid users in selecting a fault-tolerant framework to use in HPC. We also provide
take-away points that framework developers can use to facilitate better checkpointing of
DL workloads in HPC.

5.1 Introduction

While distributed training in HPC clusters can reduce weeks of training to days or even
hours, these distributed architectures are susceptible to unrecoverable hardware and
software failures that can ruin days or even weeks of training time. To mitigate these
failures, most DL frameworks implement checkpointing as fault tolerance mechanisms to
save the training state at a certain point. In case of failure, training is restored from the last
valid checkpoint. However, checkpointing in DL is not just a defence mechanism against
failures. Transfer learning, a common technique in DL relies on checkpointing. A model is
trained on a different data set, saved, and finally fine-tuned with the target application data.

91

This significantly saves on training time and resources. Recently, gradient checkpointing
has been used to overcome memory constraints by fitting large models in GPU memory
and the cost of increased computational cost. Checkpointing is, therefore, a fundamental
component of training DL models and even more important when DL such models are
trained in HPC.

Despite being such a critical component of training DL models, checkpointing has largely
been ignored by the DL community and checkpoint implementations of DL frameworks
are not ideal for HPC. Related work (See section 5.2) shows that there is a need for
advanced checkpointing mechanisms for DL workloads, especially in HPC. However, to
improve existing mechanisms or create new ones, an in-depth study and evaluation of
checkpointing in large scale training of DNNs is required. While checkpointing provides
a way to restart applications on failure, it is important to ensure that on a restart, the
behaviour of such applications is maintained. This ensures reproducibility and validation.
Furthermore, it is important for researchers who want to analyze the behaviour of DL
applications under particular circumstances [116].

In this chapter, we provide detailed explanations of how checkpoint mechanisms work
to illustrate the design decisions involved. We then evaluate checkpointing using repres-
entative DL models with three state-of-the-art DL frameworks common in HPC: Chainer,
PyTorch, and TensorFlow. We use Cifar [38] dataset because it provides an adequate
number of images that allow DL training to finish within acceptable execution times there-
fore ideal for experimentation. In addition, this dataset allowed us to properly analyze the
performance of distributed training when scaling on GPUs. We further study determin-
istic behaviours in these frameworks to validate reproducibility when checkpointing. In
summary, the contributions of this chapter can be summarised as follows.

1. We explore, explain, and compare checkpoint mechanisms of distributed computing
DL frameworks.

2. We perform a set of experiments to measure and evaluate checkpoint overhead at
different scales.

3. We study the deterministic execution of DNN training. Such experiment is funda-
mental for reproducibility.

The remainder of this chapter is organised as follows. Section 5.2 gives a detailed
background of distributed DL and different frameworks used in DL. Section 5.4 explains our
experimentation methodology. Section 5.5 shows our evaluation and results. Section 5.6
discusses important points for future improvement and Section 5.7 concludes the chapter.

92

5.2 Background

In this section, we provide a background and related work in checkpointing for Deep
Learning.

5.2.1 Checkpointing in DNN Training

As mentioned before, almost all frameworks provide some implementation of checkpointing.
In most of the frameworks, the implementation checkpoint is straightforward. However, the
implementation is not automatic and depending on the DL framework it may involve more
modifications in the code to incorporate them. In the following subsections, we discribe
these implementations from the frameworks used in this section.

Chainer Checkpoint implementation

Chainer implements checkpoints based on the extension
chainer.training.extensions.snapshot(). This extension allows the
serialization of a trainer object to save it to an output file. By using this extension,
it is possible to resume training from a saved state. The extension uses as one
of its parameters a trigger that tells Chainer when to perform the checkpoint, e.g.
trigger (̄1, ’epoch’) indicating that the action is executed on each epoch.
This extension must be added as an extension to the Chainer trainer through the
chainer.training.Trainer.extend() function. In order to load a checkpoint,
it is necessary to use the chainer.serializers.load npz() function before the
execution of the training begins.

For serialisation and deserialization processes, there are specific functions called
save npz() and load npz() respectively. These functions can be considered of
coordination as a prelude to the implementation of the serialization and deserializa-
tion processes. The serialisation process requires extra manipulation, because it is
first necessary to pack the objects in a flat dictionary (DictionarySerializer())
and then serialize it (numpy.savez()). For the deserialization process, the
NpzDeserializer() class can only be used to deserialise objects saved with the
save npz() function. The final storage process is handled by NumPy functions for
serialisation (numpy.savez(), numpy.savez compressed()) and deserialization
(numpy.load()). The numpy.savez compressed() function can be used if the com-
pression of NPZ files is required. It is important to highlight that the NumPy serializers
internally use the Pickle library, which could generate a security problem due to the
fact that when loading pickled data, it is possible to execute arbitrary code. Therefore,

93

numpy.load() restricts the loading of array objects stored in NPZ files. Chainer internally
enables pickle load so that the checkpoint process can be carried out transparently.

PyTorch checkpoint implementation

At high level PyTorch provides the torch.save() and torch.load() functions to save
the current state (training state checkpoint) and to load a saved checkpoint, respectively.
The torch.save() function uses as a parameter a Python dictionary with the information
to save. This information can vary according to needs and in this case the dictionary is
loaded with information from the optimizer (optimizer.state dict()) and the neural
network state (model.state dict()). In the same way, when a checkpoint is loaded,
the function returns a dictionary with the previously saved data. It is necessary to carefully
put the save and load functions in the code and ensure that only one process (rank 0) can
execute the function. Furthermore, it is important to ensure that the checkpoint operation
is performed after the all-reduce operation is executed. In our case, at the end of each
epoch.

PyTorch implements serialization processes to convert the data and structures of the
neural network to a byte stream that allows them to be stored and retrieved to their original
structure. Within the function save() and load() there are two main functions that can
be called according to the type of object to be serialized and deserialized, respectively.
The save() function can be used to serialize using zip files. However, in our experiments,
the serialization is performed with the legacy save() function that creates a binary file
without compression. The same argument applies to the load() and legacy load()

functions. However, it is important to note that the load() function first deserializes the
data in the CPU, and then it is moved to the device from where it was saved. However, the
data can be dynamically moved to another device using the map location argument.

TensorFlow Checkpoint implementation

TensorFlow somehow shares a similarity with Chainer in performing the checkpoint process.
This is because TensorFlow uses the callback mechanism to interact with the training
process, similar to the extensions that Chainer uses for the same purpose. TensorFlow
uses a callback called tf.keras.callbacks.ModelCheckpoint() to implement the
checkpoints. Through this callback, it is possible to configure parameters such as the
frequency of the checkpoints (save freq) or if the complete model is stored or only its
weights (save weights only). Furthermore, this callback has an interesting parameter
that allows us to save the best model (save best only) by monitoring (monitor), either
accuracy or loss.

94

The serialisation process can result in two types of file format, one native to TensorFlow
and one HDF5. To get the files in HDF5 format, TensorFlow uses the H5PY library as
part of the serialisation process. This differs from PyTorch in that the H5PY library is not
implemented by default. TensorFlow, by default, saves files in their native format and
to indicate that a file in HDF5 format is needed only requires setting the file extension
of the output file to .h5. In case the callback input argument is save weights only

= false TensorFlow will create a checkpoint of the entire model saving the model
architecture (to allow to re-instantiate the model), the model weights, and the state of
the optimiser to allow you to restart a training exactly where it left off. On the other
hand, the deserialisation process does not require callbacks because the checkpoint is
loaded before starting the training. TensorFlow can load only saved model weights with
the tf.keras.models.load weights() function or the entire saved model with the
tf.keras.models.load model() function.

5.2.2 Deterministic Behaviour of DNN Training

There is intrinsic randomness in the training results even with the same infrastructure
(hardware, framework versions, etc.) and model configurations. This can raise reasonable
questions about the reliability of the results after restarting a saved checkpoint. In order to
validate the appropriate functioning of the checkpoints, we want to obtain a deterministic
behaviour after a restart. This means that accuracy and loss values after a restart are
precisely the same as those of a complete training (we call this deterministic restart).

To remove non-deterministic behaviour from the three DL frameworks, we added
instructions that disable the randomness of the internal processes of the DL framework and
of the libraries external to the DL framework (e.g. CuDNN, NumPy, or CuPy). Therefore,
it is necessary to set the seed of the instructions that generate randomness to an equal
and constant value when starting the DL applications. With this, it is possible to generate
identical random sequences used by the DL frameworks’ internal processes. Because
distributed training use GPUs, some instructions to control randomness are related to
CUDA and cuDNN [117] libraries. Also, it was impossible to implement deterministic
restart in both Chainer and TensorFlow since training information is encapsulated into
a single container. Such design decision makes it highly cumbersome to adapt either
Chainer or TensorFlow for a deterministic restart (See Section 5.5.4).

95

Figure 5.1: Distributed Training Process.

