
Off-the-grid: Fast and Effective Hyperparameter
Search for Kernel Clustering?

Bruno Ordozgoiti1 � and Llúıs A. Belanche Muñoz2

1 Aalto University, Finland <firstname>.<lastname>@aalto.fi
2 Universitat Politècnica de Catalunya, Spain

belanche@cs.upc.edu

Abstract. Kernel functions are a powerful tool to enhance the k-means
clustering algorithm via the kernel trick. It is known that the parameters
of the chosen kernel function can have a dramatic impact on the result. In
supervised settings, these can be tuned via cross-validation, but for clus-
tering this is not straightforward and heuristics are usually employed. In
this paper we study the impact of kernel parameters on kernel k-means.
In particular, we derive a lower bound, tight up to constant factors, be-
low which the parameter of the RBF kernel will render kernel k-means
meaningless. We argue that grid search can be ineffective for hyperpa-
rameter search in this context and propose an alternative algorithm for
this purpose. In addition, we offer an efficient implementation based on
fast approximate exponentiation with provable quality guarantees. Our
experimental results demonstrate the ability of our method to efficiently
reveal a rich and useful set of hyperparameter values.

Keywords: clustering · kernels · kernel k-means · hyperparameter tun-
ing · grid search.

1 Introduction

Clustering, the task of partitioning a given data set into groups of similar items,
is one of the central topics in data analysis. Among the plethora of existing tech-
niques for this purpose, k-means clustering, along with Lloyd’s algorithm [14],
is one of the most popular and well-understood methods. Despite its popularity,
k-means has significant limitations, as it implicitly makes strong assumptions
about the shapes of the clusters. Numerous alternative methods have been pro-
posed to tackle challenges beyond the capabilities of k-means [8,15,16,13].

One of these involves the use of positive definite kernels [11], which enable the
computation of inner products between elements of a vector space after mapping
them to a different, high-dimensional space. In particular, kernels enhance the
capabilities of k-means by enabling the detection of clusters of arbitrary shapes.

One drawback of kernel functions is that they usually involve hand-set pa-
rameters, which must be fine-tuned to bring forth their full potential. A common

? This work was supported by the Academy of Finland project 317085.

Ordozgoiti, B.; Belanche, L. Off-the-grid: Fast and effective hyperparameter search for kernel clustering. A: European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases. "Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2020: Ghent, Belgium, September 14–18, 2020: proceedings, part II". Berlín: Springer, 2020, p. 399-415.
ISBN 978-3-030-67661-2. The final authenticated version is available online at https://doi.org/10.1007/978-3-030-67661-2_24

2 B. Ordozgoiti �, L. A. Belanche Muñoz

method to choose a value for these parameters is grid search. One considers a set
of values and then evaluates the performance of the algorithm for each of them.
A drawback is that one might either choose too small a set and risk missing opti-
mal values, or an overly big one, incurring excessive —and possibly redundant—
computational costs. Another way to set these values is by heuristics and rules
of thumb [19,12], but these rarely apply to a wide variety of data.

Our contribution in this paper is two-fold. First, we illustrate the impact of
kernel parameters in clustering by deriving a lower bound for the bandwidth
parameter of RBF kernels (section 4), below which Kernel k-means will be
rendered useless. We show this bound is tight. Next, we propose a method for
hyperparameter search. Our method specifically searches for values that will pro-
duce different clusterings, and thus, unlike grid search, does not risk carrying out
redundant computations, so no processing time is wasted. We combine methods
for fast exponentiation with the properties of dyadic rationals to design an al-

gorithm that after O
(

log
(
| log(b)|

ε

))
iterations —where b is the minimum entry

in the kernel matrix— provides a (1± ε)-approximation of the next meaningful
hyperparmeter value to inspect (sections 5 and 6). We validate our claims with
a rich variety of experiments (section 7).

2 Related work

Kernels have been a central subfield of machine learning since their first use in
conjunction with support vector machines [5]. Even though most efforts have fo-
cused on their application to supervised learning methods, they have also played
a significant part in the development of clustering techniques [4,16,7]. In the
seminal work by Ben-Hur et al. [4], the authors suggest to inspect the results
using varying values of σ, starting from the maximizer of the pairwise squared
distances ‖x− y‖2 over all pairs of data points. A good choice might lie within a
region that yields stable clusterings. It should be noted that stability has been
shown to have significant drawbacks for choosing the number of clusters [3], so it
would be interesting to determine whether this applies to the kernel bandwidth
as well. In the work that introduced spectral clustering [16], Ng et al. rely on a re-
sult of their own that guarantees that their algorithm will produce tight clusters
if they exist in the data. They then propose to test various values of σ in search
for a clustering with this property. In [2] a generalized form of the bandwidth
parameter is learned based on data with known clustering. In [20] a different
value of σ is computed for each point. The approach proposed by the authors
relies on the distance to the k-th neighbor. In [10], the authors investigate the
problem of kernel matrix diagonal dominance in clustering, which is essentially
a generalization of the problem we analyze in the beginning of section 4. The
heuristics they explore to alleviate the problem either require the selection of a
new hyperparameter, or heavily modify the structure of the problem. The lat-
ter can even lead to the loss of positive-definiteness of the kernel matrix, which
results in algorithmic oscillations and failure to converge. The mean distance to
the k-th nearest neighbour is also suggested as a heuristic by Von Luxburg [19].

Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering 3

3 Preliminaries

We consider a finite set of data points X ⊂ Rd. We define a k-partition of X
as a collection of k non-empty subsets of X, π1, . . . , πk, satisfying

⋃k
i=1 πi = X

and πi ∩ πj = ∅ for i, j = 1, . . . , k, i 6= j. We will refer to each πi as a cluster
and use ni = |πi| to denote its cardinality.

The k-means objective is to find a k-partition of X so as to minimize

k∑
i=1

∑
x∈πi

‖x− π̄i‖2, (1)

where π̄i = n−1i
∑
x∈πi

x is the centroid of cluster πi and ‖x‖ denotes the L2

norm in Rd. Optimizing this objective is known to be NP-hard for k = 2 [1].
A popular heuristic is Lloyd’s algorithm [14], which repeatedly recomputes the
centroid of each cluster and reassigns points to the closest centroid.

Kernels: Given a non-empty set X , a symmetric function κ : X ×X → R such
that for all n ∈ N and every set {xi}ni=1 ⊂ X , the matrix K = (κ(xi, xj))ij
is positive definite, is called a (strictly) positive definite (PD) kernel. The
matrix K is known as the Gram matrix or Kernel matrix. Since PD kernels
give rise to a PD Gram matrix, they correspond to the computation of an inner
product in some implicit inner-product space. The representation of an object
x ∈ X in said space is often called feature space representation, denoted as φ(x).

A number of kernels are routinely used in practice. Probably the most popular
one for the case X = Rd is the Gaussian RBF kernel

κ(x, y) = exp

(
−‖x− y‖2

σ

)
,

σ > 0, (from here on, RBF kernel). The parameter σ is commonly referred to as
bandwidth. We will use κσ to denote the RBF kernel function with bandwidth
parameter σ and Kσ to denote the corresponding kernel matrix.

Consider a data set X and the k-partition π1, . . . , πk. Let mi denote the
centroid of cluster πi in feature space, that is,

mi =
1

ni

∑
x∈πi

φ(x).

The application of kernels to the k-means objective (1) relies on the following
observation: even though we cannot in general express mi explicitly, it is possible
to compute the necessary squared distances. For any x ∈ X and i = 1, . . . , k,

‖φ(x)−mi‖2 = κ(x, x)−
2
∑
y∈πi

κ(x, y)

ni
+

∑
y,z∈πi

κ(y, z)

n2i
. (2)

The application of Lloyd’s algorithm using this expression for the squared
distance is known as Kernel k-means. See [7] for an insightful analysis. Kernel
k-means always converges when the kernel matrix is positive semidefinite. We
will refer to the k-partition at convergence as the output of Kernel k-means.

4 B. Ordozgoiti �, L. A. Belanche Muñoz

4 The use of the RBF kernel in Kernel k-means

RBF kernels are powerful but sensitive to the bandwidth parameter. In par-
ticular, for sufficiently small σ, a support vector machine classifier can fit any
training set with no errors —or equivalently, it has infinite VC dimension [18]—,
but this will generally result in poor generalization ability. In Kernel k-means,
the result of an overly small bandwidth will be that the algorithm will converge
in the first iteration, regardless of the current k-partition. The reason is that as
σ decreases, the value of κ(x, y) for any two distinct points x, y ∈ X decreases
as well, to the point of becoming negligible. Therefore, the only significant term
in equation (2) for any x will be κ(x, x), which means that the closest cluster to
x will be the one it is currently in. A question arises naturally: how small does σ
have to be for the algorithm to get stuck at the initial clustering? The following
theorem provides a lower bound, which is tight up to constant factors.

Theorem 1. Consider a data set X ⊂ Rd, |X| = n. Let x, y = arg minx,y∈X ‖x−
y‖2. If σ ≤ (log(3n))

−1 ‖x− y‖2, then Kernel k-means will make no cluster re-
assignments.

The proof is given in the supplementary material.

A tight example. The next example shows that this result is tight up to constant
factors. Consider an instance with two clusters, π1 and π2, containing n1 and n2
points respectively. For some point y ∈ π2 it is ‖x − y‖22 = mina,b ‖a − b‖22 = ε
for all x ∈ π1, whereas for all z ∈ π2, z 6= y, it is ‖y − z‖22 = 2ε. Moreover, for
all w, z ∈ π1 it is ‖w− z‖22 = ε and for all w, z ∈ π2, w, z 6= y, it is ‖w− z‖22 = ε.
Define n = n1 + n2 and consider σ = ε/ log(n/3). We know y will switch over to
π1 if ‖φ(y)−m1‖22 < ‖φ(y)−m2‖22, or equivalently,

2

n2
<

2
∑
x∈π1

κ(y, x)

n1
−
∑
w,z∈π1

κ(w, z)

n21
−

2
∑
z∈π2,z 6=y κ(y, z)

n2
+

∑
w,z∈π2

κ(w, z)

n22

= 6/n− 1/n1 −
3(n1 − 1)

nn1
− 2(n2 − 1)

n2

(
3

n

)2

+ 1/n2 +
3(n2 − 1)(n2 − 2)

nn22
+

(n2 − 1)

n22

(
3

n

)2

. (3)

The above inequality is verified when n1 = n2 and n is sufficiently large. That
is, there exists a family of instances where the kernel k-means algorithm with

the RBF kernel will make cluster reassignments with σ = Ω
(
‖x−y‖22
log(n)

)
, where

‖x− y‖22 is minimal over all x, y in the data set.

