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ABSTRACT
In this work, we explore the application of intensity mapping to detect extended Ly α emission from the IGM via cross-correlation
of PAUS images with Ly α forest data from eBOSS and DESI. Seven narrow-band (FWHM = 13 nm) PAUS filters have been
considered, ranging from 455 to 515 nm in steps of 10 nm, which allows the observation of Ly α emission in a range 2.7 < z <

3.3. The cross-correlation is simulated first in an area of 100 deg2 (PAUS projected coverage), and second in two hypothetical
scenarios: a deeper PAUS (complete up to iAB < 24 instead of iAB < 23, observation time ×6), and an extended PAUS coverage
of 225 deg2 (observation time ×2.25). A hydrodynamic simulation of size 400 Mpc h−1 is used to simulate both extended
Ly α emission and absorption, while the foregrounds in PAUS images have been simulated using a lightcone mock catalogue.
Using an optimistic estimation of uncorrelated PAUS noise, the total probability of a non-spurious detection is estimated to be
1.8 per cent and 4.5 per cent for PAUS-eBOSS and PAUS-DESI, from a run of 1000 simulated cross-correlations with different
realisations of instrumental noise and quasar positions. The hypothetical PAUS scenarios increase this probability to 15.3 per cent
(deeper PAUS) and 9.0 per cent (extended PAUS). With realistic correlated noise directly measured from PAUS images, these
probabilities become negligible. Despite these negative results, some evidences suggest that this methodology may be more
suitable to broad-band surveys.

Key words: large-scale structure of Universe – cosmology: observations.

1 IN T RO D U C T I O N

In the last few years, the amount of observational data for the
Universe at different wavelengths has steadily increased, which
has led to the development of new methods and techniques to
analyse these observations. Intensity mapping (IM) is one of these
techniques, consisting of the tracing of large-scale structure with one
or more emission lines, without resolving any kind of finite source,
like galaxies or quasars. The use of a sharp and narrow spectral
feature, such as an emission line, allows us to map the structure not
only in angular coordinates but also in redshift, which provides 3D
tomography of the tracer (Peterson et al. 2009).

Originally, this technique was proposed to study the power
spectrum with the 21-cm emission line at high, pre-reionization
redshifts (z> 5) (Madau et al. 1997; Loeb & Zaldarriaga 2004), but its
application at lower redshifts has also been studied, e.g. as a method
to measure Baryonic Acoustic Oscillations (BAOs) (Chang et al.
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2008). Other emission lines have also been considered, such as the
CO rotational line at intermediate (Breysse, Kovetz & Kamionkowski
2014; Li et al. 2016) or high redshift (Carilli 2011), C II emission
line (Gong et al. 2012; Yue et al. 2015), or the Ly α line (Silva et al.
2013; Pullen, Doré & Bock 2014). Given the short wavelength of
this last line (121.567 nm), Ly α emission can only be observed at z

> 2 with ground-based telescopes, which limits any IM study with
this tracer to relatively high redshifts.

Since IM does not resolve individual objects but considers all
emission at certain wavelengths, one of the main challenges that IM
studies face is contamination by foregrounds. This source of noise
can be removed via cross-correlation with other data sets of objects
with well-known redshift, an approach that has been successfully
applied in detections of the 21-cm line (Chang et al. 2010), C II

emission line (Pullen et al. 2018), and the Ly α line (Croft et al.
2016; Chiang, Ménard & Schiminovich 2019), coming from H I in
the intergalactic medium (IGM).

In the Ly α case, in Chiang et al. (2019) detection of extragalactic
background light (EBL) is reported using cross-correlation of UV
broad-band data from the Galaxy Evolution Explorer (GALEX) with
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spectroscopic galaxy samples; with an adjustable spectral model of
the EBL, they place constraints on total Ly α emission up to z = 1.
This work only considers the evolution of EBL and its properties in
redshift direction by integrating the cross-correlation in an angular
range corresponding to 0.5–5 Mpc h−1, so other than the redshift
evolution, the results of this work are confined to cluster scales.

Regarding Croft et al. (2016), all data used for IM was extracted
from the Sloan Digital Sky Survey III (SDSS-III; Eisenstein et al.
2011) Baryon Oscillation Spectroscopic Survey (BOSS; Dawson
et al. 2013). Ly α emission is estimated by selecting spectra of Lu-
minous Red Galaxies (LRGs) at z < 0.8 and subtracting a best-fitting
model for each galaxy spectrum, which leaves a significant amount of
Ly α surface brightness from higher redshifts. These residual spectra
are cross-correlated with quasars from the same catalogue, which
gives a detection at mean redshift z = 2.5 of large-scale structure
at a 8σ level, and a shape consistent with the �CDM model. This
cross-correlation, however, only yields a positive signal on scales up
to 15 Mpc h−1. Given the quasar density of BOSS, this implies that
only 3 per cent of the space (15 Mpc h−1 around quasars) is being
mapped, and large-scale structure of Ly α emission, in general, is not
being constrained by this measurement. Ly α emission is extended
at high enough redshift (approximately z > 3), with Ly α blobs
(Taniguchi, Shioya & Kakazu 2001; Matsuda et al. 2004) forming
visible structures around quasars up to hundreds of kpc in size, and
the integrated faint Ly α emission in turn covers almost 100 per cent
of the sky (Wisotzki et al. 2018). Therefore, cross-correlation of the
Ly α emission with a more suitable data set (less rare than quasars)
is expected to provide a positive signal on larger scales.

One of these possible data sets to cross-correlate with is the Ly α

forest, i.e. the set of absorption lines that appears in the spectrum
of quasars due to the H I mass distribution between the object and
the observer (Rauch 1998). Each Ly α forest spectrum contains
information about the H I distribution along a large fraction of the
entire line of sight, which should allow cross-correlation over larger,
more representative volumes. In Croft et al. (2018), a first attempt
at cross-correlation was performed between Ly α forest from BOSS
and similar LRG spectra with the best galaxy fit subtracted to those
used in Croft et al. (2016), but no signal was found. None the less,
BOSS was not designed with Ly α IM as an objective, and it is certain
that larger and more suitable data sets are needed to obtain a clear
detection (Kovetz et al. 2017). Such a data set would need data with
redshift precision close to that achieved by spectroscopy over large
areas, providing a volume large enough to study large-scale structure
with Ly α IM (Croft et al. 2018). One potential candidate that may
fulfil these requirements are narrow-band imaging surveys, such as
the Physics of the Accelerating Universe Survey (PAUS, Castander
et al. 2012; Eriksen et al. 2019).

The object of this work is to simulate the cross-correlation of PAUS
images with Ly α forest data from two different spectroscopic sur-
veys, in order to compute the two-point correlation function (2PCF),
as well as to evaluate if meaningful constraints can be obtained. The
spectroscopic surveys considered for this purpose are the already
available SDSS extended Baryon Oscillation Spectroscopic Survey
(eBOSS; Dawson et al. 2016), and the upcoming Dark Energy
Spectroscopic Instrument (DESI) Experiment DESI Collaboration
(2016).

For all the calculations in this paper, the following flat cosmology
has been assumed: h = 0.702, �m = 0.275, �� = 0.725, �b = 0.046,
ns = 0.968, σ 8 = 0.82. This is the cosmology of the hydrodynamic
simulation we have used to model the Ly α extended emission and
the Ly α forest (Ozbek, Croft & Khandai 2016), which has also been
used for the entirety of the work for the sake of consistency.

Figure 1. Response function for PAUS filters (coloured) and original SDSS
ugriz filters (black). Shaded area represents the wavelength range studied in
this work.

The paper is structured as follows. In Section 2, the two data
sets to be cross-correlated (PAUS and eBOSS/DESI) are briefly
summarized. Section 3 shows how these data sets are simulated
by combining the aforementioned hydrodynamic simulation and a
lightcone mock catalogue. In Section 4, the estimator to compute
the observed cross-correlation from the two data sets is explained,
as well as some caveats to be taken into account for this particular
case. Section 5 describes the theoretical calculation of the two-point
correlation function from the matter power spectrum. Section 6 shows
the results from both the theoretical correlation function and the sim-
ulated cross-correlation; the bias of the extended Ly α emission/Ly α

forest is derived from its comparison, and the likelihood of a cross-
correlation detection is evaluated for different cases. Finally, we
conclude with Section 7.

2 SU RV E Y S TO C RO S S - C O R R E L AT E

2.1 PAUS

PAUS is a photometric imaging survey currently being carried out
at the William Herschel Telescope with the PAU Camera (Castander
et al. 2012), whose main feature is the use of 40 narrow-band filters
with a full width at half-maximum (FWHM) of �13 nm, with mean
wavelengths of 455 to 845 nm in steps of 10 nm (Fig. 1). Such
a configuration allows one to obtain photometric redshifts (photo-
z) with sub-per-cent precision over large sky areas (Martı́ et al.
2014). Preliminary results (Eriksen et al. 2019) already achieve better
photo-z precision than state-of-the-art photo-z measurements in the
COSMOS field (Laigle et al. 2016).

Although the main purpose of the survey is the elaboration of high-
density galaxy catalogues with high-precision redshifts for cross-
correlations of lensing and redshift distortion probes (Gaztañaga et al.
2012), the narrow-band data from PAUS may also be used for inten-
sity mapping. The background of PAUS images, where no objects
are resolved, also contains valuable cosmological information. Given
the wavelength range of the NB filters, Ly α luminosity is observed
in the range 2.7 < z < 6, distributed in 40 redshift bins, one per each
NB filter. At this redshift range faint Ly α emission surrounds most
objects (Wisotzki et al. 2018), but foreground contamination must
be removed first in order to study it.

For this work, however, only the seven bluest NBs will be
considered, which span from 455 to 515 nm (shaded in Fig. 1).
With these seven blue filters, Ly α emission is observed over the
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Figure 2. Projected quasar density versus redshift for DESI and eBOSS;
shaded area shows the redshift interval of this study. The change of redshift
binning at z = 0.1 in eBOSS (from �z = 0.1 to �z = 0.2) is not relevant for
this work.

range 2.7 < z < 3.3, approximately. At higher filter wavelengths, the
observed Ly α emission increases in redshift, thus being farther away
and fainter. In addition to this, the fraction of quasars observed at z

> 3.3 is extremely small (Fig. 2), which means that the amount of
Ly α forest data sampling this space is also very limited. Therefore,
adding extra filters only provides a volume for the cross-correlation
with lower SNR in PAUS images, and scarcely sampled by the Ly α

forest.
The fields targeted by the survey are, in addition to COSMOS, the

W1, W2, and W3 fields from the Canada–France–Hawaii Telescope
Lensing Survey (CFHTLenS; Heymans et al. 2012). The sum of
the angular area of all these fields is ∼130 deg2, but since a full
coverage of the CFHTLenS fields is not expected, a total angular
area of ∼100 deg2 of PAUS images will be considered for this work.