5.3 Related Work

Over the years, researchers have focused on improving the performance of distributed
training of DL models without taking into account aspects related to the effectiveness
or optimization of existing checkpoint mechanisms. For example, there are studies
like [118, 119, 120, 121] focused on optimizing storage and I/O performance because
these become a bottleneck limiting the overall system scalability. Other studies such
as [122, 123, 124] focused on optimization techniques related to SGD (Stochastic Gradient
Descent) algorithm in multinode distributed environments with the improvement of not
altering hyperparameters and without compressing data. Other researchers [125, 126,
127, 128] focused on the main bottlenecks that exist to scale distributed training, namely
model distribution overheads. These studies were focused on the NCCL broadcast,
the performance bottlenecks CUDA-Aware MPI runtime, and the limitation of the GPU
approach in distributed training when the model does not fit in GPU memory.

On the other hand, some researchers [129, 130, 131, 132, 133] focused their studies
on the fault-tolerant of the neural networks but considered faults degrade the performance
of the DNN application and not catastrophic faults that spoil the execution of a DNN
application completely. These investigations analyze the propagation of the soft errors
from the hardware to the DNN application, the algorithmic error-resilience of the DNN,
the Byzantine failures of distributed implementations, and ideas from coding theory to

96

guarantee robustness during distributed training. Other investigations such as [134, 42]
examine the fault tolerance and recovery characteristics of parallel distributed networks.

Though checkpointing in DL is not extensively studied, there is some increasing interest
to optimise this process. Some investigations analyse different aspects in which the
checkpoint is related both directly and indirectly to DL processes. In [135] they make use
of a checkpoint library used in HPC applications to solve the limitations (low serialisation
performance, blocking I/O, only one process performing the checkpoint process) of the
simple checkpoint techniques applied in DL. The authors propose a checkpoint framework
that acts as a bridge to advanced techniques used in multi-level HPC checkpointing,
taking advantage of I/O patterns, layer-wise parallelism, and synchronous data-parallel
training properties. The framework is implemented on top of the VeloC [136], a multi-level
checkpointing tool for HPC systems. Qiao et al. [137] quantify the impact of faults on
interactive convergent algorithms, and they proposed strategies based on checkpointing
to tolerate faults in distributed training. They argue that it is possible to significantly
reduce the rework cost due to partial failures with partial recovering combined with
prioritising checkpoints to reduce the size of perturbations. As a result of this study, they
showed decreased rework cost of failures by order of magnitude compared to traditional
checkpoints.

Other studies use checkpoints not as fault tolerance mechanisms but rather as mechan-
isms to optimize performance. For example, in the case of Wei et al. [138] checkpoints
are used as a mechanism to optimize training in Neural Machine Translation (NMT). The
authors argue that there are two main problems in training: first, the training process
becomes unstable and second that validation performance worsens after several epochs.
So, to mitigate these issues, they periodically evaluate the models, which are saved as a
checkpoint. Training ends when several consecutive checkpoints show no improvement
and the checkpoint with the best evaluation is selected. In this case, the checkpoint
mechanism is used to lead the training process. Also, in [139] checkpoints are used to
decrease memory usage when training deep neural networks with the back-propagation
algorithm. They use checkpoint strategies to determine checkpoints that should be kept in
memory and those that should be calculated from stored checkpoints during the execution
of the backward phase.

In this chapter, we also consider the deterministic behaviour of DNN as a way to
validate the proper functioning of checkpoints. There are few studies about the use of
deterministic elements in machine learning [140, 141, 142, 140, 143]. These studies use
deterministic approaches to generate benchmarks or algorithms to increase machine
learning-related applications’ performance or reliability. Also, in [140] one of the main
goals is the reproducibility of the results. Another study [144] is focused on the analysis of

97

positive impacts of deterministic implementations in training. They identify the sources
of nondeterminism in DL applications and some experimental conditions that form a gap
between deterministic implementations and replicability.

5.4 Methodology

Fault tolerance in DL has been largely ignored by the community [135]. Perhaps due to
the fact that, traditionally, most of the research was carried out on a single GPU or single
node multi GPU environment. Furthermore, most of the DL frameworks are optimised for
performance. However in HPC, fault tolerance is a fundamental component because faults
and node failures are common with libraries such as FTI [145] built specifically to facilitate
fault tolerance of applications in HPC.

Figure 5.1 shows the general structure of a multi-GPU training or distributed training
with the implementation of the checkpoint process as a fault tolerance mechanism. In the
diagram, the interaction between the checkpoint-restart mechanism and the training cycle
is visible. It gives us an idea of the behaviour of the checkpoint-restart and its relationship
with the performance of distributed training.

5.4.1 Evaluation Environment

We aim to evaluate existing support for fault tolerance in state-of-the-art DL frameworks
and their readiness for HPC. This information is important for framework designers and
users alike. For framework designers, our aim is to test, evaluate and validate existing
implementations in HPC context. For users, our aim is to highlight key differences,
similarities and trade offs in choosing frameworks vis-à-vis of fault tolerance. In a nutshell,
we evaluate the following: i) The computational cost of checkpointing, ii) Efficiency of
inbuilt checkpointing mechanisms in different frameworks, iii) The effect of scale on
checkpointing, and iv) The deterministic behaviour in different frameworks. We perform
this experiments using common machine learning models and datasets on two state-of-
the-art HPC systems; Marenostrum and ABCI.

Power9 Cluster in the Marenostrum Supercomputer is a cluster of 52 nodes and
each node is made up of 2 IBM Power9 processors and 4 NVIDIA V100 GPUs. Power9
processors can reach a frequency of 3 GHz, with 20 cores and 4 threads per core (160
threads per node). Each of the V100 GPUs has 16 GB HBM2 memory, with a performance
of 7.8 teraFlops in double precision and 125 teraFlops with the tensor cores [146]. This
cluster also has a high performance distributed file system (IBM GPFS), which allows
access to data from all nodes in the cluster. Then, parallel applications can simultaneously

98

access data from any node that has the file system. It is important to note that the Power9
cluster is an experimental system and many issues were still being evaluated by system
administrators at the time of these experiments.

ABCI Supercomputer comprises 1,088 nodes of FUJITSU Server PRIMERGY
CX2570 M4. Each compute node has two Intel Xeon Gold 6148 Processors and four
NVIDIA Tesla V100 GPUs (16GB of memory per GPU). The GPUs are connected intra-
node to the CPUs by PLX switches and PCIe Gen3 x16 links, and together by NVLink.

5.4.2 Experiments

Our experiments are largely divided into two groups. The first set of experiments is
performed on Marenostrum, while the second on ABCI. Though these two systems share
similar hardware characteristics, they are different on scale. As such, we are able to
comprehensively evaluate both systems.

The first set of experiments evaluates the computational cost of checkpointing (Subsec-
tion 5.5.1), the checkpoint file size and format (Subsection 5.5.2), and deterministic beha-
vior of the checkpoint-restart mechanisms of different frameworks (Subsection 5.5.4).We
use the deterministic behavior to validate the restart functionality after saving a checkpoint
and we determined the performance degradation this incurs. We use Horovod with PyT-
orch and TensorFlow to implement distributed training. These experiments were performed
at Marenostrum4 supercomputer and up to 32 GPUs were used. Cifar10 was used as the
dataset, ResNet50 with batch size of 64.

The second set of experiments is to evaluate the effect of scale on checkpointing, the
behaviour of different models and how each framework performs at scale. These set of
experiments were performed on the ABCI supercomputer using up to 256 GPUs. Our goal
is to evaluate the computation cost of checkpointing at such scales and the performance
of different frameworks. We use ResNet50 and VGG16 models. These two models have
different characteristics that make them interesting to study. VGG16 is a deep and dense
model with 138 million parameters. ResNet50 is a residual network with skip connections
and 25.5 million parameters. We train both models on the Cifar10 dataset with a batch
size of 32 (Subsection 5.5.3). Both sets of experiments were run in all cases with 100
training epochs. When training with checkpoint, checkpoint frequency was set to 5 epochs.

5.5 Results and Evaluation

In this section we present our large scale evaluation and the results of our experiments.

99

5.5.1 Computational Cost of Checkpointing

Saving the state of a DNN consumes a significant amount of time, in particular if it is
done at high frequency. Table 5.1 shows the total time to complete a training without
checkpointing, with checkpointing, and the percentage of overhead represented by NoCkpt,
Ckpt, and Ω, respectively. We performed this experiment for the three DL frameworks,
Chainer, PyTorch, and TensorFlow. For each of the frameworks, distributed training runs
were executed with different number of GPUs, ranging from 4 GPUs (1 node) to 32 GPUs
(8 nodes). In addition, each of the training runs was repeated 5 times and average time is
reported.

As the number of GPUs increases, the performance improves accordingly, both for
training with and without checkpoint. PyTorch had the best performing training times with
a speedup of 6.4 with 32 GPUs without checkpoint and 6.2 with checkpoint. PyTorch is the
framework that presents the best performance when scaling on GPUs. It is also interesting
to note that training times with and without checkpoint in TensorFlow had a speedup of 3.5
for both training with and without checkpoint. Chainer obtained the lowest performance
in these small-scale experiments. However, Chainer’s performance excels at large-scale
tests (See Section 5.5.3).