5 Optimizing bandwidth

As demonstrated above, the choice of bandwidth parameter is crucial when us-
ing RBF kernels for clustering. For some choices of σ, the output of Kernel

Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering 5

k-means will be unchanged from the initial k-partition. In fact, for any value
of σ the algorithm will converge at some point —provided that the kernel ma-
trix is positive semidefinite— and stop making changes. However, if the chosen
value is inadequate the output might still be of poor quality, so it is often desir-
able to further refine σ in order to obtain a better result. We already know, by
virtue of Theorem 1, a value of σ such that Kernel k-means will stop making
changes. The following question arises naturally. How big does σ have to be in
order to guarantee that Kernel k-means will change the initial k-partition?, and
more generally, once Kernel k-means has converged, how much do we have to
increase σ to ensure it will make new changes? We define this as the critical
bandwidth value.

Definition 1. (Critical bandwidth value) Let X a data set. Suppose Kernel

k-means outputs a k-partition P = (π1, . . . , πk) of X when run using an RBF
kernel with bandwidth parameter σ. We define S ⊂ R to be the set satisfying the
following: if Kernel k-means is initialized with k-partition P and run with Kσ′ ,
with σ′ ∈ S, it will output a k-partition P ′ 6= P , that is, it will make changes.
We define the critical bandwidth value with respect to (Kσ, P) to be the infimum
of S, or ∞ if S = ∅.

In other words, the critical bandwidth value reveals the “minimal” value the
RBF kernel bandwidth needs to take so that Kernel k-means “snaps out” of
convergence and yields a new k-partition. Any value strictly larger than the
critical value will suffice. This concept is the cornerstone of our contribution.

5.1 Finding the critical value

Possibly the most straightforward method to find a value of σ —or virtually
any hyperparameter— is grid search. This consists in running the clustering
algorithm for a predetermined set of values of the hyperparameter and choosing
the one which provides the best performance, as measured by e.g. objective
function values or clustering quality indices [17]. This approach, however, has
significant disadvantages. If the set of values to test is too small, one can fail to
detect one that yields good performance; if it is too large, running times can be
prohibitive and some computations redundant.

Here we propose an alternative approach. Roughly, we proceed as follows.
First, we choose a sufficiently small value of σ —e.g. guided by Theorem 1—
and run Kernel k-means. We then search for the critical bandwidth value with
respect to the current kernel matrix and k-partition and rerun Kernel k-means
until convergence. We can keep doing this until no further changes are observed,
to finally obtain a set of possible hyperparameter choices. The question that
arises now is how to find said value efficiently. Next, we illustrate the fact that
this value can be located using optimization methods.

A first approach Let κσ denote the RBF kernel function parametrized by σ.
In a Kernel k-means iteration, a point x is assigned to the cluster πi which

6 B. Ordozgoiti �, L. A. Belanche Muñoz

maximizes the proximity function δ:

δσ(x,mi) =
2
∑
y∈πi

κσ(x, y)

ni
−
∑
y,z∈πi

κσ(y, z)

n2i
. (4)

Now, observe that if we change the value of the bandwidth parameter to σ′,
the new value of the kernel for any pair of points x, y can be computed as follows:

κσ′(x, y) = κσ(x, y)σ/σ
′
,

and we can thus compute the new proximity functions δσ′(x,mi) accordingly.
For simplicity, we consider the case of two clusters π1, π2. Assume x ∈ π1. x will
switch over to π2 when

δσ′(x,m1) < δσ′(x,m2)⇔ δσ′(x,m1)− δσ′(x,m2) < 0.

That is, we can find the value of σ′ that will result in a different clustering by
finding a root of δσ′(x,m1)− δσ′(x,m2).

A useful observation is that κσ(x, y)σ is constant with respect to σ′. There-
fore, we can easily derive δσ′(x,m1)−δσ′(x,m2) with respect to σ′. In particular,
define g(x, σ′) = δσ′(x,m1)− δσ′(x,m2). Then

dg

dσ′
=

2
∑
y∈π2

log (κσ(x, y)σ)κσ(x, y)σ/σ
′

σ′2n2
−
∑
y,z∈π2

log (κσ(y, z)σ)κσ(y, z)σ/σ
′

σ′2n22

−
2
∑
y∈π1

log (κσ(x, y)σ)κσ(x, y)σ/σ
′

σ′2n1
+

∑
y,z∈π1

log (κσ(y, z)σ)κσ(y, z)σ/σ
′

σ′2n21
.

(5)

This implies that we can use iterative root-finding algorithms, such as New-
ton’s method, to efficiently find a root of the above function, that is, the minimum
value of σ′ that will result in a clustering change, or the critical bandwith value.

This approach, however, can be slow and numerically unstable. In the next
section we propose an alternative optimization method able to efficiently lo-
cate the critical bandwidth value to arbitrary precision while overcoming these
drawbacks.

6 Fast and effective hyperparameter search

The approach outlined above has several drawbacks, namely (1) using an iter-
ative root-finding algorithm entails repeatedly recomputing the kernel matrix,
either directly or by element-wise exponentiation, which can be slow in prac-
tice when dealing with large matrices and (2) the operations required for the
derivative of g and the fractional computations can induce numerical instability.

