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POROUS-ELASTIC PLATES: FOURIER VERSUS TYPE III

HUGO D. FERNÁNDEZ SARE AND RAMÓN QUINTANILLA

Abstract. In this paper we investigate the time decay of the solutions for a thermoelastic plate with voids
in the cases when the heat conduction is modeled by the Fourier law and when it is modeled by the type III

theory (with and without the inertial term). In all situations we show that, in general, the strong stability
holds. In particular, we show slow decay of solutions for the Fourier case, that is, the solutions do not

decay exponentially to zero (in general). However, if the coefficients satisfy a new relationship involving the

inertial coefficient (singular case), we characterize the exponential decay of solutions. On the other hand,
for the type III theory the situation is very different and we prove that generically the solutions decay to

zero exponentially. This is another striking aspect when we compare both theories. This difference is a

consequence of the couplings appearing in the type III case which are not present in the case of the Fourier
law.

1. Introduction

The theory of elastic materials with voids (also called porous elasticity) was introduced by Cowin and
Nunziato [8, 9, 32] in the second part of the last century. For this theory the materials have two types of
structures: on one side at the macrostructure level we have the displacement concerning the elastic part,
and on the other side we have the porosity defined by means of the volume fraction. The basic idea is that
we have a basic matrix material with holes and the kind of voids is determined by the volume fraction. This
theory has deserved much attention in the recent years and the quantity of contributions studying this class
of materials is huge ([1, 2, 14, 12, 13, 15, 26, 27, 37], see among others), this is because the wide applicability
of these materials in engineering and biology. The two structures composing the solid are coupling in a
weak sense and we cannot (generically) expect that the dissipation imposed to only a level of the structure
is sufficient to bring all the system to an exponential decay of the perturbations. For this reason several
kinds of mechanism have been introduced in the study of these materials to clarify its consequences on the
time decay of the thermomechanical deformations. In particular thermal and microthermal effects have been
considered [5, 6].

The most usual constitutive law to define the heat flux for the heat conduction in solids or fluids was
proposed by Fourier. In this situation the heat flux vector is proportional to the gradient of temperature. A
mathematical consequence of it is that the thermal waves propagate with unbounded speed and therefore the
heat spreads instantaneously regardless of how far the point is from the heat source. This fact contradicts
the causality principle and as a consequence the Fourier law has received different criticism. Several authors
have tried to propose alternative laws for the heat flux that were free from this paradox. The most known
alternative law is the one proposed by Cattaneo and Maxwell that introduces a relaxation parameter to
the Fourier law. In the last 25 years a big interest has been developed to understand the thermoelastic
theories proposed by Green and Naghdi [20, 21, 22]. In these basic contributions the authors proposed three
theories that they called type I, II and III respectively. The difference between them correspond to the way
as the heat conduction is determined. Type I recovers Fourier’s law and the heat flux is proportional to the
gradient of temperature. For the type II theory the heat flux is proportional to the gradient of the thermal
displacement. This variable had deserved few attention before the works of Green and Naghdi and it can
be defined as the time integral of the temperature. Type III theory is the most general because the other
two theories can be obtained as limit cases. It is worth recalling that type II theory overcomes the causality
paradox, but type III theory falls back into the same problem of the Fourier law. A way to overcome this
fact can be the same as Cattaneo and Maxwell proposed in the case of the Fourier law to obtain the so-called
Moore-Gibson-Thompson theory for the heat conduction [36].
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In this paper we center our attention in the type I and type III theories. It is worth remarking that in
the recent years there has been proved a relevant difference in the time behavior of the solutions of different
thermomechanical theories when these two heat conduction theories are present [28]. In particular different
decay estimates has been obtained in the case that we consider the elasticity with voids when these two
thermal mechanisms are present [30, 29]. Even more, several striking facts have been noted even in the case
that we consider type II theory [23, 25, 31]. These new and remarkable effects are consequence of the fact
that the type II and type III theories impose new coupling mechanisms between the independent variables
in the field equations. These couplings are not present in the case of the Fourier law (type I).

In this paper we want to continue with this kind of comparisons and studies. We want to analyze the
thermo-porous-elastic plate in the case of type I and type III theories in the cases that inertial term is
considered or not. It is worth recalling that the time decay of the solutions of thermoleatic plates has been a
topic deeply studied, see for example [3, 7, 16] and references therein. In our case we want to prove that, for
a porous-elastic plates with thermal effects given by type I theory, the decay of the solutions is (generically)
slow. That is, the solutions are not controlled by any exponential. However for the type III theory we will
prove that generically the solutions decay in an exponential way. Therefore, we obtain again a difference in
the behavior of the solutions depending of the kind of heat conduction theory we select. Being more specific,
we will prove that the thermo-porous-elastic system in the case of type I thermal effects (Fourier law) will
be exponentially stable if and only if a specific relationship between some constants of the system holds.
This relationship involves directly the presence of the inertial rotational constant α which means that α ≥ 0
plays an important role in the characterization of exponential and non-exponential stability, see Remarks 2.3
and 2.9. On the other hand, considering the thermo-porous-elastic system in the case of type III’s thermal
effects, we prove that the exponential stability result does not depend on α > 0 or α = 0. Additionally,
strong stability conditions are formulated for both cases.

The organization of the paper is given as follows. In Section 2 we study well-posedness and stability
results for the thermo-porous-elastic system with type I thermal effects. Similar results are formulated for
the thermo-porous-elastic system with type III thermal effects.

2. Fourier’s Thermal Effects

From now on we denote by Ω a two dimensional domain with boundary smooth enough to apply the
divergence theorem and compactness embeddings. We start considering thermal effects given by Fourier’s
law. In this case the system can be written as

ρutt − α∆utt + µ∆2u− d∆θ − γ∆ϕ = 0 in Ω× R+

Jϕtt − b∆ϕ+ ξϕ− nθ − γ∆u = 0 in Ω× R+

a∗θt − k∗∆θ + nϕt + d∆ut = 0 in Ω× R+,

(1)

with boundary conditions
u(x, t) = ∆u(x, t) = 0 in ∂Ω× R+

ϕ(x, t) = θ(x, t) = 0 in ∂Ω× R+,
(2)

and initial conditions
u(·, 0) = u0(·) , ut(·, 0) = u1(·) in Ω

ϕ(·, 0) = ϕ0(·) , ϕt(·, 0) = ϕ1(·) in Ω

θ(·, 0) = θ0(·) in Ω.

(3)

Here, the hypotheses on the constants are the following,

µ > 0, ξµ− γ2 > 0, b > 0, ρ, J, a∗, k∗ > 0, d 6= 0, n, γ ∈ R (4)

with α ≥ 0. Conditions (4) are motivated to guarantee that we can define an inner product in the Hilbert
space Mα to be defined shortly by means of the functional considered later. In system (1), u describes the
displacement, ϕ the volume fraction and θ the temperature.

Remark 2.1. Let us mention some comments about the case d < 0 in conditions (4). Physically, it is usual
to accept that the temperature generates dilatation of the elastic material implying that the corresponding
parameters should be positive. In this sense the mathematical analysis could be worked in the same way, this
is, assuming d ≥ 0. On the other side: Is it possible that, for certain kind of materials, the consequences of
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the thermal effects would be the contraction of the material? For this reason we believe that it is suitable to
considerer the case d < 0. Similar comments can be applied to the parameters n or γ.

In this section we will characterize the exponential stability of system (1)-(3). In fact, the main result of
this section is given by the following theorem.

Theorem 2.2. For damped solutions, system (1)-(3) is exponentially stable if and only if

µ− αb

J
= 0 and γ 6= 0. (5)

Remark 2.3. The first condition of (5) is relative new because it does not involve the coefficient ρ > 0, which
is different when compared with other type of porous-elastic systems with thermal effects (see for example
[33]) or even when we compare condition (5) with similar conditions used to stabilize Timoshenko systems
with or without thermal effects, see for example [10, 18, 19, 38].

Remark 2.4. In Theorem 2.2, we define “damped solutions” as the solutions which are strongly stable,
this is when the associated energy E(t) goes to zero when t goes to infinity. So, in the context of linear
semigroups, in order to obtain “damped solutions”, it is sufficient to show that iR ⊂ ρ(A), where A is the
infinitesimal generator to the semigroup associated to the system.

In order to prove Theorem 2.2, we use semigroup techniques dividing our analysis in the next subsections,
each situation associated to α > 0 or α = 0.