2.2 eBOSS/DESI

Both eBOSS and DESI are large spectroscopic surveys, with cov-
erage of ∼10.000 deg2 in the first case, and ∼14.000 deg2 in the
latter. Since eBOSS already fully overlaps with the fields observed
by PAUS, and DESI is planned to contain the entirety of eBOSS
fields, the limit on the angular area sampled by the cross-correlation
is determined solely by how much PAUS observes.

Similarly, the limit on the redshift precision of the Ly α line
is also set by PAUS narrow-band filters, not the eBOSS and DESI
spectrographs. For eBOSS and DESI, the lowest resolution R = λ/�λ

is approximately 2000, while for PAUS the maximum resolution
achievable would be around 65 if its photometric data was to be
compared against spectroscopy. Therefore, detailed modelling of
the spectral resolution of Ly α forest data is not required, since
the redshift resolution of the cross-correlation will be limited by the
PAUS images. As long as the simulated Ly α forest has higher redshift
resolution than PAUS images by at least one order of magnitude, it is
safe to assume that any change to the spectral resolution of the Ly α

forest will not impact the results.
Consequently, in order to know how much space is being sampled

with the Ly α forest to simulate the cross-correlation, the only
data needed from these surveys is the quasar density distribution
with redshift. Fig. 2 shows this distribution for eBOSS and DESI,
obtained respectively from Dawson et al. (2016, table 1) and DESI
Collaboration (2016, fig. 3.17).

3 SI MULATI ON O F THE SURV EY DATA

In order to simulate the cross-correlation between different surveys,
the first step is to simulate the actual survey data sets. For this
work, an already existing hydrodynamic simulation has been used
for both Ly α forest data and Ly α emission, while the foregrounds
in PAUS images have been computed using a broad-band mock
catalogue interpolating the spectral energy distributions (SEDs) of
objects by fitting SED templates. On top of the foregrounds, noise
from any other sources (electronic, atmospheric, etc.) also needs to
be modelled; this is done by assuming that the sum of all noise
follows a Gaussian distribution, and measuring the variance of this
distribution directly from PAUS reduced images.

This section is divided in two subsections. In Section 3.1, the three
elements used for the modelled survey (hydrodynamic simulation,
mock catalogue and noise) are described, and in Section 3.2, we
explain how these data sets are combined to simulate both PAUS
images and eBOSS/DESI Ly α forest data.

3.1 Independent simulations

3.1.1 Hydrodynamic simulation

The hydrodynamic simulation used in this work has been performed
with the P-GADGET code (Springel 2005; Di Matteo et al. 2012), with
2 × 40962 particles in a 400 Mpc h−1 box using the cosmology
specified in Section 1. Particle masses of 1.19 · 107 h−1M� and 5.92
× 107h−1M� were used for gas and dark matter, respectively, with
a gravitational force resolution of 3.25h−1 kpc. In order to speed up
the simulation, the density threshold for star formation was lower
than usual, so gas particles became collisionless star particles more
quickly. This density threshold was 1000 times the mean gas density.
Besides this, black hole formation and stellar feedback were not
taken into account. While this results in inaccurate stellar properties
of galaxies, it does not significantly affect the IGM, and thus the
simulated Ly α forest (Viel, Haehnelt & Springel 2004).

This simulation was originally computed for Ly α forest studies,
and has already been used in several works. In Cisewski et al. (2014)
and Ozbek et al. (2016), different methodologies to model the 3D
IGM between Ly α forest data were tested with it, while in Croft et al.
(2018) it was used to simulate Ly α IM. Fig. 3 shows a voxel plot of
the hydrodynamic simulation in both Ly α emission, in luminosity
units (erg s−1), and absorption, in δ flux contrast, defined as

δi ≡ e−τi

〈e−τ 〉 − 1, (1)

where τ i is the optical depth of the Ly α forest pixel i, computed
along sightlines through the simulation, as in Hernquist et al. (1996).
Therefore, with this definition high values of δ correspond to regions
with low H I density, and vice versa. This δ absorption flux is
expected to have a clustering bias with respect to dark matter of
ba = 0.336 ± 0.012 at z = 2.25 (Slosar et al. 2011), including
redshift distortion effects.

While the physics leading to the Ly α forest absorption are
reproduced explicitly in the hydrodynamic simulation, we make
predictions for the Ly α luminosity using a simple heuristic model,
with an amplitude normalized using observational data; not enough
is known about all sources of Ly α emission to warrant using a more
detailed model.

In this model, the Ly α luminosity is proportional to the square of
the baryonic density field at the scale of the spatial binning used for
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Figure 3. Hydrodynamic simulation used for this work. Left: Extended Ly α emission (in erg s−1) and logarithmic colour scale. Right: δ flux contrast, used to
model the Ly α forest.

this work (1.56 Mpc h−1). This is done with the following expression:

LLyα(r) = CLρb(r)2, (2)

where ρb(r) is the baryonic density field, and CL is a normalization
constant chosen in order to set the average Ly α luminosity density
to 1.1 × 1040 erg s−1 Mpc−3. This value of Ly α luminosity density
is that measured from observed Ly α emitters at redshift z = 3.1
(Gronwall et al. 2007), which is a conservatively low value to use, as
it does not include any sources of Ly α emission that are not readily
observed in narrow band Ly α surveys. This includes low-surface
brightness extended haloes around Ly α emitters (e.g. Steidel et al.
2011) (which could host 50 per cent or more extra Ly α luminosity
density), or any other low surface brightness emission that could
be difficult to detect in surveys aiming to detect objects above a
threshold, but which would be included in an intensity map. The
Ly α luminosity density we use can be converted to an associated
star formation rate (SFR) density applying a commonly used relation
between Ly α luminosity and SFR of 1.1 × 1042 erg s−1 M� yr−1

at z ∼ 3 (Cassata et al. 2011). This relation yields an SFR density
measured from observed Ly α emitters of 0.01 M� yr−1 Mpc−3

(Gronwall et al. 2007).
Once the Ly α luminosity density is determined for a simulation

cell in the model, we convolve the Ly α luminosity values with the
line of sight velocity field, in order to put the Ly α emission into
redshift space. This technique is similar to that used to convert the
Ly α forest absorption spectra into redshift space (see e.g. Hernquist
et al. 1996).

The baryons are unbiased with respect to dark matter, and thus in
the model, the Ly α emission is expected to be biased with respect
to dark matter by a factor be ∼ 2 on linear scales (due to Ly α being
related to the square of the baryonic density). This be in the model
is chosen to be consistent with the measured bias of Ly α emitters at
these redshifts (e.g. Gawiser et al. 2007), considering that these are
the predominant sources of Ly α emission and that the contribution
of the IGM is subdominant. We note that the assumption of squaring
the density will lead to a linear bias of be = 2 may not hold at
very highest densities, and this may result in artefacts in the form
of extremely bright pixels. As it is explained later (Section 3.2.1), a
Ly α flux threshold is set for the simulated PAUS images, partially
in order to account for this effect.

3.1.2 Mock catalogue/foreground simulation

If we consider PAUS images for Ly α IM, most of the detected
photons of cosmic origin will not come from Ly α at a certain
redshift (depending on the filter used), but from uncorrelated sources
at different redshifts than the expected Ly α emission. The main
contributors to this contamination of the signal will be foregrounds;
i.e. objects with lower redshift between the Ly α emission and the
observer. In this work, 96.7 per cent of all the observed flux in the
simulation (averaged over all filters) was from foregrounds.

Since the objective of this paper is assessing the potential of cross-
correlating PAUS with Ly α forest data, a realistic model of these
foregrounds is key for our study. In order to model them, we will need
a mock catalogue that spans a range of redshift large enough (at least z
= 2.75, but ideally until z= 6, where the PAUS redshift range for Ly α

ends), with an angular size comparable to the Lyα forest/emission
simulation box. Besides, all objects in the catalogue must have their
observed SEDs in the PAUS wavelength range (455–855 nm) and
with resolution higher than PAUS FWHM (�λ < 13 nm).

The two first requirements (redshift range and angular size) are met
by already available mock catalogues, but none of them contain direct
SED information (at least, not to the best of the authors knowledge).
Such mock catalogues are intended to reproduce large surveys, with
the only spectral information available being either broad bands,
which do not meet the resolution requirement, or emission lines,
which are insufficient to generate the foregrounds.

Our approach to this problem is to take a mock catalogue with
broad bands, and interpolate SEDs for all objects by fitting SED
templates to the broad bands. The mock catalogue selected is a
lightcone originally developed to simulate data from the Euclid
satellite, made from a run of the Millennium Simulation using
WMAP7 cosmology (Guo et al. 2013). This lightcone is complete
up to magnitude 27 in Euclid H band, which makes it ideal for
foreground simulations (since most mock catalogues do not reach
such depths). The semi-analytical model applied to compute galaxies
is GALFORM (Gonzalez-perez et al. 2014), and the lightcone was
constructed with the technique described in Merson et al. (2013).

In order to interpolate SEDs, we have considered the SDSS ugriz
bands (Fig. 1) from this mock and the five SED templates defined
by Blanton & Roweis (2006), which we show in Fig. 4. For the
five templates, their ugriz band values have been computed in a fine
redshift grid (�z ∼ 0.01). These template bands are used as the
elements of a coordinate basis, and for any object the coefficients of
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Figure 4. The five SED templates used for foreground simulation, normal-
ized to facilitate visual comparison.

the linear combination of templates that gives the ugriz bands of the
object can be computed with the following expression:⎛
⎜⎜⎜⎜⎝

uobj

gobj

robj

iobj

zobj

⎞
⎟⎟⎟⎟⎠

z

=

⎛
⎜⎜⎜⎜⎝

u1 g1 r1 i1 z1

u2 g2 r2 i2 z2

u3 g3 r3 i3 z3

u4 g4 r4 i4 z4

u5 g5 r5 i5 z5

⎞
⎟⎟⎟⎟⎠

zgrid∼z

×

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ . (3)

Where the left-hand array are the bands of the object obj at redshift
z, the right-hand array X are the coefficients of the linear combination
of the templates, and the matrix is the basis of template bands at the
redshift zgrid closest to the redshift of the object z. This is a simple
linear system that has a single exact solution as long as the basis
matrix is invertible (which has been checked for all zgrid). However,
the coefficients X must be all non-negative for the SED to make
physical sense (since the SED templates are patterns of emitted flux
for galaxies, and thus subtracting them has no physical meaning).
Therefore, instead of finding the analytical solution, the coefficients
are computed using non-negative least squares. This numerical
method is approximate, but on average yields relative errors of a few
per cent when recovering the original bands. Once these coefficients
are obtained, the linear combination of SED templates using the
coefficients is computed for all objects, thus generating a full mock
catalogue with high spectral resolution SEDs.