Here we propose an alternative approach to sidestep these issues. The pro-
posed method rests on the following fact: computing products and square roots of
real numbers can be much faster than computing powers with arbitrary exponents
[9]. Our method has the additional advantage of being numerically stable.

Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering 7

6.1 Dyadic rationals and fast approximate exponentiation

To develop an efficient method for hyperparameter search, we first propose an al-
gorithm for fast approximate exponentiation that only uses products and square
roots. This algorithm (Algorithm 1) forms the basis of our approach.

Exponentiation algorithm overview. As hinted above, we wish to avoid
computing element-wise powers of the kernel matrix, and instead use element-
wise products and square roots. To accomplish this, suppose we want to compute
the power bp, for some arbitrary positive reals b and p. We first decompose p
as p = z + f , where z is the integral part and f the decimal part of p. We
then compute bz and approximate bf as bf

′
using two separate fast methods for

integral and rational exponents and finally return bzbf
′ ≈ bp.

To design our algorithm, we rely on two simple results. First, we make use
of the following recursive representation of a positive integer based on its binary
representation, which has long been employed in the design of fast algorithms
for power computation with integral exponents [9].

Lemma 1. Consider a number n ∈ N, and let b0 . . . bt, where t = blog2 nc, be
its binary representation, i.e. n =

∑t
i=0 2t−ibi. Then n = nt, where

ni =

{
1 if i = 0

2ni−1 + bi if 0 < i ≤ t

Lemma 1 reveals how to compute a power of the form bi, where b is a positive
real number and i is a natural number, using a small number of products. In
particular, this operation is carried out in lines 5 and 6 of Algorithm 1.

The next result we rely on is a consequence of the properties of dyadic ra-
tionals. Dyadic rationals are rational numbers of the form n/2i, where n is an
integer and i is a natural number. It is well known that dyadic rationals are
dense in R, that is, any real number can be approximated arbitrarily well by a
dyadic rational. The next result reveals how to obtain such an approximation
for numbers in the interval (0, 1), which will be useful in our context.

Lemma 2. Let a ∈ (0, 1). There exists a sequence (mi), with mi ∈ {−1, 1}, i =
1, . . . such that limt→∞

∑t
i=1mi2

−i = a.

Proof. Let m1 = 1. Choose the j-th term of (mi) (for j > 1) to be 1 if∑j−1
i=1 mi2

−i < a,−1 if
∑j−1
i=1 mi2

−i > a, 0 otherwise. Clearly,
∣∣∣a−∑k

i=1mi2
−i
∣∣∣ ≤

2−k.

The set of dyadic rationals is clearly closed under addition, and thus the above
series provides an approximation by means of a dyadic rational.

Now, suppose we want to approximately compute the power bp, by an ap-
proximation of p to within an error of 2−j . The above result implies that it
suffices to compute j operations, at each step either multiplying or dividing by

8 B. Ordozgoiti �, L. A. Belanche Muñoz

Algorithm 1 Fast approximate exponentiation

Input: base b, exponent p, depth i

1: z ← bin(bpc)[1 :]
2: f ← p− bpc
3: b1 ← b; b2 ← b
4: j ← 1
5: for d in z do
6: b1 ← b21b

d

7: n← 1; d← 2
8: for j = 1, . . . , i do
9: b←

√
b; n← 2n; d← 2d

10: if n/d > f then
11: n← n− 1; b2 ← b2/b
12: if n/d < f then
13: n← n+ 1; b2 ← b2b
14: if n/d = f then
15: ← i+ 1 // Exact exponent matched, so exit loop
16: Output b1 × b2

successive square roots of b. This is done in lines 8 through 15 of Algorithm 1.
The following result characterizes the quality of the approximation achieved by
Algorithm 1, and the required number of operations.

Theorem 2. Algorithm 1 yields a (1±ε)−approximation of bp after performing

O
(

log
(
| log(b)|

ε

))
operations.

Proof. First, note that the algorithm computes at most 2i multiplications in the
first phase, and i square roots or multiplications in the second.

Assume b > 1. We treat the alternative later. By lemma 2, the output of
Algorithm 1 is bounded as follows

bp

b1/2i
= bp−1/2

i

≤ r ≤ bp+1/2i = bpb1/2
i

.

Observe that bpb1/2
i

= bp + bp(b1/2
i − 1) and set ε = b1/2

i − 1. We thus have
1
2i = log(1+ε)

log(b) and thus i = O
(

log
(

log(b)
ε

))
. Similarly, we can write bpb−1/2

i

=

bp − bp(1− b−1/2i), arriving at an equivalent result for the 1− ε bound.

The analysis for the case b < 1 is the same, but noting that the output is
bounded as bp+1/2i ≤ r ≤ bp−1/2i . The negative sign of log(b) is cancelled out in
the arithmetic. The case b = 1 is obviously of no interest. ut

Algorithm 1 approximates a power computation by a dyadic rational approx-
imation w/z of the exponent. Based on the principles behind Algorithm 1 we can
design an efficient method to find the critical value of σ for Kernel k-means.

Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering 9

Finding the critical value. Our algorithm for hyperparameter search is de-
tailed as Algorithm 2. In the pseudocode, ◦ and /◦ denote element-wise multi-
plication and division, respectively, and

√
K is the element-wise square root of

matrix K.