2.1. Well-posedness. For the well-posedness we define the Hilbert spaces

M0 := [H2(Ω) ∩H1
0 (Ω)]× L2(Ω)×H1

0 (Ω)× L2(Ω)× L2(Ω), (α = 0)

Mα := [H2(Ω) ∩H1
0 (Ω)]×H1

0 (Ω)×H1
0 (Ω)× L2(Ω)× L2(Ω), (α > 0)

with inner products for Ui = (ui, vi, ϕi, φi, θi)
T , i = 1, 2 given by

(U1, U2)Mα
:= µ(∆u1,∆u2)L2 + ρ(v1, v2)L2 + α(∇v1,∇v2)L2 + b(∇ϕ1,∇ϕ2)L2 + ξ(ϕ1, ϕ2)L2

+J(φ1, φ2)L2 + a∗(θ1, θ2)L2 − γ(ϕ1,∆u2)L2 − γ(∆u1, ϕ2)L2 ,

which implies the norms, for U = (u, v, ϕ, φ, θ)T

||U ||2Mα
= µ||∆u||2L2 + ρ||v||2L2 + α||∇v||2L2 + b||∇ϕ||2L2 + ξ||ϕ||2L2 + J ||φ||2L2 + a∗||θ||2L2

−2γRe(ϕ,∆u)L2 .

Additionally, let Bα be the associated operators

Bα



u

v

ϕ

φ

θ


=



v

1

ρ
(I − α

ρ
∆)−1∆ (−µ∆u+ dθ + γϕ)

φ

1

J
[b∆ϕ− ξϕ+ nθ + γ∆u]

1

a∗
[k∗∆θ − φ−∆v]


, (6)

with respective domains

D(B0) =
{

(u, v, ϕ, φ, θ)T ∈M0 : ∆u, v, ϕ, θ ∈ H2(Ω) ∩H1
0 (Ω); φ ∈ H1

0 (Ω)
}
,

D(Bα) =
{

(u, v, ϕ, φ, θ)T ∈Mα : v, ϕ, θ ∈ H2(Ω) ∩H1
0 (Ω); ∆u, φ ∈ H1

0 (Ω)
}
,

which are defined for α = 0 and α > 0, respectively. In this context, the operators Bα associated to system
(1)-(3) when α ≥ 0 are infinitesimal generators of C0-semigroups on the Hilbert spacesMα, respectively. In

fact, for the proof it is sufficient to see that D(Bα) =Mα, Bα are dissipative and 0 ∈ %(Bα), for all α ≥ 0,
see [24, 34]. Note that the density results are standard. Also, by straightforward calculations we have

Re(BαU,U)Mα
= −k∗||∇θ||2L2 , ∀U = (u, v, ϕ, φ, θ)T ∈Mα ,
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implying that the operators Bα are dissipative. Additionally, in order to show that 0 ∈ %(Bα), let F =
(f1, f2, · · · , f5) ∈Mα, then the equation

−BαU = F in Mα

implies v = −f1 ∈ H2 ∩H1
0 , φ = −f3 ∈ H1

0 , θ = 1
k∗ (−∆)−1(a∗f5 +nf3 + d∆f1) ∈ H2 ∩H1

0 and (u, ϕ) should
satisfy

∆(µ∆u− γϕ) = g1 in H−1 (or L2, if α = 0)

−b∆ϕ+ ξϕ− γ∆u = g2 in L2,

where

g1 := ρf2 − α∆f2 −
d

k∗
(a∗f5 + nf3 + d∆f1) and g2 := Jf4 +

n

k∗
(−∆)−1(a∗f5 + nf3 + d∆f1).

So, using conditions (4) and the Lax-Milgram Theorem we obtain a unique solution (u, ϕ) ∈ [H2 ∩H1
0 ]×H1

0

satisfying the conditions of D(Bα), for each α ≥ 0. Then Bα is bijective. Also, working with the components
of BαU = F , it is not difficult to prove that ||U ||Mα

≤ C||F ||Mα
, which implies that B−1

α is bounded.
Therefore 0 ∈ %(Bα) for all α ≥ 0, which completes the proof that the operators Bα are infinitesimal
generators of C0-semigroups on the Hilbert spaces Mα, respectively. So the associated systems (1)-(3) are
well-posed.

Before to prove the characterization of exponential stability we finish this section showing that, under
suitable conditions, system (1)-(3) is strongly stable. For this purpose, we define νj as the eigenvalues of the
Laplacian operator with Dirichlet boundary conditions in L2(Ω) and ej their corresponding eigenfunctions,
for each i ∈ N, this is

−∆ej = νjej with νj → +∞ (j → +∞), (7)

where e0 := ||ej ||L2 <∞ is a constant, for all j ∈ N. Now, let us start by showing a characterization of the
set iR ∩ σ(Ba).

Lemma 2.5. Let n 6= 0 and νj, ej defined in (7). Then

iR ∩ σ(Bα) 6= ∅ =⇒ µ+
γd

n
> 0 and P (νj) = 0 for some j ∈ N,

where

P (X) :=

[
J

(
µ+

γd

n

)
− αb

]
X2 −

[
ρb+ α

(
ξ +

γn

d

)]
X − ρ

(
ξ +

γn

d

)
.

Proof. Assuming that λ ∈ iR ∩ σ(Bα), then λ 6= 0 because, from the well-posedness, we have 0 ∈ %(Bα).
Then, by the definition of D(Bα) and using appropriately the compact embedding Hs(Ω) ↪→ Hs−ε(Ω),
∀s ∈ R,∀ε > 0, we have the compact embedding D(Bα) ↪→Mα. So, we have that Bα has compact resolvent
and thus σ(Bα) = σp(Bα), see [11]. Therefore iλ is an eigenvalue of Ba, which implies that there exists
U ∈ D(Bα), U 6= 0, satisfying the resolvent equation

iλU − BαU = 0 in Mα.

So, multiplying this equation by U ∈Mα and taking the real part, we can deduce that

−k∗||∇θ||2L2 = Re(BαU,U)Mα
= 0 where U = (u, v, ϕ, φ, θ)T ,

which implies θ ≡ 0. So substituting in the resolvent equation, results

iλu− v = 0 in H2(Ω) ∩H1
0 (Ω)

iλρv + (I − α

ρ
∆)−1∆(µ∆u− γϕ) = 0 in L2(Ω) (or H1

0 (Ω))

iλϕ− φ = 0 in H1
0 (Ω)

iλJφ− b∆ϕ+ ξϕ− γ∆u = 0 in L2(Ω)

nφ+ d∆v = 0 in L2(Ω),
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which implies

−λ2ρu+ λ2α∆u+ µ∆2u− γ∆ϕ = 0 in L2(Ω) (or H−1(Ω)) (8)

−λ2Jϕ− b∆ϕ+ ξϕ− γ∆u = 0 in L2(Ω) (9)

nϕ+ d∆u = 0, in L2(Ω). (10)

Then, we reduce the existence of iλ ∈ σ(Bα), λ 6= 0, to the existence of a nontrivial solution of system
(8)-(10) which, in particular, can be solved by u = Ajej and ϕ = Bjej , where ej is defined in (7), with
Aj 6= 0 and Bj 6= 0. In fact, substituting into (8)-(9) and using (10) we obtain[

−λ2 (ρ+ ανj) +

(
µ+

γd

n

)
ν2
j

]
Aj = 0 and

[
−λ2J + bνj + ξ +

γn

d

]
Bj = 0,

which implies

λ2 =

(
µ+

γd

n

)
ρ+ ανj

ν2
j =

1

J

[
bνj + ξ +

γn

d

]
> 0.

Therefore, the first equality implies µ +
γd

n
> 0 and the second equality implies P (νj) = 0 for some j ∈ N,

which completes the proof of the Lemma. �

Now, using the previous Lemma, the strong stability of system (1)-(3) is given for the following result,
for all α ≥ 0.

Proposition 2.6. Let %(Bα) the resolvent set of operator Bα. Therefore, assuming n = 0 and γ 6= 0, then
iR ⊂ %(Bα) without any extra condition. On the other hand, for n 6= 0, supposing that

µ+
γd

n
< 0 or P (νj) 6= 0 for all j ∈ N, (11)

then we have again iR ⊂ %(Bα). This is, system (1)-(3) is strongly stable in both situations.

Proof. By contradiction, let us suppose that iR ⊂ %(Bα) is not true, then there exists λ ∈ R such that
iλ ∈ σ(Bα), with λ 6= 0, this because 0 ∈ %(Bα). Then, using the compact embedding D(Bα) ↪→ Mα, we
have that iλ is an eigenvalue of Ba. Therefore, there exists U ∈ D(Ba), U 6= 0, satisfying

iλU − BαU = 0 in Mα.

