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RESUM  

En aplicacions per a medicaments genèrics el concepte de bioequivalència és 

fonamental. Dos productes, un ‘test’ i un de ‘referència’, amb el mateix principi actiu, 

es consideren bioequivalents si la seva biodisponibilitat (quantitat ‘Cmax’ i velocitat 

‘Tmax’ d’una substància activa que s’absorbeix d’un fàrmac i està disponible en el seu 

lloc d’acció) després de l'administració d’ambdós productes produeix un efecte 

terapèutic similar. Per això, l’interval de confiança del 90% per a la ràtio de les 

mitjanes (mitjanes geomètriques poblacionals) dels productes test i referència de les 

mesures farmacocinètiques han d’estar dins dels límits de bioequivalència 80%-125%. 

Es recomana utilitzar dissenys aleatoritzats encreuats 2x2, és a dir, de dos períodes i 

dues seqüències (en anglès 2x2 crossover designs).  

El nombre de subjectes que s’inclouen es basa en un càlcul adequat de la grandària 

mostral, tot i que aquest nombre sol ser petit però mai inferior a 12 subjectes. 

Però en cas de productes/fàrmacs d’alta variabilitat cal incloure molts més subjectes 

per aconseguir una potència estadística adequada, de manera que la bioequivalència 

es determina  amb pocs subjectes però a través de l’escalat dels límits de 

bioequivalència (RSABE, ‘Reference Scaled Average Bioequivalence’), expandits en 

funció de la variabilitat intra-subjecte en el grup de referència. En aquest cas, amb 

dissenys 2x2 no és possible estimar per separat la variabilitat dels productes test i 

referència i cal fer servir dissenys més complexos com ara dissenys encreuats replicats 

o semi-replicats.  

Les agències reguladores també permeten utilitzar dissenys encreuats 2x2 adaptatius 

de dues etapes amb re-estimació de la grandària mostral en la primera (anàlisi 

provisional, en anglès interim analysis). Llavors, si no podem declarar bioequivalència a 

la primera etapa amb una grandària mostral inicial petita, podem incrementar la 

mostra en funció de la variabilitat intra-subjecte estimada i afegir nous subjectes en la 

segona, o parar l’estudi per futilitat si la probabilitat de declarar bioequivalència és 

finalment petita. Aquesta estratègia ha d’estar definida en el protocol, i prèviament 

acordada amb les agències reguladores amb especial èmfasi en el control de l’error de 

tipus I. 
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Mitjançant simulacions de Monte Carlo, mostrem que les metodologies basades en 

RSABE i dissenys adaptatius bietàpics proporcionen una potència estadística similar, 

tot i que els mètodes escalats normalment requereixen menys grandària mostral tot i 

que cal exposar més vegades els subjectes als tractaments. Amb una grandària mostral 

inicial adequada (no molt petita, per exemple 24 subjectes), els dissenys bietàpics són 

una opció molt flexible i eficient a considerar: proporcionen una potència raonable 

(per exemple del 80%) a la primera etapa per fàrmacs que no són altament variables, i 

en cas contrari, proporcionen l’oportunitat de saltar a una segona etapa que inclou 

subjectes addicionals. 

Basant-nos en aquests dissenys adaptatius bietàpics, presentem un mètode iteratiu 

per ajustar el nivell de significació a cada etapa que preserva l’error de tipus I global 

per a un conjunt d’escenaris que molt probablement inclouen el vertader valor 

desconegut de la variabilitat intra-subjecte, i que proporciona una potència estadística 

d’almenys el 80%. Aquests dissenys funcionen particularment bé per coeficients de 

variació per sota de 0.3 pel balanç que proporcionen entre la potència estadística i el 

percentatge d’estudis que salten a la segona etapa. Presentem un paquet d’R que ens 

permet ajustar els nivells de significació a cada etapa i que controla l’error de tipus I 

global. 
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RESUMEN 

En aplicaciones para medicamentos genéricos el concepto de bioequivalencia es 

fundamental. Dos productos, uno ‘test’ y uno de ‘referencia’, con el mismo principio 

activo, se consideran bioequivalentes si su biodisponibilidad (cantidad ‘Cmax’ y 

velocidad ‘Tmax’ de una sustancia activa que se absorbe de un medicamento y está 

disponible en su lugar de acción) después de la administración de ambos productos 

produce un efecto terapéutico similar. Para ello, el intervalo de confianza del 90% para 

el ratio de las medias (medias geométricas poblacionales) de los productos test y 

referencia de las medidas farmacocinéticas tienen que estar dentro de los límites de 

bioequivalencia 80%-125%. Se recomienda utilizar diseños aleatorizados cruzados 2x2, 

de dos períodos y dos secuencias (en inglés 2x2 crossover designs). 

El número de sujetos que se incluyen se basa en un cálculo adecuado del tamaño de 

muestra, aunque este número suele ser pequeño pero nunca inferior a 12 sujetos. 

Pero en el caso de productos/medicamentos de alta variabilidad es necesario incluir 

muchos más sujetos para conseguir una potencia estadística adecuada, de forma que 

la bioequivalencia se determina con pocos sujetos pero a través del escalado de los 

límites de bioequivalencia (RSABE, ‘Reference Scaled Average Bioequivalence’), 

expandidos en función de la variabilidad intra-sujeto en el grupo de referencia. En este 

caso, con diseños 2x2 no es posible estimar por separado la variabilidad de los 

productos test y referencia y se requieren diseños más complejos como diseños 

cruzados replicados o semi-replicados. 

Las agencias reguladoras también permiten usar diseños cruzados 2x2 adaptativos de 

dos etapas con re-estimación del tamaño del a muestra en la primera (análisis 

provisional, en inglés interim analysis). Entonces, si no podemos declarar 

bioequivalencia en la primera etapa con un tamaño de muestra inicial pequeño, 

podemos incrementar la muestra en función de la variabilidad intra-sujeto estimada y 

añadir nuevos sujetos en la segunda, o parar el estudio por futilidad si la probabilidad 

de declarar bioequivalencia es finalmente pequeña. Esta estrategia se define en el 

protocolo, previo acuerdo con las agencias reguladoras con especial énfasis en el 

control del error de tipo I. 
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Mediante simulaciones de Monte Carlo, mostramos que las metodologías basadas en 

RSABE y diseños adaptativos bietápicos proporcionan una potencia estadística similar, 

aunque los métodos escalados habitualmente requieren menos tamaño de muestra 

aún siendo necesario exponer más veces al sujeto a los tratamientos. Con un tamaño 

de muestra inicial adecuado (no muy pequeño, por ejemplo 24 sujetos), los diseños 

bietápicos son una opción muy flexible y eficiente a considerar: proporcionan una 

potencia razonable (por ejemplo del 80%) en la primera etapa para medicamentos que 

no son altamente variables, y en caso contrario, proporcionan la oportunidad de saltar 

a una segunda etapa e incluir sujetos adicionales. 

Basándonos en éstos diseños adaptativos bietápicos, presentamos un método iterativo 

para ajustar el nivel de significación en cada etapa que preserva el error de tipo I global 

para un conjunto de escenarios que muy probablemente incluyen el verdadero valor 

desconocido de la variabilidad intra-sujeto, y que proporciona una potencia estadística 

de al menos el 80%. Estos diseños funcionan particularmente bien para coeficientes de 

variación por debajo de 0.3 dado el balance que proporcionan entre la potencia 

estadística y el porcentaje de estudios que saltan a la segunda etapa. Presentamos un 

paquete de R que nos permite ajustar los niveles de significación en cada etapa y que 

controla el error de tipo I global. 
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ABSTRACT 

In applications for generic medicinal products the concept of bioequivalence is 

fundamental. Two medicinal products, i.e. a test and a reference drugs containing the 

same active substance are considered bioequivalent if their bioavailability (rate and 

extent of absorption of an active substance that is absorbed from a drug product and 

becomes available at the site of action) after the administration of both products 

produce a similar therapeutic effect. The assessment of bioequivalence is based upon 

90% confidence intervals for the ratio of the population geometric means 

(test/reference) for the parameters under consideration which should be contained 

within the limits 80%-125%. It is recommended using randomized, two-period, two-

sequence, single dose crossover designs (2x2 crossover designs).  

The number of subjects to be included should be based on an appropriate sample size 

calculation, though the number of evaluable subjects should not be less than 12.  

Sometimes, there are drugs whose rate and extent of absorption is highly variable 

dose to dose within the same subject. The main problem with highly variable drugs is 

that to declare bioequivalence it requires a study with an unacceptably larger sample 

size. In this case, the usual approach to determine bioequivalence is ‘Reference Scaled 

Average Bioequivalence’ (RSABE), which is based on expanding the limits as a function 

of the within-subject variability in the reference formulation. But, using 2x2 crossover 

designs, it is not possible to estimate separately the test and reference variabilities, 

and thus it requires using more complex designs like replicated or semi-replicated 

crossover designs. 

On the other hand, regulations also allow using common 2×2 crossover designs based 

on two-stage adaptive designs (TSD) with sample size re-estimation at an interim 

analysis. At an interim look (stage 1), if average bioequivalence is not declared with an 

initial sample size, they allow to increase it based on the intra-subject estimated 

variability and to enroll additional subjects at a stage 2, or to stop for futility in case of 

poor likelihood of bioequivalence. This is crucial because both parameters must clearly 

be pre-specified in protocols, and the strategy agreed with regulatory agencies in 

advance with emphasis on controlling the overall type I error. 
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Using Monte Carlo simulations, we show that RSABE and TSD methodologies achieve 

comparable statistical power, though the scaled method usually requires less sample 

size, but at the expense of each subject being exposed more times to the treatments. 

With an adequate initial sample size (not too low, e.g., 24 subjects), TSDs are a flexible 

and efficient option to consider: They have enough power (e.g., 80%) at the stage 1 for 

non-highly variable drugs and, if otherwise, they provide the opportunity to step up to 

a stage 2 that includes additional subjects. 

Based on TSDs, we also present an iterative method to adjust the significance levels at 

each stage which preserves the overall type I error for a wide set of scenarios which 

should include the true unknown variability value, and which provides a power of at 

least 80%. TSDs work particularly well for coefficients of variation below 0.3 which are 

especially useful due to the balance between the power and the percentage of studies 

proceeding to stage 2. We present an R package to adjust the significance levels at 

each stage in order to control the overall type I error. 
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1. INTRODUCTION 

1.1. Development of a novel drug 

A novel/innovator drug is one that contains an active ingredient that has not yet been 

approved. Any novel drug goes through different development phases where 

thousands of patients are included in clinical trials performing a full collection of safety 

and efficacy information. Property rights (patents) are granted during the 

development of a drug which expire 20 years from the date on which the application 

for the patent was applied (1). 

A development period may last more than 10 years, and when the commercialization 

of a new drug is authorized, negotiations to stablish pricing and reimbursement begins 

at country level, between sponsors and local governments. From this point and up to 

the patent expiration, sponsors have all rights and selling exclusivities. 

1.2. Generic drugs 

When the patent on a novel drug nears expiration, drug companies (sponsors) that 

want to manufacture a copy drug can apply to the regulatory agencies to sell a generic 

version of the drug.  

The development cost of a generic drug is much lower than a novel drug because it is 

not necessary to pass through all the development phases, and usually are based on 

the evaluation of the bioequivalence, assessed only in some tens of healthy 

volunteers. When generic drugs enter the market, the supply extends and drug prices 

fall making easier access to consumers. Currently, generic drugs represent 65% of all 

the US medical prescriptions (2). 

1.3. Regulatory evaluation of the bioequivalence of generic drugs 

The details of the evaluation process for bioequivalence can slightly differ between 

main jurisdictions such as the EU (EMA), US (FDA), China (NMPA) and Japan (PMDA) 

but the general approach is the same. 

A generic drug is essentially a duplicate of an approved novel drug. There may be 

differences in the way a generic and innovator drug look (e.g., size, shape, color), but 
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they are expected to share the same active ingredients, strength, safety, effectiveness, 

and quality characteristics (3). 

The approval pathways for generic drugs are shrank to encourage a quicker time to 

market. They allow applicants to use existing knowledge instead of performing a full 

collection of safety and efficacy studies, as would be required for an innovator drug. 

When a sponsor submits a generic drug for marketing approval, they submit an 

Abbreviated New Drug Application (ANDA) instead of a full NDA. In an ANDA, the 

applicant is claiming that their drug is a duplicate of an already-approved drug. 

Within the ANDA, the innovator drug is specified. Innovator drug is commonly referred 

to as the “Reference Listed Drug, RLD” (RLDs are listed in FDA’s electronic Orange 

Book). Because the Agency has already approved the RLD to be safe and effective, the 

goal of an ANDA is to demonstrate “sameness” with the RLD. 

Sameness is demonstrated via a bioequivalence assessment where differences in 

systemic drug exposures in test and RLD are considered not clinically important. 

According to regulatory section 505(j), the assessment of bioequivalence is based upon 

90% confidence intervals for the ratio of the population geometric means (test/RLD) 

for the rate and extent of absorption parameters (see section 1.4). 

In turn, drugs approved under an ANDA must be therapeutically equivalent to the RLD. 

This means that if any ANDA-approved drug is exchanged with the RLD, patients 

should experience the same clinical effect and safety profile. The active ingredient, 

dosage form, route of administration, and strength must all be the same, and the 

product labeling is usually the same (Table 1) (4). 

In addition, the sameness requirement also extends to the inactive ingredients in a 

generic drug product. An inactive ingredient is any component of a drug product other 

than the active ingredient, i.e., preservatives, buffers, and antioxidants. 

Because a generic drug is intended to act as a duplicate of the RLD, no new safety or 

efficacy studies are performed and only small confirmatory studies are allowed to 

support the ANDA. The precise scope and type of information necessary for approval 

will vary and may be the subject of discussion between the applicant and regulatory 

agency during the drug development process. If additional preclinical or clinical data 

file:///C:/Users/EduardM/Documents/Doctorat/doctorat%20upc/Tesis/electronic%20Orange%20Book
file:///C:/Users/EduardM/Documents/Doctorat/doctorat%20upc/Tesis/electronic%20Orange%20Book
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are needed to support safety or efficacy, then the ANDA route is not appropriate and a 

505(b)(2) NDA should be pursued. 

Table 1. Requirements for NDA vs. ANDA 

Brand name drug requirements (NDA) Generic drug requirements (ANDA) 

Chemistry (physical and chemical characteristics) Chemistry (physical and chemical characteristics) 

Manufacturing (residues and addition impurities) Manufacturing (residues and addition impurities) 

Controls (inspections) Controls (inspections) 

Labeling (prescribing information) Labeling (prescribing information) 

Dissolution testing Dissolution testing 

Animal studies 

Bioequivalence Clinical Studies 

Bioavailability 

NDA: New Drug Application 
ANDA: Abbreviated New Drug Application 

1.4. Average bioequivalence 

Average bioequivalence (ABE) studies typically involve testing two products, test 

(potential generic drug), T, and reference (already marketed novel drug), R, against 

each other. Usually, these studies are based on the usual 2×2 crossover RT/TR design 

involving just some tens of healthy volunteers (Table 2) (5).  

Table 2. 2x2 Crossover design 

 Period 

Sequence j = 1 j = 2 

k = 1 Y111 

Y211 

….. 

Yn11 

Y121 

Y221 

….. 

Yn21 

k = 2  Y112 

Y212 

….. 

Yn12 

Y122 

Y222 

….. 

Yn22 
Note: Subjects are randomly assigned to sequence 1 or 2 

 

Where 𝑌𝑖𝑗𝑘 is the log of the bioavailability measure (subject i, period j, sequence k) 

Bioavailability is usually determined by some pharmacokinetic measurements that can 

be estimated from the blood or plasma concentration-time curve obtained following 

drug administration (6). Primary pharmacokinetic metrics are Cmax, maximum observed 

R T 

T R 
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plasma concentration (rate), and the area under the concentration time curve (extent), 

AUC0-t and AUC0-∞, Figure 1 (7,8).  

Figure 1. Concentration (µg/mL) of drug as a function of time (min.) 

 

To test for average bioequivalence (ABE), the null hypothesis of bioinequivalence is 

tested against an alternative of bioequivalence, as follows: 

𝐻0: 𝜙 ≤ −𝛿 or 𝜙 ≥ +𝛿 

𝐻1 : − 𝛿 < 𝜙 < +𝛿, i.e. |𝜙| < 𝛿, 

where 𝜙 is the difference between population bioavailability means 𝜇𝑇 − 𝜇𝑅  (in log 

scale) of T and R (treatment effect), and usually 𝛿 = 𝑙𝑜𝑔(1.25) = 0.223 , or 

equivalently, the back exponentially transformed geometric mean ratio, 𝐺𝑀𝑅 = 𝑒𝜙 

should lie fully within 0.80 to 1.25 (=1/0.80). The basis for the 0.8-1.25 range is 

arbitrary. The FDA (and other regulatory bodies) ‘decided’ by consensus that 

differences in systemic drug exposure up to 20% are not clinically important.  

Schuirmann et al. (9) proposed conducting ‘Two One Sided Tests’ (TOST) at significance 

level, α. 

𝐻01: 𝜙 ≤ −𝛿 vs. 𝐻11: 𝜙 > −𝛿, and, 

𝐻02: 𝜙 ≥ +𝛿 vs. 𝐻12: 𝜙 < +𝛿. 

The estimation of the treatment effect 𝜙 is based on the difference contrast 𝑑𝑖𝑘 =

1

2
(𝑌𝑖2𝐾 − 𝑌𝑖1𝐾), accounting for the within-subject bioavailability measure between 
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period one and two. In absence of carryover, an unbiased estimator of 𝜙 is 𝐷̅, with 

𝐷̅ = 𝑑̅1 − 𝑑̅2, being 𝑑̅𝑘 =  
1

𝑛𝑘
∑ 𝑑𝑖𝑘

𝑛𝑘
𝑖=1 , k=1,2. 

So, provided that 𝑇 =
𝐷̅− ϕ

𝑆𝐸𝐷̅
~𝑡(𝑁 − 2) the TOST procedure may be implemented as 

two one-sided t tests for H01 and H02. To declare ABE both null hypotheses must be 

rejected at a significance level α. This ensures a test of level α for 𝐻0. 

𝑆𝐸𝐷̅ = 𝜎̂𝑑√
1

𝑛1
+

1

𝑛2
  is the standard error estimate of 𝐷̅ , where 𝜎̂𝑑  is the estimator of 

the standard deviation of 𝑑𝑖𝑘 , and 𝑛1 and 𝑛2 are the number of patients included in 

each sequence. 

Analogously, an alternative way of assessing the equivalence test problem is based on 

the “interval inclusion rule”. To declare bioequivalence (i.e., to reject the null 

hypothesis of bioinequivalence) at a significance level α = 0.05, based on a normal ln-

linear model, the two-sided 1 – 2α = 0.9 symmetric confidence intervals for 𝜇𝑇 − 𝜇𝑅, 

𝜙, should lie fully within the constant bioequivalence limits of ±0.223, or equivalently, 

the back exponentially transformed confidence interval for the geometric mean ratio, 

𝐺𝑀𝑅 = 𝑒𝜙 should lie fully within 0.80 to 1.25 (=1/0.80) (7,10). 

1.5. ANOVA model for 2x2 crossover design 

The pharmacokinetic parameters under consideration are usually modeled using 

ANOVA. The data should be transformed prior to analysis using a logarithmic 

transformation. A confidence interval for the difference between formulations on the 

log-transformed scale is obtained from the ANOVA model. This confidence interval is 

then back-transformed to obtain the desired confidence interval for the ratio on the 

original scale (11). 

Bioavailability measures are usually modeled through the following linear statistical 

model: 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑆𝑖(𝑘) +  𝑃𝑗 + 𝐹(𝑗, 𝑘) +  𝐶(𝑗 − 1, 𝑘) + 𝑒𝑖𝑗𝑘, 
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where: 

• 𝑌𝑖𝑗𝑘 is the log of the bioavailability measure (subject i, period j, sequence k). 

• 𝜇 overall mean. 

• 𝑆𝑖(𝑘) random effect of subject i within the sequence k=1,2. Accounts for the inter-

subject variability, 𝑆𝑖(𝑘) ~ 𝑁(0, 𝜎𝐵
2). 

• 𝑃𝑗 is the period fixed effect, j=1,2. 

• 𝐹(𝑗, 𝑘) fixed effect of treatment at period j and sequence k. 

• 𝐶(𝑗 − 1, 𝑘) residual fixed effect (carryover) of period j-1 within sequence k: C(1,1) = 

CR, C(1,2) = CT. 

• 𝑒𝑖𝑗𝑘 residual, accounts for the intra-subject variability, and 𝑒𝑖𝑗𝑘 ~ 𝑁(0, 𝜎𝑊
2 ). 

• 𝑆𝑖(𝑘) and 𝑒𝑖𝑗𝑘 are mutually independent. 

In this model ‘subject’ is specified as a random effect and so there are two variance 

terms (within and between) designated as 𝜎𝑊
2

 and 𝜎𝐵
2.  

1.6. Highly variable drugs and scaled methods 

Sometimes, there are drugs whose rate and extent of absorption is highly variable 

dose to dose within the same patient (HVD). Within-subject variability refers to 

variability in a response (e.g., plasma drug concentration) within the same subject, 

when the subject is administered two doses of the same drug on two different 

occasions. Most regulations classify a drug as HVD if the within-subject coefficient of 

variation of the reference formulation R is 30% or greater on the original scale.  

The main problem with HVD is that to declare bioequivalence it requires a study with 

an unacceptably larger sample size. 

In 2003-2005, the Open Government Data, OGD, reviewed 1,010 acceptable 

bioequivalence studies of 180 different drugs, of which 31% (57/180) were highly 

variable (12).   

1.6.1. EMA approach on average bioequivalence in highly variable drugs 

If HVD is suspected, the EMA allows linearly scaling the Cmax margins as a function of 

the R variability (𝜎𝑊𝑅  or CVWR). To declare bioequivalence, we need to estimate 𝜎̂𝑊𝑅  

using higher order crossover designs, e.g. replicate TRTR/RTRT or semi-replicate 
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TRR/RTR/RRT. Three models for analyzing data are considered, EMA’s Methods A and 

B (11) and FDA’s Method C (13): 

EMA - Method A uses the same analysis method for replicate designs as is used for 2×2 

crossover trials, and considers that subject is a fixed effect and each subject is treated 

as being selected in some way rather than being sampled from a random distribute. 

For this model there is only one variance term estimated, 𝜎𝑊
2 , the within subject 

variability. 

EMA - Method B considers the same model as specified above but where subject is 

specified as a random effect and so there are two variance terms (within and between) 

estimated 𝜎𝑊
2  and 𝜎𝐵

2. Both models give the same results if all subjects included in the 

analysis provide data for all treatment periods. 

FDA - Method C allows a different subject effect for each formulation (i.e. a subject by 

formulation interaction), and therefore has 5 variance terms (within subject for 

reference, within subject for test, between subject for test, between subject for 

reference, covariance for between subject test and reference – the last three are 

combined to give the subject x formulation interaction variance component). This 

model will provide the same point estimate as Methods A and B if all subjects provide 

data for all treatment periods. However, it will generally give wider confidence 

intervals than those produced by Methods A and B. 

In the EMA 2010 regulation (7) the Reference Scaled Average bioequivalence limits 

(RSABE) for Cmax are specified as follows (Figure 2): 

• First, constant limits, the usual 𝜙(𝜎𝑊𝑅) = ±0.223 for 𝜎𝑊𝑅 < 0.2935 

(corresponding to CWR below 30%); 

• Next, scaled limits, 𝜙(𝜎𝑊𝑅) = ±kEMA𝜎𝑊𝑅 , for 0.2935 ≤ 𝜎𝑊𝑅 <  0.4724 (from CWR 

of 30% to  CWR of 50%); 

• Finally, constant limits 𝜙(𝜎𝑊𝑅) = ±0.3590 from 𝜎𝑊𝑅 ≥ 0.4724 (from CWR of 50%), 

where kEMA = 0.760 = log(1.25)/0.2935. 
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To declare bioequivalence: 

• Estimate the parameter 𝜎̂𝑊𝑅 . 

• Point estimate constraint: 𝜙̂ must be within the limits ±0.223. 

• At a significance level α = 0.05, based on a normal ln-linear model, the two-sided 

1 – 2α = 0.9 symmetric confidence intervals for 𝜙̂ should lie fully within the 

constant bioequivalence scaled limits: ±𝜙(𝜎̂𝑊𝑅). 

To estimate 𝜎̂𝑊𝑅 higher order crossover designs are needed, e.g. TRTR/RTRT or 

TRR/RTR/RRT. The replicate design has the advantage of using fewer subjects although 

each subject should receive more treatments than in the two-treatment, crossover 

design (3,7,14-17). 

The table below gives examples of how different levels of variability lead to different 

acceptance limits in the original scale, where 𝐶𝑉𝑊𝑅 =  √𝑒𝜎𝑊𝑅
2

− 1 (Table 3). 

Table 3. EMA scaled limits in the original scale 

Within-subject CVWR (%) Lower Limit Upper Limit 

30 80.00 125.00 

35 77.23 129.48 

40 74.62 134.02 

45 72.15 138.59 

>=50 69.84 143.19 

 

1.6.2. FDA approach on average bioequivalence in highly variable drugs 

The FDA also allows researchers to re-scale the Cmax and AUC limits in case of HVD (8). 

As in the case of the EMA, FDA bioequivalence limits are of ±0.223 for 𝜎𝑊𝑅 < 0.2935, 

and scaled limits are applied if 𝜎𝑊𝑅 ≥ 0.2935, thus, the scaled approach does not have 

an upper bound limit. The FDA scaling constant is 𝑘𝐹𝐷𝐴= log(1.25)/0.25 = 0.892 and 

thus the scaled limits are discontinuous at CVWR = 30% at original scale (i.e., at WR = 

0.2935 in logarithmic scale). On the other hand, it is worth pointing that this 

interpretation of the scaled FDA limits is not universally accepted (18), an alternative 

definition puts the starting point of scaling at WR = 0.25 which avoids any 

discontinuity (Figure 2).  
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The decision procedure may be described as follows: The null hypotheses: 

H0: |𝜙| ≥ 0.223 if 𝜎𝑊𝑅 < 0.2935 (or 0.25 according to the alternative interpretation) 

and |𝜙| ≥ 𝑘𝐹𝐷𝐴𝜎𝑊𝑅  if 𝜎𝑊𝑅 ≥ 0.2935 (or 0.25) 

 

is reformulated in its scaling region using a new parameter  (Howe’s method) (19,20): 

𝜏 = 𝜙2 − 𝑘𝐹𝐷𝐴
2 𝜎𝑊𝑅

2 ≥ 0, 

provided that −𝑘𝐹𝐷𝐴
2 𝜎𝑊𝑅 <  𝜙 < +𝑘𝐹𝐷𝐴

2 𝜎𝑊𝑅, 

where 𝜏 =  𝜙2 − 𝑘𝐹𝐷𝐴
2 𝜎𝑊𝑅

2  = ∑ 𝑐𝑗𝜃𝑗 is a linear combination with c1=1, θ1 = 𝜙2, c2 = 

𝑘𝐹𝐷𝐴
2 , θ2 = 𝜎𝑊𝑅

2 . 

Then, considering the 95% confidence interval (CI) for the parameter 𝜏 (−∞, 𝜏𝑈), we 

declare bioequivalence if 𝜏𝑈 < 0. 

To obtain  𝜏𝑈: 

• Estimate the parameter 𝜎̂𝑊𝑅 . 

• Obtain two point estimates:   𝐸1 = 𝑐1𝜃̂1 =𝜙̂2 and 𝐸2 = 𝑐2𝜃̂2 = − 𝑘𝐹𝐷𝐴
2 ∗ 𝜎̂𝑊𝑅

2 . 

• Calculate upper limits of the 1 –   one-sided 95% CI for 𝐸1and 𝐸2 as follow: 

𝑈1 = (|𝜙̂| + 𝑡1−𝛼,𝑁−𝑠𝑠𝑒𝜙̂)2 

𝑈2 =
𝑘𝐹𝐷𝐴

2 𝜎𝑊𝑅
2 (𝑁−𝑠)

𝜒1−𝛼,𝑁−𝑠
2 , 

where N is the total sample size, and s is the number of sequences. 

• Calculate 𝐷𝑗 = (𝑈𝑗 − 𝐸𝑗)2. 

• Then, 𝑈𝜏 = ∑ 𝐸𝑗 + √𝐷𝑗 is the upper limit of an approximate one-sided 1 –  

confidence interval for . 

Based on the confidence interval inclusion rule, the upper limit of the confidence 

interval (-∞,𝑈𝜏], 𝑈𝜏, for the parameter 𝜏, at a one-sided confidence level 1 − α, should 

lie entirely < 0 to declare bioequivalence. 