Regarding the checkpoint overhead, the lowest overall average overhead is obtained by
TensorFlow with 2.3%, followed by PyTorch with 2.5%. Chainer has the highest overall
overhead of 14.27%. The best performance in TensorFlow can be attributed to the use
of the HDF5 file format, because the serialization process of this file format is highly
optimized. Furthermore, it can be seen that Chainer is the only one with a constant
increase in overhead, which is proportional to the number of GPUs going from 3.8% with
4 GPUs to 22.1% with 32 GPUs. The other DL Frameworks maintain a relatively constant
overhead fluctuating in most cases between 1% and 3% for PyTorch and 1% and 2% for
TensorFlow.

Finally, checkpoint mechanisms do not seem to alter the performance profile of the DL
frameworks when scaling in small-scale experiments. Although the checkpoint overhead
is not negligible, it does not susbstantially affect training performance for PyTorch and
TensorFlow. In the case of Chainer, it is necessary to carry out a more detailed review of
the checkpoint operation to optimize the mechanisms for the checkpoint process. In this
study, the performance of the checkpoint in Chainer was not optimized to be consistent
with the other DL frameworks.

100

Chainer PyTorch TensorFlow
GPU NoCkpt Ckpt Ω NoCkpt Ckpt Ω NoCkpt Ckpt Ω

4 3119 3240 3.8 1801 1826 1.3 1107 1124 1.5
8 1726 1869 8.2 885 896 1.2 633 648 2.3
12 1283 1451 13.1 601 623 3.6 497 504 1.5
16 1013 1153 13.7 454 465 2.5 412 420 1.9
20 862 1006 16.7 374 380 1.6 371 373 0.3
24 762 902 18.4 310 320 3.1 329 351 6.8
28 699 824 17.9 288 299 3.7 325 329 1.4
32 633 773 22.1 278 294 5.5 313 322 2.9

Table 5.1: Distributed training time(in seconds) for 100 epochs. Columns show the
execution times for a training without checkpoint (NoCkpt), with checkpoint (Ckpt), and the
percentage of checkpoint overhead (Ω).

Model Chainer PyTorch Tensorflow

Size(MB)
ResNet50 146 180 181

VGG16 238 1025 257
Format NPZ Pickle HDF5

Table 5.2: Size and format of the checkpoint for different frameworks.

101

ResNet50

Chainer PyTorch Tensorflow

No GPUs Without Ckpt With Ckpt Overhead Without Ckpt With Ckpt Overhead Without Ckpt With Ckpt Overhead

4 2162 2338 8.14 1738 1801 3.62 1856 1936 4.31

8 1143 1295 13.30 933 941 0.86 1080 1082 0.19

16 600 747 24.50 484 493 1.86 602 618 2.66

32 307 446 45.28 253 259 2.37 364 371 1.92

64 157 302 92.36 140 142 1.43 236 248 5.08

128 83 228 174.70 77 84 9.09 174 186 6.90

256 47 190 304.26 48 54 12.50 149 157 5.37

Table 5.3: Training times(in seconds) for ResNet50 for 100 epochs in ABCI while check-
pointing at every 5 epochs

VGG16

Chainer PyTorch Tensorflow

No GPUs Without Ckpt With Ckpt Overhead Without Ckpt With Ckpt Overhead Without Ckpt With Ckpt Overhead

4 647 880 36.01 1106 1130 2.17 813 817 0.49

8 796 1023 28.52 1322 1353 2.34 615 622 1.14

16 355 584 64.51 721 750 4.02 385 395 2.60

32 180 415 130.56 370 402 8.65 235 244 3.83

64 95 336 253.68 198 231 16.67 150 159 6.00

128 52 291 459.62 113 141 24.78 114 128 12.28

256 31 270 770.97 70 98 40.00 99 110 11.11

Table 5.4: Training times(in seconds) for VGG16 for 100 epochs in ABCI while checkpoint-
ing at every 5 epochs

5.5.2 Checkpoint File Size and Format

With the increase in complexity of the DL models, the size of the checkpoint files also
increases, so the size of the files should be considered as a key element within the
optimization of DL frameworks.With each framework that is developed, the range of file
formats expands. Table 5.2 shows the formats and sizes of the files saved in each
checkpoint for each of the DL frameworks that we used in the experiments. In addition,
the table is also divided according to the neural network model that was used. We wanted
to determine if the neural network used can influence the size of the resulting checkpoint
files.

Although in all frameworks the HDF5 format can be used, we decided to test the check-
point in the formats that are specific to the implementation of each DL framework. The only
one that implements a native file format without the use of third-party libraries is Tensor-

102

Flow. In the experiments with TensorFlow we used HDF5 because in the native file format
it generates large files which could generate overhead, disadvantaging the performance of
TensorFlow when it is compared to other DL frameworks. For reference, using ResNet50
as model, the checkpoint file in native TensorFlow format reached approximately 427 MB.
On the other hand, PyTorch uses Pickle to serialize, so its file format is based on it. In the
case of Chainer the resulting file format is NPZ and is based on the NumPy library. It is
interesting to note that the NumPy library internally uses Pickle to implement serialisation.

If we compare the file sizes by neural network these do not vary considerably with
ResNet50. PyTorch and TensorFlow maintain similar sizes, while with Chainer the file
size is approximately 19% smaller. It is interesting how well optimized the serialization
process is in Chainer, however the price of this optimization is paid with the degradation
in performance. On the other hand, with the VGG16 model, all file sizes show a notable
increase. This is to be expected as VGG16 has 138 million parameters [147] compared
to ResNet50’s 25 million [148]. Also, there is a notable increase in file size with PyTorch
increasing by 469% and beating Chainer by 331% and TensorFlow by 299%. This
large increase shows that PyTorch’s serialization mechanisms may not be optimized
for different neural network models, unlike Chainer and TensorFlow in which file sizes
maintain proportionality increasing from ResNet50 to VGG16 by 63% in Chainer and 42%
in TensorFlow.

If we compare the file sizes between the DL frameworks, we can see that there are
notable differences that are attributable to the file formats used by each DL framework.
Chainer and Pytorch file formats are based on the Pickle library which might suggest that
the file sizes should be similar. However, these two DL frameworks perform serialization
differently which can influence the size of the resulting file. Chainer uses Pickle through
NumPy to serialize to NPZ format, and PyTorch uses pickle directly as part of its checkpoint
implementation. Also, even though the HDF5 file format has optimized compression, it
does not show a significant difference with the Chainer file size, so using NPZ-based
formats can be a good decision. Taking into account the above argument and if there is no
user concern for storage space, any of the 3 file formats performs its function adequately
and attention should be directed to the performance of each of these. However, DL models
and DL applications are growing in complexity and size, so in the short term it will be
necessary to pay more attention to the serialization and compression processes of the
files resulting from the checkpoints.

103

5.5.3 Checkpointing at Scale

This set of experiments was performed on the ABCI supercomputer. Our goal is to evaulate
checkpointing overhead at scale. We train two models, VGG16 and ResNet50 on the
Cifar10 dataset with checkpointing and without checkpointing. For each framework, we set
checkpointing at every 5 epochs. This is not ideal, and checkpointing time is determined
by several factors such as length of epoch or state of the model during training (i.e.
checkpoint only when there is an increase in validation accuracy). For longer training such
as ImageNet, one would checkpoint at every epoch though the frequency of checkpointing
is dependent on several factors such as checkpointing overheads and the overall reliability
of the system.

Table 5.3 and 5.4 show the results of training on ResNet50 and VGG16 with and without
checkpointing for Chainer, PyTorch and TensorFlow. As mentioned in section 5.4, VGG16
and ResNet model have different properties and this is seen in the results. It is worth noting
that as expected, all frameworks scale well as we increase the number of GPUs. There is
a notable difference in the training times for each framework with Tensorflow performing
slightly faster than other frameworks when training at small scale but performing worse
when running at large scale. This shows that TensorFlow is a framework that has been
highly optimized to run in single, node executions, but it has not been optimized to run
in a large scale distributed system. Chainer, on the other hand, is a framework that was
conceived from the beginning to scale and this can be observed in the results.

However, Chainer has the highest checkpointing overhead and this overhead increases
as the number of GPUs increases (ResNet model). This is due to the fact that in Chainer,
checkpointing is a sequential operation performed by only one process while other pro-
cesses wait. As such, the time to checkpoint will remain the same whether we use 1 GPU
or 256 GPUs. When training the same model with checkpointing, the time for checkpointing
is not large enough to be noticed when the number of GPUs is low. However at large scale,
especially at 256 GPUs, the total time is double or more than the training time without
checkpointing. On the contrary, Tensorflow performs slightly better than PyTorch and has
the lowest checkpoint overhead. It is clear from these results that Chainer and TensorFlow
have been optimized in very different ways, and this is demonstrated in these results.