So, multiplying this equation by U ∈Mα and taking the real part, we can deduce that

−k∗||∇θ||2L2 = Re(BαU,U)Mα = 0 where U = (u, v, ϕ, φ, θ)T ,

which implies θ ≡ 0. So, using this condition in the resolvent equation, we obtain the same system (8)-(10),
this is

−λ2ρu+ λ2α∆u+ µ∆2u− γ∆ϕ = 0 in L2(Ω) (or H−1(Ω))

−λ2Jϕ− b∆ϕ+ ξϕ− γ∆u = 0 in L2(Ω)

nϕ+ d∆u = 0, in L2(Ω).

Therefore, in the case n = 0, the third equation implies u ≡ 0 which implies ϕ ≡ 0 in the first equation
because γ 6= 0 by hypotheses. Consequently we obtain U ≡ 0 in Mα, which is a contradiction. On the
other hand, for n 6= 0 and assuming condition (11), the Lemma 2.5 implies iR ∩ σ(Bα) = ∅ implying that
iR ⊂ %(Bα), which completes the proof of the Proposition. �

Remark 2.7. The previous Proposition is used to exclude undamped solutions, which is the particular case
when n = γ = 0. It is important to identify this kind of solutions because they do not appear in classical
second order porous-elastic systems, see for example [5, 6]. On the other hand, the study of the behavior of
damped solutions, which is the main purpose of this paper, is given in the following Subsection.

Now, for damped solutions, we will use the following characterization of exponential stable semigroups.
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Lemma 2.8. Let T (t) = eAt (t ≥ 0), a semigroup of contractions on the Hilbert space H with generator A
and associated norm || · ||H. Then {T (t)}t≥0 is exponentially stable if and only if

iR ⊂ %(A) (12)

and

lim sup
|λ|→∞

||(iλI −A)−1||L(H,H) <∞. (13)

Proof. See [24, 35]. �

2.2. Exponential stability. In this subsection, excluding undamped solutions, we prove that condition (5)
is sufficient to stabilize exponentially system (1)-(3). In fact, assuming that

µ− αb

J
= 0 and γ 6= 0,

we will prove exponential stability of solutions. Here, note that the interesting situation is α > 0, because
α = 0 in the previous condition implies µ = 0 which is not possible. The case α = 0 is also included in the
next subsection (non-exponential stability).

So, for the case α > 0, in order to prove exponential stability, we use Lemma 2.8. In fact, note that
condition (12) is a direct consequence of Proposition 2.6. Now, in order to show (13), we will prove that

||U ||Mα
≤M ||F ||Mα

,

where F ∈Mα, with M > 0 independent of λ, F , and U is the solution of the resolvent system

(iλI − Bα)U = F , in Mα. (14)

System (14) can be written, in its components, by

iλu− v = f1 in H2(Ω) ∩H1
0 (Ω)

iλρv − (I − α

ρ
∆)−1∆(−µ∆u+ dθ + γϕ) = ρf2 in H1

0 (Ω)

iλϕ− φ = f3 in H1
0 (Ω)

iλJφ− b∆ϕ+ ξϕ− nθ − γ∆u = Jf4 in L2(Ω)

iλa∗θ − k∗∆θ + nφ+ d∆v = a∗f5 in L2(Ω),

which is equivalent to

iλu− v = f1 in H2(Ω) ∩H1
0 (Ω) (15)

iλρv − iλα∆v + ∆(µ∆u− dθ − γϕ) = ρf2 − α∆f2 in H−1(Ω) (16)

iλϕ− φ = f3 in H1
0 (Ω) (17)

iλJφ− b∆ϕ+ ξϕ− nθ − γ∆u = Jf4 in L2(Ω) (18)

iλa∗θ − k∗∆θ + nφ+ d∆v = a∗f5 in L2(Ω), (19)

Now, let us define the multipliers z, y and w as solutions of elliptic equations

−∆z = v in Ω, z = 0 in ∂Ω, (20)

−∆y = θ in Ω, y = 0 in ∂Ω, (21)

−∆w = φ in Ω, w = 0 in ∂Ω. (22)

Then, there exists C > 0 such that

||z||H1
0
≤ C||v||L2 , (23)

||y||H1
0
≤ C||θ||L2 , (24)

||w||H1
0
≤ C||φ||L2 , (25)
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hold. Now, multiplying (14) by U in Mα and taking the real part we have

||∇θ||2L2 ≤ C||U ||Mα
||F ||Mα

. (26)

Now, applying (16) in y ∈ H1
0 (Ω) and using (21) we obtain

iλρ(v, y)L2︸ ︷︷ ︸
J1

− iλα(∆v, y)L2︸ ︷︷ ︸
J2

−µ(∆u, θ)L2 + d||θ||2L2 + γ(ϕ, θ)L2︸ ︷︷ ︸
J3

= ρ(f2, y)L2 + α(f2, θ)L2 . (27)

For J1, using (20) and (19), we obtain

J1 = ρ(z,−iλθ)L2

=
ρ

a∗
(z,−k∗∆θ + nφ+ d∆v − a∗f5)L2

=
ρk∗

a∗
(v, θ)L2 +

ρn

a∗
(z, φ)L2 − ρd

a∗
||v||2L2 − ρ(z, f5)L2

=
ρk∗

a∗
(v, θ)L2 − ρd

a∗
||v||2L2 − ρ(z, f5)L2 +

ρnb

iλa∗J
(v, ϕ)L2

+
ρnξ

iλa∗J
(z, ϕ)L2 − ρn2

iλa∗J
(z, θ)L2 − ρnγ

iλa∗J
(z,∆u)L2 − ρn

iλa∗
(z, f4)L2 , (28)

where (18) was also used in the last equality. Also, using (19) and (18) again, we deduce

J2 = α(v, iλθ)L2

=
α

a∗
(v, k∗∆θ − nφ− d∆v + a∗f5)L2

= −αk
∗

a∗
(∇v,∇θ)L2 − αn

a∗
(v, φ)L2 +

αd

a∗
||∇v||2L2 + α(v, f5)L2

= −αk
∗

a∗
(∇v,∇θ)L2 +

αd

a∗
||∇v||2L2 + α(v, f5)L2 − αnb

iλa∗J
(∇v,∇ϕ)L2

− αnξ

iλa∗J
(v, ϕ)L2 +

αn2

iλa∗J
(v, θ)L2 +

αnγ

iλa∗J
(v,∆u)L2 +

αn

iλa∗
(v, f4)L2 . (29)

Also, using (17) we have

J3 = γ(ϕ, θ)L2 =
γ

iλ
(φ+ f3, θ)L2 =

γ

iλ
(φ, θ)L2 +

γ

iλ
(f3, θ)L2 . (30)

Then, substituting (28)-(30) into (27) we obtain

ρd

a∗
||v||2L2 +

αd

a∗
||∇v||2L2 =

ρk∗

a∗
(v, θ)L2 − ρ(z, f5)L2 +

ρnb

iλa∗J
(v, ϕ)L2 +

ρnξ

iλa∗J
(z, ϕ)L2

− ρn2

iλa∗J
(z, θ)L2 − ρnγ

iλa∗J
(z,∆u)L2 − ρn

iλa∗
(z, f4)L2 +

αk∗

a∗
(∇v,∇θ)L2

−α(v, f5)L2 +
αnb

iλa∗J
(∇v,∇ϕ)L2 +

αnξ

iλa∗J
(v, ϕ)L2 − αn2

iλa∗J
(v, θ)L2

− αnγ

iλa∗J
(v,∆u)L2 − αn

iλa∗
(v, f4)L2 − µ(∆u, θ)L2 + d||θ||2L2

+
γ

iλ
(φ, θ)L2 +

γ

iλ
(f3, θ)L2 − ρ(f2, y)L2 − α(f2, θ)L2 ,

which implies (remembering that d 6= 0)

ρ||v||2L2 + α||∇v||2L2 ≤ C||v||L2 ||θ||L2 + C||∇v||L2 ||∇θ||L2 +
C

|λ|
||U ||2Mα

+
C

|λ|
||U ||Mα

||F ||Mα

+C||U ||Mα
||F ||Mα

+ C||∆u||L2 ||θ||L2 + C||θ||2L2 .
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Then, using (26) we deduce

ρ

2
||v||2L2 +

α

2
||∇v||2L2 ≤ C

(
1 +

1

|λ|

)
||U ||Mα ||F ||Mα +

C

|λ|
||U ||2Mα

+ C||θ||L2 ||U ||Ma
. (31)

Similarly, applying (16) in u we obtain

iλρ(v, u)L2︸ ︷︷ ︸
J4

− iλα(∆v, u)L2︸ ︷︷ ︸
J5

+µ||∆u||2L2 − d(θ,∆u)L2 − γ(ϕ,∆u)L2︸ ︷︷ ︸
J6

= ρ(f2, u)L2 − α(f2,∆u)L2 .