Irrespectively of the scaled equivalence limits being considered (either discontinuous 

or continuous), in practice, Howe’s method is applied only if the estimation of WR 

from data is greater or equal to 0.2935, otherwise the standard limits ±0.223 and the 

standard bioequivalence criterion are applied. 
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Again, this scaled approach requires the use of high order crossover designs like the 

replicated TRTR/RTRT or semi-replicated TRR/RTR/RRT design (3,7,14).  

Figure 2. Bioequivalence limits according to the EMA and the US FDA regulations, scaled in 

function of the within-subject variability of the reference R formulation 

 

Source: Ocaña J., Muñoz, J. (2019) (18) 

1.7. Two-stage adaptive designs 

Regulators also allow using two-stage adaptive designs (TSD) with unblinded interim 

sample size re-estimation based on the usual 2×2 crossover RT/TR design with 

bioequivalence limits 0.80-1.25 (in the original scale), whose application is becoming 

increasingly popular. This design is also useful for HVD (7,10,11,21-25). 

The study starts with a few number of healthy volunteers (e.g. 12 subjects), and at an 

interim look, if it is not possible to declare bioequivalence, but the results are 

promising, they allow to add some new subjects on a stage 2 based on the variability 

observed in the stage 1 (interim), so finally increasing the likelihood of declaring 

bioequivalence at a stage 2 with cumulated data. 

TSDs provide investigators with an attractive solution to address some of the 

uncertainty that exists when the trial is originally designed (26), allowing stopping the 
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study at stage 1 with an small initial sample size, avoiding to unnecessarily soar the 

sample size at a stage 2 above what is reasonable to attain a desired power. And they 

are especially useful in case of drugs with little evidence about the true within-subject 

variability, and for HVDs.  

1.7.1. Sample size re-estimation 

TSDs allow to add some new subjects on a stage 2 based on the variability observed in 

the stage 1 (interim), so finally increasing the likelihood of declaring bioequivalence at 

a stage 2 with cumulated data. 

The following four approaches have been proposed (27): 

Potvin A. Evaluate the power at stage 1 using the variance estimate from stage 1 with 

a α level of 0.05. If the power is ≥ 80% at stage 1, evaluate bioequivalence at stage 1, 

using a 𝛼 level of 0.05 and stop whether bioequivalence is concluded or not. If the 

power is less than 80%, calculate the sample size based on the variance estimated at 

stage 1 using a level of 0.05 and continue to stage 2. Evaluate bioequivalence at stage 

2 using data from both stages and a 𝛼 level of 0.05. Stop here whether bioequivalence 

is met or not and regardless of what power was achieved. Note that bioequivalence is 

evaluated only once in any event. This is sometimes referred to as an internal pilot 

study design.  

 

Potvin B. Evaluate bioequivalence at stage 1 using a level of 0.0294, regardless of the 

power achieved. If the bioequivalence criterion is met, stop. If the bioequivalence 

criterion is not met, calculate the sample size based on the variance estimated at stage 

1 at a 𝛼 level of 0.0294. If stage 1 already has at least 80% power, then stop. If not, 



INTRODUCTION 

 30 

continue to stage 2. Evaluate bioequivalence at stage 2 using data from both stages at 

a 𝛼 level of 0.0294. Stop here whether bioequivalence is met or not and regardless of 

the power achieved.  

 

 

Potvin C. Evaluate the power at stage 1 using the variance estimate from stage 1 and 

an α level of 0.05. If the power is greater than or equal to 80%, evaluate 

bioequivalence at stage 1 using a 𝛼 level of 0.05 and stop whether bioequivalence is 

met or not. If the power is less than 80%, evaluate bioequivalence using a 𝛼 of 0.0294. 

If the bioequivalence criterion is met, stop. If the bioequivalence criterion is not met, 

calculate the sample size based on the variance estimated at stage 1 and a 𝛼 level of 

0.0294 and continue to stage 2. Evaluate bioequivalence at stage 2 using data from 

both stages at a 𝛼 level of 0.0294. Stop here whether bioequivalence is met or not and 

regardless of the power achieved.  
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Potvin D. Evaluate the power at stage 1 using the variance estimate from stage 1 and 

at a α level of 0.05. If the power is greater than or equal to 80%, evaluate 

bioequivalence at stage 1 using a 𝛼 level of 0.05 and stop whether bioequivalence is 

met or not. If the power is less than 80%, evaluate bioequivalence using at a 𝛼 of 

0.028. If the bioequivalence criterion is met, stop. If the bioequivalence criterion is not 

met, calculate the sample size based on the variance estimated at stage 1 and at a 𝛼 

level of 0.028 and continue to stage 2. Evaluate bioequivalence at stage 2 using data 

from both stages at a 𝛼 level of 0.028. Stop here whether bioequivalence is met or not 

and regardless of the power achieved.  

 

1.8. Type I error control 

The process of declaring bioequivalence (or not), as in any other probabilistic study, is 

subject to errors. It is important to control the type I error or false positive rate or 

consumer risk, i.e. the probability of declaring bioequivalence when it is not the case. 

The scaled methods defined by EMA and FDA regulations do not preserve adequately 

the type I error rate (e.g. at a maximum significance level α = 0.05) under some 

variability conditions, like in the neighborhood of CVWR = 30% (Figure 2) (28,29).  

Similarly, TSDs must preserve the type I error (T1E) rate at an overall significance level, 

e.g. α = 0.05. Pocock and Potvin et al. proposed using a significance level of 0.0294 at 

both stages (27,30). But this constant does not always control the T1E rate at a 

maximum 5%. In fact, the T1E depends on the treatment effect, variability, target 

power, or sample size (31,32). Though there are various ways of preserving these 

significance levels, the methodologies are not fully specified in the regulations (33,34).  
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1.9. Justification of the investigation 

Highly variable drugs (HVD) are characterized by a high within-subject variability in the 

rate and/or extent of absorption of its active principle. This hinders researchers from 

declaring bioequivalence when it really holds, unless unacceptably large sample sizes 

are used.  

If HVD is suspected, regulatory agencies (EMA and FDA) allow linearly scaling the 

pharmacokinetic metrics margins as a function of the reference variability product, 

and it further allows application of the interval inclusion rule over the expanded limits.  

We compare a variant of the EMA Reference Scaled Bioequivalence (RSABE) method 

based on a replicate TRTR/RTRT design which preserves the type I error rate (especially 

for HVD with intra-subject coefficient of variation in the neighborhood of CVWR = 30%) 

with two Two-Stage Adaptive Designs (TSDs) methods based on the usual 2x2 RT/TR 

crossover design which also preserve the type I error rate, through the power 

achieved, sample size required, blood sample extraction, and exposure time. 

These results were discussed and published in Statistics in Medicine, Dec 2017. DOI: 

10.1002/sim.7452 

Regulators allow using TSD with unblinded interim sample size re-estimation. In this 

case, bioequivalence may be declared at the interim look with a reduced number of 

subjects; otherwise, the sample size can be increased on the basis of the estimated 

within-subject variability at the stage 1, then bioequivalence is tested again at a stage 

2 with cumulated data. At the interim look we also have the possibility of cancelling a 

study for futility. TSD preserve the type I error rate by adjusting significance 

boundaries at each stage in various ways that are not fully specified in the regulations. 

We present an iterative method to adjust the significance levels at each stage, α1 and 

α2, which preserves the overall type I error (usually at 5%) for a wide set of CVWR 

scenarios. Also, we propose an extended feature by allowing α1 being different than 

α2.  

These results were discussed and published in published in Biometrical Journal, Oct 

2020. DOI: 10.1002/bimj.201900388. 

https://doi.org/10.1002/sim.7452
https://doi.org/10.1002/bimj.201900388
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This method was implemented in an R package called ‘betsd’ which includes the 

function ‘t1e.tsd’. We present this package which is useful to preserve the overall type 

I error rate in a strong sense and which provides the simulated significance levels to 

use at stages 1 and 2. It also includes an accurate description of all the arguments of 

the function ‘t1e.tsd’ and allows calculating the probability to jump to a stage 2, the 

sample size at the stage 2, and the power at stages 1 and 2. 

The function is described in the Biometrical Journal supporting information: bimj2181-

sup-0001-SuppMat.docx. Also, source code to reproduce the results is available as 

Supporting Information on the journal’s web page bimj2181-sup-0002-SuppMat.zip. 

The package is hosted on GitHub https://github.com/eduard-molins/betsd.  

We also present a future line of research based on population and individual 

bioequivalence, and biosimilars. 

  

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbimj.201900388&file=bimj2181-sup-0001-SuppMat.docx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbimj.201900388&file=bimj2181-sup-0001-SuppMat.docx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbimj.201900388&file=bimj2181-sup-0002-SuppMat.zip
https://github.com/eduard-molins/betsd
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2. HYPOTHESIS AND OBJECTIVES 

2.1. Hypothesis 

The scaled methods to test bioequivalence defined by FDA and EMA regulations do not 

adequately preserve the type I error rate (false positive or consumer risk) below the 

significance level in the neighborhood of CVWR = 30%. A significance-level adjustment 

procedure may lose some power but it should convert a potential invalid procedure in 

a fully correct one. 

Two-Stage designs (TSDs) based on adjusted significance level of α1 = α2 = 0.0294 at 

each stage (27) did not always control the overall type I error rate at a maximum α = 

0.05. Since the type I error depends on the study framework, i.e., on the design, 

treatment effect, variability, target power, or sample size, the adjusted significance 

levels at each stage are entirely empiric and must be estimated in simulations.  

2.2. Objectives 

To discuss and improve some regulatory features (EMA and FDA) when assessing 

average bioequivalence (ABE).  

Specific objectives: 

1. To protect the type I error rate  

1.1. To present 2 ‘modified’ TSD based on the usual 2x2 RT/TR crossover design 

which also preserve the type I error rate.  

1.2. To compare the properties between an ‘adjusted’ EMA RSABE method and 

modified TSDs using simulations by means of the power achieved, sample size 

required, blood sample extraction, and exposure time. 

2. To extend the methodology to preserve the overall type I error for TSD (e.g. at α = 

0.05) by means of a new iterative method (based on simulations) which covers a wide 

set of initial sample size, and intra-subject variability scenarios.  
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3. To present a new R package for TSD called ‘betsd’ along with the function ‘t1e.tsd’ 

to help on calculating the significance levels of each stage, the probability to jump to a 

stage 2, the sample size at the stage 2, and the power at stages 1 and 2. 
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3. TWO-STAGE DESIGNS VERSUS EUROPEAN SCALED AVERAGE 

DESIGNS IN BIOEQUIVALENCE STUDIES FOR HIGHLY VARIABLE 

DRUGS 

This chapter is based on the following published research paper:  

• Title: Two-Stage Designs versus European Scaled Average Designs in 

bioequivalence Studies for Highly Variable Drugs: Which to Choose? (21)  

• Published in: Statistics in Medicine, Dec 2017  

• DOI: 10.1002/sim.7452 

• PubMed ID: 28853164 

• Authors: Eduard Molins, Erik Cobo, Jordi Ocaña 

3.1. Introduction 

Average bioequivalence (ABE) studies are conducted to demonstrate in vivo either that 

two products, say “test” T and “reference” R, are pharmaceutically equivalent (in the 

US) or that their rate and extent of absorption (7,8,15) are close enough to serve as 

alternative pharmaceutical products (in the EU). The most common measure of the 

rate of absorption is the bioavailability measure “maximum observed concentration” 

(Cmax), while the “area under the concentration curves” (AUC0-t and AUC0-∞) (13) are 

the most common bioavailability measures for the extent of absorption. As explained 

in more detail in the introductory section, to demonstrate bioequivalence, regulatory 

guidelines recommend a single dose 2×2 crossover design, RT/TR that evaluates T and 

R on healthy volunteers. The most commonly used criterion to test (at a significance 

level of α = 0.05) for bioequivalence is the “interval inclusion rule”, which is based on a 

90% symmetric confidence interval for the formulation effect, say the mean difference 

between the bioavailabilities of formulations T and R at a log-transformed scale. It is 

based on the Student’s distribution, assuming data normality. In order to declare 

bioequivalence, the back-transformed confidence interval for the geometric means 

ratio (GMR) should lie fully within the bioequivalence limits of 0.80-1.25 (=1/0.80), 

corresponding to ±0.223 on the logarithmic scale (7,10). 

https://doi.org/10.1002/sim.7452
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Highly variable drugs (HVD) are characterized by high within-subject variability in the 

rate and/or extent of absorption of its active principle. This hinders researchers from 

declaring bioequivalence when it really holds, unless unacceptably large sample sizes 

are used. Most regulations classify a drug as HVD if the within-subject coefficient of 

variation of the reference formulation R (CVWR) is 30% or greater on the original scale. 

The percentage of HVD is not negligible. Davit et al. (12) collected data from all in vivo 

bioequivalence studies reviewed by the FDA’s Office of Generic Drugs from 2003 to 

2005, and they concluded that 31% of the studies (57/180) corresponded to HVDs, 

many of them around CVWR = 30%. 

If high variability is suspected, the European Medicines Agency (EMA) allows linearly 

scaling the Cmax margins as a function of the R variability to a maximum plateau of 

0.6984-1.4319, and it further allows application of the interval inclusion rule over 

these expanded limits (7). Similarly, the FDA also allows researchers to re-scale the 

AUC limits (8,15). These scaled approaches require the use of high order crossover 

designs like the replicated TRTR/RTRT or semi-replicated TRR/RTR/RRT designs 

(3,7,14). However, these scaled methods, as defined by FDA and EMA regulations, do 

not adequately preserve the type I error rate in the neighborhood of CVWR = 30%. 

(28,29). Thus, the proportion of non-ABE products erroneously declared as 

bioequivalence is higher than its desired nominal value.  

Regulators also allow using two-stage adaptive designs (TSDs) with unblinded interim 

sample size re-estimation (7,10,11,25) based on the usual 2×2 crossover RT/TR design. 

ABE may be declared at the interim look with N1 subjects; otherwise, the sample size 

can be increased on the basis of the estimated within-subject variability at the stage 1, 

then bioequivalence is tested again at a stage 2 with cumulated data N = N1 + N2. Two-

stage designs preserve the type I error rate (31) by adjusting significance boundaries at 

each stage in various ways that are not fully specified in the regulations (33,34). 

In turn, the planned sample size is crucial because it may lead to underpowered 

studies, as there is a high uncertainty about the assumed GMR and/or variability.   
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3.2. Study objectives 

The main objective was to critically compare the EMA's original scaled method based 

on a replicate TRTR/RTRT design (or, more precisely, an adjusted variant intended to 

preserve the type I error rate, as shown by Labes and Schütz (29)) with two TSD 

methods based on the usual RT/TR crossover design.  

3.3. Statistical methodology 

3.3.1. 2010 Regulatory EMA Reference Scaled approach (for Cmax only) 

Replicate TRTR/RTRT designs allow separately estimating the CVWR (28,29) and can 

easily be re-arranged for comparison with a 2×2 crossover design (needed for TSDs) 

once the first two periods are sliced.  

We focus on the EMA regulation because the interpretation of FDA scaled limits are 

controversial. Some authors (18,35-37) consider a high variability threshold of CVWR = 

25% though the scaling criterion starts from an observed CVWR ≥ 30%. As a 

consequence, the scaling region starts at a lower value of 25%, and the limits are 

always continuous.  

On the original scale, the null hypothesis of bioinequivalence is tested against an 

alternative of bioequivalence, as follows: 

𝐻0: 𝐺𝑀𝑅 ≤  0.80 or 𝐺𝑀𝑅 ≥  1.25 

𝐻1: 0.80 < 𝐺𝑀𝑅 <  1.25. 

In the Reference Scaled Average bioequivalence (RSABE) approach, the bioequivalence 

limits are a function, say 𝐺𝑀𝑅𝐸𝑀𝐴, of the unknown population within-subject R 

coefficient of variation 𝐶𝑉𝑊𝑅, so the hypotheses being tested differ from the standard 

ones enunciated above: 

𝐻0: 𝐺𝑀𝑅 ≤  1/𝐺𝑀𝑅𝐸𝑀𝐴(𝐶𝑉𝑊𝑅) or 𝐺𝑀𝑅 ≥  𝐺𝑀𝑅𝐸𝑀𝐴(𝐶𝑉𝑊𝑅) 

𝐻1: 1/𝐺𝑀𝑅𝐸𝑀𝐴(𝐶𝑉𝑊𝑅) < 𝐺𝑀𝑅 <  𝐺𝑀𝑅𝐸𝑀𝐴(𝐶𝑉𝑊𝑅). 

If 𝐶𝑉𝑊𝑅 < 30%, 𝐺𝑀𝑅𝐸𝑀𝐴(𝐶𝑉𝑊𝑅) = 1.25; so the bioequivalence limits are the usual 0.8-

1.25. If 𝐶𝑉𝑊𝑅 lies between 30% and 50%, the bioequivalence limits grow 

as 𝐺𝑀𝑅𝐸𝑀𝐴(𝐶𝑉𝑊𝑅) = 𝑒𝑥𝑝 {𝑘𝐸𝑀𝐴√𝑙𝑜𝑔(𝐶𝑉𝑊𝑅
2 + 1)}, with 𝑘𝐸𝑀𝐴 = 0.76. Otherwise, 
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from 𝐶𝑉𝑊𝑅= 50%, 𝐺𝑀𝑅𝐸𝑀𝐴(𝐶𝑉𝑊𝑅) = 1.4319; so the bioequivalence limits stay 

constant at 0.6984 (= 1/1.4319). 

A short statement of the EMA testing decision criterion is: 

1) Obtain the GMR estimate, 𝐺𝑀𝑅̂ = 𝑒𝜙̂, where 𝜙̂ is the estimated formulation 

effect 𝜙, the mean difference of test and reference products of the corresponding 

log Cmax scale; 

2) Point estimate constraint: If 𝐺𝑀𝑅̂ is outside the limits 0.8-1.25, do not declare 

bioequivalence and stop; 

3) Obtain the estimate of the within-subject coefficient of variation of the reference 

product, 𝐶𝑉̂𝑊𝑅 =  √𝑒𝜎̂𝑊𝑅
2

− 1, where 𝜎̂𝑊𝑅
2  is the estimated value of the reference 

residual standard deviation in the logarithmic scale; 

4) Obtain the 90% confidence interval for GMR around its estimate 𝐺𝑀𝑅̂, 𝐶𝐼𝐺𝑀𝑅̂ =

𝑒[∅̂𝐿,∅̂𝑈] , where ∅̂𝐿  and ∅̂𝑈  are the estimated lower and upper limits of the 

confidence interval in the logarithmic scale, at a confidence level of 1 − 2𝛼 for α = 

0.05 

5) If 𝐶𝐼𝐺𝑀𝑅̂ is fully included in the 𝐺𝑀𝑅𝐸𝑀𝐴(𝐶𝑉̂𝑊𝑅) limits, declare bioequivalence 

(reject 𝐻0), otherwise do not declare bioequivalence. 

Note that the limits 𝐺𝑀𝑅𝐸𝑀𝐴(𝐶𝑉̂𝑊𝑅) are random, not fixed constants like 0.8 or 1.25, 

since they depend on the random quantity 𝐶𝑉̂𝑊𝑅, which is not fixed in advance. 

Muñoz et al. (28) among others (29), showed that the above decision criterion does 

not adequately control the type I error probability, or false positive rate (say, if 

bioequivalence is erroneously declared when in fact it does not hold) in the 

neighborhood of 𝐶𝑉𝑊𝑅 = 30%.  

3.3.2. Significance level adjustment on the Regulatory EMA scaled approach 

As has been previously stated, the 2010 former EMA RSABE procedure does not 

control completely the type I error probability. To focus on an easy to use method for 

practitioners, and with chances to be included in the regulations, we considered the 

method already implemented in the function “scABEL.ad” in the R package PowerTOST 

(29). As a consequence of adjusting the significance level, the EMA’s scaled method 
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(labeled AdjEMA in the table results) may lose some power. But this (small in general) 

loss of power is worth because it converts a potentially invalid procedure (with respect 

to the type I error probability) in a fully correct one. 

As a function of the reference coefficient of variation, the type I error probability has 

only one single maximum at CVWR = 30%. Consequently, though somewhat 

conservatively, we let the argument “CV” of scABEL.ad at its default value of 0.3. The 

alternative strategy of estimating the coefficient of variation from data and assigning 

this (random function of data, unknown in advance) value to the argument CV induces 

some type I error probability inflation. 

In accordance with EMAs Questions & Answers guideline (11), section 10, the 

estimation of the required parameters was based on the ANOVA procedure labelled as 

“Method A” in this document (see 1.6.1), and not in the intra-subject contrasts, as are 

for example allowed in the FDA regulation for scaled average bioequivalence. 

3.3.3. Two-stage modified Potvin B and C designs 

We consider two TSDs with one interim analysis (at the stage 1) with N1 subjects to 

either 1) establish equivalence early; or 2) stop for futility; or 3) recruit an additional 

group of N2 subjects to repeat the bioequivalence assessment at a stage 2 with N = N1 

+ N2 subjects. Each stage is based on a 2×2 crossover balanced RT/TR design, and so 

the within-subject variability 𝐶𝑉𝑊 should be estimated by means of the pooled 

variability of R and T. Unlike the scaled approach, two-stage hypotheses always rely on 

the standard fixed limits 0.8–1.25.  

Among adaptive approaches to bioequivalence (34), we focused on those (almost 

partially) mentioned in regulations, considering two “Pocock-like” variants (30), as 

described by Potvin et al. and labelled A, B, C and D (27). In particular, we studied a 

type 1 Potvin B method (10) consisting of using the same adjusted α in both stages 

regardless of whether a study stops in the stage 1 or proceeds to the stage 2 (Figure 3), 

and a Type 2 Potvin C method where an unadjusted α may be used in the stage 1, 

dependent on interim power (Figure 4). 

Both methods calculate N2 as the minimum even number of additional subjects 

required for having a total sample size of N, which achieves a conditional power of at 
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least 80% for declaring bioequivalence at the stage 2. This is conditional on the 

estimated within-subject coefficient of variation 𝐶𝑉̂𝑊 at the stage 1 for an assumed 

true GMR of 0.95. 

Potvin A was discarded, as it did not adjust the significance boundaries; Potvin D was a 

more conservative variant of Potvin C, and therefore not recommended because it 

requires larger average sample sizes than Potvin C (31). 

We propose a modification to the original Potvin B and C algorithms, including two 

constraints consisting of using a minimum sample size in the stage 2 (like in other 

jurisdictions or organizations) (10), and a maximum overall number of 150 subjects 

enrolled (32,38) in bioequivalence studies, as follows: 

- A minimum of N ≥ 1.5N1 is required (or N2 ≥ 0.5N1) 

- If N = N1 + N2 > 150, the trial fails and it is stopped at the stage 1. 

In any case, regardless of the method used, at least 12 evaluable subjects should be 

included in the stage 1 (8,11). 

The adjusted significance level of α = 0.0294 used by Potvin et al. (27,30-32) at each 

stage did not always control the overall type I error rate at a maximum 0.05 (e.g., 

when using our modified Potvin C algorithm with N1 = 12 and considering a true 

unknown CVW = 20%, the false positive rate would be inflated to 0.053). Like in Xu et 

al. (39) we did look for a significance level by strictly controlling the type I error rate 

below 0.05, which was useful for our specific modified Potvin B and C methodologies. 

Because the sponsor is unaware of the true CVW value, we looked for a significance 

level which was applicable to a broad set of N1 and 𝐶𝑉𝑊, {N1/CVW} (scenarios shown in 

Section 3.3.4). 

We used the method implemented in the function ‘power.tsd’ (via non-central t-

distribution) in the R package ‘Power2Stage’ (40). The treatment effect was evaluated 

at the frontier 1.25, and assuming an expected GMR = 0.95 and a target power of 80%.  
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Figure 3. Type 1 Two-Stage Design - Modified Potvin B algorithm 

 

Adapted from the figure depicted in detail by Montague et al. (31), with the restriction of Karalis and Macheras (32) 
of not including more than 150 subjects and N ≥ 1.5N1;  
ABE, average bioequivalence; N1, Initial fixed sample size; N2, the additional number of subjects recruited at Stage 2; 

GMR, assumed geometric mean ratio; 𝐶𝑉̂𝑊, estimated within-subject coefficient of variation 
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Figure 4. Type 2 Two-Stage Design - Modified Potvin C algorithm 

 

Adapted from the figure depicted in detail by Montague et al. (31), with the restriction of Karalis and Macheras (32) 
of not including more than 150 subjects and N ≥ 1.5N1;  
ABE, average bioequivalence; N1, Initial fixed sample size; N2, the additional number of subjects recruited at Stage 2; 

GMR, assumed geometric mean ratio; 𝐶𝑉̂𝑊, estimated within-subject coefficient of variation 

 

A short statement for assessing the adjusted significance level, αadj: 

1) Define a grid with a set of {N1/CVW}.  

2) Start with an arbitrary, e.g. αadj = 0.0290. 

3) Obtain the empirical probability of type I error, Pr{T1E}, over the grid (m = 30,000 

simulation trials per scenario). Filter for the scenarios where Pr{T1E} is at least 

95% of the max(Pr{T1E}) observed in the grid, let’s say {N1/CVW}T1E≥P95%. 

4) For {N1/CVW}T1E≥P95%, find the N1/CVW with max(Pr{T1E}) (m = 1,000,000). 

5) Set up a range of αj close to the one used before, 𝛼𝑗 ∈ {𝛼𝑎𝑑𝑗 ± 𝛿𝑗}
𝑗=1…5

 (e.g. by δ 

increments of 0.0001 units). By using the N1/CVW associated to max(Pr{T1E}), 

estimate the Pr{T1E} of all αj (m = 1,000,000). 
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6) Adjust linear α = glin(Pr{T1E}) and quadratic α = gquad(Pr{T1E}) models, with and 

without the intercept. Choose the model with the lowest Akaike information 

criterion value (AIC). 

7) Use this model to predict a new αadj, where αadj = g(0.05). 

8) Evaluate the entire grid of {N1/CVW} with this new αadj (m = 1,000,000). 

9) If Pr{T1E} < 0.05 for all {N1/CVW}, STOP and select this new αadj; Otherwise, start 

again over with step (4). 

As the 2010 EMA guideline uses a type 1 TSD method (7), we used the modified Potvin 

B as the main TSD approach and the modified Potvin C as a sensitive case. 

3.3.4. Simulation methods 

The results described in the next sections are based on simulations using 64 bits R and 

Microsoft R Open. The main outputs are: type I error rate, power and the number of 

trials stopping at the stage 1 for the TSD approach. For most scenarios, m = 100,000 

datasets were generated, but m = 1,000,000 for those devoted to estimating the most 

crucial type I error probabilities, i.e., for simulated GMRs just on the bioequivalence 

limit. 

In the simulations, we considered all combinations of 3 factors: sample size, true GMR 

and true within-subject variability under the homoscedasticity assumption 

that  𝐶𝑉𝑊 =  𝐶𝑉𝑊𝑅 = 𝐶𝑉𝑊𝑇 (from now on, we use CVW and CVWR interchangeably, 

provided the assumed simulated homoscedasticity). The sample sizes were N1 = 12, 18, 

24, 30, 36, 48 and 60 subjects for RSABE methods and at the stage 1 for TSD methods, 

always considering a balanced design, i.e.: 6, 9, 12, 15, 18, 24 and 30 subjects per 

sequence. The simulated population GMR values were 0.95, 1.00, 1.12, 1.25 and 1.31; 

with the first three corresponding to scenarios under true bioequivalence (alternative 

hypothesis), and the last two corresponding to the true non-bioequivalence (null 

hypothesis). In fact, this statement is exactly true for the TSD approach, where the 

bioequivalence limits are the constants 0.80-1.25; see the next paragraph for 

clarification in the RSABE case. Finally, the simulated within-subjects coefficients of 

variation were 10%, 20%, 25%, 30%, 40%, 50% and 60%. A coefficient of variation of 

30% or higher indicates an HVD. Section 3 reports only the results for a subset of the 
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simulated values on sample size, true GMR, and true coefficient of variation. In 

addition, these TSD simulations were done using the “exact” method. 

Provided that TSD and RSABE are based on different definitions of bioequivalence, 

comparing them is quite difficult. In order to have a reference case for comparison, we 

took the simulated true GMR values “on the frontier” of each approach (constant 1.25 

in TSD or a function 𝐺𝑀𝑅𝐸𝑀𝐴 in RSABE for varying simulated 𝐶𝑉𝑊𝑅 values), which 

should provide similar proportions of bioequivalence declaration (near 0.05) if both 

approaches are adequately controlling the user’s risk. For GMRs that are progressively 

inside or outside the corresponding bioequivalence regions, these probabilities should 

also be comparable. To define these concordant simulation scenarios, we reasoned at 

the logarithmic scale. The constant simulated GMR values in the TSD approach are 

0.95, 1.00, 1.12, 1.25 and 1.31, and they correspond to formulation effects on the 

logarithmic scale of -0.0513, 0, 0.1133, 0.2231 and 0.2700, respectively. With respect 

to the (frontier) 0.2231 value, these formulation effects correspond to proportions  = 

-0.230,  0,  0.508, 1 and  1.210, respectively. Then,  = 1 refers to values on the 

frontier, || < 1 to scenarios of true bioequivalence, and || > 1 to scenarios of 

bioinequivalence. Therefore, the same  value defines concordance in TSD and RSABE 

scenarios: the population GMRs in the original scale were taken as exp{ 0.2231} in the 

TSD approaches, and for all simulated 𝐶𝑉𝑊𝑅 values; while in the RSABE approach, they 

were taken as exp{ 0.2231} for 𝐶𝑉𝑊𝑅 < 30%, as 𝑒𝑥𝑝 {𝜆𝑘𝐸𝑀𝐴√𝑙𝑜𝑔(𝐶𝑉𝑊𝑅
2 + 1)} for 

CVWR values between 30% and 50%, and as exp{ 0.3590} for a 𝐶𝑉𝑊𝑅 ≥ 50%. 

