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ABSTRACT

The present dissertation contributes to Data Science in the Human Immunodeficiency Virus (HIV)

field, addressing specific issues related to the modelling of data coming from three different clinical tri-

als based on the development of HIV therapeutic vaccines. The biological questions that these studies

raise are identify biomarkers that predict HIV viral rebound; explain the time to viral rebound as a con-

sequence of antiretroviral therapy (cART) stop considering the variability of data sources; and find the

relationship between spot size and spot count from Enzyme-Linked Immunosorbent spot (ELISpot)

assays data. To handle these problems from a statistical perspective, in this thesis we: adapt the elastic-

net penalization to the accelerated failure time model with interval-censored data, fit a mixed effects

Cox model with interval-censored data, and improve statistical methodologies to deal with ELISpot

assays data and a binary response, respectively.

In order to address the variable selection among a vast number of predictors to explain the time

to viral rebound, we consider an elastic-net penalization approach within the accelerated failure time

model. Elastic-net regularization considers a possible correlation structure among covariates, which

is the case of messenger RNA (mRNA) data. For this purpose, we derive the expression of the penalized

log-likelihood function for the special case of the interval-censored response (time to viral rebound).

Following, we maximize this function using distinct approaches and optimization methods. Finally,

we apply these approaches to the Dendritic Cell-Based Vaccine clinical trial, and we discuss different

numerical methods for the maximization of the log-likelihood.

To explain the time to viral rebound in the context of another study with data from several clinical

trials, we use a mixed effects Cox model to account for the data heterogeneity. This model allows us

to handle the heterogeneity between the Analytical Treatment Interruption (ATI) studies and the fact

that the patients had different number of ATI episodes. Our method proposes the use of a multiple

imputation approach based on a truncated Weibull distribution to replace the interval-censored by

imputed survival times. Our simulation studies show that our method has desirable properties in terms

of accuracy and precision of the estimators of the fixed effects parameters. Concerning the clinical

results, the higher the pre-cART VL, the larger the instantaneous risk of a viral rebound. Our method

could be applied to any data set that presents both interval-censored survival times and a grouped

data structure that could be treated as a random effect.

We finally address two different issues that have arisen when analyzing the BCN02 clinical trial.

On one hand, we fit univariate log-binomial models as an alternative to the usual logistic regression.
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On the other hand, we use one/two- way unbalanced ANOVA to analyze the variability of the main

outcomes from the ELISpot assays across time. Although these assays are widely used in the context

of the HIV study, the relationship between spot size or spot count and other variables has not been

studied until now.

In this thesis, we propose, develop, and apply different statistical approaches that contributes to

answer diverse clinical questions that are relevant in several clinical trials. We have tried to highlight

that to be able to choose the appropriate methodology, make correct clinical interpretations and con-

tribute to a meaningful scientific progress, a narrow collaboration with scientists is necessary. We ex-

pect that the original results from this thesis will contribute to the path of development and evaluation

of a therapeutic HIV vaccine, helping to improve the way of living of HIV-infected people.



RESUMEN

La presente tesis contribuye a la ciencia de datos abordando problemas biológicos relevantes en el de-

sarrollo de vacunas terapéuticas para el Virus de Inmunodeficiencia Humana (VIH) mediante la mod-

elización de datos procedentes de tres ensayos clínicos diferentes. Algunas de las cuestiones suscitadas

en estos estudios y que esta tesis aborda son: identificar biomarcadores para estudiar los factores de

riesgo del rebote viral del VIH, explicar el tiempo transcurrido hasta el rebote viral como consecuencia

del cese de la terapia antirretroviral (cART) considerando la variabilidad de las fuentes de datos y es-

tudiar la relación entre las variables spot size y spot count en ensayos inmunoabsorbentes (ELISpot).

Para abordar cada uno de estos interrogantes desde una perspectiva estadística, en esta tesis hemos

adaptado una penalización de red elástica para el modelo de vida acelerada (AFT) con datos censura-

dos en un intervalo, ajustado un modelo de Cox de efectos mixtos con datos censurados en un intervalo

y mejorado las metodologías estadísticas existentes para tratar los datos de los ensayos ELISpot y de

respuesta binaria, respectivamente.

En primer lugar, hemos abordado el problema de tener más de cinco mil ARN mensajeros (ARNm)

para explicar el tiempo hasta el rebote viral. Para ello, hemos considerado un enfoque de penalización

de red elástica para el modelo de vida acelerada. Esta regularización considera una posible estructura

de correlación entre las covariables, como sucede con los ARNm. Para este objetivo, primero deriva-

mos la expresión de la función de verosimilitud penalizada considerando una respuesta censurada en

un intervalo (tiempo hasta el rebote viral). A continuación, maximizamos esta función utilizando dis-

tintos enfoques y métodos de optimización. Finalmente, aplicamos estos métodos al ensayo clínico

DCV2 y discutimos sobre diferentes enfoques numéricos para la maximización de la verosimilitud.

En segundo lugar, para explicar el tiempo hasta el rebote viral proponemos ajustar un modelo de

Cox de efectos mixtos. Dado que el tiempo hasta el rebote viral está censurado en un intervalo uti-

lizamos imputación múltiple basada en una distribución de Weibull truncada. Este modelo nos per-

mite controlar la heterogeneidad entre los estudios de interrupción analítica del tratamiento (ATI) y el

hecho de que los pacientes tengan diferente número de episodios ATI. Según el estudio de simulación

que realizamos, nuestro método tiene propiedades deseables en términos de exactitud y precisión de

los estimadores de los parámetros de efectos fijos.

Finalmente abordamos dos problemas diferentes dentro del ensayo clínico BCN02. Por un lado,

ajustamos modelos log-binomiales univariados como alternativa a la clásica regresión logística. Por

otro lado, utilizamos un modelo ANOVA no balanceado para analizar la variabilidad de los resultados
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principales de los ensayos ELISpot a lo largo del tiempo. Aunque los ensayos ELISpot se usan a menudo

en el estudio del VIH, la relación entre variables como el spot size, spot count y otras no se había

estudiado hasta ahora.

En esta tesis hemos propuesto y desarrollado diferentes enfoques estadísticos que han dado re-

spuesta a preguntas biológicas planteadas en tres ensayos clínicos. En este trabajo se destaca la impor-

tancia de que los distintos miembros de un equipo científico multidisciplinar colaboren estrechamente,

para así poder determinar la metodología apropiada, hacer correctas interpretaciones clínicas de los

resultados de éste y, de esta forma, contribuir a un progreso científico significativo. Esperamos que los

resultados originales de esta tesis contribuyan al desarrollo y la evaluación de una vacuna terapéutica

del VIH, lo cual ayudaría notablemente a mejorar la calidad de vida de las personas infectadas por VIH.



RESUM

La present tesi contribueix a la ciència de dades abordant problemes biològics rellevants en el desen-

volupament de vacunes terapèutiques per al virus d’immunodeficiència humana (VIH) mitjançant la

modelització de dades procedents de tres assaigs clínics diferents. Algunes de les qüestions suscitades

en aquests estudis i que aquesta tesi aborda són: identificar biomarcadors per estudiar els factors de

risc del rebot viral de VIH, explicar el temps transcorregut fins al rebot viral com a conseqüència de

la cessació de la teràpia antiretroviral (cART) considerant la variabilitat de les fonts de dades i estu-

diar la relació entre les variables spot size i spot count en assajos inmunoabsorbentes (ELISPOT). Per

abordar cadascun d’aquests interrogants des d’una perspectiva estadística, en aquesta tesi hem adap-

tat una penalització de xarxa elàstica per al model de vida accelerada amb dades censurades en un

interval, ajustat un model de Cox d’efectes mixtos amb dades censurades en un interval i millorat les

metodologies estadístiques existents per tractar les dades dels assajos ELISPOT i de resposta binària,

respectivament.

En primer lloc, hem abordat el problema d’haver-hi més de cinc mil ARN missatgers (ARNm) per

explicar el temps fins al rebot viral. Per a això, hem considerat un enfocament de penalització de

xarxa elàstica per al model de vida accelerada. Aquesta regularització considera una possible estruc-

tura de correlació entre les covariables, com succeeix amb els ARNm. Per a aquest objectiu, primer

derivem l’expressió de la funció de versemblança penalitzada considerant una resposta censurada en

un interval (temps fins al rebot viral). A continuació, maximitzem aquesta funció utilitzant distints

enfocaments i mètodes d’optimització. Finalment, apliquem aquests mètodes a l’assaig clínic DCV2 i

discutim sobre diferents enfocaments numèrics per a la maximització de la versemblança.

En segon lloc, per explicar el temps fins al rebot viral proposem ajustar un model de Cox d’efectes

mixtos. Atès que el temps fins al rebot viral està censurat en un interval utilitzem imputació múltiple

basada en una distribució de Weibull truncada. Aquest model ens permet controlar l’heterogeneïtat

entre els estudis d’interrupció analítica del tractament (ATI) i el fet que els pacients tinguin diferent

nombre d’episodis ATI. Segons l’estudi de simulació que vam realitzar el nostre mètode té propietats

desitjables en termes d’exactitud i precisió dels estimadors dels paràmetres d’efectes fixos.

Finalment abordem dos problemes diferents dins de l’assaig clínic BCN02. D’una banda, ajustem

models log-binomials univariats com a alternativa a la clàssica regressió logística. D’altra banda, util-

itzem un model ANOVA no balancejat per analitzar la variabilitat dels resultats principals dels assajos

ELISPOT al llarg del temps. Tot i que els assajos ELISPOT s’usen sovint en l’estudi de VIH, la relació
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entre variables com el spot size, spot count i altres no s’havia estudiat fins ara.

En aquesta tesi hem proposat i desenvolupat diferents enfocaments estadístics que han donat re-

sposta a preguntes biològiques plantejades en tres assaigs clínics. En aquest treball es destaca la im-

portància que els diferents membres d’un equip científic multidisciplinari colÂ·laborin estretament,

per així poder determinar la metodologia apropiada, fer correctes interpretacions clíniques dels resul-

tats d’aquest i, d’aquesta manera, contribuir a un progrés científic significatiu. Esperem que els resul-

tats originals d’aquesta tesi contribueixin al desenvolupament i l’avaluació d’una vacuna terapèutica

de VIH, la qual cosa ajudaria notablement a millorar la qualitat de vida de les persones infectades per

VIH.



“If you understand AIDS, you understand public health.

There’s almost no aspect of behavior, policy,

basic science, statistics, epidemiology, nutritional

interventions –everything– that does not touch HIV/AIDS."

Max Essex

Harvard Public Health Review Spring/Summer 2011
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INTRODUCTION

The use of different technological devices in our lives produces tons of data every second. Data Sci-

ence is a discipline that arises from the need to draw conclusions and knowledge from these data. It

can be seen as the confluence of distinct fields, including Statistics, Informatics, and a specific field of

research. In Data Science, the combination of multidisciplinary team work and the individual skills of

the team members are equally essential to obtain a complete vision of a certain problem, the method-

ology to approach that problem, the correct interpretation of the research results, and the participation

in the decision-making process based on these results. It is common to find the concept of Data Sci-

ence linked with areas such as business or finance, however, it is not really clear if it can be related to

other knowledge fields. In this thesis, we aim to explore some applications of Data Science in a specific

biomedical discipline: the research on Human Immunodeficiency Virus (HIV-1), and more specifically,

on the development of a therapeutic vaccine for HIV-1-infected patients.

To deepen my knowledge on HIV-1 and its dynamics, I have collaborated for 4 years with differ-

ent institutions and hospitals in Barcelona, such as the IrsiCaixa AIDS Research Institute, the Fight

AIDS and Infectious Diseases Foundation, and the Hospital Clínic. During these collaborations I have

worked with distinct groups of people working in various clinical trials that explore the development

of a therapeutic vaccine for HIV-1. These multidisciplinary groups are composed by physicians, se-

nior researchers, postdoctoral researchers, laboratory technicians, and nurses, among others. More-

over, during the last years, I have attended several meetings and seminars on HIV-related topics. I

also visited a biological safety laboratory to better understand the practicalities of a type of assays,

the Enzyme-Linked ImmunoSpot (ELISpot) assays, that were particularly relevant to the goals of my

thesis. These activities and interactions helped me to become acquainted with the steps, factors, and

people involved in a clinical trial. They also helped me to understand the dynamics of the virus in

HIV-1-infected patients. Moreover, I started to understand the language that clinicians use, which was

1
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key to have a fluid communication with them.

In 2018, I spent 3 months at the Harvard T.H. Chan School of Public Health at Harvard University,

Boston, USA. During these months, I had meetings with prominent scientists in research areas such

as Biostatistics and Bioinformatics and attended some plenary talks they gave. Also, I interacted with

different postdoctoral researchers working in these areas. Interestingly, I attended a seminar with the

participation of Timothy Ray Brown, the “Berlin patient”, who was until that year the only patient cured

of HIV-1. Thanks to this seminar, I found out how an HIV-1-infected person copes with the infection

and how his experience may help the scientific community to better understand the virus. During

that same stay, I participated in the HIV Working Group’s seminars organized by the Department of

Biostatistics of the Harvard T.H. Chan School of Public Health. These seminars made me approach

various ongoing clinical trials, where diverse techniques were applied depending on the hypothesis to

be tested.

All these experiences and collaborations have greatly contributed to the development of this work.

The general goal of this thesis is to provide adequate and rigorous statistical methodology for different

HIV-1 studies. In particular, we have made various types of contributions to three different clinical

trials that address particular questions related to HIV-1-research: the DCV2 clinical trial (García et

al., 2013), the ATI study (Leal et al., 2017), and the BCN02 clinical trial (Study to Evaluate the Safety

and Effect of HIVconsv Vaccines in Combination With Histone Deacetylase Inhibitor Romidepsin on the

Viral Rebound Kinetic After Treatment Interruption in Early Treated HIV-1 Infected Individuals. Clini-

calTrials.gov Identifier: NCT02616874, 2018). In each of these trials, we aimed to identify biomarkers

in order to detect potential risk factors of HIV viral rebound, explain the time to viral rebound as a

consequence of stopping the combination antiretroviral treatment (cART) considering the variability

of data sources, and improve statistical techniques to deal with Enzyme-Linked Immunosorbent Spot

(ELISpot) assays data and a binary response, respectively.

The DCV2 clinical trial was led by Felipe García at the Hospital Clinic, Barcelona. In this study,

HIV-1-infected patients were induced to specific immune responses with a therapeutic immunization

treatment based on dendritic cells. This treatment aimed to control viral replication after the discon-

tinuation of complementary antiretroviral therapy. The ATI study, also coordinated by Felipe García

at the Hospital Clínic (Barcelona), is not is not a clinical trial but a recompilation of retrospective data

from eight Analytical Treatment Interruption (ATI) clinical trials where HIV-1-infected patients were

treated with cART. The BCN02 clinical trial, conducted in the Hospital Universitari Germans Trias i Pu-

jol (Badalona) and in the Hospital Clínic (Barcelona), was led by Beatriz Mothe Pujadas and sponsored

by the IrsiCaixa AIDS Research Institute. Here, we had two main goals: to study the patient profile

(controller or rebounder) and to analyze some variables coming from a specific immunoassay called

ELISpot.

Although these three clinical trials tested specific hypotheses that led us to use different statistical

methodologies, they presented some common characteristics. They aimed to develop a therapeutic

vaccine for HIV-1-infected patients. In addition, the outcomes of interest were the times to a particular
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event, such as the interval-censored times to viral rebound. To approach these hypotheses, we used

different methods that we detail below.

Thesis structure and contents

Given that this thesis has been carried out in a multidisciplinary context, we have added three chapters,

Chapters 2, 3, and 4, that will provide the background and main concepts to better understand the core

chapters of this thesis. These core chapters are Chapters 5, 6, and 7, which correspond to our original

research contributions.

In Chapter 2, we show the importance of Data Science in the biomedical field. Using Google Trends,

we carry out a search to explore the evolution of the terms “Data Science" along with “Big Data” and

“Cloud Computing" until December 2019 in different parts of the world. We also show an overview

of the journals dedicated to this discipline and introduce some examples of the applications of Data

Science within the biomedical field. Chapter 3 introduces the main variables of interest in this thesis

and the vocabulary that we will employ throughout this document, regarding the HIV field. Here, we

describe HIV-related vocabulary that we will employ throughout this document. Moreover, we give an

overview of the history of HIV, its life cycle, the forms of transmission, the stages of HIV infection, and

the current HIV-cured patients. In Chapter 4, we provide the background of survival analysis and omics

data analysis. We have grouped these two fields of study because they are the theoretical foundations

underpinning the following chapters.

Chapter 5 is the first of our three original research contributions. Here, we develop and apply an

elastic-net penalization for the accelerated failure time model in the context of the DCV2 clinical trial.

Using this approach, we aim to study the interval-censored times to viral rebound considering more

than five thousands mRNAs as possible predictors. More specifically, we start the chapter presenting

the main concepts related to elastic-net penalization. Then, we review various approaches (paramet-

ric, semiparametric, and piecewise exponential) in the case of complete and right-censored data for

the proportional hazards model and the accelerated failure time model (AFTM). To the best of our

knowledge, elastic-net penalization has not been used in the AFTM with interval-censored data. We

derive the expression of the penalized log-likelihood function considering an interval-censored re-

sponse. Following, we maximize this function by means of an Expectation- Maximization (EM)-based

algorithm. Next, we show a simulation study that we performed to examine the properties of our ap-

proach. To carry out our procedure we wrote various functions in R since, up to our knowledge, there is

no package that implements elastic-net penalization for accelerated failure time model using interval-

censored data. Finally, we apply this methodology to the data coming from the DCV2 clinical trial.

In Chapter 6, we present a mixed effects Cox model considering a multiple imputation approach

for interval-censored times to viral rebound. The use of the mixed effects Cox model is motivated by

the ATI study. As data come from distinct studies and each patient can have more than one assessment,

we handle this variability using the mixed effect Cox model. This model considers a random intercept
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per subject and a correlated intercept and slope for pre-cART viral load per study. We adopt a multiple

imputation approach based on a truncated Weibull distribution to replace the interval-censored data

by imputing right-censored or exact survival times. Following, we perform a simulation study to inves-

tigate its properties in terms of bias and mean squared error. In the end, we apply this methodology

to the ATI study mentioned above. This research gave rise to a publication in the Biometrical Journal

(Alarcón-Soto et al., 2019).

In Chapter 7, we provide different statistical techniques applied to the BCN02 clinical trial. We

divide these methodologies into two parts. In the first part, we use univariate log-binomial regres-

sion models to identify covariates that can explain the profile of the patient, classified as controller

or rebounder, according to whether they keep the viral load controlled at week 12 after monitored

antiretroviral pause (MAP), and discuss the advantages of using these models instead of the classical

logistic regression. Log-binomial regression uses the Risk Ratio (RR) as an association measurement.

This analysis is presented in a manuscript that has recently been published in Frontiers in Immunol-

ogy (Mothe et al., 2020). The second part of the chapter shows the statistical approach applied to the

immunology variables involved in this trial that come from the ELISpot assays. Until now, the repli-

cates presented in these type of assays were averaged and then, the variability was obtained without

considering the replicates. To take into account the replicates in the assay, we use an unbalanced

one/two-way ANOVA, so that we can compute the variability of the main variables considering the

effect of the main factors. Although ANOVA is widely known, it is generally not used in these type of

trials.

Finally, Chapter 8 reviews the main results of this thesis and provides ideas for further research

based on the methodologies explored.
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DATA SCIENCE IN BIOMEDICINE

We highlight the role of Data Science in Biomedicine. This chapter goes from the general to the partic-

ular, presenting a global definition of Data Science and showing the trend for this discipline together

with the terms of cloud computing and big data. In addition, since Data Science is mostly related

to areas like economy or business, we describe its importance in biomedicine. Biomedical Data Sci-

ence (BDS) presents the challenge of dealing with data coming from a range of biological and medical

research, focusing on methodologies to advance the biomedical science discoveries, in an interdisci-

plinary context.

5
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The contents of this chapter have been published in arXiv:1909.04486v1:

Alarcón-Soto, Y., Espasandín-Domínguez, J., Guler, I., Conde-Amboage, M., Gude-Sampedro, F., Lan-

gohr, K., Cadarso-Suárez, C., & Gómez-Melis, G. (2019). Data Science in Biomedicine. arXiv preprint

arXiv:1909.04486v1.

This chapter is based on the above manuscript. We updated the dates for the search (from 2018 to

2019) and the references, thus it differs slightly from the one used in the original document.
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2.1 Introduction

In the last 10 years, we have observed an important increase in the number of job offers requesting

data scientists. Data science was already recognized as a science more than 5 decades ago by John

Tukey. In the article The Future of Data Analysis he points out that more emphasis should be placed

on using data to suggest hypotheses to test and reflects on the existence of an as-yet unrecognised

science, whose subject of interest was learning from data (Donoho, 2017) and that lays the foundation

of today data science area. “Data analysis”, includes

“(. . . ) among other things: procedures for analysing data, techniques for interpreting

the results of such procedures, ways of planning the gathering of data to make its analysis

easier, more precise or more accurate, and all the machinery and results of (mathematical)

statistics which apply to analysing data.” (Tukey, 1962)

Due to the technological explosion of the last few years, massive amounts of data are generated

every day in different areas. This new era requires the development of new techniques to analyse and

draw reliable conclusions from these data. In this context, the figure of the data scientist emerges,

proclaimed by Davenport & Patil (2012) as “the Sexiest Job of the 21st Century”. But, what exactly is a

data scientist?

This question has been already addressed by many other researchers, such as Schutt & O’Neil

(2013) or Donoho (2017), and it has been the topic of many columns and discussions in important

media such as The Guardian or The New York Times.

To provide a definition of data science in our own terms, we start by referring to the definition of

data scientist found in the Oxford Dictionary (Oxford University Press, 2008):

“A person employed to analyse and interpret complex digital data, such as the usage

statistics of a website, especially in order to assist a business in its decision-making.”

We will follow the very helpful data science scheme created by Conway (2010) to explore the dif-

ferent attributes a data scientist should convey (Figure 2.1). First, knowledge in Mathematics and

Statistics is necessary. Mathematics gives a universal language and is essential for solving real-world

problems. From Statistics comes the understanding and experience to work with data, selecting the

appropriate techniques to deal with it, to pre-process, summarize, analyse and draw conclusions. Sec-

ond, computer science knowledge is also fundamental. Not only getting computers to do what you

want them to do requires intensive hands-on experience, but also computer scientists must be adept

at modelling and analysing problems. They must also be able to design solutions and verify that they

are correct. Problem solving requires precision, creativity, and careful reasoning. Computer science

has a wide range of sub-areas. These include computer architecture, software systems, graphics, arti-

ficial intelligence, computational science, and software engineering. Drawing from a common core of

computer science knowledge, each of these areas focuses on particular challenges.
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Figure 2.1: Data science scheme based on the Conway’s Venn diagram (Conway, 2010).

The third and not least important characteristic of a data scientist is domain knowledge, a thor-

ough understanding of the field in which the research is being developed is needed to understand

the research context and more important to be able to provide realistic and responsible answers to

the questions at hand. Examining what these three areas have in common, the intersection between

mathematical and statistical knowledge and domain knowledge is the most common, from which tra-

ditional research emerges, whereas Machine Learning arises from the intersection of mathematical

and statistical knowledge and computer science knowledge. The name Machine Learning, coined by

Samuel (1959), is a field of computer science that uses statistical techniques to give computer systems

the ability to learn with data. Nevertheless, if there is not enough statistical knowledge to choose the

appropriate methods and analyses for the pertinent research objectives, mixing expertize in the field

of research with computer science knowledge might lead us to a danger zone.

This overlap of skills gives people the ability to create what appears to be a legitimate analysis

without any understanding of how they got there or what they have created (Conway, 2010). As Wilson

(1927) stated

“(. . . ) it is largely because of lack of knowledge of what statistics is that the person un-

trained in it trusts himself with a tool quite as dangerous as any he may pick out from the

whole armamentarium of scientific methodology.”

We believe, however, that further soft skills are required by a data scientist. For this reason, we

have added a star in the intersection of the three areas, in the core of the Data Science concept. A

data scientist needs not only to be an expert in his or her area, but also a good communicator, collab-

orator, leader, advocate, and scholar. As a communicator, the key competencies are active listening
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and asking questions, explaining advantages or shortcoming of statistical and computer methods, and

interpreting results in a meaningful way in the context of the application. He or she has to be a fine

collaborator, because he or she will have to work in interdisciplinary teams. In addition, being a leader

is the key to successfully influence multidisciplinary research, the data scientist will have to advocate

to use his or her expertise, and given that science is continuously developing, a data scientist has to

be a scholar. In a recent paper by Zapf et al. (2018) these soft skills are already identified for being a

successful biostatistician, and they can be generalized to any data scientist.

Therefore a data scientist needs to master a set of skills —mathematical, statistical, computational,

communication skills— that are not easy to develop for a single person. Given the scarcity of people

with such a complete profile, there is a need to create multidisciplinary working groups formed by

different specialists who add their qualities to make room for data science itself.

The chapter is organized as follows: in Section 2.2, we analyze the global impact of Data Science

by updating the research of Kane (2014) in which the author analyzes the search-term usage of “Data

Science” over time until 2014 adding “Cloud Computing” and “Big Data” to the search, until 2019 and

using Google Trends. This section includes an overview of the Data Science journals. Following, in

Section 2.3, we describe Data Science in Biomedicine, or Biomedical Data Science (BDS), present a

web search restricted to the biomedical area, and include some examples of BDS studies. Finally, the

main findings are summarized in Section 6.6.

2.2 Data science: global impact and dissemination

Cleveland (2014) proposes an action plan for statistics, in which he elevates the role of the statistician

to the level of a researcher who should not limit him or herself to providing only statistical calculations

and p-values, but should, also, be involved in the interpretation of these.

Data science has become very popular in recent years as a tool in many fields such as Economics

(business analytics, fraud and risk detection), internet search, digital advertisements, image and speech

recognition, delivery logistics, gaming, price comparison websites, airline route planning, robotics,

among others. To contextualize the impact of this new discipline all over the world, we have used

Google Trends to update the research of Kane (2014). Kane analyses the search-term usage of “Data

Science”, “Cloud Computing” and “Big Data” until 2014 (see Figure 2.1). “Cloud Computing” and “Big

Data” were added because of their close relation with Data Science, their intrinsic relation with the

computational techniques and to frame the evolution of the impact of the Data Science. It must be

taken into account that Google Trends is an online search tool that allows the user to see how often

specific keywords, subjects, and phrases have been queried over a specific period of time and provides

information about Google searches all over the world. Search trends show how the interest for a given

term has evolved over time by assigning a score between 0 and 100 to search terms on a year-by-year

basis.
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To visualize the progress of the terms “Data Science”, “Cloud Computing”, and “Big Data”, we

present the results obtained both worldwide and in some countries in Europe, the United States (and

some of its states), in Asia, and in Australia over time. The results are summarized in Figures 2.2 -

2.5. All the searches were performed using the R package gtrendsR (Massicotte & Eddelbuettel, 2019),

which is an interface for retrieving and displaying the information returned online by Google Trends.

The R script to perform the analysis can be accessed in http://doi.org/10.5281/zenodo.3735059.

An up-tick in Data Science is not produced until approximately the year 2012. It is precisely in this

year that the interest for the term “Big Data” starts to grow at high rate. On the other hand, by the end

of 2014 and the beginning of 2015, the trend for searches on “Big Data” begins to stagnate, and we can

observe an almost exponentially increasing interest for the term “Data Science”. On the other hand,

the term “Cloud Computing”, had its main boom around 2011, and since then, its influence has been

decreasing.

However, in some countries such as Spain, no real peak for the term “Data Science” is observed

until the year 2015. Even though there is also an increase in searches about this concept, the growth

is much less pronounced than in other European countries such as Germany, where the interest for

“Data Science” is equal to that of “Big Data”, or the United Kingdom, where the trend for “Data Science”

begins to unseat that of “Big Data” (Figure 2.3). The trend is even more pronounced in United States,

in particular in some of its states such as Massachusetts or California, where the main universities

and research centers are. In these US states, the trend for “Big Data” is decreasing sharply coinciding

with a growing interest in “Data Science” (see Figure 2.4). In other countries such as China, India, or

Japan, the pattern of interest on these terms is similar but with a certain slowness with respect to other

countries. It seems that the interest in “Data Science” in these countries as well as in Spain, has not yet

reached the same level as in other parts of the world (Figure 2.5).

With this search, we reassert the findings presented in Kane (2014): i) The trend for the term “Data

Science” is eclipsing the popularity of the infrastructure on which it is based (cloud computing, big

data, computational skills, etc.) specially in the more technological countries; ii) The interest for Data

Science is increasing worldwide and it appears that the trend is that this growth will continue in the

coming years.

Journals of data science

In this new field, there are only nine scientific journals directly related with the data science (up to

March 2020); see Table2.1. Notice that we do not consider journals that are only related to Big Data

Analysis or Machine Learning for the reasons exposed in Section 6.1.

The goal of the Journal of Data Science is to enable scientists to do their research on applied science

and through the effective use of data. Regarding the International Journal of Data Science and Analyt-

ics, the main topics addressed are data mining and knowledge discovery, database management, arti-

ficial intelligence (including robotics), computational biology/bioinformatics, and business informa-

tion systems. The related industry sectors are: electronics, telecommunications and IT & Software. The

http://doi.org/10.5281/zenodo.3735059
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Figure 2.2: Google trends for the terms “Data Science” (red), “Big Data” (green), and “Cloud Comput-
ing” (blue) for global queries. The scores assigned by Google Trends on the “interest” ordinate express
the popularity of that term over a specified time range, based on the absolute search volume for a term,
relative to the number of searches received by Google. The scores have no direct quantitative mean-
ing. For example, two different terms that have been searched 1000 and 20000 times, respectively,
could achieve a score of 100. This is because the scores have been scaled between 0 and 100, and a
score of 100 always represents the highest relative search volume. Yearly scores are calculated on the
basis of the average relative daily search volume within the year.

International Journal of Data Science and Analytics brings together researchers, industry practitioners,

and potential users of big data, to promote collaborations, exchange ideas and practices, discuss new
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Figure 2.3: Google trends for the terms “Data Science” (red), “Big Data” (green), and “Cloud Comput-
ing” (blue) for some countries of Europe.

opportunities, and investigate analytics frameworks. The journal welcomes experimental and theoret-

ical findings on data science and advanced analytics along with their applications to real-life situations.

The scope of the Data Science Journal includes descriptions of data systems, their publication on the

internet, applications and legal issues. All the sciences are covered, including the Physical Sciences,

Engineering, the Geosciences, and the Biosciences, along with Agriculture and the Medical Science.

The ultimate goal of Data Science - Methods, Infrastructure and Applications is to unleash the power

of scientific data to deepen our understanding of physical, biological, and digital systems, gain insight
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Figure 2.4: Google trends for the terms “Data Science” (red), “Big Data” (green), and “Cloud Comput-
ing” (blue) for United States and some of its states.

into human social and economic behaviour, and design new solutions for the future. Additionally, the

EPJ Data Science covers a broad range of research areas and applications and particularly encourages

contributions from techno-socio-economic systems. Topics include, but are not limited to, human be-

haviour, social interaction (including animal societies), economic and financial systems, management

and business networks, socio-technical infrastructure, health and environmental systems, the science

of science, as well as general risk and crisis scenario forecasting up to and including policy advice.

The International Journal of Data Science aims to provide a professional forum for examining the pro-
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Figure 2.5: Google trends for the terms “Data Science” (red), “Big Data” (green), and “Cloud Comput-
ing” (blue) in some countries of Asia and in Australia.

cesses and results associated with obtaining data, as well as munging, scrubbing, exploring, modelling,

interpreting, communicating and visualizing data. Data science takes data in cyberspace as a research

object. The goal is an integrated and interconnected process designed to form a common ground from

which a knowledge-based system can be built, shared, and supported by professionals from different

disciplines. The journal Advances in Data Science and Adaptive Analysis is an interdisciplinary journal

dedicated to report original research results on data analysis methodology developments and their ap-

plications, with a special emphasis on the adaptive approaches. The mission of the journal is to elevate
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Table 2.1: Current journals in the Data Science field up to March 2020.

Journal and website Publisher Scopus
Open
access

Bio/health
research

(explicity)

Journal of Data Science
http://jds-online.com

- No No No

International Journal of Data Science and Analytics
https://springer.com/journal/41060

Springer No Hybrid Yes

Data Science Journal
https://datascience.codata.org

Uniquity
Press

Yes Yes Yes

Data Science- Methods, Infrastructure, and Applications
https://datasciencehub.net

IOS Press No Yes Yes

EPJ Data Science
https://epjdatascience.springeropen.com

Springer
Open

Yes Yes Yes

International Journal of Data Science
http://www.inderscience.com/jhome.php?jcode=ijds

Inderscience No Hybrid No

Advances in Data Science and Adaptive Analysis
https://worldscientific.com/worldscinet/adsaa

World
Scientific

No Hybrid No

Statistical Analysis and Data Mining:
The ASA Data Science Journal
https://onlinelibrary.wiley.com/journal/19321872

Wiley Online
Library

Yes Hybrid No

Journal of Data and Information Science
https://content.sciendo.com/jdis/

Sciendo Yes Yes No

data analysis from the routine data processing by traditional tools to a new scientific level, which en-

courages innovative methods development for data science and its scientific research and engineering

applications. The journal Statistical Analysis and Data Mining: The ASA Data Science Journal addresses

the broad area of data analysis, including data mining algorithms, statistical approaches, and practical

applications. Finally, the Journal of Data and Information Science devotes itself to the study and ap-

plication of the theories, methods, techniques, services, and infrastructural facilities using big data to

support knowledge discovery for decision and policy making.

As we can see in Table 2.1, not all the journals listed above explicitly include health data science

and none of them is exclusively dedicated to this area. Following, we provide a proper description of

what we consider health or biomedical data science.

2.3 Data science in the biomedical field

A Biomedical Data Scientist should be quantitatively trained including a comprehensive and rigorous

proficiency of statistical principles and those computing skills to handle massive and complex data.

He/she has to be able to manage and analyse health data to solve emerging problems in public health

http://jds-online.com
https://springer.com/journal/41060
https://datascience.codata.org
https://datasciencehub.net
https://epjdatascience.springeropen.com
http://www.inderscience.com/jhome.php?jcode=ijds
https://worldscientific.com/worldscinet/adsaa
https://onlinelibrary.wiley.com/journal/19321872
https://content.sciendo.com/jdis/
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and biomedical sciences and to learn how to interpret their findings.

Health data refers to data that come from the biomedical sciences, public health, and any other

area related to the “bio” sciences. Examples are data sets from clinical trials, observational studies,

genomics and other omics studies, medical records, health care programs, or environmental programs.

Health-related data are also a good example of the legal and ethical concerns that should be taken

into consideration regarding sensitive personal data (medical records, genomic profiles, etc.) or dig-

ital epidemiology in the context of public health. Thus, ensuring compliance with ethical policies,

adequate informed consents, and data use agreements are essential when sharing information and

collaboratively using data (Gómez-Mateu et al., 2016).

Figure 2.6: Healthcare field process in which a data scientist is involved.

