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ABSTRACT Vehicular networks support intelligent transportation system (ITS) to improve drivers’ safety
and traffic efficiency on the road by exchanging traffic-related information between vehicles and also
between vehicles and infrastructure. Routing protocols that are designed for vehicular networks should
be flexible and able to adapt to the inherent dynamic network characteristics of these kind of networks.
Therefore, there is a need to have effective vehicular communications, not only to make mobility more
efficient but also to reduce collateral issues such as pollution and health problems. Nowadays, the use of
machine learning (ML) algorithms in wireless networks are on the rise, including vehicle networks that can
benefit from possible data-driven predictions. This work aims to contribute to the design of a smartML-based
routing protocol for vehicular ad hoc networks (VANETs) used to report traffic-related messages in urban
environments. We propose a newML-based forwarding algorithm to be used by the current vehicle holding a
given packet to predict which vehicle within its transmission range is the best next-hop to forward that packet
towards its destination. Our algorithm is based on a neural network designed from a dataset that contains
data records that are captured during simulated urban scenarios. Simulation results show how our ML-based
proposal improves the performance of our multimetric routing protocol for VANETs in urban scenarios in
terms of packet delivery probability. The performance evaluation of MPANN shows packet losses lower than
20% (and average packet delays below 0.04ms) for different vehicles’ densities, in completely new scenarios
but of similar complexity than the Barcelona scenario used to train the model. Even for much more complex
scenarios (with narrow curvy streets), our proposal is able to reduce the packet losses in 20% with respect
to the multimetric routing protocol as well as the average packet delays in 0.04 ms.

INDEX TERMS Multimetric routing protocol, artificial neural networks, vehicular networks.

I. INTRODUCTION
Today, researchers have access to large amounts of data that
can be used to design useful services and applications to
be reverted to the users who generated that data. Besides,
the current available computation power makes it possible to
perform a large amount of tests and experiments to come up
with efficient machine learning and neural network models in
a short time. In this sense, and during this work, we intend to
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improve vehicle communications by taking advantage of the
big data generated by the vehicles themselves.

Intelligent transport systems (ITS) aim to improve oper-
ation and road safety in urban, rural, and highway envi-
ronments. Nowadays, a lot of information can be collected
by computational devices (e.g., sensors, cameras, on-board
units) available almost everywhere. This large amount of
collected data properly managed with machine learning tech-
niques can be used to develop useful tools to improve the
aforementioned ITS. Machine learning (ML) is the applica-
tion of artificial intelligence to allow computers to predict
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outcomes and behaviors automatically without the interven-
tion of human beings. One of the main pillars of ML tech-
niques is the ability to manipulate a large amount of data,
which today can be easily done because the capacity of
computational hardware has increased considerably in recent
years.

In this work, we designMLmodels to improve routing pro-
tocols in vehicular networks. The objective is to enhance the
selection process of the next-hop candidate node to forward
packets towards their destination. This way, vehicles will
make forwarding decisions based on predictions according
to an ML algorithm. The main contributions of this paper are
the following:
• We have created a representative dataset based on the
collection of different trafficmetrics fromVANET simu-
lations in urban scenarios. The five collectedmetrics that
compose the dataset used to train and test our ML-based
forwarding algorithm are available bandwidth, distance
to destination, vehicles’ density, MAC layer losses, and
vehicle’s trajectory.
Notice that those metrics are gathered by the vehicles
from the beacons periodically interchanged with the
vehicles in their neighborhood (i.e., with vehicles within
their transmission range). This way, nodes have local
knowledge of the VANET, according to the decentral-
ized nature inherent in VANETs.

• We have tested different hyperparameter configurations
of the ML model to assist our forwarding algorithm to
obtain the best accuracy related to an expected outcome.
Specifically, we have trained our model to have the
maximum possible packet delivery probability.

• Then, the configuration of the ML-based forwarding
algorithm that achieves the highest accuracy will be the
one implemented in our multimetric routing protocol
for VANETs. Afterwards, the prediction power will be
evaluated in VANET scenarios where new data will be
used to assess our proposal’s performance evaluation.

• At last, we include a performance evaluation to assess
the benefits and costs of our approach. The proposed
ML-based forwarding algorithm does not incur any
additional overhead. We use just the same metrics gath-
ered by the multimetric routing protocol through peri-
odic beacon interchange. Consequently, our algorithm
generates the same overhead as the basic multimetric
routing protocol used to compare the performance of
our approach. Results obtainedwith our novelML-based
routing protocol are better by far compared to our previ-
ous multimedia multimetric map-aware routing protocol
(3MRP) [1]. The benefits are better in terms of packet
losses at the cost of a slightly higher end-to-end packet
delay due to the calculations performed by the ML
algorithm.

A. MOTIVATION
The main motivation that led us to design the proposal pre-
sented in this work was to design a new scheme for VANET

nodes to make efficient and smart forwarding decisions using
ML-based techniques. Our contribution lies in the design of
ML models considering the specific VANET characteristics
in urban scenarios. To attain our goal, we have designed
and tested different ML configurations to improve network
performance in terms of average packet losses and average
end-to-end packet delay. We focus our research work in
urban scenarios where vehicles forward warning/reporting
messages to an RSU following hop-by-hop V2V and V2I
communications.

To the best of our knowledge, there is no equivalent work
in the literature on improving multimetric routing protocols
for VANETs where hop-by-hop forwarding decisions are
based on machine learning predictions. While ML is not a
new science, it is currently gaining momentum. ML models
learn from past calculations to produce reliable and repeat-
able results and decisions. Furthermore, as these models are
exposed to new data, they can be adapted independently,
which can improve a wide diversity of applications.

As we will see in the related works section, some propos-
als implement predictive mechanisms using machine learn-
ing models. These proposals focus primarily on establishing
complete data forwarding paths to destination, and they need
additional infrastructure or additional signaling overhead for
monitoring purposes. To carry out our proposal, we have not
needed to add any additional overhead or new infrastructure,
maintaining the basic hop-by-hop communication nature of
vehicular ad hoc networks.