For simplicity, the simulated GMRs in the next sections will always be labeled as 0.95, 

1.00, 1.12, 1.25 and 1.31; but it should be remembered that these values in the RSABE 

case correspond only to the simulated coefficients of variation below 30%. 

Following the EMA Questions & Answers guideline (11), adjusted ANOVA models for 

analysis of the combined stage 2 data included the following terms: stage, sequence, 

interaction sequence*stage, subject nested in sequence*stage, period nested in stage, 

and formulation.  
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3.4. Simulation results  

The adjusted significance level predicted for the modified Potvin B was assessed at αadj 

= 0.0301 at each stage; For the modified Potvin C, the adjusted significance level 

predicted was assessed at αadj = 0.0280 (Figures 3 and 4). 

Both adaptive TSD modified Potvin B and C methods performed similarly in respect to 

the power achieved and the required median sample size Me[N] (Table 4). Because 

almost all simulated studies required stepping up to a stage 2 and resulted in large 

final sample sizes, it was not advisable to start with a too small sample size, like N1 = 

12, in scenarios with  high variability (𝐶𝑉𝑊 ≥ 30%).  

On the other hand, when N1 ≥ 24, the global power (including both stages) was at least 

80% when variabilities were raised up to 40%. Additionally, those sample sizes 

increased the likelihood of stopping for bioequivalence at the stage 1. For the high 

value of 𝐶𝑉𝑊 = 60%, results were poor, with power always below 80%.  

For the RSABE EMA method, a crucial variability value is at the threshold 𝐶𝑉𝑊 = 30%, 

where there is a maximum type I error peak. Table 5 shows that for a true 𝐺𝑀𝑅 of 

1.25 the highest false positive rate is 0.085, confirming the already known risk control  

problems of the EMA scaled approach. On the other hand, the RSABE adjusted EMA 

method (AdjEMA) accurately respected the nominal 0.05 level. Both TSD approaches 

also respected the type I error at 0.05. In addition, for a sample size of N1 = 24, all 

methods with a type I error close to the nominal 0.05 level provide satisfactory and 

similar powers on bioequivalent drugs (GMR = 0.95, 1.00, and 1.12). The apparently 

larger sample sizes required by TSD methods should be relativized: with half periods, 

they did not double mean size and reached a bioequivalence statement at the stage 1 

in a notable proportion of times (approximately 41%, 47% and 24%).  
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Table 4. Two-stage design modified Potvin B and C: bioequivalence, sample size, and percentage of studies stepping up to stage 2 for true GMR = 0.95, 

and under different fixed N1 and a true 𝑪𝑽𝑾 

 
 Modified Potvin B Modified Potvin C 

Fixed a priori ABE 
Step 

to St2 
N ABE 

Step 
to St2 

N 

N1 
True 
CVw 

% St1 
% 

St1+St2 
% Min 5% Me 95% Max % St1 

% 
St1+St2 

% Min 5% Me 95% Max 

12 20 41.92 85.00 55.69 12 12 18 40 104 41.56 84.76 54.44 12 12 18 40 106 
12 30 7.03 78.61 92.71 12 12 44 84 150 6.40 78.34 93.05 12 12 44 84 150 
12 40 1.03 71.65 95.68 12 22 70 128 150 0.90 70.96 95.28 12 20 72 130 150 
12 60 0.05 29.43 51.00 12 12 44 142 150 0.05 27.76 49.06 12 12 12 142 150 

24 20 83.76 90.16 8.20 24 24 24 36 62 87.89 91.19 4.22 24 24 24 24 64 
24 30 41.86 83.86 57.47 24 24 36 70 138 40.47 83.38 57.69 24 24 38 72 140 
24 40 10.12 79.79 89.45 24 24 76 118 150 8.93 79.44 90.49 24 24 78 120 150 
24 60 0.19 31.19 46.47 24 24 24 146 150 0.15 28.83 43.59 24 24 24 146 150 

36 20 95.68 95.75 0.07 36 36 36 36 54 97.51 97.51 0.01 36 36 36 36 54 
36 30 68.13 87.23 28.33 36 36 36 60 120 69.94 85.77 22.95 36 36 36 62 124 
36 40 34.32 82.42 65.54 36 36 68 110 150 32.40 82.14 67.16 36 36 72 112 150 
36 60 1.53 31.28 42.66 36 36 36 146 150 1.20 28.35 39.37 36 36 36 146 150 

 
ABE, average bioequivalence; GMR, geometric mean ratio; N1, initial and fixed sample size (Stage 1); CVw, within-subject coefficient of variation; %St1, proportion of simulations 
declaring bioequivalence at Stage 1; %St1+St2, cumulative proportion of simulations declaring bioequivalence at Stage 2, Step up to St2, proportion of simulations requiring 
stepping up from Stage1 to Stage 2; Min, min of N; 5%, percentile 5 of N; Me, median of N; 95%, percentile 95 of N; Max, max of N
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Table 5. Probability of bioequivalence acceptance according to the regulatory reference 

scaled bioequivalence ABE EMA and an adjusted EMA method compared to two-stage 

designs modified Potvin B and C (true 𝑪𝑽𝑾 = 30%) 

 
  

Probability ABE acceptance Type I error 

  True GMR 

 Method 0.95 1.00 1.12 1.25 1.31 

R
SA

B
E

 
m

et
h

o
d

 Regulatory EMA (N1 = 24) 0.896 0.963 0.631 0.085 0.021 

AdjEMA (N1 = 24) 0.864 0.948 0.559 0.050 0.009 

TS
D

 
m

et
h

o
d

 

Modified Potvin B (N1 = 24 at Stage 
1) 

0.419 
 

0.484 
 

0.242 
 

0.029 
 

0.008 
 

Modified Potvin B (Stage 1 + Stage 
2 with 36≤N≤150)  

0.839 0.926 0.527 0.050 0.012 

Modified Potvin C (N1 = 24 at Stage 
1) 

0.405 
 

0.468 
 

0.236 
 

0.030 
 

0.009 
 

Modified Potvin C (Stage 1 + Stage 
2 with 36≤N≤150) 

0.834 0.922 0.519 0.048 0.012 

 
ABE, average bioequivalence; RSABE, reference scaled average bioequivalence; TSD, Two-stage design; GMR, 
geometric mean ratio; CVw, within-subject coefficient of variation; N1, initial and fixed sample size fixed at 24 
subjects (Stage 1 with modified Potvin B and C); Regulatory EMA, regulatory European Medicines Agency approach; 
AdjEMA, adjusted EMA type I error 

 

Figure 5 shows a more comprehensive picture of the extended N1 and 𝐶𝑉𝑊 values for a 

bioequivalent scenario fixed at GMR = 0.95. When N1 = 12, TSD methods showed 

higher power than the RSABE adjusted EMA method for 𝐶𝑉𝑊 > 20%, requiring 

relatively larger global sample sizes of Me[N] = 44 and around 70 for 𝐶𝑉𝑊 =

30% and  40%, respectively. For N1 = 24 the RSABE adjusted EMA method showed a 

similar trend as both TSD methods; and for N1 = 36, both methods showed power 

above 80%, for a true 𝐶𝑉𝑊 below 60%. For a true 𝐶𝑉𝑊 ≥ 60%, the power for both TSD 

methods seriously suffered from the futility criterion of not allowing studies with more 

than 150 subjects, though for the RSABE adjusted EMA the power was still above 80%.  

Figure 6 explores the power for different true levels of bioequivalence: GMR = 0.95, 

1.00, and 1.12. It is remarkable that for a true value of GMR = 1.12, no methods 

reached 80% power for any HVD with 𝐶𝑉𝑊 ≥ 30%. 



ARTICLE 1 

 50 

Figure 5. Bioequivalence acceptance of the adjusted reference scaled ABE EMA method and 

two-stage designs modified Potvin B and C at stages 1 and 2, for a true GMR of 0.95, and a 

progressive increase of the within-subject variability 

 
 
ABE, average bioequivalence; GMR, geometric mean ratio; HVD, highly variable drugs; N1, initial and fixed sample 
size used for the modified EMA method and both TSD methods at Stage1; CVw, within-subject coefficient of 
variation; Me[N], TSD media total sample size at Stage 2 (beside the squares in the figure); AdjEMA, type I error 
adjusted EMA method 
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Figure 6. Bioequivalence acceptance of the adjusted reference scaled ABE EMA method and 

two-stage designs modified Potvin B for different levels of true bioequivalence and a 

progressive increase in the within-subject variability 

 
 
ABE, average bioequivalence, HVD, highly variable drugs; N1, initial and fixed sample size (EMA method); GMR, 
geometric mean ratio; CVw, within-subject coefficient of variation; Me[N], TSD median total sample size (beside 
the squares in the figure); AdjEMA, type I error adjusted EMA 

 

3.5. Discussion 

Bioequivalence studies are the pivotal clinical studies submitted to regulatory agencies 

to support the marketing applications of new generic drug products. High levels of 

within-subject variability make it difficult to assess bioequivalence through standard 

procedures using reasonable sample sizes, thus delaying treatment. After many years 

of discussion, some agencies issued regulations describing those methods. In general, 

their approach is based on bioequivalence limits being scaled as a function of the 

reference formulation variability. This is the reference scaled average bioequivalence 

(RSABE) approach of the EMA regulation issued in 2010 (7). Although also mentioned 

in the regulations, adaptive TSD are not used nearly as much as the widespread scaling 

methods, despite having some appealing characteristics. Deciding on the study’s 

experimental design is crucial and must be done in advance (e.g., including it in the 

study protocol), generally without full knowledge of the within-subject variability. We 
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compared two variants of well-known adaptive methods and an RSABE adjusted (type I 

error) EMA approach. Both methods showed similar statistical power, but the RSABE 

adjusted scaled method required less sample size, although at the expense of exposing 

subjects twice as long as TSD methods. For initial sample sizes of at least 24 subjects, 

TSDs are a good option to consider, as they have a power of around 80% at the stage 1 

for non-highly variable drugs while at the same time they offer the opportunity for 

stepping up to the stage 2 (including additional subjects) for truly bioequivalent 

products. 

Statistical power is used to evaluate the performance of adaptive methodologies in 

bioequivalence clinical trials. A power of at least 80% is desirable when considering N1 

subjects at the stage 1, and assuming an expected but unknown within-subject 

coefficient of variation, 𝐶𝑉𝑊. In turn, this is always conditioned to not exceed the 

overall type I error rate of 0.05 for true bioinequivalent drugs. In our modified Potvin B 

and C methods, we found adjusted significance levels covering a wide range of N1 and 

𝐶𝑉𝑊 combinations (i.e. αadj = 0.0301 and αadj = 0.0280 at each stage for Potvin B and C, 

respectively). This is useful to regulators since they can widely rely on the protection of 

patients against false positive results. However, we understand that for a specific 

actual (local) N1 and 𝐶𝑉𝑊 combination, the power might be slightly downgraded, 

although it is always above 80% in case of true bioequivalence. 

Patterson et al. (41) explored the sample size that provides 90% power (for true 

bioequivalent drugs) in case of HVD. They showed that by using 2x2 crossover designs 

with conventional bioequivalence limits of 0.8-1.25 and 𝐶𝑉𝑊 of 60% or above, the 

required sample size exceeds 150 subjects (though replicate designs require smaller 

sample size). Using adaptive designs, we avoid conducting studies with such a large 

sample size by imposing a futility criterion so that we can stop the trial at an interim 

look with only N1 subjects. According to Karalis and Macheras (38), we added a 

constraint to the original TSD methods, specifically by not recruiting more than 150 

subjects overall. For example, in the case of a true bioequivalent drug with 0.95 ≤

𝐺𝑀𝑅 ≤ 1.05, and for highly variable drugs with an estimated within-subject 

coefficient of variation above 58% at the interim analysis, the final sample size needed 

for achieving a power of 80% at the stage 2 already exceeds 150 subjects. At first 
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glance this constraint represents some global loss of power, but this possibility of 

cancelling a study for futility may ultimately be considered a positive trait (42), since 

the sponsor is unaware of the true treatment effect value during the planning phase, 

and the overall sample size could unnecessarily soar above this threshold for a 

scenario of true bioinequivalence.  

Kieser and Rauch (34) and Karalis and Macheras (38) pointed out a potential limitation 

of the original TSD methods stated by Potvin et al. (27) and Montague et al. (31) as 

although unblinded data are available after the stage 1, the knowledge about the 

estimated GMR in the interim analysis is not used for sample size recalculation. We 

assumed a fixed true treatment effect of GMR = 0.95 after the stage 1 since Cui et al. 

(43) showed that a determination of the stage 2 sample size based on an interim 

estimate of the GMR can substantially inflate the probability of type I error in most 

practical situations. The use of observed treatment effects at first stage is at least 

controversial (44), in particular when N1 is low and 𝐶𝑉𝑊 is high. The use of a fixed GMR 

= 0.95 is a balance between a value which is not much optimistic and provides a 

certain level of stability for sample size re-estimation. 

In addition, the expected total sample size E[N] is usually used to compare the 

performance characteristics of different TSD methods. However, by their very nature 

in TSD, the distribution of total sample sizes N is bimodal, mainly due to the imposition 

of N ≥ 1.5N1. For example, using our modified Potvin B, with αadj = 0.0301 at each 

stage, GMR = 0.95, 𝐶𝑉𝑊 = 0.3, N1 = 24, and target power 80%, we obtain a E[N] of 40 

subjects, but with 24 and 36 subjects having more likelihood of occurrence (Figure 7). 

As the average is skewed towards two sample values, we believe that the median of N 

is more useful to compare different TSD methods. 

In general, regulators allow using adaptive methods, though they usually favor sample 

size re-estimation procedures that maintain the blinding of the treatment allocations 

throughout the trial, as shown by Golkowski et al. (45). However, even though both 

TSD Potvin B and C methods studied in this article assume unblinded data at the 

interim analysis, the agencies do specifically also recommend using these two TSD 

methods (7), as they have demonstrated that they control the type I error rate in a 

strong way. 
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Figure 7. Type 1 Two-Stage Designs modified Potvin B distribution of N (Stage1 + Stage 2) 

GMR=0.95; CVw=30%; N1=24; alpha_adj =0.03018396; P=0.8; m=1,000,000 simulations 

 
GMR, true geometric mean ratio; CVw, true within-subject coefficient of variation; N1, Initial fixed sample size; N2, 
the additional number of subjects enrolled at stage 2; N=N1+N2, total sample size (stage 1 + stage 2); αadj, 
significance level used in each stage; P. target power; m, number of simulations 

 

So, given that either the RSABE or TSD methods are suitable approaches for 

bioequivalence studies, we have compared them through the behavior of the type I 

error rate and its power to facilitate the discussion about which to choose. In terms of 

power, both approaches perform similarly despite both adaptive methods requiring a 

higher mean sample size to reach the same power, especially for clearly variable drugs. 

Nevertheless, they demonstrate suitable power at the stage 1 in some cases. However, 

as RSABE relies on replicate designs, double exposure of subjects is needed. The crucial 

point to consider is the assessment made by sponsors regarding the relative 

importance of the number of required subjects (an argument favoring the scaled 
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approach) and the exposure of these subjects (which tips the balance in favor of the 

TSD approach). 

The applicability of the TSD approaches is essentially the same as the classical 

approach, in that they have the same RT/TR design and fixed standard limits (46). The 

RSABE approaches (with type I error adjustment) are appropriate for drugs with low to 

moderate variability, because dose-to-dose variability within a patient is comparable 

to the width of the criteria. However, with HVD, dose-to-dose variability within a 

patient is greater than the width of the standard criteria, and it is usually characterized 

by flat dose response curves and wide safety margins. Therefore, broadening the 

acceptance limits in the RSABE approach is at the very least controversial, since 

clinically sound criteria should be used to clearly prove if a greater difference in Cmax 

(and also in AUC for the FDA) is irrelevant. 

In conclusion, the RSABE approach is well powered and usually requires enrolling 

fewer patients than adaptive TSD methods, even though scaling the bioequivalence 

limits ultimately depends on additional clinical judgment. For HVD in general, samples 

of 36 subjects provided well-powered studies using RSABE methods. As there is a 

considerable chance of declaring bioequivalence at the stage 1 in adaptive approaches, 

sponsors should consider them because they imply less subject exposure and less 

treatment duration.  
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4. AN ITERATIVE METHOD TO PROTECT THE TYPE I ERROR RATE IN 

BIOEQUIVALENCE STUDIES UNDER TWO-STAGE ADAPTIVE DESIGNS  

This chapter is based on the following published research:  

• Title: An iterative method to protect the type I error rate in bioequivalence 

studies under two-stage adaptive 2x2 crossover designs (22)  

• Published in: Biometrical Journal, Oct 2020  

• DOI: 10.1002/bimj.201900388 

• PubMed ID: 33000873 

• Authors: Eduard Molins, Detlew Labes, Helmut Schütz, Erik Cobo, Jordi Ocaña 

4.1. Introduction 

Bioequivalence studies typically involve testing two products, test, T, and reference, R, 

against each other in a two-period, two-sequence 2×2 crossover RT/TR trial. Primary 

pharmacokinetic metrics are Cmax (maximum observed plasma concentration) and the 

area under the concentration time curve, AUC0-t and AUC0-∞ (7,8). 

To test for average bioequivalence (ABE), the null hypothesis of bioinequivalence is 

tested against an alternative of bioequivalence, as follows: 

𝐻0: 𝜙 ≤ −𝛿 or 𝜙 ≥ +𝛿 

𝐻1 : − 𝛿 < 𝜙 < +𝛿. 

Based on the “interval inclusion rule”, to declare bioequivalence (i.e., to reject the null 

hypothesis of bioinequivalence) at a significance level α = 0.05, based on a normal ln-

linear model, the two-sided 1 – 2α = 0.9 symmetric confidence intervals for 𝜇𝑇 − 𝜇𝑅, 

𝜙, should lie fully within the constant bioequivalence limits of ±0.223, or equivalently, 

the back exponentially transformed confidence interval for the geometric mean ratio, 

𝐺𝑀𝑅 = 𝑒𝜙 should lie fully within 0.80 to 1.25 (=1/0.80) (7,10). 

Regulatory agencies usually accept conducting studies based on RT/TR two-stage 

adaptive 2×2 crossover designs (TSD) (7,10,11,25,47,48), whose application is 

https://doi.org/10.1002/bimj.201900388
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becoming increasingly popular (23,24). TSDs allow declaring bioequivalence at an 

interim look (or stage 1) with a small number of N1 subjects; and if bioequivalence is 

not met due to insufficient power, the sample size can be increased in a stage 2 based 

on the estimation of the within-subject variability, calculated by means of the pooled 

coefficient of variation of R and T, considering 𝐶𝑉𝑊 = √𝑒σ𝑊
2

− 1, where σ𝑊
2  is the 

estimated value of the residual variance obtained from an ANOVA model on ln-

transformed data. Then bioequivalence is tested again at stage 2 with cumulated N = 

N1 + N2 sample size. 

Also, TSDs provide investigators with an attractive solution to address some of the 

uncertainty that exists when the trial is originally designed (26), allowing stopping the 

study at stage 1 with an small N1, avoiding to unnecessarily soar N above what is 

reasonable to attain a desired power, e.g., 80%. And they are especially useful in case 

of drugs with little evidence about the true within-subject variability, and for highly 

variable drugs (HVD), i.e. with a  𝐶𝑉𝑊 ≥ 0.3 (21,49). This discussion is important 

because the precise model for analysis must be pre-specified in the protocol including 

the sources of variation that reasonably influence primary metrics (27,47). However, 

little guidance exists yet on how investigators should proceed when designing and 

planning an adaptive clinical trial (50). 

The critical point about using TSDs is the difficulty to preserve the type I error rate 

(T1E) (7,34,51,52). Significance level boundaries can be adjusted in various ways that 

are not fully specified in the regulations (7). Using an a priori fixed sample size split at 

equal sequential groups (30), decision to stop the trial or continue was based on 

repeated significance tests of the accumulated data after each group was evaluated. 

Based on Pocock’s method but using sample size re-assessment, i.e. TSDs, Potvin et al. 

(27) and Montague et al. (31) proposed two methods to control the overall T1E rate: 

Their “type 1” method consists on using the same adjusted significance level at stages 

1 and 2, i.e. αadj = α1 = α2; and “type 2” method consists on using an unadjusted α = 

0.05 in the stage 1, if the interim power is of at least of 80% at stage 1, or else an 

adjusted α1 and α2 at stages 1 and 2, respectively.  

Using simulations, Xu et al. (39) implemented two methods (called E and F) to find 

optimal solutions of α1, α2, N1 (and a futility parameter) by means of average cost 
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functions of GMR and 𝐶𝑉𝑊 combination values. They presented optimal solutions for 

𝐶𝑉𝑊 ranging from 10-30%, and for 30-55%. Maurer, Jones, and Chen (52) used a 

principled approach using a standard inverse-normal p-value combination test, in 

conjunction with standard group sequential techniques (called it maximum 

combination test) to guarantee the control of T1E rate. 

4.2. Study objectives 

We present an iterative method, which is based on simulations, to adjust the 

significance levels at each stage, α1 and α2, which preserves the overall T1E (usually at 

5%) for a wide set of scenarios which should include the true unknown variability 

value. Additionally, we propose an extended feature by allowing α1 being different 

than α2. This method has been implemented in an R package called ‘betsd’, which is 

hosted on GitHub, which includes the function ‘t1e.tsd’ to help to calculate both 

significance levels. 

In the next section we present the methodology to obtain the adjusted significance 

levels using simulated samples; Then we present the simulation results where we 

provide comparisons of our method with the most recent articles released by Xu et al. 

(39), and Maurer, Jones, and Chen (52), and we finalize with a discussion.  

4.3. Methodology to obtain the adjusted significance levels 

Figure 8 shows two algorithms to test bioequivalence using TSD by means of the type 1 

and 2 methodologies. They include two constraints, first on the minimum sample size 

at stage 2 of at least N2 ≥ 0.5N1, and secondly, as previously discussed in Molins et al. 

(21), Xu et al. (39) and Karalis and Macheras (32), with a futility criterion to stop the 

study at stage 1 based on a total study size upper limit, in our case of 150 subjects 

maximum. In contrast to the algorithms proposed by Potvin et al. (27) we allow α1 and 

α2 being different. 
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Figure 8. Testing ABE using two-stage designs by means of type 1 (on the left) and type 2 (on 

the right) methodologies, with significance levels α1 and α2 at each stage 

 

Adapted from the figure depicted in detail by Montague et al. (31) with the restriction of Karalis and Macheras (32) 
of not including more than Nmax subjects (150 by default), and min(N2) (N2 ≥ 0.5N1 by default); α1 and α2, adjusted 
significance levels at stages 1 and 2 (α1 may be different than α2); ABE, average bioequivalence; N1, initial fixed 

sample size; N2, additional number of subjects recruited at stage 2; GMR, geometric mean ratio; 𝐶𝑉̂𝑊, simulation-
based estimated within-subject coefficient of variation at stage 1 

 

Figure 9 shows the iterative method used to find an optimal significance level 

adjustment at stages 1 and 2, αadj = (α1, α2), granting a global significance level below α 

(usually α = 5%). 

These are the main inputs provided to the algorithm to obtain the adjusted α1 and α2: 

1) Arbitrary starting initial significance levels at each stage, e.g., (α1, α2) = (0.0294, 

0.0294) at stages 1 and 2, respectively (based on Potvin et al. (27) constant). 

2) An initial fixed sample size N1. A minimum of 12 subjects are required (8,46). 

3) A meaningful set of 𝐶𝑉𝑊 values trying to cover the true unknown variability value, 

a scalar or vector (larger set in case of higher uncertainty), e.g. 𝐶𝑉𝑊 = 0.2. 

4) An expected GMR for power calculation, e.g. 0.95. 

5) A true GMR for type I error assessment, let’s say 𝜃0, fixed at 1.25. 

6) Type 1 or type 2 methodology (as shown in Figure 8). 

7) A global significance level, e.g. α = 0.05. 
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Figure 9. Iterative method to obtain adjusted α1 and α2 at each stage to grant a global T1E 

below α 

 

α, desired global significance level (be default, 5%); αadj = (α1, α2) adjusted significance levels at each stage; N1, 
sample size at stage 1; 𝐶𝑉𝑊, within-subject coefficient of variation; T1E, Type I error rate, assessed by means of R 
function ‘power.tsd’ of Labes and Schütz (29), and following Figure 8; P90%, percentile 90% of T1E; AIC, Akaike 
information criterion 

 

By means of a ‘current’ arbitrary significance level αadj = (0.0294, 0.0294) at stages 1 

and 2, respectively, Figure 9 shows the algorithm which starts with a warm up period 

assessing the empiric T1E with 30,000 simulations for each test point at a grid of pre-

defined {N1, 𝐶𝑉𝑊} combinations (corresponding to N1 x 𝐶𝑉𝑊 cartesian product), and 

selecting those pairs exceeding the percentile 90%. For more accuracy, simulations are 

repeated for this subgroup 1,000,000 times each. The N1 and 𝐶𝑉𝑊 pair with the 

maximum empiric T1E is selected. Six new significance levels of adjustment are then 

defined at ±0.0005 distance from the ‘current’ significance level, and the empiric T1E 

rate is assessed for each one (with 1,000,000 simulations each time), using the 

previous maximum N1 and 𝐶𝑉𝑊 pair. This is the base to find the new adjusted 

significance level, αadj = (α1, α2). To do so, regression models are adjusted with ‘empiric 

T1E’ as response and ‘significant level’ as covariate (linear and quadratic) as shown in 
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the Figure 9. The model with the minimum Akaike Information Criterion (AIC) is 

selected, and the ‘adjusted’ αadj = (α1, α2) is established by isolating α2 using the 

estimated parameters at a fixed T1E equals to 0.05. In summary, we output the 

solution if the ‘current’ significance level protects the T1E below α, otherwise, the 

algorithm starts again from the beginning with the assignment of ‘current’ = ‘adjusted’ 

significance level. 

To obtain the adjusted significance levels to preserve the overall T1E below α, 

simulations were performed with a true effect ratio 𝜃0 of 1.25 (i.e., considering the 

null hypothesis of bioinequivalence true), where the treatment effect is just on the 

bioequivalence frontier so that the likelihood of leading to a false positive result is 

highest. Under 𝜃0 equals to 1.25, we used an expected GMR at 0.95 to test for ABE 

following both TDS algorithms shown in Figure 8. Once the adjusted significance levels 

were obtained and fixed, we conducted new simulations with 𝜃0 and GMR at 0.95 to 

predict the power at stage 1 and overall (stage 1 plus stage 2), the percentage of 

studies switching to stage 2, and the percentiles 5, 50, and 95 of N = N1 + N2 subjects. 

Parameters N1 and 𝐶𝑉𝑊 can be scalars or vectors. If they are vectors, e.g., N1 = (12, 24) 

and 𝐶𝑉𝑊 = (0.1, 0.15, 0.2, 0.25), then the (N1, 𝐶𝑉𝑊) combination of all {N1, 𝐶𝑉𝑊} 

combinations with maximum T1E is selected for αadj adjustment (see Figure 9). 

Additionally, we propose an extended feature by allowing α1 being different than α2. 

When this occurs, α1 is considered fixed, and the adjustment is only based on α2. Since 

the true 𝐶𝑉𝑊 is unknown at the time that the simulations are conducted (before the 

study starts), and to avoid imprecise specifications  for simulations based on tight 

ranges of 𝐶𝑉𝑊, (or a vague idea about the true/unknown 𝐶𝑉𝑊) our methodology 

controls the T1E considering 𝐶𝑉𝑊 below and upper 0.05 from the values 

specified/considered. 

By means of the function ‘power.tsd’ included in the R package 'Power2Stage', 

developed by Labes and Schütz (29), and hosted on CRAN (40), we developed an open 

R package called ‘betsd’, and hosted on GitHub https://github.com/eduard-

molins/betsd to allow traceability of all versions. This package includes an accurate 

description of all functionalities of the ‘t1e.tsd’ function which serves to calculate the 

adjusted significance levels at stages 1 and 2. This function implements both 

https://github.com/eduard-molins/betsd
https://github.com/eduard-molins/betsd
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methodologies shown in Figure 8, including the modifications proposed in Molins et al. 