As mentioned early, VGG16 is a deep model with more parameters. Unlike ResNET,
VGG16 has no skip connections and generally the model is known for being notoriously
slow to train. However, since we are training the model on the Cifar10 dataset (smaller
images), the training time is not too long. In this case, when training without checkpointing,
Chainer shows the best performance and PyTorch is noticeably slow in comparison. As
expected, VGG16 on average takes longer to checkpoint than ResNet. This is also related

104

to the checkpoint sizes in Table 5.2. Chainer has a significant overhead that affects
even the scaling behaviour. Even with just 4 GPUs, checkpoint overhead for Chainer is
significantly high. Though not the same as Chainer, a significant checkpointing overhead
is also observed in PyTorch especially as the number of GPUs increases. In the case of
VGG16 as well, TensorFlow has the lowest checkpointing overhead.

5.5.4 Deterministic Checkpointing

As mentioned in Section 5.4, we made the necessary modifications to the DL frameworks
to obtain deterministic results. Figure 5.2 shows accuracy and loss during training. In blue
the accuracy and loss are shown without performing a checkpoint, in red the accuracy
and loss doing a checkpoint every 5 epochs and in yellow the restart from a checkpoint in
epoch 20. Three types of deterministic results are shown. Figure 5.2a compares i) the
accuracy of training without checkpointing, ii) the accuracy of training with checkpointing,
and iii) the accuracy of training after restart from epoch 20. The same description applies
to Figure 5.2b but in regards to the loss.

With PyTorch it was possible to carry out a deterministic distributed training, both in a
complete training cycle (100 epochs) and after restarting from a checkpoint (deterministic
restart) which validates the operation of the checkpoint mechanism. We modified the
checkpoint process to include data from the optimizer. Figures 5.2a and 5.2b show
that from epoch 20 onwards (yellow line) values of accuracy and loss are exactly the
same. That way, we eliminate the natural randomness generated by training results and
the randomness that increases in distributed training, in which the synchronization of
processes is not deterministic.

In the case of Chainer and TensorFLow, the accuracy and loss results were replicated,
obtaining a deterministic behavior in a complete failure-free training run. However, we
could not achieve a full deterministic restart. With Chainer, it was possible to generate an
almost identical behavior pattern. Table 5.5 shows the accuracy and loss values every
10 epochs for a failure-free execution and compares it with an execution restarted from
epoch 20. It can be seen that the values vary (e.g. epoch 20, accuracy is 0.740589 and
after restart is 0.740552) and we do not get a deterministic restart.

105

(a) Accuracy.

(b) Loss.

Figure 5.2: Deterministic PyTorch distributed training.

Accuracy Loss
Epoch Training After restart Training After restart

10 0.248935 - 2.226590 -
20 0.740589 0.740552 0.743844 0.75368
30 0.789240 0.789595 0.615287 0.614189
40 0.810369 0.809659 0.549811 0.550377
50 0.832741 0.833629 0.478858 0.478444
60 0.854403 0.855291 0.430454 0.429604
70 0.861683 0.862216 0.389529 0.386645
80 0.878374 0.876953 0.353764 0.354646
90 0.887429 0.888139 0.323122 0.319450
100 0.902344 0.900923 0.283951 0.286143

Table 5.5: Accuracy and loss values of a distributed training with Chainer.

106

Not being able to obtain the same deterministic results in Chainer and TensorFlow
after restart is not related to a malfunction of the checkpoint mechanism. Rather, it is the
result of not having enough and reliable elements in the framework to modify the non-
deterministic state, the difficulty that comes with a deeper manipulation of the framework
and the impossibility of manipulating optimised third-party libraries that are used especially
in distributed training.

Previously, the performance of non-deterministic training with and without a checkpoint
was analysed. Now, we analyse the performance of deterministic training with the execution
of checkpoint. Figure 5.3 shows the performance of each of the DL frameworks when
running distributed training. Figures show the time it takes to complete a full training (100
epochs) according to the number of GPUs. With these, it is possible to compare the
performance of non-deterministic training without checkpoint, non-deterministic training
with checkpoint, and deterministic training with checkpoint for each DL framework.

107

(a) Chainer.

(b) PyTorch.

(c) TensorFlow.

Figure 5.3: Performance of distributed training by each of the DL frameworks.

108

In the 3 figures, the execution of deterministic training with checkpoint follows the same
behaviour as non-deterministic training with checkpoint, presenting an almost imperceptible
difference in performance (red line and yellow line). If we calculate the average time
difference between non-deterministic checkpoint and deterministic checkpoint, for the
entire range, we get 14.1 seconds for Chainer, 19.8 seconds for PyTorch, and 16.7 for
TensorFlow. These time differences are relatively low, if we take into account that the
calculation was made based on the training times carried out with amounts of GPUs
ranging from 4 GPUs to 32 GPUs.

Time variations can be attributed to latencies generated by the parallel file systems
or the network. Of course, the completion time of a checkpointed training increases
depending on the number of checkpoints that need to be performed during the training.
The results show us that deterministic behavior does not influence the performance of
distributed training with the execution of checkpoint.

5.6 Discussion

Checkpointing is an integral part of DL workloads in HPC. Our study has unveiled several
insights that may help both framework developers and users when training DL models.
We discuss those observations in the following subsections.

5.6.1 Checkpoint file format

Each DL framework has its own file format for saving checkpoints. This is expected as
the checkpoint mechanism is not standard. There are clear differences between file sizes
due to the choice of file formats and compression mechanisms. For instance, Chainer is
able to significantly compress checkpoint files. To facilitate using existing checkpointing
libraries for DL workloads, the file format should be addressed. For instance, a framework
agnostic checkpointing library should be able to checkpoint in a file format that frameworks
understand and are able to resume from. Such developments could take the approach
used by ONNX [149] which allows Framework Interoperability and inference in multiple
hardwares.

5.6.2 Checkpoint implementations

All DL frameworks explored in this study have the ability to checkpoint during training in
a native way. Unfortunately, DL frameworks have evolved to adapt to new HPC systems
that allow distributed training without taking checkpointing into account. There are check-

109

pointing libraries specifically designed for HPC applications [145, 136]. Those libraries are
optimized for better performance under distributed processing conditions. There is already
an effort to adapt a checkpoint library developed for HPC environments to DL applica-
tions [135]. The idea is to offer DL applications advanced features such as asynchronous
multi-level checkpointing, hiding the complexity of heterogeneous storage, or providing
efficient serialisation on local storage, which are some of the fundamental elements to
obtain the maximum performance. All these elements are not present in the current DL
frameworks.

5.6.3 Checkpoint scalability

Increasing the number of GPUs significantly improves training time of DL models. However,
using multiple nodes does not improve the checkpointing time as only one node is in charge
of checkpointing. Though Chainer has some sort of multi-node checkpoint implementation,
our study showed that this simply produces redundant copies of the application’s state and
does not improve the time to checkpoint. There is therefore an opportunity for external
libraries typically used in HPC to improve checkpointing in DL workloads.

5.6.4 Deterministic behavior in DNN

Determinism in DL models is a secondary consideration. That might be expected since
ANNs have a random nature that seeks to model the behavior of neurons in a biological
brain. However, the randomness of the results can raise reasonable doubts about their
veracity as they are not reproducible, especially when DL models grow in complexity and
are susceptible to failures. This is particularly important for critical-mission applications
such as self-driving cars, among others. We realised that the options offered by DL
frameworks to generate 100% deterministic results in training and when restarting a
training (deterministic restart) are not always reliable to generate reproducible results.
It is imperative for DL frameworks to provide clear and easy-to-implement mechanisms
that allow the reproducibility of results and therefore research environments that allow
validation of the experiments.

5.6.5 Data parallel vs model parallel

Though this study primarily focused on data parallelism, it is also important to consider
model parallelism especially now that it is becoming popular due to increase in model
sizes. In the data parallelism paradigm, there is a replica of the model on each GPU.
In model parallelism, the model is split between processes and each process trains a

110

part of the model. Existing checkpointing implementations in DL frameworks do not do
partial checkpoints. The challenge is that all processes have a replica of the model and all
perform an all-reduce operation at the end of an iteration. To scale checkpointing up, the
model has to be broken up, so that each process checkpoints a small part of it.

PyTorch Tensorflow Chainer
Checkpoint Implementation X X X

Multi-Node Checkpointing - - X

Deterministic Training X X X

Model Parallel Checkpointing - - -

Table 5.6: Checkpointing Features of DL Frameworks.

A summary of the findings discussed in this section and the checkpointing properties of
the different frameworks is given in Table 5.6.