According to the field of study and previous clinical hypotheses, patients who meet the inclusion

criteria are recruited into a trial or study, and the raw data such as clinical parameters, demographics,

or omics data is collected. Following, preprocessing of the data is done with the objective of cleaning

and preparing the data set for exploratory analysis extracting important descriptive statistics. The next

step is to find the right methodology to provide an answer to the specific questions for this problem.

First, existing models have to be explored for their adequacy to the data and the relevant question.

Then, the chosen method has to be implemented and developed. In many occasions new methods

have to be developed or old methods have to be adequately adapted. Moreover, the data scientist

needs to be able to communicate properly and clearly the results obtained by means of reports and

graphical tools. For these reasons, statistics is a fundamental part of the decision making process,

it helps draw conclusions and answer the clinical hypotheses. As an added value, the data scientist

understands the biological problem, know the biological meaning of the main variables and has to

manage a common vocabulary with the rest of the team.
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Due to the very likely possibility of potential statistical pitfalls when adapting or developing the

chosen methodology, the data scientist should be reliable, coherent and a guide to follow. A small list

of these pitfalls are biased samples, overgeneralization, spurious correlation, prediction performance,

incorrect analysis choices, and violation of the assumptions for an analysis. A good example of biased

samples is cited by Crawford (2013) and shows the data collected in the city of Boston through the

StreetBump smartphone app, created with the objective of solving the problem with potholes in this

city. This app passively detects bumps by recording the accelerometers of the phone and GPS data

while driving, instantly reporting them to the traffic department of the city. Thus, the city could plan

their repair and the management of resources in the most efficient possible way. However, one of the

problems observed was that some segments of the population, such as people in lower income groups,

have a low rate of smartphone use, a rate that is even lower in the older residents, where smartphone

penetration is as low as 16%. Therefore, these data provide a big but very biased sample of the pop-

ulation of potholes in the city, with the consequent impact on the underestimation of the number of

potholes in certain neighbourhoods and the deficient management of resources. Thus provide a clear

instance when having large amounts of data is not synonymous of quality and using the data to solve

a problem might result in unfair and not cost effective policies.

Statistical thinking is the central element to avoid the above-mentioned pitfalls. It requires a non-

trivial understanding of the real-world problem and the population for whom the research question is

relevant. It involves judgements such as those about the relevance and representativeness of the data,

about whether the underlying model assumptions are valid for the data at hand, and about causality

and the role of confounding variables as possible alternative explanations for observed results. In fact,

an essential component of good statistical thinking is the ability to interpret and communicate the

results of a statistical analysis so non statisticians can understand the findings (Greenhouse, 2013). In

The Seven Pillars of Statistical Wisdom Stigler (2016) summarizes Statistical reasoning as an integral

part of modern scientific practice and sets forth the foundation of statistics around seven principles.

Stigler’s second pillar, Information, challenges the importance of “big data” by noting that observations

are not all equally important: the amount of information in a data set is often proportional to only the

square root of the number of observations, not the absolute number.

2.3.1 Biomedical data science in the Web of Science

Similar to the search presented in Section 2.2, we have analyzed the number of publications associ-

ated with “Data Science”, “Big Data”, and “Cloud Computing” in several countries and along the last

fifteen years, using Web of Science (https://clarivate.com/products/web-of-science/). The

countries considered were Australia, China, Germany, India, Italy, Japan, Spain, the United Kingdom,

and the United States. Notice that “publication” refers to articles, reviews, clinical trials, case re-

ports, and books. Moreover, only topics related with the biomedical area, such as Oncology, Respi-

ratory System, or Pediatrics, were considered. The search strategy is available at http://doi.org/10

.5281/zenodo.3735077, the datasets from the Web of Science can be accessed in http://doi.org/

https://clarivate.com/products/web-of-science/
http://doi.org/10.5281/zenodo.3735077
http://doi.org/10.5281/zenodo.3735077
http://doi.org/10.5281/zenodo.3735063
http://doi.org/10.5281/zenodo.3735063
http://doi.org/10.5281/zenodo.3735063
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10.5281/zenodo.3735063 and the R script to perform the analysis can be found at http://doi.org/

10.5281/zenodo.3735059. The publication counts were obtained at the beginning of 2020 and are

presented in Table A.1 (Appendix A).

From the publication counts presented in Table A.1 (see Appendix A), we can conclude that the

number of biomedical publications has increased during the last years in the countries considered.

Moreover, as might be expected, the number of publications associated with “Data Science” is much

larger than the number of publications associated with the topics “Big Data” and “Cloud Computing”.

In fact, the publications associated with Data Science represent more than 95% of all the publications

analyzed, regardless of the country considered. Most noteworthy is the tremendous increase of record

counts in China: 917 publications were registered in 2004, and this number has increased to 12013 in

2017; that is, an increase of more than 10000 publications in only 13 years. Furthermore, the case of

Spain is also remarkable because the presence of publications associated with “Data Science” is much

lower than in other European countries like Germany, Italy, or the United Kingdom. For instance, in

2017 the number of publications in the United Kingdom and in Germany is approximately three times

and twice as high as in Spain, respectively. Although the comparison is not immediate because the

population of United Kingdom and Germany is more two time as high as in Spain.

On the other hand, the presence of publications about “Cloud Computing” in the biomedical area

is really low: until after 2010, very low number of publications were registered in any of the countries

considered. Even in 2017 the number of publications was low compared with the other topics. We can,

hence, state that the use of Cloud Computing techniques is not widespread among researchers in the

field of Biomedicine. Finally, the explosion of “Big Data” in the last years, seems to have an effect in the

Biomedical research because the number of publications in this topic has increased each year in the

countries considered. For example, in Australia the number of publications about “Big Data” in 2007

was 17 as compared to 131 publications in 2017, that is, an increase greater than 670%. It is clear that

Big Data techniques have been very useful in order to solve biomedical problems.

2.3.2 Multidisciplinary environment for biomedical data science

The confluence of science, technology, and medicine in our dynamic digital era has spawned new data

applications to develop prescriptive analytics, to improve healthcare personalization and precision

medicine, and to automate the reporting of health data for clinical decisions (Bhavnani et al., 2016).

As we mentioned before, several biomedical research institutes are involved in the data science pro-

cess working on complex data bases in the areas of genomic and proteomic data analysis, infectious

and immunological diseases, new therapies in cancer, hormones and cancer, genetics, cellular biology,

among others. Most of the research studies need data science techniques to deal with these data sets.

Those data science studies that are usually characterized by complex structures or large numbers of

variables, require a multidisciplinary environment with biomedical informatics, bioinformatics, bio-

statisticians, and clinicians. This environment brings together statistics, computer sciences, and com-

putational engineering, and aims to provide a methodologically correct analysis.

http://doi.org/10.5281/zenodo.3735063
http://doi.org/10.5281/zenodo.3735063
http://doi.org/10.5281/zenodo.3735063
http://doi.org/10.5281/zenodo.3735059
http://doi.org/10.5281/zenodo.3735059
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Biomedical Data Science can be applied in many different areas such as personalized medicine,

genomic research, gene expression analysis, or in cancer drug studies, among others. Following, we

present some examples of applications.

Personalized medicine is a medical approach in which patients are stratified in subgroups accord-

ing to their individual characteristics (genomic alterations, lifestyles, diagnostic markers, clinical pro-

file, response to treatments). With abundant and detailed patient data, medical decisions, such as

diagnostic tests or treatments, may be personalized and addressed to these subgroups of patients and

not to the whole population. The advantages of personalized medicine are evident: more effective

use of therapies and reduction of adverse effects, early disease diagnosis and prevention by using

biomarkers, among others. A well-known example is the treatment with trastuzumab (Herceptin, a

breast cancer drug) that can only be administered if the HER2/neu receptor is overexpressed in tumor

tissue because the drug interferes with this receptor. Another example of those personalized predic-

tions can be the survival probabilities predicted for a future level of a longitudinal biomarker recorded.

The joint model approaches to study the association between a longitudinal biomarker and survival

data provides dynamic predictions for survival probability coming from the effect of the longitudinal

biomarker taken until time t , which can be updated when the patient has new information (Rizopou-

los, 2011, 2012).

Data science helps to examine health disparities because as Chase & Vega (2016) pointed out: “Re-

search examining racial and ethnic disparities in care among older adults is essential for providing

better quality care and improving patient outcomes. Yet, in the current climate of limited research

funding, data science provides the opportunity for gerontological nurse researchers to address these

important health care issues among racially and ethnically diverse groups, groups typically under-

represented and difficult to access in research.”

Other example is to use data science for clinical decision making. Clinical laboratories contribute

towards the screening, diagnosis and monitoring of many types of health conditions. While it is be-

lieved that diagnostic testing may account for just 2% - 4% of all healthcare spending, it may influence

60% - 80% of medical decision-making. The work of Espasandín-Domínguez et al. (2018) is an exam-

ple of BDS where a very recent extension of the distribution regression model introduced by N. Klein

et al. (2015) is applied to a data set of blood potassium concentrations from patients across a Spanish

region.

The development of automated workflows that can capture and memorialise extensive experimen-

tal protocols, aiding in reproducibility as well as taking data analysis to a new level (Ludäscher et al.,

2006) is a central data science technique. Workflows help support and accelerate scientific discoveries

in biomedical research by eliminating the burden of dealing with time-consuming data and software

integration. This approach fundamentally frees researchers to concentrate on the scientific questions

at hand instead of addressing technical issues involved in setting up, executing, and validating the

computational pipeline (Amaro, 2016).
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We can found applications in many other fields. For instance, while studying the consequences

of the analytical treatment interruption in HIV-infected patients, Alarcón-Soto et al. (2019) present a

method to fit a mixed effects Cox model with interval-censored data to study the viral rebound of HIV.

The proposal is based on a multiple imputation approach that uses the truncated Weibull. The authors

addressed the fact of having data from eight different studies based on different grounds (see Chapter

6 for further information).

Another application is to quantify spatio-temporal effects to graft failures in organ transplanta-

tion. The transplantation of solid organs is one of the most important accomplishments of modern

medicine. Yet, organ shortage is a major public health issue. Using data science, the research can

investigate early graft failure time. When an organ becomes available from a deceased donor, the al-

location policies such as medical urgency, expected benefit and geographical constraints (distance

between donor and recipient) are applied to people in the waiting list to select a match. Allocation

policies regard the survivability of the organ outside the human body, namely, the cold ischemic time,

as an important factor since it is associated with the quality degradation of the organ. Besides, the

distance is an important factor on these decisions given that the farther the distance from the donor

hospital to the transplant center, the worse might be the quality of the organ (Pinheiro et al., 2016).

We can even relate data science with mental health. Mental disorders are arguably the greatest

“hidden” burden of ill health, with substantial long-term impacts on individuals, carers and society.

People with these conditions are often socially excluded and less likely to participate in research stud-

ies or remain in follow-up. Complexities around defining diagnoses present particular challenges for

mental health research. Richly annotated, longitudinal data sets matched to data science analytics

offer an unprecedented opportunity for more robust diagnostics, and also the prediction of outcome,

treatment response, and patient preferences to inform interventions (McIntosh et al., 2016).

Many more examples of BDS are expected to arise in any other field related to health or bio sciences

in the near future.

2.3.3 Standardization of information

From the above, we could say that one of the main objectives of Data Science in Biomedicine is to

generate valid knowledge through better structuring in the procedures for extracting, analysing and

processing data obtained in health and environmental research, supporting the transfer of their results

to society. All these disciplines share common goals in terms of improving the quality of life of the

people through actions in the promotion of health and in the prevention of disease.

A major challenge that exists in the healthcare domain is the “data privacy gap" between medi-

cal researchers and computer scientists. Medical researchers have natural access to healthcare data

because their research is paired with a medical practice. Acquiring data is not quite as simple for com-

puter scientists without a proper collaboration with a medical practitioner. There are barriers in the

acquisition of data. Many of these challenges can be avoided if accepted protocols, technologies, and

safeguards are in place.
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On the other hand, people to whom the research efforts are addressed and those responsible for

funding agencies need to ensure that research output are used to maximize knowledge and potential

benefits. Sharing the data ensures that these are available to the research community, which accel-

erates the pace of discovery and enhances the efficiency of the research. Believing on these benefits,

many initiatives actively encourage investigators to make their data available.

Widely available crowd-sourcing programs such as PatientsLikeMe (www.patientslikeme.com)

have amassed participation from more than 400 thousand patients across 2,500 disease conditions

who actively share health related data on an open and online platform that tracks and collects impor-

tant patient-reported outcomes. The United Kingdoms BioBank is a large-scale biomedical data set

containing detailed phenotypic, genotypic, and multimodal imaging findings to determine the genetic

and nongenetic determinants of health and disease in a contemporary cohort of more than 500,000

participants. Available through open access, research collaborations have advanced our knowledge in

the risk prediction of cardiovascular, psychiatric, and cerebrovascular diseases and have identified im-

portant anthropometric and genetic traits of metabolic health including diabetes mellitus and obesity.

The objectives for these kind of initiatives are similar to the established data sources such as census

and public health data sets, or standardized patient registries such as the National Cardiovascular Data

Registry, where data are structured and aggregated. The objective is to monitor population trends,

develop guideline-based care, and infer changes to healthcare policy, new citizen science and crowd-

sourcing initiatives aim to leverage public and patient participation to collect health data and vital

statistics through new massive open, and online data repositories (Bhavnani et al., 2016).

Since 2003, the National Institutes of Health (NIH) has required a data sharing plan for all large

funding grants. Similarly, some journals are also requiring the deposit of data and other research doc-

umentation associated with published articles (Borgman, 2012; Piwowar et al., 2007).

In May, 2010, the Wellcome Trust and the Hewlett Foundation convened a workshop in Washing-

ton, DC, to explore how funders could increase the availability of data generated by their funded re-

search, and to promote the efficient use of those data to accelerate improvements in public health

(Walport & Brest, 2011). In this meeting, funders agree to promote greater access to and use of data in

ways that are: equitable, ethical and efficient. Equitable refers to recognizing those researchers who

generate the data, other analysts reusing these data, meanwhile population and communities expect

health benefits arising from research. It should protect the privacy of individuals. Healthcare data is

obviously very sensitive because it can reveal compromising information about individuals. Several

laws in various countries explicitly forbid the release of medical information about individuals for any

purpose, unless safeguards are used to preserve privacy. Finally, it should improve the quality and

value of research, and increase its contribution to improving public health.

In June 2018, the NIH releases its first Strategic Plan for Data Science (https://www.nih.gov/

news-events/news-releases/nih-releases-strategic-plan-data-science). In this plan, “NIH

addresses storing data efficiently and securely; making data usable to as many people as possible; de-

veloping a research workforce poised to capitalize on advances in data science and information tech-

www.patientslikeme.com
https://www.nih.gov/news-events/news-releases/nih-releases-strategic-plan-data-science
https://www.nih.gov/news-events/news-releases/nih-releases-strategic-plan-data-science
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nology; and setting policies for productive, efficient, secure, and ethical data use. This plan commits

to ensuring that all data-science activities and products supported by the agency adhere to the FAIR

principles, meaning that data be Findable, Accessible, Interoperable, and Reusable" (Wilkinson et al.,

2016).

2.4 Conclusions

Motivated by the remarkable increase of the number of publications on Data Science in the past few

years, the purpose of this chapter has been to study the impact of Data Science in the area of biomedicine.

With this objective in mind, we have carried out a search of the terms “Data Science" along with

“Big Data” and “Cloud Computing" using Google Trends until December 2019. While Big Data repre-

sents the information assets characterized by a high volume, velocity and variety to require specific

technology and analytical methods for its transformation into value (De Mauro et al., 2015), Cloud

Computing enables ubiquitous, convenient, on-demand network access to a shared pool of config-

urable computing resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider interaction (Mell

& Grance, 2009). Big Data and Cloud Computing were chosen since they are somewhat related to com-

puting movements and they help to put the “Data Science” search-traffic into perspective (Kane, 2014).

According to our search results, in the last years more and more publications in the area of biomedicine

make use of the term “Data Science”, however, there are large differences among the countries consid-

ered.

We have also listed the main journals only related to Data Science to point out the increasing im-

portance of Data Science. However, not all of the journals presented explicitly include Biomedical

Data Science (BDS) as their main areas of research. In addition, we have stepped ahead of the contem-

porary definition of Data Science, directly related to the economics or business world, describing the

Data Science in the Biomedical field. We understand BDS as the interdisciplinary field that encom-

passes the study and pursuit of the effective use of biomedical data, information, and knowledge for

scientific inquiry, problem-solving, and decision-making, driven by efforts to improve human health.

It investigates and supports reasoning, modelling, simulation, experimentation, and translation across

the spectrum, from molecules to individuals to populations.

We strongly believe that the importance of Biomedical Data Science will continue increasing in

the near future due to nowadays’ possibilities to record enormous quantities of data and the technical

facilities to process them. Statistical thinking and knowledge will play a key role in the correct analysis

of such data.
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OVERVIEW OF HIV

Human immunodeficiency virus (HIV) is the virus that causes HIV infection. HIV attacks and de-

stroys the infection-fighting CD4 cells of our natural defense against pathogens, infections and ill-

nesses (NAM Publications, 2017), the immune system. The loss of CD4 cells makes it difficult for the

body to fight infections and certain cancers. Without treatment, HIV can gradually destroy the immune

system and advance to Acquired Immunodeficiency Syndrome (AIDS).

There are two variations or “serotypes” of HIV: HIV-1 and HIV-2, which correspond to two genetic

differentiations of the HIV. However, their genomes have only 45% of similarity. It is thought that HIV-2

“jumped” in Africa from simians to men. Today, HIV-2 is present only in countries like Senegal, Gam-

bia, Liberia, Ghana or Nigeria. In this work, from now on, the term HIV refers to HIV-1. For more

information about biological concepts presented in this thesis, please see the Appendix F.

3.1 History of HIV

The earliest known case of infection with HIV-1 in a human was detected in a blood sample collected

in 1959 from a man in Kinshasa, Democratic Republic of the Congo (Faria et al., 2014). Genetic analysis

of this blood sample suggested that HIV-1 may have stemmed from a single virus in the late 1940s or

early 1950s.

In 1981, the United States Centers for Disease Control and Prevention (CDC) reported five cases of

Pneymocystis pneumonia in homosexual men living in Los Angeles (Gottlieb et al., 1981). Although the

CDC first believed that the new disease was confined to homosexual men (Altman, 1981), by the end

of the year, several cases had been reported in non-homosexual injecting drug users and outside the

United States, such as Haiti and some African countries (Pitchenik et al., 1983; Clumeck et al., 1983).

23
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In 1983, a retrovirus (which was later termed HIV) was identified from a patient with AIDS in France

(Barré-Sinoussi et al., 1983).

For many years, scientists theorized as to the origins of HIV and how it appeared in the human

population, most believing that HIV originated in other primates. In 1999, an international team of

researchers reported that they had discovered the origins of HIV. These researchers identified a type of

chimpanzee in Central Africa as the source of HIV infection in humans. They believed that the Simian

Immunodeficiency Virus (SIV) most likely was transmitted to humans and mutated into HIV when

humans hunted these chimpanzees for meat and came into contact with their infected blood. More

recent studies show that HIV may have jumped from apes to humans as far back as in the late 1800s

(Sharp & Hahn, 2011).

3.2 HIV transmission

HIV may be transmitted through certain body fluids that may contain high concentrations of HIV.

These body fluids include blood, semen and pre-seminal fluid, vaginal and rectal fluids, and breast

milk.

There are four main routes of HIV transmission: 1) unprotected vaginal, oral or anal sex (being oral

sex the one with small risk), 2) sharing unsterilized injecting drug equipment, 3) from mother-to-baby

in pregnancy, childbirth or breastfeeding, and 4) infected blood transfusions, transplants or medical

procedures.

Since HIV infection often presents no physical symptoms, the only way to know if a person has

HIV is through an HIV test. We highlight three types of tests that check the blood or body fluids to

confirm the presence of the virus in the body: antibody screening, antibody/antigen combination,

and RNA test. Antibody screening tests, also called immunoassay or ELISA tests, check for a protein

that the body produces in response to the HIV from 2 to 8 weeks after the infection happens. These

tests are considered very accurate except in the case of early infections, which can be detected with

antibody/antigen tests. Antibody/antigen tests check for HIV antigen, a protein called p24 that is part

of the virus and shows up 2-4 weeks after infection. In addition, antibody/antigen tests also check for

HIV antibodies. Finally, RNA tests look for the virus itself and can diagnose HIV about 10 days after

having been exposed to contagion.

3.3 HIV RNA viral load

Viral load is the term used to describe the amount of HIV in the blood. It is essential to measure the viral

load, as well as the CD4 count, as these quantities are prognostic indicators of the evolution of patients

treated with antiretroviral drugs. These indicators allow to precise specific treatment to follow, when it

has to be started, or if any change in medication is needed.
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Viral load tests measure the amount of HIV’s genetic material in a blood sample. The results of

these tests are described as the number of copies of HIV RNA in a millilitre of blood. Viral load tests

have a cut-off point below which they cannot reliably detect HIV, called “limit of detection”. Most

commonly the lower limit of detection is around 40 or 50 copies/ml, but there are some very sensitive

tests that can measure below 20 copies/ml. If the viral load is below the established threshold, it is

usually said to be undetectable. However, the fact that the level of HIV is too low to be detected does

not mean that HIV has disappeared completely from the body (Vanable et al., 2000).

In the first few weeks after contracting HIV, the amount of viral load in the HIV-infected person is

very high. A person with high viral load in the blood are likely to also have a high viral load in other

body fluids, such as semen or vaginal fluids (Van Dyk, 2010). This is the reason why people with high

viral load are potentially more infectious and can pass on HIV more easily. On the other hand, if HIV

in the blood is undetectable, it is likely to also be undetectable in semen, vagina fluid or rectum as

well. Having an undetectable viral load implies that the risk of HIV being passed on during sex is ex-

tremely low. In 2011, a large scientific trial found that HIV treatment reduces the risk of passing on HIV

to a regular heterosexual partner by 96% (1 from 28 infections) during sex(M. Cohen et al., 2011). In

this trial, the only person that acquired HIV did it only a few days before or after their partner started

treatment. In 2014, a study found that no HIV transmission took place in 16,400 and 28,000 sex en-

counters between gay and heretosexual men, respectively, where the HIV-positive partner had a viral

load below 200 copies/ml (M. S. Cohen et al., 2011). Recently, the PARTNER 2 study confirmed that

people with HIV on effective antiretroviral treatment cannot pass on the virus (Rodger et al., 2019).

The results of this study provided a similar level of evidence on viral suppression and HIV transmis-

sion risk for gay men to the level previously observed for heterosexual couples. Additionaly, the study

suggested that there is no risk of HIV transmission in gay couples through condomless sex when HIV

viral load is suppressed. These recent findings support the message of the U=U (Undetectable equals

Untransmittable) global campaign, and the benefits of early testing and treatment for HIV.

3.4 CD4 T cells and their role

CD4 cells (also known as CD4+ T cells, T-lymphocytes or helper cells) are white blood cells that play a

major role in the immune system.

The CD4 cell count is the number of blood cells in a cubic millimetre of blood. High CD4 cell

counts (500 - 1,500) indicate a strong immune system. This number declines when a person is HIV

infected. The lower the CD4 cell count, the greater the damage to the immune system and the greater

the risk of illness. In addition to HIV, infected people who have a CD4 cell count below 200 are at high

risk of developing several illnesses. Current antiretroviral therapy helps HIV-infected people gradually

increase the CD4 cells as well as decrease the viral load.

Regarding the relationship between CD4 cells counts and viral load, the study by Opportunistic In-

fections Project Team of the Collaboration of Observational HIV Epidemiological Research in Europe
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(COHERE) in EuroCoord (2012) have shown that among people with the same CD4 cell counts, those

with higher viral load tend to develop HIV symptoms faster than those with lower viral load. In ad-

dition, among people with the same viral load, those with lower CD4 cell counts tend to become ill

faster.

3.5 Latent HIV reservoir

Latent HIV reservoir is the term used for the group of immune cells in the body that are HIV-infected

but are not actively producing new HIV material. Latent HIV reservoirs can be found throughout the

body, including the brain, lymph nodes, blood, and the digestive tract.

As mentioned above, HIV attacks immune system cells in the body and uses the cell’s machinery

to make copies of itself. This process starts when HIV inserts its generic blueprint into the DNA of an

immune system cell, such as a CD4 cell. The infected cells start producing HIV proteins, which act as

the building blocks for new HIV genetic material. However, some HIV-infected cells shut down and go

into a latent (or resting) state. How HIV-1 establishes latent infection in CD4 cells has been unclear

(Sengupta & Siliciano, 2018). While in this latent state, the infected cells do not produce new HIV. HIV

can “hide” inside these cells for years, forming a latent HIV reservoir. At any time, cells in the latent

reservoir can become active again and start producing more HIV.

Finding ways to target and destroy latent reservoirs is one of the major challenges that HIV re-

searchers face. New studies are exploring different strategies for clearing out reservoirs, including the

use of gene manipulation to cut out or inactivate the virus in HIV-infected immune cells, the develop-

ment of drugs or other methods that reactivate latent HIV reservoirs so that the immune system itself

or new therapies can effectively eliminate them, and the elaboration of approaches that enhance the

immune system’s ability to recognize and clear reactivated latent HIV reservoirs, among others (Deeks

et al., 2012).

3.6 The HIV life cycle

The HIV life cycle is the process of how the virus attaches itself to a CD4 cells and use them to takes

control of the cell’s genetic material, replicates itself inside the cell and finally releases more HIV into

the blood to continue the multiplication process. It is usually divided into seven stages (as shown in

Figure 3.1):

1. Binding (also called Attachment): HIV attaches itself to the surface of a CD4 cell.

2. Fusion: The HIV envelope and the CD4 cell membrane fuse (join together), which allows HIV to

enter the CD4 cell.
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Figure 3.1: HIV life cycle. Source: https://aidsinfo.nih.gov/understanding-hiv-aids/

glossary/1596/life-cycle.

3. Reverse Transcription: Once inside the CD4 cell, HIV releases and uses an HIV enzyme called

reverse transcriptase to convert its genetic material known as HIV RNA into HIV DNA. This con-

version allows HIV to enter the CD4 cell nucleus and to combine with the cell’s genetic material.

4. Integration: Inside the CD4 cell nucleus, HIV releases an enzyme called integrase. HIV uses

integrase to insert its viral DNA into the DNA of the CD4 cell.

5. Replication: The infected cell produces more HIV proteins that are used to produce more HIV

particles inside the cell.

6. Assembly: New HIV proteins and HIV RNA move to the surface of the cell and assemble into

immature or noninfectious HIV.

7. Budding: Newly formed immature HIV pushes itself out of the host CD4 cell. The new HIV

releases an enzyme called protease which acts to break up the long protein chains that form the

immature virus. The smaller HIV proteins combine to form mature or infectious HIV.

3.7 Stages of HIV infection

There are three stages of HIV infection: acute, chronic, and AIDS (The stages of HIV infection, n.d.).

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle
https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle
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Acute HIV infection is the earliest stage of infection, and it generally develops within 2 to 4 weeks

after a person is infected with HIV. During this time, some people have flu-like symptoms, such as fever,

headache, and rash. In the acute stage of infection, HIV multiplies rapidly and spreads throughout the

body. HIV can be transmitted during any stage of infection, but the risk is greatest during this stage.

Chronic HIV infection, also called asymptomatic HIV infection or clinical latency, is the second

stage of infection. During this stage HIV continues to multiply in the body but at very low speed.

People with chronic HIV infection may not have any HIV-related symptoms, but they can still spread

HIV to others. If not treated, chronic HIV infection usually advances to AIDS in 10 years or longer,

though it may take less time in some cases.

AIDS is the final stage of HIV infection. The immune system has been severely damaged, the body

cannot fight off opportunistic infections. According to the Centers for Disease Control and Prevention

(CDC) definition, a patient has AIDS if he or she are infected with HIV and have either a CD4 cell count

bellow 200 cells/mm3, a CD4 cell percentage of total lymphocytes of less than 14%, or one opportunis-

tic infection. Without treatment, people with AIDS typically survive about 3 years (U.S. Department of

Health and Human Services, 2019).

3.8 Combination antiretroviral treatment

The use of drugs to treat HIV infection is known as combination antiretroviral treatment (cART). cART

prevents HIV from multiplying and reduces the amount of HIV viral load in the body.

There are seven main types (or classes) of drugs that work against different parts of the HIV life

cycle, as presented in Table 3.1. There are more than 30 HIV drugs and formulations, cART usually

combines HIV drugs from at least two different classes, making it very effective at preventing HIV from

multiplying. Only a few combinations are now commonly used (HIV i-Base, 2017).

cART helps HIV-infected people live longer, healthier lives. HIV drugs also reduce the risk of HIV

transmission. In fact, it has been shown that people who take cART daily as prescribed, and therefore

maintain an undetectable viral load, cannot sexually transmit the virus to others (Eisinger et al., 2019;

M. S. Cohen et al., 2011).

3.9 HIV RNA viral rebound

The HIV RNA viral rebound occurs if a person following cART has persistent and detectable levels of

HIV in the blood after a period of undetectable levels.
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Table 3.1: Main types of drugs for HIV infection.

Abbreviation Full names

NRTIs/NtRTIs (“nukes”) Nucleoside/tide reverse transcriptase inhibitors or nucleoside/tide analogues
NNRTIs (“non-nukes”) Non-nucleoside reverse transcriptase inhibitors
PIs Protease inhibitors
INIs (or INSTIs) Integrase (strand transfer) inhibitors
CCR5 inhibitors CCR5 inhibitors are a type of entry inhibitor
Fusion inhibitors Fusion inhibitors are a type of entry inhibitor
mAbs Monoclonal antibodies block HIV entering the T-cell

Figure 3.2: HIV RNA viral rebound. Limit of detection is shown in red-dashed line.

The dynamic of HIV RNA viral rebound can be seen in Figure 3.2. As we explained before, viral load

tests have a cut-off point below which they cannot reliably detect HIV. We can see in Figure 3.2 that after

stopping the HIV treatment there is a increase of circulating virus. When viral load become detectable,

it can be measured and probably continue increasing to a certain setpoint, unless the patient resume

cART. This is called viral rebound. The time to viral rebound depends on the characteristics of each

patient. cART aims the viral load to fall again and become undetectable

To observe if a specific therapeutic vaccine (see section 3.10) and/or the combination of it with

others therapies can influence viral rebound dynamics, through preservation and enhancement of

immune response, the cART should be stopped. The main idea is to observe the time to viral rebound

as indicator of the efficiency of the treatment. Once the viral rebound occurs, the patient must resume

the treatment.
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3.10 Therapeutic HIV vaccine

A therapeutic HIV vaccine is designed to improve the body’s immune response to HIV in a person

who is already infected with HIV. Researchers are developing and testing these vaccines to slow down

the progression of HIV infection (including the progression to AIDS). The ultimate goal of therapeutic

vaccines are that they can achieve undetectable levels of HIV without the need for regular cART.

Researchers are also evaluating therapeutic HIV vaccines as part of a larger strategy to eliminate all

HIV from the body and fully. This strategy may involve using other drugs and therapies in addition to

the therapeutic HIV vaccine.

Figure 3.3: “Kick and kill” therapeutic approach. Modified from Deeks (2012).

In this thesis we present some clinical trials based on “kick and kill” strategies (Ruiz-Riol & Brander,

2019; Lewin & Rasmussen, 2020). “Kick and kill” strategy is based on the fact that an HIV cure might

be possible if all infected cells of the latent virus reservoir are forced out of their hidden place (“kick”),

leading ultimately to the death of these cells (“kill”). As can be seen in Figure 3.3, current treatments for

HIV infection do not eradicate virus because HIV genome remains integrated into the DNA of the CD4

cells. For example, using a Latency Reversal Agent, as Romidepsin, leads to activation of HIV genes

(“kick”). This causes the infected cells to be killed by the virus itself or by the patient’s immune system.

3.11 HIV cure and viral eradication

Over the last 15 years, there have been different initiatives aiming at achieving the so-called “HIV cure

and viral eradication”. Although these terms are often used freely and interchangeably, it is generally

accepted that “cure”, or “functional cure” refers to a state of persistent viral suppression without the

need to take antiretroviral drugs (cART), while eradication refers to the complete elimination of any

HIV from the body of an infected individual. The discrimination is certainly more than semantics,

given that HIV establishes a life-long, largely immunologically silent, latent reservoir shortly after acute

infection and that, to date, no effective strategies exist to reactivate and eliminate parts or the entirety

of this latent reservoir (Ruiz-Riol & Brander, 2019).

More than a decade ago, Timothy Ray Brown (the “Berlin patient”) made history as the first person

to be “cured” of HIV after a bone marrow stem cell transplant to treat cancer. In 2019, Adam Castillejo,

known as the “London patient, has become the second person to be cured after the same transplant.
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In particular, Brown and Castillejo received stem cells from a donor with a CCR5 gene mutation,

making them HIV-resistant. Brown came off the cART and had been HIV-free the rest of his life (he

died of leukemia on September 2020). Scientists considered him cured (Hütter et al., 2009; Allers et al.,

2011). The London patient stopped cART at the end of 2017 and now he is considered cured (Gupta et

al., 2020). Unfortunately, the procedure can almost never be offered as a cure for HIV infection because

stem cell transplants carry several risks (Gupta et al., 2020).
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4
CONCEPTS OF SURVIVAL ANALYSIS AND OMICS DATA

ANALYSIS

Survival and omics data analysis are key components in this thesis. This Chapter aims to explain the

main concepts of these specific areas, as they served as basis for different approaches developed during

the next chapters of this thesis. Concerning the survival analysis, the definitions of the survival func-

tion, distribution function, hazard function, and cumulative hazard function are presented. Moreover,

we emphasize the definition of interval-censored variables. Proportional hazards and accelerated fail-

ure time model are also introduced. Regarding the omics data analysis, we present the main concepts

related to transcriptome. We also address the classical pipeline for analyzing microarray data, in this

specific case mRNAs, using R and Bioconductor (https://www.bioconductor.org/).

4.1 Survival analysis

4.1.1 Basic concepts

Let T be the time until the event of interest, E , which, in the present work, corresponds to the time

to viral rebound. Formally, T is a non-negative random variable, whose distribution can be charac-

terized by the survival function, S(t ), the cumulative distribution function, F (t ), the hazard function,

λ(t ), or the cumulative hazard function, Λ(t ). Each of them serves to illustrate different aspects of the

distribution of T . All the concepts described below can be found in Gómez et al. (2015).

The survival function is denoted by S(·). It corresponds to the probability of an individual surviving

beyond time t (experiencing the event after time t ). It is defined as

33
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S(t ) = P (T > t ) for t ≥ 0.

The survival function can take different forms, but all start from S(t = 0) = 1, decrease monotoni-

cally and converge to zero when t tends to infinity.

Similarly, the nondecreasing right-continuous distribution function F (t ) is defined as the cumula-

tive probability of reaching viral rebound before time t , i.e.,

F (T ) = P (T ≤ t ) = 1−S(t ), t ≥ 0.

Another possibility is to specify the hazard function λ(t ) which represents the instantaneous risk

of viral rebounding

λ(t ) = lim
∆t→0

1

∆t
P (t ≤ T < t +∆t |T ≥ t ), t ≥ 0.

Intuitively, λ(t )∆t can be interpreted as the probability that E occurs in (t ; t +∆t ] given that the

event has not occurred before.