3.1.3 PAUS noise

In addition to the foregrounds, PAUS images have noise from a
large variety of sources (electronic, airglow, etc.), together with the
intrinsic variability between nights (seeing, moonlight, etc.). Instead
of simulating each one of these components with a physical model,
we have measured them directly from PAUS images. For each one
of the 7 filters considered, 8 exposures in 10 different pointings in
the COSMOS field have been blindly selected as a representative
sample to evaluate the noise. All of these images were already
reduced by the PAUS pipeline, but some additional processing
was carried out to emulate the additional reduction that would be
necessary for IM applications.

First, resolved sources were removed by applying a sigma-clipping
filter with 3σ threshold in five iterations; ideally, the masks could
be extracted from a reference catalogue, but as a preliminary study
sigma-clipping is enough to virtually remove all resolved objects.
The masked pixels were replaced by random values drawn from a

Figure 5. Example of stacked image in the 455 nm filter used to measure
noise. Eight exposures of the same pointing have been stacked after subtract-
ing the mean and applying sigma-clipping with 3σ .

Gaussian distribution with the same mean and σ as the unmasked
pixels of the image, to avoid having empty pixels that would result
in an overestimation of σ (since σ needs to be computed for the
pixel size of the simulation, which is larger than the CCD pixel size,
masked pixels would result in artificially smaller samples inside a
simulation pixel, and thus a higher σ ).

Secondly, once resolved objects were masked, the median flux
value was computed and subtracted for all the images. This was done
to cancel out the variability in sky brightness due to moon phases
and time of observation, which may modify the average background
flux by a factor of few. While this erases all Ly α clustering signal at
scales larger than the CCD (∼12 Mpc h−1 in its smallest dimension
at z = 3), this approach is enough for noise determination in this
preliminary work. A proper modelization of the moonlight and sky
brightness as a function of date and time could remove this variability
without erasing the large-scale Ly α signal, but it is out of the scope of
this paper. However, it is a pending task if Ly α IM is to be performed
on PAUS data (or other optical imaging surveys).

After this processing, σ could be measured directly from the
resulting images, but it would include not only the electronic and
atmospheric noise aforementioned, but also the variance due to the
cosmic foregrounds and the Ly α signal, which are already considered
in our simulation.

In order to remove all signals from cosmic origin and keep only
the electronic and atmospheric noise, we have stacked all exposures
for all pointings, but applying an scaling factor of −1 to half of them.
Since the number of exposures is even, any signal that should remain
constant between exposures would tend to zero (e.g. both Ly α and
foreground emission), while the variability due to atmospheric and
electronic components remains. This has been done using SWARP

(Bertin et al. 2002), disabling background removal (to not artificially
decrease the resulting noise), and cropping the regions of the stacked
image where there was not a full overlap of all the eight exposures.
Fig. 5 shows an example of the resulting stacked image.

For each one of these stacked images, the σ was computing for
increasing pixel sizes, starting by the intrinsic pixel size of the CCD,
and going above the pixel size of our hydrodynamic simulation. The
flux values of these increasing pixel sizes were computed by adding
the values of all pixels inside them instead of averaging, since the
hydrodynamic simulation considers the total Ly α luminosity in each
3D pixel, not its spatial average. Given that the images are stacked,
the resulting σ has been divided by

√
Nexp, to scale the result to a

single exposure.
Fig. 6 shows the average σ for each filter versus pixel size; the

vertical line represents the pixel size of the simulation, and the
dashed line an extrapolation of the σ versus pixel size considering
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Figure 6. Average measured σ of masked images versus pixel size for the
seven filters used in this work. The dashed line shows the extrapolated mean
for uncorrelated noise, and the vertical line the pixel size of the simulation.

Table 1. σ noise measured for the pixel size of the simulatio (in
erg s−1 cm−2 nm−1) × 10−15, for the seven narrow-band filters, as well
as its value scaled for three exposures, σ 3exp, and 18 exposures, σ 18exp.

λ (nm) 455 465 475 485 495 505 515

σ noise 13.52 20.78 8.46 5.15 7.29 6.62 13.14
σ 3exp 7.80 12.00 4.89 2.97 4.21 3.82 7.58
σ 18exp 3.19 4.90 1.99 1.21 1.72 1.56 3.10

uncorrelated noise (averaged for the 7 filters). This extrapolation has
been determined with

σ1 = θ1

θ0
σ0, (4)

where σ 0 and θ0 are the standard deviation and angular size for
the original pixels of the image, and σ 1, θ1 its counterparts for the
new pixels. This expression comes from the fact that the sum of
uncorrelated Gaussian variables has a σ 2 equal to the sum of all the
σ 2 of the individual Gaussian distributions. In this approximation,
we consider each pixel to be an uncorrelated Gaussian with equal
σ pixel; thus, the sum of n pixels will have σsum = √

nσpixel. Since we
are adding CCD pixels to form larger pixels where σ is computed,
this

√
n factor will be equal to the ratio of angular sizes, which results

in equation (4).
By looking at Fig. 6, it is clear that the σ measured from the images

displays a noticeable correlation for pixel scales larger than 30 arcsec,
since it shows a much steeper slope in logarithmic scale. With the
approach we have followed, it is certain that this correlation is not of
cosmic origin, but other than that, we cannot speculate more on the
causes for this observed correlation, which are left for future research.

Therefore, we have considered two different noise levels: first,
the measured σ for the simulation pixel size, which would be the
intersection of the coloured lines with vertical black line in Fig. 6, and
the uncorrelated σ following equation (4). The former represents the
most realistic case if the cross-correlation with actual data were to be
computed now, while the latter is a hypothetical case where through
further work on image reduction all noise correlations are removed,
and only the uncorrelated and irreducible electronic noise remains.

In Table 1, the mean σ noise for each filter, measured at the pixel size
of the simulation, as well as the scaled noise for three exposures σ 3exp,
is shown, by dividing σ noise by a factor of

√
Nexp. A hypothetical

case for a deeper PAUS (complete up to iAB < 24) is also considered,

Table 2. σ noise extrapolated as uncorrelated noise to the pixel size of the
simulation (in erg s−1 cm−2 nm−1) × 10−16, for the seven narrow-band
filters, as well as its value scaled for three exposures, σ 3exp, and 18 exposures,
σ 18exp.

λ (nm) 455 465 475 485 495 505 515

σ noise 10.32 10.74 8.32 7.39 7.46 7.79 7.63
σ 3exp 5.96 6.20 4.81 4.27 4.31 4.50 4.40
σ 18exp 2.43 2.53 1.96 1.74 1.76 1.84 1.80

since it is a possibility currently being explored. This would imply
multiplying by six the current exposure time for all survey pointings,
hence the σ 18exp. Table 2 shows the same data for the uncorrelated
noise approximation. Overall, the correlation in the noise increases
σ noise by a factor of ∼10.

3.2 Simulation of PAUS Ly α IM

3.2.1 PAUS images: Ly α emission

In order to simulate the PAUS images for the cross-correlation, the el-
ements explained in the previous subsection (Ly α emission from the
hydrodynamic simulation, foregrounds from the mock catalogue and
Gaussian noise) must be converted to units of observed flux density
(erg s−1 cm−2 nm−1) and merged into the seven narrow-band filters.

Since the hydrodynamic simulation gives Ly α emission in
luminosity units (erg s−1), the first step is to compute the comoving
coordinates of all pixels of the simulation from the point-of-view
of the observer. Assuming the cosmology of the simulation, and
knowing that the simulation snapshot is at z = 3, we consider the
comoving distance from the observer to the centre of the box to be the
radial comoving distance at redshift 3, χ (z = 3). Knowing this, the
comoving coordinates of all cells of the simulation with respect to the
observer are also known (as well as their edges), assuming that the
three axes of the simulation box are RA, Dec., and radial directions,
respectively. The bins of the hydrodynamic simulation are not in
spherical coordinates but Cartesian, however, given the small angular
size of the sample, the small-angle approximation can be applied.

With the comoving radial distance of all cells known, and the
relation χ (z) given by the cosmology, the inverse relation z(χ ) can
be computed numerically, and thus a redshift can be assigned to each
cell. This allows to compute the luminosity distance simply with its
definition for a flat cosmology:

DL(z) = (1 + z)χ (z). (5)

Moreover, given that all the emitted flux is Ly α, the rest-frame
wavelength is also known (λLyα = 121.567 nm), which yields
the observed wavelength range of all cells in the hydrodynamic
simulation, and thus all redshift bins (following the small angle
approximation, all cells in the same radial distance bin will have
the same redshift, and thus observed wavelength range). With all
these elements computed, the observed flux density for all PAUS
cells comes from the following expression:

fλ i = L

4πDL(zi)
2�λobs

i

, (6)

where L is the cell luminosity given by the hydrodynamic simulation
(erg/s), DL is the luminosity distance in cm, and �λobs

i the observed
wavelength range for the redshift bin of the cell, all corresponding
to the PAUS cell i.

Having computed the observed flux density for all PAUS cells, the
redshift bins of the PAUS simulation need to be merged to simulate
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PAU survey: Lyα intensity mapping forecast 3889

Figure 7. Logarithmic histograms of the ratio between fluxes and mean
Ly α fluxes, for the Ly α emission, foreground emission, and instrumental
noise, both the measured noise and the uncorrelated extrapolation (in absolute
value). Noise values for the current PAUS case, σ3exp abs. The vertical line
represents the imposed Ly α threshold.

the wavelength bins given by PAUS filters. In order to do so, PAUS
filters are considered to have top-hat response functions 10 nm wide,
ranging from 455 nm (bluest filter) to 845 nm (reddest). Following
this criterion, the redshift bins of the simulation completely fill the
seven bluest filters, which also limits the cross-correlation to seven
filters in this work. The last four redshift bins of the simulation fall
outside the seventh filter; these bins are discarded for the simulation
of PAUS images. For each one of the simulated PAUS filters, all
the redshift bins of the hydrodynamic simulation that fall inside the
wavelength range of the filter are merged into a single one, with its
flux value being the mean of the merged bins (since observed fluxes
are the average flux density over the response function).

