
Master’s Thesis

Master’s Degree in Automatic Control and Robotics

Evolution of Behaviour Trees for Collective
Transport with Robot Swarms

REPORT

Author: Guillermo Legarda Herranz
Director: Dr. Simon Jones
Speaker: Dr. Ramon Costa Castelló
Call: June 2021

Barcelona School of Industrial Engineering

Page 2 Report

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 3

Summary

Swarm robotics, inspired by natural swarms, studies how simple robots with only
local sensing capabilities and no centralised control may cooperate to achieve a
common goal in a robust, flexible and scalable way. A robotic system with such
properties constitutes an interesting alternative to the platforms currently used in
warehouses and distribution plants, where workers are at risk of injury and the space
and budget available for complex infrastructure is limited. Swarm behaviours are
emergent, which makes the task of designing the controllers of the individual robots
particularly challenging.

In this work, we propose a method for a swarm of industrial robots to collectively
transport items that are too heavy for a single agent to carry. We use artificial
evolution to evolve behaviour tree controllers for the swarm agents and we conceive
a decentralised coordination strategy based on local messaging. The method is
developed and tested in a simulated environment, using a combination of freely
available open source libraries.

The results show that a homogeneous swarm equipped with our solution is able to
successfully find the items placed in the environment and transport them back to
a nest region. We suggest further tuning of the evolutionary parameters and the
introduction of noise in the simulator in order to improve the observed performance
of the controllers in simulation and their expected performance the real world.

Contents

Summary . 3

Contents . 4

1 Acronyms . 6

2 Introduction . 7
2.1 Swarm robotics . 7

2.1.1 Emergence . 7
2.1.2 Design challenges . 8

2.2 Objectives . 9

3 Related work . 10

4 Behaviour trees . 11
4.1 Behaviour tree theory . 12

4.1.1 Node types . 12
4.2 Conclusions . 16

5 Genetic programming . 16
5.1 Representation . 16
5.2 Evolution . 17

5.2.1 Initialisation . 18
5.2.2 Fitness . 18
5.2.3 Selection . 19
5.2.4 Genetic operations . 20

5.3 Application to behaviour trees . 21
5.4 Conclusions . 21

6 Collective transport . 22
6.1 Task description . 22
6.2 Environment . 22

6.2.1 Agents . 23
6.2.2 Arena . 24
6.2.3 Loads . 26

6.3 Conclusions . 27

7 Robot control . 28
7.1 Reference model . 28

7.1.1 Communication . 30
7.2 Behaviour tree controller . 32

4

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 5

7.2.1 Blackboard . 32
7.2.2 Execution nodes . 35
7.2.3 Constituent behaviours and conditions 37
7.2.4 Implementation . 39

7.3 Negotiation . 45
7.4 Conclusions . 47

8 Simulation . 47
8.1 Environment initialisation . 47
8.2 Run stages . 49

8.2.1 Sense . 49
8.2.2 Control . 50
8.2.3 Broadcast . 50
8.2.4 Process . 51
8.2.5 Act . 51

8.3 Fitness . 52
8.4 Conclusions . 52

9 Evolution . 53

10 Results . 55

11 Planning . 57

12 Budget analysis . 58

13 Environmental impact . 59

Conclusions . 59

Acknowledgements . 60

Bibliography . 60

Page 6 Report

1 Acronyms

AABB Axis-aligned bounding-box

ANN Artificial neural network

BT Behaviour tree

DOF Degrees of freedom

EA Evolutionary algorithm

FOV Field of view

FSM Finite state machine

GA Genetic algorithm

GP Genetic Programming

GUI Graphical user interface

IMU Inertial measurement unit

LED Light-emitting diode

NPC Non-player character

PFSM Probabilistic finite state machine

RDPSO Robotic Darwinian Particle Swarm Optimization

ROS Robot Operating System

TOF Time of flight

XML Extensive Markup Language

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 7

2 Introduction

2.1 Swarm robotics

Swarm robotics is the study of how a group of relatively simple robots can cooperate
to achieve a common goal [1]. The term relatively simple is task-relative and refers to
the inability of a single robot to perform the required task. The robots that compose
the swarm might be homogeneous or heterogeneous [2]. They are controlled with a
decentralised architecture and are asynchronous, meaning that they do not share a
common time [3]. In order to complete the task, each robot within a swarm interacts
locally with its environment and with other neighbouring robots.

The use of robot swarms aims to exploit three properties of natural swarms: ro-
bustness, flexibility and scalability [1]. Robustness refers to the immunity of the
behaviour of the swarm to the loss of some of its individuals, flexibility is the ability
of the swarm to successfully adapt to changes in the environment and scalability is
the property of the swarm to be able to operate with different group sizes. While
these are in fact objectives of robotic swarm designers, the common tendency to
assume them as an inherent property of a system has been challenged [4].

2.1.1 Emergence

Natural swarms, and therefore also robotic swarms, rely on the emergence of complex
behaviours through local interactions to successfully complete various tasks. This
synergy is observed in a wide variety of species, particularly in social insects, who
use swarm intelligence to their advantage [5]. Honeybees, for instance, collectively
forage the environment to find food sources. When they find a source, foraging
agents return to the hive and transmit its profitability by means of waggle dances
[6]. This allows the colony to filter foraging sites, depending on the level of food
scarcity.

Social insects are also known to build structures. Army ants of the genus Eciton, for
example, use their own bodies to assemble highly dynamic bridges and thus cross
gaps in their foraging trails [7]. The shape of the bridges depends on the traffic
rate and the environment, and colonies consider the trade-off between the benefit of
building larger bridges and losing foraging agents. Another example are termites in
the genus Macrotermes, which build impressive soil mounds above their nests with
efficient ventilation ducts [8].

Page 8 Report

There are many other complex behaviours exhibited by social insects, including
aggregation, dispersion and pattern formation [9]. Additionally, other animals also
exhibit notable swarm behaviours. Some species of birds, fish and land animals
are commonly seen forming flocks, schools and herds, respectively. In fact, these
scenarios were accurately simulated by Reynolds by defining three basic actions that
every member of the group performs: alignment with their neighbours, cohesion or
attraction to the group and separation from the group [10]. The work of Reynolds is
therefore often mentioned as one of the earlier examples of the viability of modelling
the synergic behaviour of a swarm.

Brambilla et al. [11] and, more recently, Schranz et al. [12], developed a taxonomic
classification of robot swarms according to the behaviour they exhibit. These can
be separated into four groups: spatial organisation, navigation, decision making and
miscellaneous. In this work, we focus on the task of collective transport within the
navigation group, in which swarm agents need to cooperate to transport an object
that is too heavy or too large for a single one of them to carry. Agents therefore
need to cooperate to agree on a common direction of motion.

Collective transport has been observed in several species of ants [13]. During a
foraging task, ants leave a nest region to find a source of food, also commonly
referred to as the prey. Upon encountering an item, an ant tests its resistance to
motion and, if it cannot carry it nor drag it, it will recruit other ants [14]. Once a
sufficient number of ants are recruited, the group transports the item back to the
nest.

2.1.2 Design challenges

The design of individual robot controllers to achieve an emergent behaviour is ar-
guably one of the greatest challenges in swarm robotics. This task is often tackled
manually, where designers use their intuition to construct the controllers. The use
of evolutionary robotics for automatic controller generation is a popular alternative.
In evolutionary robotics, an initial population of controllers is evolved following the
rules of natural selection and survival of the fittest until a controller that satisfies
certain performance criteria emerges [15].

The controller architecture commonly selected for evolutionary robotics is an arti-
ficial neural network (ANN), which maps sensor inputs to actuator outputs. This
approach, however, results in controllers with poor generalisation properties, which
Francesca et al. [16] argue to be due to the unconstrained representational power of
ANNs. This leads to an inability of the controlled swarms to cross the reality gap,
that is, to perform satisfactorily both in simulation and in the real world.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 9

Several approaches have been taken to attempt to reduce the effects of the reality
gap. Some rely on sampling the environment through the sensors and actuators of
the robot to build an accurate simulation [17, 18], while others propose to increase
the robustness of the controller by introducing an appropriate amount of noise at
all simulation levels [19].

Francesca et al. [16] compare this sensitivity to the transition to reality to the
problem of overfitting in the field of machine learning. They therefore propose the
introduction of bias in the automatic design of robot controllers as a way to reduce
their variance. They do so by designing modular controllers with an optimisation
algorithm that may only use a predefined set of behaviours as building blocks. The
resulting controllers are shown to successfully overcome the reality gap.

2.2 Objectives

Despite modern infrastructures, workers at warehouses and distribution plants re-
main at risk of injury [20]. The use of robotic platforms that may assist in the
transport of heavy items, such as pallets, totes and packages, not only serves to pre-
vent harm to workers; it also leads to reduced labour costs and improved reliability
of operation [21, 22]. While the acquisition of such platforms is often expensive,
modular, autonomous mobile robots provide a more flexible alternative, since the
number of robots needed is adaptable to the level of demand [23]. These, however,
often rely on centralised control, which makes the integrity of the entire system
dependent on a central unit.

Using robot swarms, we may provide the industry with cheaper alternatives with
increased fault-tolerance [24]. Since the goal behaviour is achieved through synergy,
the individual robots are relatively simple and, therefore, cheaper to build. Addi-
tionally, the performance of the swarm should not depend on any individual robot,
hence the fault-tolerance.

In this work, we propose a method for collective transport of platforms of different
weights and sizes with a swarm of industrial robots in a simulated environment.
As an additional requirement, the robots should be able to move multiple items
simultaneously. In order to reduce the sensitivity of the solution to the reality gap,
we use behaviour trees (BTs) as a robot controller architecture, which are modu-
lar, reactive and easy to interpret, and we evolve them using genetic programming
(GP) techniques. The robots also use a decentralised, direct communication and a
negotiation strategy to coordinate. The platforms and the arena are designed in a
way that could easily be implemented in the real world. To evaluate the generated

Page 10 Report

controllers, we build a simple 2D physics-based simulator.

We face four main challenges in the search for our solution. First, the negotia-
tion strategy must guarantee the integrity of the swarm, the environment and the
payload. Second, we must design compatible BT and GP implementations, taking
advantage of existing, powerful open-source libraries. Third, our simulator must be
lightweight and efficient in order to reduce the computational resources required to
compute a solution. And fourth, we must be able to assess positively the perfor-
mance of the swarm for the task of collective transport, according to a pre-defined
measure of performance.

The following report is structured as follows: in Sections 4 and 5, we give an overview
of the theory behind BTs and GP that is relevant to this work. In Section 6, we
define the collective transport task and the environment. We describe the robot
control architecture in Section 7, including the BT implementation and the nego-
tiation strategy. In Section 8, we describe our 2D simulator and, in Section 9, our
implementation of GP. We analyse the obtained results in Section 10 and finish with
some conclusions and ideas for further development.

3 Related work

In this section, we review the existing literature on collective transport, focusing on
the two main aspects of our project: the coordination strategy and the automatic
generation of controllers.

In robotic applications, agents may communicate to achieve collective transport.
Matarić et al. [25] devised a turn-taking strategy with direct messaging to make
two six-legged robots transport an item more efficiently than a single robot. Campo
et al. [26] introduced a negotiation strategy that allowed the robots carrying an
item to collectively estimate the goal direction. Each robot used light-emitting
diodes (LEDs) to indicate their direction of motion, which the rest were able to
perceive. The robots were then able to carry an object towards a goal even if some
of them had noisy or no perception of the goal. Ferrante et al. [27] used local, direct
communication between robots to transport a physically attached object to a goal
location. They exploited the lack of perception of some aspects of the environment
by some of the robots to develop a social mediation behaviour, which the robots
used to compute the goal direction.

Other authors have demonstrated the viability of collective transport using artificial
evolution. Groß and Dorigo [28] used artificial evolution to achieve group transport

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 11

with robots that were unaware of each other. Baldasarre et al. [29] evolved neural
network controllers to make a group of robots physically attached to an item move
towards a goal. The robots were able to perceive the forces exerted by the item on
their chassis to determine whether to push or pull. Alkilabi et al. [30] also evolved
neural networks to develop controllers that were robust to variability in the size of
the group and the items to be carried.

More recently, Hamouda [31] proposed a modification of the Robotic Darwinian
Particle Swarm Optimization (RDPSO) algorithm to transport multiple different
objects simultaneously [32].