The hazard function is estimated by the proportion of people who rebound at time t among those

who had not previously rebounded. The hazard function expresses how the instantaneous risk changes

over time containing the same information as the survival but in terms of its speed (or rate) of change.

When the risk is high, survival declines quickly, whereas if the risk is zero the survival curve is flat.

Finally, the cumulative hazard function,Λ(t ), when T is absolutely continuous, is defined by

Λ(t ) =
∫ t

0
λ(u)du, t ≥ 0

and it is very useful graphically, also technically, for example to check a model’s goodness-of-fit, but

does not have an intuitive interpretation.

4.1.2 Interval-censored data

One difficulty of survival analysis is the incomplete information on the survival of some individuals.

For example, when the exact time until the viral rebound is not observed, either because the event

of interest E occurs before the person enters the study, or because when the study ends E has not

happened yet, and in general because all the knowledge is that E has occurred within a certain time

interval. These peculiar characteristics of survival studies are known under the name of censoring. In

this thesis we address different clinical trials that consider interval-censored times to viral rebound.

Different censoring mechanisms give rise to interval-censored data of varying nature and the meth-

ods and the theoretical developments behind these are also different and not necessarily interchange-

able. Basically, we refer to interval-censored data to those situations where instead of observing the
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actual value of a random variable T , we only observe a window (L,R] where T has occurred (Gómez et

al., 2009). Interval-censored data is frequent in longitudinal studies in many areas of medical research,

where the occurrence of the event can often be recorded only at periodic follow-ups. Interval censoring

may also arise when an individual misses one or more scheduled visits, and when the disease status

has changed when s/he returns. Examples of interval-censored data are found, in particular, in HIV-1

studies when analyzing time to viral rebound, where the event occurs between consecutive visits of a

patient. Interval-censored data include right-censored times as a particular case with R =∞, which in

this work corresponds to patients whose viral load has not rebounded by the end of the study. More

information on this type of censoring can be found in Gómez et al. (2015).

Noninformativity conditions

Most of the methods to work with interval-censored data assume noninformativeness of the censoring

mechanism. The non-informative condition establishes that the mechanism that generates the cen-

soring is noninformative for T , the variable of interest. This means the observed interval (L,R] carries

no further information on the survival time T other than the fact that T belongs to the interval (L,R].

As a consequence of this assumption, censored data can be evaluated without modelling the censoring

process.

In this work, we adopt the noninformativity conditions in Oller et al. (2004) where three equivalent

characterizations of noninformativeness are given, conditions ensuring that the censoring mechanism

cannot affect the distribution of T . These properties describing non-informativeness guarantee that

the contribution to the likelihood function of an individual with observed interval (`,r ),

∫ R

L
FT,L,R (t ,`,r )dt = P (T ∈ (L,R],L ∈ d`,R ∈ dr ))

is proportional to P (T ∈ (`,r ]), that is, the probability that T belongs to (`,r ] ignoring the censoring

mechanism. This probability is denoted as simplified likelihood.

4.1.3 Nonparametric estimation of the survival function

To obtain a non-parametric estimation of the survival function, S(t ) = 1− F (t ), under interval cen-

soring, one of the most popular methods is Turnbull’s estimator (Turnbull, 1976). For this purpose,

we define the so-called Turnbull intervals, denoted by I = {(q1, p1], (q2, p2], . . . , (qm , pm]}, where I are

those intervals where all the mass of any non-parametric maximum likelihood estimator (NPMLE) will

be concentrated. To obtain these intervals, let L = {Li ,1 ≤ i ≤ n} and R = {Ri ,1 ≤ i ≤ n} be the set

of left and right endpoints respectively. We need to derive all the distinct intervals (q j , p j ] such that

q j ∈ L , p j ∈ R, and that there is no other left or right endpoint between q j and p j . The NPMLE for

the survival function decreases inside the set I and is constant outside of them. Specifically, denoting

by w j = P(q j < T ≤ p j ) = S(q j )−S(p j ) the weight of the j th Turnbull’s interval, the NPMLE for S(t ) is

given by
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Ŝn(t ) =


1, if t ≤ q1

1− (ŵ1 +·· ·+ ŵ j ), if p j ≤ t ≤ q j+1, 1 ≤ j ≤ m −1

0, if t ≥ pm

(4.1)

and is not specified within (q j , p j ], for 1 ≤ j ≤ m. Observe that Turnbull’s estimate of the survival func-

tion has a special shape with horizontal stretches in non-Turnbull’s intervals and rectangular boxes

indicating areas of equal likelihood in Turnbull’s intervals.

4.1.4 Proportional hazards model

Let x be a vector of covariates including, for example, some clinical covariates or a specific type of

omics data. In order to specify how the covariates may affect the time to viral rebound, a regression

model is needed. Let λ(t |x) be the hazard function at time t for an individual with covariate vector x .

The basic so-called Cox proportional hazards model (Cox, 1972) is given by

λ(t |x) =λ0(t )exp(β′x) =λ0(t )exp
( p∑

k=1
βk xk

)
, (4.2)

where λ0(t ) is an arbitrary unspecified baseline hazard function and β = (β1, . . . ,βp )′ is the vector of

regression parameters.

Under the proportional hazards model, the conditional density and survival functions of T given x

have the forms:

f (t ; x) =λ0(t )exp(x ′β)exp[Λ0(t )exp(x ′β)]

and

S(t ; x) = exp[−Λ0(t )exp(x ′β)] = [S0(t )]exp(x ′β),

where Λ0(t ) = ∫ t
0 λ0(s)ds and S0(t ) = exp

[− ∫ t
0 λ0(s)ds

]
are the baseline cumulative hazard function

and the baseline survival function. The conditional cumulative hazard function of T given x has the

formΛ(t ; x) =Λ0(t )exp(x ′β).

Once the model (4.2) has been established and assuming that the primary interest lies in the role

played by the fixed effects, the estimation ofβmust be addressed allowing that λ0(t ) is arbitrary. Given

that the baseline function λ0(t ) is not specified, to study the influence of the covariates in the survival

times, a modification of the classical theory of maximum likelihood is needed. With this goal and

assuming there are no ties among the uncensored survival times, the partial likelihood function has

the following expression:

LP (β) =
r∏

j=1

exp{β′x ( j )}∑
l∈R(t( j )) exp{β′x ( j )}

, (4.3)
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where R(t( j )) is the risk set at time t( j ) and t(1) < t(2) < ·· · < t(r ) are the r distinct failure times. LP (β)

is based on that part of the data that does not carry information about λ0(t ). The partial likelihood

function is especially useful since it is much more simple than the complete likelihood function and it

is a good remedy when the general method of maximum likelihood is not adequate due to the presence

of many nuisance parameters (Gómez & Cadarso-Suárez, 2017).

4.1.5 Accelerated failure time model

The accelerated failure time model (AFTM) can be expressed as

log(T ) = x ′β+W, (4.4)

where β is the unknown parameter vector, and W is an error variable with an unknown distribution

function.

Define W ∗ = exp(W ) and let λw (t ) denote the hazard function of W ∗, which is independent of β.

Then T = exp(x ′β)W ∗, and the hazard and survival functions of T given x have the forms

λ(t ; x) =λw (t exp{−x ′β})exp(−x ′β)

and

S(t ; x) = exp[−Λw (t exp{−x ′β})],

respectively, whereΛw (t ) = ∫ t
0 λw (s)ds.

Notice that under the model (4.4), the effects of the covariates is multiplicative as under the pro-

portional hazards model, but on t instead of the hazard function. This means the effect is to change

the timescale and therefore to accelerate or decelerate the time to viral rebound. Although the pro-

portional hazard model specifies that the effect of covariates on the hazard is multiplicative, it does

not give a direct relationship between x and T because λ0(t ) is arbitrary. In contrast, the model (4.4)

specifies a linear relationship between logT and x .

Let δi = 1, if there is an event at time ti , and δi = 0, if the data is censored at ti . The usual likelihood

function for right-censored data is given by

Li =
n∏

i=1
{ fi (ti )δi (1−Fi (ti ))1−δi }, (4.5)

where fi (ti ) is the density at time ti and 1−Fi (ti ) corresponds to the probability of survival beyond

time ti (censoring point).

In the case of interval-censored data, TL and TR are observed and Ti is not, that is 0 < TLi < Ti <
TRi <∞. The likelihood function for interval-censored data is written as
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Li =
n∏

i=1
{Fi (tRi )−Fi (tLi )}. (4.6)

4.2 Omics data analysis

In biological context, the suffix “omics” is used to refer to the study of large sets of biological molecules

(Smith et al., 2005). In other words, the study of different components participating or regulating com-

plex biological processes, triggering the development of several fields that, together, are described with

the term omics. Among them, we can mention genomics, proteomics, or metabolomics. Omics aims

at the collective characterization and quantification of pools of biological molecules that translate into

the structure, function, and dynamics of an organism or organisms. In this thesis we work with tran-

scriptome data.

4.2.1 Transcriptome

Transcriptome is the study of the complete set of RNA transcripts that are produced by the genome,

under specific circumstances or in a specific cell, using high-throughput methods, such as microarray

analysis.

Comparison of transcriptomes allows the identification of genes that are differentially expressed in

distinct cells populations, or in response to different treatments. Following, as in this thesis we work

with transcriptome data belonging to mRNA and miRNA, we will explain these particular concepts

with further details.

Messenger ribonucleic acid (mRNA)

Messenger ribonucleic acid (mRNA) is a subtype of RNA created during transcription, that carries a

portion of the DNA code to other parts of the cell for processing. During the transcription process, a

single strand of DNA is encoded by RNA polymerase, and mRNA is synthesized. The mRNA’s role in

protein synthesis can be explained following the Figure 4.1.
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Figure 4.1: mRNA’s role in protein synthesis. Source: https://www.news-medical.net/life

-sciences/-Types-of-RNA-mRNA-rRNA-and-tRNA.aspx.

In a first step, through a process known as transcription, an RNA copy of a DNA sequence for cre-

ating a given protein is made. Then, this mRNA copy travels from the nucleus of the cell to the part of

the cell known as cytoplasm, which houses ribosomes. Ribosomes are complex machinery in the cells

that are responsible for making proteins. Following, through another process known as translation,

ribosomes read the mRNA, and follow the instructions, creating the protein step by step. Finally, the

cell expresses the protein and it, in turn, carries out its designated function in the cell or the body.

Micro ribonucleic acid (miRNA)

Micro ribonucleic acid (miRNA) represents a class of small, 18- to 28-nucleotide-long, noncoding RNA

molecules. Their major role is in the post transcriptional regulation of protein expression, and their

involvement was demonstrated in normal and in pathological cellular processes. miRNAs can be de-

scribed as “multivalent”, with one miRNA able to target multiple genes, thus regulating the expression

of several proteins. They were demonstrated to act on several key cellular processes, such as cell dif-

ferentiation, cell cycle progression, and apoptosis. In tumors, some miRNAs function as oncogenes,

others as tumor suppressors, upregulation of oncogenic miRNAs, among others (Tanase et al., 2011).

As the development in high throughput technologies has become more common and accessible,

it is becoming usual to take several distinct simultaneous approaches to study the same problem. In

practice, this means that data of different types may be available for the same study, highlighting the

need for methods and tools to analyse them in a combined way (Sánchez et al., 2012). In fact, the idea

that efficient integration of data from different omics can greatly facilitate the discovery of true causes

and states of disease is rapidly pervading the biomedical community (Joyce & Palsson, 2006).

https://www.news-medical.net/life-sciences/-Types-of-RNA-mRNA-rRNA-and-tRNA.aspx
https://www.news-medical.net/life-sciences/-Types-of-RNA-mRNA-rRNA-and-tRNA.aspx
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4.2.2 Introduction to microarrays

Measuring relative changes in levels of specific mRNAs provide information about what is going on in

the cells from which they come. In this thesis, we analyze mRNA data in order to identify biomarkers

to predict the viral rebound of HIV-infected patients.

In this work, we can assume that a microarray dataset is a matrix of continuous values that rep-

resents the expressions of a set of genes (one gene per row), in a variety of samples (one sample per

column), see Figure 4.2

Figure 4.2: A simplified view of a gene expression matrix. Adapted from Sanz & Sánchez-Pla (2019).

To analize this data, we will use the R statistical software (R Core Team, 2020). Most packages used

for the analysis of high throughput genomic data are part of the Bioconductor, which is based on the R

programming language. Biconductor has become the state-of-the-art way to analyze microarray and

other omics data.

The first step of the analysis is to read the .CEL files using the package oligo (Carvalho & Irizarry,

2010). CEL files are the files with the “raw data” originated after microarray scanning and preprocessing

with Affymetrix software. Affymetrix, Inc. was an American company that was acquired by Thermo

Fisher Scientific in March 2016. Affymetrix makes quartz chips for analysis of DNA Microarrays called

GeneChip arrays. Affymetrix is focused on oligonucleotide microarrays. These microarrays are used

to determine which genes exist in a sample by detecting specific pieces of mRNA. A single chip can be

used to analyze thousands of genes in one assay. Chips can be used only once.

4.2.3 Pipeline for mRNA analysis

Quality control of raw mRNA data

The explanation of the pipeline to analyze mRNA data is explained below, following the steps detailed

in Sanz & Sánchez-Pla (2019). The first step when analizing microarray data is to check its quality, since

bad quality data could introduce a lot of noise in the analysis.

The Figure 4.3 shows ten samples of microarrays. Microarrays are microscope slides that are printed

with thousands of tiny spots in defined positions, with each spot containing a known DNA sequence
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or gene. The DNA molecules attached to each slide act as probes to detect mRNA transcripts expressed

by a group of genes.

Figure 4.3: Visualization of ten microarrays.

To perform a microarray analysis, mRNA molecules are typically collected from both an exper-

imental sample and a reference sample. The two mRNA samples are then converted into comple-

mentary DNA (cDNA), and each sample is labelled with a fluorescent probe of a different color. Both

samples are then mixed together and allowed to bind to the microarray slide. The process in which the

cDNA molecules bind to the DNA probes on the slide is called hybridization. Following hybridization,

the microarray is scanned to measure the expression of each gene printed on the slide. If the expres-

sion of a particular gene is higher in the experimental sample than in the reference sample, then the

corresponding spot on the microarray appears red. In contrast, if the expression in the experimental

sample is lower than in the reference sample, then the spot appears green. Finally, if there is equal

expression in the two samples, then the spot appears yellow.

The Bioconductor package ArrayQualityMetrics (Kauffmann et al., 2008) generates microarray

quality metrics reports for microarray data. This report is a useful tool to observe the existence of

outliers in our data. Usually if there is less than three marks in this report the potential problems are

small and solved by following the normalization process.

Data normalization

The process of data normalization is necessary in order to make the arrays comparable among them

and try to reduce, and if it is possible to eliminate, all the variability in the samples not owing to bi-

ological reasons. Normalization process tries to assure that intensity differences present in the array,

reflects the differential expression of genes, rather than artificial biases due to technical issues. Nor-

malization process is performed using the function rma from the Bioconductor affy package (Gautier

et al., 2004). RMA is the acronym for Robust Multiarray Average, and consists of three steps:
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Step 1: Background correction

A probe pair consists of a Perfect Match probe (PM), which is designed to match exactly the sequence

of interest, and a Mismatch probe (MM), which is designed to contain a single base mismatch at the

center base position of the 25-mer oligonucleotide probe.

Let’s assume PM data is a combination of background and signal

PM = Signal+Background,where

Signal : S ∼ exp(λ)

Background : B ∼ N (µ,σ2)

The background correction is performed on each array separately. The idea is to estimate µ, σ and

λ separately in each chip using the observed distribution of PMs. In this way it is posible to obtain an

estimate of E(S|PM)

E(S|PM) = PM−µ−λσ2 +σ φ((PM−µ−λσ2)/σ)−φ((µ+λσ2)/σ)

Φ((PM−µ−λσ2)/σ)−Φ((µ+λσ2)/σ)−1

for each PM value. These estimates are the background adjusted values.

Step 2: Normalization

The next step corresponds to normalize across all the arrays. To perform this step and correct for array

biases rma uses “Quantile normalization”. It consist of a repetitive process of replacing the ordered

highest values on each chip with the average of the same order value for all the chips.

Step 3: Summarization

Once we have the background corrected, normalized and log2-transformed intensities (Yi j n), being i ,

j , and n the subscripts for chips, probes (genes) and individuals, respectively.

The next step is to consider the equation

Yi j n =µi n +α j n +εi j n
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Where Yi j n correspond to the log2-transformed intensities after the background correction and

normalization steps. The subscripts for chips, probes (genes) and individuals are i , j , and n, respec-

tively. Moreover, µi n is the log scale expression level (RMA measure), α j n is the probe affinity effect

and εi j n corresponds to the independent identically distributed error term (with mean 0).

The main idea of this step is to combine these intensity values Yi j n to get a single intensity value

for each gene (probeset). This is done using “median polishing” following three steps: 1) Each chip

is normalised to its median. 2) Each gene is normalised to its median. And 3) the previous steps are

repeated until medians converge, with a maximum of 5 iterations to prevent infinite loops.

Quality control of normalized data

After the normalization process it is interesting to perform a second quality control and have a visual

idea on how the data looks. We can use the ArrayQualityMetrics package again and visualize the

data using, for example, the boxplots for the distributions of intensities for the normalized data.

Detecting the most variable genes

Selection of differential expressed genes is affected by the number of genes. The higher the number,

the greater the necessary adjustment of p-values, which will lead us to end up miscarrying more genes.

If a gene is differentially expressed, it is expected that there is a certain difference between groups,

and therefore the overall variance of the genes will be greater than that of those that do not have dif-

ferential expression. Plotting the overall variability of all genes is useful to decide which percentage

of genes shows a variability that can be attributed to other causes than random variation. Figure 4.4

depicts an example of the standard deviations of a set of genes sorted from the smallest to the biggest

values. The plot shows that the most variable genes are those with a standard deviation above 90-95%

of all standard deviations.
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Figure 4.4: Values of standard deviations along all samples for all genes ordered from the smallest to
the biggest.

Filtering the least variable genes

Filtering out those genes whose variability can be attributed to random variation, that is the genes that

are, reasonably, not expected to be differential expressed, has proven to be useful to reduce the number

of tests to be performed with the corresponding increase in power (Hackstadt & Hess, 2009).

We use Entrez Gene ID in our filtering process. Entrez Gene (http://www.ncbi.nlm.nih.gov/

gene) is National Center for Biotechnology Information (NCBI)’s database for gene-specific informa-

tion. Entrez Gene maintains records from genomes which have been completely sequenced, which

have an active research community to submit gene-specific information, or which are scheduled for

intense sequence analysis (Maglott et al., 2005).

We filtered out:

• features without an Entrez Gene ID annotation

• in the case of features mapping to the same Entrez Gene ID, then the feature with the largest

value of IQR will be retained and the other(s) removed

• the features values less than the 75th percentile

• Affymetrix quality control probe sets

http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/gene
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Model estimation and gene selection

To decide if the genes are differentially expressed, estimating the model, defining the contrasts and per-

forming the significance test are needed. For this purpose, the Bioconductor limma package (Ritchie

et al., 2015) is used. This package is used for the analysis of gene expression microarray data, especially

the use of linear models for analyzing designed experiments and the assessment of differential expres-

sion. limma provides the ability to analyze comparisons between many RNA targets simultaneously in

different designed experiments.

The analysis provides the usual test statistics such as fold-change t-moderated or adjusted p-values

that are used to order the genes from more to less differential expressed.

In order to control the percentage of false positives that may result from the high number of con-

trasts made simultaneously, the p-values are adjusted so that we have control over the false positive

rate using the Benjamini and Hochberg method (Benjamini & Hochberg, 1995).

Gene Annotation

An additional and useful step is to provide additional information on the features that have been pre-

viously selected. This process is called “annotation” and essentially looks for information to associate

identifiers, usually corresponding to transcripts, with more familiar names such as the Gene Symbol,

the Entrez Gene identifier or the Gene description.

The annotation is an essential step, because until now we only have the gene names in a partic-

ular format, but in order to use this information with other databases or only to have more infor-

mation about these genes, we must annotate the results. In our case we use the annotation package

hgu133plus2cdf (Project, 2015).
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5
ELASTIC-NET APPROACH FOR THE ACCELERATED

FAILURE TIME MODEL

5.1 Introduction

To identify biomarkers as potential risk factors of HIV viral rebound, it is essential to study low and

high-dimensional data. Low-dimensional data includes information about the clinical, viral, analyti-

cal parameters per patient as well as their survival. With high-dimensional data we refer to the infor-

mation on the omics data. Although different approaches to combine low and high dimensional data

have been developed, to the best of our knowledge they have not been applied to HIV studies. Because

of this, one aim of this thesis is to develop a model that considers omics and survival data.

The development of immunologic interventions to control viral rebound in HIV infection is a major

goal of the HIV-1 cure field. In this chapter, we present the DCV2 clinical trial (García et al., 2013)

based on a therapeutic vaccine in HIV-infected patients. In this clinical trial, a therapeutic vaccination

with “kick and kill” strategy has been proposed to control viral replication after discontinuation of

antiretroviral therapy. For more information on “kick and kill" vaccines, see Chapter 3.

A major challenge to analyze the time to viral rebound in the context of this trial consists of iden-

tifying convenient biomarkers. These have to be chosen among more than five thousand messenger

RNAs (mRNAs). We address this problem by means of an elastic-net approach for the accelerated fail-

ure time (AFT) model. Elastic-net regularization combines the penalizations from ridge regression and

LASSO and allows automatic variable selection and continuous shrinkage, as well as the selection of

groups of correlated variables. The AFT model has an intuitive physical interpretation and is a useful

alternative to the Cox model in survival analysis (Wei, 1992). The AFT model is a parametric model

that is based upon the survival curve rather than the hazard function. In this study, the AFT model

47
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was used to analyze the interval-censored time (weeks) to viral rebound from 35 patients, considering

distinct mRNAs as potential predictors.

The chapter is organized as follows. First, we explain the need for the elastic-net penalty, starting

with the ordinary least squares and its pitfalls to continue with two penalization techniques: ridge re-

gression and LASSO which help to understand better the elastic-net penalization. Second, we present

the state of the art for the elastic-net penalization applied to the PH and the AFT model, considering

different approaches. Third, we introduce the elastic-net penalization for the PH model. Fourth, we

describe with greater detail the elastic-net approach for the AFT model. Finally, we apply different

methods previously described to our DCV2 dataset.

5.2 From the ordinary least squares to the elastic net penalized regression

model

The continued development of high-throughput genomic technologies has fundamentally changed

the genetic analyses of complex traits and diseases. Nowadays, multi-omics datasets are available for

many different diseases (mainly cancers). The information extracted from these type of data can be an

avenue for improving the understanding about some specific diseases, for example, discovering new

biomarkers to better predict disease risks and prognosis, as well as the development of new therapeu-

tic treatments. In the area of cancer research, many clinical data and meta-dimensional omics data

have been generated from large-scale initiatives such as The Cancer Genome Atlas (TCGA), available

at http://gdc.cancer.gov. Nevertheless, as far as we know, these initiatives have not been taken

place in HIV studies. Using a model that combines, in this case, a specific omic layer (transcriptome)

and associates it with the time to viral rebound of HIV-infected individuals, could help to accurately

identify biomarkers and gain a deeper understanding of the HIV viral dynamics.

The information that omics data provide can be used, as we mentioned before, to develop mod-

els for understanding and predicting disease risk and disease prognosis. However, integrating high-

dimensional omics data into risk-assessment models is statistically and computationally challenging.

High-dimensionality is typically handled via either variable selection, dimension reduction or regu-

larization techniques. A second problem is the relative importance given to the clinical predictors

and omics predictors respectively, an issue that we can denote as the combination of low and high-

dimensional data (De Bin et al., 2014). In this chapter we introduce the elastic-net penalization to deal

with high-dimensional mRNA data. Following, we start presenting the ordinary least squares and how

this methodology raises the need for regularization techniques.

http://gdc.cancer.gov
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5.2.1 Ordinary least squares

The usual linear regression model can be expressed as follows:

Yi =
p∑

j=1
β j Xi j +εi , i = 1, . . . ,n

or in its matrix form Y = Xβ+ε, where Y = (y1, . . . , yn)′ is a continuous response variable, X is the design

matrix containing the values of the p independent variables of the n observations, β = (β1, . . . ,βp )′ is

the parameter vector, and ε= (ε1, . . . ,εn)′ corresponds to the error term.

The ordinary least squares (OLS) estimates ofβ= (β0, . . . ,βp )′ are obtained by minimizing the resid-

ual sum of squares:

βOLS = ‖Y−Xβ‖2
2 =

n∑
i=1

(
yi −

p∑
j=1

β j Xi j
)2.

In the case that the columns of X form a linearly independent set, the solution is unique and is given

by β̂OLS = (X′X)−1X′Y. There are two critical characteristics of estimators to be considered: the bias

and the variance. The bias is the difference between the true population parameter and the expected

estimator

Bias(β̂OLS) = E(β̂OLS)−β (5.1)

and it measures the accuracy of the estimates. Variance, on the other hand, measures the spread, or

uncertainty, in theses estimates. It is given by

Var(β̂OLS) =σ2(X ′X )−1, (5.2)

where the unknown error variance σ2 can be estimated from the residuals as

σ̂2 = ε′ε
n −p

, (5.3)

where ε= Y − X β̂. The model’s error can be decomposed into three parts: error resulting from a large

variance, error resulting from significant bias, and the remainder which is the unexplainable part.

MSE = (E(X β̂−Xβ)2 +E(X β̂−E(X β̂))2 +σ2 = Bias2 +Variance+σ2.

The OLS estimator has the desired property of being unbiased. However, it can have a huge vari-

ance. This could happen when the predictor variables are strongly correlated with each other or when

there are many predictors. The latter is reflected in the Formula (5.3), if p approaches n, the variance
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approaches infinity. The general solution to this is to reduce variance at the cost of introducing some

bias. This approach is called regularization and is almost always beneficial for the predictive perfor-

mance of the model. Penalization techniques have been proposed to improve OLS, such as ridge and

LASSO regression, as we explain next.

5.2.2 Ridge regression

Ridge regression (Hoerl & Kennard, 1970) is a method that deals with the problem of collinearity in a

linear model estimated by OLS. It is well known that forward or backward selection are used with the

purpose of obtaining a parsimonious model, decreasing the number of parameters, but these methods

are not able to tell anything about the removed variables’ effect on the response. Removing predictors

from the model can be seen as setting their coefficients to zero. Instead of forcing them to be exactly

zero, a penalization is introduced if they are too far from zero, thus enforcing them to be small in a

continuous way. Decreasing model complexity while keeping all variables in the model is what ridge

regression does.

Ridge regression minimizes the residual sum of squares subject to a bound on the L2 norm of the

coefficients

β̂ridge = argminβ
{ n∑

i=1

(
yi −

p∑
j=1

β j Xi j
)2 +λ2

p∑
j=1

β2
j

}
, (5.4)

where λ2 is the parameter of penalization.

The Equation (5.4) can also be expressed in matrix form: β̂ridge = (X ′X +λ2I )−1(X ′Y ), where I

denotes the identity matrix. Notice that as λ2 tends to zero, the parameter β̂ridge tends to β̂OLS.

Ridge regression is a continuous shrinkage method, that is, shrinkage reduces the size of the coeffi-

cient estimates (shrinking them towards zero). Note that if a coefficient gets shrunk to exactly zero, the

corresponding variable drops out of the model. Ridge regression achieves a better prediction perfor-

mance through a bias-variance trade-off. Incorporating the regularization coefficient in the Formulas

(5.1) and (5.2), for bias and variance, respectively, gives us

Bias(β̂ridge) =−λ2(X′X+λ2I)−1β

Var(β̂ridge) =σ2(X′X+λ2I)−1X′X(X′X+λ2I)−1.

From the last expressions we can see that asλ2 becomes larger, the variance decreases, and the bias

increases. Since β̂ridge cannot be zero no matter how big the λ2 value is set, ridge regression cannot

produce a parsimonious model, because it always keeps all the predictors in the model.
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5.2.3 Least absolute shrinkage and selection operator (LASSO)

The least absolute shrinkage and selection operator (LASSO) was proposed by Tibshirani (1996) and

it is, conceptually, quite similar to ridge regression. It also adds a penalty for non-zero coefficients,

but unlike ridge regression, which penalizes sum of squared coefficients (using a L2 penalty), LASSO

penalizes the sum of their absolute values based on a L1 penalty. As a result, for high values of λ, many

coefficients are exactly zeroed under LASSO, which is never the case in ridge regression.

The LASSO solves the problem of OLS by imposing an L1 penalty on the regression coefficients:

β̂LASSO = argminβ
{ n∑

i=1

(
yi −

p∑
j=1

β j xi j
)2 +λ1

p∑
j=1

|β j |
}
.

Owing to the nature of the L1 penalty, the LASSO does both continuous shrinkage and automatic

variable selection simultaneously. But this method is less efficient for a big number of covariates.

Moreover, if there are correlated variables, it tends to select just one of them and to ignore the oth-

ers, that is, LASSO does not take into account the “grouping effect” (Zou & Hastie, 2005). The property

of the grouping effect states that highly correlated features will have similar estimated coefficients.

For example, in gene expression studies, genes that have similar functions, or that work together in a

pathway to accomplish a certain function, are often correlated.

Comparing ridge regression and LASSO, we can mention that neither of them outperforms the

other. LASSO can set some coefficients to zero, thus performing variable selection, while ridge cannot.

Both methods allow us to use correlated predictors, but they solve multicollinearity issue differently:

in ridge regression the coefficients of correlated predictors are similar, in LASSO one of the correlated

predictors has a larger coefficient while the rest are zeroed. LASSO tends to do well if there are a small

number of significant parameters and the others are close to zero, this means that only a few predictors

actually influence the response. Ridge performs well if there are many large parameters of about the

same value, this means that most predictors have an impact on the response.

Why does the LASSO provide variable selection?

Let Y = Xβ+ε, be the usual linear regression model with an L1 penalty on β̂ and a least squares loss

function on ε̂. Expanding the expression to be minimized we obtain

argmin{Y′Y−2Y′Xβ̂+ β̂X′Xβ̂+2λ1|β̂|}.

If β̂> 0, the penalty term is equal to 2λ1β. The derivative of the objective function with respect to

β̂ is −2Y′X+2X′Xβ̂+2λ1 which has the solution β̂= (Y′X−λ1)/(X′X). By increasing λ1 we can drive β̂ to

zero. In the case that β̂ becomes negative, the derivative of the objective function changes to −2Y′X+
2X′Xβ̂−2λ1 where the flip in the sign of λ1 is due to the absolute value nature of the penalty term. This

leads to the solution β̂= (Y′X+λ1)/(X′X), which is inconsistent with β̂< 0 (given that the least squares
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solution is greater than zero), which implies Y′X > 0 and λ1 > 0. With the least squares penalty λ1β̂
2

,

however, the derivative becomes −2Y′X+2X′Xβ̂+2λ1β̂which has solution β̂= (Y′X)/(X′X+λ1).

Following the Figure 5.1 from Elements of Statistical Learning by J. Friedman et al. (2001) is very

illustrative:

Figure 5.1: Estimation picture for the LASSO (left) and ridge regression (right). Shown are contours of
the error and constraint functions. The solid blue areas are the constraint regions |β1| + |β2| ≤ t and
β2

1 +β2
2 ≤ t 2, respectively, while the red ellipses are the contours of the least squares error function

(J. Friedman et al., 2001).

The β̂ is the unconstrained least squares estimate. The red ellipses are the contours of the least

squares error function, in terms of parameters β1 and β2. Without constraints, the error function is

minimized at the MLE β̂, and its value increases as the red ellipses out expand. The diamond and

disk regions are feasible regions for LASSO and ridge regression, based on L1 and L2 penalization,

respectively. Heuristically, for each method, we are looking for the intersection of the red ellipses and

the blue region as the objective is to minimize the error function while maintaining the feasibility.

Considering the diamond feasible region, based on the L1 constraint, it is more likely to produce an

intersection that has one component of the solution equal to zero, this is the sparse model, due to the

geometric properties of ellipses, disks, and diamonds.

5.2.4 Elastic net

Similar to the LASSO, the elastic net (Zou & Hastie, 2005) simultaneously does automatic variable se-

lection and continuous shrinkage, and similar to the ridge regression, it can select groups of correlated

variables. To estimateβ, the naive elastic net uses a mixture of the L1 (LASSO) and L2 (ridge regression)

penalties:
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β̂naive = argminβ
{ n∑

i=1

(
yi −

p∑
j=1

β j Xi j
)2 +λ1

p∑
j=1

|β j |+λ2

p∑
j=1

β2
j

}
.

L1 regularization tends to produce sparse solutions, but also tends to select the feature most strongly

correlated with the outcome and zero out the rest. Moreover, in a dataset with n observations, it can

select at most n features. While L2 regularization is suited to deal with p features. As the naive elastic

net uses a double penalization that can introduce bias in the estimation, it is necessary to correct the

previous estimation, in this way

β̂enet = (1+λ2)β̂naive.

A common reparameterization of the elastic net is to express the regularization parameters in

terms of λ, which controls the overall degree of regularization, and α, which controls the balance be-

tween the LASSO and ridge penalties

λ1 = αλ

λ2 = (1−α)λ.

This reparameterization is useful in practice, as it allows one to fixα and then select a single tuning

parameter λ, which is more straightforward than attempting to select λ1 and λ2 separately. Summing

up, the elastic net creates a useful compromise between the ridge regression penalty (α = 0) and the

LASSO penalty (α= 1). In addition, elastic net is not limited by the fact that p ≥ n and works efficiently

if there is a group of variables among which the pairwise correlations are very high, this allows for those

genes (in the microarray context) sharing the same biological pathway, to include whole groups into

the model automatically once one gene among them is selected.

5.2.5 Selection of the optimal tuning parameter λOPT

For the selection of the optimal λOPT we use leave-one-out cross validation. Cross validation schemes

can be implemented in most statistical frameworks and for most estimation procedures. The general

idea of cross-validation is to separate m observation from the n subjects (sample size), fit a model

based on the remaining n −m observations and test it on the m observations outside the dataset. The

left-out group of size m is called the test set, while the remaining group of size n −m is called the

training set. The test set is used to validate or assess the performance of the estimators using the mean

squared error criterion. The training and test splitting is repeated several times.

In the K-fold cross validation the dataset is divided into k subsets, and the method explained above

is repeated k times. Each time, one of the k subsets is used as the test set and the other k −1 subsets

are put together to form a training set. Then the average error across all k trials is computed.
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Leave-one-out cross validation (LOOCV) is K-fold cross validation taken to its logical extreme, with

K equal to N , the number of data points in the set. That means that N separate times, the function

is trained on all the data except for one point and a prediction is made for that point. As before the

average error is computed and used to evaluate the model. We adopt the LOOCV approach to select

the tuning parameter λ that minimizes the CV error in the following methodology applied to the DCV2

trial.

5.2.6 Elastic-net extension: the adaptive elastic net

While the elastic net combines the best of ridge and LASSO regression, it may lack from the desirable

oracle property.

Let’s suppose that we have p true predictors, β∗
1 ,β∗

2 , . . . ,β∗
p . We define A as the subset of indicators

for which β∗
j is not null, A = { j :β∗

j 6= 0} , and assume that |A | = p0 < p.