With redshift bins already merged to simulate PAUS filters, the
average Ly α redshift for each filter can be used to convert from
observed flux densities (erg s−1 cm−2 nm−1) to absolute flux densities
(erg s−1 nm−1), with the following expression:

Fλ i = 4πDL(znb)2fλ i, (7)

where znb is the redshift of Ly α in the respective narrow band.
This is done in order to cancel out the dimming of observed Ly α

flux with redshift (due simply to the increasing distance between
said emission and the observer), which would introduce an artificial
gradient in the emission field to be cross-correlated. However, the
previous conversion to observed fluxes was necessary, since we can
only convert to absolute fluxes with observational data using the
observed redshift, i.e. PAUS redshift bins, not the much finer redshift
bins of the original simulation.

On top of this conversion to absolute fluxes, a realistic threshold
can be imposed to Ly α fluxes, both to remove possible artefacts
that may be derived from the assumption that Ly α luminosity is
proportional to baryon density squared, and also to account for the
fact that resolved objects will be removed from PAUS images before
cross-correlating (which may remove some bright Ly α emitters at
high redshift).

The chosen Ly α absolute flux threshold is 10 times the brightest
pixel of the simulated foregrounds, whose computation will be
explained in Section 3.2.2. This value is chosen assuming that
the foreground simulation gives a realistic estimate of how much
unresolved flux can be expected, and taking into account that
resolved objects are masked based on their g-band luminosity. This

broad-band has FWHM = 138.7 nm (Fig. 1), which is one order
of magnitude wider than PAUS narrow-bands. Therefore, Ly α

emission observed in a PAUS filter will be reduced by a factor
of 10 when observed in the g filter. A maximum value of 1.53
× 10−5 erg s−1 nm−1 was set as a threshold, which affected only
0.0024 per cent of all pixels. To visualize the extent of this threshold,
Fig. 7 shows histograms of absolute fluxes for the Ly α emission,
foregrounds and instrumental noise, divided by the mean Ly α flux
and together with the Ly α threshold, represented as a vertical line.

After all these steps, the result is a simulation of Ly α extended
emission in PAUS filters. However, given the redshift and the size
of the simulation, it only covers ∼25 deg2, with an angular pixel
size of 1.38 arcmin2; since the expected area to cross-correlate is
100 deg2, the simulation is replicated four times in mosaic pattern,
which effectively covers the expected area. The result can be seen in
Fig. 8 (top panel).

3.2.2 PAUS images: foregrounds

Given that resolved objects will be removed from PAUS images
before cross-correlating, only the objects too faint to be resolved
must be included in the foreground simulation. The PAUS reference
catalogue is complete up to magnitude 25 in the g band; consequently,
only the objects in the mock lightcone dimmer than this value are
selected. Besides this, since the lightcone is elliptical in angular
coordinates, it is cropped to the largest inscribed rectangle. This
rectangle is smaller than the 25 deg2 at z ∼ 3 of the hydrodynamic
simulation, so it is repeated in a mosaic pattern and cropped to cover
the same angular area as the original Ly α simulation.

All the foreground objects have their SEDs computed by template
fitting, as explained in the previous subsection, and they are binned in
RA and Dec. using the same angular bins as the Ly α flux simulation.
Since the templates are fitted to apparent magnitudes, by using the
definition of AB magnitude the interpolated SEDs are already in
observed flux units of erg s−1 cm−2 nm−1.

For each one of these RA x Dec. pixels, the net observed SED is
computed as the sum of the SEDs inside the bin. These stacked SEDs
are then integrated and averaged over the response functions of the
seven blue filters according to the expression below, which gives the
observed foreground flux,

fnb =
∫ ∞

0 dλfSED(λ)Rnb(λ)∫ ∞
0 dλRnb(λ)

. (8)

Here fSED is the flux density of the interpolated SED, Rnb is the
response function of a certain narrow band, and fnb is the observed
flux density in that narrow band. With this expression the observed
foreground flux in the PAUS filters is obtained; in order to convert to
absolute fluxes equation (7) is used.

The result is a three-dimensional array covering ∼25 deg2 that
can be directly added to the Ly α observed flux simulation. As in the
Ly α flux case, this array needs to be replicated four times in a mosaic
pattern for an effective coverage of 100 deg2. This time, however, for
each replication the array is rotated clockwise (keeping the redshift
direction the same), in order to ensure that each 25 deg2 subset is a
different realization of Ly α emission+foregrounds (if the rotation
was not performed, replicating the arrays for a 100 deg2 would be
analogous to sampling the same 25 deg2 area four times). The result
of these simulated foregrounds can be seen in Fig. 8 (middle panel).

This rotation introduces discontinuities in the foreground struc-
ture, since the periodic boundary conditions of the mock catalogue
are broken. Nevertheless, the cross-correlation is computed by
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3890 P. Renard et al.

Figure 8. Simulation of PAUS images in comoving coordinates according to
Ly α observed redshift. Absolute flux densities in erg s−1 nm−1. Top panel:
Ly α flux. Middle panel: Foregrounds flux. Bottom panel: Combined Ly α

flux and foregrounds flux with instrumental noise (for the current PAUS case,
σ3exp abs, using the uncorrelated noise approximation).

selecting cubes of PAUS cells around forest cells, so only forest
cells close enough to the discontinuities will be affected by them.

As shown in Fig. 10, the cross-correlation is only computed in
perpendicular (angular) direction up to 20 Mpc h−1. Given that the
whole angular size of the simulation is 800 Mpc h−1 and that the
discontinuities are two straight lines dividing the simulation in RA
and Dec., this leaves <10 per cent of the forest cells potentially
affected by the discontinuities. Also, the dominant noise contribution
is instrumental noise, not the foregrounds, so even in the small
fraction of forest cells affected by discontinuities the effects of these
on the cross-correlation should be fairly small.

Table 3. σnoise abs with noise correlation (in erg s−1 nm−1) × 1044, for the
seven narrow-band filters, as well as its value scaled for three exposures,
σ3exp abs, and 18 exposures, σ18exp abs.

λ (nm) 455 465 475 485 495 505 515

σnoise abs 9.12 15.05 6.56 4.27 6.45 6.24 13.16
σ3exp abs 5.27 8.69 3.79 2.47 3.72 3.60 7.60
σ18exp abs 2.15 3.55 1.55 1.01 1.52 1.47 3.10

Table 4. σnoise abs following the uncorrelated extrapolation, in (erg/s/nm)·
1043, for the seven narrow-band filters, as well as its value scaled for three
exposures, σ3exp abs, and 18 exposures, σ18exp abs.

λ (nm) 455 465 475 485 495 505 515

σnoise abs 6.96 7.78 6.46 6.13 6.60 7.34 7.64
σ3exp abs 4.02 4.49 3.73 3.54 3.81 4.24 4.41
σ18exp abs 1.64 1.83 1.52 1.44 1.56 1.73 1.80

3.2.3 PAUS images: combination and noise

Considering that both have the same units and the same binning, the
Ly α and foregrounds absolute flux simulations can be directly added
into a total absolute flux array. The only step left to properly simulate
PAUS observations is to add the instrumental and atmospheric
noise. For this simulation, we have modelled this noise as Gaussian
distribution of mean zero and σ dependent on the filter. This σ is the
instrumental noise directly measured from images and scaled for the
number of exposures, as specified in Table 1, converted to absolute
flux units according to equation (7). Two cases have been considered:
the σ measured at the pixel size of the simulations (Table 1), and the
extrapolation considering uncorrelated noise (Table 2), which yields
lower values of σ .

These absolute flux noise values, σnoise abs, as well as the scaled
value that is used, σ3exp abs, and the hypothetical deep PAUS,
σ18exp abs, are displayed in Table 3 for the real noise case, and in
Table 4 for the uncorrelated extrapolation. The final result of Ly α

flux+foregrounds+instrumental noise is shown in Fig. 8 (bottom
panel). Only the uncorrelated noise case is shown, as the resulting
figure in this case is already noise dominated.

With this simulation, despite repeating both the Ly α emission
and the foregrounds in a mosaic pattern, we ensure that the cross-
correlation always samples a different combination of signal+noise,
since instrumental noise is generated for the full simulation and
foregrounds are rotated.

While it may be argued that the clustering signal from Ly α

emission is repeated, the only caveat of this is that cosmic variance
may be underestimated. Given that the original diameter of the hydro-
dynamic simulation is 400 Mpc h−1, far above the homogeneity scale
(e.g. Gonçalves et al. 2018), and that the predominant sources of noise
are by far foregrounds and instrumental noise (as seen in Section 6.2),
any effect cosmic variance may have on the result is negligible.

3.3 eBOSS/DESI: Ly α forest

To simulate the Ly α forest data of eBOSS/DESI surveys, the
hydrodynamic absorption simulation show in Fig. 3 is replicated four
times in a mosaic pattern, as if it was shown in the PAUS simulation.

After this operation, random cells in the simulation array are
selected with the quasar density redshift distribution shown in Fig. 2
(depending on the survey to be simulated), with the redshift of each
cell computed as for the Ly α emission simulation. The RA and
Dec. coordinates of the quasar cells are selected randomly from
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PAU survey: Lyα intensity mapping forecast 3891

Figure 9. 3D simulations of the Ly α forest sampled pixels. Left: eBOSS. Right: DESI.

a uniform distribution. The total number of quasar cells (i.e. the
number of quasars in the sample) is also computed from the redshift
distribution, considering that the simulation has an angular area of
100 deg2 and that only quasars with z > 2.7 are to be included (since
quasars at lower redshift will have all Ly α forests outside the redshift
range of the simulation).

The cells between the quasar cells and the observer (the cells in
the same angular bins and negative redshift direction) are considered
Ly α forest cells, including the quasar cells themselves. Only these
forest cells are taken into account for cross-correlation; everything
else in the hydrodynamic simulation is masked.

In addition to this, if a quasar is at redshift high enough so that Ly β

forest appears at z > 2.7, its forest cells that would be covered by the
Ly β region are also masked, given that these regions of the quasar
spectrum contains both Ly α and Ly β absorption lines superimposed
from different redshifts. While these Ly β forest regions can be used
for cross-correlation studies (e.g. Blomqvist et al. 2019), here we
adopt the conservative approach and remove them from the cross-
correlation. These masked Ly β cells account for 12 per cent of the
total forest cells.