B. PRECEDENTS
This manuscript is built on the Ph.D. thesis [2] of the first
author, Dr. Leticia Lemus Cárdenas, specifically on chap-
ter 7, where she presented her proposals for multimetric
predictive routing protocols for VANETs in urban scenarios.
In that chapter, she explains the details of her design of
ML prediction models to enhance VANET routing protocols
using decision tree-based algorithms and using artificial neu-
ral networks (ANNs). Therefore, the main results shown in
that chapter regarding the ANN-based proposal of a VANET
routing protocol have been selected for inclusion in this
manuscript, along with a more extensive performance evalu-
ation, deeper discussion of results, and improved explanation
of the ANN-based routing protocol.

C. ORGANIZATION
The remainder of the paper is organized as follows: Section II
presents some related work. Then, section III describes
the contents of the dataset collected from our considered
urban scenario. Next, section IV presents our proposal of
an ANN-based forwarding algorithm to improve multimetric
routing protocols for VANETs. After that, section V presents
our approach named multimetric routing protocol based on
an ANN (MPANN) for VANETs. Following, section VI
describes the simulation scenario where we have imple-
mented our proposal to carry out a performance evaluation,
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which is shown in section VII. Finally, in section VIII con-
clusions and future work are presented.

II. RELATED WORKS
In this section, we present state of the art on machine learning
solutions proposed to improve VANETs’ performance. Our
search for related proposals has been focused on works that
tackle two aspects: (i) proposals whose strategies to improve
the performance of VANETs are supported with ML models;
(ii) works that specifically implement ML-based multimetric
forwarding strategies to select a next-hop vehicle to forward
messages.

(i) Regarding proposals that include ML models in their
proposals, it seems clear that the topic in vehicular net-
works most likely to benefit from ML-based proposals is
autonomous vehicles (AVs). Certainly, there are many recent
proposals ofMLmodels to assist driving inAVs. For instance,
authors in [3] propose a traffic control system based on
random-forest (RF) predictions to determine AVs’ routes to
reduce congestion rates. Their proposal is able to reduce the
workload on the human experts who monitor and control
AVs. In [4], the authors design and analyze deep learning
architectures based on convolutional neural networks (CNN)
to enhance semantic image segmentation, which is used in
AVs for self-driving. They propose fully convolutional neu-
ral (FCN) models, which are trained to obtain the maximum
accuracy and lowest training time, keeping precise their FCN
model to segment objects.

Authors in [5] propose a ML model to predict vehicles’
mobility. Specifically, they propose a centralized routing
scheme with mobility predictions in VANETs assisted by a
software-defined network (SDN) controller using artificial
neuronal networks techniques. The idea is to use the SDN
controller to estimate and predict the vehicles’ arrival rate
measured at road side units (RSU) or at base stations (BS).
Their proposal shows benefits in terms of successful trans-
mission probability and average packet delay in both V2V
and V2I communications.

Another example is presented in [6], where the authors pro-
pose data delivery virtualization using reinforcement learning
(RL). First, they evaluate each one of the one-hop link status
considering the vehicles’ speed, the vehicles’ density in the
same direction, and the average channel condition. Those
metrics are used to select cluster head (CH) nodes that will
act as sender nodes. Then, they design a game-theoretical
multi-hop routing protocol that includes their RL model.
Authors in [7] present a proposal on link prediction by imple-
menting supervised machine learning techniques. A support
vector regression is implemented to predict the vehicles’
trajectory considering four mobility cases of the vehicle’s
speeds: high and constant speed, turn case speed, parking or
intersection speed, and when the vehicle starts to move. Their
proposal predicts link failures using machine learning and the
vehicles’ trajectory knowledge.

In [8] we can see a proposal named reliable self-adaptive
routing algorithm (RSAR) to design a Q-learning-based

routing protocol. The basic idea is to use a Q-learning algo-
rithm to assess the path from each source’s neighbor to
destination using continuous interaction with the external
environment. With their Q-learning-based algorithm, they
register a table with scores (Q) of the node’s neighbors,
computed from measures of link-availability, link life-time,
and distance to destination. Then, the neighbor with the
highest Q-value is selected to forward the packet towards
destination. Similarly, we find another proposal presented
in [9] where the authors introduce a novel routing protocol
for urban VANETs called RSU-assisted Q-learning-based
Traffic-Aware Routing (QTAR). QTAR learns the road seg-
ment traffic information based on the Q-learning algorithm.
In QTAR, a routing path consists of multiple dynamically
selected high-reliability connection road segments that effec-
tively enable packets to reach their destination. Simulation
results show higher average packet delivery ratios and lower
average end-to-end delays were obtainedwith respect to other
traffic-aware routing proposals.

(ii) Regarding proposals that consider several metrics in
their ML-based forwarding strategies, we have not found
many works. Our thorough literature review reveals that an
efficient routing protocol that considers crucial metrics for
vehicular networks, such as trajectory, speed, delivery ratio,
distance, and nodes’ density, is urgently needed.

Recently, [10] proposes an algorithm to select the path
from source to destination based on Decision Trees (DT)
prediction. They measure the availability link duration time
by observing threemetrics: distance, velocity, and node direc-
tion. Its results show that DT presents significant benefits in
terms of PDR, path duration time, and average hop count.
Nevertheless, although it is a novel proposal based on a
supervised learning machine learning model, the range of
percentage in their packet delivery rate (PDR) results are 10%
and 24% in the best case.

The work [11] proposes a vehicular delay tolerant net-
work (VDTN) routing algorithm based on a bayesian net-
work (BN) model that improves the delivery ratio with a
minor forwarding overhead. The nodes in the BN model are
the attributes of nodes in VDTN, which are closely related
to the forwarding of messages. The selected attributes asso-
ciated to each candidate forwarding node include its location,
movement angle, velocity, delivery level, or ability to transmit
messages successfully, among others.