In essence, our algorithm emulates Algorithm 1, using the kernel matrixKσ as
the basis of the power to compute, with some key differences. The first difference
is that instead of approximating a known exponent p, we aim to approximate the
unknown critical value of σ. Since this quantity is unknown, instead of testing
whether the current approximation is larger or smaller than the target exponent,
we query the Kernel k-means algorithm to determine whether the current value
will result in new changes. Note that this amounts to running a single iteration
of Kernel k-means. Later we show that we can further optimize these queries.

The second observation is that we only ever need to compute exponents in the
interval (0, 1). This is because if we assume Kernel k-means to have converged
for the matrix Kσ, we know that the next value of σ we seek is larger than the
current one. Note that we can use our result from Theorem 1 for a starting value
of σ without running an initial execution of Kernel k-means.

By virtue of Theorem 2, Algorithm 2 thus finds an arbitrarily good approx-
imation of the critical bandwidth value, in the following sense:

Corollary 1. Suppose Kernel k-means has converged for Kσ, producing a k-
partition P , and let σ′ be the critical bandwidth value with respect to (Kσ, P). If

we run Algorithm 2 with a depth value of i = O
(

log
(
| log(b)|

ε

))
—where b is the

minimum entry in the kernel matrix—, it will output a matrix Kρ satisfying

(1− ε)Kσ′ ≤◦ Kρ ≤◦ (1 + ε)Kσ′ ,

where ≤◦ denotes element-wise inequality.

That is, it will output a good approximation of the “next” kernel matrix for
which Kernel k-means will make changes. Note that this result also character-
izes the computational complexity of our approach, as element-wise operations
take O(n2) computations. In addition, element-wise operations are trivially par-
allelizable, so our method can scale to large kernel matrices. Finally, note that
even though log(b) is unbounded, after a few iterations only very small entries,
close to zero, would suffer considerable relative error.

An advantage of the algorithm is that we can choose the maximum value
of the denominator in the rational approximation of the exponent (maximum
depth d). This provides a nice trade-off between speed and accuracy.

6.2 Further optimizations

Our approach lends itself naturally to various optimizations. We discuss them
briefly here.

10 B. Ordozgoiti �, L. A. Belanche Muñoz

Algorithm 2 Hyperparameter search

Input: kernel matrix K, depth i, k-partition P of X.

1: K′ ← K
2: P ′ ← P
3: j ← 1
4: for i = 1, . . . , i do
5: K′ ←

√
K′ //Element-wise square root

6: if P ′ 6= P then
7: K ← K/ ◦K′
8: else
9: K ← K ◦K′

10: P ′ ← kkm(K) //Run Kernel k-means
11: Output K

Hierarchical search. Our algorithm enables a trade-off between running time and
accuracy by means of the depth parameter. The larger it is, the more precise
the critical values of σ found. We argue that this parameter can be employed
to improve speed without significantly sacrificing accuracy. In particular, the
algorithm can be run with increasing depth values, constraining the search to
promising regions. For instance, we first set depth to 1, run the algorithm and
pick the two values of σ that yield the best performance. We then increase the
depth value by 1 and run the algorithm again, setting the lower and upper limits
of our search to the two previously picked values of σ. This way we first perform
a coarse-grained search to identify a potentially good interval for σ, and then
increasingly refine the search.

Limiting checks. As described above, the way our algorithm approximates the
critical value of σ is by testing whether or not Kernel k-means will switch at
least one point from one cluster to another. Often, most points will not switch
clusters at the critical value. Thus, it is not necessary to compute the proximity
function (Equation (4)) for all point-cluster pairs, and we can limit checks to
those points most likely to change. To do this, we can employ different heuristics.
For instance, we can limit checks to points such that the proximity function is
close for different clusters. We can also limit checks to those points that switch
clusters the first time we observe a change (line 6 of Algorithm 2).

6.3 Use with other kernels

Our approach is not limited to the RBF kernel. Obviously, any kernel that is
exponential in the parameters can be directly used with our method. This in-
cludes the popular polynomial kernel, defined as κ(x, y) = (xT y + c)d, for the
optimization of the parameter d. We can also benefit from the fact that any
linear combination of kernels is also a kernel, to accommodate a wider variety of
kernel functions. To use our algorithm with a linear combination of differently-
parametrized kernels, it suffices to store the kernel matrix separately for each

Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering 11

term of the sum. As currently described, our method only allows the optimiza-
tion of one parameter at a time, but it can be employed as a building block for
more sophisticated multiparameter optimization approaches.

7 Experiments

We conduct a series of numerical experiments to evaluate the performance of
the proposed algorithm. We mainly want to determine whether our method (1)
can reveal good value of σ and (2) can do it efficiently. We compare it to other
approaches for hyperparameter search, which we now describe.

Baselines We consider the following methods to choose the hyperparameter of
the RBF kernel1.

MKNN: We set σ to be the mean distance to the k-th nearest neighbour
as suggested by Von Luxburg [19] (the median yields similar results). We try
different values of k, namely k = 1, . . . 2(log n+ 1).

GridSearch: We run the Kernel k-means algorithm with σ taking values
in {10i : i = −6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6}

We refer to Algorithm 2 as OURS.
All methods, as well as Kernel k-means, were implemented using Python 3,

using matrix and vector operations whenever possible for efficiency2.

Quality measures: We consider the following functions to evaluate the quality of
the clustering results.