4 Behaviour trees

Behaviour trees are structures that allow an agent to switch between executions
of different self-contained tasks [33]. In the context of robotics, an agent may be
an individual robot and the tasks are reusable actions through which the agent
interacts with its environment. These tasks can be combined to generate more
complex behaviours, which in turn may be used to build higher-level structures [34].

BTs were originally designed to define the behaviours of non-player characters
(NPCs) in video games [35, 36]. Their modular and hierarchical structures allowed
game developers to encode complex behaviours with high variability that satisfied
runtime constraints. While most research on BTs is focused on entertainment sys-
tems, their use in academia is becoming increasingly popular [37, 38, 39].

BTs present some interesting advantages as a controller architecture. They rely on
two-way control transfers where, after a function is executed, control is returned
to the function that called it. BTs are reactive, which means that a robot may
quickly react to changes in the environment. They are modular, so any subtree of
a BT constitutes its own valid BT. This allows for testing and reusing parts of the
BT separately and also results in BTs having a hierarchical structure and, thus,
improved readability.

Finite state machines (FSMs) are a common modular alternative to BTs. FSMs,
however, rely on one-way transfer controls, and must therefore sacrifice modularity
in order to achieve reactiveness [33].

Page 12 Report

4.1 Behaviour tree theory

In their most basic form, BTs are directed acyclic graphs of nodes and edges. Every
pair of interconnected nodes consists of an outgoing parent node and an incoming
child node. A BT has a unique parent-less node, called the root node, and a set of
child-less nodes, called leaf nodes. Additional non-leaf nodes connect the root node
to the leaf nodes. To execute a BT, the root node sends a tick signal down the tree
periodically. The tick is propagated as specified by the non-leaf nodes, typically in
a depth-first, left-to-right manner, until the leaf nodes are reached. The leaf nodes
then interact with the environment through a set of variables called the blackboard.
Once executed, the leaf nodes return one of three possible states: success, failure
or running. This result is then propagated back up the tree, possibly triggering the
execution of additional leaf nodes, until the root node is reached again, which will
return the state of the tree.

In this work, we use the unified BT framework developed by Marzinotto et al. [40],
which provides an accurate and compact method to represent BTs for robot control
problems. In this framework, every child node must have a unique parent, which
promotes readability of the BTs. Furthermore, the BT update frequency, ftick is
unrelated to the controller’s frequency, fcontrol, although, as we shall see in Section
7, we set these to parameters to be equal.

4.1.1 Node types

There are four types of non-leaf, or control-flow, nodes: selector, sequence, parallel
and decorator nodes. We also include the extensions selector* and sequence*, which
represent selector and sequence nodes with memory, as detailed below. The action
and condition nodes are the two types of leaf, or execution, nodes that complete the
set of available nodes. Each node behaves as follows:

Selector: a selector node with n > 1 children ticks each child sequentially
and returns failure if all children return failure. If one child returns success or
running, the selector does not tick any more of its children and also returns
success or running, respectively.

Sequence: a sequence node with n > 1 children ticks each child sequentially
and returns success if all children return success. If one child returns failure
or running, the selector does not tick any more of its children and also returns
failure or running, respectively.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 13

Selector* (sequence*): the difference between a selector* (sequence*) node
and a regular selector (sequence) node is that a selector* (sequence*) node
holds a variable that points to the child that has most recently returned run-
ning. In each iteration, the selector* (sequence*) node first ticks the child
pointed to by its internal variable, and then the following children sequen-
tially. The variable is reset every time the selector* (sequence*) node returns
success or failure.

As shown by Jones [41], nodes with memory are in fact syntactic sugar, and
therefore any BT containing nodes with memory may also be represented in
memoryless form .

Parallel: A parallel node takes two parameters: S and F , where S, F ∈ N.
A parallel node ticks all of its children sequentially and returns success if
the number of succeeding children is greater than or equal to S. Similarly, a
parallel node returns failure if the number of failing children is greater than
or equal to F . Otherwise, it returns running. We do not use parallel nodes in
this work.

Decorator: a decorator node has a unique child. Based on its internal vari-
ables, it decides whether to tick its child or not and can modify the state it
returns. In all cases, a decorator returns running if its child node returns
running. In this work, we define four distinct decorators: an inverter decora-
tor, which returns success if its child returns failure and vice versa; a success
decorator, which always returns success ; a failure node, which always returns
failure and a repeat node, which returns running until its child node returns
success n times, or failure if its child returns failure.

Action: an action node may read from the blackboard and write to some of
its variables, thus modifying their contents. Upon execution, an action node
may return success, failure or running.

Condition: a condition node may read from the blackboard, but it may not
modify any of its contents. Upon execution, a condition node may return
success or failure, but it may never return running.

Figures 4.1-4.5 show the graphical representation of the control-flow nodes used in
this work, which we borrow from [41]. In Algorithms 1-8, the pseudocode describing
the behaviour of each control-flow node is given.

Page 14 Report

Figure 4.1: Selector node with two chil-
dren

Figure 4.2: Sequence node with two
children

Figure 4.3: Selector* node with two
children

Figure 4.4: Sequence* node with two
children

Figure 4.5: Decorator nodes: inverter (!), success (X), failure (×), repeat (n)

Algorithm 1: Selector

1 for i← 1 to N do
2 state← Tick(child(i))
3 if state = running then
4 return running
5 else if state = success then
6 return success
7 end

8 end
9 return failure

Algorithm 2: Sequence

1 for i← 1 to N do
2 state← Tick(child(i))
3 if state = running then
4 return running
5 else if state = failure then
6 return failure
7 end

8 end
9 return success

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 15

Algorithm 3: Selector*

1 for i← run-index to N do
2 state← Tick(child(i))
3 if state = running then
4 run-index← i
5 return running

6 else if state = success then
7 run-index← 1
8 return success

9 end

10 end
11 run-index← 1
12 return failure

Algorithm 4: Sequence*

1 for i← run-index to N do
2 state← Tick(child(i))
3 if state = running then
4 run-index← i
5 return running

6 else if state = failure then
7 run-index← 1
8 return failure

9 end

10 end
11 run-index← 1
12 return success

Algorithm 5: Success

1 state← Tick(child)
2 if state = running then
3 return running
4 end
5 return success

Algorithm 6: Failure

1 state← Tick(child)
2 if state = running then
3 return running
4 end
5 return failure

Algorithm 7: Inverter

1 state← Tick(child)
2 if state = running then
3 return running
4 else if state = success then
5 return failure
6 end
7 return success

Algorithm 8: Repeat

1 state← Tick(child)
2 if state = success then
3 try-index← try-index+ 1
4 if try-index = cycles then
5 try-index← 0
6 return success

7 end

8 else if state = failure then
9 try-index← 0

10 return failure

11 end
12 return running

Page 16 Report

4.2 Conclusions

In this section, we introduce behaviour trees and analysed the properties that make
them suitable for robotics applications. We then reviewe their structure and com-
position according to a generalised framework and described the evaluation mecha-
nism.

5 Genetic programming

Genetic programming is a type of evolutionary algorithm (EA) that aims to find a
solution to a problem by evolving an initial population of computer programs, given
a set of high-level objectives [42].

EAs are a set of metaheuristic optimisation techniques that draw inspiration from
biological evolution [43]. In nature, the genetic material of a living organism (its
genome) is contained in its chromosomes. The information contained in this genome,
known as the genotype, will determine its observable traits, including its physical
form and behaviour. These traits are known as the phenotype of the organism.
During evolution by natural selection, individuals with favourable traits have a
higher chance of survival and may reproduce at a higher rate. As a result, the
presence of favourable genes becomes more common in successive generations of the
population.

In order to apply these same principles to computer programs, we must first specify
how their genome is represented. This representation must ensure that we will be
able to assess the performance of an individual in a given environment (its fitness)
and that a population of individuals will be able to reproduce to form successive
generations.

5.1 Representation

In GP, individuals are constructed as syntax trees [44]. These trees may be repre-
sented in a linear form or explicitly as trees, where each edge of the tree connects two
nodes from a predefined primitive set. For example, the program MAX 2 TIMES 3 4

can be represented in tree-form as shown in Figure 5.1, where the tree is evaluated
in a depth-first, left-to-right manner. The leaf nodes of the tree are called terminals
and the non-leaf nodes are functions. A unique root node is the source of all the

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 17

Figure 5.1: Tree representation of a program (evaluation = 12).

branches, or subtrees, of the tree. If the number of arguments of each function is
known, which is usually the case, any program represented in linear form may be
unequivocally translated into a tree, and vice versa. The representation to be used
is therefore a matter of convenience.

Terminals are selected from a predefined terminal set, which may contain external
inputs, functions with no arguments or constants. In order to introduce a degree of
randomness, the values of terminal nodes may be generated at random during the
construction of a tree. These values are then constants during the evaluation of the
program and are known as ephemeral random constants.

Similarly, functions are drawn from a function set. Functions take a fixed number of
arguments and must have type consistency and evaluation safety [44]. That is, all
functions must return values of the same (or equivalent) type and must not throw
runtime errors.

Finally, a core concept in this work is the definition of fixed subtrees. They are
defined by the user as potentially useful structures combining terminals and func-
tions in order to reduce the search space of the EA and thus speed up the evolution.
During evolution, subtrees are treated as terminals.

5.2 Evolution

A run of GP can be summarised in the following steps: after initialising the popula-
tion, the algorithm evaluates the fitness of its individuals, based on which it selects a
subset of the population to produce a second generation by means of genetic opera-
tions. This process of selection and reproduction continues until the fitness converges
to a fixed value or a predefined number of generations have been evaluated.

Page 18 Report

5.2.1 Initialisation

The initial population is commonly generated at random. To do so, nodes are
sequentially selected from the primitive set and added to the tree until they reach a
certain depth. The depth of a node is defined as the number of edges that must be
traversed from the root node in order to reach it. The depth of a tree is therefore the
maximum number of edges that must be traversed from the root node, which has a
depth of zero, in order to reach any of its leaf nodes. The criterion with which nodes
are selected from the primitive set in every iteration allows us to define different
initialisation methods. In this work, we use Koza’s ramped half-and-half method
[45], which combines the two methods we will now introduce: full and grow.

In the full method, all the branches in a tree are generated with the same depth. To
do so, nodes are selected from the function set until the maximum depth is reached.
Then, only nodes from the terminal set may be selected. In the grow method, nodes
are selected from the entire primitive set, so long as the maximum depth is not
reached. As in the full method, once the maximum depth is reached, only terminal
nodes may be selected. This results in a population where the individuals have more
varied shapes.

Koza’s ramped half-and-half method consists in generating trees with a range of
depths. For example, given the five depths in the range [0, 4], 20% of the initial
population is generated with a depth parameter of zero, another 20% is generated
with a depth parameter of one, and so on. For each value of the depth parameter,
half of the individuals are generated using the full method, while the other half is
generated using the grow method. The greater variety in sizes and shapes resulting
from this method usually leads to better results [45].

5.2.2 Fitness

In order to compare any pair of individuals in the population, the GP algorithm
assigns a fitness value to each individual [46]. The fitness is a measure of the degree
to which an individual is able to satisfy the high-level objectives of the problem, and
it is usually given as a single numeric value. Such high-level objectives may include
the correctness of the program, its parsimony or its efficiency [45]. Thus, fitness
serves to guide the algorithm towards a solution.

Often in GP, a problem will have multiple objectives, usually of a conflicting nature.
In such cases, the fitness must reflect the priority of each objective and the corre-
sponding tradeoffs. One common approach to this multi-objective GP is to combine

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 19

all individual objectives into a single value by means of a weighted sum.

5.2.3 Selection

Individuals for the next generation are selected based on their fitness. Commonly
used methods include fitness-proportionate selection [47], where the probability of
selecting an individual is proportional to its fitness, and tournament selection [48],
where a group of individuals (typically two or three) are selected at random and the
one with the better fitness is selected.

In this work, we use an alternative method, known as rank selection [49]. In rank
selection, individuals are given a numerical value (rank) based on their fitness. The
probability of selecting an individual is then computed based on its rank. This
method reduces the difference between individuals with very high fitness and the
rest of the population, thus reducing the discrimination of the method in favour
of those individuals, also known as selection pressure. This is desirable because
flooding the next generation with the genes of the fittest individuals would reduce
the search space of the algorithm.

The use of any of the tactics described above may lead to an uncontrolled growth of
the programs during evolution, which is known as bloat. The use of elitism, where
the best individuals in the population are copied directly to the next generation so
that they may be improved, has been shown to reduce bloat [50].