Regarding the SNR of the forest data, we take as a reference
the mean SNR values displayed in Chabanier et al. (2019, table 2).
These correspond to a high-quality sample of the first eBOSS release
(selecting 43 751 out of 180 413 visually inspected spectra), and
thus are an optimistic estimate of what can be expected in both
future eBOSS releases and DESI. For the redshift bin closer to our
study (z ∼ 3), the eBOSS data shows 〈SNR〉 = 6.5 per forest pixel.
However, these values need to be scaled to the bin size of our forest
simulation with the following expression:

SNRsimulation(λ) =
√

�λsimulation

λ〈ReBOSS〉−1
〈SNReBOSS〉, (9)

where �λsimulation is the wavelength bin size for our forest simulation
(determined as in §3.2), and 〈ReBOSS〉 is the mean resolution of the
eBOSS spectra after reduction with the pipeline used in Chabanier
et al. (2019), which resamples the wavelength pixels of the coadded
spectra in logarithmic bins of �log10 = 10−4 (or equivalently, R
∼ 4350). This results in a higher SNR that increases linearly from
9.97 at the lowest redshift to 10.29 at the high-redshift end. Gaussian
noise is added to each forest cell according to the determined SNR.

A voxel representation of this Ly α forest simulation, displaying
only forest cells used for cross-correlation, is shown in Fig. 9, both
for eBOSS and DESI expected quasar densities.

4 SI MULATED CROSS-CORRELATI ON
ESTI MATOR

4.1 Estimator definition

In order to compute the cross-correlation from the PAUS and
eBOSS/DESI simulated data sets explained in the previous section,
an estimator of the 2PCF is needed. The estimator used for this work
is

ξ̂ (rn) =
∑

i

(
δi
∑

∈Bin(rn) φj

)
∑

i

(
1
∑

∈Bin(rn) 1
) . (10)

This estimator is defined for distance bins rn. Since the cells to
be cross-correlated have finite volumes, distances are assumed from
the coordinates of their centres. Regarding the other terms in the
equation, δi is the δ flux of the forest cell i, as defined in equation (1),
and φj is the absolute flux contrast for the pixel j in simulated PAUS
images, defined as

φj ≡ Fλ j

〈Fλ〉 − 1. (11)

In other words, this estimator is the average value of the products of
all cell pairs in a certain distance bin. This distance r in equation (10)
is defined as the total distance between cells (monopole cross-
correlation), but it could also be defined as the distance projected on to
the line of sight (parallel cross-correlation, ξ (r�)), or perpendicular to
it (perpendicular cross-correlation, ξ (r⊥)). Consequently, the parallel
and perpendicular estimators ξ (r‖ n) and ξ (r⊥ n) can be defined simply
by switching the definition of distance, |i − j|, by |i − j | · �ulos and
|i − j | × �ulos, respectively (where �ulos is the unit vector parallel to
the line of sight).

Normally, the average computed by this estimator is weighted by
a function of the pipeline error, as well as additional errors terms
derived from data reduction (e.g. Font-Ribera et al. 2012). However,
for this preliminary work the error in simulated PAUS images is
approximately constant, with only slight variations between filters
(see Table 3), and the Ly α forest error has been considered negligible,
so no weighting has been applied.

The error on the estimator is computed using jackknife resampling.
The simulation has been divided in 25 subsamples by imposing
uniform cuts in RA and Dec. Since space is not sampled uniformly
in redshift in this cross-correlation (because Ly α forest available
data depends on the quasar redshift distributions), no cuts have been
performed in redshift, so all jackknife subsamples cover the whole
redshift range of the simulation.
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4.2 Noise bias

The cross-correlation estimator introduced in equation (10) is biased
if at least one of the signals being cross-correlated contains noise of
mean different than zero, which is of particular importance for this
study. In order to demonstrate this, let us assume that the estimator is
used to cross-correlate two arbitrary observable scalar fields, f(r) and
g(r). For both fields, a finite number of samples at different points
are observed, fi and gi, and from these points the respective means 〈f〉
and 〈g〉 are computed. In order to apply the estimator, the contrasts
of both fields need to be determined, which, as in equation (1) and
equation (11), would be done with the following expressions:

fcontrast i = fi − 〈f 〉
〈f 〉 ; gcontrast i = gi − 〈g〉

〈g〉 . (12)

If δi and φj are replaced in equation (10) by fcontrast i and gcontrast j,
and these are substituted by its definition in equation (12), the
following expression can be obtained:

ξ (r) =
∑

i

[
(fi − 〈f 〉)∑r

j (gj − 〈g〉)
]

〈f 〉〈g〉∑i

(
1
∑r

j 1
) . (13)

Here, the second summation in the right side of equation (10) has
been rewritten as

∑r
j for simplicity. Now, let us consider that the

field g(r) is the sum of two independent fields, the signal S(r) and the
noise N(r), so

g(r) = S(r) + N (r). (14)

By our definition, the noise N(r) is uncorrelated with f(r), so for
a sample large enough a hypothetical estimated cross-correlation
between f(r) and N(r) would tend to zero. Following equation (13),
this can be expressed as

∑
i

⎡
⎣(fi − 〈f 〉)

r∑
j

(Nj − 〈N〉)
⎤
⎦ → 0. (15)

Conversely, the hypothetical cross-correlation ξ S(r) between f(r)
and S(r) would be

ξS(r) =
∑

i

[
(fi − 〈f 〉)∑r

j (Sj − 〈S〉)
]

〈f 〉〈S〉∑i

(
1
∑r

j 1
) . (16)

Nevertheless, only the field g(r) can be observed, and thus the only
cross-correlation that can be computed is that of the f(r) with S(r)
plus N(r):

ξS+N(r) =
∑

i

{
(fi − 〈f 〉)

[∑
j(Sj − 〈S〉) + ∑

j(Nj − 〈N〉)
]}

〈f 〉〈S + N〉∑i

(
1
∑

j 1
) .

(17)

If a sample large enough is assumed, equation (15) holds true, and
since the noise component of the cross-correlation tends to zero, the
denominator in equations (16) and (17) is identical. Therefore, the
following relation can be derived between the hypothetical cross-
correlation of the signal, ξS(r), and the actual cross-correlation of
the signal with noise, ξS + N(r), is

ξS+N(r) = 〈S〉
〈S + N〉 ξS(r). (18)

If the noise of the observable g(r) had mean zero, we would have
ξS + N(r) = ξS(r), and thus the estimator would be unbiased. However,
if we consider PAUS images to be the observable g(r), the noise

N(r) would be the foregrounds plus instrumental noise. The first
component necessarily has a mean larger than zero, since it is a sum
of observed fluxes, while the second also should in principle, given
that it includes effects such as scattered light and airglow, which are
strictly positive.

Nevertheless, this noise bias does not affect the SNR, and thus the
probability of detection. Considering that the error is computed via
jackknife resampling (i.e. the σ of the cross-correlation computed
for different subsamples), this noise bias will multiply the cross-
correlation value and its error equally, and therefore will cancel out
when computing the SNR.

5 TH E O R E T I C A L C O R R E L AT I O N FU N C T I O N

To validate the result of the simulated cross-correlation, as well as
to derive the clustering, comparison against a theoretical 2PCF is
needed. The first step is to compute the unbiased matter-matter 2PCF
from the theoretical matter power spectrum. For this work, this 2PCF
has been initially computed as a field depending on two variables,
the distances parallel and perpendicular to the line of sight, r� and r⊥
respectively, with the following expression (e.g. see Hui, Gaztañaga
& Loverde 2007; Gaztañaga, Cabré & Hui 2009)

ξ (r‖, r⊥) = 1

2π2

∫ ∞

0
dk kPnl(k)

sin
(
k

√
r2
‖ + r2

⊥
)

√
r2
‖ + r2

⊥
exp(−krcut).

(19)

Where Pnl(k) is the non-linear matter power spectrum computed
with CAMB (Lewis, Challinor & Lasenby 2000), and the non-linear
modelling of HALOFIT (Peacock et al. 2014). This power spectrum
has been computed at the redshift of the hydrodynamic simulation
snapshot (z = 3), using its cosmology. Regarding other terms, rcut

is the radius of the exponential cut-off set in order to avoid large
oscillations in the theoretical 2PCF due to small-scale effects that
are not represented in its counterpart measured in the simulation. For
this study, the chosen value for this cutoff is rcut = 3 Mpc h−1.

By definition, there is no anisotropy in equation (19), which may
make the computation of the 2PCF in two directions seem redundant.
Nevertheless, two effects that are to be taken into account will break
the isotropy of the function: the smoothing introduced by the binning
of the simulated data, and the effect of redshift-space distortions
(RSDs).

5.1 Smoothing

This effect arises from the fact that correlation is being performed
between spatial cells with finite volumes, whose value of the field
to cross-correlate is the average over the volume of the cell. If the
length of these cells to cross-correlate is equal or smaller than the
binning of the correlation estimator (equation 10), this effect will
be negligible, given that by binning the estimator already averages
over a similar length. This is the case for the Ly α forest cells in all
directions or the PAUS cells in RA and Dec. directions, where their
length (1.56 Mpc h−1, given by the hydrodynamic simulation bins)
is smaller than the binning of the cross-correlation estimated in this
work.

On the other hand, this effect is not negligible for the redshift
direction in PAUS cells, where the mean cell size is 56.25 Mpc h−1

(since redshift bins have been merged to simulate PAUS filters).
Averaging the Ly α flux in PAUS images over such distances will
certainly have an effect on the estimated cross-correlation, which
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PAU survey: Lyα intensity mapping forecast 3893

Figure 10. Theoretical unbiased 2PCFs times squared distance, before and
after applying smoothing. The distance range of each one of the 2PCFs is the
same as all the results shown in Section 6. Redshift space distortions have not
been considered in this figure.

also has to be simulated in the theoretical 2PCF. Considering that the
redshift direction in the simulation has a direct correspondence with
r� in equation (19), this smoothing can be emulated by averaging
each point in the computed ξ (r�, r⊥) field over a length in r� equal to
the average PAUS cell size

ξ̄ (r‖, r⊥) = 1

l‖

∫ r‖+l‖/2

r‖−l‖/2
dr ′

‖ ξ
(
r ′
‖, r⊥

)
. (20)

Where l� = 56.25 Mpc h−1. By definition of the 2PCF, r > 0, so
for r� < l�/2 this expression changes to

ξ̄ (r‖, r⊥) = 1

l‖

[∫ r‖+l‖/2

0
dr ′

‖ ξ
(
r ′
‖, r⊥

) +
∫ l‖/2−r‖

0
dr ′

‖ ξ
(
r ′
‖, r⊥

)]
.