5.7 Conclusion

Checkpointing is a fundamental component when training DL models in HPC due to the
lengthy training times and high probability of hardware faults in HPC systems. In this
chapter, we have evaluated through a series of experiments the checkpointing imple-
mentations of three state-of-the-art DL frameworks. We have evaluated factors such as
computational cost of checkpointing, file sizes and formats, the effect of scale and determ-
inistic behaviour. All frameworks have a form of checkpointing support that is considered
sufficient. However, our evaluation has shown that at scale, this checkpoint implementa-
tions come with a significant overhead as many GPUs remain idle during checkpointing,
particularly for Chainer and Pytorch. The file size of the checkpoint changes signific-
antly with the model in Chainer unlike Tensorflow and Pytorch. The insights provided in
this chapter can help users and framework developers to guide future developments of
advanced checkpointing libraries for DL workloads in HPC.

111

112

Chapter 6

Conclusion

There is no doubt that Machine Learning will continue to drive revolutions in Artificial
Intelligence. It is also clear that HPC will be at the core of these revolutions as models and
data sizes get larger. Though the work carried out in this thesis is not conclusive, it has
led to key findings and tools that could substantially improve Machine Learning in HPC.
In this chapter, we first summarise the chapters in this thesis and conclusions from each
chapter. We then provide key takeaways and lessons from this thesis and finally present
ideas that couldn’t be explored due to time limitations but will be pursued as future work.

6.1 Summary of Achievements

In chapter 1 highlighted the journey of Machine Learning and the role AI will play in future
scientific discoveries and other applications. We provide the motivations for studying ML in
HPC systems. These motivations included the need for larger models to drive innovation
as well as the increasing use of scientific datasets. We then used this motivation to give the
challenges that ML applications face in HPC systems. Such challenges include traditional
HPC challenges such as network congestion as well as complex challanges specific to
ML such as framework limitations and the grand challenge of performance modelling. We
also shared a summary of the objectives and contributions of this thesis.

In chapter 2 we gave a background of Machine Learning. We also explained how distrib-
uted ML works and the different frameworks used in this thesis to carry out experiments.
We further discussed HPC systems used in this thesis, i.e. MareNustrum supercomputer
and ABCI supercomputer. Though related work is provided in each chapter, we have a
short related work for Machine Learning in HPC.

113

Chapter 3 is the first research chapter of this thesis and presents the first research
work carried out. This chapter introduces PyCOMPSs, a framework that aims to ease the
development and execution of Python parallel applications for distributed infrastructures,
such as Clusters and Clouds. We then present a Hyperparameter scheme built on top
of PyCOMPSs that can significantly accelerate the process of searching for the correct
Hyperparameters in HPC. This work is based on the premise that each experiment in
a hyperparameter search is essentially a task. By exploring task parallelism, we can
launch as many tasks as there are computing resources and terminate a task as soon as
the desired parameters are found or using a predefined algorithm. We demonstrate the
usefulness of this tool by conducting a wide range of experiments using state of the art
ML models.

Chapter 4 is the core chapter of this thesis. This chapter’s work was conducted over
two years, and hence it’s the longest chapter. This chapter first introduced challenges in
distributed ML which build the foundation for this work. We then introduce and define the
strategies for distributed training. We produce paraDL, an oracle to guide the right strategy
for distributed training. We first demonstrate this tool’s accuracy by conducting a myriad of
experiments up to thousands of GPUs. We then use this tool to show limitations in scaling
ML such as communication, memory capacity and computation. Finally, we provide a
summary of the analysis.

HPC clusters are susceptible to faults and errors that can crash the entire system or a
HPC node. As training large models takes weeks or even months, it’s crucial to ensure
that such efforts are not wasted should an error happen. For this reason, checkpointing
is a fundamental part of ML. However, due to ML frameworks’ historical single node
development, checkpointing in ML is not adapted to HPC. Chapter 5 is a detailed study of
checkpointing in HPC. Though we don’t develop a checkpointing tool (This is left for future
work), we study the details of checkpointing of ML in HPC and highlight important things
that should be considered when developing a checkpointing framework for ML applications
in HPC.

6.2 Notable Observations

In the introduction we embarked on a journey to study scaling ML workflows in HPC. In
this section, we highlight some of the key observations findings from this thesis.

Task-based programming model in Machine Learning. Task based model program-
ming allows us to divide computation into tasks. This model has potential advantages and
use cases especially in hyperparameter optimisation. While it is technically possible, to
submit all evaluations in independent job. But there are two main drawbacks: first, all jobs

114

will have to wait and compete with the other users of the queue, while with PyCOMPSs
are in the same reservation (even enabling to reuse memory objects from one task to the
next if they use the same object), and second, PyCOMPSs also enables you to design
more complex workflows without the user need to do it by hand (as it should be done using
directly with slurm), that in the application of the paper maybe it is not needed, but when
you include a merging process, or a more complex structure, then becomes very difficult
doing it with a queuing system.

Performance Modelling: Performance models are instrument to understand scaling
behaviour of parallel applications . Using a performance models, we are able to understand
the how performance changes as we manipulate different parameters. From this work
we realised that a purely analytical model is impossible and unrealistic. Because of this
we combined some empirical measurements in our model to enhance prediction. This
empirical measurements are easy to acquire for any system and therefore dont limit our
model.

Low Focus on Fault Tolerance: In the literature study leading to the final chapter that
focuses on fault tolerance, we noticed how little exists in the literature on check-pointing
for ML workloads. As mentioned in the chapter, this is probably due to the fact that existing
implementations have so far been enough. However, with the increasing large models and
complex datasets, this area of research is likely to gain some traction. We have highlighted
in chapter 5 so key areas that can be improved in existing frameworks to support more
complex checkpointing such as those common in HPC. We note that with increasing use
of model parallelism, better checkpointing approaches will be required.

6.3 Behind the Scenes

This thesis is the result of several years of research and over a decade of building the
foundational knowledge required to perform such research. Over those years, I have tried
countless things and learnt invaluable lessons that I share here. This section highlights
some of the things that went on behind the scenes and that eventually led to the results
published in this thesis.

In the initial days of this research, most of the work was carried out in Tensorflow.
Though Tensorflow is a fully developed and well-maintained framework, several challenges
arose due to the complexity of modifying the framework for research purposes. For the
work carried out in chapter 4, we opted for the Chainer framework that allowed more
flexibility. PyTorch framework is also used in chapter 5. Experimenting with different
frameworks allowed us to understand each framework’s strengths and weaknesses and
use a specific framework for specific tasks. This work also helped me gain a very deep

115

understanding of different frameworks. Furthermore, we developed a chainer extension
to support different parallelsim strategies and publicly released this extension under the
name ChainerMNX

One of the most challenging problems to solve during the implementation of different
parallelism strategies was ensuring correctness. For instance, splitting a model across
multiple devices should not yield different results from training the model on a single device.
A lot of effort was put into ensuring reproducibility and this consistency across different
parallelism strategies. To achieve this, we had to implement several strategies to debug
cases that yielded different results. A significant engineering effort was required for this.
For most of the parallelism strategies, we guarantee bit-wise reproducibility. This was
possible due to the flexibility that the Chainer framework allows.

I also had a short collaboration with the Earth Sciences Department at BSC, where
we explored opportunities in Deep Learning for Hurricane season analysis. This project
was exciting due to the nature of hurricane data available, which is limited to 100 years.
Furthermore, hurricane data contains multiple channels and dimensions, including a time
dimension. This is interesting from a scalability point of view as there are many dimensions
to scale, unlike image data and requires novel methods because the data set is very small.
Even though the Earth Science Department soon hired someone specifically to work on
that project, my work was instrumental as it formed the building block of the bigger project.
Apart from working with leading climate scientists, this work also gave me insight into
Earth Sciences and hurricanes and hurricane season prediction. Part of the results of this
short collaboration was published in a workshop at ISC-2018.

6.4 Future Outlooks

There is only so much that can be done in three years. Several choices had to be made
regarding what to prioritise and the extent to which research was carried out. Therefore,
this thesis’s end is not the end of research on the issues raised in this chapter. Several
ideas have just been highlighted and not fully developed. This will be carried out in the
future. For instance, in chapter 3, we presented a HPO scheme. However, we did not
present the full tool that can be used for this. Future work will develop the tool and avail it
for public use. In chapter 5, we carried out an extensive study of checkpointing for ML in
HPC and highlighted the need for a checkpointing library that factors in ML applications’
unique nature. This tool will be developed in the future.