Finally, [12] proposes cluster-enabled cooperative schedul-
ing based on reinforcement learning (CCSRL) to improve the
communication efficiency, and reliability of vehicular net-
works, with the goal of maximizing the information capacity.
In particular, they leverage the stability to select a cluster head
vehicle to enhance data transmission efficiency. Also, a rein-
forcement learning-based transmission is further designed
to guarantee reliable communication among vehicles. Their
proposal considers the distance (between current and pos-
sible forwarding vehicles), vehicle stability (computed from
the velocity and the movement trend), bandwidth efficiency
(computed from the number of data packets forwarded and
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the probability of successful transmission), velocity, vehicles’
density (driving in the same direction as the current vehicle
holding the packet), and quality of the channel condition.

The previous works propose several strategies to enhance
vehicular communications. Some of them require extra
infrastructure or additional signaling overhead to assist the
monitoring or to transmit signaling messages. We pose that
a vehicle could take a smarter decision to forward a packet
if it knew in advance the probability to successfully deliver
the packet at destination, regarding each candidate node to
be chosen as the next forwarding hop. As far as we are
concerned, there is no proposal in the literature that includes
a ML-based forwarding algorithm to assist a multimetric
routing protocol for vehicular networks that predicts, for each
candidate forwarding vehicle, which is the packet delivery
ratio at destination. In the following sections, we describe
our proposal to choose the best forwarding node in VANETs
based on a novel ML-based prediction algorithm.

III. DATASET COLLECTED FROM MULTIMETRIC
MEASURES IN VEHICULAR URBAN SCENARIOS
In any ML-based project, the first step prior to develop any
model is to collect data, process, and arrange it properly
according to theMLmodel requirements. Furthermore, build-
ing a tagged dataset is not easy in practice, as it strongly
depends on the type of data to be observed. Most of the
available datasets regarding vehicular networks are those
related tomobility patterns. Unfortunately, there are not avail-
able datasets that deal with data packet flows in VANETs.
In consequence, it was firstly necessary to gather V2V and
V2I information from a realistic urban scenario designed
in our simulation framework built using OMNeT++ [13],
Veins [14], SUMO [15] and OpenStreetMap (OSM) [16].
Specifically, our goal was to obtain the probability of
successful packet delivery under a wide representative
number of different characteristics of the simulation
environment.

To achieve our goal, we have carried out a large set of
VANET simulations over a representative area of Barcelona,
Spain, see Fig. 1. We selected a general and representative
area of Barcelona that includes wide and narrow streets as
well as an avenue. From each simulation, we have collected
the values of five metrics:
• Available bandwidth, in the link formed by the vehicle
currently holding the packet and each candidate node
in the neighborhood (i.e., vehicles within transmission
range) to be the next forwarding hop.

• Vehicle’s density. It is the number of neighbors within
the transmission rangemeasured at each candidate as the
next forwarding vehicle.

• Distance to destination. Distance computed from each
neighbor to the packet’s destination.

• Vehicle’s trajectory. It informs about the moving direc-
tion and speed towards destination, computed for each
candidate node in the neighborhood to be the next for-
warding vehicle.

FIGURE 1. Eixample/Gracia district in Barcelona city, Spain. Area =
2300 m × 2100 m. Map extracted from OpenStreetMap [16].

• MAC losses. The average percentage of packet losses
computed in the MAC layer of the link formed by the
current vehicle holding the packet and each one of its
neighboring vehicles within transmission range.

We calculate the five routing metrics listed above from
a set of values carried in the beacons that are periodically
interchanged by vehicles. Those values are (i) the (vx , vy)
velocity coordinates of the vehicle, (ii) the MAC layer losses,
(iii) the vehicles’ density, (iv) the vehicle’s location and the
(v) Tidle (% of time during which the link is not being used).
The details are explained in Section V.

In the considered scenario, reporting messages (e.g.,
regarding traffic statistics or a traffic incident) are forwarded
hop-by-hop from a source vehicle to an access point (AP) (see
Fig. 2). The AP is located near the right top corner of the map.
Vehicles periodically send traffic reporting messages to the
AP. This AP’s location guarantees that there will be a wide
range of possible results collected in the dataset, both from
near and far vehicles.

We have designed a multimetric ML-based forwarding
algorithm to be included in our multimetric routing protocol
for VANETs. The general objective is that vehicles can make
the best forwarding decision for each packet transmitted hop-
by-hop towards its destination.

To train, test, and validate our ML-based forwarding algo-
rithm, we have collected those five metrics (see columns
x1 to x5 in Fig. 3) from the already established periodic
exchange of beacon messages between neighbor vehicles.
Besides, we have also collected if the packet was successfully
delivered or not (see column y in Fig. 3). Therefore, to build
a representative dataset, it is necessary to get a wide range of
results for all possible values in the five considered metrics
(see the list above). This way, we relate the five routing
metrics, which are the inputs of our ML-based predictive
forwarding algorithm to assist routing protocols in VANETs,
to the output value of the model (probability of packet suc-
cessfully delivered), see Fig. 3.

To achieve our goal, we have considered different possi-
ble configuration settings in our VANET scenario. Among
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FIGURE 2. Data collection example from our
OMNeT++/Veins/SUMO/OSM simulation scenario.

these configuration features, we highlight the following
for their notably impact in the performance of the rout-
ing protocols: (i) the vehicles’ density, ranging from low
(20 vehicles/km2) to high values (300 vehicles/km2); (ii) the
average vehicles’ speed in urban roads (20 to 100 km/h);
(iii) different positions of the source nodes in the map area.
This way, we will have a complete representative dataset
that covers the maximum number of possible values in the
five considered metrics (available bandwidth, vehicles’ den-
sity, distance to destination, vehicles’ trajectory, and MAC
losses). The data collection process requires the following
steps:

• Extract one-hop values of the metrics. Obtain the cor-
responding output value, i.e., the percentage of packets
successfully delivered at destination, for each case.