Following the definition of Fan & Li (2001), δ is an oracle procedure if β̂(δ) identifies the right subset

model A and δ has the optimal estimation rate, i.e,

p
n(β̂(δ)A −β∗

A )
d→ N (0,Σ∗),

where Σ∗ is the covariance matrix of the true subset model.

The adaptive elastic net is an extension of the elastic net that complies with the oracle property.

According to Zou & Zhang (2009), the adaptive elastic net can be viewed as a combination of the elastic-

net and the adaptive LASSO (for more information, see Zou (2006)). Suppose we first compute the

elastic-net estimator β̂(enet), and then we construct the adaptive weights by

ŵ j = (|β̂ j (enet)|+1/n)−γ, j = 1,2, . . . , p,

where γ is a positive constant (any positive γ can be used, according to Zou (2006)). In the next step,

we solve the following optimization problem to get the adaptive elastic-net estimates:

β̂(AdaEnet) =
(
1+ λ2

n

)[
argminβ

{ n∑
i=1

(yi −β j Xi j )2 +λ∗
1

p∑
j=1

ŵ j |β j |+λ2

p∑
j=1

β2
j

}]
. (5.5)

If we force λ2 to be zero in (5.5), then the adaptive elastic net reduces to the adaptive LASSO. In this

thesis, we used the elastic net; the possible use of the adaptive elastic net is discussed in Chapter 8.

5.3 State of the art

In Table 5.1, we present a summary of the current methodology and R packages to address different

maximization methods for PH and AFT models considering complete, right-censored, and interval-
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censored data. We have identified three main approaches: semiparametric (SP), piecewise exponen-

tial (PE), and parametric (PM). In Table 5.1 we also describe if these approaches consider any type of

penalization technique and high-dimensional data.

We start reviewing the different methodologies that account for complete and right-censored data.

First, for PH models there are different methods of maximization regarding the type of approach. In

the case of the semiparametric (SP) approach, J. Friedman et al. (2010) uses the cyclical coordinate

descent algorithm to maximize the log-likelihood function. This algorithm has been implemented in

the glmnet R package (Hastie & Qian, 2014) and it considers the elastic-net penalization and high-

dimensional data. In section 5.6.4 we describe an application of this method by using a midpoint im-

putation approach for interval-censored times to viral rebound in the DCV2 clinical trial. In the case

of the piecewise exponential (PE) approach, Wu & Cook (2015) present the Expectation-Maximization

(EM) algorithm to maximize the log-likelihood. In this case the authors considers three different pe-

nalization techniques: LASSO, adaptive LASSO (ALASSO) and smoothly clipped absolute deviation

(SCAD) that deal with high-dimensional data. For the parametric (PM) approach, the R package eha

(Broström, 2019) can be used, the maximization is done using the Newton-Raphson algorithm, from

the coxph function, available at the survival package (T. Therneau, 2015). The eha package does not

consider any penalization technique nor high-dimensional data.

If the relationship between the response variable and the explanatory variable is an AFT model

then, considering the SP approach, Chen et al. (2016) uses the Stute’s weighted least squares (Stute

& Wang, 1994) and the group bridge penalty. This method is able to simultaneously carry out fea-

ture selection at both the group and within-group individual variable levels. For the PM approach,

the AdapEnetClass package has been implemented (Khan & Shaw, 2015) using the Stute’s weighted

least squares, explained in the work of Khan & Shaw (2016). This package uses adaptive elastic net and

weighted elastic net and it considers high-dimensional data. Moreover, the package iregnet (acces-

sible on Github at: https://rdrr.io/github/anujkhare/iregnet/man/iregnet.html) uses the

cyclical coordinate descent algorithm . However this package is still under development and has not

yet been released on CRAN. The main pitfalls of this package is that its function cv.iregnet is still

not implemented for the Weibull distribution (the one we use in this thesis). The cv.iregnet func-

tion works for normal, logistic and exponential distributions and allow us to find the optimal tuning

parameter λ.

Methods for interval-censored data have not been thoroughly developed and to the best of our

knowledge there is no developed methodology or R packages that address this scenario, considering

the PH model with elastic-elastic net penalization and high-dimensional data. As we describe above,

in the case of the PE, Wu & Cook (2015) present the EM algorithm to maximize the log-likelihood func-

tion. They programed a function using R, which is available as supporting information at https://

onlinelibrary.wiley.com/doi/abs/10.1111/biom.12302. We adapted this function to consider

the elastic-net penalization and to apply this to our dataset, as we presented in the Section 5.6.4. More

complete information regarding the elastic net approach for the proportional hazards model is pre-

https://rdrr.io/github/anujkhare/iregnet/man/iregnet.html
https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.12302
https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.12302


56 CHAPTER 5 ELASTIC-NET APPROACH FOR THE ACCELERATED FAILURE TIME MODEL

Table 5.1: State-of-the-art of maximization methods for the Semiparametric (SP), Parametric (PM)
and Piecewise Exponential (PE) approaches considering the Proportional Hazards (PH) and the Accel-
erated Failure Time (AFT) models .

Data Approach Model
Maximization

Method
R package Penalization

High-dim
data

C
o

m
p

le
te

an
d

ri
gh

t-
ce

n
so

re
d SP

PH

Cyclical
coordinate

descent (CCD)
(J. Friedman et al., 2010)

glmnet

(Hastie & Qian, 2014)
Elastic net Yes

AFT
Stute’s weighted

least squares
(Chen et al., 2016)

No Group bridge Yes

PE PH

Expectation-
Maximization

(EM) algorithm
(Wu & Cook, 2015))

R function
available at

(Wu & Cook, 2015)

LASSO,
ALASSO,

SCAD
Yes

PM

PH
Newton Raphson

from coxph function,
survival package

eha

(Broström, 2019)
No No

AFT
Stute’s weighted

least squares
(Khan & Shaw, 2016)

AdapEnetClass

(Khan & Shaw, 2015)

Adaptive elastic
net, weighted

elastic net
Yes

CCD
(J. Friedman et al., 2010)

iregnet∗ Elastic net Yes

In
te

rv
al

-c
en

so
re

d

SP
PH No No No No

AFT No No No No

PE PH
EM algorithm

(Wu & Cook, 2015)

R function
available at

(Wu & Cook, 2015)

LASSO,
ALASSO,

SCAD
Yes

PM

PH Newton Raphson
eha

(Broström, 2019)
No No

AFT Newton Raphson
survreg function

from survival

(T. Therneau, 2015)
No No

CCD
(J. Friedman et al., 2010)

iregnet∗ Elastic net Yes

∗iregnet is accessible on https://rdrr.io/github/anujkhare/iregnet/man/iregnet.html.

https://rdrr.io/github/anujkhare/iregnet/man/iregnet.html
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sented in Section 5.4.

Maximization methods for the AFT model using interval-censored data and considering the SP ap-

proach is open to further research. Regarding the PM approach, the function survreg from the R pack-

age survival does not consider high-dimensional data nor penalization techniques. In this scenario,

we derive and maximize the log-likelihood function for the AFT model considering a Weibull distribu-

tion and considering the interval-censoring. We present the model for the log-likelihood in the Section

5.5 and its application to the DCV2 dataset is presented at Section 5.6.5. In this scenario appears also

the iregnet package as the first package to fit AFT model with PM approach and considering interval-

censored data. However, as we described previously is still under development. The issues on this

package are clearly stated on Github: https://github.com/anujkhare/iregnet/issues.

Finally, it is also important to mention a work which is also related to the use of elastic net in AFT

models. Khan & Shaw (2019) proposed four variable selection algorithms based on the Bucley-James

and the Dantzig selector methods.

5.4 Elastic net approach with the proportional hazards model

The main goal of survival analysis is to characterize the dependence of the survival time T on a covari-

ate vector X = (X1, . . . , Xp )′. Let’s define the Cox’s proportional hazards model as in the Equation (4.2).

As survival data with many predictors prevail in clinical trial studies, risk factor identification becomes

more important than ever for analyzing high-dimensional survival data. The problem is to select a

submodel of (4.2) by providing a sparse estimate of β.

5.4.1 Estimation of the model parameters with right-censored data

Let T denote the time to some event. The data, based on a sample of size n, consists of the triple

(Ti ,δi , xi ), i = 1, . . . ,n where Ti is the time on study for the i th patient, δi is the event indicator for

the i th patient (δi = 1 if the event has occurred and δi = 0 if the lifetime is right-censored) and xi =
(xi 1, . . . ,xi p )′ is the vector of covariates or risk factors for the i th individual at time t = 0 which may

affect the survival distribution of T . The standard way to estimate the β j coefficients is by maximiz-

ing the partial likelihood function called L(β). The estimators obtained comply with generally good

properties of the maximum likelihood method.

Suppose there are r times to the event E (e.g. death), n − r times of censoring and no ties. Denote

by t(1), t(2), . . . , t(r ) the r ordered death times, by R j = R(t( j )) = {i : Yi ≥ t( j )} the set of all individuals at

risk of dying at time t( j ), that is to say, the set of all those individuals who are alive and not censored at

time t( j )− and by n j = card(R j ) the number of individuals at risk in t( j ). Denote also the set containing

all the information in the sample Γ= {(Yi ,δi ,xi ), i = 1, . . . ,n}.

The basic principle of the deduction of the partial likelihood function resides in the fact that know-

ledge of r death times t(1), t(2), . . . , t(r ) with the labels e1,e2, . . . ,er indicating which individual corre-

https://github.com/anujkhare/iregnet/issues
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sponds the death, is equivalent to the original data (this is certainly true if there is no censoring). For

more details, see Gómez et al. (2015). The partial likelihood is defined as

L(β1, . . . ,βp ) =
r∏

j=1
P {e j = i |Γ j } =

r∏
j=1

P {x( j ) = x( j )|Γ j }

and is interpreted as the product, for each time of death, of the conditional probabilities that the indi-

vidual whose vector of covariates is x( j ) dies at time t( j ) knowing death has occurred among n j indi-

viduals at risk at time t( j ). Therefore, the partial likelihood is equal to

L(β1, . . . ,βp ) =
r∏

j=1

exp{β′x( j )}∑
l∈R(t( j )) exp{β′xl j }

,

or equivalently

L(β1, . . . ,βp ) =
n∏

i=1

( exp{β′xi }∑
l∈R(Yi ) exp{β′xl }

)δi =
r∏

j=1

exp{
∑p

k=1βk x( j )k }∑
l∈R(t( j )) exp{

∑p
k=1βk x j k }

, (5.6)

and its logarithm can be expressed as

logL(β1, . . . ,βp ) =
n∑

i=1
δi

(
β′xi − log

∑
l∈R(Yi )

exp{β′xl }
)
. (5.7)

The estimator β̂ = (β̂1, . . . , β̂p ) is obtained maximizing the partial likelihood (5.6), or equivalently

maximizing the logarithm of the partial likelihood (5.7). The maximization of this function using nu-

merical methods provides the corresponding estimators. It can be shown that the maximum likelihood

estimator β̂ obtained from maximizing the partial likelihood is asymptotically unbiased, efficient and

normal. For more details, see Gómez et al. (2015).

For classical problems, with many more observations than predictors, the Cox model performs

well. However, problems with p > n, lead to degenerate behavior; to maximize the partial likelihood,

all of theβi are sent to ±∞. Zou & Hastie (2005) propose to maximize the expression (5.6) subject to the

constraint α
∑ |βi |+ (1−α)

∑
β2

i ≤ c. Notice if α= 1 we are in the LASSO case and if α= 0 corresponds

to the ridge regression

`(β) =
[ r∑

i=1
x ′

j (i )β− log
( ∑

j∈Ri

exp{x ′
jβ}

)]
.

Hence, if we consider the Lagrangian formulation, our problem becomes

β̂= argmax
[( r∑

i=1
x ′

j (i )β− log
( ∑

j∈Ri

exp{x ′
jβ}

))
−λPα(β)

]
, (5.8)

where
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λPα(β) =λ
(
α

p∑
j=1

|βi |+ 1

2
(1−α)

p∑
j=1

β2
i

)
. (5.9)

In R, the glmnet package solves the maximization problem in (5.8) for right-censored data over a

grid of values of λ covering the entire range. The elastic-net penalty is controlled by α, and bridges

the gap between LASSO (α = 1, the default) and ridge (α = 0). The tuning parameter λ controls the

overall strength of the penalty. The glmnet algorithms use cyclical coordinate descent (J. Friedman et

al., 2010; Simon et al., 2011), which successively optimizes the objective function over each parameter

with others fixed, and cycles repeatedly until convergence.

5.4.2 Estimation of the model parameters with interval-censored data

Let T denote the time to an event of interest and xi the vector of covariates, as in the previous sec-

tion. Let Ci = [Li ,Ri ) denote the interval known to contain the event for subject i , i = 1, . . . ,n. For left-

censored data Li = 0, for right-censored data Ri =∞, and for interval censored data 0 < Li < Ri <∞.

The likelihood function is

L(β) =
n∏

i=1
[S(Li |xi )−S(Ri |xi )]

and the corresponding log-likelihood is

logL(β) =
n∑

i=1
log[S(Li |xi )−S(Ri |xi )]

=
n∑

i=1
log[S0(Li )exp{β′xi } −S0(Ri )exp{β′xi }],

where S0(t ) corresponds to the baseline survival function.

When viewing this as a variable selection problem, we are specifically interested in identifying the

covariates for which the regression coefficients are non-zero. The main idea is to maximize the penal-

ized likelihood of the form

β̂= argmax
[ 1

m
logL(β)−λPα(β)

]
, (5.10)

where λPα(β) is defined as in (5.9). The value of the scalar λ is typically found by cross-validation

(Shao, 1993) or generalized cross-validation (Golub et al., 1979).

To solve this problem, Wu & Cook (2015) proposed to adopt a flexible piecewise exponential model

(M. Friedman, 1982) for the event of interest and penalize the complete data likelihood constructed by

treating the interval-censored failure times as known. The authors used an expectation-maximization

(EM) algorithm (Dempster et al., 1977) using different penalization techniques including LASSO.
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The R function written by (Wu & Cook, 2015) was implemented by authors to be used with LASSO,

adaptive LASSO and SCAD penalizations. Our contribution was to extend this function and adapt

it for using the elastic-net penalization, which was not implemented, to our dataset considering the

midpoint of the censoring intervals. We use the midpoint since the function does not allow for an

interval-censored response. The application to our DCV2 trial can be seen in Section 5.4. The R code

corresponding to our adaptation can be found in http://doi.org/10.5281/zenodo.4678278. The

data is accessible upon request due to privacy issues.

5.5 Elastic net approach for the accelerated failure time model

In this section, we derive the expression of the likelihood function assuming an accelerated failure

time (AFT) model for the interval-censored times to viral rebound data. We consider an elastic-net

penalization and use mRNAs as predictors of this rebound. Besides, we maximize the corresponding

penalized likelihood function to obtain an estimation of the model parameters, and apply this method

to the specific case of the DCV2 trial.

We consider the accelerated failure time model as in Equation (4.4) and present the likelihood

function using the elastic net approach for the AFTM in which T follows a Weibull distribution. We

assume T follows a Weibull since this distribution presents a flexible shape and can be used to model

a wide range of failure rates. More characteristics of this distribution can be found in Kızılersü et al.

(2018).

First, we present the usual expression for the likelihood function for a) right-censored data and for

b) interval-censored data. Second, we present the relation between Weibull distribution and the log

linear model. Third, we present the log-likelihood according to the Weibull model. Finally, we consider

the elastic net penalization approach.

5.5.1 Relation between Weibull distribution and the log linear model

Under the Weibull model, the survival and density functions of T have the forms

S(t ) = exp
[− ( t

ρ

)k]
and

f (t ) = k

ρ

( t

ρ

)k−1 exp
[− ( t

ρ

)k]
respectively.

A Weibull distribution T ∼ W (ρ,k) can also be described by means of a log linear model with pa-

rameters µ and σ, where the error distribution W is the standard Gumbel distribution:

http://doi.org/10.5281/zenodo.4678278
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log(T ) =µ+σW.

The relation between the parameters is k = 1/σ and ρ = exp(−µ/σ). The density and survival func-

tions of the standard Gumbel or extreme value distribution are given by

f (w) = exp(w −ew )

S(w) = exp(−ew ).

The expression as a log linear model has the advantage that covariates can be incorporated. The

parameters of the Weibull distribution depend then on the value of the covariate Z . Whereas the shape

parameter k = 1/σ is the same for all conditional survival times T given Z , the location parameter

changes with Z : λ(z) = exp(−(µ+βz)/σ). Due to the invariance property , given the maximum like-

lihood estimates (µ̂, β̂, σ̂), the maximum likelihood estimates α̂ and λ̂(z) are easily obtained applying

the corresponding transformation.

Using the Weibull distribution regression model, the term exp(−β/σ) corresponds to the relative

risk and exp(β) to the acceleration factor when comparing two individuals, whose covariate values

differ by one unit. The interpretation of these terms implies that augmenting the covariate by one, the

instantaneous risk of dying increases/decreases (β < 0/β > 0) by the factor exp(−β/σ), whereas the

median time until the event of interest is decreased/increased (β < 0/β > 0) by the factor exp(β), as

explained in Langohr (2004).

5.5.2 Log-likelihood function for Weibull model

Using the subindex T for the Weibull distribution survival time T and W for the Gumbel distributed

error of the model (4.4), we have the following relations (J. P. Klein & Moeschberger, 2006):

fT (t ) = 1

σ
fW

( log(t )−µ−βz

σ

)= 1

σ
exp

( log(t )−µ−βz

σ
−e

1
σ

(log(t )−µ−βz)),

ST (t ) = SW
( log(t )−µ−βz

σ

)= exp
(−e

1
σ

(log(t )−µ−βz)).
(5.11)

Using the density and survival functions of the Gumbel distribution in (5.11), the contributions of

each individual to the log-likelihood functions for right-censored and interval-censored data, respec-

tively can be written as follows:
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Right-censored data

`i = logLi = log
n∏

i=1
{ fi (ti )δi (1−F (ti ))1−δi }

=
n∑

i=1

[
δi log fi (ti )+ (1−δi ) logSi (ti )

]
=

n∑
i=1

[δi

σ

( log(t )−µ−βz

σ
−e

1
σ

(log(t )−µ−βz))+ (1−δi )
(−e

1
σ

(log(t )−µ−βz))].

(5.12)

Interval-censored data

`i = logLi = log
n∏

i=1
{Fi (tR )−Fi (tL)}

=
n∑

i=1
[log(Si (tL)−Si (tR ))]

=
n∑

i=1

[
log

(
exp

(−e
1
σ

(log(tLi )−µ−βz))−exp
(−e

1
σ

(log(tRi )−µ−βz)))].

(5.13)

The contribution of each individual to the penalized log-likelihood function, considering interval-

censored data and elastic-net penalization (α= 0.5) is given by

`i = log
(

exp
(−e

1
σ

(log(tLi )−µ−βz))−exp
(−e

1
σ

(log(tRi )−µ−βz)))−λPα(β), (5.14)

where

Pα(β) =
(
α

p∑
j=1

|β j |+ 1

2
(1−α)

p∑
j=1

β2
j

)
.

In this way, the log-likelihood function writen as:

`= 1

n

n∑
i=1

log
(

exp
(−e

1
σ

(log(tLi )−µ−βz))−exp
(−e

1
σ

(log(tRi )−µ−βz)))−λPα(β), (5.15)

where

Pα(β) =
(
α

p∑
j=1

|β j |+ 1

2
(1−α)

p∑
j=1

β2
j

)
.
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5.5.3 The optimization problem

The maximization of the log-likelihood function `(5.18) is a non-linear programming optimization

problem that can be addressed using different methods. To solve this type of problem considering

multidimensional data, we have used gradient based and non-gradient based algorithms.

Gradient based refers to an algorithm to solve minimization problems with search directions de-

fined by the gradient of the function at the current point (Polak, 2012). The algorithms we have used

in this thesis are the Conjugate Gradient (CG) (Shewchuk, 1994) and the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) algorithms. The CG is an

iterative algorithm that uses the first derivative to obtain the gradient for the search direction. Specifi-

cally, the search direction sn of the next point results from the negative gradient of the last point. The

basic steps are: first, calculate search direction sn =−∇`. Second, pick next point xn+1 by moving with

step size an in the search direction (step size a can be fixed or variable). Repeat steps 1 and 2 until

∇`= 0 or another stopping criterion. The movement towards the minimum looks like a “zig-zagging"

movement. On the other hand, BGFS is a quasi-Newton method (also known as a variable metric algo-

rithm), which uses function values and gradients to build up a picture of the surface to be optimized.

In our case and for the ease of notation, let’s rewrite our penalized log-likelihood (5.18) in terms of

A1 and A2 as follows:

A1 =−exp[
1

σ
(log(tLi )−µ−βz)]

A2 =−exp[
1

σ
(log(tRi )−µ−βz)]

(5.16)

Replacing (5.16) in the sum of all the n individual contributions described by (5.14) we obtain:

`= 1

n

n∑
i=1

log[exp(A1)−exp(A2)]−λPα(β)

Now, let’s define ∇`= [∂µ(`),∂β j (`),∂σ(`)] with j = 1, . . . , p as the gradient of `, where

∂µ(`) = 1

n

n∑
i=1

1

σ
· 1

exp(A1)−exp(A2)
· [A1 ·exp(A1)− A2 ·exp(A2)]

∂β j (`) = 1

n

n∑
i=1

z j

σ
· 1

exp(A1)−exp(A2)
· [A1 exp(A1)− A2 ·exp(A2)]+αλsign(β j )+ (1−α)λβ j (5.17)

∂σ(`) = 1

n

n∑
i=1

− 1

σ2 · 1

exp(A1)−exp(A2)
· [A1 ·exp(A1) · (log(tLi )−µ−βz)− A2 ·exp(A2) · (log(tRi )−µ−βz)]

The performance of a gradient based method strongly depends on the initial values supplied. Sev-

eral optimization runs with different initial values might be necessary if no a priori knowledge about

the function to optimize can be applied.
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Non-gradient methods, on the other hand, do not require gradient information to converge to a

solution. Rather, these methods solely use function evaluations of the objective function to converge

to a solution (Hare et al., 2013). The non-gradient based algorithm we have used in this thesis is called

Nelder-Mead. The Nelder-Mead (Nelder & Mead, 1965) method uses a geometrical shape called a sim-

plex as its “vehicle” of sorts to search the domain. This is why the technique is also called the simplex

search method. The Nelder-Mead method attempts to minimize a scalar-valued non-linear function of

n real variables using only function values and does not depend on the implicit or explicit expressions

of the derivatives of the non-linear function. Each iteration of a simplex-based direct search method

begins with a simplex, specified by its n +1 vertices and the associated function values. One or more

test points are computed, along with their function values, and the iteration terminates with a new

(different) simplex such that the function values at its vertices satisfy some form of descent condition

compared to the previous simplex (Lagarias et al., 1998). In an ideal case, the last few iterations of this

algorithm would involve the simplex shrinking inwards towards the best point inside it. At the end, the

vertex of the simplex that yields that most optimal objective value, is returned.

In the following section we will explain the different approaches we have applied to maximize the

elastic-net penalized log-likelihood function.

5.5.4 Different approaches to maximize the elastic-net penalized log-likelihood function

In this section we present two approaches, one based in the implementation of the maximization using

the Nelder-Mead method and the other one applying the package iregnet.

Approach A

We have programmed the maximization of the log-likelihood function ` considering the elastic-net

penalization and the interval-censored data, according to Zou & Hastie (2005) and also according to

Equation (5.18). Notice that function in (5.18) has the penalization term slightly different from the one

presented in Zou & Hastie (2005), the factor in the L2 norm is 0.5 and not 1. This factor is discussed in

section 5.7.

The maximization of the elastic-net penalized log-likelihood function requires a value of the pa-

rameter λ. To obtain this value we have used the cv.glmnet function of the glmnet package using

leave-one-out cross-validation to find the optimal λ value in each case. Moreover, to obtain this pa-

rameter estimation, we have used midpoint imputation for the interval-censored times to viral re-

bound, because this package does not allow for interval-censored data. The main advantage of using

this approach is that it is well known and described in the literature, such as Law & Brookmeyer (1992)

and Kim (2003). When using midpoint imputation approach we reduce the problem of dealing with

interval-censored data to exact and right-censored data. We have used the mle2 function of the R

package bbmle (Bolker & R Development Core Team, 2020) to maximize ` using the method of Nelder-

Mead and the Conjugate Gradient considering the previous value of λ. This function returns a result

in which none of the parameters is equal to zero. For this reason, we have used a threshold (converge
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tolerance = 0.0001) to force the values below this threshold to be equal to zero and with the remain-

ing variables, whose parameter is not set to 0, the algorithm is started again using an updated value

of λ. The algorithm ends when the parameter estimates of all the remaining variables lie above the

threshold.

Approach B

This proposal use the iregnet package to compare with the previous results. To use this package we

have different ways to proceed. In each case, we continue using cv.glmnet to select an approximation

to the hyperparameter λ, since iregnet does not have implemented the function cv.iregnet for the

Weibull distribution, which is our case. First, we fitted the AFT model using interval-censored times to

viral rebound. Second, we splitted the full set of mRNAs in five randomly assigned disjoint subsets, and

we selected the predictors in each case. Finally, with all these predictors we adjust a final AFT model.

Third, we have also tried the previous two analyses but considering exact data by using the midpoint

imputation point.

The application of each approach to the DCV2 clinical trial can be seen in the next section. The R

code with our algorithm can be found in http://doi.org/10.5281/zenodo.4678278.

http://doi.org/10.5281/zenodo.4678278
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5.6 DCV2 dataset

Figure 5.2: Flowchart of patients in the DCV2 trial. Source: García et al. (2013).

The DCV2 study was described by García et al. (2013). Combination antiretroviral therapy (cART)

greatly improves survival and quality of life of HIV-1-infected patients; however, cART must be contin-

ued indefinitely to prevent viral rebound and associated disease progression. Inducing HIV-1 specific

immune responses with a therapeutic immunization has been proposed to control viral replication af-

ter discontinuation of cART as an alternative to “cART for life”. The therapeutic vaccine use autologous

monocyte-derived dendritic cells (MD-DCs) pulsed with autologous heat-inactivated whole HIV.

5.6.1 Description of the design

Thirty-six antiretroviral-treated chronic HIV-1 infected patients were randomized to receive three im-

munizations. One patient in the DC-control group was excluded from the analysis because of consent

withdrawal before receiving any immunization. The 35 patients were followed up to 48 weeks after the

first immunization. Week 0 was considered the day of second interruption of cART (2nd stop). Group

1 received immunizations at weeks −4, −2, and 0 (12 patients) and Group 2 at weeks 0, 2, and 4 (12 pa-

tients). These two different schedules were selected to assess whether cART could have any influence
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in the response to immunizations. DC-control group patients (group 3) received placebo injections at

weeks −4, −2, and 0 (Figure 5.2). Moreover, mRNA and miRNA were assessed at week -1 and week 3,

as shown in Figure 5.3.

Figure 5.3: DCV2 clinical trial design. Vertical dashed lines indicates mRNA and miRNAs assessments.
Red arrows show the time of cART initiation.

5.6.2 Baseline clinical parameters

Chronically HIV-1 infected patients on cART with baseline CD4+ T lymphocytes above 450 cells/mm3,

nadir CD4+ T cell count above 350 cells/mm3, and undetectable viral load (VL < 37 copies/ml) were

enrolled. Patients had been on cART for at least the last 2 years before enrollment.

From Table 5.2 we observe most of the patients are males, and that the median age in each group is

around 40 years. Regarding the consumption of tobbaco, group 1 and group 2 present 7 smokers each

and only 3 smokers for group 3. The median of HIV duration, that is, the time since the patient has

been diagnosed with HIV (in years), is lower for group 2 than group 1 and 3, this is 8.5 years. Covariates

baseline pre-cART VL and VL at stop 1 are similar in each of the three groups.

5.6.3 Viral rebound of HIV-infected patients in DCV2 trial

In this clinical trial, the time (weeks) to viral rebound is interval censored (see Chapter 4 for more

information), as is presented in Figure 5.4. All the R code for this section is available at http://doi

.org/10.5281/zenodo.4678278.

http://doi.org/10.5281/zenodo.4678278
http://doi.org/10.5281/zenodo.4678278
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Table 5.2: Description of clinical covariates of the DCV2 study.

Group 1 Group 2 Group 3
Vaccine Vaccine Placebo

n 12 12 11
Gender (male) 11 8 8
Age, median (IQR) 43 (40.75-49.75) 40.5 (38.5-46.5) 40 (34.5-45)
Tobacco (yes) 7 7 3
Risk HIV MSM 8 7 7
HIV duration, median (IQR) 12 (7.75-13.25) 8.5 (7-11.25) 13 (6.5-15.50)
Baseline pre-cART VL 4.92 (0.49) 4.83 (0.56) 4.64 (0.57)
[log10 mean (SE) copies/ml]
VL stop 1 4.91 (0.61) 5 (0.55) 4.81 (0.72)
[log10 mean (SE) copies/ml]

Figure 5.4: Lengths of the ordered interval-censored times (weeks) until viral rebound of the DCV2
dataset.

Notice that the average length of the censoring intervals is 2.4 weeks. We are as well interested in

the behaviour of these intervals per each group of intervention, according to the DCV2 trial, and this

can be seen in Figure 5.5
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Figure 5.5: Lengths of the time (weeks) until viral rebound per intervention group.

We have applied the Flemington-Harrington class of test to check if the distribution of the time to

viral rebound depends on the vaccine scheme. We have used the FHtest R package (Oller & Langohr,

2017), specifically the FHtestics function, which performs a test for interval-censored data based

on the value of the score function. It uses the Gp,λ family of statistics (being λ = 0) for testing the

differences of two or more survival curves. We have found there is no statistical significant difference

between them (p = 0.399). We graphically confirm this using the interval R package (see Figure 5.6).

Figure 5.6: Turnbull’s estimations of survival functions of times to viral rebound.

5.6.4 Time to viral rebound analysis using midpoint imputation

We present the results of the analysis of the elastic-net approach with the proportional hazards model

(See Section 5.4). We have used midpoint imputation for the interval-censored time to viral rebound

and the analyses were performed with the Rpackage called glmnet. We considered leave-one-out cross
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validation (LOOCV) to obtain the optimum value for λ, in this case is the λmin, i.e., the value of λ that

gives minimum mean cross-validated error. The LOOCV process can be represented in the Figure 5.7

for the three main groups.

The graphics include the cross-validation curve (red dotted line), and upper and lower standard

deviation curves along the λ sequence. In the upper part of the graph the number of variables (in

this case mRNAs) selected are shown. Two λ values are indicated by the vertical dotted lines. The left

vertical line in our plot shows where the CV-error curve hits its minimum as well as the number of

variables selected according to that λ value. The right vertical line shows the most regularized model

with CV-error within 1 standard deviation of the minimum. We decide to work and extract the λmin as

we mentioned before.

The R code can be accessed at http://doi.org/10.5281/zenodo.4678278. The results can be

seen in the Table 5.3, which contains the λmin, the symbol of the selected mRNAs, and its correspond-

ing coefficient, for each group of treatment.

Table 5.3: Coefficients of the selected mRNAs for each group of treatment and overall.

Group 1 Group 2 Group 3 All subjects

Symbol α= 0.5, λmin = 1.10 α= 0.5, λmin = 0.81 α= 0.5, λmin = 0.86 α= 0.5, λmin = 0.67

CPA3 0.2193
FECH 0.1049
TNFRSF13B -0.0598
NUDT7 0.0382
GSTM2 0.0008
HLA-DPB2 0.0073
MCL1 -0.1652
MYCN 0.2811
PCDH9 0.2643
BAD 0.0872
TDRD9 -0.0352
NUDT17 0.0837
LRP5 0.3296
NT5C3A 0.0612
RTN1 -0.0690
CD16 -0.0264
LOC100505915 0.0104
CENPBD1P1 -0.1894

http://doi.org/10.5281/zenodo.4678278
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Figure 5.7: Cross validated error plots for the three groups of DCV2. Left dashed vertical line equals
the minimum error, whereas the right dashed vertical line shows the cross-validated error within 1
standard error of the minimum.
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When a coefficient is higher than zero it means that there is a higher risk of viral rebound. If the

coefficient is lower than zero there is a lower risk of viral rebound. No mRNa was selected as predictor

of viral rebound for group 1 (vaccine, early stop of treatment), for group 2 (vaccine, late stop of treat-

ment) 10 mRNAs were selected, and for the group 3 (placebo) 6 mRNAs were selected. Moreover, as we

can observe none mRNA was selected in more than one group. The official full name of every mRNA

can be seen in the Table 5.4.

In the previous section we showed that there is no statistically significant difference among sur-

vival curves per group using the Fleming-Harrington class of test. This is why we are analyzing all the

DCV2 trial participants together and running the glmnet package using the midpoint for the interval-

censored times to viral rebound and the elastic net approach.

As illustrated in the Figure 5.8, the λmin = 0.6711 only allow us to select 2 mRNAs out of more than

five thousand features, as we mentioned before, the selection is shown by the left vertical line in the

graph. The selected mRNAS for all the subjects are (see Table 5.3): LOC100505915 (β1=0.0104>0) and

CENPBD1P1 (β2=-0.1894), indicating higher and lower risk of viral rebound per every unit increase in

each mRNA, respectively. The LOC100505915 mRNA was not previously related to the HIV, according to

the literature, meanwhile the CENPBD1P1 mRNA was previously related to the K111 provirus, linked

to HIV infection (Contreras-Galindo et al., 2013). Moreover, none of these mRNAs were previously

selected by group.

Our findings suggest that these selected mRNAs (0, 10, and 6 per each treatment group and 2 for the

overall set of participants) could correspond to potential biomarkers for HIV viral rebound and may be

considered to determine the effectiveness of the dendritic cell-based vaccine.
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Figure 5.8: Cross validated error plot for the overall DCV2 set.
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Table 5.4: Official full name of the selected mRNAs in each group of treatment.

Symbol Description Category

Selected for Group 2
CPA3 Carboxypeptidase A3 Protein coding
FECH Ferrochelatase Protein coding
TNFRSF13B TNF receptor superfamily member 13B Protein coding
NUDT7 Nudix hydrolase 7 Protein coding
GSTM2 Glutathione S-transferase Mu2 Protein coding
HLA-DPB2 Major histocompatibility complex, class II, DP beta 2 Pseudogene
MCL1 MCL1, BCL2 family apoptosis regulator Protein coding
MYCN MYCN proto-oncogene BHLH transcription factor Protein coding
PCDH9 Protocadherin 9 Protein coding
BAD BCL2 associated agonist of cell death Protein coding
Selected for Group 3
TDRD9 Tudor domain containing 9 Protein coding
NUDT17 Nudix hydrolase 17 Protein coding
LRP5 LDL receptor related protein 5 Protein coding
NT5C3A 5’-nucleotidase, cytosolic IIIA Protein coding
RTN1 Reticulon 1 Protein coding
CD16 Cell division cycle 16 Protein coding
Selected for all subjects
LOC100505915 Uncharacterized LOC100505915 Protein coding
CENPBD1P1 CENPB DNA-binding domains containing 1 pseudogene 1 Protein coding

5.6.5 Fit of the AFT model by means of ad-hoc methods

We have maximize the log-likelihood function corresponding to the AFT model with Weibull distribu-

tion for interval-censored times to viral rebound as:

`= 1

n

n∑
i=1

log
(

exp
(−e

1
σ

(log(tLi )−µ−βz))−exp
(−e

1
σ

(log(tRi )−µ−βz)))−λPα(β), (5.18)

where

Pα(β) =
(
α

p∑
j=1

|β j |+ 1

2
(1−α)

p∑
j=1

β2
j

)
.