116

Appendix A

Publications and Dissemination

A.1 Publications

1. Kahira, A.N. , Nguyen, T, Wahib, M., Gomez, L. B., Badia, R. M., Takano, R. An Or-
acle for Guiding Large-Scale Model/Hybrid Parallel Training of Convolutional Neural
Networks In The ACM International Symposium on High-Performance Parallel and
Distributed Computing (HPDC 2021)

2. Rojas, E., Kahira, A. N., Meneses, E., Gomez, L. B., & Badia, R. M. (2020). A
Study of Checkpointing in Large Scale Training of Deep Neural Networks. In The
2020 International Conference on High Performance Computing & Simulation(HPCS
2020)

3. Kahira, A. N., Gomez, L. B., Aktas, H. Yalcin, G. Unsal, O. & Cristal, A. Effects
of Hardware Faults on Artificial Neural Networks In 6. Ulusal Yüksek Başarımlı
Hesaplama Konferansı. (Basarım 2020 HPC)

4. Kahira, A. N., Gomez, L. B., Conejero, J., & Badia, R. M. (2019, August). Ac-
celerating hyperparameter optimisation with PyCOMPSs. In Proceedings of the
48th International Conference on Parallel Processing: Workshops (pp. 1-8).
https://doi.org/10.1145/3339186.3339200

5. Kahira, A.N. , Gomez, L. B., & Badia, R. M. (2018, June). Training deep neural
networks with low precision input data: a hurricane prediction case study. In
International Conference on High Performance Computing (pp. 562-569). Springer,
Cham.
https://doi.org/10.1007/978-3-030-02465-9_40

117

https://doi.org/10.1145/3339186.3339200
https://doi.org/10.1007/978-3-030-02465-9_40

6. Kahira, A., Bautista Gomez, L., & Badia Sala, R. M. (2018, April). A machine learn-
ing workflow for hurricane prediction. In Book of abstracts (pp. 72-73). Barcelona
Supercomputing Center.

A.2 Workshops, Summer Schools and Talks

1. Deep Learning Indaba - Stellenbosch, South Africa, September 2018
A series of master classes that brings advanced knowledge of Machine Learning
and Deep Learning with the aim of strengthening Machine Learning in Africa
Presented a poster and won a poster award

2. International HPC Summer School - Ostrava, Czech Republic, July 2018
Among the 80 PhD students and Post-docs selected from Europe,Japan and Amer-
ica Presented a poster and a flash talk

3. International Supercomputing Conference (ISC) - Frankfurt, Germany, June
2018
Presented a poster and flash talk at the PhD Forum Presented at workshop paper
at the 1st International Workshop on Approximate and Transprecision Computing on
Emerging Technologies

4. BSC International Doctoral Symposium - Barcelona, Spain, April 2018
Presented a poster and extended abstract.

A.3 Research Collaboration

1. AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laborat-
ory , Tokyo, Japan
A three months research stay at Tokyo Institute of Technology working on novel
architectures for model parallelism on the ABCI supercomputer.

A.4 Grants

1. Eurolab4HPC Short Term Collaboration Grant
Grant worth 5000 Euros for a research stay at Tokyo Institute of Technology to study
Scaling of Large Machine Learning Models in HPC

118

2. DFG SPPEXA Travel Grant to ISC 2018
Grant worth 600 Euros to cover Travel expenses to ISC

3. INPhINIT La Caixa Fellowship for PhD in Spanish Centres of Excellence
European Union’s Horizon 2020 research and innovation programme under the
Marie Sklowdowska-Curie grant agreement No. 713673

119

120

Bibliography

[1] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[2] W. G. Hatcher and W. Yu, “A survey of deep learning: platforms, applications and
emerging research trends,” IEEE Access, vol. 6, pp. 24411–24432, 2018.

[3] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applications,”
Computer Science Review, vol. 40, p. 100379, 2021.

[4] A. M. Turing, “Computing machinery and intelligence,” in Parsing the turing test,
pp. 23–65, Springer, 2009.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[6] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning us-
ing graphics processors,” in Proceedings of the 26th annual international conference
on machine learning, pp. 873–880, 2009.

[7] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE
Intelligent Systems, vol. 24, no. 2, pp. 8–12, 2009.

[8] Y. Shen et al., “Learning semantic representations using convolutional neural net-
works for web search,” WWW ’14 Companion, (New York, NY, USA), p. 373–374,
Association for Computing Machinery, 2014.

[9] A. Kahira et al., “Training deep neural networks with low precision input data: A
hurricane prediction case study,” in High Performance Computing, (Cham), pp. 562–
569, Springer International Publishing, 2018.

[10] I. Wallach et al., “Atomnet: A deep convolutional neural network for bioactivity
prediction in structure-based drug discovery,” 2015.

121

[11] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann, L. Shao, S. He,
T. Kärnä, D. Moise, S. J. Pennycook, et al., “Cosmoflow: Using deep learning to
learn the universe at scale,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 819–829, IEEE, 2018.

[12] E. Callaway, “’it will change everything’: Deepmind’s ai makes gigantic leap in
solving protein structures.,” Nature, 2020.

[13] T. Ben-Nun et al., “Demystifying parallel and distributed deep learning: An in-depth
concurrency analysis,” CoRR, vol. abs/1802.09941, 2018.

[14] Y. You et al., “ImageNet Training in Minutes,” in Proceedings of the 47th International
Conference on Parallel Processing, ICPP 2018, pp. 1:1–1:10, 2018.

[15] Y. Huang et al., “GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism,” CoRR, vol. abs/1811.06965, 2018.

[16] T. Kurth et al., “Exascale Deep Learning for Climate Analytics,” SC ’18, pp. 51:1–
51:12, 2018.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

[18] M. Copik et al., “Extracting clean performance models from tainted programs,” 2020.

[19] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward exascale re-
silience: 2014 update,” Supercomputing Frontiers and Innovations: an International
Journal, vol. 1, no. 1, pp. 5–28, 2014.

[20] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[22] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the
game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587,
p. 484, 2016.

[23] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur, G. Ganger, and
P. Gibbons, “Pipedream: Fast and efficient pipeline parallel dnn training,” 2018.

122

[24] C.-C. Chen, C.-L. Yang, and H.-Y. Cheng, “Efficient and robust parallel dnn training
through model parallelism on multi-gpu platform,” 2018.

[25] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki, K. Uenishi,
B. Vogel, and H. Y. Vincent, “Chainer: A deep learning framework for accelerating
the research cycle,” 2019.

[26] A. Paszke and et al., “Pytorch: An imperative style, high-performance deep learning
library,” 2019.

[27] M. Abadi and et al., “Tensorflow: A system for large-scale machine learning,” in 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),
(Savannah, GA), pp. 265–283, USENIX Association, Nov. 2016.

[28] M. Abadi and et al., “Tensorflow: Large-scale machine learning on heterogeneous
systems,” 2015. Software available from tensorflow.org.

[29] S. Tokui and K. Oono, “Chainer:a next-generation open source framework for deep
learning,” 2015.

[30] i. Preferred Networks and i. Preferred Infrastructure, “Cupy – numpy-like api accel-
erated with cuda,” 2015.

[31] T. Akiba, K. Fukuda, and S. Suzuki, “Chainermn: Scalable distributed deep learning
framework,” 2017.

[32] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environment
for machine learning,” 2011.

[33] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. aurelio Ranzato,
A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, “Large scale distributed deep
networks,” in Advances in Neural Information Processing Systems 25 (F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), pp. 1223–1231, Curran
Associates, Inc., 2012.

[34] F. Chollet, “Keras,” 2020.

[35] A. Gibiansky, “Bringing hpc techniques to deep learning,” feb 2017.

[36] N. Corporation, “Nvidia collective communications library (nccl),” mar 2020.

[37] L. Deng, “The mnist database of handwritten digit images for machine learning
research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

123

[38] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
tech. rep., Citeseer, 2009.

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[40] National Energy Research Scientific Computing Center, “CosmoFlow datasets.”
https://portal.nersc.gov/project/m3363/. [15 January 2020].

[41] S.-X. Zou, C.-Y. Chen, J.-L. Wu, C.-N. Chou, C.-C. Tsao, K.-C. Tung, T.-W. Lin,
C.-L. Sung, and E. Y. Chang, “Distributed training large-scale deep architectures,” in
International Conference on Advanced Data Mining and Applications, pp. 18–32,
Springer, 2017.

[42] V. Amatya, A. Vishnu, C. Siegel, and J. Daily, “What does fault tolerant deep learning
need from mpi?,” in Proceedings of the 24th European MPI Users’ Group Meeting,
pp. 1–11, 2017.

[43] H. Asaadi and B. Chapman, “Comparative study of deep learning framework in hpc
environments,” in 2017 New York Scientific Data Summit (NYSDS), pp. 1–7, IEEE,
2017.

[44] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling and scalability
optimization of distributed deep learning systems,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1355–1364, 2015.

[45] R. Mayer and H.-A. Jacobsen, “Scalable deep learning on distributed infrastructures:
Challenges, techniques, and tools,” ACM Computing Surveys (CSUR), vol. 53, no. 1,
pp. 1–37, 2020.

[46] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis,” ACM Computing Surveys (CSUR), vol. 52, no. 4,
pp. 1–43, 2019.

[47] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015. Software available from tensorflow.org.

124

https://portal.nersc.gov/project/m3363/

[48] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W,
2017.

[49] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[50] “PyCOMPSs: Parallel computational workflows in Python,” International Journal of
High Performance Computing Applications, 2017.

[51] J. Bergstra JAMESBERGSTRA and U. Yoshua Bengio YOSHUABENGIO, “Random
Search for HyperParameter Optimization,” Journal of Machine Learning Research,
2012.