NMI (Normalized Mutual Information): We use a well-known clustering per-
formance index3, which we now define. Given two indicator vectors y and z, we
define

NMI(y, z) =
2I(y, z)

H(y) +H(z)
(6)

where I(y, z) =
∑
i

∑
j p(y = i, z = j) log

(
p(y=i,z=i)
p(y=i)p(z=i)

)
denotes the mutual

information of y and z, and H(y) = −
∑
i p(y = i) log p(y = i) denotes the

entropy of y [6] (we abuse notation and overload y for the vector and its entries).
We use this index by taking y to be the indicator vector of ground-truth labels
and z to be the indicator vector of the k-partition output by Kernel k-means.

c-NNC: In addition, we propose our own clustering cost function. Our goal is
to measure the quality of the resulting k-partition in a way that (1) arbitrarily
shaped clusters are considered and (2) is independent of the value of σ. Note that
some well-known clustering quality indices and cost functions, such as silhouette
[17] and normalized cuts [7], do not qualify.

1 Some of these methods, as originally described, define the kernel as κ(x, y) =
exp(−‖x−y‖/(2σ2)). We take this difference into account in our experimental setup.

2 Source code: https://github.com/justbruno/off-the-grid/
3 Results for Adjusted Rand-Index were similar and are thus omitted.

https://github.com/justbruno/off-the-grid/

12 B. Ordozgoiti �, L. A. Belanche Muñoz

We first introduce some notation. Given a data set X and a point xi ∈ X, let
νj(xi) be the j-th nearest neighbour of xi in X. Given a k-partition of the data
set X into k clusters, c(xi) denotes the cluster xi is assigned to, i.e. xi ∈ c(xi).

We first define NNC(i, c) to be the fraction of points among the c nearest
neighbours of xi which are not in the same cluster as xi.

NNC(i, c) =
1

c

c∑
j=1

I{c(xi) 6= c(νj(xi))}.

To measure the quality of a single cluster π, we take a weighted sum of the
above index for all c. We scale the value of NNC(i, c) by 1

c to reduce the penalty
incurred by disagreements with further neighbours.

NNCcluster(π) =
1

C max{1, |π|)}
∑
i∈π

n∑
c=1

1

c
NNC(i, c).

Here, C = log(n − 1) + γ + 1
2n−2 , where γ is the Euler-Mascheroni constant,

ensures that the quantity is upper-bounded by 1 (note that without this scaling
factor, the sum for each point is tightly upper bounded by a harmonic series).

We now define the cost function as

c-NNC(P) =
D +

∑
π∈P NNCcluster(π)

k
.

Here, P is the k-partition output by Kernel k-means, k is the number of clusters
given to Kernel k-means and D is the number of empty clusters. We count
empty clusters to penalize trivial solutions (e.g. a single cluster).

Datasets : We employ a variety of publicly available synthetic4 and real5 data
sets. Since we use vanilla Kernel k-means, which requires handling the com-
plete kernel matrix, we employ data sets of limited size (up to 8 000 instances).
However, our method can in principle be employed with techniques for scalable
kernel-based algorithms. A summary of the data sets is given in Table 1. In the
case of real data sets, we scale the variables to unit-variance, as this enables a
much better performance of Kernel k-means in most cases.

7.1 Performance

In this section we report the performance of our method, as evaluated by our
quality measures, in comparison to the selected baselines. We proceed as follows:
we first choose a random initial k-partition, which we set as starting point for
all methods. To evaluate our method, we set the initial value of σ to be the
1st percentile of pairwise distances in the data set. Note this is similar to our
lower bound given in section 4, but a little less stringent. We run Algorithm 2

4 http://cs.joensuu.fi/sipu/datasets
5 https://archive.ics.uci.edu/ml/index.php

http://cs.joensuu.fi/sipu/datasets
https://archive.ics.uci.edu/ml/index.php

Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering 13

Table 1. Summary of data set characteristics

Dataset Rows Columns Classes Dataset Rows Columns Classes

Aggr. 788 2 7 Spiral 312 2 3

Compound 399 2 6 Audit 775 23 2

D31 3100 2 31 Derma. 358 34 6

Flame 240 2 2 WDBC 569 30 2

Jain 373 2 2 WiFi 2000 7 4

Pathbased 300 2 3 Wine 178 13 3

R15 600 2 15 MNIST (sampled) 1k,2k,4k,8k 784 10

with depth=1 and pick the value of σ that corresponds to the best observed k-
partition (as measured by c-NNC), run Kernel k-means and rerun our method
starting from the resulting k-partition with depth= 2. Note that this resembles
the hierarchical search described in section 6. For each method, we collect the
best value of NMI and c-NNC among the produced clusterings. We report the
average over 50 runs, each with a different initial k-partition. Results are shown
in Table 2. Our method achieves better values of both measures in most cases.

Table 2. Comparison of the different methods in terms of quality measures

NMI c-NNC

Dataset MKNN GridSearch OURS MKNN GridSearch OURS

Aggr. 0.690 0.864 0.872 0.255 0.210 0.203

Compound 0.689 0.778 0.730 0.239 0.230 0.215

D31 0.810 0.931 0.951 0.356 0.332 0.316

Flame 0.489 0.521 0.615 0.106 0.096 0.093

Jain 0.229 0.361 0.353 0.116 0.062 0.062

Pathbased 0.820 0.662 0.902 0.169 0.134 0.137

R15 0.922 0.954 0.979 0.302 0.300 0.274

Spiral 0.187 0.145 0.239 0.175 0.155 0.151

Audit 0.717 0.685 0.703 0.097 0.082 0.082

Derma. 0.889 0.877 0.913 0.249 0.256 0.238

WDBC 0.531 0.547 0.550 0.123 0.108 0.107

WiFi 0.781 0.835 0.856 0.157 0.140 0.137

Wine 0.923 0.913 0.923 0.143 0.142 0.143

7.2 Running times and Scalability

In this section we evaluate the efficiency of our method. We report the average
total running times in the previously described experiment for all algorithms
in Table 3. Our method generally sits between GridSearch and MKNN. It
performs significantly more iterations than the baselines, and thus better running
times could be obtained by limiting the number of inspected values if necessary.