A more effective approach towards bloat control is the parsimony pressure method,
where the fitness of the program is modified by subtracting from it a value that is
proportional to the size of the program, that is

f ′(x) = f(x)− cl(x), (5.1)

where c is a constant, l(x) refers to the size of program x and f(x) to its fitness [45].
To determine the value of c, we use the covariant parsimony pressure method, which
has been empirically shown to provide optimal bloat control [51]. The covariant
parsimony pressure constant is calculated for each generation as

c =
Cov(l, f)

Var(l)
. (5.2)

Note, however, that Equation 5.1 is only used to guide the selection process. To
assess the evolutionary process and determine when the fitness of the program has
converged to a certain value, the original fitness function, f(x), is used [44].

Page 20 Report

Figure 5.2: Crossover operation

5.2.4 Genetic operations

GP implements three operators to generate the individuals of the next generation.
The reproduction operator simply selects an individual by means of rank selection
and produces a copy for the next generation. The goal of reproduction is to increase
the average fitness of the population. However, this occurs at the expense of genetic
diversity [45].

The crossover operator is analogous to sexual reproduction. It begins by selecting
two individuals using rank selection. Then, a node called the crossover point is
selected from each tree. The offspring is formed by copying the first parent up to
the crossover point and inserting at that point a copy of the subtree rooted at the
crossover point of the second parent. An example of this operation is shown in
Figure 5.2. As shown by Poli et al. [44], the majority of nodes in a tree are leaf
nodes. Therefore, in order to ensure that sufficient genetic material is exchanged
during crossover, inner nodes are selected as crossover points with a probability of
0.9.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 21

Mutation is analogous to asexual reproduction. When the mutation operator is
applied to an individual, its genetic material is altered to produce a new individual.
In this work, we use three mutation operators: point mutation, subtree mutation and
parameter mutation. In point mutation, a node is selected at random and replaced
with another node with the same number of arguments. In subtree mutation, a
node is selected at random and the subtree rooted there is replaced with a randomly
generated subtree.

To understand parameter mutation, we get ahead of Section 5.3 to mention that,
unlike in the traditional formulation of GP described in this section, many of the
nodes used to construct BTs contain some kind of parameter. These parameters may
be blackboard entries or ephemeral random constants, for example. In parameter
mutation, A node is selected at random and, if it takes any parameters, a new set
of parameters is randomly generated.

In contrast to reproduction, mutation aims restore genetic diversity to the popula-
tion. However, as argued by Holland [47], the main driving forces of evolution are
reproduction and crossover. Mutation is therefore used sparingly.

5.3 Application to behaviour trees

BTs are naturally well-suited for GP implementations. All nodes return success,
failure or running, and all subtrees are valid BTs. Therefore, they are intrinsically
type-consistent, and all genetic operators can be implemented in the BT framework.

The terminal set of a GP formulation applied to BTs consists of execution nodes
(actions and conditions) and fixed subtrees. Unlike in the classical formulation of
GP, BT terminals may take a fixed number of parameters, which can be constants
or blackboard entries. The function set is the composed of control-flow nodes, which
have at least one child and may also take parameters.

5.4 Conclusions

In this section, we review the classical formulation of genetic programming. We em-
phasise the parallelisms between GP and natural selection and survival of the fittest,
and introduce the representation of computer programs as tree-like structures.

We then analyse the steps of the evolutionary process, beginning with the differ-
ent initialisation methods and their effects on the size and shape of the resulting

Page 22 Report

population. The production of subsequent generations of the population through
fitness-based individual selection and genetic operations that modify genetic diver-
sity is then summarised.

Finally, we justify the intrinsic suitability of behaviour trees for genetic programming
applications.

6 Collective transport

In this section, we define the task of collective transport and describe the experi-
mental setup designed to evolve and test our controllers.

6.1 Task description

For our robot swarm to successfully achieve collective transport, the agents must be
able to locate and retrieve items that are too large or too heavy for a single agent
to carry. The agents must therefore be able to safely attach themselves to the item
and coordinate with the rest of the porters in order to move it. Similarly, once they
reach the goal location, they should be able to safely deposit the load.

Porters should also be able to transport an item independently of the actions of the
rest of the robots in the swarm, thus allowing for simultaneous collective transport of
multiple loads. Furthermore, the coordination mechanism must ensure that neither
the porters nor the payload will be damaged in the process.

6.2 Environment

In order to evaluate the performance of our controllers, we construct a simulated
environment with the following components: an arena, to delimit the area where
the task may take place; loads, as the items to be carried by the agents, and a
robotic platform to carry out the task. Figure 6.1 shows a possible instance of the
environment.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 23

Figure 6.1: Task environment. A 5m × 5m arena with five 100mm-wide ArUco
markers on the right wall indicating the location of the nest. Two loads, one to be
carried by two porters and another one to be carried by three, both with lifting points
indicated also by 100mm-wide ArUco markers. Additional guiding markers are
omitted for the sake of clarity. Eight holonomic robots with local sensing capabilities.

6.2.1 Agents

The robotic platform we use as a swarm agent is the successor to the Xpuck robot
used by Jones et al. to build a Teraflop swarm [52]. While it is still under devel-
opment, it may be seen as a representative of the next generation of swarm robots
for industrial purposes, as it provides additional capabilities for sensing and manip-
ulation of the environment [24]. We base our model of the platform on the original
robot, but some of the parameters may differ.

Each robot is a cylindrical device weighing 2kg that is 115mm tall and has a 250mm
diameter. A minimum of three ArUco markers on the body allow for a camera
to determine the relative position of the robot, regardless of its orientation [53].
Additionally, each marker also holds the unique identifier (ID) of the robot. The
three omnidirectional wheels on its base, located at a distance of 120mm from its
centre, make the robot holonomic and allow it to move in any direction on a plane
with a maximum velocity of 0.2ms−1. Additionally, a robot can raise a circular
lifting platform from 30mm to 80mm above it, which can carry a payload of up to

Page 24 Report

2kg.

In order to sense its environment, each robot relies on various sensors. Four body
cameras with a 120º horizontal field of view (FOV) and a 90º vertical FOV, with
the front two overlapping for stereo vision, provide full coverage of the surroundings.
A fifth camera in the lifting platform is used to detect the items to be lifted. An
array of 16 laser time-of-flight (TOF) distance sensors with a 150mm range sur-
round the robot for obstacle avoidance purposes. A nine degree-of-freedom (DOF)
inertial measurement unit (IMU) allows a robot to determine its acceleration and
the local magnetic field and, therefore, its orientation with respect to any cardinal
point. Additionally, robots can communicate between themselves, but we make no
assumptions about the communication protocol they would use in the real world. A
schematic representation of the robot is shown in Figure 6.2.

The dimensions lpcam and wpcam shown in Figure 6.2 represent the projection of the
platform camera plane on a flat surface. Considering a flat surface at a distance h
above the camera, they are obtained from the following expression:

Di = 2h tan

(
FOVi

2

)
, (6.1)

where Di = {lpcam, wpcam} and FOVi = {FOVl, FOVw}, the vertical and horizontal
FOV of the camera (see Figure 6.3).

The velocity of the robot and the linear velocities of the wheels obey the following
relationship: v1(t)v2(t)

v3(t)

 =

− sin(π/3) cos(π/3) d
0 −1 d

sin(π/3) cos(π/3) d

 ·
 v(t)
vn(t)
ω(t)

 , (6.2)

where vi∈{1,2,3}(t) are the linear wheel velocities at time t, d is the distance from the
centre of the base to each omnidirectional wheel and v(t), vn(t) and ω(t) are the
linear velocities in the X and Y directions and the angular velocity of the robot in
the moving frame at time t, respectively.

In order to provide the robots with local sensing capabilities, we limit the commu-
nication and body camera ranges to rcomms = rbcam = 1m.

6.2.2 Arena

We consider a 5m × 5m rectangular arena surrounded by unmovable walls. To
indicate the location of the nest where the robots must deposit the items, ArUco

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 25

Figure 6.2: Schematic view of robot used in this work. The central grey circle
represents the lifting platform. Laser TOF distance sensors are shown in grey and
cameras, in blue. R is the robot radius and d is the distance from the centre of the
robot to each omnidirectional wheel. The communication range is rcomms, rbcam is
the body camera range and pmax is the range of the distance sensors. The projection
of the platform camera plane on a flat surface has length lpcam and width wpcam. The
linear velocities of each wheel are v1, v2 and v3.

Page 26 Report

Figure 6.3: Top view (left) and side view (right) of the position of a robot that is
ready to lift. lpcam and wpcam are the projections of the platform camera plane on
the underside of the load, h is the separation between the platform camera and the
underside of the load and FOV is the field of view of the platform camera.

markers are placed on the walls. The detection of a single ArUco marker provides
enough information to estimate the pose of the detecting camera. By defining the
nest as the area within a given radius around a marker, a robot may determine when
it is at the nest and when it is not. We set this distance to rnest = 1m.

As shown in Figure 6.1, five 100mm-wide markers are placed along the right wall of
the arena to indicate the location of the nest. That way, no robot may reach the
right wall without detecting a nest marker.

6.2.3 Loads

The items that the swarm agents need to carry back to the nest are 185mm-tall
(40mm above the robot platforms) thin platforms shaped as regular polygons. We
place 100mm-wide ArUco markers on the underside facing the floor to indicate the
position where the agents should be located in order to lift the loads. Figure 6.3
shows this configuration and the relevant parameters of the platform camera. The
markers also contain information about the unique ID of the load and the number
of porters required to lift it. Additionally, given the small size of the lifting point
markers and the projection of the platform camera plane, we assume the remaining
surface of the load to be covered with more ArUco markers that hold a vector
pointing towards the nearest lifting point in order to guide the robot.

To determine the size of the platforms, we consider the following range for the

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 27

separation between any pair of lifting point markers, dlp:

2(R + pmax) < dlp < rcomms, (6.3)

where all the variables are defined in Section 6.2.1. The lower bound prevents porters
under the same load from detecting each other as obstacles, while the upper bound
ensures that these porters will form a fully-connected network, thus allowing them to
share all information required for coordination in a single iteration of broadcasting
and processing. We therefore set dlp = 0.65m and limit the size of the loads the
agents may carry to 4-porter loads1.

Furthermore, since each robot may carry up to 2kg on its platform, the density of
the items is set to σ = 9kg m−2. This value ensures that we may generate up to
8-porter loads, such that, for any n-load, a minimum of n robots are required to lift
it2. While loads requiring more than 4 porters are not considered in this work due
to the full-connectivity constraint, we select this value of σ to leave the door open
to future development.

Figure 6.1 shows a 2-porter load and a 3-porter load. Loads with a higher porter
count are generated similarly, with one vertex and one lifting-point marker per
porter. In order to clearly show the location of these markers, we exclude the
additional guiding markers from the figure.

6.3 Conclusions

This section presents the three components required to construct an environment
where we can generate and test the performance of robot controllers for the task
of collective transport: an arena, a robotic platform and the loads. Even though
we only ever treat them as simulated entities in this work, we design them with a
real-world implementation in mind.

We are now ready to describe the core of our work, beginning with the control of
the robots.

1Throughout this work, we will often refer to loads as n-porter loads, where n is the number of
porters required to lift them.

2The upper limit of 8 porters per load is based on the maximum number of vertices a polygon
may have in the Box2D simulator (see Section 8)

Page 28 Report

7 Robot control

We devise a two-stage control process of our robots. For the first stage, we use
BTs as the controller architecture. At every iteration of the controller, a BT is
ticked and generates the desired commands for each robot. In the second stage, the
desired commands are fed to a negotiation strategy to compute the outputs that
will be executed. In this section, we first describe the reference model of our robot,
followed by the BT and negotiation implementations.

7.1 Reference model

The reference model of a robot is a mathematical abstraction of its sensor data
and actuators [16]. It represents the available inputs to the controller and the
corresponding outputs. By specifying the task to be carried out by the robot, we
can choose a fitting level of abstraction. Table 7.1 shows the reference model of the
robots described in Section 6.2.1.

The readings from the distance sensors, Pj∈{1,...,16} are mapped to a [0, 1] range, such
that an object adjacent to the sensor gives Pj = 1 and an object at a distance greater
than or equal to pmax results in Pj = 0. A linear map is used for this purpose.