Then, using (15) into J4, J5 and J6, we deduce

µ||∆u||2L2 = ρ||v||2L2 + α||∇v||2L2 + ρ(v, f1)L2 − α(v,∆f1)L2 + d(θ,∆u)L2

+
γ

iλ
(∇ϕ,∇v)L2 − γ

iλ
(ϕ,∆f1)L2 + ρ(f2, u)L2 − α(f2,∆u)L2 ,

which implies, using (26), that

µ||∆u||2L2 ≤ ρ||v||2L2 + α||∇v||2L2 + C

(
1 +

1

|λ|

)
||U ||Mα

||F ||Mα
+
C

|λ|
||U ||2Mα

+ C||θ||L2 ||U ||Ma
.(32)

Therefore, doing 3(31)+(32), we obtain

µ||∆u||2L2 +
ρ

2
||v||2L2 +

α

2
||∇v||2L2 ≤ C

(
1 +

1

|λ|

)
||U ||Mα

||F ||Mα
+
C

|λ|
||U ||2Mα

+ C||θ||L2 ||U ||Ma .(33)

On the other hand, applying (16) in ϕ we obtain

iλρ(v, ϕ)L2︸ ︷︷ ︸
J7

− iλα(∆v, ϕ)L2︸ ︷︷ ︸
J8

+µ(∆u,∆ϕ)L2︸ ︷︷ ︸
J9

+d(∇θ,∇ϕ)L2 + γ||∇ϕ||2L2 = ρ(f2, ϕ)L2 + α(∇f2,∇ϕ)L2 .

Then, using (17) into J7, we obtain

J7 = −ρ(v, φ)L2 − ρ(v, f3)L2 .

Similarly, using (17) and (15) into J8, we obtain

J8 = α(∆v, φ+ f3)L2 = α(∆v, φ)L2 − α(∇v,∇f3)L2

= α(iλ∆u−∆f1, φ)L2 − α(∇v,∇f3)L2

= iλα(∆u, φ)L2 − α(∆f1, φ)L2 − α(∇v,∇f3)L2 .

Also, using (18) into J9 we obtain

J9 =
µ

b
(∆u, iλJφ+ ξϕ− nθ − γ∆u− Jf4)L2

= −iλJµ
b

(∆u, φ)L2 +
µξ

b
(∆u, ϕ)L2 − µn

b
(∆u, θ)L2 − µγ

b
||∆u||2L2 −

Jµ

b
(∆u, f4)L2

= −iλJµ
b

(∆u, φ)L2 − µξ

iλb
(∆u, φ)L2 − µξ

iλb
(∆u, f3)L2 − µn

b
(∆u, θ)L2 − µγ

b
||∆u||2L2 −

Jµ

b
(∆u, f4)L2 ,

where (17) was also used in the last equality. Then, substituting J7, J8 and J9 we deduce

γ||∇ϕ||2L2 = ρ(v, φ)L2 + ρ(v, f3)L2 − iλ
(
α− Jµ

b

)
(∆u, φ)L2 + α(∆f1, φ)L2 + α(∇v,∇f3)L2

+
µξ

iλb
(∆u, φ)L2 +

µξ

iλb
(∆u, f3)L2 +

µn

b
(∆u, θ)L2 +

µγ

b
||∆u||2L2 +

Jµ

b
(∆u, f4)L2

+ρ(f2, ϕ)L2 + α(∇f2,∇ϕ)L2 ,

which implies, using conditions (5) and (26), that

||∇ϕ||2L2 ≤ C

(
1 +

1

|λ|

)
||U ||Mα

||F ||Mα
+
C

|λ|
||U ||2Mα

+C||∇θ||L2 ||U ||Mα
+C||v||L2 ||φ||L2+C||∆u||2L2 . (34)
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Similarly, multiplying (18) by ϕ we have

iλJ(φ, ϕ)L2︸ ︷︷ ︸
J10

+b||∇ϕ||2L2 + ξ||ϕ||2L2 − n(θ, ϕ)L2︸ ︷︷ ︸
J11

− γ(∆u, ϕ)L2︸ ︷︷ ︸
J12

= J(f4, ϕ)L2 . (35)

Substituting (17) into J10, J11 and J12, we obtain

J10 = −J ||φ||2L2 − J(φ, f3)L2 , J11 = − n
iλ

(θ, φ)L2 − n

iλ
(θ, f3)L2

and

J12 = − γ

iλ
(∆u, φ)L2 − γ

iλ
(∆u, f3)L2 .

So, substituting J10, J11 and J12 into (35) we deduce

J ||φ||2L2 = −J(φ, f3)L2 + b||∇ϕ||2L2 + ξ||ϕ||2L2 +
n

iλ
(θ, φ)L2 +

n

iλ
(θ, f3)L2

+
γ

iλ
(∆u, φ)L2 +

γ

iλ
(∆u, f3)L2 − J(f4, ϕ)L2 ,

which implies, using (26), that

||φ||2L2 ≤ C

(
1 +

1

|λ|

)
||U ||Mα ||F ||Mα + C2||∇ϕ||2L2 +

C

|λ|
||U ||2Mα

. (36)

So, doing 2C2(34)+(36) we obtain

C2||∇ϕ||2L2 + ||φ||2L2 ≤ C

(
1 +

1

|λ|

)
||U ||Mα

||F ||Mα
+
C

|λ|
||U ||2Mα

+C||∇θ||L2 ||U ||Mα
+ C||v||L2 ||φ||L2 + C||∆u||2L2 ,

which implies, using the Young inequality, that

C2||∇ϕ||2L2 +
1

2
||φ||2L2 ≤ C

(
1 +

1

|λ|

)
||U ||Mα ||F ||Mα +

C

|λ|
||U ||2Mα

+C||∇θ||L2 ||U ||Mα + C3

[µ
2
||∆u||2L2 +

ρ

4
||v||L2

]
. (37)

Therefore, doing C3(33)+(37), we have

C3

[µ
2
||∆u||2L2 +

ρ

4
||v||2L2 +

α

2
||∇v||2L2

]
+ C2||∇ϕ||2L2 +

1

2
||φ||2L2 ≤ C

(
1 +

1

|λ|

)
||U ||Mα ||F ||Mα

+
C4

|λ|
||U ||2Mα

+ C||∇θ||L2 ||U ||Mα
,

which implies, using (26), that

||U ||2Mα
≤ C

(
1 +

1

|λ|

)
||U ||Mα

||F ||Mα
+
C5

|λ|
||U ||2Mα

.

Finally, choosing |λ| > M with M large enough, we obtain

1

2
||U ||2Mα

≤ C||U ||Mα
||F ||Mα

,

which implies

||U ||Mα ≤ C6||F ||Mα for all |λ| > M,

where C6 is independent of λ, U and F . Additionally, using that resolvent operators R(iλ;B) := (iλI−B)−1

are bounded on bounded domains, then ||U ||Mα
≤ C7||F ||Mα

for all λ ∈ [−M,M ], which completes the
proof of (13).
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2.3. Non-exponential stability. In this subsection, for damped solutions, we prove that exponential sta-
bility implies condition (5). Equivalently, we will show that

µ− αb

J
6= 0 or γ = 0, (38)

implies non-exponential stability of solutions. In fact, in order to prove non-exponential stability, using
Lemma 2.8, we will see that there exists a sequence {Fj}j∈N ⊂ Mα (bounded), and {λj}j∈N ⊂ R+, such
that Uj is the solution of

(iλjI − Bα)Uj = Fj in Mα, (α ≥ 0) (39)

satisfying

lim
j→∞

||Uj ||Mα
=∞.

Here, we will use the eigenvalues νj with corresponding eigenvectors ej defined in (7). As Fn we choose

Fn := (0, 0, 0,
1

J
ej , 0)′ ∈ Bα.