In our case, n = 35, tLi and TRi , i = 1, . . . ,35 correspond to the lower and upper boundary of the

interval times to viral rebound. The order of the z matrix is 35×5047 and it contains the mRNAs in-

formation for every subject. We have fixed α = 0.5 but α can be defined as any value in [0,1]. The

parameters to be estimated correspond to λ, µ, σ and β j , j = 1, . . . ,5047.

We ran the methods explained in Section 5.5.4 for the entire group of participants in the DCV2

trial, since, as we explained in Section 5.6.3, we did not find statistically significant differences between

groups.
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Approach A

The application of the first approach, which consider the use of the mle2 function with the Nelder-

Mead method, has selected the variables shown in Table 5.5 and obtained the parameter estimates

shown therein. The full official name of each selected mRNA can be found in the Table 5.6.

Table 5.5: Coefficients of the selected mRNAs for each method (Approach A).

Coefficient

Symbol Our algorithm Without penalization Univariate

PPP1R9A -0.3672 -0.5214
LOC100509457 0.0416 0.0447
IL21R -0.1625 -0.1249
CYP1B1 0.1354 0.1946
DUSP4 0.1120 0.1764
CYGB -0.532
TGIF2 -1.244
RHOF -0.274
CASP1 0.339
RBM38 0.555

As shown in the Table 5.5 five mRNAs were selected by our implemented algorithm out of more

than five thousand. As we mentioned before, a positive sign means that risk of viral rebound is higher,

and thus the prognosis worse, for subjects with higher values of that mRNA. Thus, from Table 5.5,

PPP1R9A and IL21R are associated with lower risk of viral rebound, whereas LOC100509457, CYP1B1,

DUSP4 are associated with higher risk of viral rebound. It is important to notice that the value of each

coefficient when compared with the corresponding value of the model fit that included the five mR-

NAs selected using the survreg function (without penalization) keeps the same sign and it has lower

absolute value. The values obtained using the elastic-net penalization are closer to zero, as expected.

Table 5.6: Official full name of the selected mRNAs with each method (Approach A).

Symbol Description

PPP1R9A Protein phosphatase 1 regulatory subunit 9A
LOC100509457 HLA class II histocompatibility antigen, DQ alpha 1 chain-like
IL21R Interleukin 21 receptor
CYP1B1 Cytochrome P450 family 1 subfamily B member 1
DUSP4 Dual specificity phosphatase 4

CYGB Cytoglobin
TGIF2 TGFB induced factor homeobox 2
RHOF Ras homolog family member F, filopodia associated
CASP1 Caspase 1
RBM38 RNA binding motif protein 38
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We have also compared our method with the Newton-Raphson algorithm performed by the survreg

function considering the previously selected mRNAs by our implemented algorithm and with the cor-

responding univariate models. The survreg function does not consider the penalization, that is, the

parameters are obtained without using any penalization. When we run all the univariate models, the

mRNAs selected corresponding to the most statistically significant models were completely different.

The main disadvantage of our algorithm is that it is computationally demanding, it takes approxi-

mately 2 weeks to completely achieve the results (for Intel(R) Pentium(R) CPU 3825U 1.90 GHz, RAM:

8 GB, and operating system of 64 bits). Regarding the biological meaning of our results, up to our

knowledge, LOC100509457 was not previously related as a regulatory mRNA for the HIV. The other

four selected mRNAS were related: PPP1R9A is a neuronal protein that was selected as a biomarker of

cognitive impairment in HIV infection and Alzheimer’s disease (Pulliam et al., 2019), the cellular im-

mune responses and upregulation of IL21R was different in HIV patients when testing the response to

a specific H1N1 vaccine (Pallikkuth et al., 2011), CYP1B1 has been used to develop new interventions

for HIV positive smokers (Rao & Kumar, 2015), while some authors mentioned that it is possible that

a high response of this mRNA is an early indicator of chronic obstructive pulmonary disease in HIV

positive smokers (Logue et al., 2019), and DUSP4 was related to the CD4 T cells (Bignon et al., 2015).

However, we cannot claim that these mRNAs are the best predictors of time to viral rebound, mainly

because we could not confirm these results with other methods or data sets.

Approach B

When using the iregnet package for the entire set of mRNAs to explain the interval-censoring time

to viral rebound, the coordinate descent algorithm that iregnet uses does not converge. The pro-

gram instead says that we need to add more data. In this way, iregnet package cannot deal with

interval-censored data in the setting when p À n. In our case, considering n = 35, the iregnet pack-

age converges until approximately 1000 covariates.

We have also replaced the interval-censored times by the midpoint imputation in each subject.

We have ran the iregnet function and select the λ value closest to the one given by the cv.glmnet

function. In this case the function select 2 mRNAs: CLUHP3 and ITGB2-AS1. The coefficients are

shown in Table 5.7 and the official fullname in Table 5.8.

As considering the entire dataset of mRNAS the function iregnet does not converge, we decide

approaching the problem by dividing the set into 5 disjoint sets of size 1 thousand mRNAs each (ap-

proximately) and executing the previous procedure on each subset. The model in each case selected

4, 4, 0, 106, and 0 mRNAs. Following, the sum of mRNAs selected (104 mRNAs) as predictors in each

case were considered for a final model. Twelve predictors emerge from this final model (see Table 5.7).

Unfortunately, in the scientific literature, we have not found a relationship between any of them with

HIV, which leads us to intuitively think that by making this random allocation of the set of mRNAs, we

are disassembling pathways between them and affecting their biological correlation structure.
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Table 5.7: Coefficients of the selected mRNAs for each method (Approach B).

Coefficient

Symbol
iregnet with

midpoint
iregnet 5 groups

interval-censored
CLUHP3 0.0307
ITGB2-AS1 0.0028
FTL -0.0015
ZNF658 0.0005
EML4 -0.0010
PHPT1 -0.0002
LRP12 0.0008
HMOX1 -0.0004
SIPA1L2 0.0014
UBE2L3 -0.0007
NPL 0.0011
TNIP1 0.0022
SLC16A10 -0.0008
COX8A -0.0005

Table 5.8: Official full name of the selected mRNAs with each method (Approach B).

Symbol Description
CLUHP3 Clustered mitochondria homolog pseudogene 3
ITGB2-AS1 ITGB2 antisense RNA 1
FTL Ferritin light chain
ZNF658 Zinc finger protein 658
EML4 EMAP like 4
PHPT1 Phosphohistidine phosphatase 1
LRP12 LDL receptor related protein 12
HMOX1 Heme oxygenase 1
SIPA1L2 Signal induced proliferation associated 1 like 2
UBE2L3 Ubiquitin conjugating enzyme E2 L3
NPL N-acetylneuraminate pyruvate lyase
TNIP1 TNFAIP3 interacting protein 1
SLC16A10 Solute carrier family 16 member 10
COX8A Cytochrome c oxidase subunit 8A

To corroborate the previous results we have decided to consider exactly the same five previous

subsets, but instead of working with interval-censored times to viral rebound, we have worked with

the midpoint imputation. We have expected similar results but each group selected 171, 203, 175, 159,

and 171 mRNAs, respectively. For the final model, 70 predictors have come out (the complete list is

on the Appendix B). Furthermore, none of these predictors is repeated in each case considered in this

approach. All of the above leads us to think that we are facing an identifiability problem, because

p À n, we have many degrees of freedom and many possible combinations to maximize our function.
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Other methods and further research are discussed in the next section.

5.7 Discussion

The availability of multiomic data sets has increased recently and this trend is expected to continue.

Modern omic data sets can have a large number of individuals, be high dimensional, i.e., each subject

can have information on hundreds of thousands of variables, and have a multilayer structure, this

means data may involve clinical information, demographics, lifestyle, and multiple omics.

Our main idea in this chapter was to develop a model that uses a specific type of omics, the mRNAs,

as possible biomarkers that help to predict the time until viral rebound of HIV-infected patients. This

idea was motivated by the DCV2 clinical trial, which studies mRNAs and survival times. We have pro-

posed the use of the elastic-net penalization since this technique allowed us to work with correlated

high-dimensional data, which is the case of the mRNAs, that is, there is a structure of correlation

among them that can be called “group effect”. The group effect means that some of them work as a

group when regulating some cell activities in the human body. Another important aspect of elastic-net

penalization is that it can perform well when the number of individuals n is smaller than the number

of predictors p. In our particular case, we have a huge number of possible predictors (5047 mRNAs)

and a low number of subjects (n = 35). This is a critical point in our application, because we can have

an identifiability problem, since p À n.

Considering the PH model, we have shown an application of the elastic-net penalization using the

midpoint of the interval during which the viral rebound occurred. When using the midpoint imputa-

tion we reduce the problem of dealing with interval-censored data to exact and right-censored data.

Moreover, the use of midpoint imputation is straightforward because it is well known and described in

the literature. To study the maximization of the log-likelihood function of the PH model considering

an elastic-net penalization and interval-censored data as in Equation (5.10) is of further research. The

use of all the complete information, by using the interval-censored times to viral rebound, could lead

to better results.

Regarding the AFT model, we have described and implemented an ad-hoc algorithm to deal with

interval-censored data and elastic-net penalization. The main advantage of our approach is that it

deals with the complete high-dimensional dataset. Using the complete dataset, we considered the

“grouping effect” or the correlation structure among the different mRNAs due to its biological struc-

ture. The major disadvantage of our method, with this particular dataset, which considers 35 patients

and 5047 mRNAs, is that the Nelder-Mead algorithm took almost took almost 2 weeks (for Intel(R)

Pentium(R) CPU 3825U 1.90 GHz, RAM: 8 GB, and operating system of 64 bits) to select the significant

mRNAs. The algorithm works better with lower numbers of predictors, for example, when we consid-

ered a random subset of 300 mRNAs, the results were obtained in less than 3 minutes. We have also

used the Conjugate Gradient optimization method included in the mle2 function using two options.

In the first option, we have considered the analytical expression of the gradient as described in (5.17)
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and, in the second option, we did not specify the expression for the gradient. The mle2 function uses

finite differences to find the gradient, if we don’t include this argument. In each case, with the analyti-

cal expression of the gradient or by finite differences, the algorithm does not converge. When using the

iregnet package, considering the whole dataset and the Weibull distribution, the coordinate descent

algorithm implemented, did not converge neither.

We expected that the Cox model using the midpoint imputation (fitted using glmnet package) and

the AFT model using the Weibull distribution would identify the same variables. However, with the

AFT model, we identified 5 mRNAs (PPP1R9, LOC100509457, IL21R, CYP1B1, and DUSP4) using the

approach A and the Nelder-Mead optimization method, and using the midpoint imputation with the

PH model we identified 2 mRNAS (LOC100505915 and CENPBD1P1). In both cases we did not find any

match between these two sets of mRNAs selected. This can probably be explained by different reasons:

the first is the possible identifiability problem that we described previously; another possibility is that

the time to viral rebound may not follow a Weibull distribution; finally, in the PH model we used a

midpoint imputation approach and with the AFT model we considered the interval-censored times to

viral rebound. Additionaly, an important limitation of this approach that could be another reason to

explain this difference, is the use of an ad-hoc method in the case of the AFT model. In this ad-hoc

approach we have used an arbitrary threshold for the parameters to be equal to zero, we have obtained

the value of the optimal λ in each iteration using LOOCV with the midpoint imputation.

Moreover, we have tried estimating the parameters by splitting the dataset into 5 subsets by us-

ing, for each subset, the iregnet package and the AFT model, considering the Weibull distribution,

and two different scenarios: considering the interval-censored times to viral rebound and using the

midpoint of the intervals. The selected predictors in each case were different and also different to the

previously selected in the case of the use of our implemented algorithm, or by using the glmnet pack-

age. In this setting, the problem could be that we are disassembling the biological structure of the data

without taking into account the real “grouping effect”.

As a future research, we would like to continue working in improving the algorithm in R and its

time of performance. Besides, we are interested in adapting other maximization methods such as

the coordinate descent method, which is implemented in the glmnet and iregnet packages. We are

also interested in using other software such as AMPL (Fourer et al., 2003) together with the R package

rneos (Pfaff & Pfaff, 2020) which enables solving the optimization problems using the NEOS solvers

(Server, 2016) and retrieve the results within R. Another possible alternative we are exploring is the use

of Matlab for optimization and a correct solver such as fmincon or fminunc.

Summing up, a first step has been done to tackle the complex problem of fitting survival models

with plenty of variables and few observations, but more research is needed to find a complete satisfac-

tory solution to this problem.
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MULTIPLE IMPUTATION APPROACH FOR

INTERVAL-CENSORED TIME TO HIV RNA VIRAL

REBOUND WITHIN A MIXED EFFECTS COX MODEL

We present a method to fit a mixed effects Cox model with interval-censored data. Our proposal is

based on a multiple imputation approach that uses the truncated Weibull distribution to replace the

interval-censored data by imputed survival times and then uses established mixed effects Cox methods

for right-censored data. Interval-censored data were encountered in a database corresponding to a

recompilation of retrospective data from eight Analytical Treatment Interruption (ATI) studies in 158

HIV-positive combination antiretroviral treatment (cART)-suppressed individuals. The main variable

of interest is the time to viral rebound, which is defined as the increase of serum viral load to detectable

levels in a patient with previously undetectable viral load, as a consequence of the interruption of

cART. Another aspect of interest of the analysis is to consider the fact that the data come from different

studies based on different grounds and that we have several assessments on the same patient. In order

to handle this extra variability, we frame the problem into a mixed effects Cox model that considers

a random intercept per subject as well as correlated random intercept and slope for pre-cART viral

load per study. Our procedure has been implemented in R using two packages: truncdist and coxme,

and can be applied to any data set that presents both interval-censored survival times and a grouped

data structure that could be treated as a random effect in a regression model. The properties of the

parameter estimators obtained with our proposed method are addressed through a simulation study.
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The contents of this chapter have been published in:

Alarcón-Soto, Y., Langohr, K., Fehér, C., García, F., & Gómez, G. (2019). Multiple imputation approach

for interval-censored time to HIV RNA viral rebound within a mixed effects Cox model. Biometrical

Journal, 61, 299 - 318.

This chapter is based on the above paper after excluding part of the Notation and Preliminaries

(section 6.2 because its content has been detailed in Chapter 4. The notation used here is coherent

with the rest of this thesis, and differs slightly from the one used in the paper.
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6.1 Introduction

Most statistical methods developed for the analysis of survival data assume that the event that defines

time origin is known and allow the event of interest E that determines failure and, hence, the survival

time, to be right-censored. In many situations, however, the event of interest E cannot be observed

and it is only known to have occurred within two random times, say L and R. In this set-up, we say that

the time to E , T , is interval-censored.

Interval-censored data often arises in medical or health studies that entail periodic follow-ups,

and many clinical trials and longitudinal studies fall into this category (Sun, 2007). In such situations,

interval-censored data may arise in several ways. For instance, an Human Immunodeficiency Virus

(HIV)-infected patient is examined weekly to check if his/her viral load exceeds a certain threshold.

Suppose that in a first measurement, at time t1, it does not exceed the threshold and it does in a second

measurement at time t2. Hence, all that is known is that the viral load exceeded the threshold within

the interval (t1, t2], but the exact time of viral rebound is unknown.

We have encountered interval-censored data while studying the immunological response of HIV

positive patients by means of different parameters of viral rebound dynamics within eight different

ATI studies (Leal et al., 2017).

We start introducing the main concepts related to HIV-ATI studies to facilitate reading and under-

standing of the study that motivates this paper. The HIV is a virus that infects cells of the immune

system, destroying or impairing their function. Infection with the virus results in a progressive deteri-

oration of the immune system, leading to immune deficiency, and the immune system is considered

deficient if it is no longer able to fulfil its role of fighting infection and disease (World Health Orga-

nization, 2017). HIV-infected patients are generally treated with a combination of antiretroviral drugs

known as combination Antiretroviral Therapy (cART) in order to maximally suppress the HIV virus and

stop the progression to the Acquired Immune Deficiency Syndrome (AIDS).

The ATI is a controlled interruption of the cART in HIV-positive patients and appears in different

interventional or observational studies in this field. The objective of this interruption is the evaluation

of the immunological response of the patients, described by different parameters related to the viral

rebound dynamics (Treasure et al., 2016). In the case of our data set, depending on the study, a single

ATI episode or several episodes are studied. Studies including more than one ATI episode are based on

the “autovaccination” theory, according to which repeated encounters of the immune system with the

antigenic stimulus (the virus) will be able to increase the specific immune response, leading to a major

control of the posterior viral load (Graziani & Angel, 2015). The endpoint of interest in these studies

is the time until viral rebound, which is defined as the first time that an HIV-infected patient, with

previously undetectable serum viral load, surpasses the threshold of 20 copies/mL (or 1.30 in log10

scale). Viral load values lower than 20 copies/mL were considered undetectable when calculating time

to rebound.
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Previous to the start of cART, most of the patients in our data set had a high viral load, referred as

pre-cART viral load. As soon as they start cART, the viral load drops down to undetectable levels. In

our case, at the beginning of the first ATI episode (week 0), all patients presented undetectable levels

of viral load. From that moment, the viral load was measured once every week and the corresponding

ATI episode was stopped as soon as the viral load was detectable again; see Figure 6.1.

Figure 6.1: Viral load dynamics during cART and the first ATI episode. The last measure before starting
the cART is denoted by pre-cART viral load (VL). In this case, the ATI stopped at week 2 because of
detection of viral rebound.

To study viral rebound dynamics, we were interested in characterizing the percentiles of the time

to viral load rebound based on the corresponding distribution function, in establishing differences be-

tween male and female patients, in determining the importance of pre-cART VL in suffering a viral

rebound, and in assessing relative risks by means of hazard ratios based on a Cox proportional hazards

model (Cox, 1972). To provide rigorous answers to all these issues, several nonparametric and para-

metric methods for interval-censored data have been developed and the literature is already abun-

dant, see Gómez et al. (2009) for a thorough overview. Finkelstein (1986) was among the first authors

to adapt the Cox model to interval-censored data. Nowadays, parameter estimation in the presence of

interval-censored data can be carried out in R (R Core Team, 2020) by means of the icenReg package

(Anderson-Bergman, 2017).

However, the ATI data set not only has interval-censored times to viral rebound but these are also

quite heterogeneous because they correspond to eight different studies that are based on different

grounds. Moreover, several patients underwent more than one treatment interruption. A proper data

analysis should take this into account. Since the variability of measurements in different individuals
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is usually larger than the variability between measurements in the same individual (Bland & Altman,

1994), a possible way to account for this extra variability could be to frame the problem into a mixed

effects Cox model where a grouping variable corresponding to the subject would be added as random

effect.

In the case of data coming from different studies, we might have two different scenarios. If there

is homogeneity of the observed effect for some particular covariate, a single measure would be ade-

quate to describe the general results. If, on the contrary, heterogeneity of effects is found, we should

add a random effect of this covariate per study to capture this heterogeneity and carefully interpret the

results. Our ATI data set falls in the second situation because of the different treatments used (combi-

nation of different drugs or different vaccines) and the different recruitment criteria for patients (such

as early or late stage of HIV infection, CD4 count, viral load threshold, among others). Therefore, it is

very likely to have some degree of variation (heterogeneity) among these studies, and for this reason, a

random intercept and slope for pre-cART VL per study is considered.

Some other reasons to consider the inclusion of random effects are similar to those considered by

Yamaguchi et al. (2002) and Senn (1998), who in the analyses of multicenter trials used random effects

to model the center’s effect variability. As Senn discusses, if we are interested in making inferences

about patients from a given study, the fixed effect approach leaves little alternative but to use the results

from that study only. The random effects approach will allow us to combine information with the given

study with information from all the studies in a way which is more appealing and useful.

In the context of survival analysis, a mixed (fixed and random) effects Cox model with right-censored

data has been presented by T. M. Therneau & Grambsch (2000) and its fit is accomplished with the

coxme package of the same author (T. M. Therneau, 2018b). However, to the best of our knowledge, a

mixed effects Cox model with interval-censored data has not been studied. Hence, our objective con-

sists of developing a mixed effects Cox model with interval-censored data in order to correctly model

the heterogeneity in our data set attributable to the repeated measures per patient and the different

inclusion criteria per study.

A natural solution to the difficulties of direct estimation based on interval-censored data is to

use an algorithm based on treating the interval-censored observations as missing data and imputing

values for them, thus creating right-censored and exact data (Bebchuk & Betensky, 2000). Interval-

censored data are actually incomplete data, not missing data, because the observed interval provides

some information about the variable of interest (Sun, 2007). Nevertheless, we can still treat the under-

lying, unobserved true interval-censored failure times as missing and replace them by imputed times

conditional on the observed information. Using the methodology and software already developed for

right-censored data (T. M. Therneau, 2018b), our proposal is based on a multiple imputation approach

using the truncated Weibull distribution to replace the censoring intervals by imputed survival times.

Our idea is similar to the one of Satten et al. (1998) in the case of the Cox model without random effects,

who used imputation methods to replace the interval-censored survival times by imputed values. The

authors propose the use of a parametric model for the baseline hazard in order to generate imputed
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failure times; following, a rank-based procedure based on the imputed failure times is used to estimate

the regression coefficients.

Multiple imputation is a statistical technique to handle missing data that takes advantage of the

flexibility in modern computing. With it, each missing value is replaced by two or more imputed values

in order to represent the uncertainty about which value to impute (Rubin, 2004). According to the

method for “repeated imputation” inference, each of the simulated complete data sets is analysed by

standard methods, and the results are combined to produce estimates and confidence intervals that

incorporate missing-data uncertainty. Multiple imputation methods for related censoring problems

regarding HIV data have been developed by Muñoz et al. (1989) and Taylor et al. (1990). Dorey et

al. (1993) applied multiple imputation to interval-censored data corresponding to threshold-crossing

time in some trials. Threshold-crossing times, somehow similar to viral load rebound, are common

in medicine when patients move to a new risk category after crossing a threshold on some prognostic

variable and because patient’s examinations occur only periodically, the exact time of crossing the

threshold is only known to fall within a specified interval.

The article is organized as follows: in Section 6.2, we present the relevant notation and preliminar-

ies used throughout the paper. Following, in Section 6.3, we present our multiple imputation-based

approach to fit a mixed effects Cox model in the presence of interval-censored data. In Section 6.4, the

methodology is applied to the ATI data set, followed by the section dedicated to the study of the prop-

erties of the fixed parameter estimators under different settings via a simulation study (Section 6.5).

Finally, the main findings of this work are summarized in Section 6.6 and, so far, unresolved topics

are discussed. Information on the implementation of the parameter estimation in R is presented in

Appendix A and more details on the main features of each study in ATI data set are given in Appendix

C.

6.2 Notation and preliminaries

Let T be the time until the event of interest, E , which in the ATI studies corresponds to viral rebound. T

is a non-negative random variable whose distribution function at time t , F (t ) = P(T ≤ t ), corresponds

to the cumulative probability of reaching viral rebound before time t . The hazard function defined by

λ(t ) = lim∆t→0
1
∆t P(t ≤ T < t +∆t |T ≥ t ), represents the instantaneous risk of viral rebounding and it is

the function on which the model we propose will be based on.

The observable data, based on a sample of n patients, consists, for the i th individual (i = 1, . . . ,n),

of the random intervals (Li ,Ri ] during which the viral rebound occurred and the vector of covariates

x i = (x i 1, . . . , x i r )′, including the study label, gender, and pre-cART viral load. Interval-censored data

include right-censored times as a particular case with Ri =∞, which in our data base corresponds to

patients whose viral load has not rebounded by the end of the study.

The Cox proportional hazards model, as described in (4.2), can be enhanced through the incorpo-

ration of random effect terms to account for within-cluster homogeneity in outcomes. This model,
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called mixed effects Cox model, was developed by T. M. Therneau & Grambsch (2000) and imple-

mented for right-censored data. The hazard function of a mixed effects Cox model for an individual i

is given by

λi (t ;X,Z) =λ0(t)exp(Xiβ+Zib) with b ∼ N(0,Σ(θ)), (6.1)

where Xi and Zi are the i th rows of the design matrices corresponding to the fixed and random effects,

and β and b are the vectors of the fixed and random effects coefficients, respectively. In addition,

as above, λ0 is the unspecified baseline hazard function and the distribution of the random effects

is assumed to follow a Gaussian distribution with mean zero and covariance matrix
∑

, which in turn

depends on a vector of parameters θ.

The partial likelihood function corresponding to the mixed effects Cox model is similar to that of

the partial likelihood of the standard Cox model given in (4.3) and the expression of its logarithm for

any fixed values of β and b, is

LPL(β,b) = log{PL(β,b)} =
n∑

i=1

∫ ∞

0

[
Yi(t)ηi − log

{∑
j

Yj(t)exp(ηj)
}]

, (6.2)

where ηi = Xiβ+Zib is the linear score for subject i and Yi (t ) is an indicator variable that takes value

1, if individual i is at risk at time t and 0 otherwise; for further details, see T. M. Therneau (2018b).

A straightforward adaptation of the partial likelihood function (6.2) to allow for the presence of

interval-censored data is not possible, because with such data, it is not feasible to identify the exact

ranking of the failure times and, consequently, the indicator variables Yi (t ) cannot be determined for

all t . Our proposal to overcome that problem is to use multiple imputation to replace the interval-

censored survival times by exact and right-censored imputed values. The details are presented in the

next section.

6.3 Parameter estimation in the mixed effects Cox model

The basic idea of our proposal consists of replacing the censoring intervals (L, R] that contain the un-

known survival times by imputed values based on a truncated Weibull distribution. The mixed effects

Cox model in (6.1) can then be fitted to the imputed exact and right-censored data. These steps will be

repeated several times in order to account for the uncertainty of the imputation step, which is ignored

in the case of single imputation. Our proposal can be summarized by the following three steps.

Step 1 Imputation of interval-censored survival times.

Censoring intervals are replaced by imputed times following two steps. First, an accelerated

failure time model is fitted to the whole data set, considering the covariates of interest, and the

maximum likelihood estimators of the corresponding parameters are derived. Second, for each

individual’s censoring interval, its corresponding truncated Weibull distribution is obtained, and

a random value is generated from that distribution. In the case of right-censored observations,
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no imputation is performed. Hence, the resulting data set consists of uncensored (imputed) and

right-censored survival times.

Step 2 Fit of the mixed effects Cox model and analysis.

The mixed effects Cox model (6.1) described in the previous section is fitted with the data result-

ing from Step 1 and the parameter estimates of interest are obtained.

Step 3 Pooling the results.

Given a pre-specified integer M , Steps 1 and 2 are repeated M times. Following, the parame-

ters of interest are estimated as the average values of the estimates obtained in each of the M

repetitions of Step 2.

Below we explain in more detail each of these steps.

6.3.1 Imputation of interval-censored survival times

The first step of our proposal consists of replacing the censoring intervals (L, R] by imputed values

based on a truncated Weibull distribution, where the truncation is induced by the respective intervals

of the individuals. The motivation to use the Weibull distribution is twofold: on one hand, it is a com-

mon parametric model for survival data due the simplicity of the survival function and the flexibility

of the hazard function, which is either constant, monotonically increasing or monotonically decreas-

ing. On the other hand, it shares the assumption of proportional hazards with the Cox model. For

that reason, given the Cox model in (4.2) and assuming that the baseline hazard function follows a

Weibull distribution with cumulative distribution function G(t ) = 1−exp(−λtα), survival times can be

generated using the following expression (Bender et al., 2005):

T = (− log(U )

λexp(β′x)

)1/α, (6.3)

where U follows a uniform distribution on the interval from 0 to 1.

An estimation of β, λ, and α in (6.3) are obtained after fitting the following accelerated failure time

model –equivalent to the Cox model under the Weibull assumption–:

Y = logT =µ+γ′X +σW,

where W follows the extreme value distribution. Standard software is used to obtain maximum like-

lihood estimators of µ, γ and σ and, from these, maximum likelihood estimators of the parameters

in (6.3) are obtained by means of the following transformations:

λ̂= exp(−µ̂/σ̂), α̂= 1/σ̂, β̂=−γ̂/σ̂.
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For each individual’s censoring interval an uncensored imputed survival time is randomly gener-

ated using its corresponding truncated Weibull distribution with parameters λ̂, α̂ and β̂. No imputa-

tion is needed in the case of right-censored observations.

Regarding truncated distributions and according to Nadarajah & Kotz (2006), let X be a random

variable representing the truncated version of some distribution function G(·), over the interval (Li , Ri ]

of each individual with 0 < Li < Ri <∞. It is straightforward to check that the distribution function of

X is given by

FXi (x) = G(max(min(x,Ri ),Li )|ϑ̂)−G(Li |ϑ̂)

G(Ri |ϑ̂)−G(Li |ϑ̂)
,

and its corresponding inverse by

F−1
Xi

(p) =G−1(G(Li |ϑ̂)+p(G(Ri |ϑ̂)−G(Li |ϑ̂))).

Hence, to obtain a random value of X , for every censoring interval (Li , Ri ], a random uniform number

ui is generated and an imputed value xi = F−1
X (ui ) is derived.

Given an original sample of n individuals with n−r interval-censored and r right-censored survival

times, step 1 yields a sample of size n with n−r imputed uncensored and the r right-censored survival

times. In the next step, a mixed effects Cox model can be fitted to this sample as we explain below.

6.3.2 Fit of the mixed effects Cox model

In this step, the mixed effects Cox model (6.1) explained in Section 6.2 is fitted using the previously

imputed values. The objective here is to estimate the vector of fixed effects regression parameters β

and the vector of parameters θ for the covariance matrix Σ of the random effects. In what follows, we

sketch the main ideas of Therneau’s method (T. M. Therneau, 2018a).

The MLE for β and θ is based on an integrated penalized partial likelihood (IPL)

IPL(β,θ) = 1

(2π)q/2|Σ(θ)|1/2

∫
PL(β,b)exp{−b′Σ−1(θ)b/2}db, (6.4)

where b is the vector of random effects coefficients, as presented in (6.1) and q corresponds to the

number of random effects. When the variance of the random effect is zero, this collapses to the ordi-

nary Cox partial likelihood.

Since expression (6.4) is not a tractable integral and in order to perform computations under this

likelihood, we rewrite the logarithm of the integrand of equation (6.4), that is, LPPL(β,b,θ) = LPL(β,b)−
(1/2)b′Σ−1(θ)b, as a second-order Taylor series about (β̂, b̂) as follows

LPPL(β,b,θ) ≈ LPPL(β̂(θ), b̂(θ))− (1/2)(β− β̂,b − b̂(θ))′H(β− β̂,b − b̂(θ)),

where the Hessian H is evaluated at (β̂(θ), b̂(θ)). When θ and hence Σ(θ) are fixed, the relevant values

of β and b that maximize LPPL(β,b,θ) are easily obtained using essentially the same methods as an

ordinary Cox model.
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As we are only interested in the values at β̂, the last term collapses to (0,b − b̂)′H(0,b − b̂) = (b −
b̂)′Hbb(b − b̂), where Hbb is the portion of the Hessian corresponding to the random effects. When we

replace the body of the integral in (6.4) with this approximation, then the result is an integral that can

be solved in closed form. For further details see T. M. Therneau (2018a).

Basically, in this second step by fitting the mixed effects Cox model presented in (6.1), we obtain an

estimation of the parameter vectors β and b as well as of the corresponding covariance matrices.

6.3.3 Pooling the results

We need to repeat the previous steps (Steps 1 and 2) M times, where M is a pre-specified integer larger

than 1. Rubin (2004) stated that multiple imputation using modest M , say between 2 and 10, is de-

signed for situations with a modest fraction of missing information.

The M complete-data analyses corresponding to the M imputations under the mixed effects Cox

model result in M repeated complete-data statistics, and these are combined to form one repeated-

imputation inference that appropriately adjusts for interval-censored data under the model used to

create the repeated imputations.

The estimated parameter vectors and their corresponding covariance matrices obtained in the M

repetitions of steps 1 and 2 are denoted by β̂m , b̂m ,Σ̂βm ,Σ̂(θ)m , m = 1, . . . , M .

Given a particular fixed effects parameterβi , the repeated-imputation estimate β̂i ,MI is the average

over the M estimates of this parameter, that is, β̂i ,MI =
(∑M

m=1 β̂i ,m
)
/M . In addition, multiple imputa-

tion also provides a simple formula to estimate the variance of β̂i ,MI (Rubin, 2004), namely,

V̂ar(β̂i ,MI) =Ui ,MI +
(
1+ 1

M

)
Bi ,MI,

where Ui ,MI =
(∑M

m=1 V̂ar(β̂i ,m)
)
/M is the within-imputation variance and BMI is the between-imputation

variance given by Bi ,MI =
(∑M

m=1(β̂i ,m − β̂i ,MI)2
)
/(M −1) . The BMI term is inflated by a factor 1/M to

take into account the finite number of imputations.

The same procedure is applied for the estimation of the random effects as well as for the elements

of the covariance matrices.

6.3.4 Software issues

We have accomplished the imputation process in Rusing the truncdist contributed package (Novomestky

& Nadarajah, 2016). This package includes the function rtrunc to impute the values per subjects. This

function generates n random deviates that are drawn from the specified truncated distribution.

To fit the mixed effects Cox model, we used the R package called coxme (T. M. Therneau, 2018b).

The central computational strategy implemented in this package is an outer and an inner loop. The

outer loop searches over the parameters θ of the variance matrix for a maximum of the IPL (6.4) and

does it in 3 steps. For each trial value of θ in this search, the first step is to calculate Σ(θ) and Σ−1(θ).
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The second step is to solve the penalized Cox model LPL(β,b)− (1/2)b′Σ−1b to get the solution vector

(β̂, b̂). The iterative Newton-Raphson solution to this problem is the inner loop. The third step is to

use the Laplace approximation to compute the log IPL, using the results of step 2. The implemented R

code to follow the algorithm is presented in Appendix C.

6.4 Effect of gender and pre-cART VL on the time to HIV RNA viral

rebound considering multiple random effects

The ATI data set (Leal et al., 2017) that motivated this study corresponds to a recompilation from 229

ATI episodes belonging to 158 different patients. The main virologic outcome of interest in these stud-

ies is the time to viral rebound, defined as the time between treatment interruption and the first de-

tectable serum viral load (VL), which is measured as the number of HIV copies in a millilitre of blood.

For the purpose of statistical analyses, it is commonly log-transformed because of its right-skewed

distribution.

Following, we present a description of some of the variables in the data set. Therein, we refer to the

eight studies by Study 1 to Study 8. More detailed information on the studies, including the inclusion

criteria and the interventions, is provided in Appendix D. In addition, we will refer to the last viral load

before the first initiation of cART by pre-cART VL.

6.4.1 Descriptive analysis of the ATI dataset

Table 6.1 presents the gender distribution and a numeric description of the log pre-cART VL separately

for each of the eight studies as well as overall. Therein, NATI denotes the number of ATI periods per

study and N the number of patients. As shown, 158 patients were involved in the 8 studies with a total

of 229 ATI periods. Fifty nine patients were exposed to an immunomodulating intervention of some

kind and 61% of the patients were men. Notice that in the case of both Study 6 and 7, we did not obtain

the information on the gender of 17 patients. Concerning the pre-cART VL of the patients, the overall

median of the log base 10-transformed pre-cART VL was 4.37 with similar values in all but one study

(Study 4), within which the median log pre-cART VL was clearly lower (3.19). The reason for this resides

in the inclusion criteria for Study 4 as explained in Appendix D.