[52] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-Parameter
Optimization,” in NIPS Proceedings, 2011.

[53] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of
Machine Learning Algorithms,” tech. rep.

[54] F. Madrigal, C. Maurice, and F. Lerasle, “Hyper-parameter optimization tools com-
parison for multiple object tracking applications,” Machine Vision and Applications,
vol. 30, pp. 269–289, mar 2018.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[56] L. Hertel, J. Collado, P. Sadowski, J. Collado, and P. Baldi, “Sherpa : Hyperparameter
Optimization for Machine Learning Models,” no. Nips, 2018.

[57] “SHADHO: Massively scalable hardware-aware distributed hyperparameter optimiz-
ation,” in Proceedings - 2018 IEEE Winter Conference on Applications of Computer
Vision, WACV 2018, 2018.

[58] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model search: Hy-
perparameter optimization in hundreds of dimensions for vision architectures,” in
Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, pp. I–115–I–123, JMLR.org, 2013.

125

[59] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune: A
Research Platform for Distributed Model Selection and Training,” jul 2018.

[60] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,
W. Paul, M. I. Jordan, and I. Stoica, “Ray: A Distributed Framework for Emerging AI
Applications,” dec 2017.

[61] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep double
descent: Where bigger models and more data hurt,” arXiv preprint arXiv:1912.02292,
2019.

[62] “Paraver: a flexible performance analysis tool.”

[63] J. Dean et al., “Large scale distributed deep networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems, pp. 1223–
1231, 2012.

[64] S. Rajbhandari et al., “ZeRO: Memory Optimization Towards Training A Trillion
Parameter Models,” ArXiv, vol. abs/1910.02054, 2019.

[65] T. B. Brown et al., “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[66] A. Mathuriya et al., “Cosmoflow: Using deep learning to learn the universe at scale,”
SC ’18, pp. 65:1–65:11, 2018.

[67] X. Jia et al., “Highly Scalable Deep Learning Training System with Mixed-Precision:
Training ImageNet in Four Minutes,” CoRR, vol. abs/1807.11205, 2018.

[68] M. Yamazaki et al., “Yet Another Accelerated SGD: ResNet-50 Training on ImageNet
in 74.7 seconds,” CoRR, vol. abs/1903.12650, 2019.

[69] M. Bayatpour et al., “Scalable reduction collectives with data partitioning-based
multi-leader design,” SC ’17, pp. 64:1–64:11, 2017.

[70] T. T. Nguyen et al., “Hierarchical Distributed-Memory Multi-Leader MPI-Allreduce for
Deep Learning Workloads,” CANDAR18, pp. 216–222, 2018.

[71] F. Seide et al., “1-Bit Stochastic Gradient Descent and Application to Data-Parallel
Distributed Training of Speech DNNs,” Interspeech 2014, September 2014.

[72] W. Wen et al., “TernGrad: Ternary Gradients to Reduce Communication in Distrib-
uted Deep Learning,” in Advances in Neural Information Processing Systems 30,
pp. 1509–1519, Curran Associates, Inc., 2017.

126

[73] N. Strom, “Scalable distributed DNN training using commodity GPU cloud com-
puting,” Sixteenth Annual Conference of the International Speech Communication
Association, 2015.

[74] F. Sattler, S. Wiedemann, K. Müller, and W. Samek, “Sparse binary compres-
sion: Towards distributed deep learning with minimal communication,” CoRR,
vol. abs/1805.08768, 2018.

[75] C. Renggli et al., “SparCML: High-Performance Sparse Communication for Machine
Learning,” SC ’19, 2019.

[76] N. Dryden et al., “Channel and Filter Parallelism for Large-Scale CNN Training,” SC
’19, pp. 46:1–46:13, 2019.

[77] F. Seide et al., “On parallelizability of stochastic gradient descent for speech DNNS,”
in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 235–239, May 2014.

[78] P. Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour,”
CoRR, vol. abs/1706.02677, 2017.

[79] S. L. Smith et al., “Don’t Decay the Learning Rate, Increase the Batch Size,” in 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Conference Track Proceedings, 2018.

[80] T. Akiba et al., “Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet
in 15 Minutes,” CoRR, vol. abs/1711.04325, 2017.

[81] O. Russakovsky et al., “Imagenet large scale visual recognition challenge,” Interna-
tional journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[82] B. Ginsburg et al., “Large batch training of convolutional networks with layer-wise
adaptive rate scaling,” 2018. [01 April 2020].

[83] Y. You et al., “Large Batch Optimization for Deep Learning: Training BERT in 76
minutes,” 2020. [01 April 2020].

[84] J. G. Pauloski et al., “Convolutional neural network training with distributed K-FAC,”
arXiv preprint arXiv:2007.00784, 2020.

[85] H. Zhang et al., “Context encoding for semantic segmentation,” in CVPR2018, June
2018.

127

[86] Y. Wu and K. He, “Group normalization,” in Proceedings of the European conference
on computer vision (ECCV), pp. 3–19, 2018.

[87] A. Kolesnikov et al., “Big Transfer (BiT): General Visual Representation Learning,”
arXiv preprint arXiv:1912.11370, 2019.

[88] S. Lym et al., “PruneTrain: Fast Neural Network Training by Dynamic Sparse Model
Reconfiguration,” SC ’19, 2019.

[89] T. Chen et al., “Training Deep Nets with Sublinear Memory Cost,” ArXiv,
vol. abs/1604.06174, 2016.

[90] M. Wahib et al., “Scaling Distributed Deep Learning Workloads beyond the Memory
Capacity with KARMA,” arXiv preprint arXiv:2008.11421, 2020.

[91] J. Domke et al., “HyperX Topology: First at-Scale Implementation and Comparison
to the Fat-Tree,” SC ’19, 2019.

[92] J. Dong et al., “EFLOPS: Algorithm and System Co-Design for a High Performance
Distributed Training Platform,” in HPCA, pp. 610–622, 2020.

[93] A. Castelló et al., “Analysis of Model Parallelism for Distributed Neural Networks,”
EuroMPI ’19, pp. 7:1–7:10, 2019.

[94] A. Gholami et al., “Integrated model, batch and domain parallelism in training neural
networks,” arXiv preprint arXiv:1712.04432, 2017.

[95] Z. Jia et al., “Exploring hidden dimensions in parallelizing convolutional neural
networks,” arXiv preprint arXiv:1802.04924, 2018.

[96] J. Zhihao et al., “Beyond Data and Model Parallelism for Deep Neural Networks,”
CoRR, vol. abs/1807.05358, 2018.

[97] Y. Oyama, N. Maruyama, N. Dryden, E. McCarthy, P. Harrington, J. Balewski,
S. Matsuoka, P. Nugent, and B. Van Essen, “The case for strong scaling in deep
learning: Training large 3d cnns with hybrid parallelism,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 7, pp. 1641–1652, 2021.

[98] N. Dryden et al., “Improving Strong-Scaling of CNN Training by Exploiting Finer-
Grained Parallelism,” in IPDPS 2019, pp. 210–220.

[99] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,” arXiv
preprint arXiv:1404.5997, 2014.

128

[100] M. Shoeybi et al., “Megatron-LM: Training Multi-Billion Parameter Language Models
Using Model Parallelism,” ArXiv, vol. abs/1909.08053, 2019.

[101] “Benanza: Automatic µbenchmark generation to compute ”lower-bound” latency
and inform optimizations of deep learning models on gpus,”

[102] H. Jin et al., “Layer-centric memory reuse and data migration for extreme-scale
deep learning on many-core architectures,” ACM Trans. Archit. Code Optim., vol. 15,
Sept. 2018.

[103] J. A. Rico-Gallego et al., “A survey of communication performance models for
high-performance computing,” ACM Comput. Surv., vol. 51, Jan. 2019.

[104] P. Sanders et al., “Two-tree algorithms for full bandwidth broadcast, reduction and
scan,” Parallel Computing, vol. 35, no. 12, pp. 581 – 594, 2009.

[105] S. C. Kim et al., “Measurement and prediction of communication delays in myrinet
networks,” Journal of Parallel and Distributed Computing, vol. 61, no. 11, pp. 1692 –
1704, 2001.

[106] M. Martinasso et al., “A contention-aware performance model for hpc-based net-
works: A case study of the infiniband network,” in Euro-Par 2011 Parallel Processing,
2011.

[107] S. Chunduri et al., “Gpcnet: Designing a benchmark suite for inducing and measur-
ing contention in hpc networks,” SC ’19, 2019.

[108] “GPUDirect.” https://developer.nvidia.com/gpudirect. [21 April 2020].

[109] A. Li et al., “Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch
and GPUDirect,” CoRR, vol. abs/1903.04611, 2019.

[110] I. Sergey et al., “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” CoRR, vol. abs/1502.03167, 2015.

[111] K. Simonyan et al., “Very Deep Convolutional Networks for Large-Scale Image
Recognition,” in ICLR 2015, 2015.