While orientation is commonly calculated with respect to north, we use east as the
reference cardinal direction for convenience, as it is aligned with the X0-axis and
the nest region of our environment is located in the +X0 wall of the arena. Since
our robot is holonomic, its orientation, θ, is not indicative of its direction of motion.
Therefore, we use θ and the local velocity of the robot, which we obtain from Equa-
tion 6.2, to compute the heading of the robot, φ, such that φ = 0 always represents
the direction of motion. Using φ instead of θ as the direction of reference in the
definition of all local vectors makes the control stage less geometrically involved.

The remaining input variables are obtained from the body and platform camera
feeds. We treat all body cameras as a unique vision sensor. Since all robots, lifting
points and nest locations are identified with ArUco markers, each robot can obtain
their locations in range and bearing form. In the case of the robots, a neighbour
count is also kept.

The detection of nest markers is reduced to the detection of any marker and its
location in polar form, since all markers indicate the location of the same nest
region. Therefore, the robot only stores the location of the nearest marker.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 29

Table 7.1: Robot reference model.

Input variables Value Description
Pj∈{1,...,16} [0, 1] Reading of distance sensor j
θ [−π, π) Compass orientation
n {0, ..., 15} Number of neighbouring robots
(rn,∠bn)j∈{1,...,n} ([0, rbcam], [−π, π)) Range and bearing of neighbour j
H {0, 1} Nest detection
(rh,∠bh) ([0, rbcam], [−π, π)) Range and bearing of nearest nest

marker
C {0, 1} Load detection
(rc,∠bc) ([0, dlp/2], [−π, π)) Range and bearing of lifting point
(l,m) ({0, ..., 3}, {0, ..., 4}) Load ID and porter multiplicity
Output variables
vi∈{1,2,3} [−vmax, vmax] Linear wheel velocities
p {−1, 0, 1} Platform commands
Constants
tcontrol 0.1 s Controller update period
R 0.125m Robot radius
∠qj∈{1,...,16} π(j − 1)/8 Angular position of distance sensor j
rbcam 1m Maximum body camera range
dlp 0.65m Maximum inter-maker separation
rnest 1m Radius of the nest region centred on

a marker
w 0.1m Width of ArUco markers
vmax 0.17ms−1 Maximum linear wheel velocity

A robot can obtain the location of the lifting point markers in one of two ways.
The first one is direct observation, where the robot detects the lifting point with the
platform camera. This also allows the robot to extract the data of the load: its ID,
l, and the number of porters it requires, m. In this case, the location of the marker
is calculated as the projection of the relative location on the horizontal plane. The
second way is indirectly, through the guiding markers on the platform that point
towards the nearest lifting point marker.

The output variables of the model are the wheel velocities and the platform com-
mands. The value of vmax is then obtained from Equation 6.2 and the maximum
linear velocity of the robots. As for the platform commands, we consider a finite set
of possible values, which will lower (−1), lift (1) or not move it (0).

Page 30 Report

7.1.1 Communication

To collectively transport an item, robots must coordinate their actions in a way
that guarantees the safety of the payload and of all the porters. The coordination
strategy must therefore ensure that no collisions occur between the robots or the
payload and any other item in the environment. Furthermore, all porters must exert
the same force on the load simultaneously in order to avoid reactive forces that may
lead to damages.

We now present a coordination method for robots based on local messaging, which
allows them to convey their intentions to other porters prior to acting. By means
of the negotiation strategy presented in Section 7.3, the swarm may then safely lift
and transport multiple loads at the same time.

At every control iteration, the BT controller of each robot generates a target velocity
and a platform command, in accordance with the reference model of the robot. We
refer to these outputs as the vote cast by the robot. Each robot then broadcasts a
message, M , containing the following entries:

M = {i, l, g, rvote,∠bvote, pvote} (7.1)

where i is its unique ID, l is the unique ID of the load whose lifting-point marker
is directly above the robot, or zero if there are none, g ∈ {0, l} is its group ID,
rvote and ∠bvote are the magnitude and direction of the voted velocity in the global
frame and pvote is the voted platform command. Note, however, that the outputs
generated by the BT are not guaranteed to be in the ranges defined in the reference
model. This is actually a desirable feature since, as we shall see in Section 7.2.3,
magnitudes reflect the importance of a desired action.

The message is received by all the neighbours in the range rcomms. With this message
structure in mind, we propose an extension of the reference model, as defined in
Table 7.2.

The group ID serves two different purposes: coordination and unlocking the motion
of the platform. Coordination is achieved by having each robot negotiate every ac-
tion with those neighbours in the same, non-zero group. The goal is that each robot
will only coordinate with the other porters under its same load, thus allowing other
agents to carry a different load simultaneously, without interference. Furthermore,
a robot without a group (i.e. g = 0) should be able to act independently of the
actions of its neighbours.

To understand why the group ID is needed to unlock the motion of the platform,
we first identify two critical safety concerns that arise from robots moving their

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 31

Table 7.2: Messaging extension of the reference model.

Input variable Value Description
s {0, ..., 15} Number of messages received
ij∈{1,...,s} {1, ..., 16} Messenger j ID
lj∈{1,...,s} {0, ..., 3} Load ID messenger j
gj∈{1,...,s} {0, ..., 3} Group ID of messenger j
(rvote,∠bvote)j∈{1,...,s} ([0,∞), [−π, π)) Global velocity magnitude and di-

rection proposed by messenger j
pvote,j∈{1,...,s} R Platform velocity proposed by mes-

senger j

platforms at will in our environment:

• A robot has no means of preventing a collision between its lifted platform and
a load at rest.

• A robot has no means of knowing when a load is too heavy.

Therefore, a robot must not lift its platform unless it is located under a load, and the
action of lifting and lowering a load must be executed simultaneously by all required
porters located at the corresponding lifting points, thus preventing damages to the
platforms. Both of these situations can be accounted for by setting the group ID
only when all the porters required to carry a load are located under the lifting points,
and only allowing robots to move their platforms when their group ID is non-zero.
Additionally, the group ID may only be nullified when the group is broken, which
can only occur when the platforms are down and either a robot leaves its lifting
point or the load is removed.

To modify its group ID, each robot counts the number of different messengers with
the same, non-zero value of l. It then compares the count to the porter multiplicity
of the load, m, and sets g according to the rules we just defined. If we define the
porter state of a robot at a given time, xp, as the 3-tuple

xp = {p, l, g}, (7.2)

where p is the state of the platform, Table 7.3 summarises the states available and
Figure 7.1 shows the possible transitions as a FSM.

Page 32 Report

Table 7.3: Possible porter states. p is the lifting platform state, l is the load ID and
g is the group ID

p l g Description
0 0 0 Default
0 1 0 Waiting for other porters
0 1 1 Ready to carry a load
1 0 1 Carrying a load

Figure 7.1: Porter state transitions available. Each 3-tuple is xp = {p, l, g}, where
p is the platform state, l is the ID of the load detected and g is the group ID.

7.2 Behaviour tree controller

Due to the successful implementation of modular controllers for swarm tasks by
Jones [41] and Francesca et al. [16], we use their work as a reference for our own
implementation of BT controllers. First, we use the reference model of our robots
determine the blackboard entries the BTs can access. We then define the execution
nodes available to our controller, which we use to define the constituent behaviours
and conditions. Finally, we describe the implementation of our BTs in C++.

7.2.1 Blackboard

The set of scalars and vectors shown in Table 7.4 constitute the blackboard of the
BT controllers. Each robot in the swarm holds its own copy of the blackboard. In
each copy, all the vectors are given in polar form with respect to the heading of the
robot. Every entry of the blackboard has an access level, which indicates how the
BT may interact with it. Thus, execution nodes may obtain the value of an entry
with read (R) access and my also edit entries with write (W) access.

The first eight entries contain information about the scene perceived by the robot.
All vectors are defined initially in the moving frame of the robot. The necessary

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 33

Table 7.4: Blackboard entries.

Name Access Description
vprox R Location of nearby obstacles
vattr R Location of nearby neighbouring robots
vrecr R Location of recruiting neighbours
vhome R Location of the nearest nest marker
vlift R Location of the nearest lifting point
sn R Number of neighbouring robots
sr R Number of neighbouring recruiters
sp R Number of porters of the same load
pvote RW Voted platform command
vvote RW Voted velocity
szero R Constant zero scalar
vzero R Constant zero vector
sscr RW Scalar scratchpad
vscr RW Vector scratchpad

rotations to bring them to the heading-aligned frame are performed afterwards.
Thus, the proximity vector, vprox, is calculated as

vprox =
16∑
j=1

(Pj,∠qj). (7.3)

It therefore points in the direction of the nearest obstacles, using their proximity as
a weighing factor.

The attraction vector, vattr, has a similar function. Instead of pointing towards the
nearest obstacles, it points towards (or away from) the nearest neighbouring robots.
It is therefore obtained from the following expression:

vattr =


∑n

j=1

(
1

1 + rn,j
,∠bn,j

)
, if n > 0

(1, 0), otherwise.
(7.4)

Similarly, the recruitment vector, vrecr, points towards (or away from) the nearest
neighbours who are under a lifting point, but need more robots to lift the corre-
sponding load. Since neighbours are identified by ArUco markers and messages
contain the ID of the sender, we can define the set S as the range and bearing data

Page 34 Report

of the nearest neighbours with l 6= 0. The vector vrecr is then calculated as

vrecr =


∑

j∈S

(
1

1 + rn,j
,∠bn,j

)
, if |S| > 0

(1, 0), otherwise,
(7.5)

where |S| denotes the cardinality of S. Note that, to compute S, we are combining
current sensor data with messaging data that is obsolete by one iteration. Given
the high controller update frequency, however, we expect the controller to still be
able to exploit the data profitably.

Robots use the vhome and vlift vectors to determine the location of the nest and
lifting point markers. Additionally, their lengths should convey when a robot is at
the nest (within a certain distance from the marker) and at the lifting point (directly
under it). We therefore define the following distance measures,

dnest = max{rh − rnest + 2R + 0.1, 0}, (7.6)

dlift = max
{
rc −

w

2
+ 0.1, 0

}
, (7.7)

where the constants are introduced as a guarantee that, as di∈{nest,lift} → 0, the
robot is at the nest/lifting point. We then use them to calculate vhome and vlift as

vhome =

{
(dnest,∠bh), if H = 1

(1,−θ), otherwise
(7.8)

vlift =

{
(dlift,∠bc), if C = 1

(1, 0), otherwise.
(7.9)

Thus, when no nest marker is detected, a robot moving in the vhome direction will
advance towards the +X0 end of the arena, where we have placed the nest markers.

Since all vectors are given in polar form, we then rotate them to the heading-aligned
framed by modifying their orientation. We express this as v′ = R(v, θ − φ), where
we have introduced a rotation operator for vectors in polar form

R((r,∠A),∠B) = (r,∠(A+B)). (7.10)

The scalar entry sn is set directly from the input as sn = n. As for sr, it is set to
the number of neighbouring recruiters, that is, sr = |S|. The sp entry is defined as

sp =

{∑s
j=1 δgjg, if g > 0

0, otherwise,
(7.11)

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 35

where δgjg is the Kronecker delta, which in turn is defined as

δij =

{
1, if i = j

0, otherwise.
(7.12)

The next two entries, vvote and pvote, are the output variables of the controller,
which will be fed to the negotiation strategy. We impose a the restriction on all BT
controllers that either vvote or pvote may be written no more than once per tick of
the tree. This is motivated by two facts. First, that applying these outputs usually
requires some finite time and overwriting them in a single iteration would render
the overwritten actions of the controller useless. And second, that actuating the
platform while the robot is moving is potentially dangerous because it could lead to
a violation of the safety rules outlined in Section 7.1.1.

The last four entries are defined for convenience. The szero and vzero entries repre-
sent a constant null scalar and a constant null vector, respectively. They can only
be read by the BT. The sscr and vscr entries represent the scratchpad of the BT.
They do not hold any particular value and may be read and written by the BT.
Besides serving as intermediaries for operations more complex than those defined in
the action set, they also provide the EA with space to evolve new behaviours.

7.2.2 Execution nodes

Table 7.5 shows the action and condition nodes our BTs use to interact with the
blackboard. With the exception of movpv, they are all taken from the work by
Jones [41]. While a detailed description of their functionality can be found there,
we summarise its content here for self-containment of the work.

One crucial difference between our implementation of BTs and that of Jones, how-
ever, is that we treat vectors as non-separable data types (i.e. we cannot access the
length or the orientation as separate entries). Therefore, nodes operating on scalar
entries may not access the components of a vector.