(21)

If the 2PCF is interpreted as an average product of cell pairs
at a certain distance, such as in the estimator, this last expression
represents the case where the small Ly α forest cell lies inside the
redshift range of the PAUS cell it is being cross-correlated with.
The smoothing integral needs to cover the whole l�, but since the
distance between cells necessarily has to be non-negative, the integral
is truncated in two terms: one for the portion of the PAUS cell at
higher redshift than the Ly α forest cell, and another for the portion
at lower redshift. Fig. 10 shows the effect of this 2PCF smoothing
(dashed lines) compared to the non-smoothed 2PCF (solid lines) for
the three correlation types considered in this work.

5.2 Monopole, parallel, and perpendicular 2PCF

This two-dimensional 2PCF has been converted to a 2PCF depending
solely on a single distance parameter, either the total distance between

cell pairs r =
√

r2
‖ + r2

⊥, or the parallel/perpendicular distances, in

order to be compared to the estimator defined in equation (10). The
estimator could also be defined as a function of both r� and r⊥;
however, this would greatly reduce the number of cell pairs available
per bin, and thus the SNR of the measured cross-correlation.

For the monopole 2PCF, this has been performed by computing
ξ̄mm(r‖, r⊥) in a very fine uniform grid of r�, r⊥ values, and then

averaging these values in bins of total distance r =
√

r2
‖ + r2

⊥.

Regarding the parallel and perpendicular 2PCFs, they have been
obtained from the theoretical two-dimensional 2PCF simply by

numerical integration, according to the following expressions:

ξ̄mm(r‖) = 1

R⊥

∫ R⊥

0
dr⊥ ξmm(r‖, r⊥),

ξ̄mm(r⊥) = 1

R‖

∫ R‖

0
dr‖ ξmm(r‖, r⊥), (22)

where R� and R⊥ are the maximum binning distances used by
the estimator in equation (10) for the parallel and perpendicular
directions. These 2PCFs, unlike the monopole, depend on the
total range over which the correlation is computed, which makes
them less suitable for comparison of the results against the theory.
Consequently, only the monopole 2PCF will be used to compare the
results of the simulation against the theory in Section 6.

5.3 Bias and RSDs

In addition to this smoothing effect, bias from the tracers also needs
to be taken into account, as well as the effect of RSDs. Since the
scales studied in this work are large enough, the only RSD effect
considered is the Kaiser effect (Kaiser 1987).

So far, the unbiased matter–matter 2PCF has been considered
(called ξ̄mm henceforth), but the cross-correlation in this work uses
Ly α emission and Ly α forest absorption. The power spectrum of
a tracer t correlated with itself can be obtained from the unbiased
2PCF with the following expression

Ptt(k) = b2
tt

(
1 + βttμ�k

2
)2

P (k). (23)

Here, btt is the bias of the tracer (Ly α emission and Ly α forest in
this case), μk is the cosine of the angle between the vector position
vector in Fourier space �k and the line of sight, and β tt is the effective
RSD parameter. Ptt(k) is the power spectrum of the tracer; given that
RSDs are included in the expression, it is implied to be in redshift
space.

If we are to compute the 2PCF from this Ptt(k), we need to
take into account the dependency of μ�k with r� and r⊥. For the
two-dimensional 2PCF μ�k will depend on the values of r� and r⊥,
but for the monopole, parallel and perpendicular correlation, this
dependence vanishes. For the parallel and perpendicular case, μ�k = 1
and μ�k = 0, respectively, while for the monopole, after integration
in all directions equation (23) becomes

ξ̄tt(r) = b2
tt

(
1 + 2

3
βtt + 1

5
β2

tt

)2

ξ̄mm(r). (24)

For this work, two tracers are considered: the Ly α emission (denoted
by e) and the Ly α absorption that generates the Ly α forest (denoted
by a); the autocorrelation of both tracers will be computed to validate
the simulation, as explained in Section 6.1. The assumed bias factors
b for both tracers are already explained in Section 3.1, while the β

parameter needs different assumptions for each case.
Given that the Ly α emission has been considered proportional

to the square of the matter density field, its β will be the same
as the matter density, scaled by the bias factor baa. Following the
approximation in Kaiser (1987) for linear theory, we find

βee = �m(z)0.6

bee
. (25)

Regarding the Ly α absorption, βaa is independent from baa, since
the nonlinear transformation applied to obtain the Ly α absorption
field (equation 1) does not preserve the flux between real and redshift
space. According to Slosar et al. (2011), the value of βaa for different
simulations depends on their resolution, with values oscillating
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Table 5. Bias factor btt and RSD parameter β tt considered for Ly α emission
and absorption, as well as the resulting effective bias for cross-correlation b̂t,
according to equation (26).

btt β tt b̂t monopole

Ly α emission 2.000 0.488 2.343
Ly α absorption 0.336 1.000 0.557

between 1 and 1.5 at z ∼ 2.25. Recent observations of BAO with
the Ly α forest autocorrelation yield βaa ∼ 1.8 at z = 2.34 (de Sainte
Agathe et al. 2019), but also show some evidence of βaa decreasing
with redshift. Since the mean redshift of this work (z ∼ 3) is higher
than any of the cited values of βaa, and the hydrodynamic simulation
is relatively low resolution, we decide to adopt the conservative value
of βaa = 1.

So far, we have discussed how to model the effects of the bias and
the RSDs for the autocorrelation of the Ly α emission and the Ly α

absorption from the forest; however, the cross-correlation between
both tracers also needs to be modelled. In order to do so, we compute
the effective biases of each tracer for cross-correlation, b̂t as the
tracer bias times the square root of its RSD factor. For example, for
the monopole, following equation (24) the effective bias would be

b̂t = btt

(
1 + 2

3
βtt + 1

5
β2

tt

)
. (26)

Therefore, the monopole cross-correlation can be expressed as

ξ̂ea(r) � −b̂a(r)b̂e(r)ξ̄mm(r). (27)

Where the minus sign comes from the fact that the cross-correlation
is between an emission and an absorption field. Table 5 sums up the
btt and β tt considered for both Ly α emission and absorption, as well
as the resulting effective bias b̂t for the monopole.

6 R ESULTS

The results presented in this paper are divided between three subsec-
tions. In Section 6.1, the effective bias of the tracers of the simulation
(with RSDs included), as defined in equation (26) is measured by
comparing the absorption and emission auto-correlations against the
theoretical 2PCFs. These measured effective biases are then applied
to the theoretical 2PCF, and compared against the estimated cross-
correlation in simulations without either foregrounds or PAUS noise
(only Ly α emission in the simulated images). In Section 6.2, the
probability of a detection (SNR > 3) when adding foregrounds
and instrumental noise (using the uncorrelated extrapolation) is
explored at different scales. Four cases of cross-correlation are
explored: PAUS-eBOSS, PAUS-DESI, and the cross-correlation of
DESI with two hypothetical extensions of PAUS (an increase in
exposure time, PAUS deep, and in survey field, PAUS extended).
Finally, in Section 6.3, we summarize the same results, but using the
correlated noise directly measured from PAUS images, instead of the
uncorrelated extrapolation.

6.1 Cross-correlation without noise or foregrounds:
comparison against theory

In order to compare the cross-correlation results against the theoreti-
cal prediction (and thus validate that the cross-correlation results are
sound), the actual effective biases of the tracers of the hydrodynamic
simulation need to be measured and compared against the expected
values from Table 5.

These effective biases of the simulation have been measured
by correlating the emission/absorption arrays of the hydrodynamic
simulation (Fig. 3) with themselves, using the same binning as in the
PAUS-eBOSS/DESI simulation (wide redshift bins for PAUS, only
Ly α forest cells for eBOSS/DESI). No foregrounds or noise were
added for this correlation, since they do not have the same physical
units, and the purpose of this calculation is just to determine the real
bias while testing that the binning of the simulation and the smoothing
effect are properly taken into account. Considering equations (24)
and (26), the effective bias of the tracer can be estimated from the
smoothed theoretical prediction ξ̄mm and the estimated correlation of
the tracer ξ̂tt with

b̂t (r) =
√

ξ̂tt(r)

ξ̄mm(r)
. (28)

Here, t is any tracer, and the expression has been considered only
for the monopole 2PCF. The results of this bias determination can
be seen in Fig. 11. The error of the bias at all distance bins is simply
the propagated error of the cross-correlation; any error that could
be included in the theoretical 2PCF (e.g. cosmic variance) has been
considered negligible.

As can be seen in Fig. 11, the actual measured b̂a, around 0.4, is
smaller by ∼25 per cent than the expected value from Table 5, but for
the emission field b̂e is actually really close to the predicted value.
This is to be expected, the Ly α emission field is proportional to the
square of the matter density field, which already gives an exact value
of the bias, and the effect of RSDs in this case are well described by
linear theory. However, for the Ly α forest both b and β are uncertain
(especially the latter), and the reference values available come from
measurements/simulations at lower redshifts, so such discrepancies
are reasonable.

With these measured biases, the simulated cross-correlation can
be compared to the theoretical 2PCF by applying equation (27),
but instead of using the effective bias values of Table 5, we
apply the measured effective biases from Fig. 11 to each distance
bin.

A comparison of the simulated cross-correlation, without either
foregrounds or instrumental noise, to the theoretical 2PCF with the
measured biases is displayed in Fig. 12. Only the monopole 2PCF is
displayed, since the parallel and perpendicular 2PCF depend on the
range in which the 2PCF is computed, as shown in equation (22). No
foregrounds or instrumental noise have been added both to ensure a
good SNR to validate our model, and because the noise bias described
in equation 18 would also need to be corrected to compare the
simulation against theory.

With no foregrounds or instrumental noise, there is a clear
detection of cross-correlation at r > 30 Mpc h−1 with DESI, and
several bins show a clear detection up to r ∼ 30 Mpc h−1 with eBOSS.
For all the bins with a detection, the errorbars of the theoretical
prediction and the actual cross-correlation overlap; this validates the
simulated cross-correlation. Besides, this also proves that, for an
ideal case without any other sources of noise, this cross-correlation
could be used to constrain either the bias of the tracers or the 2PCF
on scales up to ∼30 Mpc h−1.