[112] C. Kim et al., “torchgpipe: On-the-fly pipeline parallelism for training giant models,”
arXiv preprint arXiv:2004.09910, 2020.

[113] D. Narayanan et al., “PipeDream: Generalized Pipeline Parallelism for DNN Training,”
SOSP ’19, p. 1–15, 2019.

129

https://developer.nvidia.com/gpudirect

[114] Y. Xu et al., “Automatic Cross-Replica Sharding of Weight Update in Data-Parallel
Training,” arXiv preprint arXiv:2004.13336, 2020.

[115] G. Dong et al., “Fully convolutional spatio-temporal models for representation learn-
ing in plasma science,” arXiv preprint arXiv:2007.10468, 2020.

[116] O. E. Gundersen and S. Kjensmo, “State of the art: Reproducibility in artificial
intelligence,” 2018.

[117] N. Corporation, “Nvidia cudnn,” 2020.

[118] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Michoski, J. Cazes, and
N. Gaffney, “Fanstore: Enabling efficient and scalable i/o for distributed deep learn-
ing,” 2018.

[119] S. Pumma, M. Si, W. Feng, and P. Balaji, “Parallel i/o optimizations for scalable deep
learning,” in 2017 IEEE 23rd International Conference on Parallel and Distributed
Systems (ICPADS), pp. 720–729, 2017.

[120] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu, “Entropy-
aware i/o pipelining for large-scale deep learning on hpc systems,” in 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pp. 145–156, 2018.

[121] Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury, “Efficient user-level
storage disaggregation for deep learning,” in 2019 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 1–12, 2019.

[122] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar,
B. Kaul, and P. Dubey, “Distributed deep learning using synchronous stochastic
gradient descent,” 2016.

[123] S. Alqahtani and M. Demirbas, “Performance analysis and comparison of distributed
machine learning systems,” 2019.

[124] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed
synchronous sgd,” 2016.

[125] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ran-
zato, A. Senior, P. Tucker, and et al., “Large scale distributed deep networks,” in
Proceedings of the 25th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, (Red Hook, NY, USA), p. 1223–1231, Curran Associ-
ates Inc., 2012.

130

[126] J. Keuper and F. Preundt, “Distributed training of deep neural networks: Theoret-
ical and practical limits of parallel scalability,” in 2016 2nd Workshop on Machine
Learning in HPC Environments (MLHPC), pp. 19–26, Nov 2016.

[127] A. A. Awan, K. Hamidouche, A. Venkatesh, and D. Panda, “Efficient large message
broadcast using nccl and cuda-aware mpi for deep learning,” 09 2016.

[128] V. Campos, F. Sastre, M. Yagües, M. Bellver, X. G. i Nieto, and J. Torres, “Distributed
training strategies for a computer vision deep learning algorithm on a distributed gpu
cluster,” Procedia Computer Science, vol. 108, pp. 315 – 324, 2017. International
Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich,
Switzerland.

[129] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W. Keckler,
“Understanding error propagation in deep learning neural network (dnn) accelerators
and applications,” 2017.

[130] T. Liu, W. Wen, L. Jiang, Y. Wang, C. Yang, and G. Quan, “A fault-tolerant neural
network architecture,” 2019.

[131] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with
adversaries: Byzantine tolerant gradient descent,” 2017.

[132] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent,” 2017.

[133] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, “Draco: Byzantine-resilient
distributed training via redundant gradients,” 2018.

[134] A. Kulakov, M. Zwolinski, and J. Reeve, “Fault tolerance in distributed neural com-
puting,” 09 2015.

[135] B. Nicolae, J. Li, J. M. Wozniak, G. Bosilca, M. Dorier, and F. Cappello, “Deepfreeze:
Towards scalable asynchronous checkpointing of deep learning models,” in 2020
20th IEEE/ACMCCGRID, pp. 172–181, 2020.

[136] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello, “Veloc: Towards
high performance adaptive asynchronous checkpointing at large scale,” in 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 911–920,
2019.

[137] A. Qiao, B. Aragam, B. Zhang, and E. Xing, “Fault tolerance in iterative-convergent
machine learning,” in Proceedings of the 36th International Conference on Machine

131

Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of
Machine Learning Research, (Long Beach, California, USA), pp. 5220–5230, PMLR,
09–15 Jun 2019.

[138] H.-R. Wei, S. Huang, R. Wang, X.-y. Dai, and J. Chen, “Online distilling from
checkpoints for neural machine translation,” in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), (Minneapolis,
Minnesota), pp. 1932–1941, Association for Computational Linguistics, June 2019.

[139] O. Beaumont, J. Herrmann, L. Eyraud-Dubois, J. Hermann, A. Joly, and A. Shilova,
“Optimal checkpointing for heterogeneous chains: how to train deep neural networks
with limited memory,” 2019.

[140] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control,” 2017.

[141] I. Icke and J. C. Bongard, “Improving genetic programming based symbolic regres-
sion using deterministic machine learning,” in 2013 IEEE Congress on Evolutionary
Computation, pp. 1763–1770, 2013.

[142] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Determ-
inistic policy gradient algorithms,” in Proceedings of the 31st International Con-
ference on International Conference on Machine Learning - Volume 32, ICML’14,
p. I–387–I–395, JMLR.org, 2014.

[143] I. Ilievski, T. Akhtar, J. Feng, and C. A. Shoemaker, “Efficient hyperparameter
optimization for deep learning algorithms using deterministic rbf surrogates,” 2016.

[144] P. Nagarajan, G. Warnell, and P. Stone, “Deterministic implementations for reprodu-
cibility in deep reinforcement learning,” 2018.

[145] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and
S. Matsuoka, “Fti: High performance fault tolerance interface for hybrid systems,” in
SC ’11, pp. 1–12, 2011.

[146] N. Corporation, “Nvidia tesla v100,” 2020.

[147] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” 2014.

[148] S. Zagoruyko and N. Komodakis, “Wide residual networks,” 2016.

132

[149] O. R. developers, “Onnx runtime.” https://www.onnxruntime.ai, 2021. Ver-
sion: x.y.z.

133

https://www.onnxruntime.ai

	Abstract
	Resumen
	Acronyms
	Introduction
	Motivation
	Challenges
	Objectives
	Thesis Contributions

	Background
	Deep Learning
	Parallelism in Deep Learning
	Data Parallelism
	Model Parallelism

	Deep Learning Frameworks
	Chainer
	PyTorch
	Tensorflow
	Horovod

	Datasets
	Mnist
	Cifar
	ImageNet
	CosmoFlow

	High Performance Computing
	MareNostrum
	ABCI

	Related Work

	Accelerating Hyperparameter Optimisation with PyCOMPSs
	Introduction
	Background and Related Work
	Background
	State of the Art

	PyCOMPSs
	Approach
	Experiments
	Results and Discussion
	Application Analysis
	HPO Results
	Discussion

	Conclusion

	An Oracle for Guiding Large-Scale Training of Deep Neural Networks
	Introduction
	Background and Notation
	Related Work

	Strategies for Distributed Training
	Data parallelism
	Spatial parallelism (height-width-depth)
	Model-horizontal parallelism (filter/channel)
	Model-vertical (layer) parallelism
	Hybrid parallelism

	Performance and Memory Analysis
	Sequential
	Spatial parallelism
	Layer parallelism
	Filter parallelism
	Channel parallelism
	Hybrid parallelism (Data + Filter)

	Performance Projection of Different Parallel Strategies
	Overview of ParaDL
	Assumptions and Restrictions
	Performance and Memory Projection
	Empirical Parametrization
	Implementation
	Implementation Details
	Accuracy and Correctness

	Evaluation
	Methodology
	Selected Models and Datasets
	Evaluation Environment
	Configurations of Experiments

	ParaDL's Projection and Accuracy
	Parallelism Limitations and Bottlenecks
	Communication
	Memory Capacity
	Computation
	Scaling limitation

	Other Observations
	The Rise of Hybrid Parallelism
	Staging and I/O Overhead
	Distributed Inference

	Summary of our Analysis

	Conclusion

	A Study of Checkpointing in Large Scale Training of Deep Neural Networks
	Introduction
	Background
	Checkpointing in DNN Training
	Chainer Checkpoint implementation
	PyTorch checkpoint implementation
	TensorFlow Checkpoint implementation

	Deterministic Behaviour of DNN Training

	Related Work
	Methodology
	Evaluation Environment
	Experiments

	Results and Evaluation
	Computational Cost of Checkpointing
	Checkpoint File Size and Format
	Checkpointing at Scale
	Deterministic Checkpointing

	Discussion
	Checkpoint file format
	Checkpoint implementations
	Checkpoint scalability
	Deterministic behavior in DNN
	Data parallel vs model parallel

	Conclusion

	Conclusion
	Summary of Achievements
	Notable Observations
	Behind the Scenes
	Future Outlooks

	Publications and Dissemination
	Publications
	Workshops, Summer Schools and Talks
	Research Collaboration
	Grants