The movcs node takes a signed 8-bit value, i, and sets a scalar entry to that value.
The use of 8-bit values allows us to reduce the search space of the EA without
compromising its behaviour. Similarly, the movcv node sets a vector entry to a
unit vector with orientation given by a signed 8-bit value as ∠a = π i

128
. Thus,

∠a ∈ {−π, ..., π 127
128
}.

We introduce the movpv node as a consequence of the holonomic nature of our robots.

Page 36 Report

Table 7.5: Execution nodes. Vectors are boldface, scalars are plain. Variables {d,d}
indicate output blackboard entries, while {s1, s2, s1, s2} represent input blackboard
entries. 32-bit floating-point values are denoted by f , 8-bit signed integers, by {i, j}.
Variables k and l are signed 5.3 fixed-point values [41].

Name Parameters Behaviour Description
movcs d, i d← i Set d to scalar constant
movcv d, i d← (1, π i

128
) Set d to unit vector constant

movpv d, s1, i d← (1, rand(∠s1±
∣∣π i

128

∣∣)) Set d to unit vector constant with ran-
dom orientation within a sector

mulas d, s1, f, s2 d← s1 + f × s2 Scalar scale and add
mulav d, s1, f, s2 d← s1 + f × s2 Vector scale and add
rotav d, s1, i, s2 d← s1 +R(s2, π i

128
) Vector rotate and add

successl success Always return success
failurel failure Always return failure

ifprob s1, k, l Psuccess =
1

1 + ek(l−s1)
Probabilistic success

ifsect s1, i, j c = π i
128

w1/2 =
∣∣π j

256

∣∣
Success if |∠s1− c| < w1/2

Check for vector in a sector

By providing it with an input vector entry of the blackboard, s1, and an 8-bit scalar,
i, movpv sets a blackboard vector to a unit vector with random orientation. The
range of possible orientations is determined by the orientation of s1, which defines
the centre of an angular sector, and i, through which we define the half-width of the
sector as w1/2 =

∣∣π i
128

∣∣. This node provides the BT with a straightforward method
to apply random velocities to the robots.

Through the mulas and mulav nodes, the BT can combine, modify and copy black-
board entries in various ways. The multiplying 32-bit floating-point value, together
with the szero and vzero entries, allow the BT to add and subtract entries, scale
them and copy their value to a different entry. Combining these capabilities with
the scratchpad entries, sscr and vscr, provides us (and the EA) with flexibility to
generate new, more complex behaviours.

Similarly, the rotav node rotates a vector by means of the operator defined in
Equation 7.10, using a signed 8-bit scalar to define the angle of rotation ∠a = π i

128
,

and adds it to another vector. It also provides the possibilities of combining and
copying vectors of the mulav node.

The remaining nodes are condition nodes. The first two, successl and failurel,
simply return success or failure upon evaluation.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 37

The ifprob node, on the other hand, is more complex, in that it introduces prob-
abilistic behaviour. The node returns success with a probability determined by a
logistic function. The 5.3 signed fixed-point values, k and l, define the steepness and
the location of the centre of the function, respectively, where we refer to the centre
as the value of the scalar entry, s1, that makes Psuccess = 0.5. While a low value
of k results in a smoothly varying function, a large value of k will give a step-like
function.

Finally, the ifsect node checks for the existence of a vector in a given sector. Given
two signed 8-bit scalars, i and j, it defines a sector centred on ∠c = π i

128
with half-

width w1/2 =
∣∣π j

256

∣∣. The node then returns success if the vector lies within that
sector, |∠s1− c| < w1/2, and is sufficiently large, |s1| >= 0.1. Otherwise, it returns
failure. If j = 0, the node returns success if |s1| < 0.1.

7.2.3 Constituent behaviours and conditions

We now use the blackboard entries and execution nodes defined in the previous
sections to construct a set of behaviours and conditions that are potentially useful
for the task of collective transport. We express these behaviours and conditions as
BTs, which will be used by the GP algorithm as subtrees to generate controllers.

We take the behaviours and conditions used by Francesca et al. as our main source of
inspiration [16]. In their work, they construct probabilistic FSM (PFSM) controllers
for e-puck robots using six atomic behaviours and six conditional state transitions.
The behaviours they define are exploration, stop, phototaxis, anti-phototaxis, attrac-
tion and repulsion. The conditional transitions are black-floor, gray-floor, white-
floor, neighbour-count, inverted-neighbour-count and fixed-probability.

We therefore define the following behaviours:

Exploration: the robot executes a random walk around the arena. To do so,
it moves in a straight line until it encounters an obstacle, which occurs when
vprox points towards the heading of the robot and |vprox| > 0.1. It then sets
a new random direction of motion away from vprox.

Stop: the robot does not move its wheels or its platform.

Attraction/Repulsion: the robot moves towards or away from its near-
est neighbours, with embedded obstacle avoidance. It follows the vector
v = αvattr − kvprox, where, α is a real-valued parameter in the range [−5, 5]
and the value of k is a fixed parameter set to 5 to reflect the importance

Page 38 Report

of obstacle avoidance, as suggested by Francesca et al.. The robot will be
attracted towards its neighbours when α is positive, and repelled from its
neighbours when α is negative. The magnitude of α determines the degree of
attraction/repulsion.

Recruitment/Anti-recruitment: the robot moves towards or away from
its nearest neighbours who are waiting under a lifting point. It follows the
vector v = αvrecr − kvprox, where α ∈ [−5, 5] and k = 5. The robot will
be recruited when α is positive, and anti-recruited when α is negative. The
magnitude of α determines the degree of attraction/repulsion.

Position: the robot moves towards the nearest lifting point by following the
vector v = vlift − kvprox.

Home: the robot moves towards the nest by following the vector v = vhome−
kvprox.

We also introduce an additional behaviour, avoidance, which is included as a fixed
element in randomly generated controllers to prevent damages to robots that do not
execute any of the actions defined above, but does not take part in the evolutionary
process. The robot moves in a straight line and, if it encounters and obstacle ahead
such that |vprox| > 0.2, it moves in the opposite direction. The larger magnitude
required to trigger the reaction prevents the avoidance behaviour from interfering
with the other predefined behaviours.

We then define the following probabilistic state transitions:

Neighbour-count: returns success with probability

z(sn) =
1

1 + ek(l−sn)
, (7.13)

where k and l are the logistic function steepness and centre, respectively.

Inverted-neighbour-count: returns success with probability

z(sn) = 1− 1

1 + ek(l−sn)
, (7.14)

where all parameters are as defined in Equation 7.13.

Recruiter-count: return success with probability

z(sr) =
1

1 + ek(l−sr)
, (7.15)

where k and l are the logistic function steepness and centre, respectively.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 39

Inverted-recruiter-count: returns success with probability

z(sr) = 1− 1

1 + ek(l−sr)
, (7.16)

where all parameters are as defined in Equation 7.15.

Porter: if sp > 0, returns success with probability β.

Nest: if |vhome| < 0.1, returns success with probability β.

Lifting-point: if |vlift| < 0.1, returns success with probability β.

Item: if |vlift| < 1.0, returns success with probability β.

Fixed-probability: returns success with probability β.

Figures 7.2-7.13 show the constituent behaviours and conditions expressed as BTs,
using the control-flow nodes introduced in Section 4.1.1 and the execution nodes
defined in Section 7.2.2. Note that the conditions Neighbour-count and Inverted-
neighbour-count can be represented with the same node, since a flip of the sign of
k will result in the two conditions. The same argument is used to define a unique
node for Recruiter-count and Inverted-recruiter-count.

7.2.4 Implementation

Our C++ implementation of BTs uses the BehaviorTree.CPP library developed by
Faconti and Colledanchise [54]. It is written in C++14 and has several attractive
qualities for the field of robotics research. We emphasise three of these qualities.
First, it is compatible with both ROS1 and ROS2, so controllers developed with
this library can be readily implemented on the corresponding physical platform
[55]. Second, it is compliant with Groot, a graphical user interface (GUI) also
developed by Faconti to create BTs [56]. And third, BTs are generated using the
XML language, which promotes readability of the trees.

With the exception of the repeat decorator, the rest of the control-flow nodes de-
scribed in Section 4.1.1 are already defined in BehaviorTree.CPP. The equivalence
between their naming convention and the one we use in Section 4.1.1 is given in Ta-
ble 7.6. We also include in the table the BehaviorTree.CPP names for the successl

and failurel nodes defined in Section 7.2.2. To define the repeat decorator and
the execution nodes defined in Section 7.2.3, we follow the established inheritance
tree.

Page 40 Report

Figure 7.2: Exploration behaviour.

Figure 7.3: Attraction/Repulsion behaviour. a is a real-valued parameter.

Figure 7.4: (Anti-) Recruitment behaviour. a is a real-valued parameter.

Figure 7.5: Position behaviour Figure 7.6: Home behaviour

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 41

Figure 7.7: Neighbour-count/Inverted-
neighbour-count conditions. k and l are
signed 5.3 fixed point values.

Figure 7.8: Recruiter-count/Inverted-
recruiter-count conditions. k and l are
signed 5.3 fixed point values.

Figure 7.9: Porter condition. b is a
signed 5.3 fixed point value.

Figure 7.10: Nest condition. b is a
signed 5.3 fixed point value.

Figure 7.11: Lifting-point condition. b
is a signed 5.3 fixed point value.

Figure 7.12: Fixed-probability condi-
tion. b is a signed 5.3 fixed point value.

Figure 7.13: Item condition. b is a signed 5.3 fixed point value.

Page 42 Report

Table 7.6: Equivalence between our naming convention and the BehaviorTree.CPP
naming convention.

This work BehaviorTree.CPP
Sequence ReactiveSequence
Selector ReactiveFallback
Sequence* Sequence
Selector* Fallback
Inverter Inverter
Success ForceSuccess
Failure ForceFailure
successl AlwaysSuccess
failurel AlwaysFailure

All the nodes we define may take three different types of arguments: an integer,
a floating-point value, or a vector in polar coordinates. These may be provided as
explicit values like 5, -3.14 or [1.2;3.4], respectively, or the names of blackboard
entries, like {vlift} or {pvote}. A generic execution node is then written using
the following XML tag template:

<${NAME} arg0="${X0}" ... argn="${XN}"/>,

where NAME is the node name as defined in Table 7.5 with the first letter capitalised
and {X0, ..., XN} are the parameters of the node. Thus, for example, to have the
robot move towards the nest with embedded obstacle avoidance, we would write the
corresponding mulav operation as

<Mulav arg0="{vvote}" arg1="{vhome}" arg2="-5.000" arg3="{vprox}"/>.

To write control-flow nodes in XML, we must open and close the corresponding XML
tag, which encloses all the children of the node. If they contain any arguments, like
the repeat decorator, they are included as in the execution node case. Thus, a
control-flow without parameters is implemented using the following XML template:

<${NAME}>
${CHILD0}
...

${CHILDN}
</${NAME}>,

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 43

where {CHILD0, ..., CHILDN} are the children of the node. A control-flow node with
parameters combines the two templates and is therefore implemented as follows:

<${NAME} arg0="${X0}" ... argn="${XN}">
${CHILD0}
...

${CHILDN}
</${NAME}>.

As an example, a decorator that repeats the mulav action defined above 10 times
would be written in XML as

<Repeat arg0="10">

<Mulav arg0="{vvote}" arg1="{vhome}" arg2="-5.000" arg3="{vprox}"/>
</Repeat>.

Note that the format we use to implement all nodes is motivated by the need to
generate them automatically in the GP stage. Thus, the vague argument naming
allows us to sequentially include as many parameters as the node requires. Addi-
tionally, BehaviorTree.CPP provides two different syntaxes to write nodes in XML.
We have demonstrated above the use of the compact syntax, which comes at the
expense of not being able to display the resulting BTs in Groot. However, one could
also use the explicit syntax and display the trees in Groot directly. Using explicit
syntax, we would write our execution nodes as

<${TYPE} name="${NAME} arg0="${X0} ... argn="${XN}/>,

where the added field, TYPE, indicates the node type (Action or Condition). Intro-
ducing this distinction at the node level is undesirable because it would force us
to also make it at the GP level. Therefore, for the sake of simplicity, we use the
compact syntax and create a Groot template file, where we can paste the trees in
compact form to obtain a Groot-ready file.

As a complete example, Figure 7.14 shows the exploration behaviour defined in
Section 7.2.3 in XML and the corresponding representation in Groot.