(21). Also, source code to reproduce the results is available as Supporting Information 

on the journal’s web page bimj2181-sup-0002-SuppMat.zip. In order to allow 

reproducibility of simulations, we used seed number 1234567. 

In turn, this package follows the EMA Questions & Answers document (11), so that, in 

stage 1, the terms used in the ANOVA model are sequence, subject within sequence, 

period and formulation. Fixed effects, rather than random effects, are used for all 

terms. In stage 2, the adjusted ANOVA model includes sequence, stage, sequence × 

stage, subject within sequence × stage, period within stage, and formulation. Note that 

models do not include carryover effects or treatment-by-period interactions.  

4.4. Simulation results  

Using simulated samples, we found the adjusted significance levels when α1 equals α2, 

with T1E rates always strictly below 5%. We assumed some credible scenarios for 𝐶𝑉𝑊 

and N1. Table 6 shows the results for 16 scenarios corresponding to a pre-planned 

fixed initial sample size N1 of 12 and 24, and a priori true intra-subject 𝐶𝑉𝑊 in the 

following ranges: from 0.10 to 0.19 (a vector of discrete values analyzed at intervals of 

0.01-units, i.e. 0.10, 0.11, 0.12, ...0.19), from 0.20 to 0.29, from 0.30 to 0.39, and from 

0.40 to 0.49. We found the adjusted significance levels, T1E, % power at stage 1, % of 

studies jumping to stage 2, % overall power, and percentiles 5, 50 and 95 of N. 10E6 

simulations were conducted per scenario. 

Under the type 1 method, when N1 equals 12, and considering 𝐶𝑉𝑊 from 0.1 to 0.19, 

the significance levels were adjusted at 0.0299 in both stages. This scenario provided 

86% of power, with a likelihood of 49% of stepping up to stage 2, and with a percentile 

95 of N equals to 36. When using the type 2 method, the adjusted significance levels 

were 0.0280, the power was 87%, and the likelihood of switching to stage 2 was 39% 

(bioequivalence was claimed at stage 1 frequently). 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbimj.201900388&file=bimj2181-sup-0002-SuppMat.zip
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Table 6. Adjusted α1 and α2 in both stages preserving the overall T1E below 5% 

N1 
𝑪𝑽𝑾 

LB – UB 
Adjusted  
α1 = α2 

T1E % power Stg. 1 % to Stg. 2 % overall Power P: 5, 50, 95 

Type 1 methodology 

12 0.10-0.19 0.0299 0.046063 47.93 49.08 85.96 12, 12, 36 

12 0.20-0.29 0.0307 0.049771 15.49 83.91 80.85 12, 34, 64 

12 0.30-0.39 0.0303 0.044972 7.02 92.74 78.63 12, 44, 84 

12 0.40-0.49 0.0377 0.044389 1.60 96.30 73.56 24, 66, 124 

24 0.10-0.19 0.0381 0.039430 89.59 2.85 91.95 24, 24, 24 

24 0.20-0.29 0.0306 0.048095 50.95 47.67 84.87 24, 24, 60 

24 0.30-0.39 0.0302 0.049831 29.86 69.90 82.63 24, 50, 84 

24 0.40-0.49 0.0306 0.045264 10.55 89.01 79.98 24, 76, 118 

Type 2 methodology 

12 0.10-0.19 0.0280 0.049858 55.12 39.34 86.54 12, 12, 34 

12 0.20-0.29 0.0280 0.049787 35.58 61.06 84.10 12, 22, 44 

12 0.30-0.39 0.0295 0.044164 6.88 92.57 78.61 12, 44, 84 

12 0.40-0.49 0.0377 0.044501 1.61 96.27 73.68 25, 66, 124 

24 0.10-0.19 0.0314 0.049608 96.08 0.23 96.28 24, 24, 24 

24 0.20-0.29 0.0301 0.049985 46.96 50.66 83.94 24, 36, 66 

24 0.30-0.39 0.0303 0.049815 26.47 72.98 82.13 24, 54, 88 

24 0.40-0.49 0.0306 0.044950 10.56 88.95 79.99 24, 76, 118 

Notes: Burn-in α1 and α2 values were initially set at 0.0294; N1, Initial fixed sample size; 𝐶𝑉𝑊  LB-UB, lower and upper bound (-/+ 0.05) range of 

the within-subject coefficient of variation, analyzed at increments of 0.01-units; Adjusted α1 = α2, same adjusted significance levels at stages 1 

and 2;  T1E, empirical type I error; % power Stg. 1, power at stage 1; % to Stg. 2, percentage of studies which switch to stage 2; % overall power, 

overall power; P: 5, 50, 95, percentiles 5, 50, and 95 of N = N1 + N2 
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In all scenarios, significance levels were adjusted in at least 0.0299 and 0.0280 for type 

1 and 2 methodologies, respectively, and bioequivalence met with a power of at least 

80%, except for N1 = 12 and 24 and true 𝐶𝑉𝑊 between 0.3 and 0.49, where the power 

was below 80% (and at stage 1 below 10%), and the likelihood of proceeding to stage 2 

higher than 90%. In all cases, as 𝐶𝑉𝑊 increased, power at stage 1 decreased and the 

percentage of studies proceeding to stage 2 increased. 

In the Table 7 we found the adjusted α2, T1E, % power at stage 1, % of studies jumping 

to stage 2, % overall power, and percentiles 5, 50 and 95 of N, for 4 scenarios with 

initial sample sizes N1 of 12 and 24, a priori assumption on the true intra-subject 𝐶𝑉𝑊 

ranging from 0.20 to 0.29 (at intervals of 0.01-units) and given a fixed a priori α1. 10E6 

simulations were conducted per scenario. Results of T1E rates were always below 5%. 

We considered both possibilities, to be more permissive at stage 1 with α1 ≤ α2, or at 

stage 2 with α1 ≥ α2. We can compare these results to the ones obtained in the Table 6 

where α1 = α2. 

For N1 equals to 12, and a fixed α1 = 0.0294 < α2, the significance level at stage 2 was 

adjusted at 0.0310. These results contrast with the ones obtained in Table 6 with α1 = 

α2 = 0.0307, being the test less permissive at stage 1 and more permissive at the stage 

2. Additionally, a power of 81% was reached, with a likelihood of 81% of stepping up to 

stage 2, and with a percentile 95 of N equals to 58 subjects. Similarly, for N1 equals to 

12, and when α1 = 0.0320 < α2, α2 was adjusted at 0.0279. This test is more permissive 

at stage 1 and less permissive at stage 2.
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Table 7. Type 1 method to adjust α2 for a fixed α1 preserving the overall T1E below 5%  

N1 
𝑪𝑽𝑾 

LB – UB 
Adjusted α2 T1E % power Stg. 1 % to Stg. 2 % overall Power P: 5, 50, 95 

α1 = 0.0294 < α2 

12 0.20-0.29 0.0310 0.049891 17.92 81.31 81.45 12, 32, 58 

24 0.20-0.29 0.0318 0.048936 45.60 53.35 84.28 24, 36, 64 

α1 = 0.0320 > α2 

12 0.20-0.29 0.0279 0.049767 27.96 71.02 83.25 12, 26, 52 

24 0.20-0.29 0.0285 0.048875 47.88 51.30 84.54 24, 36, 66 

Notes: Burn-in α2 value was set at 0.0300 for α1 = 0.0294, and at 0.0294 for α1 = 0.0320; N1, Initial fixed sample size; 𝐶𝑉𝑊  LB-UB, lower and 

upper bound (-/+ 0.05) range of the within-subject coefficient of variation, analyzed at increments of 0.01-units; Adjusted α2, adjusted 

significance level at stage 2;  T1E, empirical type I error; % power Stg. 1, power at stage 1; % to Stg. 2, percentage of studies which switch to 

stage 2; % overall power, overall power; P: 5, 50, 95, percentiles 5, 50, and 95 of N = N1 + N2 
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Given adjusted significance levels, Table 8 shows the empiric T1E rate and power for 

𝐶𝑉𝑊 at 0.05 above and below the upper and lower 𝐶𝑉𝑊 bounds using the type 1 and 2 

methodologies. Type 1 error and % overall power were calculated by means of 10E6 

and 10E5 simulations  per scenario, respectively. We can see that T1E never exceed 

the 5% global significance level and the power was around 80% or higher, except for 

𝐶𝑉𝑊 values of 0.54 affected by the constraint of max(N = N1+ N2) = 150. 

Table 8. Empiric type 1 error and power for 𝑪𝑽𝑾 at 0.05 below and above LB and UB 

   Type 1 error % overall power 

N1 
𝑪𝑽𝑾 

LB – UB 
Adjusted 
α1 = α2 

𝑪𝑽𝑾 
LB – 0.05 

𝑪𝑽𝑾 
UB + 0.05 

𝑪𝑽𝑾 
LB – 0.05 

𝑪𝑽𝑾 
UB + 0.05 

Type 1 methodology 

12 0.10-0.19 0.0299 0.0299 0.0498 99.99 82.07 

12 0.20-0.29 0.0307 0.0379 0.0411 90.09 76.61 

12 0.30-0.39 0.0303 0.0498 0.0314 81.63 65.86 

12 0.40-0.49 0.0377 0.0499 0.0297 77.01 48.68 

24 0.10-0.19 0.0381 0.0378 0.0499 99.99 87.84 

24 0.20-0.29 0.0306 0.0304 0.0499 97.48 82.14 
24 0.30-0.39 0.0302 0.0436 0.0390 86.70 76.40 

24 0.40-0.49 0.0306 0.0497 0.0253 81.97 52.04 

Type 2 methodology 

12 0.10-0.19 0.0280 0.0499 0.0485 99.99 81.88 

12 0.20-0.29 0.0280 0.0498 0.0370 90.29 76.17 

12 0.30-0.39 0.0295 0.0499 0.0305 81.38 65.36 
12 0.40-0.49 0.0377 0.0499 0.0297 76.91 48.92 

24 0.10-0.19 0.0314 0.0496 0.0499 99.99 86.73 

24 0.20-0.29 0.0301 0.0496 0.0498 98.63 82.18 

24 0.30-0.39 0.0303 0.0492 0.0393 86.00 76.57 

24 0.40-0.49 0.0306 0.0499 0.0254 81.75 52.04 

N1, Initial fixed sample size; 𝐶𝑉𝑊  LB-UB, lower and upper bound values of the within-subject coefficient of variation; 

Adjusted α1 = α2, same adjusted significance levels at stages 1 and 2; Type 1 error, empirical type 1 error; % overall 

power, overall power 

Based on our method, protocols for bioequivalence must include an initial N1, a 

method type (1 or  2) with constraint max(N = N1 + N2) = 150 (if N > 150, 

bioequivalence fails), and N2 ≥ N1/2, a target power, and the significance levels to use, 

obtained by means of the function ‘t1e.tsd’. Figure 10 shows power contour plots, 

considering N1 set to 12, the type 1 method, and a target power of 0.8. True unknown 

𝐶𝑉𝑊 values range from 0.10 to 0.49 (y-axis), and true unknown GMRs between 0.80-

1.25 (x-axis, extremes not included), both at increments of 0.05. Significance levels 

were taken from Table 6 and 7: α1 = α2 = 0.0299; α1 = α2 = 0.0307; α1 = 0.0294 α2 = 

0.0310; α1 = 0.0320 α2 = 0.0279. We tested 1,760 scenarios per graph (40 𝐶𝑉𝑊 x 44 
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GMRs) using the function ‘power.tsd’ with 10E5 simulations for scenario. We can see 

in all graphs that the constraint of a maximum of 150 subjects provokes a power 

decrease of at least 70% for 𝐶𝑉𝑊 values above 40%. 

Figure 10. Power assessment based on true GMR and 𝑪𝑽𝑾 with N1 = 12 and type 1 

methodology  

 

Note: All combinations of GMR between 0.80 and 1.25 (extremes not included), and 𝐶𝑉𝑊  between 0.10 and 0.49, 
both defined as vectors of discrete values at intervals of 0.01-units, resulted on 1,760 scenarios which were 
simulated 10E5 times each  

 

Xu et al. (39) obtained α1, α2, N1, and a futility criterion (f) by means of average cost 

functions for GMR and 𝐶𝑉𝑊 combination values at increments of 5%. They varied (and 

fixed) the two significance levels α1 and α2, N1, and a futility criterion (f), and checked 

whether the power was of at least of 80% (at a true GMR of 0.95) and the type I error 

rate (at a true GMR of 0.8 of bioinequivalence) controlled for each GMR and 𝐶𝑉𝑊 

combination value. They obtained optimal designs based on the lowest cost among 
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valid combinations of α1, α2, N1, and f. We obtained type 1 and 2 α1 and α2 using the 

function ‘t1e.tsd’ based on the N1 and 𝐶𝑉𝑊 obtained by Xu et al. (Table 9). Due to 

design similarities, type 1 method (modified Potvin B) can be compared with Xu et al. 

Method E, and type 2 (modified Potvin C) to compare with Method F.  

Table 9. Xu et al. Optimal two-stage designs of methods E and F and our methodology (type 

1 and 2 methods) 

 𝑪𝑽𝑾 range:  
0.10-0.30 
N1 = 18 

𝑪𝑽𝑾 range:  
0.30-0.55 
N1 = 48 

Method E (Xu et al.) α1: 0.0249 

α2: 0.0363 

f: 93.74 – 106.67  

α1: 0.0254 

α2: 0.0357 

f: 93.05 – 107.47 

Method F (Xu et al.) α1: 0.0248 

α2: 0.0364 

f: 94.92 – 105.35 

α1: 0.0259 

α2: 0.0349 

f: 93.50 – 106.95 

Type 1 method α1 = α2 = 0.0303 α1 = α2 = 0.0305 

Type 2 method α1 = α2 = 0.0331 α1 = α2 =  0.0331 

Type 1 and 2 based on N maximum of 150 subjects and N2 ≥ 0.5N1 

𝐶𝑉𝑊  values were analyzed at increments of 0.05 

 

We used the ‘power.tsd’ function with 10E6 simulations per N1 and 𝐶𝑉𝑊 pair with 

target power 80% and planned and true GMR 0.95 to calculate percentiles of N = (N1 + 

N2) 5th, 50th, 95th, and % of studies in stage 2. Table 10 shows results which are 

comparable between type 1 and Method E, and type 2 and Method F. A power close to 

80% was always obtained except for 𝐶𝑉𝑊 of 0.55 where maximum target of 150 

subjects was reached (data not shown). 
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Table 10. Percentiles of N (5th, 50th, 95th) and % of Studies in Stage 2 

  Xu et al. Our method 

𝑪𝑽𝑾 LB- UB, 

and N1 

𝑪𝑽𝑾 Method E Method F Type 1 

method 

Type 2 

method  

0.10-0.30 
N1 = 18 

0.10 (18,18,18) 0% (18,18,18) 0% (18,18,18) 0% (18,18,18) 0% 

0.15 (18,18,18) 

2.4% 

(18,18,18) 

1.3% 

(18,18,18) 

2.4% 

(18,18,18) 

0.9% 

0.20 (18,18,32) 

24.1% 

(18,18,32) 

21.8% 

(18,18,34) 

24.9% 

(18,18,32) 

18.5% 

0.25 (18,24,42) 

54.2% 

(18,24,42) 

53.7% 

(18,28,54) 

54.3% 

(18,18,52) 

49.5% 

0.30 (18,42,42) 

75.8% 

(18,42,42) 

76.9% 

(18,44,74) 

77.4% 

(18,42,72) 

74.4% 

0.30-0.55 
N1 = 48 

0.30 (48,48,52) 

7.6% 

(48,48,48) 

3.6% 

(48,48,72) 

8.7% 

(48,48,48) 

3.0% 

0.35 (48,48,74) 

28.2% 

(48,48,74) 

22.8% 

(48,48,76) 

28.1% 

(48,48,74) 

20.4% 

0.40 (48,48,98) 

46.2% 

(48,48,98) 

44.0% 

(48,48,102) 

45.0% 

(48,48,98) 

41.1% 

0.45 (48,80,124) 

61.3% 

(48,80,124) 

60.5% 

(48,80,128) 

58.9% 

(48,76,124) 

56.6% 

0.50 (48,104,150) 

74.3% 

(48,104,152) 

73.6% 

(48,100,142) 

65.3% 

(48,98,140) 

64.6% 

0.55 (48,128,176) 

85.2% 

(48,128,180) 

84.3% 

(48,102,146) 

55.5% 

(48,102,146) 

57.7% 

𝐶𝑉𝑊   LB-UB, lower and upper bound values of the within-subject coefficient of variation 
Type 1 method: Modified Potvin B method with max(N = N1+ N2) = 150, and N2 ≥ N1/2 
Type 2 method: Modified Potvin B method with max(N = N1+ N2) = 150, and N2 ≥ N1/2 
Type 1 method is compared with Method E and type 2 with method F 
Target power = 0.80 and planned and true GMR = 0.95 

 

Maurer, Jones, and Chen (52) used a standard inverse-normal p-value combination 

test, in conjunction with standard group sequential techniques (called it maximum 

combination test), to guarantee the control of type I error rate at any given 

significance level. The sample size N2 at the stage 2 was based on comparing a ‘target 

conditional power’, with the power achieved at stage 1, versus a ‘conditional power’, 

with the conditional errors for maximum combination test (using the 𝐶𝑉𝑊 estimation 
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at interim), a formulation effect of 0.95, and N2. Starting on an initial N2 set to 4, the 

‘conditional power’ was assessed at increments of 2 subjects until it exceeded the 

‘target conditional power’. 

Table 11 shows the power and sample size of different methods for HVD. Results from 

Potvin et al. (27) (α1 = α2 = 0.0294) and Maurer, Jones, and Chen (52) (α1 = α2 = 0.0263 

for maximum combination test with (w, w*): (0.5, 0.25)) were taken from Maurer, 

Jones, and Chen (52) manuscript. Type 1 significance levels were obtained using the 

function ‘t1e.tsd’, considering N1 = (12, 24, 36), 𝐶𝑉𝑊 between 0.4 and 0.8 at 

increments of 0.01; and constraints N ≤ 4000 and N2 ≥ 0.5 N1. The result was α1 = α2 = 

0.0302. Then, we used the ‘power.tsd’ function with 10E6 simulations per N1 and 𝐶𝑉𝑊 

pair with target power 80% and planned and true GMR 0.95 to calculate the power 

achieved and mean N. Results show a power and sample size which are comparable 

across methods.  

Table 11. Power and mean sample size with constraint N ≤ 4000 for HVD 

  
Potvin et al.: Method B 

Maurer, Jones, and 
Chen: MCT (w, w*): 
(0.5, 0.25) 

Our method: Type 1 
method 

N1 𝐶𝑉𝑊 Power (%) Mean n Power (%) Mean n Power (%) Mean n 
36 0.40 82 67 81 67 83 67 
24 0.60 77 161 80 180 77 159 
12 0.80 72 257 76 325 72 255 

Type 1 method: Modified Potvin B method with max(N = N1+ N2) = 4000, and N2 ≥ N1/2 
MCT: Maximum Combination Test; HVD: Highly variable drugs 
Target power = 0.80 and planned and true GMR = 0.95 

 

4.5. Discussion 

Average bioequivalence (ABE) studies using TSD offer several advantages over 

conventional crossover trials. They provide an attractive solution to address some of 

the uncertainty that exists on the true variability value when the trial is originally 

designed, although they are typically more complex and exhaustive and require more 

efforts and time for planning and implementing (50). TSDs should be standardized and 

agreed between the pharmaceutical industries and the agencies, in particular, about 

the specific pathways to control the type I error (T1E) rate, usually at 5%. We adapted 

two methodology types proposed initially by Potvin et al. (27) to adjust the significance 

levels at each stage which controls the T1E. Adjusted significance levels were higher 
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than 0.0300 in most cases with a power of at least 80%. We also adapt and compare 

our approach with Xu et al. (39) and Maurer, Jones, and Chen (52) to conclude that 

operating characteristics are comparable. 

Our approach is implemented using our own function. In summary, given a grid of { N1, 

𝐶𝑉𝑊} and an initial warm-up α1 and α2 values, we found adjusted α1 and α2 and the 

(N1, 𝐶𝑉𝑊) pair with maximum empiric T1E (Tables 6 and 7). In the grid, we should 

cover an important range of 𝐶𝑉𝑊 values to ensure that the true/population 𝐶𝑉𝑊 is 

included. In Molins et al. (21) we assessed a particular case assuming that the degree 

of uncertainty was encompassed by evaluating 𝐶𝑉𝑊 at 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, and 

0.6. We have now improved this feature sweeping 𝐶𝑉𝑊 range values at intervals of 

0.01-units. In addition, we have considered the case of an applicant/sponsor who 

assumes 𝐶𝑉𝑊 values which unfortunately do not contain the true unknown 𝐶𝑉𝑊value.  

So, the T1E is controlled, by default, at an overall significance level considering the 

𝐶𝑉𝑊 assumed ± 0.05. We admit that though it is sometimes necessary to cover such a 

range of 𝐶𝑉𝑊 values, there is always a risk of losing some power. 

We provide a methodology which usually adjusts significance levels above 0.0294 and 

strictly controls the T1E. The significance levels of 0.0294 at both stages (27,30) are not 

some kind of a ‘natural constant’, because they depend on the design, treatment 

effect, variability, target power, or sample size, and so they are entirely empiric and 

must be estimated in simulations. In addition, they did not always control the overall 

T1E rate at a maximum 5% (31,32). For example, the original ‘Potvin D’ method only 

grants the maintenance of the T1E rate below 5.2%. And, by using the modified ‘Potvin 

C’ method, with GMR = 0.95, α1 = α2 = 0.0294, N1 = 12, and a true 𝐶𝑉𝑊 = 0.2, the T1E is 

assessed at 5.3% (5.5% in case of GMR = 0.90).  

Other methods to adjust significance levels are discussed by some authors and 

regulatory instances (34,39,47,48,51-53). In order to see how some operating 

characteristics compare to each other, we followed the frameworks (N1 and 𝐶𝑉𝑊 

range) used by Xu et al. (39) and Maurer, Jones, and Chen (52) to calculate the 

significance levels. We saw comparable results on the overall sample size, the 

percentage of studies jumping to stage 2 or the overall power (Tables 10 and 11). We 



ARTICLE 2 

 73 

highlight that our method is very flexible because it is customizable in many different 

ways. 

We also allow α1 and α2 being different from each other. O’Brien and Fleming (54) 

proposed a group sequential procedure with boundary values that decreased over the 

stages to make early stopping less likely. Xu et al. (39) also found significance levels 

where α1 < α2 with α1 at stage 1 close to 0.025. Adaptive strategies are persuasive 

because they allow stopping the trial at stage 1 and declare bioequivalence with a low 

number of N1 subjects. However, it will be difficult to declare bioequivalence at stage 1 

if α1 is very conservative. Though α1 < α2 seems the most natural way of proceeding, 

an applicant may be interested in being more permissive at stage 1, e.g.  Lan and 

DeMets α-spending function. We allowed both α1 < α2: 0.0294, 0.0310, and α1 > α2 : 

0.0320, 0.0279 (Table 7 and Figure 10). 

Maurer, Jones, and Chen (52) provided an attractive principled solution based on a 

maximum combination test to control the T1E inflation. While simulation-based 

approaches are criticized because require the investigation of many scenarios (in our 

case, 𝐶𝑉𝑊 range values should be large enough) to ensure the control of this error, this 

principled method also relies on specifying two weights w and w* which need to be 

pre-defined a priori, and an initial guess on the 𝐶𝑉𝑊. Additionally, there is no a simple 

formula of obtaining the power which is desirable to compare the different settings 

(N2, weights, futility criteria). In analogy to the Potvin et al. (27) methods, it is needed 

to undertake simulations to gain those values. 

Some other differences between methodologies lie on the specifics of futility rules to 

stop the trial at stage 1. Xu et al. (39) and Maurer, Jones, and Chen (52) specified 

futility rules based on 90% CI of the formulation effect completely outside of some 

margins. Also, Xu et al. (39) and Karalis and Macheras (32), included a futility criterion 

to stop the study at stage 1 based on a total study size upper limit. We included an 

upper limit for N of 150 subjects. 

We consider HVD a special case under investigation (28,49,55-58). We compared EMA 

Reference Scaled Average bioequivalence (RSABE) based on replicate TRTR/RTRT 

designs and TSD methods (21). In terms of power, we saw that both approaches 
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perform similarly despite adaptive methods usually requires a higher mean sample size 

to reach the same power, especially for clearly HVD. Nevertheless, we demonstrated 

suitable power at the stage 1 in some cases. But for true 𝐶𝑉𝑊 values above 0.29, the 

power at stage 1 is low and the proportion of studies switching to stage 2 high. In 

addition, assertion of bioequivalence becomes difficult for 𝐶𝑉𝑊 greater than 0.5 (data 

shown in Tables 10 and 11), as bioequivalence seldom can be declared at stage 2. It is 

arguable launching a drug into the market with such a within-subject variability, or 

even starting a study with such a low expected power (42). 

We calculated 𝐶𝑉𝑊 by means of the coefficient of variation under homoscedasticity 

assumption 𝐶𝑉𝑊𝑅 = 𝐶𝑉𝑊𝑇 = 𝐶𝑉𝑊. Kang et al. (59) showed that bioequivalence testing 

with heterogeneous residual variances gives similar performance for 𝐶𝑉𝑊 lower than 

0.4. In fact, power curves (Figure 10) show that the constraint that we are using of a 

maximum of 150 subjects provokes a power decrease for 𝐶𝑉𝑊 values above 0.4. 

In conclusion, TSDs can be applied to bioequivalence studies more widely. We provide 

a function to adjust the significance levels at each stage which strictly grant the control 

of the type I error for different assumptions on the GMR, N1, and 𝐶𝑉𝑊. With this article 

we would like to contribute towards a global harmonization and convergence of 

generic drug developments. 
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5. FUNCTION ‘T1E.TSD’ TO PRESERVE THE TYPE I ERROR RATE USING 

TWO-STAGE DESIGNS 

Based on simulations, we created the function ‘t1e.tsd’ included within the package 

‘betsd’ to preserve the overall type I error. The function provides with the adjusted 

significance levels to be used in each stage, α1 and α2, the probability to jump to a 

stage 2, the sample size at the stage 2, and the power at stages 1 and 2.  

5.1. Introduction 

The use of two-stage adaptive 2×2 crossover designs (TSD) in bioequivalence studies 

seems to be a beneficial alternative to the 2×2 crossover design. In accordance with 

the EMA guideline (7), the number of participants can be expanded if average 

bioequivalence (ABE) has not been demonstrated in the first group of subjects. The 

results for the initial and the second group are combined for the final 

assessment. They are especially useful in case of drugs with little evidence about the 

true within-subject variability, and for highly variable drugs (HVD), i.e. with a within-

subject coefficient of variation, 𝐶𝑉𝑊 ≥ 0.3 (21,49). 

The critical point about using TSDs is the difficulty to preserve the type I error rate 

(T1E) (7,34,51,52). Significance level boundaries α1 and α2  at each stage can be 

adjusted in various ways that are not fully specified in the regulations (7,40).  

• (α1, α2) = (0.0294, 0.0294): Potvin et al. ‘Method B’ and GMR=0.95 (27).  

• (α1, α2) = (0.0294, 0.0294): Potvin et al. ‘Method C’, alpha0=0.05, and GMR=0.95. 

• ‘Method D’ = ‘Method C’ but with (α1, α2) = (0.028, 0.028), alpha0=0.05, and 

GMR=0.9. 

• (α1, α2) = (0.0269, 0.0269): Fulgsang ‘Method C/D’ (method="C", GMR=0.9, 

targetpower=0.9) (42,51,60). 

• (α1, α2) = (0.0274, 0.0274): Fuglsang ‘Method C/D’ (method="C", 

targetpower=0.9) (42,51,60). 

• (α1, α2) = (0.0280, 0.0280): Montague et al. ‘Method D’ (method="C", GMR=0.9) 

(31). 
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• (α1, α2) = (0.0284, 0.0284): Fulgsang ‘Method B’ (GMR=0.9, targetpower=0.9) 

(42,51,60). 

• - (α1, α2) = (0.0304, 0.0304): Kieser & Rauch (34). 

But, α1 and α2  are not some kind of a ‘natural constant’, because they depend on the 

design method (27,30,31), treatment effect (GMR), variability (𝐶𝑉𝑤), target power, or 

sample size (N1). Yet, in some circumstances, these method do not grant in strong 

sense the maintenance of the T1E rate below 5% (31,32).  

In turn, like in Xu et al. (39) we assumed that the adjusted significance levels at both 

stages may be different, α1≠ α2. In the Chapter 4 we present some scenarios with 

adjustments of (α1, α2) = (0.0294, 0.0310) or (α1, α2) = (0.0320, 0.0279) at stages 1 and 

2, respectively. 