Concerning the time until viral rebound, all but one of the 158 patients suffered a viral rebound

during the respective follow-up times of the ATI studies and since VL was determined weekly, all these

times were interval-censored. The exception corresponds to a right-censored observation of a patient

in Study 5, whose viral load was below 20 copies/mL after four weeks when it was measured the last

time. A graphical representation of all censoring intervals is shown in Figure 6.2, wherein, it can be

observed that all interval lengths are multipliers of one week. This is due to the fact that the medical

follow-up visits in all included studies were programmed with exact multiples of seven days following

a strict protocol.
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Figure 6.2: Lengths of the ordered interval-censored times (weeks) until viral rebound of the 229 ATI
episodes. The average length of the censoring intervals is 2.6 weeks.
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Table 6.1: Description of the eight studies in ATI data set.

Gender Log pre-cART VL

Study nATI n
Male
(Fem) Missing

Mean
(SD)

Median
(IQR)

Min
Max Missing

Overall 229 158a 96
(28)

34 4.37
(0.7)

4.31
(3.98 - 4.86)

2.33
6.00

3

Study 1 (García et al., 2005) 32 16 14
(2)

0 4.14
(0.64)

4.16
(3.88 - 4.57)

3.10
5.17

0

Study 2 (García et al., 2013) 70 35 27
(8)

0 4.78
(0.56)

4.69
(4.38 - 5.16)

3.20
5.74

0

Study 3 (ClinicalTrials.gov
Identifier: NCT 02767193)

18 18 18
(0)

0 4.12
(0.57)

4.19
(3.95 - 4.48)

2.33
4.76

0

Study 4 (García et al., 2004) 11 11 5
(6)

0 3.21
(0.37)

3.19
(3.08 - 3.40)

2.61
3.80

0

Study 5 (García et al., 2003) 20 20 15
(5)

0 4.50
(0.49)

4.48
(4.11 - 4.89)

3.80
5.40

0

Study 6 (Mothe et al., 2015) 28 28 10
(1)

17 4.46
(0.77)

4.28
(3.96 - 4.87)

3.33
6.00

3

Study 7 (Fagard et al., 2003) 33 33 11
(5)

17 4.43
(0.52)

4.45
(4.08 - 4.70)

2.84
6.00

0

Study 8 (García et al., 1999, 2001) 17 10 7
(3)

0 4.59
(0.56)

4.40
(4.31 - 4.89)

3.89
5.70

0

aThe sum of the column is not equal to 158 because of patients belonging to more than one study.

Additionally, in Figure 7.2, we provide the Turnbull estimates of the distribution functions of the

time until viral rebound, obtained from Formula (4.1) by 1−Sn(t ). Therein, we can observe that the

estimated probabilities of a viral rebound within the first two and four weeks are close to 0.6 and 0.9,

respectively. Moreover, the separate Turnbull estimates of F (t ) in Studies 1 through 8 reflect a notable

heterogeneity among the ATI studies: for example, the estimated probabilities of a viral rebound within

the first two weeks vary from less than 0.2 (Study 4) to more than 0.8 (Study 1).

6.4.2 Fit of the mixed effects Cox model

For the purpose of studying the possible effect of gender and log pre-cART VL on the time until viral re-

bound taking into account the within-subject and within-study correlation, we fitted the mixed effects

model presented in (6.1):

λi (t ;X,Z) =λ0(t)exp(Xiβ+Zib) with b ∼ N(0,Σ), (6.5)

where X ∈ IR229×2 is the design matrix of the fixed effects Gender and log pre-cART VL and β ∈ IR2 is

the fixed effects parameter vector. In the case of the log pre-cART VL, we decided to subtract 4, which
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Figure 6.3: Non-parametric estimation of the distribution function of the time until viral rebound. The
first graph (upper left corner) shows the estimation based on the pooled sample, the remaining graphs
correspond to Studies 1 through 8.

is equivalent to a VL of 10000 HIV copies in a millilitre of blood and close to the overall median (4.31),

since the value 0 was outside the range of the variable (Table 6.1). Concerning the random effects, we

considered a random intercept per patient as well as correlated random intercept and slope for log

pre-cART VL within each study. Hence, b = (b′
1, b′

2, b′
3)′ ∈ IR158+8+8 and Z ∈ IR229×174. In addition, the

covariance matrix of b is given by

Σ=


σ2

b1
0 0

0 σ2
b2

σb2,b3

0 σb2,b3 σ2
b3

 .

Notice that the inclusion of a random intercept per study implies study-specific baseline hazard func-

tions λ0,1(t ), . . . ,λ0,8(t ).

For the model fit, we used the 3-step algorithm proposed in Section 6.3. In the first step of the

algorithm, we replaced the interval-censored times until viral rebound by imputed times obtained

randomly from the truncated Weibull distribution, and in Step 2, Model (6.1) was fitted. Steps 1 and

2 were repeated M = 15 times providing the parameter estimates corresponding to the fixed effects

presented in Table 6.2.
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Table 6.2: Estimation of the fixed effects parameters and the standard deviation of the random effects
of Model (6.1) using the three-step imputation method.

β̂ se(β̂) ĤR 95%CI

Gender (Female vs Male) 0.50 0.26 1.65 [0.99, 2.74]
Log pre-cART VL 0.60 0.23 1.83 [1.16, 2.86]

Random effects σ̂b1 σ̂b2 σ̂b3
�Corrb2,b3

0.35 0.34 0.34 -0.47

According to the results obtained, the instantaneous risk of viral rebound among female patients

is 1.65 times larger than the instantaneous risk among male patients with the same pre-cART VL. How-

ever, since the standard error is relatively large, the corresponding 95% confidence interval of the haz-

ard ratio does include 1 and, hence, we actually cannot claim that women are at larger risk for viral

rebound than men among the population of HIV-infected persons at a confidence level of 0.95. Con-

cerning pre-cART VL, the results obtained are clear: the larger the pre-cART VL, the larger the risk of

suffering a viral rebound. The adjusted hazard ratio of 1.83 implies that a unit increase of the log pre-

cART VL, that is, a 10-fold increase of the VL, increases the instantaneous risk of a viral rebound by

factor 1.83.

Regarding the random effects, the estimated standard deviation of the random intercept per sub-

ject, σ̂b1 can be interpreted as the unexplained variation between individuals after controlling for the

explanatory variables in the model. The value of the estimated standard deviation of the random in-

tercept per study, σ̂b2 , reflects the heterogeneity among the eight studies with respect to the inclusion

criteria. The standard deviation σ̂b3 quantifies the variability of the slopes of pre-cART VL among the

eight studies. The study-specific hazard ratios associated to pre-cART VL varies from 1.28 (Study 2)

to 2.49 (Study 8; values not shown). Moreover, the negative value of the estimated correlation (-0.47)

between random intercept and random slope of pre-cART VL, implies that the smaller the baseline

hazard function per study, the larger the effect of the pre-cART VL.

6.5 Simulation study

The objective of the following simulation study was to explore the properties of the estimation method

presented in Section 6.3 in terms of bias and mean squared error of the fixed effects estimator β̂ in a

setting very similar to the one of the data set at hand.

6.5.1 Simulation settings and data generation

Data sets were generated based on Model (6.5) under a total of 36 different scenarios shown in Ta-

ble 6.3.
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Table 6.3: Settings of the simulation study.

Sample size n ∈ {100,200,300}
Assessment probability p ∈ {0.2,0.33,0.5}
Number of imputations M = 15
Distribution of T Weibull, Gompertz
Percentage of right-censored observations 0 and 10
Distribution of X1 Bin(1, 0.23)
Distribution of X2 N (0,0.7)
(β1, β2)′ (0.5, 0.6)′

Distribution of b1, b2, b3 MV N (0,Σ) (see (6.6))

Common to all scenarios, which were motivated by the data set presented in Section 6.4, were

the distributions of the fixed effects variables X1 (Binomial(1, 0.23)) and X2 (N (0,0.7)) as well as the

parameter valuesβ1 = 0.5 andβ2 = 0.6. Regarding the random effects, the variable Study was generated

from a multinomial distribution with equal probabilities for each of the eight studies, i.e., p = 1/8. In

the case of Studies 1, 2, and 8, we duplicated the ATI episodes per patient, in order to reproduce the

scenario of the real data set. The values of the random effects b1, b2, and b3 were generated from a

multivariate normal distribution with mean 0 and

Σ=


0.352 0 0

0 0.352 −0.47 ·0.35 ·0.35

0 −0.47 ·0.35 ·0.35 0.352

 . (6.6)

To generate survival times from the mixed effects proportional hazards model in (6.5), we used

the inverse probability method described by Bender et al. (2005). According to the authors, a random

survival time from Model (6.5) can be generated using the following equation:

T =Λ−1
0

(
− log(U )

exp(Xβ+Z b)

)
,

where U follows a uniform distribution in the interval (0, 1) and Λ0 is the cumulative baseline hazard

function. Survival times can be generated assuming the conditional distribution of T given X and Z

follows a Weibull or Gompertz distribution since both share the assumption of proportional hazards

(Bender et al., 2005).

In the case of the Weibull distribution with shape and scale parametersκ> 0 and ρ > 0, the baseline

hazard function is λ0 = κρ(ρt )κ−1. Hence,Λ0(t ) = (ρt )κ, and following the inverse probability method,

a realization of T is obtained by computing

t = {− log(u) ·exp(−Xβ−Z b)}1/κ

ρ
,

where u is a realization of U .
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Regarding the Gompertz distribution with shape and scale parameters α ∈ (−∞,∞) and ρ > 0,

the baseline hazard function is λ0 = ρexp{αt }. Hence, Λ0(t ) = (ρ/α) · (exp(αt )−1), and following the

inverse probability method, a realization of T is obtained by computing

t = 1

α
· log

(
1− α log(u)

ρexp(−Xβ−Z b)

)
.

Notice that in the case of α< 0 there is a point mass at infinity since the argument of the log function

could then be negative. However, this possibility was ruled out in the simulation study as α= 1.5 was

used to generate the data.

Given all survival times Ti , i = 1, . . . ,n, per data set, the censoring intervals (Li , Ri ] were generated

assuming noninformative censoring and following the procedure described in Gómez et al. (2009).

All integers from 1 through 12, the maximum upper limit of the censoring intervals in our data set

(Figure 6.2) were considered possible assessment times using three different assessment probabilities

for each of the 12 values: p ∈ {0.2,0.33,0.5}. That is, the assessment times were generated according to

a Bernoulli distribution with parameter p and for each survival time Ti generated, the interval (Li , Ri ]

was obtained as the smallest interval of assessment times among all those including Ti .

In addition to the underlying distribution and the assessment probabilities, the different scenar-

ios were determined by the sample size per data set (n ∈ {100,200,300}) and the percentage of right-

censored observations (none and 10%, respectively). The number of imputations was kept the same

for all settings (M = 15).

6.5.2 Evaluation criteria

Given any of the 36 simulation settings, we generated D = 1000 data sets, for each of which β1 and β2

were estimated by means of the method presented in Section 6.3. Thus, we obtained β̂d = (β̂1,d , β̂2,d )′

for d = 1, . . . ,D . Based on these estimations and given the true parameter vector β0 = (0.5,0.6)′, we

calculated the mean, variance, bias, and mean squared error (MSE) of β̂1, and β̂2 as follows:

¯̂βi = 1

D

D∑
d=1

β̂i ,d , i = 1,2,

V̂ar(β̂i ) = 1

D −1

D∑
d=1

(β̂i ,d − ¯̂βi )2, i = 1,2, (6.7)

B̂ias(β̂i ) = ¯̂βi −β0,i , i = 1,2,

�MSE(β̂i ) = V̂ar(β̂i )+ B̂ias(β̂i )2, i = 1,2.

The bias is a measure for the accuracy of the estimators, whereas the MSE can be used as a measure

for the precision.
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Concerning the estimation of the variance, Var(β̂i ,d ) could also be estimated within each of the D

runs and their mean could serve as well as an estimator of Var(β̂i ), i = 1,2. However, Formula (6.7) is

generally more appropriate, since the mean of the D variance estimates usually underestimates the

true variance Var(β̂i ).

The whole simulation process was programmed in R (R Core Team, 2020) using the function multimp

(see Appendix C) and is included in the Supporting Information.

6.5.3 Simulation results

The results of the simulations in terms of bias and MSE are shown in Tables 6.4 (no right-censored

data) and 6.5 (10% of right-censored observations). In general, for the settings under study, it can be

observed that our proposed method captures the real parameters in a proper way. Irrespective of the

conditional distribution of T or the percentage of right-censored observations, the estimated bias of

both β̂1 and β̂2 can be considered small.

Concerning the conditional distribution of the survival times, hardly any difference is observed

between the Weibull and the Gompertz distribution with respect to the bias even though the former

is always used for the imputation step of our method. Contrary to that, the MSE is generally larger in

case of the Gompertz distribution indicating a somewhat smaller precision in that case. Only slight

differences are observed comparing the settings without and with 10% of right-censored data. In the

case of no right-censored observations, the bias is generally a bit lower, whereas the MSE is slightly

bigger in most cases.

The sample size does have the expected impact on the precision of β̂1 and β̂2: the MSE decreases

as n increases no matter the width of the intervals or the conditional distribution of the survival times.

In terms of bias, generally, no big differences are observed between the different sample sizes. How-

ever, with a sample size of n = 100, the bias seems to depend on the assessment probability: the larger

the assessment probability and, hence, the smaller the censoring intervals, the more accurate the es-

timator. This tendency is, generally, not observed for n = 200 and n = 300. Moreover, the bias, even

though generally small, is almost always negative in the case of n = 200 and n = 300 indicating, hence,

a slight underestimation of both parameters. By contrast, with a sample size of 100, the bias is most

often positive.

6.6 Discussion

Our collaboration as data scientists with clinicians and virologists from Hospital Clínic of Barcelona,

IRB Barcelona, and University of Barcelona led to the analysis of the eight different Analytical Treat-

ment Interruption studies in chronic HIV-positive combination Antiretroviral Therapy (cART)-suppressed

individuals. The main clinical question to be studied was whether gender and pre-cART VL were risk

factors on the time until viral rebound in HIV-infected patients with previously undetectable viral load,

taking into account the heterogeneity between the different studies and the fact that different patients
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Table 6.4: Fixed parameters estimators without right-censored observations and 15 imputations (β1 =
0.5,β2 = 0.6).

Weibull Gompertz

Bias MSE Bias MSE

n = 100

Assessment probability: p = 0.2
β̂1 0.060 0.246 0.045 0.293
β̂2 -0.001 0.078 -0.022 0.089

Assessment probability: p = 0.33
β̂1 0.035 0.132 -0.007 0.135
β̂2 0.005 0.054 -0.030 0.064

Assessment probability: p = 0.5
β̂1 0.001 0.090 -0.004 0.092
β̂2 -0.009 0.051 -0.021 0.049

n = 200

Assessment probability: p = 0.2
β̂1 -0.023 0.073 -0.028 0.092
β̂2 -0.029 0.039 -0.045 0.042

Assessment probability: p = 0.33
β̂1 -0.034 0.049 -0.035 0.061
β̂2 -0.036 0.032 -0.044 0.038

Assessment probability: p = 0.5
β̂1 -0.023 0.038 -0.032 0.041
β̂2 -0.032 0.030 -0.054 0.031

n = 300

Assessment probability: p = 0.2
β̂1 -0.038 0.046 -0.046 0.054
β̂2 -0.045 0.028 -0.064 0.036

Assessment probability: p = 0.33
β̂1 -0.040 0.034 -0.051 0.039
β̂2 -0.045 0.027 -0.043 0.027

Assessment probability: p = 0.5
β̂1 -0.040 0.027 -0.032 0.029
β̂2 -0.043 0.024 -0.052 0.027
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Table 6.5: Fixed parameters estimators considering 10% right-censored observations and 15 imputa-
tions (β1 = 0.5,β2 = 0.6).

Weibull Gompertz

Bias MSE Bias MSE

n = 100

Assessment probability: p = 0.2
β̂1 0.088 0.315 0.071 0.342
β̂2 0.027 0.090 -0.015 0.091

Assessment probability: p = 0.33
β̂1 0.019 0.140 0.011 0.143
β̂2 0.019 0.061 -0.018 0.062

Assessment probability: p = 0.5
β̂1 0.013 0.097 0.001 0.098
β̂2 0.007 0.055 -0.005 0.053

n = 200

Assessment probability: p = 0.2
β̂1 0.001 0.085 -0.022 0.091
β̂2 -0.024 0.045 -0.030 0.047

Assessment probability: p = 0.33
β̂1 -0.017 0.052 -0.010 0.065
β̂2 -0.019 0.036 -0.028 0.035

Assessment probability: p = 0.5
β̂1 -0.017 0.043 -0.015 0.046
β̂2 -0.023 0.030 -0.033 0.031

n = 300

Assessment probability: p = 0.2
β̂1 -0.030 0.049 -0.037 0.057
β̂2 -0.033 0.033 -0.054 0.036

Assessment probability: p = 0.33
β̂1 -0.034 0.036 -0.030 0.037
β̂2 -0.036 0.027 -0.041 0.029

Assessment probability: p = 0.5
β̂1 -0.027 0.028 -0.013 0.029
β̂2 -0.023 0.025 -0.031 0.026
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had different number of ATI episodes. The first challenge we encountered was that the times until viral

rebound were interval-censored. Other difficulties were that the studies had different inclusion crite-

ria (for example, with respect to pre-cART VL values), and that some individuals participated in more

than one study or were exposed to more than one ATI episode.

For these reasons, the analysis of this data set with the mixed effects Cox model seemed to be the

natural choice. However, to the best of our knowledge, this model had not been studied with interval-

censored data previously. Hence, our proposal is a first step to close the gap between the mixed effects

Cox model (T. M. Therneau & Grambsch, 2000) and the Cox model with interval-censored data (Finkel-

stein, 1986).

The method proposed is based on multiple imputations in order to replace the censoring intervals

by imputed values to simplify the data structure to uncensored and possibly right-censored survival

times. For this step, we propose to generate random survival times from a truncated Weibull distri-

bution. As an alternative to multiple imputation, single imputation methods imputation could have

been applied, such as midpoint imputation replacing the censoring interval (Li , Ri ] by its midpoint

(Li +Ri )/2. However, midpoint imputation is only reasonable when the time period between consec-

utive visits (or measurements) is short leading to approximately unbiased estimations (Law & Brook-

meyer, 1992). But even in this case, the standard error of the estimator would be underestimated since

single imputation methods ignore the imputation uncertainty (Kim, 2003) and do not take into ac-

count the variability of the censoring interval. In contrast, multiple imputation does not attempt to

estimate each missing value through simulated values but rather to represent a random sample of the

missing values. This process results in valid statistical inferences that properly reflect the uncertainty

due to missing data (Yuan, 2010).

According to the results of the simulation study presented in Section 6.5, the estimation method

proposed has desirable properties in terms of accuracy (small bias) and precision (low MSE) of the

estimators of the fixed effects parameters. A relatively large MSE was only observed in the case of

the smallest sample size (n = 100) and smallest assessment probabilities (p = 0.2) considered (see

Tables 6.4 and 6.5). We have to admit, however, that the simulation study did only comprise 36 different

scenarios determined by sample size, assessment probability, condition distribution of T given X and

Z , and the percentage of right-censored observations. Further simulation studies would be desirable

in order to explore the properties of our estimation method under additional settings or with mixed

effects Cox models with a different number of fixed and random effects.

An apparent limitation of our estimation methods seems to be the fact that the imputation step

is based exclusively on the (truncated) Weibull distribution. However, the Weibull distribution is a

flexible distribution in the sense that its hazard function can have different shapes (constant, mono-

tonically increasing, or monotonically decreasing). For this reason, its use must not necessarily be a

limitation even though the underlying survival time distribution may be a different distribution. Ac-

tually, the simulation results in the case of the Gompertz distribution of T (small bias and low MSE)

seem to confirm this supposition.
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An important aspect of model fitting that has been beyond the scope of the present work is the

comparison of nested mixed effect Cox models in the presence of interval-censored data. Nested

mixed effects Cox models with right-censored data can be compared by means of the values of the

log partial likelihood function after integrating out the random effects (T. M. Therneau, 2018b), whose

difference multiplied by minus 2 follows a chi-squared distribution under the null hypothesis that the

nested model does not improve the model fit. In our case, for example, we could be interested in test-

ing, whether the inclusion of the different random effects actually improve the model fit. The appli-

cation of the Likelihood Ratio Test proposed by T. M. Therneau (2018b) with our estimation method,

however, is not straightforward because of the multiple imputations. One possible ad hoc solution

to this question could be to compute, separately for the models to be compared, the corresponding

values of the integrated log partial likelihood for each of the M model fits obtained with each imputa-

tion. Following, the mean difference over the M model fits could be calculated and compared to the

quantiles of the corresponding chi-squared distribution. Further studies should address this topic in

order to develop guidelines for researchers for how to compare nested mixed effects Cox models with

interval-censored data.

Concerning the clinical results obtained, as could be expected, the higher the last viral load before

the first initiation of cART (pre-cART VL), the larger the instantaneous risk of a viral rebound. In our

data set, female patients were at larger instantaneous risk for viral rebound than male patients with

the same pre-cART VL, however, using a 95% confidence level, we cannot claim that this is also valid

among the population of HIV-infected patients. We did not study any further variables, but our R

function multimp could be easily adapted to the estimation of more than two fixed parameters. The

same could be done to consider more random effects.

We did also check whether the inclusion of the patient identifier and the (correlated) intercept

and slope of pre-cART VL among studies as a random effects in the Cox model modifies the results

obtained from a Cox model that ignored such random effects. To fit this model, we used the icenReg

package (Anderson-Bergman, 2017), which enables the parameter estimation in the Cox model in the

presence of interval-censored data. The differences observed were: β̂1 = 0.51 versus β̂1 = 0.50 in the

case of variable Gender, and β̂2 = 0.36 versus β̂2 = 0.60 in the case of pre-cART VL. That is, ignoring the

random effects ATI Study and patient identifier, the estimated hazard ratio associated with pre-cART

VL would have been 1.43 and, hence, notably smaller than the estimated hazard ratio 1.83 reported in

Section 6.4. These differences highlight the importance to consider random effects when fitting a Cox

model in the presence of interval-censored data and a grouped data structure.

In Table 6.2, we also report the estimated standard deviations of the random effects. However, as

Gleiss et al. (2018) point out, the values presented lack the direct comparability with the contribution of

fixed effects. The authors are working on this issue addressing the explained variation in shared frailty

models, which are a particular case of the mixed effects model, namely when a random intercept per

random effect is considered.

Even though we have applied our method only to one data set, our method is valid for any data
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set that presents both interval-censored survival times and a grouped data structure that could be

treated as a random effect in a regression model. Nonetheless, a fit of the mixed effects Cox model with

interval-censored data that did not require multiple imputations would be desirable. For this pur-

pose, the expression of the likelihood function of the Cox model with interval-censored data presented

by Finkelstein (1986) would need to be extended to consider random effects and tools of the area of

optimization such as the ones presented by Langohr & Gómez (2005) could be useful to achieve this

goal.
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7
STATISTICAL METHODOLOGIES APPLIED TO BCN02

CLINICAL TRIAL

In this chapter, we present different analyses addressing the BCN02 clinical trial. We have divided the

chapter in two main parts. In the first part, we start describing the clinical trial, its characteristics

and goals. Following, we analize the time until viral rebound. In this analysis, patients are classified

in rebounders or controllers according to whether they keep the viral load controlled at week 12 af-

ter monitored antiretroviral pause (MAP). Based on the rebounder or controller classification we fit a

log-binomial regression model. In the second part, we present the Enzyme-Linked Immunosorbent

Spot (ELISpot) assays and the statistical methodologies used to work with this information. Finally, we

present some conclusions regarding the methodologies applied in this clinical trial.

7.1 BCN02 clinical trial

The BCN02 study is a clinical trial to evaluate the safety and effect of a “kick and kill” strategy (for

further information, see Chapter 3.10). The vaccine used is called MVA.HIVconsv and was used in

combination with Romidepsin (RMD). The main idea was to study the behaviour of viral rebound after

treatment interruption in early treated HIV-1 infected individuals. The study is a joint collaboration be-

tween the Hospital Universitari Germans Trias i Pujol, Badalona and in the Hospital Clínic, Barcelona.

The trial is sponsored by IrsiCaixa AIDS Research Institute and the Coordinating Investigator is Beatriz

Mothe Pujadas (more information at https://clinicaltrials.gov/ct2/show/NCT02616874).

As we mentioned before, this study is based on a combination of MVA.HIVconsv vaccine and a

specific drug called Romidepsin. HIVconsv vaccine is defined as the most immunogenic candidate

available so far and was supplied by the University of Oxford. RMD was clinically developed as an anti-
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cancer drug and is approved for the treatment of cutaneous lymphoma. In the HIV field, RMD has been

proposed as a potent HIV latent viral reservoir activator (for viral reservoir definition, see Chapter 3).

Design of the trial

The BCN02 clinical trial is an extension phase of the BCN01 clinical trial (NCT01612425) held in Barcelona

in 2014 to evaluate the safety and immunogenicity of 2 different vaccines. All the patients of BCN01

who meet all eligibility criteria were invited to participate. The total number of patients in BCN02 trial

is fifteen and the follow-up time corresponds to 32 weeks.

Figure 7.1: BCN02 diagram. Source: https://www.flsida.org/es/postcroi2017.

In the Figure 7.1, we show the design of the BCN02 trial. The clinical trial was divided in two phases.

In the first part of the trial, three doses of romidepsin were administered after a first vaccination with

MVA.HIVconsv at weeks 3, 4 and 5 (Part A: MVA1+RMD1−2−3, intervention phase). In the second part

of the trial (Part B: MVA2+MAP), a second vaccination with MVA.HIVconsv was given 4 weeks after the

last RMD infusion. After an interim analysis at week 13, a monitored antiretroviral pause (MAP) was

offered to all participants at week 17. A closely monitored antiretroviral pause was planned to offer

cART resumption as soon as viral rebound is detected.

7.2 Clinical and survival data of BCN02

In this section, we describe some clinical data at different stages of the BCN02 clinical trial. Moreover,

we present the fitted survival models for the time until viral rebound, taking into account that this

response is interval-censored. In the analyses, the profile of the patients is also important: controller

or late-rebounder (from now on, rebounder). A controller patient is defined as a patient with viral

load (VL) below 2,000 copies/ml at week 12 of MAP. A patient with VL greater than 2,000 copies/ml is

considered rebounder.

https://www.flsida.org/es/postcroi2017
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Part of the analyses presented in this section are also presented in the manuscript “HIVconsv vac-

cines and romidepsin in early-treated HIV-1-infected individuals: Safety, immunogenicity and effect

on the viral reservoir (study BCN02)” published in the journal Frontiers in Immunology, section Vac-

cines and Molecular Therapeutics (Mothe et al., 2020).

7.2.1 Descriptive analysis of clinical covariates

The Table 7.1 shows the demographic, clinical, and treatment characteristics of the fifteen study pa-

tients at BCN02 study entry. In the case of continuous variables, the median, the interquartile range,

the minimum and maximum are shown for rebounder and controller patients in Table 7.2. In these

analyses we did not consider the variable gender, because there was only one female patient.

Table 7.1: Demographic, clinical and treatment characteristics of study patients at study entry (n=15).

Variable Median (range)∗

Age (years) 43 (33 - 51)
Time since HIV acquision to cART (days) 92 (28 - 164)
Pre cART log10HIV RNA (copies/ml) 4.9 (3.2 - 5.8)
Time on cART (years) 3.23 (3.03 - 3.77)
cART regimen, n(%)

TDF/FTC/RAL 11 (73)
ABC/3TC/RAL 2 (13)
ABC/3TC/DTG 2 (13)

CD4+ T-cell counts (cells/mm3) 728 (416 - 1408)
Ratio CD4/CD8 1.37 (0.97- 1.93)
∗Except when n(%) is specified

The median age of the patients is 43 years old, the median time since HIV acquisition to cART cor-

responds to 92 days. In the Table 7.1 we can observe the patients distribution to any of the three cART

regimen. Eleven patients adhere to the first regimen, corresponding to the combination of Tenofovir

Disoproxil Fumarate (TDF), Emtricitabine (FTC), and Raltegravir (RAL). Two patients adhere to the

second combination, given by Abacavir (ABC), Lamivudine (3TC), and RAL. Also two patients receive

the third combination that consists of ABC, 3TC, and Dolutegravir (DTG).
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Table 7.2: Summary of continuous covariates for BCN02.

Rebounders (n=10) Controllers (n=3)

Variable Med IQR Min Max Med IQR Min Max

Demos

Age 42 38–45 33 48 32 31–36 30 40

At HIV-1 diagnosis

Days HIV to cART 82 67–107 32 118 112 70–138 28 164

log10(VL) at cART init 5.02 4.88–5.16 4.26 5.48 3.35 3.28–4.59 3.20 5.82

CD4 absolute v0 453 382–560 299 785 631 608.5–633 586 635

CD4/CD8 ratio v0 0.56 0.45–0.69 0.44 1.26 0.56 0.42–0.85 0.27 1.14

At BCN02 entry

CD4 absolute 728 533–1331 416 1408 657 652.5–814 648 971

CD4/CD8 ratio 1.37 1.22–1.47 1.00 1.93 1.33 1.15–1.54 0.97 1.74

Total months on cART 38.88 37.56–40.20 36.36 41.04 41.64 39.30–42 36.96 42.36

Months on UD VL 35.52 35.40–35.88 31.32 40.32 36.36 36.18–39 36 41.64

At MAP

CD4 absolute 735 484–1075 468 1269 854 675–902 496 950

CD4/CD8 ratio 1.30 1.25–1.48 0.87 1.75 1.52 1.14–1.57 0.76 1.61

Total months on cART 41.88 44.04–46.32 41.88 46.80 46.80 44.88–47.28 42.96 47.76

Months on UD VL 41.52 40.92–43.68 37.80 45.60 42.48 42.24–44.34 42 46.20

Vaccine Immunogenicity

HIV consv Magnitude

At BCN02 entry 160 0–287 0 2640 0 0–655 0 1310

At BCN02 peakimmunog 1965 1380–3940 530 6901 2480 1605–2668 730 2855

HIV consv pools breadth

At BCN02 entry 1 0–2 0 2 0 0–1 0 2

At BCN02 peakimmunog 4 4–6 3 6 6 5.5–6 5 6

HIV consv immunodominance

At BCN02 entry 6 0–8 0 37 0 0–38 0 76

At BCN02 peakimmunog 89 68–100 54 100 86 82–93 78 100

Responses OUTside HIVconsv

At BCN02 entry 4525 3088–5385 1635 8945 3328 1872–3428 415 3528

At BCN02 peakimmunog 705 405–1150 130 5385 530 325–925 120 1320

Viral reservoir

Week 0 BCN02 190 107–434 18 752 65 62.5–116.5 60 168

Week 3 BCN02 157 110–494 26 892 46 34.5–100 23 154

Week 6 BCN02 131 105–464 60 656 43 36.5–185.5 30 328

Week 17 BCN02 144 119–420 29 680 54 35–88 16 122
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Table 7.2 shows the absolute frequencies of variables explored to explain the binary outcome defined as re-

bounders versus controllers. As can be seen, the table summarizes the results for 13 of the 15 patients participat-

ing in the study. This is because one of the patients did not stop the treatment for safety reasons and one patient

was taking unauthorized drugs for the study. In the table it is possible to observe the median, the interquartile

range (IQR), the minimum and the maximum for different demographic information, and variables regarding

different stages of the study: at HIV-1 diagnosis, at BCN02 entry, at MAP. Regarding HIV-1 diagnosis, the median

days on infection to cART was higher for controllers patients. In addition, in these patients the median amount

of viral load (log10(VL) at cART init) was lower and the median CD4 counts greater than early-rebounders pa-

tiens. At BCN02 entry the situation is more or less similar for every group. At MAP, a slightly difference can be

appreciated, the median value for CD4 absolute and CD4/CD8 ratio is higher for controllers.

Table 7.2 shows as well information on the vaccine immunogenicity and viral reservoir at BCN02 entry and

at BCN02 peak immunogenicity. Almost in every variable of these categories it is possible to observe that the

response values are higher for rebounders compared with controllers. Supplementary information can be found

at the Table E.1 in the Appendix E.

7.2.2 Survival models for time until viral rebound

Survival analysis is used to analyse data in which the outcome is the time until an event of interest (for more

information, see Chapter 4). In the BCN02 clinical trial, the event of interest corresponds to viral rebound, and

the time until viral rebound is interval-censored, since the moment when the viral load crosses the threshold

cannot be observed exactly. The Figure 7.2 shows the Turnbull estimator of the survival function. As can be

seen, approximately 30% of the patients do not present a viral rebound in the follow-up time of 32 weeks.

Figure 7.2: Estimation of the survival function of the time to viral rebound in the BCN02 clinical trial
obtained with the Turnbull estimator.
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Likewise, we fitted univariate Cox proportional hazards models as in Equation (4.2) (Cox, 1972) considering

different covariates. To fit the models, we used the function ic_sp from the icenReg R package (Anderson-

Bergman, 2017), since this function allows us to fit a semi-parametric model for interval-censored data. The

covariance matrix of the regression coefficients is estimated via bootstrapping. Considering the 95% confidence

intervals associated with each covariate, we found none that could explain the time until viral rebound of the

patient, i.e., all the intervals include zero (information available at Appendix E, Table E.2).

7.3 Log-binomial regression model to study the patient profile

The log-binomial model, with binomial error and logarithm link function, is proposed as an alternative to the

usual logistic regression. Logistic regression uses the odds ratio (OR) as a measure of association. However, when

the frequency of the variable of interest is high (e.g., 10% or 20%) in the study population, it tends to increase

the magnitude of the association (Szklo & Nieto, 2014). Furthermore, the OR often has a difficult or unintuitive

interpretation. Due to this, it is useful to look for an alternative model. The log-binomial model is presented

as a good alternative to overcome the pitfalls described. Its main advantage is that its effect size measure is the

relative risk (RR) which has a more intuitive interpretation than the OR.

7.3.1 Log-binomial regression model

The log-binomial model (Wacholder, 1986) is a generalized lineal regression model for a binary outcome with

the logarithm as a link function. Let Y be a binary outcome and X = (X0, X1, . . . , Xp )′ be a the set of covariates

with X0 = 1. The log-binomial model can be expressed as

P (Y = 1|X ) = eβ
′X , (7.1)

where β= (β0,β1, . . . ,βp )′ are the parameters of the model.

The observable data set consists of a vector of n independent observations of the outcome, {y1, . . . , yn}′,
and a x × (p +1) matrix X = {xi j } recording the explanatory-variable values, with xi j being the value of the j th

explanatory variable for observation i . A specific feature of the log-binomial model is that the model is consistent

to the probability laws only if the parameters satisfy the constraints:

Xiβ=β0xi 0 + . . .+βp xi p ≤ 0 for all 1 ≤ i ≤ n. (7.2)

To estimate the parameters of the model, we maximize the likelihood of the observed data (Savu et al., 2010),

L(β; y) =
n∏

i=1
e yi Xiβ(1−e X iβ)1−yi

over the restricted parameter space (7.2).