Nevertheless, when the foregrounds and the instrumental noise
from PAUS are added to the simulation, the general SNR of the cross-
correlation drops greatly. Therefore, instead of simulating the cross-
correlation and comparing to the theory (assuming that a detection is
almost certain), a different approach has been taken to evaluate the
probability of a detection.
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PAU survey: Lyα intensity mapping forecast 3895

Figure 11. Emission bias (left) and absorption bias (right), measured as described in equation (28), for correlations using eBOSS and DESI Ly α forest binnings.
Solid black line represents the approximate effective bias from Section 3.1.1; dashed black line represent the theoretical bias without considering RSDs (β =
0). Coloured horizontal lines are the weighted average of the recovered effective bias for the respective surveys.

Figure 12. Comparison of the simulated cross-correlation with foregrounds, without instrumental noise, and the theoretical 2PCF with the measured biases. The
points with errorbars represent the cross-correlation values (left y-axis), while the dashed line represents the SNR of each distance bin (right y-axis). Left-hand
panel: PAUS-DESI. Right-hand panel: PAUS-eBOSS.

6.2 Cross-correlation with uncorrelated noise: probability of
detection

6.2.1 PAUS-eBOSS/DESI

As explained in Section 3, a simulation of the cross-correlation
contains three stochastic elements: the instrumental noise in PAUS
images, the Gaussian noise inserted in the Ly α forest simulation,
and the quasar cells in eBOSS/DESI that determine the Ly α forest
cells to be sampled (following the redshift distributions in Fig. 2).
Nevertheless, the noise in the Ly α forest is clearly subdominant (its
addition does not alter the results), so we will discuss only the PAUS
noise and the quasar positions from now on.

Without the instrumental noise, different realizations of the
Ly α forest quasar positions do not modify significantly the cross-
correlation results. Nevertheless, when the instrumental noise (using
the uncorrelated extrapolation) is added to the PAUS simulation, the
SNR of the cross-correlation heavily decreases, up to the point of a
detection (SNR > 3) depending on the realization of the noise and
the Ly α forest (i.e. the SNR is not consistent between different runs
of the simulation pipeline). Fixing one of these stochastic elements
(either the Ly α forest position or the instrumental noise) does not
gives consistent results either.

Therefore, the approach we have taken is to simulate the cross-
correlation 1000 times, with different realisations of the instrumental
noise and the Ly α forest quasars each time, and compute the
probability of detection (SNR > 3). For each one of the realizations,
the monopole, parallel, and perpendicular 2PCF have been computed
using 12 uniform distance bins; finer distance bins would result in
empty bins (without any cell pairs) for some cases.

In addition to this, the cross-correlation has also been computed
another 1000 times for each case, but with the Ly α emission in
PAUS images mirrored both in the RA and Dec. axes. This way,
the actual cross-correlation between the simulated PAUS images and
the Ly α forest should be null, as one of the two signals has been
inverted, so any detection that results from this cross-correlation is
inherently spurious. In fact, the 2PCF has only been computed with
12 uniform bins partially because applying other uniform binnings
seemed to increase the spurious detections without a larger increase
in real ones.

Fig. 13 displays the probability of detection for these 1000 runs for
PAUS-eBOSS and PAUS-DESI: the solid line represents the proba-
bility of any detection from the real cross-correlation (this includes
the spurious ones), and the dashed line the probability of a spurious
detection (for the cross-correlation with inverted Ly α emission).
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Figure 13. Probability of a detection as a function of distance in the
simulated cross-correlation PAUS-eBOSS and PAUS-DESI for 1000 different
realizations of instrumental noise + Ly α forest. Solid line displays the actual
probability of any detection, dashed line shows the probability of a spurious
detection. Top panel: Monopole 2PCF. Middle panel: Parallel 2PCF. Bottom
panel: Perpendicular 2PCF.

As it would be expected, cross-correlation with DESI noticeably
increases the detection probability for all three 2PCFs; however, the
probability of any detection is still very small. In the PAUS-eBOSS
case, the solid line is barely above the dashed one, which implies the
probability of a detection is almost negligible. In PAUS-DESI, there
are some regions where the probability of any detection is clearly
above the dashed line; these are the cases that we will discuss.

First, the monopole/parallel 2PCF and the perpendicular 2PCF
seem to sample better different scales: the parallel 2PCF has a lower
probability of detection at small scales, and shows an increase in

Table 6. Probability of any detection for simulated cross-correlations PAUS-
eBOSS and PAUS-DESI, using the uncorrelated PAUS noise extrapolation.

Surveys Any detection Spurious (per Real (per cent)
(per cent) cent)

PAUS-eBOSS 18.7 16.9 1.8
PAUS-DESI 24.7 20.2 4.5
PAUS deep-DESI 39.5 24.2 15.3
PAUS extended-DESI 36.8 27.8 9.0

detection probability around 10 Mpc h−1, while the perpendicular
2PCF has exactly the opposite behaviour. The cause of these
contrasting trends in the detection probability for different 2PCFs is
the smoothing effect that PAUS filters have in the parallel (redshift)
direction, displayed in Fig. 10.

In the parallel cross-correlation, and to a lesser extent, the
monopole 2PCF, smoothing decreases the absolute value of the 2PCF
at scales of 10 Mpc h−1 and 15 Mpc h−1, respectively, while at
larger scales the 2PCFs are increased (at least, as far as the size
of the hydrodynamic simulation allows to compute the 2PCF, 30–
35 Mpc h−1). This trend matches almost perfectly the detection
probabilities in Fig. 13, with sharp increases in the monopole and
parallel 2PCF at the same scales.

On the other hand, the perpendicular 2PCF in Fig. 10 shows a
smaller decrease, even when going to larger scales than the ones
depicted in Fig. 10; this small effect of the smoothing results in
higher detection probabilities at smaller scales, where the 2PCF
has higher absolute values. This result shows that the parallel and
perpendicular 2PCFs are highly complementary, and both should be
taken into account for any future observational studies of Ly α IM
with PAUS (or similar surveys) in order to maximize the probability
of a detection at all scales.

Nevertheless, it is worth noting that, even in these regions where
the detection probability increases, the difference with the spurious
detection probability is really modest, and outside of these regimes
the probability of an spurious detection is larger. While this should
not be technically possible, it is due because these two probabilities
come from two different finite sets of realizations, and thus they have
an intrinsic variance. If anything, it can be interpreted as the effective
probability of a non-spurious detection being null.

Furthermore, the total probability of any detection (regardless
of the kind of 2PCF and the binning) has also been computed,
considering that any realization where one or more bins in any
2PCF had SNR > 3 was an effective detection. These results are
summarized in the two upper rows of Table 6; the probability of
a real detection is simply the difference between the probability of
any detection (percentage of the 1000 realizations that yielded a
detection) an the probability of a spurious detection (percentage of
the 1000 realizations with inverted Ly α emission where a detection
happened). With this approach, we assume that the probability of
a real detection of Ly α cross-correlation and a spurious one are
independent processes.

When considering these results, it is important to take into account
that in this preliminary study no weightings to improve SNR of the
estimator in equation (10) have been considered, and only a uniform
binning have been applied for the 2PCFs computation. Nevertheless,
the detection probabilities are still very small, with the probability
of an spurious detection being far higher than an actual one in both
cases; it is safe to assume that any statistical approach to increase
SNR is unlikely to yield significantly better results.
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6.2.2 Hypothetical cases: PAUS deep, PAUS extended

In addition to the PAUS-eBOSS and PAUS-DESI simulations, two
hypothetical cases have also been considered: PAUS deep, a survey
with the same field coverage, but complete up to a magnitude
deeper (iAB < 24), and PAUS extended, with the same exposure
time as current PAUS, but a larger angular area of 225 deg2. These
hypothetical PAUS cases have only been cross-correlated with the
DESI simulation, since eBOSS would be rendered obsolete by DESI
before such hypothetical surveys could be finished.

PAUS deep has been simulated analogously to PAUS, with the sole
difference being the instrumental noise, now reduced by a factor of√

6, as displayed in Table 3 (σ18exp abs). Regarding PAUS extended, the
Ly α emission array has been repeated in a mosaic of 3 × 3, instead of
2 × 2, thus yielding an angular coverage of ∼225 deg2. To cover this
mosaic of Ly α emission, the foregrounds array has been repeated and
rotated for the first four iterations; after that, it has been mirrored in
RA direction and repeated until the 3 × 3 mosaic has been filled. This
gives eight possible combinations of Ly α emission-foregrounds:
the four rotations of the foreground array plus the four mirrored
rotations, which sets a limit on the maximum area we can simulate
in this study. In fact, the 3 × 3 mosaic already has one redundant
combination of Ly α emission+foregrounds (since it is composed of
9 realizations). Simulating even larger areas would result in largely
redundant foregrounds, which would provide too optimistic results
given that the same combination of Ly α emission+foregrounds
would be sampled multiple times.

The probability of detection for 1000 realizations of these simula-
tions is shown for the monopole, parallel and perpendicular 2PCFs in
Fig. 14, together with original PAUS-DESI simulation, while Table 6
displays the probability of any detection (two lower columns). The
probability of spurious detection has also been computed following
the same methodology.

Both cases show a noticeable increase in the probability of any
detection, which is now close to 40 per cent. However, the probability
of spurious detections also increases, which diminishes the net gain
in the probability of any detection. Overall, spurious detection are
more likely, but the probability of a real detection is only smaller by
a factor of few (less than 2 for PAUS deep-DESI, and approximately
3 for PAUS extended-DESI).

The same complementary trend is observed in Fig. 14, with the
perpendicular 2PCF sampling better at scales below 10 Mpc h−1,
while the monopole and parallel 2PCF have a much higher chance
of detection at larger scales. For these last two 2PCFs, PAUS
extended seems to provide a much higher increase of probability
of detection (an increase by a factor of 2–3) at distances larger than
10 Mpc h−1, while the improvement of PAUS deep compared to
original PAUS is much smaller. The perpendicular 2PCF at small
scales, however, shows similar improvement with either PAUS deep
or PAUS extended. PAUS deep, however, seems to perform much
better at small scales with the perpendicular 2PCF.