5.2. Study objectives 

We present and open R package called ‘betsd’, based on an iterative simulation 

method, which preserves in a strong sense the overall T1E. It includes an accurate 

description of all properties of the function ‘t1e.tsd’ which serves to calculate the 

adjusted significance levels at stages 1 and 2. The function allows testing as many (N1, 

𝐶𝑉𝑊) scenarios (combination of pairs) as considered. It provides with the adjusted 

significance levels to be used in each stage, α1 and α2, the probability to jump to a 

stage 2, the sample size at the stage 2, and the power at stages 1 and 2. It is flexible 

and intuitive because the applicant can adapt it to any real situation even with little 

knowledge on the multiplicity issue. 

This package is hosted on GitHub https://github.com/eduard-molins/betsd. Also, 

source code to reproduce the results is available as Supporting Information on the 

journal’s web page bimj2181-sup-0002-SuppMat.zip. 

5.3. Function t1e.tsd usage 

5.3.1. Description 

The function ‘t1e.tsd’ calculates, by iterative search, the adjusted significance levels to 

be used in each stage of TSDs, to ensure an overall T1E below a specified significance 

level. 

https://github.com/eduard-molins/betsd
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbimj.201900388&file=bimj2181-sup-0002-SuppMat.zip
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This function calculates the empiric T1E and power of stage 2 according to a ‘modified’ 

Potvin et al. methodology (Figure 8) (22,27). But instead of simulating individual 

subject data, the statistics point estimate at stage 1, mean square error at stage 1 (or 

intra-subject residual variance calculated from 𝐶𝑉𝑊), and point estimate at stage 2, 

and sum of square at stage 2 are simulated via their associated distributions (normal 

and χ2 distributions). 

The function ‘t1e.tsd’ calls the functions ‘power.tsd’ and ‘sampleN2.TOST’ both 

included in the package ‘Power2Stage’ (40) hosted on CRAN.  

Using simulations, the function ‘power.tsd’ allows calculating the power, type I error, 

the probability to jump to a stage 2, the sample size at the stage 2, and the power at 

stages 1 and 2. The sample size re-estimation is performed during the interim analysis 

using the function ‘sampleN2.TOST’, given the method/design used according to Figure 

8, based on the initial sample size, the estimated within subject variability observed in 

the interim look, the significance level, and the target power. The knowledge about 

the estimated treatment effect in the interim analysis is not used for sample size re-

estimation/recalculation. We assumed a fixed true treatment effect of GMR = 0.95 

after the stage 1 since Cui et al. (43) showed that a determination of the stage 2 

sample size based on an interim estimate of the GMR can substantially inflate the 

probability of type I error in most practical situations. 

Note that both functions ‘power.tsd’ and ‘sampleN2.TOST’ require the specification of 

the significance level argument. We should ensure that the T1E never exceeds the 

significance level. However, the T1E depends on the study framework, i.e., on the 

design, treatment effect, variability, target power, or sample size, and so they are 

entirely empiric and must be estimated in simulations. But, there is not a ‘natural 

constant’ that serves in all situations, so, given a framework, the function ‘t1e.tsd’ 

allows calculating the significance levels to be used at each stage. 

5.3.2. Usage 

Our function ‘t1e.tsd’ is found in the Biometrical Journal supporting information: 

bimj2181-sup-0001-SuppMat.docx (see Appendix 1). 

 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbimj.201900388&file=bimj2181-sup-0001-SuppMat.docx


FUNCTION T1E.TSD 

 78 

t1e.tsd(N1, CV, GMR = 0.95, Nmax = 150, min.N2 = N1/2, type = 1, 

             alpha = 0.05, alpha1, alpha2, targetpower = 0.8, 

             setseed = TRUE, theta1, theta2, 

             details = TRUE, print = TRUE, ...) 

5.3.3. Arguments  

N1 Sample size of stage 1. 

CV Within subject coefficient of variation (use e.g., 0.3 for 30%). 

GMR Expected geometric mean ratio to be used in decision scheme (power calculations in 

stage 1 and sample size estimation for stage 2). 

By default 0.95. 

Nmax Overall maximum number of subjects (sum of sample sizes in both stages, i.e., N = N1 + 

N2). 

By default 150, see Chapter 4. 

min.N2 Minimum number of subjects at stage 2. By default N1/2, see Chapter 4. Set min.N2 = 

0 to cancel any limitation on the sample size at the stage 2, N2. 

type Type 1 or 2 methodology. By default 1. 

alpha Target overall significance level (both stages). By default 0.05. 

alpha1 Initial significance level at stage 1. By default 0.0294. 

alpha2 Initial significance level at stage 2. By default 0.0294. 

targetpower Power threshold in the power monitoring steps and power to achieve in the sample size 

estimation step. 

By default 0.8. 

setseed Simulations are dependent on the starting point of the (pseudo) random number 

generator. To avoid differences in power for different runs a setseed(1234567) is issued 

if set to TRUE, the default. 

Set this argument to FALSE for a random seed. 
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theta1 Lower limit of the bioequivalence range. By default 0.8. 

theta2 Upper limit of the bioequivalence range. By default 1.25. 

details If set to TRUE (default) shows intermediate results in the console. Set this argument 

to FALSE to suppress intermediate results. 

print If set to TRUE (default) shows final results in the console. 

Set this argument to FALSE to return a list of final results. 

... Optional additional arguments. See package Power2Stage, function power.tsd. 

5.3.4. Details 

The type 1 method (Figure 8) uses the same adjusted alpha1 and alpha2 in stages 1 

and 2. The type 2 method uses an unadjusted alpha if interim power is at least the 

target power, or adjusted alpha1 and alpha2 in stages 1 and 2 otherwise. 

By default, the maximum sample size Nmax in both stages, max(N = N1 + N2), was 

restricted to 150 healthy volunteers, and we consider that the minimum number of 

healthy volunteers to be enrolled in the stage 2, N2, was N1/2. After computing the 

required sample size in the second step, say N2 (to ensure the required power), the 

number of additional subjects is computed as N2 = max(N1/2, N2), but if N1 + N2 > 

Nmax, the study is terminated due to futility. These criteria and default values are 

based on Molins et al. (21) and Molins et al. (22). 

  

http://127.0.0.1:23772/help/library/Power2Stage/html/power.tsd.html
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5.4. The iterative method 

The iterative method is described in Figure 9. 

We start with a ‘current_alpha’ (arbitrary) initial α1 and α2. By default, we set these 

values to Potvin’s constant, i.e. α1 = α2 = 0.0294. We evaluate some significance levels 

to find the final empiric significance level at each stage which controls the overall T1E 

below 5%: 

 

new_alpha1 <- seq(current_alpha[1, 1] - 0.0005, current_alpha[1, 1] + 

0.0005, length.out = 7) 

new_alpha2 <- seq(current_alpha[1, 2] - 0.0005, current_alpha[1, 2] + 

0.0005, length.out = 7) 

 

> new_alpha1 

[1] 0.02890000 0.02906667 0.02923333 0.02940000 0.02956667 0.02973333 

0.02990000 

> new_alpha2 

[1] 0.02890000 0.02906667 0.02923333 0.02940000 0.02956667 0.02973333 

0.02990000 

 

For simplicity, we fixed α1 to its initial value, and the adjustment is only done for α2. 

For example, if ‘current_alpha’ is set to 0.027 for α1, and 0.0300 for α2, the algorithm 

will again evaluate scenarios with α1 = 0.070 and α2 as follow: 

 

new_alpha2 <- seq(current_alpha[1, 2] - 0.0005, current_alpha[1, 2] + 

0.0005, length.out = 7) 

 

> new_alpha2 

[1] 0.02950000 0.02966667 0.02983333 0.03000000 0.03016667 0.03033333 

0.03050000 

 

And, the pairs evaluated are: (0.027, 0.02950000), (0.027, 0.02966667), … , (0.027, 

0.03050000).  

T1E are simulated/obtained for each of these significance levels by means of the 

function ‘power.tsd’ (from repository CRAN). Then, we fit linear and quadratic 
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regression models with T1E as independent variable, which is adjusted by (α1, α2) 

pairs, and we choose the ‘best’ model based on the minimum Akaike Information 

Criterion (AIC). To obtain the ‘adj_alpha’, we isolate (α1, α2) for T1E = 5%. For example, 

if e.g. if α1 = α2 and the min(AIC) is obtained from the linear regression model, then 

‘adj_alpha’ is obtained as: 

𝛼𝑎𝑑𝑗1 = 𝛼𝑎𝑑𝑗2 =
(0.05−𝛽̂0)

𝛽̂1
 . 

Details can be followed in the R-code, but 4 scenarios will determine if we already 

reached the desired empiric significance level, or if the algorithm should start again 

with a new ‘current_alpha’ = ‘adj_alpha’. 

SCENARIO 1/4: T1E < 0.05 and diff <= 2E-04 

SCENARIO 2/4: T1E > 0.05 and diff <= 2E-04 

SCENARIO 3/4: T1E < 0.05 and diff >  2E-04 

SCENARIO 4/4: T1E > 0.05 and diff >  2E-04  

Where diff is the difference between the ‘current_alpha’ and the ‘adj_alpha’. 

5.5. Computing time 

Please, see our package ‘betsd’ on https://github.com/eduard-molins/betsd, in folder 

‘man’:  

For example: 

t1e.tsd(N1 = 24, CV = c(0.3, 0.4, 0.5, 0.6), GMR = 0.95, type = 1). 

After 3 iterations: 

We obtained adjusted alpha levels of 0.0307 at both stages and a maximum empirical 

type I error of 0.04998. 

Note: runtime ~15 minutes on a Xeon E3-1245 Quadcore 3.4 GHz, 

          runtime ~6 minutes on a MacBook 2.6 GHz Intel Core i5. 

For example: 

t1e.tsd(N1 = 12, CV = 0.2, GMR = 0.9, alpha1 = 0.0280, alpha2 = 0.0280, type = 2). 

 

https://github.com/eduard-molins/betsd
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After 2 iterations: 

We obtained adjusted alpha levels of 0.0268 at both stages and a maximum empirical 

type I error of 0.049591. 

Note: runtime ~7 minutes on a Xeon E3-1245 Quadcore 3.4 GHz, 

          runtime ~5 minutes on a MacBook 2.6 GHz Intel Core i5. 

5.6. Case study 

As an example, let’s imagine someone interested in obtaining the adjusted significance 

levels, considering the following assumptions on N1 and 𝐶𝑉𝑊: 

N1: 12, 18, 24. 

𝐶𝑉𝑊: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. 

> t1e.tsd(N1 = c(12, 18, 24), CV = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6), GMR = 0.95, targetpower 

= 0.8, type = 1, alpha = 0.05). 

In this case, the cartesian products of N1 and 𝐶𝑉𝑊 will be evaluated, i.e. the following 

18 scenarios: 

(12, 0.1), (12, 0.2), (12, 0.3), (12, 0.4), (12, 0.5), (12, 0.6), (18, 0.1), (18, 0.2), (18, 0.3), 

(18, 0.4), (18, 0.5), (18, 0.6), (24, 0.1), (24, 0.2), (24, 0.3), (24, 0.4), (24, 0.5), (24, 0.6). 

Using the function ‘t1e.tsd’ and the debugger we obtain: 

t1e.tsd(N1 = c(12, 18, 24), CV = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6), GMR = 0.95, targetpower = 

0.8, type = 1, alpha = 0.05). 

Browse[2]>  

 N1 CV GMR alpha1 alpha2 min.N2 

1     12   0.1   0.95   0.0294 0.0294 6 

2     18   0.1   0.95   0.0294 0.0294 10 

3     24   0.1   0.95   0.0294 0.0294 12 

4     12   0.2   0.95   0.0294 0.0294 6 

5     18   0.2   0.95   0.0294 0.0294 10 

6     24   0.2   0.95   0.0294 0.0294 12 

7     12   0.3   0.95   0.0294 0.0294 6 

8     18   0.3   0.95   0.0294 0.0294 10 
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9     24   0.3   0.95   0.0294 0.0294 12 

10   12   0.4   0.95   0.0294 0.0294 6 

11   18   0.4   0.95   0.0294 0.0294 10 

12   24   0.4   0.95   0.0294 0.0294 12 

13   12   0.5   0.95   0.0294 0.0294 6 

14   18   0.5   0.95   0.0294 0.0294 10 

15   24   0.5   0.95   0.0294 0.0294 12 

16   12   0.6   0.95   0.0294 0.0294 6 

17   18   0.6   0.95   0.0294 0.0294 10 

18   24   0.6   0.95   0.0294 0.0294 12 

 

These are the T1E assessed with 30,000 simulations for each N1 and 𝐶𝑉𝑊 pair using the 

function ‘power.tsd’ nested within the function ‘t1e.tsd’: 

Browse[2]> T1E 

 0.1 0.2 0.3 0.4 0.5 0.6 

12     0.0309 0.04846667 0.04600000 0.03546667 0.02546667 0.01713333 

18     0.0305 0.04103333 0.04953333 0.03770000 0.02863333 0.01640000 

24     0.0299 0.03406667 0.04946667 0.04430000 0.03380000 0.01686667 

 

These are the N1, 𝐶𝑉𝑊 combinations where T1E >= P90% (percentile 90%): 

Browse[2]> d90 

 N1 min.N2 CV GMR alpha1 alpha2 

1     18      10      0.3      0.95     0.0294 0.0294 

2     24      12      0.3      0.95     0.0294  0.0294 

 

Now, for accuracy purposes these two scenarios are simulated 10E6 times each; 

Browse[2]> T1E_high 

 N1 CV GMR min.N2 alpha1 alpha2 pbioequivalence 

1   18    0.3    0.95 10 0.0294 0.0294 0.048160 

2   24    0.3    0.95 12         0.0294 0.0294 0.047816 
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Where the max(T1E) is: 

Browse[2]> max_T1E  

 N1 CV GMR min.

N2 

alpha1 alpha2 pBE pbioequiva

lence_s1 

pct_s2 Npe

rc 

1 18 0.3     0.95     10 0.0294 0.0294 0.04816 0.02445 96.7072 28, 

46, 

76 

 

With N1 = 18 and 𝐶𝑉𝑊 = 0.3, with significance levels of 0.0294, 3 new significance levels 

below and above are tested as follow: 

Browse[2]> N_d 

 N1 CV GMR min.N2 alpha1 alpha2 

1   18   0.3   0.95           10 0.02890000      0.02890000 

2   18   0.3   0.95      10 0.02906667      0.02906667 

3   18   0.3   0.95  10 0.02923333      0.02923333 

4   18   0.3   0.95      10 0.02940000      0.02940000 

5   18   0.3   0.95     10 0.02956667      0.02956667 

6   18   0.3   0.95      10 0.02973333      0.02973333 

7   18   0.3   0.95      10 0.02990000      0.02990000 

 

Type I errors are evaluated for each scenario with 10E6 simulations: 

Browse[2]> res_new_d_T1E 

 CV N1 GMR min.N2 alpha1 alpha2 T1E 

1   0.3  18    0.95 10 0.02890000    0.02890000    0.047318 

2   0.3  18    0.95 10 0.02906667    0.02906667    0.047676 

3   0.3  18    0.95 10 0.02923333    0.02923333    0.047847 

4   0.3  18    0.95 10 0.02940000    0.02940000    0.048160 

5   0.3  18    0.95 10 0.02956667    0.02956667    0.048481 

6   0.3  18    0.95 10 0.02973333    0.02973333    0.049002 

7   0.3  18    0.95 10 0.02990000    0.02990000    0.049108 
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And, after the regression model, we obtain the following adjusted significance levels, 

alpha1 and alpha2, at stages 1 and 2, respectively: 

Browse[2]> alpha_adj 

            alpha1 alpha2 

[1,]  0.03035564 0.03035564 

 

We start again with the ‘current_alpha’ at 0.03035564: 

Browse[2]> d90 

 N1 min.N2 CV GMR alpha1 alpha2 

1   18    10     0.3    0.95     0.03035564    0.03035564 

2   24      12     0.3    0.95     0.03035564     0.03035564 

 

Final results are: 

Run-in with alphas 0.0294, 0.0294  
- max.TIE 0.048160 at N1 = 18 and CV = 0.3  
Iteration 1 with alphas 0.03035, 0.03035  
- max.TIE 0.049798 at N1 = 18 and CV = 0.3  
 
Method type = 1 (B)  
 setseed = 1234567  
 bioequivalence acceptance range (theta1, theta2) = 0.8 ... 1.25  
 Power calculation method = nct  
 N1 = 12 18 24  
 GMR = 0.95  
 CV = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6  
 Nmax = 150  
 min.N2 = 6 10 12  
 Adjusted alpha at stage 1 = 0.0303 and alpha at stage 2 = 0.0303  
 Maximum empirical type I error = 0.049641 at N1 = 18 and CV = 0.3  
 Power: Overall probability of bioequivalence = 0.81975  
 Power: Probability of bioequivalence at stage 1 = 0.22431  
 Studies in stage 2 = 77.246% 
 5% 50% 95% percentiles of N = 18, 44, 76  
 max.iter = FALSE 

(Note: Runtime was 5’ 16’’ on my computer, a MacBook 2.6 GHz Intel Core i5) 
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5.7. Discussion 

The significance level proposed by Pocock’s and Potvin et al. approaches (27,30), i.e. 

based on a significance level of 0.0294, is not some kind of a ‘natural constant’, 

because TSDs can be based on different frameworks, and the adjusted significance 

levels are entirely empiric and must be estimated in simulations. The fact that 0.0294 

‘worked’ in Potvin B was fortunate (and we saw a slight inflation in Method C). That’s 

why Potvin et al. (27) wrote they did not seek to find the best possible TSD solution, 

but rather to find good significance levels that could be used by sponsors without 

further validation. When the framework is modified (our case) it is of utmost 

importance to find suitable adjusted significance levels. Significance level boundaries 

can be adjusted in various ways that are not fully specified in the regulations. And we 

propose a methodology which controls the overall T1E in a strong sense below a 

significance level, e.g. 5%. We find significance levels which usually are above 0.0294, 

providing much power, and always ensuring that the T1E is controlled for any 

parameter assumption/framework. Also, the algorithm also allows α1 being different 

than α2. 

TSDs provide investigators with an attractive solution to address some of the 

uncertainty that exists when the trial is originally designed, allowing stopping the study 

at stage 1 with a small N1, avoiding to unnecessarily soar N above what is reasonable 

to attain a desired power, e.g., 80%. And they are especially useful in case of drugs 

with little evidence about the true within-subject variability, and for highly variable 

drugs (HVD), i.e. with a  𝐶𝑉𝑊 ≥ 30%.  
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6. GENERAL DISCUSSION 

Bioequivalence studies are the pivotal clinical studies submitted to regulatory agencies 

to support the marketing applications of new generic drug products. High levels of 

within-subject variability make difficult to assess bioequivalence through standard 

procedures using reasonable sample sizes, thus delaying treatment. After many years 

of discussion, some regulatory agencies issued regulations describing those methods. 

In general, their approach is based on bioequivalence limits being scaled as a function 

of the reference formulation variability, called reference scaled average 

bioequivalence (RSABE) (7). 

Although also mentioned in the regulations, adaptive two-stage designs (TSD) are not 

used nearly as much as the widespread scaling methods, despite having some 

appealing characteristics. In this case, deciding on the study’s experimental design is 

crucial and must be done in advance (e.g., including it in the study protocol), generally 

without full knowledge of the within-subject variability.  

In general, average bioequivalence (ABE) studies using TSDs offer several advantages 

over conventional crossover trials. They provide an attractive solution to address some 

of the uncertainty that exists on the true within subject 𝐶𝑉𝑊 value when the trial is 

originally designed, although they are typically more complex and exhaustive and 

require more efforts and time for planning and implementing. 

A described limitation of TSD simulation methods is that unless all possible 𝐶𝑉𝑊 

scenarios for the intended design and analysis are investigated, it is impossible to be 

sure that the type I error rate is controlled. In our manuscript, we dealt this issue being 

a bit conservative, considering a broad bunch of 𝐶𝑉𝑊 values (where the true unknown 

𝐶𝑉𝑊 is quite likely be included), from a lower to an upper bound, where the type I 

error was assessed at 𝐶𝑉𝑊 increment values of 1%, e.g. from 𝐶𝑉𝑊 between 10% to 

20%, we evaluated 10%, 11%, 12%, …, 20%. This method is simple to apply and useful 

from both the sponsors as well as from the regulatory bodies. 

We showed that our results are quite comparable with the latest proposed 

methodologies by Xu et al. (Table 10) (39) and Maurer, Jones, and Chen (Table 11) 
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(52), in particular on the main features like the overall sample size, percentage of 

studies jumping to stage 2, and power. 

Xu et al. (39) implemented two innovative Methods to calculate bioequivalence using 

TSD using simulations and optimizations to look for optimal solutions. They studied 

TSD Methods, E and F, obtaining cost functions comparing the sample size achieved 

using TSDs versus the sample size resulting from conventional single stage 2x2 

crossover designs. They created an average cost function for each GMR and 𝐶𝑉𝑊 

combination value. For TSDs, GMRs ranged 70-100% at increments of 5% and 𝐶𝑉𝑊 

were split and evaluated into two design spaces, one ranged 10-30%, and the other 

30-55%, both at increments of 5%. For conventional, single stage designs, they used 

the same 𝐶𝑉𝑊 values but GRMs were fixed at 95%. Using simulations, they were 

varying (and fixing) the two significance levels α1 and α2, the stage 1 sample size (N1), 

and a futility criterion (f), and checking whether for all GMR and 𝐶𝑉𝑊 combination 

values the power was of at least of 80% (at a true GMR of 0.95) and the type I error 

rate (at a true GMR of 0.8 of bio-inequivalence) of 5% maximum. They resolved an 

optimization problem, obtaining the optimal design based on the lowest cost among 

valid combinations of α1, α2, N1, and f. Note that maximum number of subjects allowed 

by Xu et. al was not optimized but rather fixed based on practical considerations (42 

for the 𝐶𝑉𝑊 range 10–30% and 180 for the 𝐶𝑉𝑊 range 30-55%). In our manuscript this 

ceiling sample size was set at 150 subjects for any 𝐶𝑉𝑊. 

Also, we admit that the well-founded method of Maurer, Jones, and Chen (52) gives a 

desirable solution. They used a standard inverse-normal p-value combination test, in 

conjunction with standard group sequential techniques (called it maximum 

combination test), to guarantee the control of type I error rate at any given 

significance level.  

But Maurer, Jones, and Chen (52) methodology has also some limitations in practice. 

The maximum combination test is based on a weighted average of a transformation of 

the z-values from stages 1 and 2 and use this as the final test statistic at the end of the 

trial (using N2 data), where w is the weight for stage 1 and 1-w the weight for stage 2. 

In fact, they propose using two sets of weights, w and w*, where w* is below w for N2 

> N1 (i.e. during the sample size re-estimation). In the case study, they are proposing 
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using w=0.5 and w*=0.25. But, the optimal choice of the weights for the combination 

tests depend on the expected magnitude of a sample size increase of the stage 2 

compared to the stage 1, which in practice is unknown because w and w* must be pre-

specified before the trial starts (in the protocol). They show that small differences on w 

and w* assumption lead to a (non-negligible) different nominal adjusted significance 

levels.  

In addition, Maurer, Jones, and Chen (52) method also depends on the 𝐶𝑉𝑊 

assumption. An initial 𝐶𝑉𝑊 guess is used to obtain an overall sample size n (with target 

power usually 0.8) from where N1 = N/2, so the z1-value (quantile) assessed at stage 1 

depends on N1 and therefore on the initial 𝐶𝑉𝑊 considered.  

In comparison with Potvin et al. (27), Maurer, Jones, and Chen (52) usually provides a 

lower sample size N2 at the stage 2 to reach a global desired power. The assessment is 

based on comparing a ‘target conditional power’, which uses power achieved at stage 

1, versus a ‘conditional power’, which uses the conditional errors for maximum 

combination test (using the 𝐶𝑉𝑊 estimated at interim), a formulation effect of 0.95, 

and N2. Starting on an initial N2 set to 4, the ‘conditional power’ is assessed at 

increments of 2 subjects until it exceeds the ‘target conditional power’. In any case, 

there is no a simple formula of obtaining the power which is desirable to compare the 

different settings (N2, weights, futility criteria). In analogy to the Potvin et al. methods, 

it is needed to undertake simulations to gain those values. 

Both, Potvin et al. (27) and us calculate N2 based on a non-conditional pre-defined 

target power (usually 0.8), using 𝐶𝑉𝑊 estimation at interim, and a formulation effect of 

0.95. Then, the power finally achieved is calculated using pooled data from both 

stages. 

Like in Xu et al. (39) we assumed that the adjusted significance levels at both stages 

may be different, α1≠ α2 . We discussed that this is particularly interesting for 

someone interested in being more permissive at stage 1 than at stage 2, or vice versa. 

In Table 7, we present some scenarios with adjustments of (α1, α2) =  (0.0294, 0.0310) 

or (α1, α2) = (0.0320, 0.0279) at stages 1 and 2, respectively. 
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Also, should be considered that regardless of the methodology used, principled or 

simulations, the overall power depends on a non-biased estimated 𝐶𝑉𝑊 at stage 1. So, 

there is no guarantee that the power is finally achieved in any case. 
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7. CONCLUSIONS 

We compared two variants of two-stage adaptive 2×2 crossover designs (TSD) and an 

RSABE adjusted (type I error) EMA approach. Both methods showed similar statistical 

power, but the RSABE adjusted scaled method required less sample size, although at 

the expense of exposing subjects twice as long as TSD methods. For initial sample sizes 

of at least 24 subjects, TSDs are a good option to consider, as they have a power of 

around 80% at the stage 1 for non-highly variable drugs while at the same time they 

offer the opportunity for stepping up to the stage 2 (including additional subjects) for 

truly bioequivalent products. 

TSDs can be applied to bioequivalence studies more widely. We provide a function, 

which is quite flexible and easy to use for any applicant, to adjust the significance 

levels at each stage which strictly grant the control of the type I error for different 

assumptions on the GMR, N1, and 𝐶𝑉𝑊. In addition, we provide operating 

characteristics like the probability to jump to a stage 2, the sample size at the stage 2, 

and the power at stages 1 and 2. 

In turn, TSDs provide investigators with an attractive solution to address some of the 

uncertainty that exists when the trial is originally designed, allowing stopping the study 

at stage 1 with a small N1, avoiding to unnecessarily soar N above what is reasonable 

to attain a desired power, e.g., 80%. And they are especially useful in case of drugs 

with little evidence about the true within-subject variability.  

TSDs are supposed to be used when there is a lack of knowledge regarding some 

aspects of the product e.g., variability, or expected (dis)similarity with the reference 

product, even though they may not be the best options for other cases like highly 

variable drugs.  

With this work, we would like to contribute towards a global harmonization and 

convergence of generic drug developments. 
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8. FUTURE AREAS OF RESEARCH 

8.1. Population and individual bioequivalence approaches 

The average bioequivalence (ABE) approach focuses only on the comparison of the 

mean bioavailabilities of R and T (equation 1). However, this has been pointed to be 

insufficient for assessing switchability between formulations. This is because ABE does 

not consider the variance of bioavailability values, and does not guarantee whether or 

not R and T show the same therapeutic effects in each individual subject (13,61).  

The population bioequivalence (PBE) approach guarantees prescribability by assessing 

bioequivalence adding the difference in the total variance of bioavailability values of 

the T and R formulations (𝜎𝑇𝑇
2 − 𝜎𝑇𝑅

2 ) to the difference in mean bioavailabilities of the 

T and R formulations (𝜇𝑇 − 𝜇𝑅)2, see equation 2.  

Individual bioequivalence (IBE) guarantees switchability by assessing bioequivalence by 

adding three elements: the difference in mean bioavailability of T and R formulations 

as determined in the bioequivalence approach, the subject-by-formulation interaction, 

𝜎𝐷
2, and the difference in intrasubject variances of bioavailability values of T and R, 

𝜎𝑊𝑇
2 − 𝜎𝑊𝑅

2 , see equation 3. Note that IBE requires replicate crossover designs. 

Because pharmaceutical products have different therapeutic ranges (narrow to wide) 

and variances in bioavailabilities values (large to small), these characteristics are to be 

considered to determine PBE and IBE acceptance ranges, 𝛿𝑃𝐵𝐸 and 𝛿𝐼𝐵𝐸.  

Average bioequivalence: Evaluated with the difference of mean bioavailability (BA) (in 

the logarithmic scale). 

|𝜇𝑇 − 𝜇𝑅| < 𝛿𝐴𝐵𝐸 (equation 1). 

Population bioequivalence: Evaluated with the difference of mean BA and total 

variance of bioavailability (in the logarithmic scale). 

[(𝜇𝑇 − 𝜇𝑅)2] + [𝜎𝑇𝑇
2 − 𝜎𝑇𝑅

2 ] < 𝛿𝑃𝐵𝐸  (equation 2). 

Individual bioequivalence: Estimated with the difference of mean BA, subject-by-

formulation interaction, and intrasubject variance (in the logarithmic scale). 