To fit log-binomial regression models, we use the R function glm, which fits generalized linear models, speci-

fying the link function and the distribution for the error. This function uses an Rprocess known as “step-halving”.

This process controls the iteration, if the iteration tends to be outside the parameter space, it recalculates the ad-

justed value. It repeats this process over and over as long as it remains a positive value until the adjusted value

is negative. By this, we mean that the linear predictor, α̂+ β̂′X , must always be negative, with α < 0 always but
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there may be β > 0. This ensures that even if the values do not converge they are always within the parameter

space. If the positive values are at the beginning of the estimate, then the adjustment stops and prompts the

user for better initial values (Williamson et al., 2013).

7.3.2 Fitted univariate log-binomial regression models

We fitted univariate log-binomial regression models. The binary outcome Y from the Equation (7.1) refers to

the patient profile, rebounders or controllers. A patient with VL lower than 2,000 copies/ml at week 12 after

MAP is considered controller. The estimated relative risks obtained from the log-binomial models for different

covariates analyzed are shown in Figure 7.3. Univariate log-binomial regression models used to detect factors

associated with virologic control during MAP revealed that VL before ART initiation (pre-ART VL) was the only

factor associated with control of viral rebound after ART interruption, considering a 95% confidence interval.

For each log increase of the pre-ART VL, the probability of becoming a controller decreased by 66% (RR: 0.34;

95% CI: 0.14, 0.79). The fitted models, their coefficients, the standard errors associated to each coefficient, and

the risk ratio (R̂R) with its 95% confidence interval can be seen at Table E.3 in Appendix E.

Figure 7.3: Estimate relative risks for a subset of clinically relevant covariates analysed in the univariate
log-binomial regression model.

7.4 ELISpot assays for BCN02

In this section, we provide statistical methodologies to analyze Enzyme-Linked Immunosorbent Spot (ELISpot)

assays data. Following, we present the definition, the main concepts associated with the ELISpot assays, and the

methodology to analyze the data coming from these assays.
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7.4.1 What is an ELISpot assay?

The ELISpot assay is an immunoassay that measures the frequency of cytokine-secreting cells at the single-cell

level. In this assay, cells are cultured on a surface coated with a specific capture antibody in the presence or

absence of stimuli. Proteins, such as cytokines, that are secreted by the cells will be captured by the specific

antibodies on the surface. After an appropriate incubation time, cells are removed and the secreted molecule is

detected using a detection antibody in a similar procedure to that employed by the Enzyme-Linked ImmunoSor-

bent Assay (ELISA). By using a substrate with a precipitating rather than a soluble product, the end result is visi-

ble spots on the surface (for more details see Figure 7.4). A single cell forms a coloured “footprint” (spot) on the

bottom of the well representing its secretory activity.

Figure 7.4: The ELISpot assay workflow. (1) Coat membrane with capture antibody. Add immune cells
and stimulate. (2) Responding cells produce cytokines. The cytokine of interest binds to the capture
antibody beneath the cell. (3) Wash to remove cells. Add a second cytokine-specific biotinylated anti-
body which binds to the cytokine-antibody complex. (4) Add streptavidin-enzyme conjugate. (5) Add
enzyme substrate and develop. Within a well, each responding cell will result in the development of
one spot. Source: https://merckmillipore.com, accessed: March, 2020).

The ELISpot assay is carried out in a 96-well plate (Figure 7.5 a)), and an automated ELISpot reader is used

for the analysis (Figure 7.5 b)). The assay is therefore easy to perform and allows rapid lecture of a large number

of samples. The output from the ELISpot reader is a set of images and its corresponding Excel files that includes

spot sizes and spot count per well (see Figure 7.5 c1) and c2)).

While ELISpot assays allows one to directly visualize and count extremely low frequencies of cytokine se-

creting T cells amongst millions of non-secreting bystander cells, the interpretation of ELISpot data can become

ambiguous when (a) spot numbers in antigen-containing wells are low, (b) spot counts in negative control wells

are elevated, and particularly (c) when both of the above occur simultaneously. Thus, the primary task, before

any statistical analysis, must be the optimization of the basic assay parameters and reagents such that the assay

yields low background signal in the negative control wells, and the maximal number of antigen-induced spots

in test wells, i.e., the signal to noise ratio is maximized (Dittrich & Lehmann, 2012).

For this analysis, our main variables of interest are spot counts and spot size. Spot count corresponds to

cytokine-producing cell numbers. Due to diffusion properties, a true spot has a densely colored center which

fades toward the edges; the size or color intensity of the spots is determined by the amount of cytokine released.

Spot size refers to relative amounts of cytokine produced per cell.

https://merckmillipore.com
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Figure 7.5: The ELISpot assay tools (Mabtech, 2015). (a) 96-well plate, b) ELISpot reader, c1) ELISpot
image output and c2) ELISpot excel file output.

7.4.2 Plate organization and settings for BCN02

The plate is an array of 8 rows with 12 wells in each. Wells are organized from columns 1 to 12 and from rows

A to H. The half of the 96-well plate disposition for this study can be seen in Figure 7.6. For this study, half a

plate corresponds to a different time point. There are six different time points: MVA1 (week 0), MVA1+1 (week

1), MVA1+3 (pre-RMD, week 3), MVA2 (week 9), MVA2+1 (week 10) and MVA2+4 (week 13). Every well contains a

pool of peptides, as can be seen in Figure 7.6.

In the plate (Figure 7.6), we observe the target of the most conserved regions of the HIV-1 proteome (HIV-

consv), from A1 to A6 and its replicates from B1 to B6, which have the potential to enhance host immune control

and facilitate clearance of the latent reservoir. Moreover, we observe other components such as OUT (the no-

conserved regions of HIV-1, from C1 to C6 and E1 to E6 and its corresponding replicates from D1 to D6 and F1

to F6, respectively), HTI (cells G1 to G5), negative and positive controls. Negative controls consist of cells cul-

tured without stimuli, whereas T-cell activator are commonly used as positive controls. The last ones are used to

confirm cell and assay functionality, these often include phytohemagglutinin (PHA) and CEF (Cytomegalovirus,

Epstein-Barr virus, influenza virus) peptide pools, that induce secretion of many common cytokines.

HIVconsv immunogen codes for the 14 most conserved regions of the consensus HIV-1 Gag, Pol, Vif, and

Env proteins and can be seen in Figure 7.7. HIVconsv immunogen is vectored by modified vaccinia virus Ankara,

MVA.HIVconsv (Mothe, 2016).

The description of peptide pools for HIVConsv, OUT and HTI can be observed in Tables E.4, E.5 and E.6 from

Appendix E, respectively.
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Figure 7.6: Pool of peptides organization in half a plate for BCN02.

Figure 7.7: Schematic representation of the selected conserved regions in the HIV proteome from dif-
ferent HIV-1 clades included in the HIVconsv immunogen and distribution of the set of 6 peptide pools
for ELISpot assay. Source: Mothe (2016).
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On average, T-cell ELISpot counts show linearity for PBMCs in the range of 100,000- 800,000 cells. Where

possible, cells should be serially diluted and plated in triplicate. However, given the restrictions of well size in

96-well plates, seeding more than 400,000 cells per well may result in overcrowding and cell stacking. In this

study, HIVconsv and OUT pool of peptides were plated in two replicates. Most of the cells were seeding with

100,000 cells (see Table E.7 in Appendix E)

7.5 Statistical methodologies to work with spot counts and spot size from

ELISpot assay data

When working with data from ELISpot assays, we have two main objectives. The first one is to build a routine

in R to read and sort the data. This is because the ELISpot reader currently delivers outputs in Excel that are

then manually manipulated. The second goal is to study the distribution of spot size and spot count over time,

its variability, and its relationship. At this point, it is necessary to mention that, as far as we know, there are not

studies that analyze the spot size or its relationship with the spot counts.

7.5.1 Data management from BCN02 ELISpot assay

ELISpot data for this specific assay was processed using an ELISpot reader (Software version: ImmunoSpot

5.1.36). The software of this reader allows for data extraction via Excel, as we mentioned before. Every patient

and every complete plate (that considers two different timepoints) are represented by a unique Excel sheet. The

data is organized in different outputs within the same Excel sheet, as can be seen in Table 7.3.

Table 7.3: Type of outputs from the ImmunoSpot reader.

Type of output Description Dimension

Spot counts Absolute frecuency of spot counts 8×12

Mean spot sizes Area of each spot (in 103 mm2) 8×12

Histogram
distribution

Distribution according to its size (in log mm2).
The histogram considers from -3 to 2 by 0.2 units

96×26

Well areas
covered

Percentage of the well covered by spot.
Not used for this study.

8×12

Total intensity
of all foreground
object per well

Total intensity foreground after removing noise.
Not used for this study.

8×12

At this moment, to work with these type of data, clinicians need to summarize the information from every

Excel sheet manually. To help in this work, and considering this is a typical type of data in clinical assays similar

to BCN02, we create a routine to read all the Excel sheets and then perform the analyses with R. The raw data is

available at http://doi.org/10.5281/zenodo.3870744 and the R script and its environment can be accessed

in http://doi.org/10.5281/zenodo.3870750.

We need to mention that we decide to work with the data coming from the histogram distribution, since this

output shows the most raw data version. In these Excel sheets it is common to find a discrepancy in the counts

http://doi.org/10.5281/zenodo.3870744
http://doi.org/10.5281/zenodo.3870750
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coming from the histogram distribution and the one from the spot counts output. This is due to the fact that

when obtaining the counts, the ImmunoSpot reader selects only the 90% percent of the well to count. The reason

to use this percentage is to avoid the accumulation of material on the edges. Once the spot count is obtained

in the selected area, the software extrapolates to have the 100%. We decide to work with the 90% without any

extrapolation, in this way we know the counts and the distribution of each count regarding its size.

Furthermore, once we have the spot counts, this data need to meet the previously established positivity

criteria based on the background definition. The background corresponds to the average of the negative control

counts. The positivity criteria is defined as the maximum of a) greater than 3 times the background, b) greater

than background plus 3 standard deviations or c) greater than 5 spots. If the positivity criteria is not met, the

count is considered to be zero as well as the corresponding size.

7.5.2 Distribution of spot size and spot count over time and its variability

To study the relation between spot counts and size, it is necessary to consider the corresponding replicates (if

any) in different scenarios. The six different scenarios are given by the combination of the HIV region (HIVconsv,

OUT and HTI) and the corresponding variable of interest (spot count or spot size). We obtained the mean and

standard deviation in each scenario across the 6 different timepoints previously explained. Depending on each

case we will compute the mean and standard deviation.

The standard deviation deserves a especial mention, since depending on the situation, we must calculate it

in different ways. In the case of spot count and any region (IN/OUT/HTI) we obtain the standard deviation in the

usual way. In the case of spot size and HTI region (without replicates), to obtain the standard deviation we need

to use an unbalanced one-way random effects ANOVA model, that consider the effect of each patient. Finally, in

the case of spot size and IN/OUT region (with replicates), to obtain the standard deviation we used unbalanced

two-way random effects ANOVA models, that consider the effect of the patient and the well. We explain these

scenarios in greater detail below.

Usual mean and standard deviation for spot count

Considering the covariate spot count, we have two situations, as can be seen in Figure 7.8. The first situation

is without replica, as in the case of HTI region in the ELISpot plate. In the figure, we observe the case of three

specific patients. The summary for a specific timepoint and pool of peptides is the frequency or the number of

spots (spot count). The second situation is with replica, for the HIVconsv (IN) and OUT region. In each of these

situations, we can obtain the mean and standard deviation for spot counts in the usual way.

Unbalanced one-way random effects ANOVA model

The second scenario in the ELISpot from the BCN02 trial is the case of the study of the variability of the spot

size variable considering the HTI region, without replicates, as represented by the Figure 7.9. In the figure we

present the hypothetical situation for three different controller patients. In this case, each well has many spots,

and we are interested in obtaining the variability of the spot size for a specific timepoint and pool of peptides. In

this case, it is clear that we need to control for the patient. The way of doing this is considering the unbalanced

one-way random effects ANOVA model.

This section follows the Chapter 11 of Analysis of variance for random models, volume II: Unbalanced data

(Sahai & Ojeda, 2004). The random effects model for the unbalanced one-way classification is given by
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Figure 7.8: Scenario 1: spot count with or without replicate.

Figure 7.9: Scenario 2: spot size without replicate.

xi j =µ+αi +εi j , i = 1, . . . , a; j = 1, . . . ,ni , (7.3)

where xi j is the j th observation in the i patient, µ is the overall mean, αi is the random effect of the i th patient

factor and εi j is the error term. It is assumed that −∞< µ<∞ is a constant, and αi s and εi j s are mutually and

completely uncorrelated random variables with zero means and variancesσ2
α andσ2

ε , respectively. Here,σ2
α and

σ2
ε are known as the components of variance.

Analysis of variance estimators

The analysis of variance (ANOVA) method of estimating variance components σ2
ε and σ2

α consists of equating

observed values of the mean squares MSB and MSW to their expected values, and solving the resulting equations

for σ2
ε and σ2

α. The estimators thus obtained are

σ̂2
ε,ANOV = MSW

σ̂2
α,ANOV = MSB −MSW

n0
,

(7.4)
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Figure 7.10: Scenario 3: spot size with replicate.

where MSW =∑a
i=1

∑ni
j=1(xi j − x̄i )2, MSB =∑a

i=1 ni (x̄i − x̄)2, and n0 =
(
N 2 −∑a

i=1 n2
i

)
/N (a −1).

Unbalanced two-way random effects ANOVA model

The third scenario corresponds to the study of the variability of the spot size variable considering the HIVconsv

(IN) and OUT region, considering the replicates, as can be seen in the Figure 7.10. In the figure, we present the

hypothetical situation for three different controller patients. In this case, each well has many spots but also each

well has its replica, and we are interested in obtaining the variability of the spot size for a specific timepoint and

pool of peptides. As can be seen we need to control by patient and also by replicate, so in this case, we apply an

unbalanced two-way random effects ANOVA model.

This section follows the Chapter 12 of Analysis of variance for random models, volume II: Unbalanced data

(Sahai & Ojeda, 2004). In this section, we consider the random effects model involving two factors, the patient

(A) and the replica (B), in a factorial arrangement where the numbers of observations in each well are different.

We further assume that the model does not involve any interaction terms. Consider the two factors A and B and

let there be ni j ≥ 0 observations corresponding to the (i , j )th cell. The model is given by

xi j k =µ+αi +β j +εi j k ; i = 1, . . . , a; j = 1, . . . ,b; k = 0, . . . ,ni j , (7.5)

where xi j k is the kth observation corresponding to the i th level of factor A (the patient) and the j th level of

factor B (the replica), µ is the overall mean, αi s and β j s are random effects, i.e., αi is the effect of the i th level

of factor A, β j is the effect of the j th level of factor B , and εi j k is the error term. It is assumed that −∞ <
µ < ∞ is a constant and αi s, β j s, and εi j k s are mutually and completely uncorrelated random variables with

means zero and variancesσ2
α,σ2

β
, andσ2

ε , respectively. The parametersσ2
α,σ2

β
, andσ2

ε are known as the variance

components.

For the model in (7.5) there is no unique analysis of variance. The conventional ANOVA obtained by an

analogy with the corresponding balanced design is given in Table 7.4

Analysis of variance estimators

The analysis of variance or Henderson’s Method I (Henderson, 1953) for estimating variance components is

to equate the sums of squares or mean squares in Table 7.4 to their respective expected values. The resulting
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Table 7.4: Analysis of variance for the model in (7.5).

Source of Degrees of Sum of Mean Expected
variation freedom squares square square mean

Factor A a −1 SS A MS A σ2
ε + r5σ

2
β
+ r6σ

2
α

Factor B b −1 SSB MSB σ2
ε + r3σ

2
β
+ r4σ

2
α

Error N −a −b +1 SSE MSE σ2
ε + r1σ

2
β
+ r2σ

2
α

equations are

SS A = (N −k1)σ2
α+ (k3 −k2)σ2

β+ (a −1)σ2
ε

SSB = (k4 −k1)σ2
α+ (N −k2)σ2

β+ (b −1)σ2
ε

SSE = (k1 −k4)σ2
α+ (k2 −k3)σ2

β+ (N −a −b +1)σ2
ε .

(7.6)

The variance components estimators are obtained by solving the equations in (7.6) for σ2
α,σ2

β
and σ2

ε . The

estimators thus obtained are given by

M =


σ̂2
α,ANOV

σ̂2
β,ANOV

σ̂2
ε,ANOV

=

 N −k1 k3 −k2 a −1

k4 −k1 N −k2 b −1

k1 −k4 k2 −k3 N −a −b +1


−1  SS A

SSB

SSE

 . (7.7)

Further simplification of (7.7) yields

σ̂2
ε,ANOV = θ1(SSE +SS A)+θ2(SSE +SSB )− (SSE +SSB +SS A)

θ1(N −b)+θ2(N −a)− (N −1)

σ̂2
β,ANOV =

SSE +SSB − (N −a)σ̂2
ε,ANOV

N −k3

σ̂2
α,ANOV =

SSE +SS A − (N −b)σ̂2
ε,ANOV

N −k4
,

(7.8)

where

θ1 = N −k1

N −k4
and θ2 = N −k2

N −k3
.

7.5.3 Results

In this section, we present the results for the HIVconsv (IN) region. The results for the OUT and HTI region can

be found in Appendix E.2. First, we present the profiles of spot counts for the different pool of peptides (from p1

to p6) across time.

In the Figure 7.11 we observe some differences between controller (C) and rebounders (R) patients. In the

case of the pool of peptides p1, the profile is superior for controllers. The opposite situation is observed for the

pool p3. This mean that the pool p1 elicits higher response for controller patients and the pool p3 generates

higher response for rebounder patients.
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Figure 7.11: Mean and 95%confidence interval for spot counts in HIVconsv region for each pool of
peptides and each patient profile (C: Controller; R: Rebounder).
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Figure 7.12: Mean and 95%confidence interval for spot size in HIVconsv region for each pool of pep-
tides and each patient profile (C: Controller; R: Rebounder).
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Looking at the Figure 7.12, we cannot distinguish a clear difference between the profile of the patients, con-

trollers and rebounders across time in any of the pool of peptides for the HIVconvs region. It is important then

to have a descriptive approach for the two covariates, spot count and spot size, without considering the patient

profile and to observe if the different curves across time are different or not.

From the Figure 7.13, we observe the two variables do not present the same profile across time. This is

probably, because these two variables are not given the same information about the patients across time. It is

important then to study the possible correlation between spot count and spot size. As can be seen in Figure

7.14 the Spearman correlation between these variables is weak ρ = 0.11 (p-value=0.0008) and there is no clear

difference between different patient profile (controller and rebounder).

7.6 Discussion

In this chapter, we have presented the different nature of the different types of data in a clinical trial, and in this

way, the different statistical methodologies applied to obtain clinical conclusions. The clinical trial presented,

BCN02, continues in the line with all the work presented so far, considering data coming from HIV-1-infected

patients.

We have presented the clinical trial and the description of their patients, according to different covariates of

interest. We have applied univariate models for the interval-censored time until viral rebound and we did not

find any covariate to explain this outcome.

To study the patient profile, since this is a binary variable we have fitted univariate log-binomial regression

model. We have presented this model as an alternative to the logistic regression model. The log-binomial model

is useful when we want to estimate the relative risk in a study with common results in the population. We believe

that there is still a lot of new information to contribute about the log-binomial regression model, for example,

regarding the convergence problems that can appear. However, this model offers a good solution to obtain

estimates of the relative risk in a cohort study and the prevalence ratio in a cross-sectional study, and a easier

interpretable measurement, compared with the OR from the usual logistic regression model.

For the survival analysis and for the log-binomial fitted models we have considered only univariate ap-

proaches because of the low sample size for this study. Only 15 patients, 3 of them classified as Controllers, 10

Rebounders, one that never stop the antiretroviral treatment and one that was consuming unauthorized drugs.

An extension of this study will be conducted, the BCN03, and the sample size will be bigger, this will allow for

considering more than one covariate in the survival analysis as in the log-binomial regression models.

Another important aspect we have addressed in this clinical trial was working with data from ELISpot assays.

We developed an R routine to read and sort the data coming from the Excel sheets from the ImmunoSpot reader.

In these assays, we worked with two main variables: the spot count (already considered in previous studies)

and the spot size (a variable, as far as we know, never considered). An interesting conclusion from the results

is that these two variables do not present the same type of information since their profiles across time are dif-

ferent. However, the clinical information provided by the spot size is still unknown. At this moment, clinicians

are considering to work with rapid ELISpot, in which a big percentage of the spots appear in the first hours of

incubation, so that it is less time-consuming. Another path of research, that can be addressed from a statistical

point of view is to create a Shiny App to read and sort the data from the ImmunoSpot reader. This would make

posterior analyses easier, avoiding manually manipulation of the Excel sheets.
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Figure 7.13: Mean and 95%confidence interval for spot size and spot count in HIVconsv region for
each pool of peptides.
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Figure 7.14: Spearman correlations between spot size and spot count in HIVconsv region considering
all the pool of peptides and all the timepoints. C: controller, R: rebounder.
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CONCLUSIONS AND FURTHER RESEARCH

This thesis presents different statistical approaches to handle diverse biological and clinical questions that arise

in the development of a therapeutic vaccine for HIV. It has been essential for us to study these problems from

the perspective of Data Science, working hand in hand with a multidisciplinary team.

As Data Science is a relatively new discipline, there is a lack of definitions directly linked to Biomedicine.

However, we found that “Data Science” is an increasingly searched term (Chapter 2). For this reason, we propose

to establish a proper definition of Data Science in Biomedicine. One key aspect of Data Science in Biomedicine

is that multidisciplinary teams involved in a clinical trail need to use a common language that can be understood

by all members of the team. In Chapter 4, we have presented the vocabulary used in HIV studies. We have also

explained some common methods used along this work, such as survival and omics data analysis (Chapter 5).

In this thesis we have presented different statistical approaches to address the questions that arise from

three independent clinical trials based on different type of data. The questions related to the first two clinical tri-

als gave rise to the development of two important methodological contributions of this thesis: the application of

the elastic-net penalization to the accelerated failure time (AFT) model and the fit of a mixed effects Cox model

with interval-censored data. The first question was to identify biomarkers (from mRNAs) of the viral rebound in

the DCV2 clinical trial (Chapter 5). In these studies with high dimensional data it is common that the number

of covariates is greater than the number of subjects in the study. Besides, in omic layers such as transcriptome

(mRNA) there is a correlation structure that need to be considered. To address this problem, we have proposed

the use of an elastic-net approach for the accelerated failure time model, which allows us to work with high-

dimensional data and consider the grouping effect. The second main clinical question we studied was whether

gender and pre-cART viral load were risk factors on the time until viral rebound in the Analytical Treatment Inter-

ruption (ATI) studies (Chapter 6). In order to handle the variability due to the fact that some patients had more

than one assessment, we have proposed a method to estimate the parameters of a mixed effects Cox model with

interval-censored data. The third question was related to improving the statistical analysis used in the BCN02

clinical trial (Chapter 7) in two scenarios: when using ELISpot data and when defining a dichotomous variable

for responders and controllers. Here, we did not develop a new methodology but applied existing techniques
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that were not used in this area. Following, we present our main findings and methodological contributions, as

well as our limitations and further research.

Identifying mRNA biomarkers related to the time to viral rebound is of critical importance. The knowledge

on whether some biomarkers are associated with higher or lower risk of viral rebound can help the develop-

ment of the therapeutic HIV vaccine. For this purpose, we proposed the use of an accelerated failure times

(AFT) model using an elastic-net penalization approach to estimate the parameters that considers the corre-

lation structure among mRNAs and its high-dimensionality nature. We have derived the expression of the pe-

nalized log-likelihood and maximized it using two ad-hoc methods under the assumption that time to viral

rebound follows a Weibull distribution. When applying these ad-hoc methods to the DCV2 study, we found dif-

ferent sets of predictors according to the method used. With the first approach (Approach A, Section 5.5.4), we

identified 5 mRNAs (PPP1R9A, LOC100509457, IL21R, CYP1B1, and DUSP4) as possible predictors of the time

to viral rebound. According to the literature, four of these (all except the LOC100509457) are already related to

some diseases presented in HIV-infected patients. This work, however, presents several limitations. First, the

computational time of our first approach algorithm, two weeks, is highly demanding and needs to be improved

(for Intel(R) Pentium(R) CPU 3825U 1.90 GHz, RAM: 8 GB, and operating system of 64 bits). Moreover, a simu-

lation study is also needed to describe the properties of our ad-hoc method, but at this point is unfeasible for

the time of computation. To achieve less time-consuming results, the use of a more powerful computer or the

parallelization of this problem should be explored; these points, however, are beyond of the scope of this thesis.

For the second approach (Approach B, Section 5.5.4), we have used the iregnet package considering the

interval-censored times to viral rebound and using the midpoint of these intervals. For the complete dataset, the

coordinate descent method did not converge, this is why we splitted the data into 5 disjoint randomly assigned

subsets and selected the best predictors in each model to finally fit a new model that considered the previously

selected mRNAs. The set of final predictors in each model, considering interval censoring or midpoint imputa-

tion, are different between them and also different from the previously selected with our implemented ad-hoc

algorithm using Nelder-Mead optimization. Moreover, none of these selected predictors, based on the scientific

literature, seems to have a connection with the HIV field. The intuition in this line says that splitting the whole

set of mRNAs in disjoint subsets we are ignoring the biological structure.

This chapter opens the door to a range of research lines. It would be of interest to study the maximization

of the likelihood function of the proportional hazards model using the elastic-net penalization. We could add to

this the study of other optimization algorithms, such as the coordinate descent algorithm, which is implemented

in the glmnet and iregnet packages. Moreover, the possibility to take into account other regularization tech-

niques such as adaptive lasso, adaptive elastic-net, and smoothly clipped absolute deviation (SCAD), among

others, could be object of further investigation. Another critical point that can be seen in Figure 5.4 is that we

have dealt with intervals that have length equal to two weeks or four weeks. An application that considers more

random interval-censored times to viral rebound could help to better study the performance of our methods.

Finally, another aspect to be addressed corresponds to the incorporation of micro RNAs (miRNAs) to the model

used. This addition is not trivial because of the correlation structure between mRNAs and miRNAs. The rela-

tionship between them is not bijective, that is, one miRNA can regulate more than one mRNA and, at the same

time, one mRNA can be regulated by more than one miRNA.

As a first step to close the gap between the mixed effects Cox model using right-censored data and the Cox

model that considers interval censoring, we developed a multiple imputation approach for interval-censored

time to HIV RNA viral rebound within a mixed effects Cox model. After that, we conducted a simulation study

considering 36 different scenarios to examine the properties of the obtained estimators. The results of this simu-



125

lation showed that our method has desirable properties such as low bias and low minimum squared error (MSE).

We are planning new simulation studies in order to explore the estimators properties under additional scenarios

with different fixed and random effects. Machine learning is a complementary different approach that could be

used for multiple imputation (for more information, see Brownlee (2020)). As a limitation we based our imputa-

tion step on the truncated Weibull distribution, however this distribution is flexible enough and allow its hazard

function have different shapes. Another limitation is that we cannot compare nested mixed Cox models when

using interval-censored data. To overcome this we suggest the development of guidelines for the comparison of

nested mixed Cox models. Apart from this, our main future goal is the parameter estimation of a mixed effects

Cox model with interval-censored data without resourcing to multiple imputation.

In our last research contribution we have presented different statistical methodologies applied to the BCN02

clinical trial. For our first goal, the identification of variables that explain the profile of the patient, we have

proposed a log-binomial regression model. The main advantage of this model as compared to the classical

logistic regression model is the more intuitive interpretation of the risk ratio rather than the odds ratio, which

tends to exaggerate the magnitude of the association between exposure and outcome. The main limitation is

related to the small sample size that allowed us to fit only univariate models. In the next study, BCN03, we will

have a larger sample size to study the combination of different variables to explain the response. For our second

goal, the analysis of ELISpot assays data, we have used an unbalanced one/two way ANOVA to obtain the correct

variance estimation for the spot size and count, the main variables from these assays. The lack of prior research

studies on the topic can be seen as a limitation. We believe that the development of an R Shiny App could help

read and sort the data as well as to avoid the manual manipulation of the Immunospot Excel sheet outputs.

Another future aspect of study could be the identification of new clinical information from the spot size, since

now we know that it provides different information than spot counts, using rapid ELISpot.

To sum up, in this thesis, we have both developed new statistical methodology and applied standard sta-

tistical methods to answer important questions related to the therapeutic vaccine for HIV. The results obtained

are important and useful, according to the clinicians involved in the HIV studies described and their multidis-

ciplinary teams. As can be seen in this thesis, Data Science plays and will continue playing a major role in the

path to the cure of HIV.
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Table A.1: Number of publications associated with the topics “Data Science” (denoted by DS), “Big

Data” (denoted by BD) and “Cloud Computing” (denoted by CC) in different countries from 2004 to

2019.

Year Topic USA UK Japan Germany Australia Spain Italy India China

2004 DS 14,025 3,514 1,555 2,848 1,408 982 1,957 404 920

BD 130 29 18 43 10 19 11 2 21

CC 28 3 0 4 0 1 4 0 1

2005 DS 16,184 4,284 1,769 3,562 1,565 1,256 2,371 528 1,234

BD 161 37 19 45 16 20 10 3 29

CC 30 5 2 3 0 0 3 1 2

2006 DS 16,319 4,359 1,673 3,600 1,717 1,322 2,374 554 1,410

BD 116 52 14 36 17 26 21 4 48

CC 24 2 3 9 0 1 2 2 2

2007 DS 16,211 4,420 1,703 3,446 1,715 1,299 2,562 590 1,656

BD 164 42 25 47 17 22 20 9 60

CC 26 3 3 2 0 3 5 2 13

2008 DS 17,766 4,791 1,791 3,763 1,917 1,540 2,583 713 2,083

BD 190 49 20 57 28 29 22 5 62

CC 35 5 2 9 1 4 1 3 12

2009 DS 19,142 5,317 2,045 4,310 2,250 1,868 3,075 850 2,667

BD 167 58 18 51 31 29 28 11 75

CC 37 9 3 15 5 4 3 1 11

2010 DS 21,075 5,889 2,145 4,744 2,674 2,116 3,295 1,041 3,368

BD 202 66 25 74 28 17 31 14 102
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Year Topic USA UK Japan Germany Australia Spain Italy India China

CC 68 9 9 11 6 7 4 7 17

2011 DS 23,402 6,568 2,401 5,185 2,961 2,352 3,650 1,163 4,343

BD 242 56 23 65 43 32 38 11 130

CC 112 7 11 27 6 4 9 7 56

2012 DS 25,647 7,662 2,778 5,796 3,425 2,706 4,002 1,379 5,902

BD 238 66 12 78 39 37 44 16 112

CC 133 16 13 23 13 15 9 13 50

2013 DS 27,087 7,957 2,815 6,054 3,922 2,962 4,514 1,583 7,019

BD 349 95 36 101 61 33 41 20 170

CC 143 37 17 44 18 24 13 7 81

2014 DS 27,676 7,826 2,783 6,164 4,066 3,105 4,655 1,737 8,646

BD 504 126 45 116 81 55 61 24 216

CC 171 37 12 27 26 23 26 17 118

2015 DS 29,007 8,699 2,926 6,319 4,503 3,179 4,857 1,875 10,329

BD 686 188 47 146 101 72 66 44 302

CC 172 42 15 44 25 38 32 31 111

2016 DS 28,770 8,664 2,899 6,585 4,758 3,174 4,865 2,034 10,716

BD 817 230 47 188 124 84 103 70 326

CC 210 50 21 48 31 36 34 65 137

2017 DS 29,268 8,665 2,888 6,525 4,628 3,346 4,946 1,998 11,831

BD 900 283 64 211 132 95 92 71 486

CC 229 49 16 47 45 56 51 48 214

2018 DS 31,619 9,469 3,329 6,907 5,218 3,609 5,444 2,308 13,312

BD 1,033 296 65 221 154 127 150 113 567

CC 294 57 25 55 38 52 49 103 242

2019 DS 29,775 9,394 3,351 6,831 5,120 3,665 5,369 2,004 14,561

BD 1,019 345 69 264 186 153 182 120 564

CC 215 47 18 39 40 35 51 75 236
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SUPPLEMENTARY INFORMATION FOR CHAPTER 5

Table B.1: Set of predictors for the 5 subsets defined using iregnet and midpoint imputation.