Page 44 Report

<BehaviorTree ID="MainTree">

<ReactiveFallback>

<ReactiveSequence>

<Ifsect arg0="{vprox}" arg1="0" arg2="127"/>

<Mulav arg0="{vscr}" arg1="{vzero}" arg2="-1.000" arg3="{vprox}"/>
<Movpv arg0="{vvote}" arg1="{vscr}" arg2="64"/>

</ReactiveSequence>

<Movcv arg0="{vvote}" arg1="0"/>

</ReactiveFallback>

</BehaviorTree>

(a) XML tree.

(b) Groot display.

Figure 7.14: Exploration behaviour.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 45

7.3 Negotiation

Through the negotiation strategy, each robot gathers the votes from the rest of
the porter group and computes the target output. The goal is to have all porters
of the same item behave as an single swarm agent that is be able to execute the
behaviours of an individual robot. Therefore, we want our negotiation strategy to
comply with three ideas. First, all robots must compute the same output. If each
porter attempted to move in one direction, it would generate shear forces on the
lifting platforms, which could lead to damages. Second, since swarm behaviour is
decentralised, we want our negotiation strategy to also be decentralised, so that no
robot may lead the rest of the porters. An third, each porter must be able to convey
the urgency or importance of their vote. This allows the group to react to changes
in the environment like a single agent. For example, if two robots are carrying an
item and one encounters an obstacle, the goal velocity should result in avoidance of
the obstacle.

Since the individual BT controllers already generate outputs with magnitudes pro-
portional to the importance of the motion, each robot calculates the target output
as the sum of the individual votes. Thus, for s messages received, each robot obtains
the the goal velocity, vgoal, and the goal platform command, pgoal, from

pgoal = pvote + (1− δ0g)
s∑

j=1

pvote,jδgjg (7.17)

vgoal = (vvote + (1− δ0g)
s∑

j=1

vvote,jδgjg)δ0pvote (7.18)

where δ0g and δgjg are the Kronecker deltas that allow the robots to consider only the
neighbours in their same, non-zero group and δ0pvote prevents actuating the wheels
and the platform simultaneously. We choose to prioritise the actuation of the lifting
platform because a successful controller should use it sparingly and rely on the
wheels for most purposes.

We can therefore conclude that having a fully-connected porter network topology is
necessary for the correct functioning of the negotiation strategy. At every controller
iteration, each robot must receive the votes from all the other porters in order to
compute a safe velocity or platform command.

Initially, we attempted to include the negotiation strategy as a fixed element of
the BT controller which may potentially be evolved. Since robots need time to
communicate, we designed a controller where a negotiation node, which implemented
Equations 7.17 and 7.18, was the first child of a two-child selector* node. The second
child of the selector* node was the original BT controller. At each BT update, the

Page 46 Report

Figure 7.15: Robot cycle. After updating sensor readings, it updates its controller
to generate votes. The votes are fed to the negotiation system, which produces the
target output of the group. This is then applied to the actuators.

selector* node would first tick the negotiation node, which wrote to vgoal and pgoal,
and then execute the rest of the BT and write the vvote and pvote for the next
iteration.

This method, however, led to a delay in the application of the actions calculated
by the controller of exactly tcontrol, the controller update period. To see why this
is problematic, consider the following controller iterations in a situation where the
robot should apply an obstacle avoidance behaviour:

1. An obstacle is detected ahead. The negotiation node sets vgoal ← vvote and
the robot keeps moving forward. Then, vvote ← −vprox.

2. First, sensor data is updated and blackboard entries are set. Since no action
has been applied yet, an obstacle is still detected ahead. Then, vgoal ← vvote,
away from the obstacle. Finally, with the execution of the rest of the BT,
vvote ← −vprox.

3. The robot is now heading away from the obstacle, so no obstacles are detected
ahead. Then, vgoal ← vvote, which brings the robot back towards the obstacle.

This cycle is repeated forever, and the robot never executes the avoidance behaviour.
This led us to remove the negotiation strategy from the BT in order to execute the
control and actuation steps within the same sensor update cycle. Each robot then
executes the cycle shown in Figure 7.15.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 47

7.4 Conclusions

In this section, we introduce a two-stage controller for our robots. We first build a
reference model by abstracting their sensors and actuators, considering the task of
collective transport and the environment of operation. A communication strategy
for safe coordination is then proposed and the model extended accordingly.

We then define the behaviour trees that constitute the first of the stages. A suitable
list of blackboard entries provide the BTs with an interface to interact with the sen-
sors and the second stage of the controller. We construct the actions and conditions
that may query and modify the balckboard by means of mathematical operators,
which we then use to define a set of constituent behaviours and conditions as fixed
subtrees. We also summarise our implementation of behaviour trees using C++.

Finally, we introduce a safe negotiation strategy as the second stage of the controller,
which allows our robots to decide on a common goal prior to acting.

8 Simulation

Every generation of the evolutionary process needs to evaluate the performance of all
the controllers generated multiple times. In a hypothetical process of 500 generations
with an initial population of 20 individuals and 8 evaluations per individual, 80, 000
simulations of the task would be needed (without elitism). Assuming evaluations
cannot be carried out simultaneously, an increment of 1s in simulation time per
evaluation would result in over 22h of additional run time. A fast simulator is
therefore essential to economise computational resources, so we choose to build our
simulator in C++, a compiled language.

To simplify the interactions between the elements of the environment, we use Box2D,
a physics simulator designed for games, to model each component as simple geomet-
ric shapes with dynamic properties [57].

8.1 Environment initialisation

The simulator is centred on an instance of the environment. We may add simulated
objects to it, compute their interactions and obtain the resulting fitness. Addition-
ally, we have the possibility of rendering a run using OpenGL [58].

Page 48 Report

As described in Section 6.2, there are three types of simulated objects we can add
to the environment:

Robots: We model the agents using six fixtures. The body is a dynamic flat
disk, which may collide with the walls of the arena and with other robots. It
may not, however, collide with loads, thus reflecting that they exist on a lower
plane of the environment. Four wedge-shaped fixtures with no mass act as
body cameras. These wedges are configured as sensors and therefore do not
generate a collision reaction. They do, however, generate contacts with ArUco
markers of the nest and other robot bodies, and thus we can check for overlap
of these fixtures. A rectangular sensor centred on the body of the robot acts
as the platform camera, which generates contacts with the ArUco markers of
the loads.

The distance sensors are modelled using ray casts at run time and are therefore
not included in the construction of the robot.

Each robot also contains an instance of a controller. The controller consists of
a BT and various functions to update it and access the blackboard entries.

Arena: A closed, static chain constitutes the walls of the 5m × 5m arena.
The arena may collide with robots and with loads, and thus no element of the
environment can leave it. We implement the ArUco markers of the nest as
finite edges on the right wall of the arena, which may generate contacts with
the body cameras of the robots.

Loads: The loads are modelled as dynamic closed polygons that may only
collide with the arena. Box2D sets a maximum of 8 vertices per polygon, so
we limit the size of our loads accordingly. To emulate the fact that partially
occluded ArUco markers may still be detected, we only model the centre of
lifting point markers, as circles with a 10mm radius. Any contact of the circles
with the platform cameras of the robots is interpreted as a successful detection
of the lifting point marker. We do not model the remaining guiding markers
and assume that any contact between the body of a load and a platform
camera results in their detection. Finally, we simplify the model of the loads
by excluding any supporting structure, such as legs.

Following Jones [41], we set a coefficient of friction of µbodies = 0.15 and a coefficient
of restitution of e = 0.1 to simulate the collisions between robots and between robots
and the arena walls. However, since all robot controllers include a fixed collision
avoidance method, these parameters should not come into play.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 49

8.2 Run stages

On every update loop of Box2D, the dynamics of all the bodies in the environment
is calculated. This includes the forces resulting from the actuation of the wheels of
our robots, as well as the collisions between items in the environment. The update
loop of Box2D is set to run at a frequency of 30Hz, using 8 iterations for the velocity
constraint solver and 3 iterations or the position constraint solver. These settings
are recommended by the documentation and result in a valid performance of the
simulator for our purposes.

To further simplify the simulation process, we do not consider any kind of noise
effects on the sensors or the actuators. This increases the sensitivity of the controllers
to the reality gap, since the evolved controllers may exploit inaccuracies of our
simulated environment [59]. The addition of noise should therefore be considered in
future work.

Every tupdate, we compute one iteration of the cycle shown in Figure 7.15, where
each stage is computed for every robot before moving on to the next stage. We
now describe each of the stages of the loop in the order in which they are executed,
starting with the update of the sensor readings and ending with the actuation of the
wheels and the platform.

8.2.1 Sense

In the sensing phase, each robot updates its sensor readings to obtain the input
variables of the reference model (without the communications extension).

The readings of the proximity sensors are obtained using ray casts emitted from the
edge of the body of the robot. When the lifting platform of the robot is down, the
ray casts can only detect the arena and the bodies of other robots. However, in
order to avoid collisions between loads being carried and other loads, we allow the
robots to use ray-casting to detect other loads when its platform is up.

While this added capability of porters does not correspond with the reality of the
environment originally defined, we consider it an acceptable compromise that should
not affect the validity of the results of this work. We argue this by claiming that,
by allowing the robot to sense other loads, we are essentially introducing temporary
obstacles in the arena, and thus we are indirectly testing the adaptability of the
swarm in a dynamic environment.

Page 50 Report

In a brute force approach, we would perform 16 ray casts per robot (one per sensor)
on every iteration. This method, however, is computationally expensive. We there-
fore implement a preliminary step, where we generate an axis-aligned bounding-box
(AABB) centred on the body of the robot, with a size equal to 2(R + pmax), and
check if any of the AABBs with which it overlaps correspond to other bodies that
may be detected by the ray casts. The 16 ray casts are then performed only for
those robots where such a body is detected.

After obtaining the orientation and heading of each robot, the camera feeds are
processed to obtain the values of the remaining entries of the reference model. In
order to save on computational resources, we make here another simplification by
not considering occlusion in the FOV of the body cameras, which would require
additional ray casting. To detect another robot or a nest marker, we simply check
for overlap of the corresponding fixtures. If an overlap is found, the corresponding
distance between the fixtures is queried.

Consequently, our implementation of the body cameras corresponds more closely
to the simulation of an overhead vision system, which keeps track of the positions
of all the robots. Since this kind of system is commonly used in swarm robotics
implementations, we also deem this an acceptable compromise.

Finally, the lifting point markers are also detected by checking for overlap between
the load fixture and the projection of the platform camera plane.

8.2.2 Control

At the control stage, the blackboard of each robot is updated and their BT con-
trollers are ticked to generate the vvote and pvote outputs.

8.2.3 Broadcast

The broadcast stage is the first stage of the negotiation strategy. During the broad-
cast stage, every robot clears its message buffer and broadcasts a message with the
structure specified in Equation 7.1. Equivalently, every robot gathers the messages
of those neighbours within the rcomms range.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 51

8.2.4 Process

Processing the received messages is done in two stages. In the first stage, the group
ID of each robot is set according to the rules defined in Section 7.1.1. In the second
stage, Equations 7.17 and 7.18 are used to compute vgoal and pgoal, respectively.

8.2.5 Act

The final stage consists on applying vgoal and pgoal to each robot and move the
loads, if necessary.

Wheels Since robots are modelled as dynamic objects, we simulate their motion
by applying forces to them. For every value of vgoal, we first saturate its magnitude
to 1.0 to avoid setting infinite velocities and then scale it using vmax to obtain
the target local velocity. We then use an overdamped proportional controller to
determine the forces required to move the robot with a velocity equal to vgoal while
preventing unrealistic accelerations.

Platform We simplify the motion of the lifting platform by simulating it as a
discrete event. If the platform is down, a positive value of pvote lifts it in a single
iteration. Likewise, a negative value of pvote lowers a lifted platform. In any other
case, the platform does not move.

Due to the lifting rules enforced, when a robot lifts its platform, it does it to lift a
load. Therefore, we also attach the body of the corresponding load to each porter
and add the corresponding fraction of the mass of the load to the mass of the porter.
The load is held in position due to friction between the surface of the platform and
the body of the load. Additionally, since a lifted platform is pressed against the
body of the load, the platform camera is no longer able to detect the lifting point
marker, so we remove the corresponding fixture.

Similarly, a platform is only lowered to deposit a load. Therefore, the load is de-
tached, the mass of the porters is reset and the platform camera fixture is recovered.
Moreover, if the platform is lowered when one of the robots is at the nest, the load
is removed from the arena.