[(𝜇𝑇 − 𝜇𝑅)2] + 𝜎𝐷
2 + [𝜎𝑊𝑇

2 − 𝜎𝑊𝑅
2 ] < 𝛿𝐼𝐵𝐸 (equation 3). 
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Where, 𝜇𝑇: Average of the T formulation, 𝜇𝑅: Average of the R formulation, 𝜎𝑇𝑇
2 : Total 

variance of the T formulation, 𝜎𝑇𝑅
2 :Total variance of the R formulation, 𝜎𝐷

2: Subject-by-

formulation interaction [𝑉𝑎𝑟(𝜇𝑇𝑗 − 𝜇𝑅𝑗)], 𝜎𝑊𝑇
2 : Intrasubject variance of the T 

formulation, 𝜎𝑊𝑅
2 : Intrasubject variance of the R formulation, 𝛿: bioequivalence 

acceptance range. 

See the example in the Figure 11 (61) with differences among average, population, and 

individual bioequivalence. Case 1 meets average, population, and individual 

bioequivalence because the means and total variances of BA values of T and R are 

equal, and the bioavailabilities of T and R in individual subjects are almost identical. In 

Case 2 individual bioequivalence is not met because bioavailabilities values in T and R 

in the individual subjects differ, but average and population bioequivalence are met. In 

Case 3, only bioequivalence is met. 

Figure 11. Differences among average, population, and individual bioequivalence 

 

Source: Nakai et al. (61) 

Some replicate design studies have demonstrated that the scaled acceptance range 

offered by the aggregate criterion may result in clinically unacceptable decisions in 

favor of IBE, although bioequivalence does not hold.  

Other concerns not yet resolved are that aggregate hypotheses on the logarithmic 

scale have no obvious translation into the original scale; also, scaling corresponds to a 

modification of the bioequivalence acceptance limits, but is handled differently for IBE 
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and PBE than for bioequivalence; and, the proposed criteria do not consider a 

hierarchical testing (first means, then variances, lastly subject-by-formulation 

interaction). If, IBE is further pursued, statistical research should focus on disaggregate 

criteria that allow exact stepwise procedures for evaluating untransformed parameters 

(62).  

Because of these limitations, PBE and IBE were put on hold early in 2000, and the final 

guidance calls for ABE to remain as the primary criterion by which new formulations 

may be judged ready for access to the marketplace. 

Proposal 

As previously shown, there is a limitation of declaring average bioequivalence (ABE) 

just using the common bioequivalence definition based on comparing the mean ratios 

of R and  T, because in this definition the variance of R and T is not considered. This is 

the reason why the regulatory agencies introduced the idea of PBE and IBE, although 

they have some inconvenient and were put on hold early in 2020. 

We propose a new line of research to study bioequivalence. Bioequivalence might be 

claimed based on a combined assessment: Based on the usual ABE approach (maybe 

re-considering the bioequivalence margins, currently fixed at 0.80-1.25 for common 

drugs) in order to facilitate declaring bioequivalence in case of products whose 

variability in the generic T is non-superior to R, i.e. based on a non-superiority test with 

a certain non-superior limit between R and T. 

Alternatively, using the current definition of ABE to declare bioequivalence, might be 

discussed during the pricing and reimbursement negotiations (at local regulations) 

about the variability of the generic drug T, considering lower prices (for consumers) in 

case of less variable generic products. 

8.2 Biosimilars 

Biological medicines (‘biologicals’) contain active substances from a biological source, 

such as living cells or organisms. Biological medicines are well established in clinical 

practice and in many cases they are indispensable for the treatment of serious and 

chronic conditions such as diabetes, autoimmune diseases and cancers (63-67). 
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Biosimilars can be used as safely and effectively in all their approved indications as 

other biological medicines. So, a biosimilar is a biological medicine highly similar to 

another biological medicine already approved (called ‘reference medicine’). 

Because biosimilars are made in living organisms there may be some minor differences 

from the reference medicine. These minor differences are not clinically meaningful, i.e. 

no differences are expected in safety and efficacy. Natural variability is inherent to all 

biological medicines and strict controls are always in place to ensure that it does not 

affect the way the medicine works or its safety.  

The aim of biosimilar development is to demonstrate biosimilarity, i.e. high similarity 

in terms of structure, biological activity and efficacy, safety and immunogenicity 

profile.  

By demonstrating biosimilarity, a biosimilar can rely on the safety and efficacy 

experience gained with the reference medicine. This avoids unnecessary repetition of 

clinical trials already carried out with the reference medicine.  

Food and Drug Administration approved Zarxio, the first biosimilar product approved 

in the U.S., which is biosimilar to Neupogen (filgrastim), originally licensed in 1991 (68).  

Biosimilars are not generics 

Unlike generics, biosimilars are not identical to the reference biological product. 

Because biological products are made using living cells and processes, they may have 

minor differences from the reference product. For approval, biosimilars must 

demonstrate that these differences are not clinically meaningful. Nonetheless, certain 

factors should be considered when a switch from the reference product to a biosimilar 

is contemplated.  

Unlike traditional small-molecule medications, which have standard production 

methods and well-defined structures, biological products have a sophisticated 

manufacturing process that involves the use of cell cultures. This process can result in 

heterogeneous products with slight variations in manufacturing (69-73).  
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Also, biological products have transformed therapy in several fields; however, their 

prohibitive prices, caused by the costs of research and development and 

manufacturing, are a concern (74-76).  

Following a period of market exclusivity for reference products, to approve biological 

products, they must show the same primary amino acid sequence and mechanism of 

action as the reference product and there are no clinically meaningful differences 

between the reference product and the biosimilar (77). This is in contrast to generic 

medications, which are identical to brand medications (74). Therefore, although there 

are some similarities between generic and biosimilar medications, biosimilars are not 

considered generic versions of biological products (77-84). The main differences are: 

• Generic medicines are chemically synthesized while biosimilars are grown in 

complex living systems. 

• Biologic medicines are large, complex molecules or mixtures of molecules that 

may be composed of living material as such, biosimilars are unlikely to be exact 

copies of their reference products. 

• Unlike generic medicines, the FDA requires a biosimilar to be highly similar, but 

not identical to the existing biologic medicine or “reference product”. 

• A biosimilar also must demonstrate no clinically meaningful differences in 

efficacy, safety, and potency (safety and effectiveness) with its reference 

product. 

• Per FDA guidance, agencies review the totality of evidence and do not 

necessarily focus on one type of study to evaluate a manufacturer's application 

for demonstration of biosimilarity. 

• The manufacturer of a biosimilar demonstrates biosimilarity primarily from 

nonclinical analyses in a stepwise approach that includes examining the 

structure and functional nature of the biosimilar molecule. 

What data are required for approval of a biosimilar or interchangeable product? 

A biosimilar product application must include data demonstrating biosimilarity to the 

reference product (63,85-87). This usually includes data from: 
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• Analytical studies demonstrating that the biological product is highly similar to 

the reference product, notwithstanding minor differences in clinically inactive 

components; 

• Animal studies, including an assessment of toxicity; and 

• A clinical study or studies sufficient to demonstrate safety, purity, and potency 

of the proposed biosimilar product in one or more of the indications for which 

the reference product is licensed. This typically includes assessing 

immunogenicity, pharmacokinetics (PK), and, in some cases, 

pharmacodynamics (PD) and may also include a comparative clinical study. 

In addition to the data listed above, an application for an interchangeable product (88) 

must also include information or data demonstrating that: 

• The proposed interchangeable product is expected to produce the same clinical 

result as the reference product in any given patient; and, 

• For a product administered more than once to an individual, switching between 

the proposed interchangeable product and the reference product does not 

increase safety risks or decrease effectiveness compared to using the reference 

product without such switching between products. 

When considering licensure of a biosimilar product, the agencies review the totality of 

the data and information, including the foundation of detailed analytical (structural 

and functional) characterization, animal studies if necessary, then moving on to clinical 

pharmacology studies and, as needed, other comparative clinical studies. 

FDA evaluates each biosimilar product on a case-specific basis to determine what data 

are needed to demonstrate biosimilarity and which data elements can be waived if 

deemed scientifically appropriate. 

Proposal 

A biosimilar product is a biological product that is approved based on a showing that it 

is highly similar to an already approved biological product, which is known as a 

reference product, and that there are no clinically meaningful differences between the 

biologic product and the reference product in terms of safety, purity, and potency of 
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the product (measure of drug activity expressed in terms of the amount required to 

produce an effect of given intensity). 

Because no biosimilar can be scientifically or technically identical to the originator’s 

product additional efforts are needed to compile and review all relevant published 

information on biosimilars (89). This would provide a visualization of the essential 

steps that are required to be taken for global biosimilar acceptance. 

The higher complexity of biologics and the limited experience with biosimilars raise 

doubts about whether patients taking the reference product can be switched to the 

approved biosimilar. Biosimilarity relies on no expected differences in safety and 

efficacy so, for the approval of biosimilars, it is in most cases necessary to conduct 

large phase III clinical trials in patients to convince the regulatory authorities that the 

product is comparable in terms of efficacy and safety to the originator product.  

Mielke J. et al. (90) proposed estimating the effect of switching from a reference 

medicine to a biosimilar and vice versa by means of testing a null hypothesis (switching 

influences the efficacy) versus an alternative hypothesis (switching has no influence on 

the efficacy) using semi-replicate or replicate crossover designs (with reasonable 

sample sizes) using linear mixed effects ANOVA models. We propose also considering 

using adaptive designs with interim analysis/es to assess efficacy and safety signals 

which would allow making decisions at earlier stages to stop the trial for futility, or 

alternatively, to increase the sample size, modify inclusion criteria or primary 

endpoints.  



 

 100 

 

 

 

  

 

 

 

 

  



REFERENCES 

 101 

9. REFERENCES 

1. U.S. Department of Health and Human Services, Food and Drug Administration. 

Frequently Asked Questions on Patents and Exclusivity. 

https://www.fda.gov/drugs/development-approval-process-drugs/frequently-

asked-questions-patents-and-exclusivity. Content current Feb 2020. Accessed 

November 18, 2020. 

2. Raines KW. A Primer on Generic Drugs and A Primer on Generic Drugs and 

bioequivalence: an overview of the bioequivalence: an overview of the generic 

drug approval process generic drug approval process. 

https://www.fda.gov/media/89135/download. Accessed November 18, 2020. 

3. U.S. Department of Health and Human Services, Food and Drug Administration, 

Center for Drug Evaluation and Research. Guidance for industry: Bioequivalence 

studies with pharmacokinetic endpoints for drugs submitted under an ANDA. 

https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/bioequivalence-studies-pharmacokinetic-endpoints-drugs-submitted-

under-abbreviated-new-drug. Published Dec 2013. Accessed November 18, 2020. 

4. U.S. Department of Health and Human Services, Food and Drug Administration, 

Center for Drug Evaluation and Research. Guidance for Industry: ANDAs 

Pharmaceutical Solid Polymorphism Chemistry, Manufacturing, and Controls 

Information. https://www.fda.gov/media/71375/download. Published Jul 2017. 

Accessed November 18, 2020. 

5. Chow, S., Wang, H. On Sample Size Calculation in bioequivalence Trials. J 

Pharmacokinet Pharmacodyn 2001;28, 155-169.  

6. Chow SC, Liu JP. Design and Analysis of Bioavailability and bioequivalence Studies, 

Third Edition. Boca Raton: Chapman & Hall/CRC Press; 2009. 

7. European Medicines Agency. Guideline on the investigation of bioequivalence. 

CPMP/EWP/QWP/1401/98 Rev. 1.  

https://www.fda.gov/drugs/development-approval-process-drugs/frequently-asked-questions-patents-and-exclusivity
https://www.fda.gov/drugs/development-approval-process-drugs/frequently-asked-questions-patents-and-exclusivity
https://www.fda.gov/media/89135/download
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioequivalence-studies-pharmacokinetic-endpoints-drugs-submitted-under-abbreviated-new-drug
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioequivalence-studies-pharmacokinetic-endpoints-drugs-submitted-under-abbreviated-new-drug
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioequivalence-studies-pharmacokinetic-endpoints-drugs-submitted-under-abbreviated-new-drug
https://www.fda.gov/media/71375/download


REFERENCES 

 102 

https://www.ema.europa.eu/documents/scientific-guideline/guideline-

investigation-bioequivalence-rev1_en.pdf. Published Jan 2010. Accessed 

November 18, 2020. 

8. U.S. Department of Health and Human Services, Food and Drug Administration, 

Center for Drug Evaluation and Research. Guidance for Industry. Bioavailability 

Studies Submitted in NDAs or INDs - General Considerations. 

https://www.fda.gov/media/121311/download. Published Feb 2019. Accessed 

November 18, 2020. 

9. Schuirmann, D.J. A comparison of the two one-sided tests procedure and the 

power approach for assessing the equivalence of average bioavailability. J of 

Pharmacokinet and Biopharm 1987;15:657-680. 

10. Schütz H. Two-stage designs in bioequivalence trials. Eur J Clin Pharmacol 

2015;71(3):271-281.  

11. European Medicines Agency. Questions & Answers: Positions on specific questions 

addressed to the pharmacokinetics working party. EMA/618604/2008 Rev. 13. 

https://www.ema.europa.eu/en/documents/scientific-guideline/questions-

answers-positions-specific-questions-addressed-pharmacokinetics-working-

party_en.pdf. Published Nov 2015. Accessed November 18, 2020. 

12. Davit BM, Conner DP, Fabian-Fritsch B, et al. Highly variable drugs: Observations 

from bioequivalence data submitted to the FDA for new generic drug applications. 

AAPS J 2008;10:148-156 

13. U.S. Department of Health and Human Services, Food and Drug Administration, 

Center for Drug Evaluation and Research. Guidance for Industry. Statistical 

Approaches to Establishing Bioequivalence. 

https://www.fda.gov/media/70958/download. Published Jan 2001. Accessed 

November 18, 2020. 

14. U.S. Department of Health and Human Services, Food and Drug Administration. 

Draft guidance on progesterone.  

 

https://www.ema.europa.eu/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf
https://www.ema.europa.eu/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf
https://www.fda.gov/media/121311/download
https://www.ema.europa.eu/en/documents/scientific-guideline/questions-answers-positions-specific-questions-addressed-pharmacokinetics-working-party_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/questions-answers-positions-specific-questions-addressed-pharmacokinetics-working-party_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/questions-answers-positions-specific-questions-addressed-pharmacokinetics-working-party_en.pdf
https://www.fda.gov/media/70958/download


REFERENCES 

 103 

https://www.accessdata.fda.gov/drugsatfda_docs/psg/Progesterone_insertvag_2

2057_RC09-12.pdf. Published Sep 2012. Accessed November 18, 2020. 

15. Tothfalusi L, Endrenyi L, Garcia Arieta A. Evaluation of bioequivalence for highly 

variable drugs with scaled average bioequivalence. Clin Pharmacokinet 

2009;48(11):725-743. 

16. Chow SC, Liu JP. On assessment of bioequivalence under a higher-order crossover 

design. Journal of Biopharmaceutical Statistics. J Biopharm Stat 1992;2(2):239-

256. 

17. Chen KW, Chow SC, Li G. A Note on sample Size Determination for Bioequivalence 

Studies with Higher-Order Crossover Designs. J Pharmacokinet Biopharm 1997 

Dec;25(6):753-765. 

18. Ocaña J, Muñoz J. Controlling type I error in the reference-scaled bioequivalence 

evaluation of highly variable drugs. Pharmaceutical Statistics 2019;18:583–599. 

19. Howe WG. Approximate confidence limits on the mean of X + Y where X and Y are 

two tabled independent random variables. J Am Stat Assoc 1974;69(347):789-794. 

20. Hyslop T, Hsuan F, Holder DJ. A small sample confidence interval approach to 

assess individual bioequivalence. Stat Med 2000; 19(20):2885-2897. 

21. Molins E, Cobo E, Ocaña J. Two-stage designs versus European scaled average 

designs in bioequivalence studies for highly variable drugs: Which to choose? Stat 

Med 2017;36(30):4777-4788.  

22. Molins E, Labes D, Schütz H, Cobo E, Ocaña J. An iterative method to protect the 

type I error rate in bioequivalence studies under two-stage adaptive 2×2 crossover 

designs. Biom J 2020;1-12.  

23. Kaza M, Sokolovskyi A, Rudzki PJ. 10th Anniversary of a Two-Stage Design in 

bioequivalence. Why Has it Still Not Been Implemented? Pharm Res 

2020;37(7):140. 

24. Mistry P, Dunn JA, Marshall A. A literature review of applied adaptive design 

methodology within the field of oncology in randomised controlled trials and a 

https://www.accessdata.fda.gov/drugsatfda_docs/psg/Progesterone_insertvag_22057_RC09-12.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/psg/Progesterone_insertvag_22057_RC09-12.pdf


REFERENCES 

 104 

proposed extension to the CONSORT guidelines. BMC Med Res Methodol 

2017;17:108. 

25. Bandyopadhyay N, Dragalin V. Implementation of an adaptive group sequential 

design in a bioequivalence study. Pharm Stat 2007;6 (2):115‐122.  

26. Coffey CS, Levin B, Clark C, et al. Overview, hurdles, and future work in adaptive 

designs: Perspectives from a National Institutes of Health-funded workshop. 

Clinical Trials 2012;9, 671-680. 

27. Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ, Smith RA. Sequential 

design approaches for bioequivalence studies with crossover designs. Pharm Stat 

2008;7(4):245-262. 

28. Muñoz J, Alcaide D, Ocaña J. Consumer’s risk in the EMA and FDA regulatory 

approaches for bioequivalence in highly variable drugs. Stat Med 

2016;35(12):1933-1943. 
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Appendix 1: Package ‘betsd’ 

The package ‘betsd’ was created by means of R packages ‘devtools’ and ‘roxygen2’. 

The package ‘devtools’ helps on working on the skeleton of the description file, and 

‘roxygen2’ generates the manual which includes the arguments of the function. 

This package is available in the repository Gib, GitHub, https://github.com/eduard-

molins/betsd. The integration between R Studio and GitHub allows: 

- Version control (a unique site to work with the code) 

- Backup (old versions of the code are available) 

- Share our project/code 

The package ‘betsd’ can be downloaded from GitHub following these instructions: 

> install.packages(“devtools”)  # if not yet installed 

> require(devtools) 

> install_github("eduard-molins/betsd") 

> require(betsd) 

> help(t1e.tsd) 

This package was validated during the Reproducible Research review (see Appendix 3). 

 

 

 

https://github.com/eduard-molins/betsd
https://github.com/eduard-molins/betsd
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Source: Biometrical Journal supporting information: bimj2181-sup-0001-
SuppMat.docx. 
  

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbimj.201900388&file=bimj2181-sup-0001-SuppMat.docx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbimj.201900388&file=bimj2181-sup-0001-SuppMat.docx
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Appendix 2: R code 

Function t1e.tsd 

The function ‘t1e.tsd’ included within the package ‘betsd’ serves to preserve the 

overall type I error. The function provides with the adjusted significance levels to be 

used in each stage, α1 and α2, the probability to jump to a stage 2, the sample size at 

the stage 2, and the power at stages 1 and 2.  

 

# Function to adjust the significance levels for bioequivalence studies using 

# adaptive two-stage 2x2 crossover designs. 

# 

# Authors: E. Molins, D. Labes, H. Schuetz, J. Ocaña 

#ADJUST ALPHA1 AND ALPHA2 ON A TSD 2x2 CXO DESIGN, CONTROLLING T1E 

bioequivalenceLOW ALPHA 

t1e.tsd <- function(n1, CV, GMR = 0.95, Nmax = 150, min.n2 = n1/2, type = 1, 

                    alpha = 0.05, alpha1, alpha2, targetpower = 0.8, 

                    setseed = TRUE, theta1, theta2, 

                    details = TRUE, print = TRUE, ...) { 

 

  #Non-modified parameters => Nmax == Inf & min.n2 == 0 

  #Modified CRITERIA ACCORDING TO DOI: 10.1002/sim.7452 

  min.n2 <- sapply(min.n2, function(y) if (y %% 2 != 0) y+y%%2 else y) 

 

  #DEBUG AT FIRST ITERATION 

  if (missing(n1)) 

    stop("Number of subjects in stage 1 must be given") 

  if (any(n1 < 12)) 

    stop("Number of subjects in stage 1 must be at least 12") 

  if (missing(CV)) 

    stop("CV must be given") 

if (any(CV <= 0.05)) #This is 0.05 because the algorithm will look at the     

                     #given CV +/- 0.05, and CV must be > 0 

    stop("CV must be > 0.05 beause the algorithm will look at CV \u00B10.05") 

  if (length(alpha) > 1) 

    stop("alpha must be of length 1") 

  if (missing(alpha1) & missing(alpha2)) { 

    alpha1 <- 0.0294 

    alpha2 <- alpha1 

  } 

  if (missing(alpha1) & !missing(alpha2)) alpha1 <- alpha2 

  if (!missing(alpha1) & missing(alpha2)) alpha2 <- alpha1 

  if (alpha1 && alpha2 > 0.05) 

    stop("alpha values must be <0.05 (default at 0.0294)") 

  if (length(type) > 1) 

    stop("type must be of length 1") 

  if (type!=1 & type!=2) 

    stop("type must be 1 or 2") 

if (type == 1) {type <- "B"} else {type <- "C"} #type 1: Potvin "B"; type 2:  

                                                #Potvin "C or D" 

  if (missing(theta1) & missing(theta2))  theta1 <- 0.8 

  if (!missing(theta1) & missing(theta2)) theta2 <- 1/theta1 

  if (missing(theta1) & !missing(theta2)) theta1 <- 1/theta2 

  if (GMR <= theta1 | GMR >= theta2) 

    stop("GMR must be within acceptance range") 

 

  #SETSEED 

  if (is.numeric(setseed)) { 

    setseed <- TRUE 

  } else if (is.character(setseed)) { 
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stop("setseed should be TRUE for setseed = 1234567 or FALSE for a random       

      setseed.") 

  } 

  if (setseed) { 

    seed <- 1234567 #This corresponds to set.seed(1234567) used in power.tsd 

if setseed = TRUE 

  } else { 

    seed <- runif(1, max=1E7) 

    set.seed(seed) 

  } 

 

  max_iter <- FALSE 

  iter <- -1 

  current_alpha <- matrix(c(alpha1, alpha2), nrow = 1, ncol = 2) 

  # -------------------------------------------------------------------------- 

  # burn in: make an evaluation with 30 000 sims and choose the points 

  # with T1E > 90% percentile 

  # dataframe with the entire grid 

d <- cbind(expand.grid(n1 = n1,  

                       CV = CV, 

                       GMR = GMR,  

                       alpha1 = alpha1,  

                       alpha2 = alpha2),  

                       min.n2 = min.n2) 

res_T1E <- potvin(type = type,  

                  d = d,  

                  Nmax,  

                  targetpower,  

                  setseed,  

                  nsims = 30000,  

                  pmethod = "nct", 

                    theta0 = theta2,  

                    theta1,  

                    theta2, ...) 

  T1E  <- res_T1E["pbioequivalence",] #This gives the T1E 

  m.n2 <- res_T1E["min.n2",] #This gives min.n2 

T1E  <- t(matrix(as.numeric(T1E), 

                 nrow = length(CV),  

                 ncol = length(n1),  

                 byrow = TRUE)) 

m.n2 <- t(matrix(as.numeric(m.n2),  

          nrow = length(CV),  

          ncol = length(n1), 

          byrow = TRUE)) 

  rownames(T1E) <- n1 

  colnames(T1E) <- CV 

  # now entries with T1E >= 90% percentile 

  index <- which(T1E >= quantile(T1E, 0.90), arr.ind = TRUE) 

  n1.quant <- as.numeric(rownames(T1E)[index[, 1]]) 

  m.n2 <- m.n2[index] 

  CV.quant <- as.numeric(colnames(T1E)[index[, 2]]) 

  d90 <- data.frame(n1 = n1.quant, 

                    min.n2 = m.n2, 

                    CV = CV.quant, 

                    GMR = GMR, 

                    alpha1 = alpha1, alpha2 = alpha2) 

 

  # LOOP until current_alpha and alpha_adj are different 

  # -------------------------------------------------------------------------- 

  #browser() 

  repeat{ 

    iter <- iter + 1 

    # evaluate the T1E grid with 1E6 sims at theta0=theta2 with current_alpha 

    d90$alpha1 <- current_alpha[1,1] 

    d90$alpha2 <- current_alpha[1,2] 

res_T1E90 <- potvin(type = type,  

                    d = d90, 

                    Nmax,  
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                    targetpower, 

                    setsee 

                    nsims = 1E+06, 

                    pmethod = "nct", 

                        theta0 = theta2,  

                        theta1, 

                        theta2, ...) 

T1E_high <- data.frame(cbind(d90[, "n1"], 

                             d90[, "CV"],  

                             d90[, "GMR"],  

                             d90[, "min.n2"], 

                                 d90[, "alpha1"],  

                                 d90[, "alpha2"], 

                                 as.numeric(res_T1E90["pbioequivalence", ]))) 

colnames(T1E_high) <- c("n1", 

                        "CV", 

                        "GMR", 

                        "min.n2", 

                        "alpha1",  

                        "alpha2",  

                        "pbioequivalence") 

    # ----------------------------------------------------------------------- 

    # choose the max T1E 

    max_T1E <- T1E_high[T1E_high[, "pbioequivalence"] == 

max(T1E_high["pbioequivalence"]), ] 

    m <- which.max(max_T1E$CV) 

    max_T1E <- max_T1E[m,] 

nperc90 <- cbind(n1 = res_T1E90["n1", ],  

                 CV = res_T1E90["CV", ],  

                 GMR = res_T1E90["GMR", ], 

                 min.n2 = res_T1E90["min.n2", ], 

                 pbioequivalence_s1 = res_T1E90["pbioequivalence_s1", ], 

                 pct_s2 = res_T1E90["pct_s2", ],  

                 Nperc = res_T1E90["nperc", ]) 

max_T1E <- merge(max_T1E,  

                 nperc90,  

                 all.x = TRUE,  

                 by = c("n1", "CV", "GMR", "min.n2")) 

    if (details) { 

      if (iter < 1) { 

        cat("Run-in with alphas", paste(sprintf("%.4f",  

            as.numeric(current_alpha)), collapse=", "), "\n") 

      } else { 

        cat("Iteration", iter, "with alphas", paste(sprintf("%.5f",  

            as.numeric(floor(current_alpha*1e5)/1e5)), collapse=", "), "\n") 

      } 

        cat("- max.TIE", sprintf("%.6f", max_T1E$pbioequivalence), "at n1 =", 

max_T1E$n1,  

            "and CV =" , max_T1E$CV, "\n") 

    } 

    # ------------------------------------------------------------------------ 

    # make a grid around the old_alphas 

new_alpha1 <- seq(current_alpha[1, 1] - 0.0005,  

                  current_alpha[1, 1] + 0.0005,  

                  length.out = 7) 

new_alpha2 <- seq(current_alpha[1, 2] - 0.0005,  

                  current_alpha[1, 2] + 0.0005,  

                  length.out = 7) 

step_size <- median(diff(seq(current_alpha[1, 2] - 0.0005,  

                             current_alpha[1, 2] + 0.0005,  

                             length.out = 7))) 

 

    if (alpha1 == alpha2) { 

      n_d <- cbind(n1 = max_T1E["n1"],  

                   CV = max_T1E["CV"],  

                   GMR = max_T1E["GMR"], 

                   min.n2 = max_T1E["min.n2"],  

                   alpha1 = new_alpha1, 
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                   alpha2 = new_alpha2, 

                   row.names = NULL) 

    } else { 

      n_d <- cbind(n1 = max_T1E["n1"],  

                   CV = max_T1E["CV"], 

                   GMR = max_T1E["GMR"], 

                   min.n2 = max_T1E["min.n2"], 

                   expand.grid(alpha1 = alpha1, alpha2 = new_alpha2),  

                   row.names = NULL) 

    } 

    colnames(n_d) <- c("n1", "CV", "GMR", "min.n2", "alpha1", "alpha2") 

 

    # evaluate and use inverse regression to obtain new alphas (alpha.adj) 

res_new_T1E <- potvin(type = type,  

                      d = n_d,  

                      Nmax,  

                      targetpower,  

                      setseed,  

                      nsims = 1E+06,  

                      pmethod = "nct", 

                          theta0 = theta2,  

                          theta1,  

                          theta2, ...) #Takes much time if alpha1 <> alpha2 

    res_new_d_T1E <- data.frame(CV = unlist(res_new_T1E["CV", ]), 

                                n1 = unlist(res_new_T1E["n1", ]), 

                                GMR = unlist(res_new_T1E["GMR", ]), 

                                min.n2 = unlist(res_new_T1E["min.n2", ]), 

                                alpha1 = sapply(1:ncol(res_new_T1E),  

                                function(x) res_new_T1E[["alpha", x]][1]), 

                                alpha2 = sapply(1:ncol(res_new_T1E),  

                                function(x) res_new_T1E[["alpha", x]][2]), 

                                T1E = 

unlist(res_new_T1E["pbioequivalence", ])) 

 

    #INVERSE REGRESSION 

    alpha_adj <- inv.reg(alpha, alpha1, alpha2, res_new_d_T1E) 

    colnames(alpha_adj) <- c("alpha1", "alpha2") 

    #browser() 

 

    # Emergency brake 

    if(iter > 10) { 

      max_iter <- TRUE 

      warning("Max. iterations reached.") 

      current_alpha <- floor(current_alpha*1e4)/1e4 

      repeat{ 

        max_T1E$alpha1 <- current_alpha[1,1] 

        max_T1E$alpha2 <- current_alpha[1,2] 

        check_T1E <- potvin(type = type,  

                            d = max_T1E, 

                            Nmax, 

                            targetpower,  

                            setseed,  

                            nsims = 1E+06,  

                            pmethod = "nct", 

                            theta0 = theta2,  

                            theta1,  

                            theta2, ...) #Takes much time if alpha1 <> alpha 

        #Punctual T1E for CV +/- 0.05 is evaluated following the article of Xu  

        #et al. 

        lo.power.tsd <- power.tsd(alpha=c(max_T1E$alpha1, max_T1E$alpha2),  

                                  CV = CV[1] - 0.05, 

                                  n1 = max_T1E$n1, 

                                  GMR = GMR,  

                                  min.n2 = max_T1E$min.n2,  

                                  Nmax = Nmax,  

                                  targetpower = targetpower,  

                                  setseed = setseed, 

                                  pmethod = "nct", 
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                                  theta0 = 1.25, 

                                  theta1 = theta1,  

                                  theta2 = theta2, 

                                  method = type) 

        hi.power.tsd <- power.tsd(alpha=c(max_T1E$alpha1, max_T1E$alpha2),  

                                  CV = tail(CV, n=1) + 0.05, 

                                  n1 = max_T1E$n1, 

                                  GMR = GMR, 

                                  min.n2 = max_T1E$min.n2,  

                                  Nmax = Nmax,  

                                  targetpower = targetpower,  

                                  setseed = setseed, 

                                  pmethod = "nct",  

                                  theta0 = 1.25,  

                                  theta1 = theta1,  

                                  theta2 = theta2,  

                                  method = type) 

        if (unlist(check_T1E["pbioequivalence", ]) < alpha && 

lo.power.tsd$pbioequivalence < alpha &&  

            hi.power.tsd$pbioequivalence < alpha) { 

            max_T1E$pbioequivalence <- check_T1E["pbioequivalence",] 

            break 

        } else if (alpha_adj[1] == alpha_adj[2]) { 

          current_alpha <- current_alpha - 1E-4 

        } else { 

          current_alpha[1] <- floor(alpha1*1e4)/1e4 #In case of alpha 1  

          #different than alpha 2, alph1 is fixed 

          current_alpha[2] <- current_alpha[2] - 1E-4 

        } 

      } #end repeat 

      break 

    } #end if 

 

#check that the significance level is below alpha, and the new alphas  

#against the old_one   current_alpha[2] because this is the only one we  

#adjust. If alpha1=alpha2, then the alpha2 adjusted is copied in alpha1.  