14 B. Ordozgoiti �, L. A. Belanche Muñoz

Table 3. Total running times in seconds

Time in seconds Time in seconds

Dataset MKNN GridSearch OURS Dataset MKNN GridSearch OURS

Aggr. 0.824 0.486 0.617 Spiral 0.157 0.108 0.133

Compound 0.200 0.146 0.172 Audit 0.578 0.467 1.111

D31 22.029 11.735 10.757 Derma. 0.152 0.106 0.100

Flame 0.064 0.046 0.061 WDBC 0.325 0.204 0.213

Jain 0.140 0.097 0.143 WiFi 7.095 3.520 4.402

Pathbased 0.110 0.077 0.094 Wine 0.044 0.034 0.036

R15 0.475 0.329 0.406

To offer a finer running time comparison, as well as to evaluate scalability, we
run the algorithms on samples of MNIST6 and set the number of iterations to
be the same for all methods. In particular, we set it to 13, which is the number of
values tested by GridSearch. Figure 1 shows time taken per iteration, averaged
over 50 runs. By iteration we refer to the set of computations required to produce
and test a new value of the bandwidth parameter. The reason the running time
of GridSearch increases significantly at some point is that the first values of
σ are too small and Kernel k-means converges after one iteration, highlighting
the wasteful nature of GridSearch. Our method benefits mostly from being
able to run a small number of iterations of Kernel k-means to converge.

0 10
Iteration number

0.05

0.10

T
im

e(
s)

Sample size=1000

0 10
Iteration number

0.4

0.6

Sample size=2000

0 10
Iteration number

2

4

Sample size=4000

0 10
Iteration number

10

20

Sample size=8000

MKNN GridSearch Ours

Fig. 1. Running time per iteration for different samples of the MNIST data set

7.3 Comparison with binary search

The reader might observe that our method resembles a form of binary search.
Thus, one might suspect that similar results could be obtained using a conven-
tional binary search algorithm, without going to the trouble of implementing
Algorithm 2. Here we illustrate why our algorithm is a vastly superior alterna-
tive.
6 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering 15

The setup is as follows: we initialize σ to be the 1st percentile of the squared
pairwise distances and then run iterations of binary search with a precision of
10−3 and Algorithm 2 with depth equal to 10. We repeat the experiment 10 times
and report average iteration time and absolute error of the estimate of the critical
value of σ. The results are shown in Table 4. Binary search was implemented
efficiently, updating the kernel matrix with fast matrix-vector operations.

Our method achieves a speedup of about 10x in all cases, and the error is
often smaller. Of course, the error can be controlled in both algorithms at the
expense of running time. A noteworthy difference between both methods (not
in favor of any of the two) is that binary search is designed to control absolute
error, while Algorithm 2 controls the relative error of the power computation.

Table 4. Running times of our method and binary search. We report average iteration
running times, speedup and mean relative error of the σ estimate over 100 iterations

Iteration time in seconds Speedup Relative error: σtrue−σestimated
σtrue

Dataset BinarySearch OURS - BinarySearch OURS

Aggr. 0.941 0.080 11.7x 1.55× 10−3 5.3× 10−4

Audit 0.793 0.069 11.5x 8.341× 10−2 5.8× 10−4

Compound 0.192 0.019 9.9x 2.20× 10−3 5.8× 10−4

D31 15.740 1.148 13.7x 3.95× 10−3 4.8× 10−

Derma. 0.139 0.014 9.7x 1.3× 10−4 8.368× 10−2

Flame 0.063 0.007 9.1x 5.1× 10−3 5.6× 10−4

Jain 0.144 0.014 10.5x 2.6× 10−3 1.17× 10−2

Pathbased 0.096 0.010 9.7x 1.98× 10−3 5.9× 10−4

R15 0.430 0.039 11.0x 4.912× 10−2 5.5× 10−4

Spiral 0.102 0.011 9.6x 1.13× 10−3 6.2× 10−4

WDBC 0.398 0.036 11.2x 10−6 6.2× 10−4

WiFi 5.284 0.442 11.9x 6× 10−5 4.9× 10−4

Wine 0.042 0.005 7.7x 2× 10−5 5.7× 10−4

8 Conclusion

In this paper we have addressed the problem of hyperparameter search in the
Kernel k-means context. Our contribution is two-fold. First, we have derived
a tight lower bound for the bandwidth parameter of RBF kernels, below which
Kernel k-means will be rendered useless. Second, we have proposed a method to
optimize kernel hyperparameters for Kernel k-means. We have proved that our
method approximates critical values of the hyperparameter to arbitary precision
in a small number of iterations. Unlike grid search or other heuristics, our method
does not test redundant hyperparameter values, that is, values that result in the
same clustering output, and thus no computation is wasted.