• The dataset is organized in five columns with the values
for the five metrics (x1, . . . x5) as inputs, and another
column with the output values Y (0, 1). This output value
means whether the message was received (1) or not (0)
at destination.

• Our dataset consists of 6000 records. This dataset size
has shown to be enough to get good predictive results
in the performance of our proposed routing protocol
MPANN, as section VII shows.

• Oncewe have prepared our dataset, themachine learning
models can be trained and tested. The criteria used to
determine whether enough data has been collected or
not is basically the values of accuracy (training and
testing) obtained by the ML-based forwarding decision
models. We have created a large number of scenarios

FIGURE 3. Appearance of our dataset. Features and label for the training
and testing phases in our ML model.

with different configuration settings to fully cover the
range of values for each routing metric.

• Finally, the designed ML-based forwarding algorithm
is implemented in our multimetric routing protocol for
VANETs. The five routing metrics will be the inputs of
the ML model, while the output will be the prediction of
the packet successfully delivered or not at destination.
This is checked by the vehicle currently holding the
packet for each candidate node to be the next forwarding
node (see section V-A). The operation of the multimetric
routing protocol is described in section V.

We have normalized the collected values for each metric.
This is necessary so that the algorithms can operate with them
under the same range of values for each metric so that algo-
rithms can fairly evaluate them together. The resulting dataset
has the format shown in Figure 3. As additional information,
to obtain our dataset (which has 6000 registers), we dedicated
about 840 hours of human work and about 3600 hours of
simulation using a personal computer (i9, 3,3GHz, 64GB
RAM).

Our ML problem is clearly a binary classification prob-
lem because the expected outcome has two possible val-
ues (0 and 1). Therefore, artificial neural network (ANN)
models are suitable options to tackle our goal since they
can handle binary data very well, and they have shown
an accurate performance in the literature [17]–[19]. Then,
the next step is to train ANN classification algorithms and
evaluate them through the usual machine learning perfor-
mance metrics [19], [20]. Finally, the designed ML-based
forwarding algorithm will be implemented in our proposal
of VANET routing protocol, see section V. Our ML-based
multimetric routing protocol will be evaluated with our
OMNeT++/Veins/SUMO/OSM simulation framework, see
section VI.
In the following sections, the training, validation testing,

and implementation phases of our ML-based forwarding
algorithm for VANETs are described.

IV. DESIGN OF A FORWARDING ALGORITHM BASED ON
AN ARTIFICIAL NEURAL NETWORK
In this section, we summarize the process for training our arti-
ficial neural network (ANN) model. The resulting model will
be used in our ML-based forwarding algorithm to enhance
multimetric routing protocols for VANETs. In [2] we con-
ducted an extensive analysis of various ML models designed
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for our purpose, with ANN showing the best performance in
our scenarios.

In this work, we have trained different models over ANNs
with different ANN dimensions (i.e., different number of hid-
den layers and neurons) to choose the best classifier for our
dataset. Our dataset has been collected from a large amount
of representative simulations for VANETs in realistic urban
scenarios, as was explained in section III. The best classifier
has been chosen to balance the trade-off between accuracy,
prediction power, ease implementation, and complexity. Our
goal is twofold:

• To design anML-based forwarding algorithm that learns
from our representative dataset, see section III. The goal
of the ML-based forwarding algorithm is to predict if
the packet will be successfully delivered or not for each
next-hop candidate node.

• To integrate our ML-based forwarding algorithm in our
previously proposedmultimediamultimetric map-aware
routing protocol (3MRP) [1] for VANETs, as it is
explained in section V

After finishing the design and analysis of our ML-based
multimetric routing protocol for VANETs, we implemented
it in the OMNeT++/Veins/SUMO/OSM simulation frame-
work to carry out a performance evaluation of our pro-
posal in realistic urban scenarios, as it is shown in
section VII.

A. PREDICTION MODEL BASED ON A MULTI-LAYER
FEED-FORWARD NEURAL NETWORK
Machine learning (ML) defines algorithms that parse data
and learn from the dataset to build a model with which we
can later predict results. Artificial neural networks (ANN)
is a subset of machine learning algorithms classified as
deep learning models, which are designed to analyze data
with a logic structure like how we humans would draw
conclusions [20].

ANNs belong to the set of supervised learning algorithms
and are implemented to solve, among others, classification
problems. This feature suits well with our problem, where we
have a vehicle currently holding a packet that must classify
its neighboring vehicles in transmission range to select the
best next-hop forwarding vehicle. We have used our collected
dataset to generate an ANN model. The ANN model was
designed based on the highest accuracy value obtained in the
training and testing phases. Next, we describe the steps fol-
lowed to design our ANN-based forwardingmodel [21], [22].

1) ANN ARCHITECTURE DESIGN
The ANN model selected corresponds to a feed-forward
neural network with unicycle nodes and hidden layers that
are fully connected [22]. In this way, each neuron receives
input from all neurons from the previous layer, see Fig.4. The
perceptron is a mathematical model of a biological neuron,
see Fig.4a. An ANN is composed of different layers, and
how they are configured is related to the features and labels

FIGURE 4. General scheme of an artificial neural network (ANN).

defined in the training dataset. Firstly, the set of features (xi)
are our independent variables that form the first layer (input
layer in Fig.4b). Secondly, the output dependent variable (Y )
corresponds to the output layer. Finally, the hidden layers are
not related to the features nor the labels of the training dataset.
Therefore, the values of the hyperparameters (i.e., number of
hidden layers and number of neurons) will be adjusted. The
goal here is to tune those parameters to achieve the highest
accuracy for classification problem while keeping a simple
structure. We have tested several ANN configurations before
obtaining the final design of our ANN model.

Besides, an activation function and an error function must
also be selected. There are different activation functions
among which nonlinear functions, such as sigmoid [23] and
ReLU [24], are commonly used and widely applied. In partic-
ular, ReLU functions are simpler and faster to process. Note
that, in a neural network, the hidden layers may require a
high number of neurons, where each one must execute an
activation function. Therefore, a faster activation function is
convenient in the neurons that compose the input and hidden
layers.