#If alpha1 and alpha are different, the only that we adjust is alpha2 

    diff <- abs(current_alpha[2] - alpha_adj[2]) 

    #SCENARIO 1/4: T1E < 0.05 and Diff <= 2E-4 

    if (max_T1E["pbioequivalence"] < alpha & diff <= 2E-4) { 

      current_alpha <- floor(current_alpha*1e4)/1e4 

      #The following repeat serves to find a solution when the algorithm  

      #enters into a cycle 

      repeat{ 

        max_T1E$alpha1 <- current_alpha[1,1] 

        max_T1E$alpha2 <- current_alpha[1,2] 

        check_T1E <- potvin(type = type,  

                            d = max_T1E, 

                            Nmax,  

                            targetpower, 

                            setseed,  

                            nsims = 1E+06,  

                            pmethod = "nct", 

                            theta0 = theta2,  

                            theta1,  

                            theta2, ...) #Takes much time if alpha1 <> alpha2 

        #Punctual T1E for CV +/- 0.05 is evaluated following the article of Xu  

        #et al. 

        lo.power.tsd <- power.tsd(alpha=c(max_T1E$alpha1,  

                                  max_T1E$alpha2),  

                                  CV = CV[1] - 0.05,  

                                  n1 = max_T1E$n1, 

                                  GMR = GMR,  

                                  min.n2 = max_T1E$min.n2,  

                                  Nmax = Nmax,  

                                  targetpower = targetpower,  

                                  setseed = setseed, 

                                  pmethod = "nct", 
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                                  theta0 = 1.25,  

                                  theta1 = theta1,  

                                  theta2 = theta2, 

                                  method = type) 

        hi.power.tsd <- power.tsd(alpha=c(max_T1E$alpha1,  

                                  max_T1E$alpha2), 

                                  CV = tail(CV, n=1) + 0.05, 

                                  n1 = max_T1E$n1, 

                                  GMR = GMR,  

                                  min.n2 = max_T1E$min.n2, 

                                  Nmax = Nmax,  

                                  targetpower = targetpower,  

                                  setseed = setseed, 

                                  pmethod = "nct", 

                                  theta0 = 1.25,  

                                  theta1 = theta1,  

                                  theta2 = theta2,  

                                  method = type) 

        if (unlist(check_T1E["pbioequivalence", ]) < alpha && 

lo.power.tsd$pbioequivalence < alpha &&  

            hi.power.tsd$pbioequivalence < alpha) { 

          max_T1E$pbioequivalence <- check_T1E["pbioequivalence",] 

          break 

        } else if (alpha_adj[1] == alpha_adj[2]) { 

          current_alpha <- current_alpha - 1E-4 

        } else { 

          current_alpha[1] <- floor(alpha1*1e4)/1e4 #In case of alpha 1  

          #different than alpha 2, alph1 is fixed 

          current_alpha[2] <- current_alpha[2] - 1E-4 

        } 

      } #end repeat 

    break 

    #SCENARIO 2/4: T1E > 0.05 and Diff <= 2E-4 

} else if (max_T1E["pbioequivalence"] > alpha & diff <= 2E-4) { #Scenario 

2/4: T1E >  

  #0.05 and Diff <= 1E-4 

      if (alpha_adj[2] > current_alpha[2]) { 

        if (alpha_adj[1] == alpha_adj[2]) { 

          current_alpha <- current_alpha - step_size*(iter+1) 

        } else { 

          current_alpha[1] <- alpha1 #In case of alpha 1 different than alpha  

          #2, alph1 is fixed 

          current_alpha[2] <- current_alpha[2] - step_size*(iter+1) 

        } 

      } else { 

        if (alpha_adj[1] == alpha_adj[2]) { 

          current_alpha <- alpha_adj 

        } else { 

          current_alpha[1] <- alpha1 #In case of alpha 1 different than alpha  

          #2, alph1 is fixed 

          current_alpha[2] <- alpha_adj[2] 

        } 

      } 

    #SCENARIO 3/4: Diff > 2E-04 and T1E < 0.05 

    } else if (max_T1E["pbioequivalence"] < alpha & diff > 2E-4) { 

      if (max(current_alpha[2], alpha_adj[2]) > alpha) { # Scenario 3 (first  

      #option): T1E < 0.05 but either current_alpha or alpha_adj is > alpha 

        if (alpha_adj[1] == alpha_adj[2]) { 

          current_alpha <- matrix(c(min(current_alpha - step_size*(iter+1),  

                                    alpha_adj), 

                                    min(current_alpha - step_size*(iter+1),  

                                    alpha_adj)),  

                                    nrow = 1,  

                                    ncol =2) 

          if (current_alpha[2] < 0.025)  

              current_alpha <- matrix(c(alpha/2 + step_size*(iter+1),  

                                      alpha2/2+ step_size*(iter+1)),  

                                      nrow = 1,  
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                                      ncol = 2) 

        } else { 

          current_alpha[1] <- alpha1 

          current_alpha[2] <- min(current_alpha[2] - step_size*(iter+1),  

                                  alpha_adj[2]) 

          if (current_alpha[2] < 0.025)  

              current_alpha[2] <- alpha/2 + step_size*(iter+1) 

        } 

      } else { # Secenario 3 (second option): T1E < 0.05 and current_alpha <  

               #alpha 

        if (alpha_adj[1] == alpha_adj[2]) { 

            current_alpha <- matrix(c(max(current_alpha + step_size*(iter+1),  

                                    alpha_adj),  

                                    max(current_alpha + step_size*(iter+1),  

                                    alpha_adj)),  

                                    nrow = 1, 

                                    ncol =2) 

        } else { 

            current_alpha[1] <- alpha1 #In case of alpha 1 different than  

            #alpha 2, alph1 is fixed 

            current_alpha[2] <- max(current_alpha[2] + step_size*(iter+1),  

                                    alpha_adj[2]) 

        } 

      } 

    #SCENARIO 4/4: Diff > 2E-04 and T1E > 0.05 

    } else { 

      if (min(current_alpha[2], alpha_adj[2]) > alpha) { #Both are > alpha 

        if (alpha_adj[1] == alpha_adj[2]) { 

          current_alpha <- matrix(c(alpha1 - step_size*(iter+1),  

                                  alpha2 - step_size*(iter+1)),  

                                  nrow = 1, 

                                  ncol =2) 

        } else { 

          current_alpha[1] <- alpha1 #In case of alpha 1 different than alpha  

            #2, alph1 is fixed 

          current_alpha[2] <- alpha2 - step_size*(iter+1) 

        } 

      } else { 

        if (alpha_adj[1] == alpha_adj[2]) { 

          current_alpha <- matrix(c(min(current_alpha - step_size*(iter+1),  

                                  alpha_adj), 

                                  min(current_alpha - step_size*(iter+1),  

                                  alpha_adj)),  

                                  nrow = 1, 

                                  ncol =2) 

          if (current_alpha[2] < 0.025) 

              current_alpha <- matrix(c(alpha/2 + step_size*(iter+1),  

                                      alpha2/2 + step_size*(iter+1)), 

                                      nrow = 1, ncol = 2) 

        } else { 

          current_alpha[1] <- alpha1 #In case of alpha 1 different than alpha  

          #2, alph1 is fixed 

          current_alpha[2] <- min(current_alpha[2] - step_size*(iter+1),  

                                  alpha_adj[2]) 

          if (current_alpha[2] < 0.025)  

              current_alpha[2] <- alpha/2 + step_size*(iter+1) 

        } 

      } 

    } 

  } # end repeat loop current_alpha different from alpha_adj 

  # --------------------------------------------------------------------------

- 

  # output 

  mt <- if (type == "B") "1 (B)" else "2 (C/D)" 

  #browser() 

p <- potvin(type = type,  

            d = max_T1E,  

            Nmax, 
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            targetpower,  

            setseed,  

            nsims = 1E+05,  

            pmethod = "nct", 

              theta0 = max_T1E[["GMR"]],  

              theta1 = theta1,  

              theta2 = theta2, ...) 

  if (print) { 

    cat("\nMethod type =", mt, "\n", 

        "setseed =", seed, "\n", 

        "Bioequivalence acceptance range (theta1, theta2) =", 

        paste(c(round(unlist(res_T1E["theta1", ][1]), 4), 

              round(unlist(res_T1E["theta2", ][1]), 4)), collapse=" ... "), 

"\n", 

        "Power calculation method =", unlist(p["pmethod",][1]), "\n", 

        "n1 =", n1, "\n", 

        "GMR =", GMR, "\n", 

        "CV =", paste(CV, collapse=", "), "\n", 

        "Nmax =", Nmax, "\n", 

        "min.n2 =", min.n2, "\n", 

        "Adjusted alpha at stage 1 =", 

        sprintf("%.4f", (max_T1E$alpha1*1e4)/1e4), "and alpha at stage 2 =", 

        sprintf("%.4f", (max_T1E$alpha2*1e4)/1e4), "\n", 

        "Maximum empirical type I error =", sprintf("%.6f", 

max_T1E$pbioequivalence[[1]]), 

        "at n1 =", max_T1E$n1, "and CV =" , max_T1E$CV, "\n", 

        "Power: Overall probability of bioequivalence =", 

unlist(p["pbioequivalence", ]),"\n", 

        "Power: Probability of bioequivalence at stage 1 =", 

unlist(p["pbioequivalence_s1", ]),"\n", 

        "Studies in stage 2 =", paste0(unlist(p["pct_s2", ]),"%\n"), 

        names(p["nperc",][[1]]), "percentiles of N =", 

        paste(unlist(p["nperc", ]), collapse=", "),"\n", 

        "max.iter =", max_iter, "\n\n" 

    ) 

  } 

  if (print == FALSE) { 

    pct <- as.numeric(unlist(p["nperc", ], use.names=FALSE)) 

    res <- list(type = mt, alpha = alpha, CV = CV, n1 = n1, GMR = GMR, 

        min.n2 = min.n2, Nmax = Nmax, targetpower = targetpower, 

        alpha1 = max_T1E$alpha1, alpha2 = max_T1E$alpha2, 

        theta1 = round(unlist(res_T1E["theta1", ][1]), 4), 

        theta2 = round(unlist(res_T1E["theta2", ][1]), 4), 

        pmethod = unlist(p["pmethod", ]), 

        TIE = max_T1E$pbioequivalence[1], 

        loc.CV = max_T1E$CV,loc.n1 = max_T1E$n1, 

        pbioequivalence = as.numeric(unlist(p["pbioequivalence", ])), 

        pbioequivalence_s1 = as.numeric(unlist(p["pbioequivalence_s1", ])), 

        pct_s2 = as.numeric(unlist(p["pct_s2", ])), 

        nperc5 = pct[1], median = pct[2], nperc95 = pct[3], 

        max.iter = max_iter) 

    return(res) 

  } 

} # end of t1e.tsd() 
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Function Potvin 

Potvin function invokes the function ‘power.tsd’ (from repository CRAN) (40). This 

function assesses the probability of declaring bioequivalence. This probability can 

sometimes return a ‘power’ or a ‘type I error’. If theta0 <= 0.8 o theta0 >= 1.25, the 

function returns the probability of a type I error. If 0.8 < theta0 < 1.25 each 

bioequivalence claim is true and the result corresponds to the power. So, ‘power.tsd’  

allows assessing the power curve, i.e. the likelihood of rejecting H0 (i.e. 

bioinequivalence) as a function of theta0. This probability is estimated through 

simulations (by means of generating statistics, not subjects) as the proportion of 

bioequivalence claims in ‘nsims’ simulations 

 

# Power.tsd function 

# d is a dataframe with alpha1, alpha2, n1, GMR, CV, min.n2 

potvin <- function(type, d, Nmax, targetpower, setseed, nsims, pmethod 

= "nct", theta0=theta0, theta1=theta1, theta2=theta2, npct = c(0.05, 

0.5, 0.95)) { # uses FUNCTION power.tsd 

  # BY LBioequivalenceS D., LANG B., SCHUETZ H. 

  sapply(1:nrow(d), function(x) { 

    return(power.tsd(method = type, 

                     alpha = c(d[x, "alpha1"], d[x, "alpha2"]), 

                     n1  = d[x, "n1"], 

                     GMR = d[x, "GMR"], 

                     CV  = d[x, "CV"], 

                     targetpower = targetpower, 

                     pmethod = pmethod, 

                     Nmax = Nmax, 

                     min.n2 = d[x, "min.n2"], 

                     # theta0: True unknown GMR (t_effect); 

                     # theta0=theta2 for T1E; theta0=GMR for power 

                     theta0 = theta0, 

                     theta1 = theta1, 

                     theta2 = theta2, 

                     npct = npct, 

                     nsims = nsims, 

                     setseed = setseed)) 

  } 

  ) 

} 
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Function inv.reg 

Type I errors are simulated/obtained for each proposed significance levels (α1, α2) by 

means of the function ‘power.tsd’ (from repository CRAN) (40). Then, we fit linear and 

quadratic regression models where the independent variable is the simulated type I 

error which is adjusted by (α1, α2) pairs, and we choose the ‘best’ model based on the 

minimum Akaike Information Criterion (AIC). To obtain the adjusted alpha ‘adj_alpha’, 

we isolate (α1, α2) for T1E = 5%. For example, if e.g. if α1 = α2 and the min(AIC) is 

obtained from the linear regression model, then ‘alpha.adj’ is obtained as: 

𝛼𝑎𝑑𝑗1 = 𝛼𝑎𝑑𝑗2 =
(0.05−𝛽̂0)

𝛽̂1
  

 

#LOOKING FOR A ALPHA AT EACH STAGE WHOSE T1E < alpha (BASED ON 

MIN(AIC)) USING INVERSE REGRESSION 

inv.reg <- function(alpha, alpha1, alpha2, res_new_d_T1E) { 

  mod1 <- lm(T1E ~ alpha2, data = res_new_d_T1E)   # linear 

  mod2 <- lm(T1E ~ alpha2 + I(alpha2^2), data = res_new_d_T1E)  

#quadratic 

if (extractAIC(mod1, k=2)[2] <= extractAIC(mod2, k=2)[2]) { # select  

#the better model 

    #cat("B0 =", coef(mod1)[[1]], "B1 =", coef(mod1)[[2]], "\n") 

    alpha.adj <- (alpha-coef(mod1)[[1]])/coef(mod1)[[2]] 

  } else { 

#cat("B0 =", coef(mod2)[[1]], "B1 =", coef(mod2)[[2]],  

     "B2 =", coef(mod2)[[3]], "\n") 

det <- (coef(mod2)[[2]]/2/coef(mod2)[[3]])^2-(coef(mod2)[[1]]- 

        alpha)/coef(mod2)[[3]] 

    #cat("det =", det, "sqrt.det =", sqrt(det), "\n") 

    if (det > 0) { 

      if (coef(mod2)[[3]] < 0) { 

        alpha.adj <- -(coef(mod2)[[2]]/2/coef(mod2)[[3]]+sqrt(det)) 

      } else { 

        alpha.adj <- -(coef(mod2)[[2]]/2/coef(mod2)[[3]]-sqrt(det)) 

      } 

    } else { 

      alpha.adj <- (alpha-coef(mod1)[[1]])/coef(mod1)[[2]] 

    } 

  } #end else 

  #if (alpha.adj > alpha) alpha.adj <- alpha/2 

  if (alpha.adj < 0) alpha.adj <- alpha/2 

  if (alpha1 == alpha2) { 

    return(matrix(c(alpha.adj, alpha.adj), nrow = 1, ncol = 2)) 

  } else { 

    return(matrix(c(alpha1, alpha.adj), nrow = 1, ncol = 2)) 

  } 

} 
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Examples 

#Examples: 

t1e.tsd(n1 = 24, CV = c(0.3, 0.4, 0.5, 0.6), GMR = 0.95, type = 1) 

t1e.tsd(n1 = 24, CV = c(0.3, 0.4, 0.5, 0.6), GMR = 0.95, type = 1, 

setseed=FALSE)  

t1e.tsd(n1 = 24, CV = c(0.3, 0.4, 0.5, 0.6), GMR = 0.95, type = 1, 

setseed=FALSE) 

t1e.tsd(n1 = 24, CV = 0.6, GMR = 0.95, Nmax = 4000, type = 1, 

setseed=FALSE) 

t1e.tsd(n1 = 36, CV = 0.4, GMR = 0.95, Nmax = 4000, type = 1, 

setseed=FALSE) 

t1e.tsd(n1 = 12, CV = 0.8, GMR = 0.95, Nmax = 4000, targetpower = 0.8, 

type = 1, alpha = 0.05, setseed=FALSE) 
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Appendix 3: Reproducible Research (RR)  

We conducted a validation process to ensure that the code and results shown in the 

article published in the Biometrical Journal are absolutely reproducible. So, this article 

earned an open data badge “Reproducible Research” for making publicly available the 

code necessary to reproduce the reported results. The results reported in the article 

could fully be reproduced. 

We followed Wiley’s Guidelines for Code and Data submissions Specific on 

Reproducible research (RR): 

https://onlinelibrary.wiley.com/pb-assets/assets/15214036/RR_Guideline-

1509621643000.pdf 

We submitted a README.txt document with the following content: 

Source code for manuscript "An iterative method to protect the type I error rate in 
bioequivalence studies under two-stage adaptive 2x2 crossover designs" 
by Eduard Molins, Detlew Labes, Helmut Schutz, Erik Cobo, Jordi Ocaña. 
 
The code has been written by by Eduard Molins, Detlew Labes, Helmut Schutz, Jordi 
Ocaña. Please, contact molins.eduard@gmail.com for any comment. 
 
R version 3.6.0 (2019-04-26) 
Platform: x86_64-apple-darwin15.6.0 (64-bit) 
Running under: macOS  10.15.4 
 
Matrix products: default 
BLAS:   
/System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.fr
amework/Versions/A/libBLAS.dylib 
LAPACK: 
/Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib 
 
Random number generation: 
 RNG:     Mersenne-Twister  
 Normal:  Inversion  
 Sample:  Rounding  
  
locale: 
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 
 
attached base packages: 
[1] stats     graphics  grDevices utils     datasets  methods   base      

https://onlinelibrary.wiley.com/pb-assets/assets/15214036/RR_Guideline-1509621643000.pdf
https://onlinelibrary.wiley.com/pb-assets/assets/15214036/RR_Guideline-1509621643000.pdf
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other attached packages: 
[1] reshape2_1.4.3    reshape_0.8.8     Power2Stage_0.5.2 
 
loaded via a namespace (and not attached): 
 [1] cubature_2.0.3     compiler_3.6.0     magrittr_1.5       plyr_1.8.4         
 [5] tools_3.6.0        PowerTOST_1.4-7    Rcpp_1.0.1         TeachingDemos_2.10 
 [9] mvtnorm_1.0-10     stringi_1.4.3      stringr_1.4.0 
 
 
In addition, functions for Monte Carlo simulations (t1e.tsd.R, potvin.R, inv.reg.R) are 
provided. These functions are placed in code\functions\... 
 
The working directory should be set to '~/code'. To reproduce the results presented in 
the manuscript, just run the main analysis file ‘Analyses_tsd_simulation.R’. All tables 
and Figure 3 (in this thesis Figure 10) are stored in the \results subfolder. 
 
Information on the data set can be found in data\README_tsd_t1e_bimj.docx. 
 

In addition, a \data subfolder was submitted with a ‘README_tsd_t1e_bimj.docx’ file 

containing the following information: 

 

This function calculates the ‘empiric’ type 1 error and power of 2-stage bioequivalence 
studies according to a modified Potvin et al. with max(N = N1+ N2) = 150, and N2 ≥ 
N1/2, via simulations. But instead of simulating subject data, the statistics point 
estimate at stage 1 (pe1), mean square error at stage 1 (MSE1) or intra-subject 
residual variance calculated from CV, and point estimate at stage 2, and sum of square 
at stage 2 (SS2) are simulated via their associated distributions (normal and 
χ2 distributions). 
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Reproducible Research (RR) - Analyses_tsd_simulation.R 

This is the R code approved for Reproducible Research (RR) in the Biometrical Journal. 

Note that below there are the Table and Figure numbers as appearing in the journal.  

But, Table and Figure numbers have been accommodated in this thesis as follow: 

Correspondence between Table and Figure numbers published in the Biometrical Journal 

and those used in this thesis 

Article number Thesis number 

Table 1 Table 6 

Table 2 Table 7 
Table 3 Table 8 

Table4 Table 9 

Table 5 Table 10 

Table 6 Table 11 

Figure 1 Figure 8 

Figure 2 Figure 9 

Figure 3 Figure 10 

 
 
###################################################################### 

#                                                                                      

#   Filename    :         Analyses_tsd_simulation.R         

#   Project     :         BiomJ article "An iterative method to 

protect the type I error rate in bioequivalence studies under two-

stage adaptive 2×2 crossover designs"                                                              

#   Authors     :         E. Molins, D. Labes, H. Schütz, J. Ocaña                                                                 

#   Date        :         2020-08-24 

#   Purpose     :         As described in BiomJ article      

#   R Version   :         R version 3.6.0 (2019-04-26)# 

#   Input data files  :   Simulation-based (see: 

data\README_tsd_t1e_Biomj.txt)                                                            

#   Output data files :   Table1, Table2, Table3, Table4, Table5, 

Table6, and Figure3 (see: results\)# 

#   Required R packages : Power2Stage, t1e.tsd, inv.reg, potvin 

# 

###################################################################### 

 

rm(list = ls()) 

######################################################################

## 

## Code to obtain the resutls of Tables 1, 2, 3, 4, 5, 6 and Figure 3 

## 

###################################################################### 

## Working directory 

## The current working directory is the folder code/ 

 

## source function definitions: 

library(Power2Stage)  # Function power.tsd() is loaded 

 

source("functions/t1e.tsd.R")   # Iterative method to calculate 

significance levels of two-stage designs (Figure 2) 

source("functions/inv.reg.R")   # Inverse regression for selection 

linear or quadric regression models 
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source("functions/potvin.R")    # Function power.tsd() calculate type 

I error or power  

 

require(reshape)  # For functions melt() and cast() 

require(reshape2) # For functions melt() and cast() 

 

################### 

###   Table 1   ### 

################### 

# Adjusted α1 and α2 in both stages preserving the overall T1E below 
5% 

 

type <- c(1,2) 

n1 <- c(12, 24) 

CV <- c(1,2,3,4) 

CV_range <- rbind(seq(0.1,0.19,0.01), seq(0.2,0.29,0.01), 

seq(0.3,0.39,0.01), seq(0.4,0.49,0.01)) 

d <- cbind(expand.grid(CV = CV, n1 = n1, type = type), CV_range) 

 

pBioequivalence <- sapply(1:nrow(d), function(x) { 

        return(t1e.tsd(n1 = d[x, "n1"], CV = as.numeric(d[x,4:13]), 

                       GMR = 0.95, targetpower = 0.8, type = d[x, 

"type"], print=FALSE)) 

}) 

 

res <- pBioequivalence[c("n1","CV","alpha1", 

"alpha2","TIE","pbioequivalence_s1","pct_s2","pbioequivalence","nperc5

","median","nperc95"),] 

#save(res, file = "../results/Table1.RDa") 

 

load("../results/Table1.RDa") 

 

res_table1 <- data.frame(t(res)) 

res_table11 <- cbind(CV_id = rep(1:4,4), res_table1) 

res_table12 <- res_table11[,c(2,1,4:length(res_table11))]  

sapply(res_table12, mode) 

 

res_table13 <- data.frame(matrix(unlist(res_table12), 

ncol=length(res_table12), byrow=F)) 

colnames(res_table13) <- c("n1", "CV_id", "alpha1", "alpha2", "TIE", 

"pbioequivalence_s1", "pct_s2", "pbioequivalence", "nperc5", "median", 

"nperc95") 

res_table13[c("pbioequivalence_s1", "pbioequivalence")] <- 

round(res_table13[c("pbioequivalence_s1", "pbioequivalence")]*100, 2) 

res_table13[c("pct_s2")] <- round(res_table13[c("pct_s2")], 2) 

 

res_table13$CV_id <- sapply(res_table13$CV_id, function(y) if (y == 1)  

                            { "0.10-0.19"} else if (y == 2)  

                            { "0.20-0.29"} else if (y == 3)  

                            { "0.30-0.39"} else { "0.40-0.49"}) 

 

res_table13 

 

################### 

###   Table 2   ### 

################### 

# Type 1 method to adjust α2 for a fixed α1 preserving the overall T1E 
below 5% 

 

n1 <- c(12, 24) 

CV <- seq(0.2,0.29,0.01) 
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alpha <- rbind(c(0.0294, 0.0300), c(0.0320, 0.0294)) 

type <- 1 

d <- merge(n1, alpha) 

colnames(d) <- c("n1", "alpha1", "alpha2") 

   

pBioequivalence <- sapply(1:nrow(d), function(x) { 

return(t1e.tsd(n1 = d[x, "n1"], 

               CV = CV,  

               alpha1 = d[x, "alpha1"],  

               alpha2 = d[x, "alpha2"], 

                 GMR = 0.95, 

                 targetpower = 0.8,  

                 type = 1,  

                 print=FALSE)) 

}) 

 

res <- pBioequivalence[c("n1", 

            "CV", 

            "alpha1", 

            "alpha2", 

            "TIE", 

            "pbioequivalence_s1", 

            "pct_s2", 

            "pbioequivalence", 

            "nperc5", 

            "median", 

            "nperc95"),] 

#save(res, file = "../results/Table2.RDa") 

 

load("../results/Table2.RDa") 

 

res_table2 <- data.frame(t(res)) 

 

res_table21 <- cbind(CV_id = rep(1,4), res_table2) 

res_table22 <- res_table21[,c(2,1,4:length(res_table21))]  

sapply(res_table22, mode) 