Note that {Fj}j∈N is bounded in Bα. Moreover, the solution Uj = (uj , vj , ϕj , φj , θj)
′ of (39) should satisfy

iλuj − vj = 0 in H2(Ω) ∩H1
0 (Ω)

iλρvj + (I − α

ρ
∆)−1∆(µ∆uj − dθj − γϕj) = 0 in L2(Ω) (or H1

0 (Ω))

iλϕj − φj = 0 in H1
0 (Ω)

iλJφj − b∆ϕj −m∆ψj + ξϕj − nθj − γ∆uj = ej in L2(Ω)

iλψj − θj = 0 in H1
0 (Ω)

iλa∗θj −∆(kψj +mϕj + k∗θj) + nφj + d∆vj = 0 in L2(Ω),

where the second equation is formulated in L2(Ω) if α = 0 or H1
0 (Ω) if α > 0. Simplifying the previous

system we obtain

−λ2ρuj + λ2α∆uj + ∆(µ∆uj − dθj − γϕj) = 0 in L2(Ω) (or H−1(Ω)) (40)

−λ2Jϕj − b∆ϕj + ξϕj − nθj − γ∆uj = ej in L2(Ω) (41)

iλa∗θj − k∗∆θj + iλnϕj + iλd∆uj = 0, in L2(Ω), (42)

which can be solved by

uj = Ajej , ϕj = Bjej , θj = Cjej ,

where Aj , Bj , Cj are depending of λ and will be defined explicitly. Here, note that uj , ϕj , θj are compatible
with boundary conditions (2). Using (7), system (40)-(42) is equivalent to[

−λ2(ρ+ ανj) + µν2
j

]
Aj + γνjBj + dνjCj = 0[

−λ2J + bνj + ξ
]
Bj − nCj + γνjAj = 1

[iλa∗ + k∗νj ]Cj + iλnBj − iλdνjAj = 0,

which can be written as  p1(λ) γνj dνj

γνj p2(λ) −n
−iλdνj iλn p3(λ)


 Aj

Bj

Cj

 =

 0

1

0

 , (43)

where

p1(λ) := −λ2(ρ+ ανj) + µν2
j

p2(λ) := −λ2J + bνj + ξ

p3(λ) := −iλa∗ + k∗νj .
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In this point, we define the sequence λ := λj such that p2(λj) = 0, this is

λj :=

√
bνj + ξ

J
≈ O(ν

1/2
j ) , for all j ∈ N. (44)

In this case p1(λj) is given by

p1(λj) =

(
µ− bα

J

)
ν2
j −

(
bρ+ ξα

J

)
νj −

ξρ

J
, (45)

and system (43) can be written as p1(λj) γνj dνj

γνj 0 −n
−iλjdνj iλjn p3(λj)


︸ ︷︷ ︸

M

 Aj

Bj

Cj

 =

 0

1

0

 , (46)

with

det(M) = −γ2ν2
j p3(λj) + iλjn

2p1(λj) + 2iλjndγν
2
j . (47)

Our analysis now will be divided in two cases: γ = 0 and γ 6= 0.

• Case γ = 0. In this case the interesting situation is n 6= 0. Otherwise γ = n = 0 implies that the
second equation of (1) is given by

Jϕtt − b∆ϕ+ ξϕ = 0,

which is a conservative wave equation with stationary solutions. Consequently, system (1) will be
non-exponentially stable. So, assuming n 6= 0, then

det(M) = iλjn
2p1(λj) 6= 0 , for j ∈ N large enough.

So, using the Cramer’s rule, we obtain

Bj =
p1(λj)p3(λj) + id2λjν

2
j

det(M)
=

p1(λj)p3(λj) + id2λjν
2
j

iλjn2p1(λj)
=

d2ν2
j

n2p1(λj)
− ip3(λj)

n2λj
,

which implies

|Bj | ≥
1

n2

|p3(λj)|
|λj |

≈ O(νj)

O(ν
1/2
j )

= O(ν
1/2
j ) −→ +∞ (j →∞).

Therefore

||Uj ||Mα ≥ C||ϕj ||L2 = Ce0|Bj | −→ +∞ (j →∞),

where e0 is defined from (7). Then the proof of (13) is complete.
• Case γ 6= 0. In this case, by (38), we have

µ− αb

J
6= 0,

which implies in (45) that

p1(λj)

ν2
j

−→
(
µ− αb

J

)
6= 0 (j →∞). (48)

On the other hand, using (47) and the definition of p3(λj), we have

det(M) = −γ2k∗ν3
j + i

[
−a∗λj + λjn

2p1(λj) + 2λjndγν
2
j

]
6= 0.
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So, using again Cramer’s rule and the definition of p3(λj), we obtain

Bj =
p1(λj)p3(λj) + id2λjν

2
j

det(M)
=

k∗νjp1(λj) + i
[
−a∗λjp1(λj) + d2λjν

2
j

]
−γ2k∗ν3

j + i
[
−a∗λj + λjn2p1(λj) + 2λjndγν2

j

]

=

k∗
p1(λj)

ν2
j

+ i

[
−a∗λj

νj

p1(λj)

ν2
j

+ d2λj
νj

]

−γ2k∗ + i

[
−a∗λj

ν3
j

+ n2
λj
νj

p1(λj)

ν2
j

+ 2ndγ
λj
νj

] .

Then, using convergence (48) and noting that
λj
νj
→ 0, we deduce

Bj −→ −

(
µ− αb

J

)
γ2

6= 0.

Finally, using that φj = iλjϕj = iλjBjej and the definition (44), we have

||Uj ||Mα
≥ C||φj ||L2 = Ce0

√
bνj + ξ

J
|Bj | −→ +∞, (j →∞),

which completes the proof of (13). Here again e0 is defined from (7).

Remark 2.9. From our analysis, it is interesting to remark that α = 0 implies non-exponential stability.
This is, system

ρutt + µ∆2u− d∆θ − γ∆ϕ = 0 in Ω× R+

Jϕtt − b∆ϕ+ ξϕ− nθ − γ∆u = 0 in Ω× R+

a∗θt − k∗∆θ + nϕt + d∆ut = 0 in Ω× R+,

is non-exponentially stable. On the other hand, under conditions of Proposition 2.6, the previous system is
strongly stable which implies that E(t) → 0 with some rate of decay. We expect that polynomial rates of
decay can be obtained by standard arguments, like semigroup characterizations given by [4].

3. Type III’s Thermal Effects

In this section we consider thermal effects of Type III. Here the stability results do not depend on α > 0 or
α = 0. Note the difference with results obtained in Section 2, where the presence of the inertia rotational term
α∆utt play an important role for the exponential stability. See also [17] where this term is also important
for the stability.

In our case, the system is given by

ρutt − α∆utt + µ∆2u− d∆θ − γ∆ϕ = 0 in Ω× R+

Jϕtt − b∆ϕ−m∆ψ + ξϕ− nθ − γ∆u = 0 in Ω× R+

a∗ψtt − k∆ψ −m∆ϕ− k∗∆θ + nϕt + d∆ut = 0 in Ω× R+,

(49)

where ψt = θ, with boundary conditions

u(x, t) = ∆u(x, t) = 0 in ∂Ω× R+

ϕ(x, t) = ψ(x, t) = 0 in ∂Ω× R+
(50)

and initial conditions
u(·, 0) = u0(·) , ut(·, 0) = u1(·) in Ω

ϕ(·, 0) = ϕ0(·) , ϕt(·, 0) = ϕ1(·) in Ω

ψ(·, 0) = ψ0(·) , ψt(·, 0) = ψ1(x) in Ω.

(51)

Here, note that ψ describes the thermal displacement. The hypotheses on the constitutive constants are the
following

µ > 0, ξµ− γ2 > 0, bk −m2 > 0, ρ, J, a∗, b, k∗ > 0, d,m 6= 0, n, γ ∈ R, (52)
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with α ≥ 0. Similarly to conditions (4), conditions (52) are motivated to guarantee that a bilinear form
proposed later in Hα (considered shortly) defines an inner product.

3.1. Well-posedness. We define the family of Hilbert spaces

H0 := [H2(Ω) ∩H1
0 (Ω)]× L2(Ω)×H1

0 (Ω)× L2(Ω)×H1
0 (Ω)× L2(Ω), (α = 0)

Hα := [H2(Ω) ∩H1
0 (Ω)]×H1

0 (Ω)×H1
0 (Ω)× L2(Ω)×H1

0 (Ω)× L2(Ω), (α > 0)

with associated inner products for each α ≥ 0 and for Ui = (ui, vi, ϕi, φi, ψi, θi)
T , i = 1, 2 given by

(U1, U2)Hα = µ(∆u1,∆u2)L2 + ρ(v1, v2)L2 + α(∇v1,∇v2)L2 + b(∇ϕ1,∇ϕ2)L2 + ξ(ϕ1, ϕ2)L2

+J(φ1, φ2)L2 + k(∇ψ1,∇ψ2)L2 + a∗(θ1, θ2)L2

+m(∇ϕ1,∇ψ2)L2 +m(∇ψ1,∇ϕ2)L2 − γ(ϕ1,∆u2)L2 − γ(∆u1, ϕ2)L2 ,

which implies the family of norms, for U = (u, v, ϕ, φ, ψ, θ)T

||U ||2Hα := µ||∆u||2L2 + ρ||v||2L2 + α||∇v||2L2 + b||∇ϕ||2L2 + ξ||ϕ||2L2 + J ||φ||2L2 + k||∇ψ||2L2

+a∗||θ||2L2 + 2mRe(∇ϕ,∇ψ)L2 − 2γRe(ϕ,∆u)L2 .