For the first and hidden layers, we have chosen the
well-established Rectified Linear Activation (ReLU) func-
tion for, among other characteristics, its computational sim-
plicity and linear behavior [42], [43]. Finally, the sigmoid
activation function has been used in the output layer.

The learning process of the ANN designed is described in
the following two steps:
• Backpropagation. It corresponds to random output
prediction, comparing those predictions with the true
output. Thus, weights and bias (wi and b in Fig. (4a),
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respectively) are updated until the predicted output
comes closer to the true output. This updating process
is executed based on the error function, also named cost
function. In our case, we have used themean square error
(MSE), see Eq. (1) [25], as the cost function. This error
functionmeasures the difference between the true values
(yi) and the propagated values (ŷi).

MSE =
1
n
·

n∑
i=1

(yi − ŷi)2 (1)

The objective is to minimize the MSE. Hence,
the smaller the MSE, the more accurate the predictions
are. That is, every time the error is calculated, it is
required that weight values in the intermediate layers
be recalculated as many times as necessary until the
error be minimum, tending to zero if possible. To do
so, it is needed to use an adjusting function to update
the weight values of the intermediate layers. Thus,
those values are updated at each epoch of the training
stage. The Adam optimizer [26] is an adaptive learning
rate optimization algorithm that was designed specifi-
cally to train deep neural networks. This algorithm is
commonly used for its fast efficiency in deep learning
compared to other classical stochastic gradient descent
algorithms [27].

• Hyperparameter selection. As already mentioned, our
neural network topology is based on feed-forwarding
learning, where the layers are fully connected. The char-
acteristics of the input and output layers are based on the
features and classes of the collected dataset, respectively,
see III. Two important parameters that define the net-
work dimension are: (i) the number of neurons (per hid-
den layer); and (ii) the number of hidden layers.We have
performed different ANN configurations varying the
number of hidden neurons and hidden layers (referred to
as hyperparameters) to find the best configuration that
balances the trade-off between validation metrics and
complexity level. In this sense, the validation accuracy
and validation loss metrics were calculated for each
configuration of number of hidden neurons and hidden
layers.

We have computed the validationmetric (i.e., the accuracy)
of the combination of (1, 2, 3, 5, 10) hidden layers with (5, 10,
32, 64, 128, 256) neurons at each hidden layer. Fig. 5 shows
the accuracy of the three best results that we have obtained,
including corresponding hyperparameter settings. As it can
be seen, the three hyperparameter combinations show similar
values of accuracy. However, the most simple model (3 hid-
den layers, 128 neurons per hidden layer) has the highest
accuracy (84%). Note that a more simple neural model means
a lower computational cost in terms of number of operations
and activation functions in each layer. Therefore, we have
selected the configuration model with 3 hidden layers and
128 neurons per hidden layer.

FIGURE 5. Accuracy obtained in our ANN model for different
hyperparameter configurations: number of hidden layers and number of
neurons per hidden layer.

2) TRAINING PHASE
For the training process of any machine learning algorithm,
we have to provide a set of features (inputs, five in our
case) and one or more labeled classes (outputs, one in our
case). Note that an important point to take into account is
how long (number of epochs) it is necessary to train the
model. The goal is to train the model long enough to be
able to learn the mapping from inputs to outputs, while
at the same time, we should avoid overfitting of training
data.

Overfitting causes poor performance of ML algorithms.
Overfitting refers to a model that models the training data too
well to the extent that it negatively impacts the ability of the
model to generalize on new data. Therefore, it is important to
detect during the training phase of the model at what point the
model falls into overfitting. A good practice is to validate the
error calculation during the training process by using some
validation technique. To avoid overfitting, we have used the
early-stopping validation technique [28], [29]. The goal is
to detect when overfitting starts during supervised training
of the model; training is then stopped before convergence
to avoid overfitting (early stopping). Usually, the original
training dataset is divided into a training dataset and a val-
idation set. Also, the number of training cycles (epochs) that
the model will repeat through all training samples will be
configured.

Fig. 6 shows the evolution of the error function (MSE)
throughout the epochs in our ANN. Here we can see the
training error (blue line) and the validation error (orange
line) around each training cycle (epoch). In training, the error
value decreases as the number of repetitions increases (see
blue line). However, its real performance to unseen data (see
orange line) converges and cannot decrease any more. As it
can be seen, the validation error converges after 200 epochs.
It indicates that the model can no longer accurately predict
beyond that number of repetitions. Therefore, we are overfit-
ting the model for epoch>200.

By using the early-stop technique, the training will stop
when the validation loss does not decrease anymore to
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FIGURE 6. An example of overfitting detection during the training phase.
Suitable number of epochs = 200, to avoid overfitting.

avoid overfitting the model. Thereby, we obtain a suffi-
cient number of epochs that our model needs to reach
the minimum possible MSE till convergence. The build-
ing, training, and validation of our ANN model have been
implemented using the Keras [30] tool. We have obtained
the final ANN model with this tool, ready to be imple-
mented in our OMNeT++/Veins/SUMO/OSM simulation
framework.

The configuration parameters used in the training phase are
described in Table. 1. This table shows that we have used a
dataset split ratio of 80% for training, 10% for validation, and
10% for testing. For further details on the design of our ANN
model, we refer the reader to [2].

3) VALIDATION PHASE
To validate the final design of our ANN model, we have
obtained the receiver operating characteristic (ROC) curve
and the area under the ROC curve (AUC), shown in Fig. 7.
The ROC curve plots the relation between true positive
rate (TPR) and false positive rate (FPR). The AUC is a
parameter that tells us how much the model can distinguish
between classes, i.e., two classes in our case (‘‘1’’ means
packet successfully delivered and ‘‘0’’ means the contrary).
The AUC evaluates the goodness of a model. It takes values
between 0.5 (bad model with no class separation capacity)
and 1 (excellent model with a good measure of separability).
Thereby, the test with the largest area under the curve is
preferable. In our case, the AUC has a value of 0.887, which
means that there is an 88.7% probability that the diagnostic
made to predict a true positive value is more correct than
that of a randomly chosen false positive. Note that the ROC
represented in Fig. 7 corresponds to the ANN configuration
that obtained the highest accuracy value in the training phase,
see section IV-A2.