Page 52 Report

8.3 Fitness

When a run finishes, the fitness of the controller is evaluated. We consider a homo-
geneous swarm, where all the robots use the same controller, so we define the fitness
in terms of global quantities of the environment. For the task of collective transport,
we want to reward the proximity of each load to the nest region at the end of the
run. Since the nest is located in the +X0 wall of the arena, this is equivalent to
rewarding motion of the loads in the +X0 direction:

f1,i =
X0,i,final −X0,i,initial

tlife,iVmax

, (8.1)

where X0,i,initial and X0,i,final are the start and end positions of load i, tlife,i is its
lifetime, which is less than the simulation time only if the load is deposited at the
nest at some point, and Vmax is the maximum velocity of the robots. The value of
f1,i is therefore in the range [−1, 1].

To aid the evolutionary process, we introduce two additional terms in our fitness
function. With the first term, we penalise loads that are never lifted during a run:

f2,i =

{
−1, if load i is never lifted

0, otherwise.
(8.2)

The second term rewards finding the lifting points of a load. This term is necessary
for the robots to actively group under a load in order to transport it. We define it
as

f3,i =
tcover,i
tlife,i

, (8.3)

where tcover,i is the mean time any of the lifting points of load i spend with an agent
directly under them. Thus, f3,i is in the range [0, 1].

The total fitness of the run is then

F =
∑
i

(f1,i + f2,i + f3,i), (8.4)

where, considering an environment with n loads, F ∈ [−n, 2n].

8.4 Conclusions

In order to quickly evaluate the performance of our generated controllers, we build a
2D physics-based simulator in C++, through which the user may construct an envi-
ronment that is apt for the task of collective transport. In every step, the simulator

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 53

updates the sensory inputs of each robot, implements the controller described in
Section 7 and applies forces to the environment according to the resulting outputs.

We also define the fitness function that the evolutionary algorithm described in the
following section will use to assess the performance of the controllers.

9 Evolution

For our implementation of GP, we use openGA, a C++ library developed by Mo-
hammadi [60]. While originally developed for genetic algorithms (GA), the library
can also tackle GP problems.

It offers two main features of interest for our task. First, it allows the user to
define the structure of the population individuals (chromosomes) and construct the
mutation and crossover operators accordingly. And second, it can evaluate each
chromosome in a separate thread and thus significantly reduce the computation
time required per generation. We also need to consider that, instead of maximising
the fitness of the population every generation, openGA minimises a cost function.
We account for this difference by setting the cost of each individual to its negative
fitness.

Each chromosome is defined as a structure containing genetic material and its cost.
We define the genetic material as our BT, structured as a vector of nodes. The
use of vectors to define a BT makes the implementation of the genetic operators
straightforward. Each node is itself a structure containing the name, depth, arity
and parameters of a BT node. It also contains a macro with the corresponding XML
form of the node. This structure allows us to treat control-flow nodes, execution
nodes and subtrees equally.

All the control-flow nodes introduced in Sections 4.1.1 are made available to the
GP algorithm. However, in order to limit the search space, we limit the maximum
number of children that sequence, selector, sequence* and selector* nodes may have
to four. Besides the nodes defined in Section 7.2.2, the constituent behaviours and
conditions described in Section 7.2.3 are also included in the set of execution nodes
available.

The parameters we use as a starting point are shown in Table 9.1. Our choices are
based on the works of Jones [41], Poli et al. [44] and Francesca et al. [16]. The initial
population is generated using Koza’s ramped-half-and-half method, as described in
Section 5, with depth parameters ranging between dmin and dmax. For each new

Page 54 Report

(a) t = 0 (b) t = texplore

Figure 9.1: Environment instance for controller evolution. Three 2-porter loads
(blue), 16 agents (red) and a nest region (green).

generation, a fraction of the individuals, determined by fcrossover, are generated by
crossover of two parent individuals selected by rank selection. These individuals then
undergo parameter, point and subtree mutation with probabilities pparam, ppoint and
psubtree, respectively. The fittest nelite individuals of the previous generation and the
new individuals combined are transferred directly to the next generation, and the
rest of the population is obtained by reproduction via rank selection from the same
pool.

To evaluate the fitness of each controller, we choose an instance of the environment
with three 2-porter loads placed on the left-hand side of the arena and 16 robots on
the right-hand side of the arena, as shown in Figure 9.1a. The robots are initially
allowed to run the exploration behaviour during texplore in order to obtain a random
initial configuration for every run, such as the one shown in Figure 9.1b. Each
controller is then run on all the robots during tsim, and the resulting fitness is
stored. This process is repeated nevals times, and the total fitness is computed as
the mean of all evaluations. While nevals is usually in the order of 8-10, we reduce
this value to economise computational resources.

Since it is common to observe jumps in fitness as the evolution progresses, we decide
to let the GP algorithm run all ngen generations, even if the fitness converges to a
fixed value.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 55

Table 9.1: Initial GP parameters.

Parameter Value Description
ngen 200 Number of generations
tsim 120s Simulation time
texplore 10s Initial exploration time
N 20 Population size
dmin 0 Minimum tree depth (for initialisation)
dmax 4 Maximum tree depth (for initialisation)
pinner 0.9 Probability of inner node selection
pparam 0.05 Probability of parameter mutation
ppoint 0.05 Probability of point mutation
psubtree 0.1 Probability of subtree mutation
fcrossover 0.7 Crossover rate
nevals 4 Number of evaluations
nelite 3 Number of elite individuals

10 Results

Initial trials with the primitive set and the parameters defined in Section 9 revealed
that trees with a depth of zero never achieved the goal of collective transport. This
is a consequence of the absence of a behaviour that may modify both vvote and
pvote, which results in controllers requiring at least two behaviours, and therefore a
minimum depth of one, to achieve collective transport. Additionally, the controllers
generated with the [0, 4] initial depth range tended to be too shallow, which we be-
lieve to be caused by the introduction of covariant parsimony pressure. We therefore
increase the initial tree depth range to [1, 5].

We also observed that all recruitment behaviours and entries were always filtered out
by the evolution. Consequently, we removed the recruitment and anti-recruitment
behaviours and the recruiter-count and inverted-recruiter-count conditions from the
primitive set, and we deleted the vrecr and sr entries from the blackboard in order
to speed up future runs.

Having implemented these modifications, we ran the evolutionary algorithm five
times. For each generation, we recorded the original fitness of the fittest individual,
that is, f(x) in Equation 5.1, where f(x) is given by Equation 8.4, and the average
fitness of all the individuals. We then normalised the results to obtain a more
intuitive interpretation of the data. The results are shown in Table 10.1.

Figure 10.1 then shows the normalised original fitness of the fittest individuals

Page 56 Report

Table 10.1: Normalised original fitness of the fittest individual and average fitness
of all individuals in the last generation during five independent evolutionary runs.

Run Best Average
1 0.587 0.567
2 0.556 0.525
3 0.600 0.584
4 0.609 0.568
5 0.570 0.570

Figure 10.1: Five independent evolutionary runs with modified parameters. The
normalised original fitness of the fittest individuals is shown.

of each generation. Note that, since the covariant parsimony pressure coefficient
changes every generation, the fittest individual may not be the one with the highest
original fitness. Furthermore, the fittest individual of a generation may no longer be
as fit as the fittest individual from previous generations. Consequently, the obtained
fitness curves are no longer monotonically increasing.

Nevertheless, all five runs show that the GP algorithm is able to generate controllers
that partially complete the task of collective transport. In two of those runs, the
robots are able to start transporting loads almost from the start, while the other
three require 50 generations to reach that stage. By the 100th generation, the fittest
individuals of all the populations are able to transport some of the items towards
the nest. Figure 10.2 shows two examples in which the robots successfully manage
to lift and transport multiple items simultaneously. For links to some videos of the

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 57

Figure 10.2: Successful collective transport of multiple loads simultaneously towards
the nest region.

performance of the controllers, see Appendix 13.

However, none of the controllers generated were able to deposit any loads at the nest.
As a consequence, we observed that robots often reach the nest region, but then
return to the left-hand side of the arena, thus obtaining a lower reward. Since the
fitness function in Equation 8.4 rewards loads with a shorter lifetime, we believe that
further tuning of the evolutionary parameters would achieve the complete desired
behaviour.

11 Planning

Figure 11.1 shows a Gantt chart with the plan to develop the work presented. The
columns indicate the weeks of the corresponding months. Tasks are shown in blue
and milestones, in gold.

The design and implementation of the controllers, the simulator and the evolutionary
algorithm, together with the writing of this report, constitute the four main tasks of
the project. We therefore allocate most of the time to their execution. Since testing
our solution requires waiting several hours for the simulations to run, the report
should be completed during this time.

We also identify two milestones. The first one is a progress report near the end
of March in order to assess the evolution of the project. The second one is the
submission of the project.

Page 58 Report

Figure 11.1: Gantt chart of project plan.

12 Budget analysis

This project was fully developed in a simulated environment. The only kind of hard-
ware required is therefore a computer. While there are no minimum requirements
for the amount of processing power required, an architecture with multiple cores is
recommended, since openGA separates the evaluation of the population individuals
in as many threads as possible. Thus, for a population with 20 individuals, like the
one considered in this work, the GP algorithm would ideally have access to 11 cores
(22 threads, with 20 for the individual evaluations and 1 for the main program).

Processors with more than 11 cores are not uncommon. The Intel® Core™ X-
Series Processor Family3 offers three alternatives, all of which cost between $689 and
$1,000. The AMD Ryzen™ Threadripper™ Processors4 also offer multiple options
with up to 64 cores and prices ranging between $2855 and $5,1216. Without any
further assumptions about platform requirements, a $2,000 desktop computer should
be able to comfortably run the GP algorithm in a minimum time. A more expensive
solution would allow for mutliple concurrent runs of the GP algorithm.

However, in order to run a large number of evolutionary processes simultaneously,

3https://www.intel.com/content/www/us/en/products/details/processors/core/x.html
4https://www.amd.com/en/products/ryzen-threadripper
5https://www.amazon.com/AMD-Threadripper-24-thread-Processor-

YD192XA8AEWOF/dp/B074CBJHCT
6https://www.amazon.com/AMD-Ryzen-Threadripper-3990X-128-Thread/dp/B0815SBQ9W

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 59

a computer cluster would be a highly valuable asset. Depending on the size of the
cluster, it may allow for dozens of simultaneous runs, which would speed up the
parameter tuning process. Unfortunately, computer clusters are typically privately
owned, and thus access to them is restricted.

All the external libraries used are free and open source and are distributed under
permissive licenses. Both Box2D and BehaviorTree.CPP use the MIT License, while
openGA uses the Mozilla Public License 2.0. Consequently, no software expenses
need to be considered.

13 Environmental impact

Given that the project was developed exclusively in a simulated environment, we
have no environmental concerns to report. Nevertheless, we may consider the effect
that the implementation of the solution presented in a real-world industrial envi-
ronment could have. To do this, we refer to Section 2.2, were we point out that an
industrial robot swarm capable of collective transport could help prevent harm to
plant workers, reduce costs of labour and increase the reliability of the plant.

Conclusions

In this work, we have presented a method for collective transport of heavy items
using an industrial swarm in a simulated environment. The robots use controllers
with a BT architecture, which are evolved with GP techniques, to generate actuator
commands. They then coordinate using a decentralised negotiation strategy that
relies on direct communication.

The results show that the GP algorithm is able to generate controllers that are able
to safely lift and transport multiple loads simultaneously towards a nest region. No
controllers were able to deposit the loads at the nest, however, so we suggest further
tuning of the evolutionary parameters as a potential solution.

A clear next step in the development of the method proposed would be to implement
it in a real-world environment in order to assess its sensitivity to the reality gap.
Prior to this, however, it would be worth considering the limitations of the simulator
we have used. As we mention in Section 8, the effect of noise on sensor readings
and actuator outputs is not considered. As a consequence, the evolved controllers

Page 60 Report

may be using inaccuracies of the simulated environment to their advantage. A more
accurate model of the sensors and the actuators, where noise effects are considered,
would thus result in more realistic simulations.

We also do not consider the possibility of failure during message delivery and recep-
tion. While this greatly simplifies the implementation of the negotiation strategy,
it also reduces its fault-tolerance. The inclusion of a mechanism to deal with these
failures would therefore be crucial before attempting to transfer the controllers to
the real world.