Additionally, let Aα be the associated operators

Aα



u

v

ϕ

φ

ψ

θ


=



v
1

ρ
(I − α

ρ
∆)−1∆ (−µ∆u+ dθ + γϕ)

φ
1

J
[b∆ϕ+m∆ψ − ξϕ+ nθ + γ∆u]

θ
1

a∗
∆ (kψ +mϕ+ k∗θ)− n

a∗
φ− d

a∗
∆v


, (53)

for each α ≥ 0, which are defined in the corresponding domains

D(A0) =
{

(u, v, ϕ, φ, ψ, θ)T ∈ H0 : v ∈ H2(Ω) ∩H1
0 (Ω); φ, θ, ϕ, ψ ∈ H1

0 (Ω);

(µ∆u− dθ − γϕ) ∈ H2(Ω) ∩H1
0 (Ω); (b∆ϕ+m∆ψ − ξϕ+ γ∆u) ∈ L2(Ω) and

(kψ +mϕ+ k∗θ) ∈ H2(Ω) ∩H1
0 (Ω)

}
,

D(Aα) =
{

(u, v, ϕ, φ, ψ, θ)T ∈ Hα : v ∈ H2(Ω) ∩H1
0 (Ω); φ, θ, ϕ, ψ ∈ H1

0 (Ω);

(µ∆u− dθ − γϕ) ∈ H1
0 (Ω) and (kψ +mϕ+ k∗θ) ∈ H2(Ω) ∩H1

0 (Ω)
}
,

respectively.

Remark 3.1. Note that

(1) In the domains D(Aα) we used that the operators (I − α
ρ∆) are isomorphism from H1

0 (Ω) onto

H−1(Ω).
(2) Using hypothesis (52), by the definitions of D(A0) and D(Aα), we can deduce the regularity ϕ,ψ ∈

H1
0 (Ω) which also implies that ∆u ∈ H1

0 (Ω), satisfying the boundary condition (50).

In this context, the well-posedness is a direct consequence of the following Theorem.

Theorem 3.2. The operators Aα associated to system (49)-(51) when α ≥ 0 are infinitesimal generators of
C0-semigroups on the Hilbert spaces H0 and Hα, respectively.

Proof. For the proof, it is sufficient to see that D(Aα) = Hα, Aα are dissipative and 0 ∈ %(Aα), for all
α ≥ 0, see [24, 34].

In fact, note that the density results are standard. Also, for straightforward calculations we have

Re(AαU,U)Hα = −k∗||∇θ||2L2 , ∀U = (u, v, ϕ, φ, ψ, θ)T ∈ Hα ,
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implying that the operators Aα are dissipative. Additionally, in order to show that 0 ∈ %(Aα), let F =
(f1, f2, · · · , f6) ∈ Hα, then the equation

AαU = F in Hα,
implies v = f1 ∈ H2 ∩H1

0 , φ = f3 ∈ H1
0 , θ = f5 ∈ H1

0 and (u, ϕ, ψ) should satisfy

∆(µ∆u− γϕ) = g1 in H−1

−b∆ϕ−m∆ψ + ξϕ− γ∆u = g2 in L2

−k∆ψ −m∆ϕ = g3 in H−1,

where g1 := ρf2 − α∆f2 + d∆f5, g2 := Jf4 − nf5 and g3 := a∗f6 + nf3 + d∆f1 + k∗∆f5. So, using
conditions (52) and the Lax-Milgram Theorem we obtain a unique solution (u, ϕ, ψ) for the previous system
with regularity (u, ϕ, ψ) ∈ [H2 ∩ H1

0 ] × H1
0 × H1

0 and satisfying the conditions of D(Aα), for each α ≥ 0.
Then Aα is bijective. Also, working with the components of AαU = F , it is not difficult to prove that
||U ||Hα ≤ C||F ||Hα , which implies that A−1

α is bounded. Therefore 0 ∈ %(Aα) for all α ≥ 0, which completes
the proof of the Theorem. �

In order to exclude undamped solutions, similarly to previous Section, we establish now a strong stability
result.

Proposition 3.3. Let %(Aα) the resolvent set of operator Aα. Assuming γ 6= 0, then iR ⊂ %(Aα) without
any extra conditions. On the other hand, assuming γ = 0 and supposing that P0(νj) 6= 0 for all j ∈ N, where

P0(X) := (Jµ− αb)X2 − (ρb+ αξ)X − ρξ,
then we have iR ⊂ %(Aα). This is, system (49)-(51) is strongly stable in both situations.

Proof. We proceed with similar arguments used in Lemma 2.5. In fact, supposing that iR ⊂ %(Aα) is not
true, then there exists λ ∈ R such that iλ ∈ σ(Aα), with λ 6= 0, this because 0 ∈ %(Aα). Then, using
the compact embedding D(Aα) ↪→ Hα, we have that iλ is an eigenvalue of Aa. Therefore, there exists
U ∈ D(Aa), U 6= 0, satisfying

iλU −AαU = 0 in Hα.
So, multiplying this equation by U ∈ Hα and taking the real part, we can deduce that

−k∗||∇θ||2L2 = Re(AαU,U)Mα
= 0 where U = (u, v, ϕ, φ, ψ, θ)T ,

which implies θ ≡ 0. Additionally, in the previous equation, θ ≡ 0 implies ψ ≡ 0. So, using these conditions
in the resolvent equation, we obtain

−λ2ρu+ λ2α∆u+ µ∆2u− γ∆ϕ = 0 in L2(Ω) (or H−1(Ω))

−λ2Jϕ− b∆ϕ+ ξϕ− γ∆u = 0 in L2(Ω) (54)

−m∆ϕ+ iλnϕ+ iλd∆u = 0, in L2(Ω).

Therefore, substituting ∆u given by (54)3 into (54)2, we deduce

−
(
b+

γm

iλd

)
∆ϕ =

(
λ2J − ξ +

γn

d

)
ϕ. (55)

So, assuming γ 6= 0, the unique possible solution of (55) is ϕ ≡ 0 (remembering that m, d 6= 0), which
implies from (54)3 that u ≡ 0, implying the contradiction U ≡ 0 in Hα. On the other hand, assuming γ = 0,
system (54) is written as

−λ2ρu+ λ2α∆u+ µ∆2u = 0 in L2(Ω) (or H−1(Ω))

−λ2Jϕ− b∆ϕ+ ξϕ = 0 in L2(Ω) (56)

−m∆ϕ+ iλnϕ+ iλd∆u = 0, in L2(Ω),

which can be solved by u = Ajej and ϕ = Bjej , where ej is defined in (7), with Aj 6= 0 and Bj 6= 0. So,
substituting into (56) and using the same arguments used in Lemma 2.5, we conclude that P0(νj) = 0 for
some j ∈ N which is also a contradiction. Consequently, iR ⊂ %(Aα), which completes the proof. �
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Remark 3.4. Note that P0(X) is the same polynomial function P(X) defined in Lemma 2.5 assuming γ = 0.
Also note that, in Proposition 2.6 the constants n, γ ∈ R play an important role in order to exclude undamped
solutions. In the case of Proposition 3.3, in order to avoid undamped solutions, the constant n ∈ R is not
relevant, which is expected by the influence of m 6= 0. Finally, as mentioned in Remark 2.7, it is important
to identify this kind of solutions because they do not appear in classical second order thermo-porous-elastic
systems, see for example [23, 30].

3.2. Stability. The main result of this Section is given by the following Theorem.

Theorem 3.5. Assuming the hypothesis of Proposition 3.3 and assuming α = 0 or even α > 0, then the
semigroup of contractions associated to the system (49)-(51) is exponentially stable.