Concluding, we have designed an ANN model for our
collected dataset, see section III. The ANN has 1 input layer,
3 hidden layers, 1 output layer (i.e., ANN with 1/3/1) and
128 neurons at each hidden layer. Fig. 8 shows the scheme of
the final ANN architecture that we have designed following
the previous steps. In Fig. 8, we can see the following infor-
mation:

TABLE 1. Set of configurations parameters for the ANN modeling,
training, validation and testing phases.

FIGURE 7. ROC curve and area under the ROC curve (AUC) of our ANN
model once trained.

• S: The output of our ANN. We have 2 classes: ‘‘1’’
means packet successfully delivered at destination and
‘‘0’’ means the contrary.

• i: It represents the input number, 1 ≤ i ≤ 5. In our case
we have five features: distance to destination, trajectory,
vehicles’ density, available bandwidth and MAC losses.

• j: It represents the neuron number, 1 ≤ j ≤ 128.
• k: It represents the layer number, 1 ≤ k ≤ 5 (1 input
layer, 3 hidden layers and 1 output layer).

• xi: They represent the inputs to the first layer (input
layer): distance to destination, trajectory, vehicles’ den-
sity, available bandwidth and MAC losses.

• w(k)
i,j : Weights used in the ANN model. They represent

the connections between layers and show the relevance
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FIGURE 8. Scheme of our designed ANN model to be included in the forwarding algorithm of VANET routing protocols.

of a particular neuron. w(k)
i,j is the weight correspondent

to input i, neuron j, layer k .

•

5∑
i=1

xi·w
(1)
i,j = Z (1)

j , 1 ≤ j ≤ 128: It is the sum ofweighted

inputs at the input layer.

•

128∑
m=1

a(k−1)m · w(k)
m,j = Z (k)

j , 1 ≤ j ≤ 128, 2 ≤ k ≤ 4: It is

the sum of weighted inputs at the hidden layers.
• g(zki ) = a(k)j : They represent the activation functions at
the hidden layers. Also, we have used the ReLu function,
as is recommended in the hidden layers due to its good
performance and fast operation.

• φ(
128∑
j=1

a(4)j · w
(5)
j ), 1 ≤ j ≤ 128, 1 ≤ k ≤ 4: It represents

the activation function at the output layer. We have used
the Sigmoid function [23].

Our ANN-based forwarding algorithm will assist the node
in the vehicular network currently holding the packet to
make the best forwarding decision. That is, which is the best
next-hop vehicle to forward the packet towards its destina-
tion. Therefore, our ANN-based forwarding algorithm has
been designed to maximize the probability of successfully
delivering the packet at its destination.

So far, we have finished with the design of our ANN-based
forwarding algorithm. The next step is to include our ANN
model in the forwarding algorithm to assist vehicles to make
the best forwarding decision. Specifically, wewill include our
ANN-based forwarding algorithm in our previous proposal

of VANET routing protocol named multimedia multimetric
map-aware routing protocol (3MRP) [1], as it is explained in
section V.

V. MULTIMETRIC ROUTING PROTOCOL BASED ON AN
ARTIFICIAL NEURAL NETWORK (MPANN) FOR
VEHICULAR AD HOC NETWORKS
Once we have designed and validated our ANN-based for-
warding algorithm to help vehicles make the best forwarding
decision, we have to implement it in a routing protocol for
VANETs. We have chosen our previous proposal named mul-
timedia multi-metric map-aware routing protocol (3MRP),
which shown to improve the performance compared to other
proposals in terms of average percentage of packet losses
and average end-to-end packet delay [1]. 3MRP uses five
routing metrics: available bandwidth, distance to destination,
vehicles’ density, MAC layer losses and vehicle’s trajectory.
Vehicles periodically update those metrics regarding their
neighbors in transmission range using the periodical inter-
change of beacons. Then, the vehicle currently holding a
packet computes a multimetric score for each candidate to
be the next-hop forwarding vehicle. The neighbor with the
highest multimetric score is chosen to forward the packet in
the next hop, and this is repeated hop-by-hop to forward the
packet towards its destination.

A. MPANN ROUTING ALGORITHM
In this work, we substitute the forwarding criteria of 3MRP by
our ML-based forwarding algorithm, which was introduced
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in section IV-A1. Our proposal will assist the current vehicle
holding the packet to take the best forwarding decision so
that it chooses the neighbor that gives the highest chance to
successfully deliver the packet to destination. Our approach is
called multimetric routing protocol based on an artificial
neural network (MPANN) for VANETs.

The node currently holding the packet computes the five
normalized metrics for each neighbor within transmission
range [2]. Vehicles transmit three values (vehicle’s velocity,
MAC layer losses and vehicles’ density) in their beacons
periodically interchanged with their neighbors. The calcu-
lation of the five routing metrics (distance to destination,
trajectory, vehicles’ density, available bandwidth and MAC
losses) computed from those values carried in the beacons,
is explained in [31] and [1]. In the following, we will just
summarize the process.

• The basic distance metric refers to the distance from
each next forwarding candidate node to destination,
where lower distances are preferred [2].

• The trajectory is defined as the prediction of the future
node’s position, whose calculation allows the source
node to know if the candidate vehicle will be closer or
going away from destination. For this case, nodes that
move towards destination are preferable [1].

• The available bandwidth considers the idle time of the
wireless link formed between the current vehicle holding
the packet and each candidate next-hop node [31].

• Vehicle density is the number of vehicle registered in
the neighbor’s list. Nodes with a higher vehicle density
value are better rated, up to a limit above which the
vehicle density is too high to increase collisions [1].