PAUS deep would need 6 times the observation time from current
PAUS to observe the same area (going from 3 exposures for each
pointing to 18), while PAUS extended only would need 2.25 times the
observation time to be carried out (since 225 deg2 are being observed
instead of 100 deg2, with the same exposure time per pointing). Since
PAUS deep seems to provide better detection probabilities (by a factor
of ∼1.5), but also requires almost twice the observational time, it is
difficult to assess which strategy is more time-efficient for a Ly α

IM detection. Nevertheless, it seems clear that increasing exposure
time yields better results on small scales, and observing a larger field
increases the detection probability at larger scales.

Figure 14. Probability of a detection as a function of distance in the simulated
cross-correlation of hypothetical extensions of PAUS and DESI, for 1000
different realizations of instrumental noise+Ly α forest. PAUS deep refers
to a survey complete up to iAB < 24 (exposure time ×6), while PAUS
extended refers to a total survey area of 225 deg2. Solid line displays the
actual probability of any detection, dashed line shows the probability of a
spurious detection. Top panel: Monopole 2PCF. Middle panel: Parallel 2PCF.
Bottom panel: Perpendicular 2PCF.

6.3 Cross-correlation with correlated noise: probability of
detection

So far in this section, we have only discussed the results for the opti-
mistic case where it is assumed that methods are developed to remove
the noise correlation the photometric imaging of PAUS. However, this
is not the current case, and while a noticeable reduction in the noise
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Table 7. Probability of any detection for all the considered cases, using the
actual correlated PAUS noise.

Surveys Any detection Spurious Real (per cent)
(per cent) (per cent)

PAUS-eBOSS 15.2 17.5 0.0
PAUS-DESI 18.0 17.9 0.1
PAUS deep-DESI 18.5 16.8 1.7
PAUS extended-DESI 18.6 18.4 0.2

correlation might be achieved (since this is an active area of research
in other IM applications, such as 21 cm IM, e.g. Liu et al. 2009),
using the correlated noise is the most realistic approach for now.

Table 7 shows the probability detection results, following the same
methodology as in Section 6.2, but applying the correlated noise to
the simulation of PAUS images. The probability of a detection greatly
decreases in both cases, to the point of being negligible in all cases
but PAUS deep-DESI, where it is close to 2 per cent. In fact, for
the PAUS-eBOSS case we actually obtain more spurious detections
with the inverted Ly α signal that total detections with the proper
cross-correlations; a clear sign of all of them being spurious.

7 C O N C L U S I O N S

In this work, the possibility of performing Ly α IM by cross-
correlation of spectroscopic Ly α forest data with the background of
narrow-band images from PAUS has been simulated and evaluated.
Ly α forest emission and absorption has been simulated from a
hydrodynamic simulation of size 400 Mpc h−1 designed for the
study of the IGM (Cisewski et al. 2014; Ozbek et al. 2016; Croft et al.
2018). The foregrounds in PAUS images have been simulated from a
lightcone mock catalogue made from the Millennium Simulation
with the WMAP7 cosmology (Guo et al. 2013), and using the
GALFORM (Gonzalez-perez et al. 2014) semi-analytical model. SED
templates (Blanton & Roweis 2006) have been fitted using non-
negative least squares to the broad-band data of this mock catalogue
in order to achieve PAUS spectral resolution for these foregrounds.

Instrumental noise has been considered for both the simulated
PAUS images (measured directly from reduced and stacked PAUS
science images) and the Ly α forest spectroscopic data (extracted
from Chabanier et al. 2019). Two different cases for the PAUS
instrumental noise have been simulated: one with an optimistic
uncorrelated noise extrapolation (assuming that noise correlation is
mitigated in future work), and another with the current noise levels
directly measured, which show a clear correlation at the pixel size of
our simulation.

Furthermore, the theoretical 2PCFs (monopole, parallel and per-
pendicular correlations) have been computed with the derivation
shown in Gaztañaga et al. (2009) from the matter power spectrum,
obtained using CAMB (Lewis et al. 2000). The smoothing of these
theoretical 2PCFs due to the large redshift bins for Ly α emission in
PAUS narrow-band images has been simulated, and the biases and
RSDs of both Ly α emission and absorption have been measured by
comparing the theoretical monopole 2PCF to the correlation of the
Ly α absorption and emission arrays, using the same spatial binning
as the PAUS-DESI cross-correlation.

The simulated cross-correlations without foregrounds or instru-
mental noise show that, despite the redshift smoothing of Ly α

emission in PAUS images, and the limited fraction of space sampled
by Ly α forest data, the theoretical monopole 2PCF can be recovered,
and the bias of both Ly α emission and absorption can be measured.

This shows the validity of this technique in an ideal case to both place
constraints on the 2PCF and the bias of the extended Ly α emission
or the Ly α forest.

Nevertheless, a bias has been identified in the cross-correlation
estimator when cross-correlating fields with noise with mean larger
than zero (such as the foregrounds and the instrumental noise for
this case). This noise bias, while not affecting the SNR, should be
taken into account if constraints such as the Ly α emission bias or
the Ly α mean luminosity are to be derived from cross-correlation.
A constrained model of the foregrounds and other noise sources
average values would be needed; conversely, assuming a known bias
and expected Ly α luminosity this same cross-correlation could be
used to place constraints on foregrounds emission.

When the cross-correlation is run with the instrumental noise
and foregrounds in PAUS images, SNR greatly decreases, up to
the point where not all realizations yield a detection. A realization
of this cross-correlation contains three stochastic elements: the
instrumental noise of PAUS and the Ly α forest, derived from a
random Gaussian distribution (although negligible in the second
case), and the positions of the quasars, drawn from the quasar redshift
distribution of eBOSS/DESI. Fixing one of these stochastic elements
does not provide consistent SNR either, so the probability of a
detection (i.e. the cross-correlation reaching a certain SNR threshold)
has been evaluated using a purely frequentist approach.

In order to evaluate the probability of a detection, 1000 realizations
of the simulated cross-correlations have been carried out with
different realizations of both instrumental noise and quasar positions,
and for each one the monopole, parallel and perpendicular 2PCFs
have been computed for 12 uniform distance bins. Moreover, another
1000 realizations have been computed with mirrored Ly α emission
in PAUS images to determine the probability of spurious detections.

Considering a detection threshold of SNR > 3, and under the
uncorrelated PAUS noise assumption, Ly α emission has been
detected in only 1.8 per cent of PAUS-eBOSS simulations and
4.5 per cent of PAUS-DESI simulations. These percentages increase
to 15.3 per cent and 9.0 per cent with two hypothetical PAUS
extensions: PAUS deep (going up to iAB < 24 instead of iAB <

23), and PAUS extended (observing 225 deg2 instead of 100 deg2).
Nevertheless, in all cases the probability of a spurious detection
is higher, and when including the correlated PAUS noise instead,
the higher probability of a real detection (PAUS deep-DESI) is just
1.7 per cent. These results clearly show that, even if noise correlation
was to be mitigated and PAUS observation time extended, the cross-
correlation of the images background with Ly α forest data is unlikely
to yield a detection, and if such a detection happens the most likely
scenario is that it is spurious.

Despite these negative results, some valuable conclusions can
still be extracted. First, the perpendicular and parallel 2PCF show
complementary behaviours: the former has relatively high detection
probabilities at scales up to 10 Mpc h−1, while the latter displays
a non-negligible probability of detection at scales larger than 10
Mpc h−1. These different trends are due to the smoothing of the
2PCF in redshift direction, which affects far more the parallel 2PCF
than its perpendicular counterpart. Second, this smoothing effect has
been properly modelled and recovered when comparing the noiseless
correlation to theory, so larger smoothing lengths can be accounted
for, and the scales where they will maximize the detection probability,
and thus the SNR, can also be predicted.

These two results point out to the fact that broad-band photometric
surveys, with angular coverages one or even two orders of magnitude
larger than PAUS, such as DES Abbott et al. (2018) or SDSS
(Ahumada et al. 2020) may be more promising for Ly α IM. This
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is because their main drawback compared to narrow-band surveys
(redshift smoothing) has been properly modelled and reproduced,
and increasing survey area has been shown to be an effective strategy
to increment the detection probability.
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ERDF. We acknowledge the PIC services department team for their
support and fruitful discussions. RACC was supported by NASA
NNX17AK56G, NASA ATP-80NSSC18K101, NSF AST-1614853,
and NSF AST-1615940.

DATA AVAILABILITY STATEMENT

The data underlying this article will be shared on reasonable request
to the corresponding author.

RE F EREN C ES

Abbott T. M. C. et al., 2018, ApJS, 239, 18
Ahumada R. et al., 2020, ApJS, 249, 3
Bertin E., Mellier Y., Radovich M. M., Gilles Didelon P., Morin B., 2002, in

Bohlender D., Durand D., Handley T., eds, ASP Conf. Ser., Astronomical
Data Analysis Software and Systems XI. Astron. Soc. Pac., San Francisco,
p. 228

Blanton M. R., Roweis S., 2006, AJ, 133, 734
Blomqvist M. et al., 2019, A&A, 629, A86
Breysse P. C., Kovetz E. D., Kamionkowski M., 2014, MNRAS, 443, 3506
Carilli C. L., 2011, ApJ, 730, L30
Cassata P. et al., 2011, A&A, 525, A143
Castander F. J. et al., 2012, The PAU camera and the PAU survey at

the William Herschel Telescope. International Society for Optics and
Photonics, Amsterdam, Netherlands, p. 84466D

Chabanier S. et al., 2019, J. Cosmol. Astropart. Phys., 2019, 17
Chang T.-c., Pen U.-l., Peterson J. B., McDonald P., 2008, Phys. Rev. Lett.,

100, 1
Chang T.-C., Pen U.-L., Bandura K., Peterson J. B., 2010, Nature, 466, 463
Chiang Y.-K., Ménard B., Schiminovich D., 2019, ApJ, 877, 150
Cisewski J., Croft R. A. C., Freeman P. E., Genovese C. R., Khandai N.,

Ozbek M., Wasserman L., 2014, MNRAS, 440, 2599
Croft R. A. et al., 2016, MNRAS, 457, 3541
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Gaztañaga E., Cabré A., Hui L., 2009, MNRAS, 399, 1663
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Miquel R., Cabré A., 2012, MNRAS, 422, 2904
Gong Y., Cooray A., Silva M., Santos M. G., Bock J., Bradford C. M., Zemcov

M., 2012, ApJ, 745, 49
Gonzalez-perez V., Lacey C. G., Baugh C. M., Lagos C. D., Helly J., Campbell

D. J., Mitchell P. D., 2014, MNRAS, 439, 264
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L51
Heymans C. et al., 2012, MNRAS, 427, 146
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