Proof. Using Lemma 2.8, it is sufficient to show conditions (12)-(13). In fact, note that the first condition
(12) is given by Proposition 3.3. In order to prove (13) we will show that

||U ||Hα ≤M ||F ||Hα ,

for all α ≥ 0 and for all F ∈ Hα, with M > 0 is independent of λ, F , and U solution of the resolvent system

(iλI −Aα)U = F , in Hα. (57)

System (57) can be written, in its components, by

iλu− v = f1 in H2(Ω) ∩H1
0 (Ω)

iλρv − (I − α

ρ
∆)−1∆(−µ∆u+ dθ + γϕ) = ρf2 in L2(Ω) (or H1

0 (Ω))

iλϕ− φ = f3 in H1
0 (Ω)

iλJφ− b∆ϕ−m∆ψ + ξϕ− nθ − γ∆u = Jf4 in L2(Ω)

iλψ − θ = f5 in H1
0 (Ω)

iλa∗θ −∆(kψ +mϕ+ k∗θ) + nφ+ d∆v = a∗f6 in L2(Ω),

where the second equation is formulated in L2(Ω) if α = 0 or H1
0 (Ω) in the case α > 0. The previous system

is equivalent to

iλu− v = f1 in H2(Ω) ∩H1
0 (Ω) (58)

iλρv − iλα∆v + ∆(µ∆u− dθ − γϕ) = ρf2 − α∆f2 in L2(Ω) (or H−1(Ω)) (59)

iλϕ− φ = f3 in H1
0 (Ω) (60)

iλJφ− b∆ϕ−m∆ψ + ξϕ− nθ − γ∆u = Jf4 in L2(Ω) (61)

iλψ − θ = f5 in H1
0 (Ω) (62)

iλa∗θ −∆(kψ +mϕ+ k∗θ) + nφ+ d∆v = a∗f6 in L2(Ω). (63)

Eventually, we will use the same multipliers z, y, w given by (20)-(22) with their respective estimates (23)-
(25). Also, by similar arguments used in the previous section, multiplying (57) by U in Hα and taking the
real part, we obtain

||∇θ||2L2 ≤ C||U ||Hα ||F ||Hα . (64)

Also, (62) implies

||∇ψ||L2 ≤ 1

|λ|
||∇θ||L2 +

C

|λ|
||F ||Hα . (65)

Now, multiplying (59) by y ∈ L2(Ω) if α = 0 (or applying in y ∈ H1
0 (Ω) if α > 0), and using (21) we obtain

iλρ(v, y)L2︸ ︷︷ ︸
J1

− iλα(∆v, y)L2︸ ︷︷ ︸
J2

−µ(∆u, θ)L2 + d||θ||2L2 + γ(ϕ, θ)L2 = ρ(f2, y)L2 + α(f2, θ)L2 . (66)
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For J1, using (20) and (63), we obtain

J1 = ρ(z,−iλθ)L2

=
ρ

a∗
(z,−∆(kψ +mϕ+ k∗θ) + nφ+ d∆v − af6)L2

=
ρk

a∗
(v, ψ)L2 +

ρm

a∗
(v, ϕ)L2 +

ρk∗

a∗
(v, θ)L2 +

ρn

a∗
(z, φ)L2 − ρd

a∗
||v||2L2 − ρ(z, f6)L2

=
ρk

a∗
(v, ψ)L2 +

ρm

a∗
(v, ϕ)L2 +

ρk∗

a∗
(v, θ)L2 − ρd

a∗
||v||2L2 − ρ(z, f6)L2 +

ρnb

iλa∗J
(v, ϕ)L2

+
ρnm

iλa∗J
(v, ψ)L2 +

ρnξ

iλa∗J
(z, ϕ)L2 − ρn2

iλa∗J
(z, θ)L2 − ρnγ

iλa∗J
(z,∆u)L2 − ρn

iλa∗
(z, f4)L2 , (67)

where (61) was also used in the last equality. Additionally, for J2 in the case α > 0, using (63) and (61)
again, we deduce

J2 = α(v, iλθ)L2

=
α

a∗
(v,∆(kψ +mϕ+ k∗θ)− nφ− d∆v + a∗f6)L2

= −αk
a∗

(∇v,∇ψ)L2 − αm

a∗
(∇v,∇ϕ)L2 − αk∗

a∗
(∇v,∇θ)L2 − αn

a∗
(v, φ)L2 +

αd

a∗
||∇v||2L2 + α(v, f6)L2

= −αk
a∗

(∇v,∇ψ)L2 − αm

a∗
(∇v,∇ϕ)L2 − αk∗

a∗
(∇v,∇θ)L2 +

αd

a∗
||∇v||2L2 + α(v, f6)L2 − αnb

iλa∗J
(∇v,∇ϕ)L2

− αnm
iλa∗J

(∇v,∇ψ)L2 − αnξ

iλa∗J
(v, ϕ)L2 +

αn2

iλa∗J
(v, θ)L2 +

αnγ

iλa∗J
(v,∆u)L2 +

αn

iλa∗
(v, f4)L2 . (68)

Then, substituting (67)-(68) into (66) we obtain for all α ≥ 0,

ρd

a∗
||v||2L2 +

αd

a∗
||∇v||2L2 =

ρk

a∗
(v, ψ)L2 +

ρm

a∗
(v, ϕ)L2 +

ρk∗

a∗
(v, θ)L2 − ρ(z, f6)L2 +

ρnb

iλa∗J
(v, ϕ)L2

+
ρnm

iλa∗J
(v, ψ)L2 +

ρnξ

iλa∗J
(z, ϕ)L2 − ρn2

iλa∗J
(z, θ)L2 − ρnγ

iλa∗J
(z,∆u)L2

− ρn

iλa∗
(z, f4)L2 +

αk

a∗
(∇v,∇ψ)L2 +

αm

a∗
(∇v,∇ϕ)L2 +

αk∗

a∗
(∇v,∇θ)L2

−α(v, f6)L2 +
αnb

iλa∗J
(∇v,∇ϕ)L2 +

αnm

iλa∗J
(∇v,∇ψ)L2 +

αnξ

iλa∗J
(v, ϕ)L2

− αn2

iλa∗J
(v, θ)L2 − αnγ

iλa∗J
(v,∆u)L2 − αn

iλa∗
(v, f4)L2 − µ(∆u, θ)L2

+d||θ||2L2 + γ(ϕ, θ)L2 − ρ(f2, y)L2 − α(f2, θ)L2 ,

which implies

ρ||v||2L2 + α||∇v||2L2 ≤ C||v||L2 ||ψ||L2 + C||v||L2 ||ϕ||L2 + C||v||L2 ||θ||L2 +
C

|λ|
||U ||2Hα

+
C

|λ|
||U ||Hα ||F ||Hα + Cα||∇v||L2 ||∇ψ||L2 + Cα||∇v||L2 ||∇ϕ||L2

+C||U ||Hα ||F ||Hα +
C

|λ|
||F ||2Hα + Cα||∇v||L2 ||∇θ||L2

+C||∆u||L2 ||θ||L2 + C||θ||2L2 + C||ϕ||L2 ||θ||L2 .



POROUS-ELASTIC PLATES: FOURIER VERSUS TYPE III 17

Then, using (64) and (65) we deduce

ρ

2
||v||2L2 +

α

2
||∇v||2L2 ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||Hα ||F ||Hα +

C

|λ|

(
||U ||2Hα + ||F ||2Hα

)
+Cα||∇ϕ||2L2 + C||θ||L2 ||U ||Ha . (69)

On the other hand, multiplying (59) by u ∈ L2(Ω) if α = 0 (or applying in u ∈ H1
0 (Ω) if α > 0), we obtain

iλρ(v, u)L2︸ ︷︷ ︸
J3

− iλα(∆v, u)L2︸ ︷︷ ︸
J4

+µ||∆u||2L2 − d(θ,∆u)L2 − γ(ϕ,∆u)L2︸ ︷︷ ︸
J5

= ρ(f2, u)L2 − α(f2,∆u)L2 .

Then, using (58) into J3, J4 and (60) into I5, we deduce

µ||∆u||2L2 = ρ||v||2L2 + α||∇v||2L2 + ρ(v, f1)L2 − α(v,∆f1)L2 + d(θ,∆u)L2

+
γ

iλ
(φ,∆u)L2 +

γ

iλ
(f3,∆u)L2 + ρ(f2, u)L2 − α(f2,∆u)L2 ,

which implies, using (64), that

µ||∆u||2L2 = ρ||v||2L2 + α||∇v||2L2 + C

(
1 +

1

|λ|

)
||U ||Hα ||F ||Hα +

C

|λ|
||U ||2Hα + C||θ||L2 ||U ||Ha . (70)

So, doing
1

4
(70)+(69) we have

µ

4
||∆u||2L2 +

ρ

2
||v||2L2 +

α

2
||∇v||2L2 ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||Hα ||F ||Hα +

C

|λ|

(
||U ||2Hα + ||F ||2Hα

)
+C3α||∇ϕ||2L2 + C||∇θ||L2 ||U ||Ha . (71)

Now, multiplying (61) by ϕ we have

iλJ(φ, ϕ)L2︸ ︷︷ ︸
J6

+b||∇ϕ||2L2 +m(∇ψ,∇ϕ)L2 + ξ||ϕ||2L2 − n(θ, ϕ)L2 − γ(∆u, ϕ)L2︸ ︷︷ ︸
J7

= J(f4, ϕ)L2 . (72)

Substituting (60) into J6 and J7, we obtain

J6 = −J ||φ||2L2 − J(φ, f3)L2 and J7 = − γ

iλ
(∆u, φ)L2 − γ

iλ
(∆u, f3)L2 .