• MAC layer losses are computed locally at the node
itself, and it is used as a kind of local network feedback.
A node with lower losses rate in the MAC layer, means
that it is a better candidate to forward the message, so it
will be better scored in that metric [31] [32].

Afterwards, the vehicle uses our ML-based forwarding
algorithm to predict the output (i.e., the packet will be deliv-
ered or not at destination) for each neighbor. With this infor-
mation, the node will arrange its neighbors’ list and will make
the best forwarding decision, as we will explain next.

Algorithm 1 describes the sorting process of the neighbors
list applying our designed ANNmodel. First of all, a variable
i is initialized with i = 1, and it will be incremented until it
reaches a value equal to the size of the neighbors list (N ).
Two pointers are pointing to the two first locations of the
neighbors list (lines 2 and 3). Then, the five metrics fields of
the current and the previous node in the list are taken as inputs
to the ANNmodel and we obtain their corresponding outputs
val1 and val2, respectively (see lines 6 and 7). Afterwards,
the outputs val1 and val2 are compared and we put the neigh-
bor with the highest value at the top of the list. The process
is repeated till the end of the list. Once the list is arranged,
the node currently sending the packet can find the best next
forwarding node at the top of the list. Recall that if at the

Algorithm 1 Sorting Neighbor List Using Our ANN
Designed Model (Fig.8) to Select the Best Candidate
Node in the Forwarding Message Process
Requirement: neighbors list, the five metrics as ANN

models’ inputs, ANN model
Set up : i = 1; curr = head ;

1 while i <= N do
2 tmp = curr ;
3 curr = curr → next;
4 read current;
5 if (curr! = NULL) then
6 curr (available bandwidth, density of neighbors,

trajectory of node, distance to destination and
MAC losses)→ ANN model = val1;

7 tmp (available bandwidth, density of
neighbors,trajectory of node, distance to
destination and MAC losses)→ ANN model=
val2;

8 if (val1 < val2) then
9 head=tmp;
10 tmp=curr ;
11 curr=head ;
12 end
13 end
14 i++;
15 end

top of the list we find values close to 1, this means that the
node currently holding the packet has good candidate nodes
to choose the next forwarding node of the packet.

Notice that MPANN does not incur in any additional over-
head compared to 3MRP, as it is shown in Section VII.
The reason is that the ANN model included in the MPANN
forwarding algorithm uses the same five routing metrics than
3MRP as input features.

VI. DESCRIPTION OF THE SIMULATION SCENARIOS
Wehave configured a simulation scenario in our OMNeT++/
Veins/SUMO/OSM simulation platform to carry out a perfor-
mance evaluation of the MPANN proposal presented in this
work. We assume that vehicles know their position and have
road map information. We also assume that nodes periodi-
cally interchange geographic coordinates, vehicles’ density,
and vehicle’s speed with each neighbor node within their
transmission range, using hello messages (beacons) sent once
per second. When a node receives a hello message, it updates
its neighbors’ table. Vehicles calculate and normalize a set of
five routing metrics regarding each neighbor, see Section III.
The five considered metrics are available bandwidth, vehi-
cles’ density, distance to destination, vehicle’s trajectory, and
MAC layer losses.

In the simulation scenarios, there is an access point (AP)
located near the upper right corner of the map. Vehicles
periodically send traffic report messages to the AP.
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FIGURE 9. Urban area of Berlin city. Map extracted from OpenStreetMaps
(OSM) [16]. Simulation area 2500 m × 2500 m.

Once we have implemented the ML-based forward-
ing algorithm (described in Section IV) in the MPANN
(described in Section V) routing protocol, we have evaluated
its performance by means of two simulation tests. All the
city maps have been generated from the OpenStreetMaps
(OSM) [16].

We have organized our simulations in two groups:
Test 1. The first test corresponds to the performance evalu-

ation of MPANN in the same scenario from which
the dataset to train and validate the ANN forwarding
model was collected (see Fig. 1). This is a general
urban area of Barcelona city with a usual oreogra-
phy for an urban scenario, i.e., it has wide, narrow,
regular, and irregular streets. The simulation area is
of 2300 m× 100 m.We compare the performance of
MPANN to the well-knownGPSR [33] as a reference
and our former proposal 3MRP [1].

Test 2. In a second test, we evaluate our proposal MPANN
in other urban scenarios different than the scenario
used to train the designed ML-based forwarding
model. We will see how adaptable our approach is
to new scenarios with unseen data and evaluate how
meaningful and generalized our dataset is. This way,
we can see how flexible our designed ML-based
forwarding model is and assess if it can perform well
in other scenarios different from the one used to train
the model. For that, we have configured two new city
maps with different characteristics in our simulation
framework:
a. An urban area of Berlin city, see Fig. 9. It is

similar in size as the Barcelona scenario used to
generate the dataset (see Fig. 1), but with a more
complex oreography of the streets. Simulation
area is of 2500 m × 2500 m.

b. An urban area of Rome city, see Fig. 10. The
area is larger than the Barcelona scenario, with
a more complex oreography of the scenario,
with a lot of irregular streets. Simulation area
is 3500 m ×2400 m.

The simulation settings of the tests carried out in
Barcelona, Berlin and Rome, are depicted in Table 2.

FIGURE 10. Urban area of Rome city. Map extracted from
OpenStreetMaps (OSM) [16]. Simulation area 3500 m × 2400 m.

TABLE 2. Simulation parameters used to evaluate the performance of the
ML-based forwarding-decision models.

In Section VII we will show results for four vehicles’ den-
sities, ranging from very sparse VANETs (50 vehicles/km2)
where it is hard to find vehicles around, and connectiv-
ity is low, to very congested VANETs (200 vehicles/km2)
where the chance of packet collision is high. In this way,
we model different VANET scenarios, including cases with
(i) low traffic as we can see during the night or the weekend,
(ii) normal traffic flows that happen during weekdays, and
also (iii) congested situations during traffic jams.