 

res_table23 <- data.frame(matrix(unlist(res_table22), 

ncol=length(res_table22), byrow=F)) 

colnames(res_table23) <- c("n1", "CV_id", "alpha1", "alpha2", "TIE",  

                           "pbioequivalence_s1", "pct_s2", 

"pbioequivalence", "nperc5",  

                           "median", "nperc95") 

res_table23[c("pbioequivalence_s1", "pbioequivalence")] <- 

round(res_table23[c("pbioequivalence_s1",  

                                         "pbioequivalence")]*100, 2) 

res_table23[c("pct_s2")] <- round(res_table23[c("pct_s2")], 2) 

 

res_table23$CV_id <- sapply(res_table23$CV_id,  

                            function(y) if (y == 1) "0.20-0.29")  

 

res_table23 

 

################### 

###   Table 3   ### 

################### 

# Empiric type 1 error and power for CV_w at 0.05 below and above LB 

and UB 

 

CV <- rep(c(0.10 - 0.05, 0.19 + 0.05, 0.20 - 0.05, 0.29 + 0.05, 0.30 –  

            0.05,0.39 + 0.05, 0.40 - 0.05, 0.49 + 0.05),4) 
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alpha1 <- c(rep(0.0299,2), rep(0.0307,2), rep(0.0303,2),          

            rep(0.0377,2), rep(0.0381,2), rep(0.0306,2),  

            rep(0.0302,2), rep(0.0306,2), rep(0.0280,2),  

            rep(0.0280,2), rep(0.0295,2), rep(0.0377,2), 

            rep(0.0314,2), rep(0.0301,2), rep(0.0303,2),  

            rep(0.0306,2)) 

alpha2 <- alpha1 

method <- c(rep("B",16),rep("C",16)) 

n1 <- rep(c(rep(12,8), rep(24,8)),2) 

Nmax <- rep(150, length(CV)) 

min.n2 = n1/2 

theta0_1.25 <- rep(1.25, length(CV)) 

theta0_0.95 <- rep(0.95, length(CV)) 

 

d_1.25 <- data.frame(method, n1 = n1, alpha1 = alpha1, alpha2 =  

                     alpha2, GMR = 0.95, CV = CV, Nmax = Nmax,  

                     min.n2 = min.n2, theta0 = theta0_1.25) 

d_0.95 <- data.frame(method, n1 = n1, alpha1 = alpha1,  

                     alpha2 = alpha2, GMR = 0.95, CV = CV, 

                     Nmax = Nmax, min.n2 = min.n2,  

                     theta0 = theta0_0.95) 

 

pBioequivalence_1.25 <- sapply(1:nrow(d_1.25),  

                    function(x) { 

                    return(power.tsd(method = as.character(d_1.25[x,  

                    "method"]), alpha = c(d_1.25[x, "alpha1"],  

                    d_1.25[x, "alpha2"]), 

                    n1  = d_1.25[x, "n1"], GMR = d_1.25[x, "GMR"], 

                    CV  = d_1.25[x, "CV"], 

                   targetpower = 0.8, pmethod = "nct", Nmax = 

d_1.25[x, "Nmax"], min.n2 = d_1.25[x, "min.n2"], 

                   theta0 = d_1.25[x, "theta0"], theta1 = 0.8,  

                   theta2 = 1.25, npct = c(0.05, 0.5, 0.95), 

                   nsims = 10^6, setseed = 1234567)) 

}) 

Bioequivalence_1.25 <- pBioequivalence_1.25 

Bioequivalence_1.25 <- unlist(Bioequivalence_1.25["pbioequivalence",]) 

t1e.table3 <- cbind(d_1.25,Bioequivalence_1.25) 

 

pBioequivalence_0.95 <- sapply(1:nrow(d_0.95), function(x) { 

return(power.tsd(method = as.character(d_0.95[x, "method"]),  

                 alpha = c(d_0.95[x, "alpha1"], 

                 d_0.95[x, "alpha2"]), 

                   n1  = d_0.95[x, "n1"], 

                   GMR = d_0.95[x, "GMR"], 

                   CV  = d_0.95[x, "CV"], 

                   targetpower = 0.8,  

                   pmethod = "nct",  

                   Nmax = d_0.95[x, "Nmax"], 

                   min.n2 = d_0.95[x, "min.n2"], 

                   theta0 = d_0.95[x, "theta0"],   

                   theta1 = 0.8, theta2 = 1.25,  

                   npct = c(0.05, 0.5, 0.95), 

                   nsims = 10^5, setseed = 1234567)) 

}) 

 

Bioequivalence_0.95 <- pBioequivalence_0.95 

Bioequivalence_0.95 <- unlist(Bioequivalence_0.95["pbioequivalence",]) 

pow.table3 <- cbind(d_0.95,Bioequivalence_0.95) 
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t3 <- cbind(t1e.table3, bioequivalence_0.95 = 

pow.table3$Bioequivalence_0.95) 

#save(t3, file = "../results/Table3.RDa") 

 

load("../results/Table3.RDa") 

 

res_table3 <- data.frame(t3) 

res_table31 <- subset(res_table3, select = c(n1, alpha1, alpha2,  

                      method)) 

res_table31$method <- sapply(res_table31$method,  

                      function(y) if (y == "B") "Type 1"  

                      else "Type 2") 

res_table31$id <- sort(rep(1:16,2)) 

res_table31 <- unique(res_table31) 

 

# Ordering Type I error and Power 

res_table32 <- cbind(id = sort(rep(1:16,2)), CV_id = rep(1:2,16), 

subset(res_table3, select = c(CV, bioequivalence_1.25, 

bioequivalence_0.95))) 

res_table33 <- melt(res_table32, id = c("id","CV_id", "CV")) 

res_table34 <- as.data.frame(cast(res_table33, id ~ variable + CV_id)) 

colnames(res_table34) <- c("id", "t1e_CV_LB-

0.05","t1e_CV_UB+0.05","power_CV_LB-0.05","power_CV_UB+0.05") 

res_table34[c("t1e_CV_LB-0.05","t1e_CV_UB+0.05")] <- 

round(res_table34[c("t1e_CV_LB-0.05","t1e_CV_UB+0.05")], 4) 

res_table34[c("power_CV_LB-0.05","power_CV_UB+0.05")] <- 

round(res_table34[c("power_CV_LB-0.05", "power_CV_UB+0.05")]*100, 2) 

 

# Ordering CV 

res_table35 <- cbind(id = sort(rep(1:16,2)), CV_id = rep(1:2,16), 

res_table3["CV"]) 

res_table36 <- melt(res_table35, id = c("id","CV_id")) 

res_table37 <- as.data.frame(cast(res_table36, id ~ variable + CV_id)) 

c <- 0.05 # According to CV at 0.05 above and below the upper and 

lower CV bounds (see the article) 

res_table37[c("CV_1","CV_2")] <- c(res_table37["CV_1"] + c, 

res_table37["CV_2"] - c) 

colnames(res_table37) <- c("id","CV_LB","CV_UB") 

 

# Merging data.frames 

res_table38 <- merge(res_table37, res_table34, by = "id") 

res_table39 <- merge(res_table31, res_table38, by = "id") 

res_table39 <- res_table39[, c(5,2,6,7,3,4,8,9,10,11)] 

 

res_table39 

 

################### 

###   Table 4   ### 

################### 

# Xu et al. Optimal TSD designs of methods E and F and our methodology 

(type 1 and 2 methods) 

 

t1.n1.18 <- t1e.tsd(n1 = 18, CV = c(0.1, 0.15, 0.20, 0.25, 0.30),  

                    GMR = 0.95, targetpower = 0.8, type = 1,  

                    alpha = 0.05, print=FALSE) 

t1.n1.48 <- t1e.tsd(n1 = 48,  

                    CV = c(0.30, 0.35, 0.40, 0.45, 0.50, 0.55),  

                    GMR = 0.95, targetpower = 0.8, type = 1,  

                    alpha = 0.05, print=FALSE) 

t2.n1.18 <- t1e.tsd(n1 = 18, CV = c(0.1, 0.15, 0.20, 0.25, 0.30), 

                    GMR = 0.95, targetpower = 0.8, type = 2,  
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                    alpha = 0.05, print=FALSE) 

t2.n1.48 <- t1e.tsd(n1 = 48,  

                    CV = c(0.30, 0.35, 0.40, 0.45, 0.50, 0.55), 

                    GMR = 0.95, targetpower = 0.8, type = 2,  

                    alpha = 0.05, print=FALSE) 

t4 <- cbind(t1.n1.18, t1.n1.48, t2.n1.18, t2.n1.48) 

#save(t4, file = "../results/Table4.RDa") 

 

load("../results/Table4.RDa") 

 

# Taken from Table I - Article: Xu, J., Audet, C., DiLiberti, C. E., 

Hauck, W. W., Montague, T. H., Parr, A. F., Potvin, D., and 

Schuirmann, D. J.  (2016).  

# Optimal adaptive sequential designs for crossover bioequivalence 

studies. 

# Pharmaceutical Statistics 15, 15-27.  

Xu_E_18_alpha1 <- 0.0249 

Xu_E_18_alpha2 <- 0.0363 

Xu_E_48_alpha1 <- 0.0254 

Xu_E_48_alpha2 <- 0.0357 

Xu_F_18_alpha1 <- 0.0248 

Xu_F_18_alpha2 <- 0.0364 

Xu_F_48_alpha1 <- 0.0259 

Xu_F_48_alpha2 <- 0.0349 

Xu_E_18_f <- "93.74 - 106.67" 

Xu_E_48_f <- "93.05 - 107.47" 

Xu_F_18_f <- "94.92 - 105.35" 

Xu_F_48_f <- "93.50 - 106.95" 

 

Xu <- rbind(c(Xu_E_18_alpha1, Xu_E_48_alpha1), 

            c(Xu_E_18_alpha2, Xu_E_48_alpha2), 

            c(Xu_E_18_f, Xu_E_48_f), 

            c(Xu_F_18_alpha1, Xu_F_48_alpha1), 

            c(Xu_F_18_alpha2, Xu_F_48_alpha2), 

            c(Xu_F_18_f, Xu_F_48_f)) 

 

# Molins et. all: Obtained using our methodology 

type1_18_alpha1 <- t4["alpha1",][1] 

type1_18_alpha2 <- t4["alpha2",][1] 

type1_48_alpha1 <- t4["alpha1",][2] 

type1_48_alpha2 <- t4["alpha2",][2] 

type2_18_alpha1 <- t4["alpha1",][3] 

type2_18_alpha2 <- t4["alpha2",][3] 

type2_48_alpha1 <- t4["alpha1",][4] 

type2_48_alpha2 <- t4["alpha2",][4] 

 

Molins <- rbind(c(type1_18_alpha1, type1_48_alpha1), 

                c(type2_18_alpha1, type2_48_alpha1)) 

 

# This is to check the CV values used in Molins et al.: From 0.1 to 

0.3 and from 0.3 to 0.55, for n1 = 18 and n2 = 48, respectively 

t4_CV <- as.data.frame(unlist(t4["CV", ])) 

 

# Merging Xu et al. and Molins et al. results 

t4_Xu_Molins <- as.data.frame(rbind(Xu, Molins)) 

colnames(t4_Xu_Molins) <- c("CVw 0.1-0.3 & N1=18", "CVw 0.3-0.55 & 

N1=48") 

rownames(t4_Xu_Molins) <- c("Xu_E_alpha1", 

                            "Xu_E_alpha2", 

                            "Xu_E_f", 

                            "Xu_F_alpha1", 
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                            "Xu_F_alpha2", 

                            "Xu_F_f", 

                            "Molins_Type1", 

                            "Molins_Type2") 

 

t4_Xu_Molins 

     

################### 

###   Table 5   ### 

################### 

# Percentiles of N (5th, 50th, 95th) and % of Studies in Stage 2 

 

#Percentiles N and % of Studies in Stage 2 

CV <- c(seq(0.10,0.30,0.05), seq(0.30,0.55,0.05)) 

method <- c(rep("B",length(CV)),rep("C",length(CV))) 

n1 <- c(rep(18,5),rep(48,6)) 

min.n2 <- sapply(n1/2, function(y) if (y %% 2 != 0) y+y%%2 else y) 

alpha <- c(rep(0.0303,5), rep(0.0305,6), rep(0.0331,5), rep(0.0331,6)) 

d <- data.frame(method = method, CV = CV, GMR = 0.95, n1 = n1, 

                alpha1 = alpha, alpha2 = alpha, 

                Nmax = 150, min.n2 = min.n2, theta0 = 0.95) 

 

pBioequivalence <- sapply(1:nrow(d),  

               function(x) { 

               return(power.tsd(method = as.character(d[x, "method"]),  

                      alpha = c(d[x, "alpha1"], d[x, "alpha2"]), 

                      n1 = d[x, "n1"], GMR = d[x, "GMR"],  

                      CV  = d[x, "CV"], 

                      targetpower = 0.8, pmethod = "nct",  

                      Nmax = d[x, "Nmax"], min.n2 = d[x, "min.n2"], 

                      theta0 = d[x, "theta0"], theta1 = 0.8,  

                      theta2 = 1.25, npct = c(0.05, 0.5, 0.95), 

                      nsims = 10^6, setseed = 1234567)) 

}) 

Bioequivalence_0.95 <- pBioequivalence 

Bioequivalence_nperc <- 

data.frame(matrix(unlist(Bioequivalence_0.95["nperc",]), 

nrow=length(Bioequivalence_0.95["nperc",]), byrow=T)) 

Bioequivalence_st2 <- unlist(Bioequivalence_0.95["pct_s2",]) 

pow.table5 <- data.frame(d,Bioequivalence_nperc, bioequivalence_st2) 

#save(pow.table5, file = "../results/Table5.RDa") 

 

load("../results/Table5.RDa") 

 

# Taken from Table II - Article: Xu, J., Audet, C., DiLiberti, C. E., 

#Hauck, W. W., Montague, T. H., Parr, A. F., Potvin, D., and 

#Schuirmann, D. J.  (2016).  

# Optimal adaptive sequential designs for crossover bioequivalence 

#studies. 

# Pharmaceutical Statistics 15, 15-27. 

Xu  <- as.data.frame(rbind(cbind(n1 = 18, CV = 0.10,  

                     MethodE = '(18,18,18) 0%',  

                     MethodF = '(18,18,18) 0%'), 

                     cbind(n1 = 18, CV = 0.15,  

                     MethodE = '(18,18,18) 2.4%',  

                     MethodF = '(18,18,18) 1.3%'), 

                     cbind(n1 = 18, CV = 0.20,  

                     MethodE = '(18,18,32) 24.1%',  

                     MethodF = '(18,18,32) 21.8%'), 

                     cbind(n1 = 18, CV = 0.25,  

                     MethodE = '(18,24,42) 54.2%',  
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                     MethodF = '(18,24,42) 53.7%'), 

                     cbind(n1 = 18, CV = 0.30,  

                     MethodE = '(18,42,42) 75.8%',  

                     MethodF = '(18,42,42) 76.9%'), 

                     cbind(n1 = 48, CV = 0.30, 

                     MethodE = '(48,48,52) 7.6%',  

                     MethodF = '(48,48,48) 3.6%'), 

                     cbind(n1 = 48, CV = 0.35, 

                     MethodE = '(48,48,74) 28.2%', 

                     MethodF = '(48,48,74) 22.8%'), 

                     cbind(n1 = 48, CV = 0.40,  

                     MethodE = '(48,48,98) 46.2%',  

                     MethodF = '(48,48,98) 44.0%'), 

                     cbind(n1 = 48, CV = 0.45,  

                     MethodE = '(48,80,124) 61.3%',  

                     MethodF = '(48,80,124) 60.5%'), 

                     cbind(n1 = 48, CV = 0.50,  

                     MethodE = '(48,104,150) 74.3%',  

                      MethodF = '(48,104,152) 73.6%'), 

                      cbind(n1 = 48, CV = 0.55,  

                      MethodE = '(48,128,176) 85.2%',  

                      MethodF = '(48,128,180) 84.3%'))) 

 

# Molins et. all: Obtained using our methodology 

pow.table5$method <- as.integer(sapply(pow.table5$method, function(y) 

if (y == "B") 1 else 2)) 

names(pow.table5)[1]<-paste("id") 

 

pow.table51 <- cbind(CV_id = rep(1:11,2), pow.table5) 

pow.table52 <- subset(pow.table51, select = c(n1, id, CV_id, CV)) 

pow.table53 <- subset(pow.table51, select = c(id, CV_id, X1, X2, X3, 

bioequivalence_st2)) 

 

pow.table54 <- melt(pow.table53, id = c("id", "CV_id")) 

pow.table54 <- pow.table54[order(pow.table54$id, pow.table54$CV_id),] 

pow.table55 <- cast(pow.table54, id + CV_id ~ variable) 

 

pow.table56 <- merge(pow.table52, pow.table55, by = c("id", "CV_id")) 

pow.table56 <- pow.table56[order(pow.table56$id, pow.table56$CV_id),] 

pow.table57 <-pow.table56[,c(1,3:8)] 

row.names(pow.table57) <- NULL 

colnames(pow.table57) <- c("method_type", "n1", "CV",  

                           "P_N_0.05", "P_N_0.5", "P_N_0.95",           

                           "per_ST2") 

Molins <- pow.table57 

 

Xu 

Molins 

 

################### 

###   Table 6   ### 

################### 

# Power and mean sample size with constraint N ≤ 4000 for HVD 

 

t1e.tsd(n1 = c(12,24,36), CV = seq(0.4,0.8,0.01), GMR = 0.95, Nmax = 

4000, targetpower = 0.8, type = 1, alpha = 0.05) 

 

res <- power.tsd(method = "B", alpha0 = 0.05,  

                alpha = c(0.0302, 0.0302),  

                n1 = 36, GMR = 0.95, CV = 0.4,  

                targetpower = 0.8, pmethod = "nct", 
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                Nmax = 4000, min.n2 = 18, theta0 = 0.95,  

                theta1 = 0.8, theta2 = 1.25, 

                npct = c(0.05, 0.5, 0.95), nsims = 10^6) 

res_1 <- c(n1=36, CV=0.4, unlist(res[c("pbioequivalence","nmean")])) 

 

res <- power.tsd(method = "B", alpha0 = 0.05,  

                 alpha = c(0.0302, 0.0302),  

                 n1 = 24, GMR = 0.95, CV = 0.6, 

                 targetpower = 0.8, pmethod = "nct", 

                 Nmax = 4000, min.n2 = 12, theta0 = 0.95,  

                 theta1 = 0.8, theta2 = 1.25, 

                 npct = c(0.05, 0.5, 0.95), nsims = 10^6) 

res_2 <- c(n1=24, CV=0.6, unlist(res[c("pbioequivalence","nmean")])) 

 

res <- power.tsd(method = "B", alpha0 = 0.05,  

                 alpha = c(0.0302, 0.0302),  

                 n1 = 12, GMR = 0.95, CV = 0.8, targetpower = 0.8,  

                 pmethod = "nct", Nmax = 4000, min.n2 = 6,  

                 theta0 = 0.95, theta1 = 0.8, theta2 = 1.25, 

                 npct = c(0.05, 0.5, 0.95), nsims = 10^6) 

res_3 <- c(n1=12, CV=0.8, unlist(res[c("pbioequivalence","nmean")])) 

 

t6 <- rbind(res_1,res_2,res_3) 

#save(t6, file = "../results/Table6.RDa") 

 

load("../results/Table6.RDa") 

 

# Taken from Article: Maurer, W., Jones, B., and Chen, Y. (2018). 

#Controlling the type 1 error rate in two-stage sequential designs 

#when testing for average bioequivalence.  

# Statistics in Medicine 37, 1587-1607. 

# See Table 8 - Potvin et al. Method B, and Maurer, Jones, and Chen 

Maximum Combination Test (MCT) (w, w*): (0.5, 0.25) 

method <- c("Potvin", "Potvin", "Potvin") 

n1 <- c(36, 24, 12) 

CV <- c(0.4, 0.6, 0.8) 

power <- c(82, 77, 72) 

nmean <- c(67, 161, 257) 

Potvin <- data.frame(method, n1, CV, power, nmean, 

stringsAsFactors=FALSE) 

rm(method, n1, CV, power, nmean) 

 

method <- c("Maurer", "Maurer", "Maurer") 

n1 <- c(36, 24, 12) 

CV <- c(0.4, 0.6, 0.8) 

power <- c(81, 80, 76) 

nmean <- c(67, 180, 325) 

Maurer <- data.frame(method, n1, CV, power, nmean, 

stringsAsFactors=FALSE) 

rm(method, n1, CV, power, nmean) 

 

# Molins et al.: : Obtained using our methodology 

Molins <- as.data.frame(t6) 

Molins$pbioequivalence <- Molins$pbioequivalence*100 

names(Molins)[3] <- "power" 

Molins[c("power","nmean")] <- round(Molins[c("power","nmean")], 0) 

row.names(Molins) <- NULL 

Molins <- cbind(method = 'Molins', Molins) 

 

t62 <- merge(Potvin, Maurer, by = c("n1", "CV")) 

t63 <- merge(t62, Molins, by = c("n1", "CV")) 
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t63 <- t63[order(-t63$n1),] 

colnames(t63) <- c("n1", "CV", 

                    "Pot.method", "Pot.power", "Pot.nmean", 

                    "Mau.method", "Mau.power", "Mau.nmean", 

                    "Mol.method", "Mol.power", "Mol.nmean") 

row.names(t63) <- NULL 

 

t63 

 

################### 

###   Figure 1  ### 

################### 

# R Studio was not used 

 

################### 

###   Figure 2  ### 

################### 

# R Studio was not used 

 

################### 

###   Figure 3  ### 

################### 

# Power assessment based on true GMR and CV_w with N1 = 12 and type 1 

methodology 

# The seed for simulations is the same, i.e. 1234567. 

 

t_e <- seq(0.81,1.24,0.01) 

cv_w <- seq(.1,.49,.01) 

type <- "B" 

n1 <- 12 

min.n2 <- n1/2 

 

d <- cbind(expand.grid(n1 = n1, t_e = t_e, cv_w = cv_w), min.n2 = 

min.n2)  

 

potvin <- function(type, alpha1, alpha2, d) { 

  sapply (1:nrow(d), function(x) { 

    return(power.tsd(method = type, alpha = c(alpha1, alpha2), 

                     n1  = d[x, "n1"], GMR = d[x,"t_e"],  

                     CV  = d[x,"cv_w"], 

                     targetpower = 0.8, pmethod = "nct", 

                     Nmax = 150, min.n2 = d[x, "min.n2"], 

                     npct = c(0.05, 0.5, 0.95), nsims = 10^5,  

                     setseed = 1234567)) 

  } 

  ) 

} 

 

#0.0299 

result_0.0299 <- potvin(type = type, alpha1 = 0.0299,  

                        alpha2 = 0.0299, d) 

res_0.0299 <- cbind(d, alpha1 = 0.0299, alpha2 = 0.0299, power = 

unlist(result_0.0299["pbioequivalence",])) 

z.0.0299 <- matrix(res_0.0299$power, nrow = length(t_e),  

                   ncol = length(cv_w)) 

save(z.0.0299, file = "../results/Figure3_0.0299.RDa") 

 

pdf("../results/Figure3_0.0299.pdf", height = 5, width = 5) 

contour(x = seq(0.81,1.24, length.out = nrow(z.0.0299)),  

        y = seq(0.1,0.49, length.out = ncol(z.0.0299)),  

        z.0.0299, 
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        xlab = "GMR", 

        ylab = "CVw", 

        lwd = 1) 

title(main = "Figure3_0.0299") 

dev.off() 

 

#0.0307 

result_0.0307 <- potvin(type = type, alpha1 = 0.0307,  

                        alpha2 = 0.0307, d) 

res_0.0307 <- cbind(d, alpha1 = 0.0307, alpha2 = 0.0307,  

                    power = unlist(result_0.0307["pbioequivalence",])) 

z.0.0307 <- matrix(res_0.0307$power, nrow = length(t_e), 

                   ncol = length(cv_w)) 

save(z.0.0307, file = "../results/Figure3_0.0307.RDa") 

 

pdf("../results/Figure3_0.0307.pdf", height = 5, width = 5) 

contour(x = seq(0.81,1.24, length.out = nrow(z.0.0307)),  

        y = seq(0.1,0.49, length.out = ncol(z.0.0307)),  

        z.0.0307, 

        xlab = "GMR", 

        ylab = "CVw", 

        lwd = 1) 

title(main = "Figure3_0.0307") 

dev.off() 

 

#0.0294 and 0.0310 

result_0.0294_0.0310 <- potvin(type = type, alpha1 = 0.0294,  

                               alpha2 = 0.0310, d) 

res_0.0294_0.0310 <- cbind(d, alpha1 = 0.0294, alpha2 = 0.0310, 

                     power = 

unlist(result_0.0294_0.0310["pbioequivalence",])) 

z.0.0294_0.0310 <- matrix(res_0.0294_0.0310$power, nrow = length(t_e), 

ncol = length(cv_w)) 

save(z.0.0294_0.0310, file = "../results/Figure3_0.0294_0.0310.RDa") 

 

pdf("../results/Figure3_0.0294_0.0310.pdf", height = 5, width = 5) 

contour( x = seq(0.81,1.24, length.out = nrow(z.0.0294_0.0310)),  

         y = seq(0.1,0.49, length.out = ncol(z.0.0294_0.0310)),  

         z.0.0294_0.0310, 

         xlab = "GMR", 

         ylab = "CVw", 

         lwd = 1) 

title(main = "Figure3_0.0294_0.0310") 

dev.off() 

 

#0.0320 and 0.0279 

result_0.0320_0.0279 <- potvin(type = type, alpha1 = 0.0320,  

                               alpha2 = 0.0279, d) 

res_0.0320_0.0279 <- cbind(d, alpha1 = 0.0320, alpha2 = 0.0279,  

                         power = 

unlist(result_0.0320_0.0279["pbioequivalence",])) 

z.0.0320_0.0279 <- matrix(res_0.0320_0.0279$power,  

                          nrow = length(t_e), 

                          ncol = length(cv_w)) 

save(z.0.0320_0.0279, file = "../results/Figure3_0.0320_0.0279.RDa") 

 

pdf("../results/Figure3_0.0320_0.0279.pdf", height = 5, width = 5) 

contour(x = seq(0.81,1.24, length.out = nrow(z.0.0320_0.0279)),  

        y = seq(0.1,0.49, length.out = ncol(z.0.0320_0.0279)),  

        z.0.0320_0.0279, 

        xlab = "GMR", 
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        ylab = "CVw", 

        lwd = 1) 

title(main = "Figure3_0.0320_0.0279") 

dev.off() 

 

#Reading 4 individual plots 

load("../results/Figure3_0.0299.RDa") 

load("../results/Figure3_0.0320_0.0279.RDa") 

load("../results/Figure3_0.0307.RDa") 

load("../results/Figure3_0.0294_0.0310.RDa") 

 

#Individual plots 

# z.0.0299 

system2('open', args = c('-a Preview.app', 

'../results/Figure3_0.0299.pdf'), wait = FALSE) 

# z.0.0320_0.0279 

system2('open', args = c('-a Preview.app', 

'../results/Figure3_0.0320_0.0279.pdf'), wait = FALSE) 

# z.0.0307 

system2('open', args = c('-a Preview.app', 

'../results/Figure3_0.0307.pdf'), wait = FALSE) 

# z.0.0294_0.0310 

system2('open', args = c('-a Preview.app', 

'../results/Figure3_0.0294_0.0310.pdf'), wait = FALSE) 

 

#Combined plot (Figure 3) 

pdf("../results/Figure3.pdf") 

par(mfrow=c(2,2)) 

contour( x = seq(0.81,1.24, length.out = nrow(z.0.0299)),  

         y = seq(0.1,0.49, length.out = ncol(z.0.0299)),  

         z.0.0299, 

         xlab = "GMR", 

         ylab = "CVw", 

         lwd = 1) 

title(main = "Figure3_0.0299") 

contour( x = seq(0.81,1.24, length.out = nrow(z.0.0307)),  

         y = seq(0.1,0.49, length.out = ncol(z.0.0307)),  

         z.0.0307, 

         xlab = "GMR", 

         ylab = "CVw", 

         lwd = 1) 

title(main = "Figure3_0.0307") 

contour( x = seq(0.81,1.24, length.out = nrow(z.0.0294_0.0310)),  

         y = seq(0.1,0.49, length.out = ncol(z.0.0294_0.0310)),  

         z.0.0294_0.0310, 

         xlab = "GMR", 

         ylab = "CVw", 

         lwd = 1) 

title(main = "Figure3_0.0294_0.0310") 

contour( x = seq(0.81,1.24, length.out = nrow(z.0.0320_0.0279)),  

         y = seq(0.1,0.49, length.out = ncol(z.0.0320_0.0279)),  

         z.0.0320_0.0279, 

         xlab = "GMR", 

         ylab = "CVw", 

         lwd = 1) 

title(main = "Figure3_0.0320_0.0279") 

dev.off() 

 

system2('open', args = c('-a Preview.app', '../results/Figure3.pdf'), 

wait = FALSE) 
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###################################################################### 

## End Code to obtain the resutls of Tables 1, 2, 3, 4, 5, 6 and 

Figure 3 ## 

###################################################################### 

sessionInfo() 
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