So, substituting J6 and J7 into (72) we deduce

J ||φ||2L2 = −J(φ, f3)L2 + b||∇ϕ||2L2 +m(∇ψ,∇ϕ)L2 + ξ||ϕ||2L2 − n(θ, ϕ)L2

+
γ

iλ
(∆u, φ)L2 +

γ

iλ
(∆u, f3)L2 − J(f4, ϕ)L2 ,

which implies, using (64) and (65), that

||φ||2L2 ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||Hα ||F ||Hα + C2||∇ϕ||2L2 +

C

|λ|
||U ||2Hα . (73)

Also, multiplying (63) by ϕ we obtain

iλa∗(θ, ϕ)L2︸ ︷︷ ︸
J8

+k(∇ψ,∇ϕ)L2 +m||∇ϕ||2L2 + k∗(∇θ,∇ϕ)L2 + n(φ, ϕ)L2︸ ︷︷ ︸
J9

+ d(∆v, ϕ)L2︸ ︷︷ ︸
J10

= a∗(f6, ϕ)L2 . (74)

Then, using (60) into J6 and J7 we deduce

J8 = −a∗(θ, φ)L2 − a∗(θ, f3)L2 and J9 = − n
iλ
||φ||2L2 −

n

iλ
(φ, f3)L2 .

Now, for J10, we need two type of estimates depending on α = 0 or α > 0. In fact, for α = 0, using (58) and
(60) into J10 we obtain

J10 = d(iλ∆u−∆f1, ϕ)L2 = d(∆u,−iλϕ)L2 − d(∆f1, ϕ)L2

= d(∆u,−φ− f3)L2 − d(∆f1, ϕ)L2

= −d(∆u, φ)L2 − d(∆u, f3)L2 − d(∆f1, ϕ)L2 .
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Consequently, substituting the new formulas of J8, J9 and J10 into (74) we obtain (for α = 0)

m||∇ϕ||2L2 = a∗(θ, φ)L2 + a∗(θ, f3)L2 − k(∇ψ,∇ϕ)L2 − k∗(∇θ,∇ϕ)L2 +
n

iλ
||φ||2L2 +

n

iλ
(φ, f3)L2

+d(∆u, φ)L2 + d(∆u, f3)L2 + d(∆f1, ϕ)L2 + a∗(f6, ϕ)L2 ,

which implies, applying (64) and (65), that (for α = 0)

||∇ϕ||2L2 ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||H0

||F ||H0
+ C||∇θ||L2 ||U ||H0

+
C1

|λ|
||U ||2H0

+ C||∆u||L2 ||φ||L2 . (75)

So, doing 2C2(75)+(73), we can deduce (for α = 0) that

C2||∇ϕ||2L2 +
1

2
||φ||2L2 ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||H0 ||F ||H0 + C||∇θ||L2 ||U ||H0

+
C

|λ|
||U ||2H0

+ C3||∆u||2L2 . (76)

On the other hand, for the case α > 0, using (60) into J10 we obtain

J10 = d〈v,∆ϕ〉H1
0×H−1

=
d

γ
〈v, iλρv − iλα∆v + µ∆2u− d∆θ − ρf2 + α∆f2〉H1

0×H−1

= − iλdρ
γ
||v||2L2 −

iλdα

γ
||∇v||2L2 +

dµ

γ
(∆v,∆u)L2 +

d2

γ
(∇v,∇θ)L2

−dρ
γ

(v, f2)L2 − dα

γ
(∇v,∇f2)L2

= − iλdρ
γ
||v||2L2 −

iλdα

γ
||∇v||2L2 +

iλdµ

γ
||∆u||2L2 −

dµ

γ
(∆f1,∆u)L2

+
d2

γ
(∇v,∇θ)L2 − dρ

γ
(v, f2)L2 − dα

γ
(∇v,∇f2)L2 ,

where (58) was also used in the last equality. Then substituting J8, J9 and J10 into (74) we have (for α > 0)

m||∇ϕ||2L2 = a∗(θ, φ)L2 + a∗(θ, f3)L2 − k(∇ψ,∇ϕ)L2 − k∗(∇θ,∇ϕ)L2 +
n

iλ
||φ||2L2

+
n

iλ
(φ, f3)L2 +

iλdρ

γ
||v||2L2 +

iλdα

γ
||∇v||2L2 −

iλdµ

γ
||∆u||2L2 +

dµ

γ
(∆f1,∆u)L2

−d
2

γ
(∇v,∇θ)L2 +

dρ

γ
(v, f2)L2 +

dα

γ
(∇v,∇f2)L2 + a∗(f6, ϕ)L2 .

Consequently, taking the real part we obtain

m||∇ϕ||2L2 = Re
{
a∗(θ, φ)L2 + a∗(θ, f3)L2 − k(∇ψ,∇ϕ)L2 − k∗(∇θ,∇ϕ)L2 +

n

iλ
(φ, f3)L2

+
dµ

γ
(∆f1,∆u)L2 − d2

γ
(∇v,∇θ)L2 +

dρ

γ
(v, f2)L2 +

dα

γ
(∇v,∇f2)L2 + a∗(f6, ϕ)L2

}
,

which implies, using (64) and (65), that (for α > 0)

||∇ϕ||2L2 ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||Hα ||F ||Hα + C||∇θ||L2 ||U ||Ha . (77)

Consequently, doing
1

2C2
(73)+(77), we obtain (for α > 0)

1

2
||∇ϕ||2L2 +

1

2C2
||φ||2L2 ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||Hα ||F ||Hα + C||∇θ||L2 ||U ||Hα +

1

|λ|
||U ||2Hα . (78)
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Finally, let us combine all the estimates to prove condition (13) in each case α = 0 and α > 0. In fact,

for the case α = 0 doing (71)+
µ

8C3
(76), we have

µ

8
||∆u||2L2 +

ρ

2
||v||2L2 + C4||∇ϕ||2L2 + C5||φ||2L2 ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||H0

||F ||H0
+ C||∇θ||L2 ||U ||H0

+
C

|λ|
(
||U ||2H0

+ ||F ||2H0

)
,

which implies, using (64) and (65), that (for α = 0)

||U ||2H0
≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||H0 ||F ||H0 +

C

|λ|
||U ||2H0

+ C

(
1

|λ|
+

1

|λ|2

)
||F ||2H0

. (79)

Similarly, for the case α > 0, doing (71)+4C3α(78) we can deduce (after calculations)

µ

4
||∆u||2L2 +

ρ

2
||v||2L2 +

α

2
||∇v||2L2 + C3α||∇ϕ||2L2 + C6||φ||2L2 ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||Hα ||F ||Hα

+
C

|λ|

(
||U ||2Hα + ||F ||2Hα

)
+C||∇θ||L2 ||U ||Ha ,

which implies, combining with (64) and (65), that (for α = 0)

||U ||2Ha ≤ C

(
1 +

1

|λ|
+

1

|λ|2

)
||U ||Hα ||F ||Hα +

C

|λ|
||U ||2Hα + C

(
1

|λ|
+

1

|λ|2

)
||F ||2Hα . (80)

Therefore, for all α ≥ 0, choosing |λ| > M with M large enough, we obtain from (79) and (80) that

1

2
||U ||2Hα ≤ C7||U ||Hα ||F ||Hα + C7||F ||2Hα ,

which implies
||U ||Hα ≤ C8||F ||Hα for all |λ| > M,

where C8 is independent of λ, U and F . Additionally, using that resolvent operators R(iλ;Aα) := (iλI −
Aα)−1 are bounded on bounded domains, then ||U ||Hα ≤ C8||F ||Hα for all λ ∈ [−M,M ], which completes
the proof of (13). �
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[13] Feng, B.: On the decay for a one-dimensional porous elasticity with past history. Comm. Pure Appl. Anal. 18, 2905–2921
(2019).

[14] Feng, B., Apalara, T.A.: Optimal decay for a porous elasticity system with memory. J. Math. Anal. Appl. 470, 1108–1128

(2019).
[15] Feng, B., Yin, M.: Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal

wave speeds. Math. Mech. Solids, 24, 2361-2373 (2019).
[16] Fernández Sare, H.D., Liu, Z., Racke, R.: Stability of abstract thermoelastic system with inertial terms. J. Diff. Eqs. 267,

7084–7134 (2019).
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