Finally, we identify the requirement of a fully-connected porter network as an im-
portant limitation of our method. Future work could introduce a method relying
on communication hops to determine when each robot has received all the infor-
mation required to compute the actuator outputs. Such a method would also need
to consider the required messaging rate and the amount of data contained in each
message.

Despite these limitations, we believe that the proposed method has potential for
practical applications of swarm robotics in real-world industrial environments. The
use of direct communication for decentralised negotiation results in safe handling
of the transported items, since every porter executes the exact same motion. Ad-
ditionally, its implementation in an already existing environment would not require
any additional infrastructure, since the robots use ArUco markers to navigate.

Acknowledgements

I would like to thank my supervisor, Dr. Simon Jones, for his support and guidance
throughout this project.

I would also like to thank Dr. Sabine Hauert and the rest of the swarm robotics
group at Bristol Robotics Laboratory for letting me be a part of their team during
this time.

Finally, I would like to thank Dr. Ramon Costa Castelló for helping me make this
project possible in the first place.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 61

Bibliography

[1] SAHIN, E. “Swarm Robotics: From Sources of Inspiration to Domains of Ap-
plication”. In: vol. 3342. Jan. 2005, pp. 10–20.

[2] DORIGO, M. et al. “Swarmanoid: A Novel Concept for the Study of Het-
erogeneous Robotic Swarms”. In: IEEE Robotics Automation Magazine 20.4
(2013), pp. 60–71.

[3] BENI, G. “From Swarm Intelligence to Swarm Robotics”. In: Swarm Robotics.
Ed. by Şahin, E. and Spears, W. M. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2005, pp. 1–9.

[4] BJERKNES, J. D. and WINFIELD, A. F. T. “On Fault Tolerance and Scal-
ability of Swarm Robotic Systems”. In: Distributed Autonomous Robotic Sys-
tems: The 10th International Symposium. Ed. by Martinoli, A. et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 431–444.

[5] BONABEAU, E., DORIGO, M., and THERAULAZ, G. Swarm Intelligence:
From Natural to Artificial Systems. Oxford University Press, 1999.

[6] Seeley, T. “Honey bee foragers as sensory units of their colonies”. In: Behav-
ioral Ecology and Sociobiology 34 (2004), pp. 51–62.

[7] REID, C. R. et al. “Army ants dynamically adjust living bridges in response to
a cost–benefit trade-off”. In: Proceedings of the National Academy of Sciences
(2015).

[8] BARDUNIAS, P. et al. “The extension of internal humidity levels beyond the
soil surface facilitates mound expansion in Macrotermes”. In: Proceedings of
the Royal Society B: Biological Science 287.1930 (2020).

[9] HAMANN, H. Swarm Robotics: A Formal Approach. Jan. 2018.

[10] REYNOLDS, C. W. “Flocks, Herds and Schools: A Distributed Behavioral
Model”. In: Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’87. New York, NY, USA: Association
for Computing Machinery, 1987, pp. 25–34.

[11] BRAMBILLA, M. et al. “Swarm robotics: a review from the swarm engineering
perspective”. In: Swarm Intelligence 7 (2012), pp. 1–41.

[12] SCHRANZ, M. et al. “Swarm Robotic Behaviors and Current Applications”.
In: Frontiers in Robotics and AI 7 (2020), p. 36.

[13] KUBE, C. R. and BONABEAU, E. “Cooperative transport by ants and robots”.
In: Robotics and Autonomous Systems 30.1 (2000), pp. 85–101.

[14] KOLAY, S., BOULAY, R., and D’ETTORRE, P. “Regulation of Ant Foraging:
A Review of the Role of Information Use and Personality”. In: Frontiers in
Psychology 11 (2020), p. 734.

Page 62 Report

[15] FLOREANO, D., HUSBANDS, P., and NOLFI, S. “Evolutionary Robotics”.
In: Springer Handbook of Robotics. Ed. by Siciliano, B. and Khatib, O. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1423–1451.

[16] FRANCESCA, G. et al. “AutoMoDe: A novel approach to the automatic
design of control software for robot swarms”. In: Swarm Intelligence 8 (2
2014), pp. 89–112.

[17] MIGLINO, O. “Evolving mobile robots in simulated and real environments”.
In: Artificial Life 2 (1995), pp. 417–434.

[18] JAKOBI, N., HUSBANDS, P., and HARVEY, I. “Noise and the reality gap:
The use of simulation in evolutionary robotics”. In: Advances in Artificial Life.
Ed. by Morán, F. et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995,
pp. 704–720.

[19] JAKOBI, N. “Evolutionary Robotics and the Radical Envelope-of-Noise Hy-
pothesis”. In: Adaptive Behavior 6 (1997), pp. 325–368.

[20] STATISTICS, U. B. O. L. Industries at a Glance: Warehousing and Storage:
NAICS 493. https://www.bls.gov/iag/tgs/iag493.htm#. 2021.

[21] ROODBERGEN, K. J. and VIS, I. F. “A survey of literature on automated
storage and retrieval systems”. In: European Journal of Operational Research
194.2 (2009), pp. 343–362.

[22] AZADEH, K., DE KOSTER, R., and ROY, D. Robotized Warehouse Systems:
Developments and Research Opportunities. Tech. rep. ERS-2017-009-LIS. May
2017.

[23] YUAN, Z. and GONG, Y. “Improving the Speed Delivery for Robotic Ware-
houses**This research is supported by China Scholarship Council and Chutian
Scholarship.” In: IFAC-PapersOnLine 49.12 (2016). 8th IFAC Conference on
Manufacturing Modelling, Management and Control MIM 2016, pp. 1164–
1168.

[24] JONES, S. et al. “Distributed Situational Awareness in Robot Swarms”. In:
Advanced Intelligent Systems 2.11 (2020), p. 2000110.

[25] MATARIC, M., NILSSON, M., and SIMSARIN, K. “Cooperative multi-robot
box-pushing”. In: Proceedings 1995 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Human Robot Interaction and Cooperative
Robots. Vol. 3. 1995, 556–561 vol.3.

[26] CAMPO, A. et al. “Negotiation of goal direction for cooperative transport”.
In: ANTS 2006: Ant Colony Optimization and Swarm Intelligence. Lecture
Notes in Computer Science. 4150 (2006), pp. 191–202.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 63

[27] FERRANTE, E. et al. “Socially-Mediated Negotiation for Obstacle Avoidance
in Collective Transport”. In: Distributed Autonomous Robotic Systems: The
10th International Symposium. Ed. by Martinoli, A. et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 571–583.

[28] GROSS, R. and DORIGO, M. “Evolution of Solitary and Group Transport
Behaviors for Autonomous Robots Capable of Self-Assembling”. In: Adaptive
Behavior 16.5 (2008), pp. 285–305.

[29] BALDASSARRE, G., NOLFI, S., and PARISI, D. “Evolution of Collective
Behavior in a Team of Physically Linked Robots”. In: vol. 2611. Feb. 2003.

[30] Cooperative Object Transport Using Evolutionary Swarm Robotics Methods.
Vol. ECAL 2015: the 13th European Conference on Artificial Life. ALIFE
2020: The 2020 Conference on Artificial Life. July 2015, pp. 464–471. eprint:
https://direct.mit.edu/isal/proceedings-pdf/ecal2015/27/464/

1903925/978-0-262-33027-5-ch083.pdf.

[31] HAMOUDA, A. I. “Cooperative Transport in Swarm Robotics”. MA thesis.
The American University in Cairo, 2018.

[32] COUCEIRO, M. S. et al. “A fuzzified systematic adjustment of the robotic
Darwinian PSO”. In: Robotics and Autonomous Systems 60.12 (2012), pp. 1625–
1639.

[33] COLLEDANCHISE, M. and ÖGREN, P. “Behavior Trees in Robotics and
AI”. In: (July 2018).

[34] IAN MILLINGTON, J. F. Artificial Intelligence for Games. CRC Press, 2009.

[35] ISLA, D. “Handling Complexity in the Halo 2 AI”. In: Game Developers Con-
ference. 2005.

[36] ISLA, D. “Building a Better Battle: Halo 3 AI Objectives”. In: Game Devel-
opers Conference. 2008.

[37] JONES, S. et al. “Evolving Behaviour Trees for Swarm Robotics”. English.
In: Distributed Autonomous Robotic Systems. Springer Tracts in Advanced
Robotics. Springer, Mar. 2018, pp. 487–501.

[38] LIGOT, A. et al. “Automatic modular design of robot swarms using behavior
trees as a control architecture”. In: PeerJ Computer Science 6 (Nov. 2020),
e314.

[39] KUCKLING, J., VAN PELT, V., and BIRATTARI, M. “Automatic Modu-
lar Design of Behavior Trees for Robot Swarms with Communication Capa-
bilites”. In: Applications of Evolutionary Computation. Ed. by Castillo, P. A.
and Jiménez Laredo, J. L. Cham: Springer International Publishing, 2021,
pp. 130–145.

Page 64 Report

[40] MARZINOTTO, A. et al. “Towards a unified behavior trees framework for
robot control”. In: 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA). 2014, pp. 5420–5427.

[41] JONES, S. “Onboard Evolution of Human-Understandable Behaviour Trees
for Robot Swarms”. PhD thesis. University of Bristol, 2020.

[42] VIKHAR, P. A. “Evolutionary algorithms: A critical review and its future
prospects”. In: 2016 International Conference on Global Trends in Signal Pro-
cessing, Information Computing and Communication (ICGTSPICC). 2016,
pp. 261–265.

[43] SIMON, D. Evolutionary Optimization Algorithms. Wiley, 2013.

[44] POLI, R., LANGDON, W. B., and MCPHEE, N. F. A field guide to ge-
netic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

[45] KOZA, J. R. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[46] KOZA, J. R. et al. Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Springer US, 2003.

[47] HOLLAND, J. H. Adaptation in Natural and Artificial Systems. second edi-
tion, 1992. Ann Arbor, MI: University of Michigan Press, 1975.

[48] MILLER, B. L. and GOLDBERG, D. E. “Genetic Algorithms, Tournament
Selection, and the Effects of Noise”. In: Complex Systems 9 (1995), pp. 193–
212.

[49] BAKER, J. E. “Reducing Bias and Inefficiency in the Selection Algorithm”. In:
Proceedings of the Second International Conference on Genetic Algorithms on
Genetic Algorithms and Their Application. Cambridge, Massachusetts, USA:
L. Erlbaum Associates Inc., 1987, pp. 14–21.

[50] POLI, R., MCPHEE, N., and VANNESCHI, L. “Elitism reduces bloat in ge-
netic programming”. In: Jan. 2008, pp. 1343–1344.

[51] POLI, R. and MCPHEE, N. “Covariant Parsimony Pressure for Genetic Pro-
gramming”. In: (Feb. 2008).

[52] JONES, S. et al. “Onboard Evolution of Understandable Swarm Behaviors”.
In: Advanced Intelligent Systems 1.6 (2019), p. 1900031.

[53] GARRIDO-JURADO, S. et al. “Automatic generation and detection of highly
reliable fiducial markers under occlusion”. In: Pattern Recognition 47.6 (2014),
pp. 2280–2292.

[54] FACONTI, D. and COLLEDANCHISE, M. BehaviorTree.CPP.
https://github.com/BehaviorTree/BehaviorTree.CPP/. 2018.

Evolution of Behaviour Trees for Collective Transport with Robot Swarms Page 65

[55] QUIGLEY, M. et al. “ROS: an open-source Robot Operating System”. In:
ICRA Workshop on Open Source Software. 2009.

[56] FACONTI, D. Groot.
https://github.com/BehaviorTree/Groot. 2018.

[57] CATTO, E. Box2D, A 2D Physics Engine for Games.
https://github.com/erincatto/box2d. 2006.

[58] SEGAL, M. and AKELEY, K. The OpenGLR Graphics System: A Specifica-
tion (Version 3.3 (Core Profile)). The Khronos Group Inc. 2010.

[59] LIGOT, A. and BIRATTARI, M. “Simulation-only experiments to mimic the
effects of the reality gap in the automatic design of robot swarms”. In: Swarm
Intelligence 14.1 (Oct. 2019), pp. 1–24.

[60] Mohammadi, A. et al. “OpenGA, a C++ Genetic Algorithm Library”. In:
Systems, Man, and Cybernetics (SMC), 2017 IEEE International Conference
on. IEEE. 2017, pp. 2051–2056.