Symbol Coef Description

KLRG1 0.0393 killer cell lectin like receptor G1

ECI2 0.0138 enoyl-CoA delta isomerase 2

NAMPT 0.0009 nicotinamide phosphoribosyltransferase

PLXNC1 0.0092 plexin C1

LPAR6 -0.0027 lysophosphatidic acid receptor 6

SLC25A13 -0.0801 solute carrier family 25 member 13

TSHZ1 -0.0013 teashirt zinc finger homeobox 1

HTATIP2 -0.0085 HIV-1 Tat interactive protein 2

CCT2 -0.0008 chaperonin containing TCP1 subunit 2

MAN1A2 0.0466 mannosidase alpha class 1A member 2

CCR5 -0.0285 C-C motif chemokine receptor 5 (gene/pseudogene)

CR1 0.0806 complement component 3b/4b receptor 1 (Knops blood group)

PRUNE2 -0.0116 prune homolog 2

CLECL1 0.0959 C-type lectin like 1

EIF4G1 0.0735 eukaryotic translation initiation factor 4 gamma 1

ERCC1 -0.1148 ERCC excision repair 1, endonuclease non-catalytic subunit

F3 -0.0019 coagulation factor III, tissue factor

FCER1A -0.0265 Fc fragment of IgE receptor Ia

SEL1L3 -0.6494 SEL1L family member 3

FUT8 0.7262 fucosyltransferase 8

EPHX4 -0.1602 epoxide hydrolase 4

ZNF658 0.0030 zinc finger protein 658

GLRX -0.0411 glutaredoxin
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Symbol Coef Description

CYP4V2 -0.2422 cytochrome P450 family 4 subfamily V member 2

PHPT1 -0.0122 phosphohistidine phosphatase 1

LRP12 -0.0028 LDL receptor related protein 12

HSP90AB1 -0.0029 heat shock protein 90 alpha family class B member 1

IFNGR2 0.1090 interferon gamma receptor 2 (interferon gamma transducer 1)

IL13RA1 -0.0011 interleukin 13 receptor subunit alpha 1

ITGA2B 0.0158 integrin subunit alpha 2b

ITPR3 0.2600 inositol 1,4,5-trisphosphate receptor type 3

JARID2 0.4977 jumonji and AT-rich interaction domain containing 2

LGALS3 0.0473 lectin, galactoside binding soluble 3

LSS 0.0770 lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)

MYCN -0.0061 v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog

NCK1 -0.0020 NCK adaptor protein 1

NCL -0.2835 nucleolin

RNF165 0.0437 ring finger protein 165

SCL22A18 -0.1193 solute carrier family 22 member 18

MRPL27 -0.0606 mitochondrial ribosomal protein L27

SERPINE2 -0.2815 serpin family E member 2

P3H2 -0.5630 prolyl 3-hydroxylase 2

GPALPP1 -0.0775 GPALPP motifs containing 1

HEPACAM -0.0030 hepatic and glial cell adhesion molecule

LPAR5 0.3626 lysophosphatidic acid receptor 5

SIPA1L2 -0.0353 signal induced proliferation associated 1 like 2

TRAPPC1 -0.3007 trafficking protein particle complex 1

PLEKHA1 0.0957 pleckstrin homology domain containing A1

RBM4 0.0032 RNA binding motif protein 4

LOC642852 0.0191 uncharacterized LOC642852

CRNDE 0.1033 colorectal neoplasia differentially expressed (non-protein coding)

C11orf1 -0.0548 chromosome 11 open reading frame 1

SCARNA17 0.3755 small Cajal body-specific RNA 17

TTK 0.0146 TTK protein kinase

ZNF736 -0.0588 zinc finger protein 736

DNAJB14 0.2250 DnaJ heat shock protein family (Hsp40) member B14

CHD9 0.0036 chromodomain helicase DNA binding protein 9

NPL -0.0033 N-acetylneuraminate pyruvate lyase

ACOX2 0.4263 acyl-CoA oxidase 2

NIFK 0.3283 nucleolar protein interacting with the FHA domain of MKI67

SUPT3H -0.0595 SPT3 homolog, SAGA and STAGA complex component

CDC42BPA -0.0098 CDC42 binding protein kinase alpha

TOX2 -0.0193 TOX high mobility group box family member 2

CDK5R1 0.0950 cyclin dependent kinase 5 regulatory subunit 1

CD1D 0.1286 CD1d molecule
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Symbol Coef Description

SOCS5 -0.2084 suppressor of cytokine signaling 5

DLGAP5 -0.0114 DLG associated protein 5

TNIP1 0.1719 TNFAIP3 interacting protein 1

ERP29 0.1034 endoplasmic reticulum protein 29

EIF3E 0.0830 eukaryotic translation initiation factor 3 subunit E
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R CODE USED TO FIT THE MIXED EFFECTS COX MODEL

multimp <- function(data , Tl , Tu , dist = "weibull", nimp , uncens ,

var1 , var2 , rand1 , rand2){

require(truncdist)

require(coxme)

require(actuar)

aft <- survreg(Surv(t1, t2, cens, type="interval") ∼ var1 + var2, data)

lambda <- exp(-aft$coef[[1]]/aft$scale)

alpha <- 1/aft$scale

mat <- matrix(0, ncol = nimp , nrow = nrow(data))

colnames(mat) <- as.vector(paste("M", 1:nimp , sep = ""))

for(i in 1:nrow(data )){

mat[i,] <- with(data ,

rtrunc(nimp , spec = dist ,a = Tl[i], b = Tu[i],

shape = alpha,

scale = (lambda * exp(-(aft$coef[[2]] *

data$var1[i]/sca

+ aft$coef[[3]] *

data$var2[i]/sca)))̂(-1/alpha)))

}

mat[data$Tu == Inf , ] <- rep(data$Tl[data$Tu == Inf], nimp)

dat <- data.frame(data , mat)
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S <- vector ("list", nimp)

mfit <- vector ("list", nimp)

beta1 <- rep(0, nimp)

varbeta1 <- rep(0, nimp)

beta2 <- rep(0, nimp)

varbeta2 <- rep(0, nimp)

std1 <- rep(0, nimp)

std2 <- rep(0, nimp)

std3 <- rep(0, nimp)

corr1 <- rep(0, nimp)

for(i in 1:nimp){

S[[i]] <- with(dat , Surv(dat[,(ncol(dat) - nimp + i)],

uncens ))

mfit[[i]] <- coxme(S[[i]] ~ var1 + var2 + (1| rand1)

+ (1 + var2 | rand2), dat)

beta1[i] <- as.numeric(fixef(mfit[[i]])[1])

varbeta1[i] <- as.numeric(vcov(mfit[[i]])[1])

beta2[i] <- as.numeric(fixef(mfit[[i]])[2])

varbeta2[i] <- as.numeric(vcov(mfit[[i]])[4])

std1[i] <- sqrt(mfit[[i]] $vcoef [[1]])

std2[i] <- sqrt(mfit[[i]] $vcoef [[2]][1])

std3[i] <- sqrt(mfit[[i]] $vcoef [[2]][4])

corr1[i] <- mfit[[i]] $vcoef [[2]][2]

}

b1 <- round(mean(beta1),3)

wi1 <- mean(varbeta1)

bi1 <- (sum((beta1 -b1 )^2))/( nimp - 1)

varb1 <- wi1 + (1 + (1/ nimp)) * bi1

sb1 <- round(sqrt(varb1), 4)

hr1 <- round(exp(b1), 2)

ci1 <- round(hr1 * exp(qnorm(c(0.025 , 0.975)) * sb1), 2)

b2 <- round(mean(beta2), 3)

wi2 <- mean(varbeta2)

bi2 <- (sum(( beta2 - b2 )^2))/( nimp - 1)

varb2 <- wi2 + (1 + (1/ nimp)) * bi2

sb2 <- round(sqrt(varb2), 4)

hr2 <- round(exp(b2), 2)

ci2 <- round(hr2 * exp(qnorm(c(0.025 , 0.975)) * sb2), 2)

sd1 <- round(mean(std1), 2)
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sd2 <- round(mean(std2), 2)

sd3 <- round(mean(std3), 2)

cor <- round(mean(corr1), 2)

vars <- c(b1, sb1 , hr1 , ci1 , b2, sb2 , hr2 , ci2 , sd1 , sd2 , sd3 , cor)

names(vars) <- c('Coef ', 'se(coef)', 'HR', 'Lower 95%', 'Upper 95%',

'Coef ', 'se(coef)', 'HR ', 'Lower 95%', 'Upper 95%',

'sd1 ', 'sd2 ', 'sd3 ', 'Corr ')

return(vars)

}
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ADDITIONAL INFORMATION ON THE ATI DATA SET

The eight ATI studies differ from each other with respect to the types of intervention defined by different thera-

peutic vaccines or drug combinations during the combination Antiretroviral Therapy (cART) and the inclusion

criteria, which depended on the CD4 cell count, the plasma viral load (VL), previous years during cART, or the

stage of infection; see Table D.1. In addition, the number of patients varied from one study to the other as well

as the geographical recruitment area. Following, some more detailed information is provided on each study.

In Study 1 (García et al., 2005), the first ATI episode was done to harvest autologous HIV virus to create the

therapeutic vaccine. The therapeutic vaccine was administered just before the second ATI. Patients are coming

from a previous study with non-advanced chronic HIV-1 infection.

Study 2 (García et al., 2013) has a similar design as that of Study 1. In this study, there are 2 ATI episodes, the

first one is to harvest the autologous virus and the second is the post-vaccine stop.

Study 3 (https://clinicaltrials.gov/ct2/show/NCT02767193) corresponds to the ongoing new ver-

sion of the dendritic cell-based vaccine trial. The first ATI episode was done, as in the previous studies, to harvest

autologous HIV virus to create the therapeutic vaccine, which was administered just before the second ATI. Pa-

tients in this trial had to be on stable cART for at least one year and the average of all measurements of CD4 cells

during the year before starting cART.

Study 4 (García et al., 2004) was carried out to evaluate the effect of mycophenolate mofetil (MMF) on the

immunologic control during the ATI. In particular, the first ATI episode was done to evaluate the effect of MMF

over the viral load dynamics. MMF is a well characterized drug widely used in renal transplantation because

of its ability to selectively inhibit lymphocyte division and it may inhibit HIV replication. Patients were chronic

HIV-1 infected persons at very early stages and were treated with cART for 12 months.

Part of the objectives of Study 5 (García et al., 2003) was to study the effect of concomitant hydroxyurea

treatment (HU), which was administered to a group of patients but not in the first ATI episode. The study group

were patients with chronic HIV infection from the Spanish EARTH-2 study. This study 5 was a designed study

to explore the effect of controlled and repeated interruptions over the immune response against the virus. They

were based on the ‘autovaccination’ theory, as explained in the introduction. The first ATI episode does not have
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any specific ‘importance’, but the joint set of ATI episodes (which corresponds to the studied intervention in this

case).

Study 6 (Mothe et al., 2015) corresponds to patients participating in a randomized phase I HIV vaccine trial

with recombinant modified vaccinia Ankara-based and Gag-Pol-Nef polyprotein with or without a drug to reac-

tivate latent HIV in 3 centers. The only ATI episode of this study was done 8 weeks after the last dose of MVA-B

and the viral rebound dynamics were assessed during the first 12 weeks after cART interruption. The ATI was

done to evaluate the effect of the vaccine in the control of viral load during the absence of cART. Participants

were chronically HIV-infected individuals recruited at three HIV units in Barcelona and Madrid (Spain).

In Study 7 (Fagard et al., 2003), cART was interrupted for 2 weeks, restarted for 8 weeks. After 4 such cycles,

treatment was indefinitely suspended 40 weeks after study entry. The ATI rationale in this study is to try to prove

the ‘autovaccination hypothesis’, that is that reexposure to HIV during treatment interruptions may stimulate

the HIV-specific immune response and lead to low viremia after withdrawal of cART.

Study 8 (García et al., 1999, 2001) involved patients with chronic HIV-1 infection in very early stages who

started a twice daily three-drug regimen. cART was discontinued after one year of treatment and effective viro-

logic response. The ATI rationale in this study is the same as in the Study 5.
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Table D.1: Inclusion criteria and treatment for the different studies of the ATI data set.

Study Patients
Treatment

(apart from cART)
CD4 counts
(cells/mm3)

Viral Load
(copies/mL)

Study 1 16 - Dendritic cell-based
HIV-vaccine (n=12)
- Placebo (n=4)

>500 (pre-cART) >5,000 (pre-cART)
<20 for at least 104
weeks while receiving
cART

Study 2 35 - Dendritic cell-based
HIV-vaccine (n=24)
- Placebo (n=11)

>450 (baseline) <37 (enrollment)

Study 3 18 >350 (previous years)
>450 (at enrollment)

Undetectable at least
6 months before
inclusion

Study 4 11 - Received MMF (n=7)
- Did not (n=4)

>500 200-5,000 (baseline)

Study 5 20 >500 (pre-cART) >5,000 (pre-cART)

Study 6 28 - Ankara-based vaccine
and Gag-Pol-Nef polyprotein
with a drug to reactive latent
HIV (n=19)
- Placebo (n=9)

>450 Not specified

Study 7 33 >740 Undetectable for a
median of 21 months

Study 8 10 >500 (last 3 months) >10,000
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MORE INFORMATION OF BCN02 CLINICAL TRIAL

E.1 Additional tables of BCN02 clinical trial

Table E.1: Summary of continuous covariates of BCN02.

Rebounders (n=10) Controllers (n=3)

Variable Med IQR Min Max Med IQR Min Max

At HIV-1 Diagnosis

First log10(VL) 5.11 4.88–5.24 4.26 5.49 4.77 4.06–5.29 3.34 5.82

Response to cART init

Weeks to UD VL 12 4–12 4 36 4 4–14 4 24

log10(VL) at week4 1.63 1.60–2.20 1.56 3.35 1.60 1.58–2.76 1.56 3.93

log10(VL) at week12 1.60 1.56–1.60 1.56 1.61 1.60 1.58–2.11 1.56 2.63

log10(VL) at week24 1.60 1.56–1.60 1.56 1.64 1.56 1.56–1.58 1.56 1.60

CD4 absolute week24 593 498–826 388 1,297 734 621–786 508 838

CD4/CD8 ratio week24 1.05 0.84–1.41 0.63 1.52 1 0.95–1.15 0.89 1.30

At MAP

Weeks since last VAX 13 8–19 8 25 12 10.5–14 9 16

Vaccine Immunogenicity

Total HIV magnitude

At BCN02 entry 5,163 3,375–6,980 1,635 8,945 3,328 2,526–3,428 1,725 3,528

At BCN02 peakimmunog 2,880 2,535–4,790 720 8,355 2,600 1,898–3,388 1,195 4,175

HTI responses

At BCN02 entry 907 560–1,710 170 2,990 1,270 748.5–1,445.5 227 1,621

At BCN02 peakimmunog 200 70–390 0 550 340 170–770 0 1,200
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Rebounders (n=10) Controllers (n=3)

Variable Med IQR Min Max Med IQR Min Max

Viral reservoir

Week 24 BCN01 824 494–1,391 134 3,826 177 142.5–339 108 501

Week 60 BCN01 384 170–623 79 1,382 78 67–233.5 56 389

MAP 146 144–550 29 829 34 25–81 16 128

RMD-PK

AUC1 392.9 386–427.1 314 439.5 473.5 432.5–548.9 391.5 624.3

Reservoir CA RNA

AUC RMD 54.7 14.1–175.2 3.1 183.5 18.14 18.14–18.14 18.14 18.14

Table E.2: Univariate fitted survival models of BCN02.

Variables β̂ s.e.(β̂) 95% CI ĤR

Site (HUGTIP) 0.51 1.66 -2.74, 3.77 1.67

Age 0.24 1.73 -3.14, 3.62 1.27

First log10(VL) 0.43 10.82 -20.78, 21.6 1.53

Days HIV to cART -0.01 0.08 -0.17, 0.16 0.99

log10(BSL VL at cART initiation) 0.53 22.96 -44.47, 45.5 1.70

CD4 absolute v0 -0.01 0.12 -0.25, 0.24 0.99

CD4/CD8 ratio v0 -0.22 3.92 -7.90, 7.47 0.81

Weeks to UD VL 0.02 0.19 -0.36, 0.39 1.02

log10(VL) at w4 -0.27 11.53 -22.87, 22.3 0.76

CD4 absolute w24 -0.001 0.004 -0.01, 0.01 1.00

CD4/CD8 ratio w24 -0.22 1.63 -3.42, 2.98 0.80

CD4 absolute BCN02 entry -0.00 0.002 0.00, 0.00 1.00

CD4/CD8 ratio BCN02 entry 0.35 1.82 -3.21, 3.92 1.42

Total months on cART BCN02 entry -0.07 0.47 -0.99, 0.86 0.94

Months on UD pVL BCN02 entry -0.13 5.36 -10.64, 10.4 0.88

CD4 absolute MAP -0.001 0.03 -0.07, 0.06 1.00

CD4/CD8 ratio MAP 0.06 14.72 -28.79, 28.9 1.07

Total months on cART MAP -0.05 1.76 -3.51, 3.40 0.95

Months on UD VL MAP -0.12 0.18 -0.46, 0.23 0.89

Weeks since last Vax to MAP 0.002 0.71 -1.38, 1.39 1.03

log10(Mag HIVconsv peak) 0.25 3.20 -6.02, 6.53 2.27

log10(Total HIV mag BSL) 2.89 2.36 -1.74, 7.52 24.25

log10(Total HIV mag peak) 0.24 1.48 -2.66, 3.14 2.51

log10(Ratio HIVconsv/total BSL)∗ -0.03 1.96 -3.86, 3.80 0.02

log10(Total out BSL) 2.92 3.66 -4.25, 10.1 27.42

log10(Total out peak) 0.39 5.03 -9.46, 10.24 2.08

log10(HTI responses BSL) 0.88 15.86 -30.21, 32 3.70
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Variables β̂ s.e.(β̂) 95% CI ĤR

log10(HTI responses peak)∗ -0.01 1.42 -2.80, 2.79 0.91

Breadth total HIVconsv (6) BSL 0.11 0.43 -0.72, 0.96 1.13

Breadth total HIVconsv (6) peak -0.68 2.14 -1.36, 1.15 0.50

Breadth total HIVconsv (18) BSL 0.24 0.27 -0.10, 0.71 1.27

Breadth total HIVconsv (18) peak -0.20 1.97 -3.27, 3.24 0.82

Breadth total HTI (5) BSL 0.57 1.88 -1.88, 3.33 1.77

Breadth total HTI (5) peak 0.04 0.45 -0.81, 0.82 1.04

HIV DNA w24 BCN01 0.001 0.01 -0.01, 0.01 1.00

HIV DNA w60 BCN01 0.002 0.02 0.00, 0.01 1.00

HIV DNA w0 BCN02 0.002 0.003 -0.01, 0.01 1.00

HIV DNA w3 BCN02 0.001 0.004 -0.01, 0.01 1.00

HIV DNA w6 BCN02 0.002 0.08 -0.08, 0.08 1.00

HIV DNA w17 BCN02 0.004 0.02 -0.01, 0.02 1.00

AUC1 0.002 0.15 -0.05, 0.02 1.00

AUC RMD -0.01 0.01 -0.04, 0.04 0.99

∗ log10(x +1) transformation used.

Table E.3: Univariate log-binomial regression models for patient profile.

Variables β̂ s.e.(β̂) R̂R 95% CI

Intercept -0.92 0.55

Site (HUGTIP) -1.16 1.08 0.31 0.04, 2.62

Intercept -1.39 0.61

Vaccine ARM BCN01 (B) -0.22 1.08 0.80 0.10, 6.70

Intercept 3.39 1.24

log10(First VL) -1.02 0.37 0.36 0.17, 0.75

Intercept -3.43 1.37

Days HIV to cART 0.02 0.01 1.02 1.00, 1.04

Intercept 3.69 1.42

log10(BSL VL at cART init) -1.15 0.44 0.32 0.13, 0.75

Intercept -1.44 1.31

CD4/CD8 ratio v0 -0.04 1.84 0.96 0.03, 35.55

Intercept -1.29 0.78

Weeks to UD VL -0.02 0.06 0.98 0.89, 1.10

Intercept -2.91 1.30

log10(VL) week 4 0.66 0.41 1.94 0.87, 4.32
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Variables β̂ s.e.(β̂) R̂R 95% CI

Intercept -1.34 1.49

CD4 absolute w24 -0.00 0.002 1.00 1.00, 1.00

Intercept -0.98 2.00

CD4 absolute w24 -0.45 1.83 0.64 0.02, 23.08

Intercept -0.95 1.37

CD4 absolute BCN02 entry -0.00 0.00 1.00 1.00, 1.00

Intercept -0.21 2.52

CD4/CD8 ratio BCN02 entry -0.99 1.88 0.40 0.01, 15.98

Intercept -5.23 7.46

Total months on cART BCN02 entry 0.09 0.18 1.10 0.77, 1.58

Intercept -4.66 5.17

Months on UD VL BCN02 Entry 0.09 0.13 1.09 0.84, 1.42

Intercept -1.44 1.47

CD4 absolute MAP -0.00 0.00 1.00 1.00, 1.00

Intercept -0.47 2.10

CD4/CD8 ratio MAP 0.77 1.63 0.46 0.02, 11.31

Intercept -3.04 9.99

Total months on cART MAP 0.03 0.22 1.04 0.68, 1.59

Intercept -3.91 6.71

Months on UD VL MAP 0.06 0.15 1.06 0.78, 1.43

Intercept -0.88 1.37

Weeks since last Vax to MAP -0.04 0.10 0.96 0.78, 1.17

Intercept -1.15 0.60

log10(Mag HIVconsv BSL)∗ -0.25 0.37 0.78 0.37, 1.62

Intercept 0.73 4.54

log10(Mag HIVconsv peak) -0.67 1.40 0.51 0.03, 7.98

Intercept 1.02 5.13

log10(Total HIV mag peak) -0.73 1.52 0.48 0.02, 9.51

Intercept -1.37 0.68

log10(Ratio HIVconsv/total BSL)∗ -0.15 0.75 0.86 0.20, 3.77

Intercept -1.80 3.10

log10(Ratio HIVconsv/total peak) 0.00 0.03 1.00 0.94, 1.07

Intercept 0.68 3.13

log10(Total out peak) -0.79 1.20 0.45 0.04, 4.71
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Variables β̂ s.e.(β̂) R̂R 95% CI

Intercept -0.07 3.82

log10(HTI responses BSL) -0.48 1.32 0.62 0.05, 8.29

Intercept -0.94 0.85

log10(HTI responses peak)∗ -0.26 0.41 0.77 0.34, 1.73

Intercept -1.18 0.59

Breadth total HIVconsv (6) BSL -0.35 0.56 0.70 0.23, 2.12

Intercept -5.53 4.17

Breadth total HIVconsv (6) peak 0.76 0.72 2.14 0.52, 8.82

Intercept -3.95 3.14

Breadth total HIVconsv (18) peak 0.29 0.33 1.33 0.70, 2.54

Intercept -1.34 1.16

Breadth total HTI (5) BSL -0.06 0.52 0.94 0.34, 2.63

Intercept -0.68 0.64

Breadth total HTI (5) peak -0.61 0.53 0.54 0.19, 1.54

Intercept 0.09 0.56

HIV DNA w24 BCN01 -0.00 0.00 1.00 0.99, 1.00

Intercept -0.20 0.62

HIV DNA w60 BCN01 -0.01 0.00 0.99 0.99, 1.00

Intercept -0.56 0.71

HIV DNA w0 BCN02 -0.01 0.01 0.99 0.98, 1.01

Intercept -0.45 0.62

HIV DNA w3 BCN02 -0.01 0.01 0.99 0.98, 1.01

Intercept -0.74 0.67

HIV DNA w6 BCN02 -0.00 0.00 1.00 0.99, 1.00

Intercept -0.01 0.50

HIV DNA w17 BCN02 -0.01 0.01 0.99 0.97, 1.00

Intercept -0.04 0.44

HIV DNA MAP -0.01 0.01 0.99 0.97, 1.00

Intercept -1.34 1.34

HIV DNA MAP -0.03 0.05 0.97 0.87, 1.08

∗ log10(x +1) transformation used.
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Table E.4: Pool of peptides for HIVconsv in ELISpot assay of BCN02.

Pool # Protein coverage Number of peptides

p1 Gag Clade C, D and A 28
p2 Pol Clade B 30
p3 Pol Clade C 30
p4 Vif Clade D, Pol Clade A, Env Clade C 24
p5 Pol Clade A, B and D 31
p6 Pol Clade C, Env Clade D, Mouse & Macaque 23

Table E.5: Pool of peptides for OUT in ELISpot assay of BCN02.

Pool # Protein coverage Number of peptides

OUT Gag-1 Gag clade B (p17-p24) 50
OUT Gag-2 Gag clade B (p24-p15) 39
OUT Pol-1 Gag/pol TF, Prot, RT 39
OUT Pol-2 RT 39
OUT Pol-3 RT, Int 40
OUT V-T Vif (39), Tat(19) 58
OUT Env-1 Gp 120 46
OUT Env-2 Gp 120 46
OUT Env-3 Gp 120, gp41 47
OUT Env-4 Gp 41 47
OUT Nef Nef 49
OUT Acc Vpu (19), Vpr(22), Rev(26) 67

Table E.6: Pool of peptides for HTI in ELISpot assay of BCN02.

Pool # WITHOUT AAA-containing peptides Number of peptides

Gag-p1 Seg 1-2-3 23
Gag-p2 Seg 4-5-6-7 20
Pol-p1 Seg 8-9-10 29
Pol-p2 Seg 11-12-13 14
Vif-Nef Seg 14-15-16 9
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Table E.7: Cells per well in each timepoint for every subject in BCN02.

Patient w0 w1 w3 w9 w10 w13

A12 100,000 100,000 100,000 100,000 100,000 100,000
A13 100,000 72,000 100,000 100,000 100,000 100,000
A04 100,000 100,000 100,000 100,000 86,000 92,000
A14 100,000 100,000 100,000 100,000 100,000 100,000
B03 100,000 100,000 100,000 100,000 100,000 100,000
B05 100,000 100,000 100,000 145,000 100,000 100,000
B06 100,000 100,000 100,000 100,000 100,000 100,000
A15 100,000 100,000 100,000 100,000 100,000 100,000
B13 100,000 100,000 100,000 100,000 100,000 100,000
B07 100,000 100,000 100,000 100,000 100,000 100,000
A05 100,000 100,000 100,000 100,000 100,000 100,000
A09 100,000 100,000 100,000 100,000 100,000 100,000
A02 100,000 100,000 100,000 100,000 100,000 100,000
B10 100,000 100,000 100,000 100,000 100,000 100,000
B14 100,000 100,000 100,000 100,000 100,000 100,000

E.2 Results for OUT and HTI region
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Figure E.1: Mean and 95%confidence interval for spot counts in OUT region for each pool of peptides
and each patient profile (first part).
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Figure E.2: Mean and 95%confidence interval for spot counts in HIVconsv region for each pool of
peptides and each patient profile (second part).
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Figure E.3: Mean and 95%confidence interval for spot counts in HTI region for each pool of peptides
and each patient profile.
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Figure E.4: Mean and 95%confidence interval for spot size in OUT region for each pool of peptides and
each patient profile (first part).
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Figure E.5: Mean and 95%confidence interval for spot size in OUT region for each pool of peptides and
each patient profile (second part).
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Figure E.6: Mean and 95%confidence interval for spot size in HTI region for each pool of peptides and
each patient profile.
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Figure E.7: Mean and 95%confidence interval for spot size and spot count in OUT region for each pool
of peptides (first part).
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Figure E.8: Mean and 95%confidence interval for spot size and spot count in OUT region for each pool
of peptides (second part).
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Figure E.9: Mean and 95%confidence interval for spot size and spot count in HTI region for each pool
of peptides.
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This Glossary is intended to explain briefly the main biological terms presented in this research. These defini-

tions are based mainly on those presented by the World Health Organization (World Health Organization, 2017)

and in two Public Health Encyclopedias (The Chartered Society of Physiotherapy , 2008; Kirch, 2008).

Acquired Immunodeficiency Syndrome is a term which applies to the most advanced stages of HIV infection.

It is defined by the occurrence of any of more than 20 opportunistic infections or HIV-related cancers.

Antibody is the generic name for any immunoglobulin produced, no matter how this occurs. Humans can pro-

duce many specific antibodies. This may be an active process by a healthy host in response to the chal-

lenge of exposure to a foreign antigen transmitted via the placenta or in maternal milk from mother to

offspring, or it may be artificially induced by immunization with live attenuated organisms, killed organ-

isms, or a protein derivative. The antibody is the basic ingredient of the host’s defenses against infection.

By measuring the concentration of specific antibodies in individuals and populations it is possible to de-

termine levels of susceptibility and resistance to infection by specific pathogens. At the population level,

this is called “sero-epidemiology”.

Antigen is a substance that is capable of inducing a specific immune response in the host into which it is intro-

duced. The immune response is mediated via an immunoglobin (protein) molecule, called an antibody,

which is formed by B-lymphocytes and T-helper cells that are the basic ingredients of the host’s immune

system. An antigen is an organic compound- a protein, polysaccharide or glycolipid. Sometimes it is an

entire organ or tissue that has been transplanted into the host, which rejects it and attempts to destroy

it. An antibody has the capacity to bind specifically to the (foreign) antigen and thereby neutralize it so it

can be destroyed by the host’s phagocytes.

Antiretroviral Therapy consists of the combination of antiretroviral drugs to maximally suppress the HIV virus

and stop the progression of HIV disease. ART also prevents onward transmission of HIV. Huge reductions

have been seen in rates of death and infections when use is made of a potent ARV regimen, particularly in

early stages of the disease. The WHO recommends ART for all people with HIV as soon as possible after
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diagnosis without any restrictions of CD4 counts. It also recommends offer of pre-exposure prophylaxis

to people at substantial risk of HIV infection as an additional prevention choice as part of comprehensive

prevention. Countries are now following to adapt and implement these recommendations within own

epidemiological settings.

CD4 is a type of lymphocyte. CD4 T lymphocytes (CD4 cells) help to coordinate the immune response by stim-

ulating other immune cells, such as macrophages, B lymphocytes (B cells), and CD8 T lymphocytes (CD8

cells), to fight infection. HIV weakens the immune system by destroying CD4 cells.

CD8 is a T cell with CD8 receptor recognizes antigens on the surface of a virus-infected cell and binds to the

infected cell and kill it.

Cytokine The term cytokine is derived from a combination of two Greek words - “cyto” meaning cell and “ki-

nos” meaning movement. Cytokines are cell signalling molecules that aid cell to cell communication

in immune responses and stimulate the movement of cells towards sites of inflammation, infection and

trauma. Cytokines exist in peptide, protein and glycoprotein (proteins with a sugar attached) forms. The

cytokines are a large family of molecules that are classified in various different ways due to an absence of

a unified classification system. Examples of cytokines include the agents interleukin and the interferon

which are involved in regulating the immune system’s response to inflammation and infection.

Dendritic cells are a type of antigen-presenting cells that form an important role in the adaptive immune sys-

tem. The main function of dendritic cells is to present antigens. In addition, only the dendritic cells have

the capacity to induce a primary immune response in the inactive or resting naive T lymphocytes. To do

this, the dendritic cells capture the antigens from invading bodies, which they process and then present

on their cell surface, along with the necessary accessory or co-stimulation molecules. Dendritic cells also

contribute to the function of B cells and help to maintain their immune memory. Dendritic producing

cytokines and other factors that promote B cell activation and differentiation.

Enzyme-Linked Immunosorbent Assays are the most widely used type of assay. They have evolved from viral

lysate tests to tests containing recombinant protein and synthetic peptide antigens. They have high sensi-

tivity and specificity. ELISAs are designed specifically for screening large numbers of specimens at a time,

making them suitable for use in surveillance and centralized blood transfusion services. As ELISAs re-

quire sophisticated equipment and skilled technicians to perform the tests, their use is limited to certain

circumstances.

Enzyme-Linked Immunospot assay is a highly sensitive immunoassay that measures the frequency of cytokine-

secreting cells at the single-cell level. In this assay, cells are cultured on a surface coated with a specific

capture antibody in the presence or absence of stimuli. Proteins, such as cytokines, that are secreted

by the cells will be captured by the specific antibodies on the surface. After an appropriate incubation

time, cells are removed and the secreted molecule is detected using a detection antibody in a similar pro-

cedure to that employed by the ELISA. The detection antibody is either biotinylated and followed by a

streptavidin-enzyme conjugate or the antibody is directly conjugated to an enzyme. By using a substrate

with a precipitating rather than a soluble product, the end results are visible spots on the surface. Each

spot corresponds to an individual cytokine-secreting cell.

Env is a viral gene that encodes the protein forming the viral envelope. The expression of the Env gene enables

retroviruses to target and attach to specific cell types, and to infiltrate the target cell membrane.

Gag (Group-specific antigen) is the genetic material that codes for the core structural proteins of a retrovirus.
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Human Immunodeficiency Virus is a virus that infects cells of the immune system, destroying or impairing

their function. Infection with the virus results in progressive deterioration of the immune system, leading

to “immune deficiency”. The immune system is considered deficient if it is no longer able to fulfill its

role of fighting infection and disease. Infections associated with severe immunodeficiency are known as

“opportunistic infections”, because they take advantage of a weakened immune system.

Interferon gamma is a cytokine that is critical for innate and adaptive immunity against viral, some bacterial

and protozoal infections. Aberrant IFN-γ expression is associated with a number of autoinflammatory

and autoimmune diseases. The importance of IFN-γ in the immune system stems in part from its ability

to inhibit viral replication directly, and most importantly from its immunostimulatory and immunomod-

ulatory effects. IFN-γ is produced predominantly by natural killer and natural killer T cells as part of the

innate immune response, and by CD4 Th1 and CD8 cytotoxic T lymphocyte effector T cells once antigen-

specific immunity develops.

Immunogenicity is the ability of a particular substance, such as an antigen or epitope, to provoke an immune

response in the body.

Latency Reversing Agents are small pharmacological molecules that could help uncover where HIV is hiding in

the cells of HIV-positive individuals whose viral load has been suppressed below the level of treatment by

effective ART.

Latent HIV reservoir Resting CD4 cells (or other cells) that are infected with HIV but not actively producing HIV.

Latent HIV reservoirs are established during the earliest stage of HIV infection. Although ART can reduce

the level of HIV in the blood to an undetectable level, latent reservoirs of HIV continue to survive. When a

latently infected cell is reactivated, the cell begins to produce HIV again. For this reason, ART cannot cure

HIV infection.

Lymphocyte is one of the subtypes of white blood cell in a vertebrate’s immune system. Lymphocytes include

natural killer cells, T cells and B cells. They are the main types of cells found in lymph, which prompted

the name lymphocyte.

Nef is a small protein encoded by primate lentiviruses. These include HIV-1, HIV-2 and SIV. Nef localizes

primarily to the cytoplasm but also partially to the Plasma Membrane and is one of many pathogen-

expressed proteins, known as virulence factors, which function to manipulate the host’s cellular machin-

ery and thus allow infection, survival or replication of the pathogen. Nef stands for “Negative Factor”

and although it is often considered dispensable for HIV-1 replication, in infected hosts the viral protein

markedly elevates viral titers.

PBMC (Peripheral Blood Mononuclear Cell) is any peripheral blood cell having a round nucleus. These cells

consist of lymphocytes (T cells, B cells, NK cells) and monocytes. These cells can be extracted from whole

blood using ficoll, a hydrophilic polysaccharide that separates layers of blood, and gradient centrifuga-

tion, which will separate the blood into a top layer of plasma, followed by a layer of PBMCs and a bottom

fraction of polymorphonuclear cells and erythrocytes.

Peptides are chemical agents belonging to the protein family. A peptide is composed of a mixture of several

amino acids. These agents are involved in the composition of a large number of substances produced by

the body, in particular hormones that regulate body functions, enzymes that carry out chemical reactions,

transmitter molecules, neurotransmitters that carry nerve impulses, and so on.
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Seroconversion is the time period during which a specific antibody develops and becomes detectable in the

blood. After seroconversion has occurred, the disease can be detected in blood tests for the antibody.

During an infection or immunization, antigens enter the blood, and the immune system begins to pro-

duce antibodies in response. Before seroconversion, the antigen itself may or may not be detectable, but

the antibody is, by definition, absent. During seroconversion, the antibody is present but not yet de-

tectable. Any time after seroconversion, the antibodies can be detected in the blood, indicating a prior or

current infection.

SIV (Simian immunodeficiency viruses) are retroviruses that cause persistent infections in at least 45 species of

African non-human primates.

Spot Within an ELISPOT well, spot is the “footprint” of a single cell that has released a relatively high amount of

cytokines. True spots have a dense center with a light outer ring caused by the diffusion of the cytokine

from the producing cell. The color depth or the size of spots depends on the amount of secreted cytokines.

Spot size is the relative amounts of cytokine produced per cell.

T cells or T lymphocyte, is a type of lymphocyte (a subtype of white blood cell) that plays a central role in cell-

mediated immunity. T cells can be distinguished from other lymphocytes, such as B cells and natural

killer cells, by the presence of a T-cell receptor on the cell surface. They are called T cells because they

mature in the thymus from thymocytes.

Therapeutic vaccine When most people hear the word vaccine, they think of a way to prevent disease. However,

therapeutic vaccines are not used for prevention. Instead, they are used as a method of treatment. Just

like a regular vaccine, therapeutic vaccines are used to stimulate the immune system to target an infection

or a type of diseased cell. In other words, they help teach the body how to do a better job of protecting

itself in order to control, or get rid of, an otherwise difficult to treat condition.

Viral rebound When a person on ART has persistent, detectable levels of HIV in the blood after a period of

undetectable levels. Causes of viral rebound can include drug resistance or poor adherence to an HIV

treatment regimen.

Viral load HIV-1 viral load refers to the number of viral particles found in each milliliter. The more HIV-1 viral

particles in the blood, the faster the CD4+ T-cells are likely destroyed and the faster the progress toward

AIDS.
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