Our experiments demonstrate how our approach enables the efficient evalua-
tion of a fine variety of hyperparameter values, revealing high-quality clustering

16 B. Ordozgoiti �, L. A. Belanche Muñoz

results at a moderate computational cost. In the future it would be interesting to
extend our method to other kernel-based clustering and classification algorithms.

References

1. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: Np-hardness of euclidean sum-
of-squares clustering. Machine learning 75(2), 245–248 (2009)

2. Bach, F.R., Jordan, M.I.: Learning spectral clustering. In: Advances in neural
information processing systems. pp. 305–312 (2004)

3. Ben-David, S., Von Luxburg, U., Pál, D.: A sober look at clustering stability. In:
International Conference on Computational Learning Theory. pp. 5–19. Springer
(2006)

4. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering.
Journal of machine learning research 2(Dec), 125–137 (2001)

5. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995)

6. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons
(2012)

7. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normal-
ized cuts. In: Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 551–556. ACM (2004)

8. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Kdd. vol. 96, pp.
226–231 (1996)

9. Gordon, D.M., et al.: A survey of fast exponentiation methods. J. Algorithms
27(1), 129–146 (1998)

10. Greene, D., Cunningham, P.: Practical solutions to the problem of diagonal dom-
inance in kernel document clustering. In: Proceedings of the 23rd international
conference on Machine learning. pp. 377–384. ACM (2006)

11. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. The
annals of statistics pp. 1171–1220 (2008)

12. Jaakkola, T.S., Diekhans, M., Haussler, D.: Using the fisher kernel method to detect
remote protein homologies. In: ISMB. vol. 99, pp. 149–158 (1999)

13. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern recognition letters
31(8), 651–666 (2010)

14. Lloyd, S.: Least squares quantization in pcm. IEEE transactions on information
theory 28(2), 129–137 (1982)

15. Moon, T.K.: The expectation-maximization algorithm. IEEE Signal processing
magazine 13(6), 47–60 (1996)

16. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-
rithm. In: Advances in neural information processing systems. pp. 849–856 (2002)

17. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics 20, 53–65
(1987)

18. Vapnik, V.: Estimation of dependences based on empirical data. Springer Science
& Business Media (2006)

19. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing 17(4),
395–416 (2007)

20. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in neural
information processing systems. pp. 1601–1608 (2005)

Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering 17

Appendix

Proof of Theorem 1. Consider the squared distance as written in Eq. (2). For
the choice of cluster, we can drop the constant term κ(x, x) and compute

arg min
j

−
2
∑
y∈πj

κ(x, y)

nj
+

∑
y,z∈πj

κ(y, z)

n2j
. (7)

If x ∈ πj we can write

−
2
∑
y∈πj

κ(x, y)

nj
+

∑
y,z∈πj

κ(y, z)

n2j
(8)

=− 2κ(x, x)

nj
−

2
∑
y∈πj ,y 6=x κ(x, y)

nj
+

∑
y,z∈πj

κ(y, z)

n2j
. (9)

If x ∈ πj and ‖φ(x)−mj‖22 ≤ ‖φ(x)−mi‖22 for all i 6= j, then a will remain in
the same cluster. Considering (7) and (8), we can write this condition as

2κ(x, x)

nj
≥

2
∑
y∈πi

κ(x, y)

ni
−
∑
y,z∈πi

κ(y, z)

n2i

−
2
∑
y∈πj ,y 6=x κ(x, y)

nj
+

∑
y,z∈πj

κ(y, z)

n2j
.

Since κ(x, y) ≥ 0 for any pair of points x, y, we can drop the negative terms
on the right-hand side to obtain the following, more restrictive, condition:

2κ(x, x)

nj
≥

2
∑
y∈πi

κ(x, y)

ni
+

∑
y,z∈πj ,y 6=z κ(y, z) + nj

n2j

=
2n2j

∑
y∈πi

κ(x, y) + ni

(∑
y,z∈πj ,y 6=z κ(y, z) + nj

)
nin2j

. (10)

Here we have used
∑
x∈πj

κ(x, x) = nj . If we define ω = maxx 6=y κ(x, y), then
the two following inequalities hold:

niω ≥
∑
y∈πi

κ(x, y), n2
jω ≥

∑
y,z∈πj ,y 6=z

κ(y, z)

We can thus consider the following, more restrictive, condition (recall that
κ(x, x) = 1):

2κ(x, x)

nj
≥

2n2jniω + ni
(
n2jω + nj

)
nin2j

= 3ω +
1

nj
⇔ 1

nj
≥ 3ω. (11)

Trivially, 1
n ≥ 3ω ⇒ 1

nj
≥ 3ω. Now, after minor computational efforts, it is

1

n
≥ 3ω ⇔ − log n ≥ log 3− ‖x− y‖

2
2

σ
⇔ ‖x− y‖

2
2

log 3n
≥ σ, (12)

18 B. Ordozgoiti �, L. A. Belanche Muñoz

where x, y = arg minx.y∈X ‖x− y‖22. Therefore, we have (12) ⇒ (11) ⇒ (10) ⇒
‖φ(x)−mj‖22 ≤ ‖φ(x)−mi‖22 for all i 6= j. Since x is an arbitrary element of X,
(12) is a sufficient condition for kernel k-means to make no changes. ut

	Off-the-grid: Fast and Effective Hyperparameter Search for Kernel Clustering