VII. PERFORMANCE EVALUATION OF MPANN UNDER
DIFFERENT URBAN SCENARIOS
In this section, we will carry out a performance evaluation of
our proposal MPANN under the different VANET scenarios
described in section VI. The performance evaluation of each
considered routing protocol is done in terms of average per-
centage of packet losses and average end-to-end packet delay.
In addition, we have also measured the run-time to perform

VOLUME 9, 2021 86047



L. L. Cárdenas et al.: Multimetric Predictive ANN-Based Routing Protocol for VANETs

FIGURE 11. Average percentage of packet losses for different vehicles’
densities (5 repetitions/point, 95% CI).

the simulations, the computational cost (in terms of time), and
the overhead. In this way, we will be able to analyze the pros
and cons of our proposals, weighing the benefits and costs
incurred. In the following, we show the simulation results of
the two tests described in Section VI.

A. TEST 1: PERFORMANCE EVALUATION IN THE SAME
SCENARIO USED TO TRAIN THE ANN MODEL.
THE BARCELONA SCENARIO
This set of simulations were carried out in the same sim-
ulation scenario (see Fig. 1) used to collect the dataset
with which we trained the ANN-based forwarding model.
Of course, now we have used different simulation seeds,
so the simulations are different, although the simulation set-
tings (map, area, street layout . . . ) are the same.

1) EVALUATION OF THE AVERAGE PERCENTAGE OF PACKET
LOSSES AND THE AVERAGE END-TO-END PACKET DELAY
Fig. 11 shows the average percentage of packet losses for the
three routing protocols for VANETs analyzed: GPSR [33],
3MRP [1], and MPANN (sec. IV-A). We can see that GPSR,
which uses distance to destination as single routing metric,
in general offers the highest packet losses, around 62% to
80%. We can see that 3MRP [1] shows notably better results
than GPSR, with packet losses around 22% to 30%. MPANN
shows a significant improvement is obtained for all vehicles’
densities. With MPANN, the average packet losses are below
21% for all vehicles’ densities, andMPANN is able to outper-
form 3MRP for all vehicles’ densities, around 18% to 36%.
Thus, although 3MRP andMPANN use the same five routing
metrics to make the forwarding decisions, the ML-based for-
warding algorithm included inMPANNhelps to better choose
the next forwarding vehicle. Notice that the ANN forwarding
algorithm included in our proposal MPANN predicts which
candidates will be able to deliver the packet at destination,
as it was explained in Section IV-A.

Fig. 12 shows the average end-to-end packet delay for
the same evaluated routing protocols for diverse vehicles’
densities. We can see that the highest delays correspond

FIGURE 12. Average end-to-end packet delay for different vehicles’
densities (5 repetitions/point, 95% CI).

to our routing protocol MPANN. The main reason is that
since MPANN is able to lose less packets than 3MRP, many
of those packets followed longer paths and got to destina-
tion, consequently increasing the average end-to-end packet
delay. Notice that the ML-based predictive models included
in MPANN do not consume any significant amount of time,
as it is shown in section VII-A3. Nevertheless, that increment
in delay experience with MPANN is very small (maximum
40 ms) compared to 3MRP. This small increase in delay pays
off given the notably reduction in packet losses withMPANN.

To further assess the pros and cons of our proposals,
we show in the following subsections the evaluation of the
three routing protocols in terms of running time and compu-
tational cost.

2) EVALUATION OF THE SIMULATION RUNNING TIME
The running time represents the time that each routing algo-
rithm needs to complete a running simulation for a specific
configuration of the simulation settings, i.e., time to obtain
a point in each figure. OMNeT++ [13] is an event-based
network simulator, and the time spent for each simulation
depends on the number of participating nodes. For each node
that forwards the message, a set of operations must be exe-
cuted. The running time increases as the number of nodes
increases. Also, the running time increases as the network
area increases since longer forwarding paths are potentially
needed to reach destination (number of hops potentially
would increase).

Fig. 13 shows the running time taken for each routing
protocol to perform 100 simulation seconds, i.e., simulation
time to obtain a single point in the figures of the performance
evaluation. In that figure, we show the average of 10 inde-
pendent simulations, including a CI of 95%. For this experi-
ment, we have considered an intermediate vehicular density
of 100 vehicle/km2. Simulations were carried out in a server
with the features presented in Table 3.

Fig. 13 shows that GPSR [33] experimented the highest
running time, about 12 hours per point on average. This
protocol selects the forwarding nodes based only on the
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FIGURE 13. Computer running-time consumed to finish a
100 sec-simulation in OMNeT++/Veins/SUMO/OSM. Vehicles’ density =
100 vehicles/km2, 95% CI.

TABLE 3. Hardware features of the server used to run the simulations
needed to obtain Fig. 13.

distance metric, and when it switches to the perimeter routing
mode, the delay can notably increase. With this perimeter
mode, long routes to the destination node (AP) can potentially
be taken; and even in the worst case, routing loops may
appear. Therefore, there are more events to be processed,
which means a higher running time. On the other hand,
3MRP [1] requires less running time (11 hours per point) than
GPSR. Although 3MRP performs more operations since it
handles five routingmetrics (distance to destination, vehicle’s
trajectory, vehicles’ density, available bandwidth, and MAC
losses), the message forwarding is more efficient. 3MRP
selects better forwarding nodes at every hop towards destina-
tion, resulting in a lower hop count, and thus fewer nodes have
to process the messages. Finally, we can also see in Fig. 13
that MPANN (11h 30m) took half an hour more than 3MRP
(11 hours). The additional delay incurred by MPANN is due
to the architecture of the ANN algorithm, due to the opera-
tions done to evaluate each neighboring node that entails a
slight extra consumption of time.

Nonetheless, this computer running time is just a
researcher’s worktime needed to assess any new proposal’s
performance. Once the performance evaluation has been anal-
ysed, what really matters would be the increase in computa-
tional cost that implementing our proposal would cause in real
vehicles. Given the impossibility of using real smart vehicles
in our experiments, we present the computational cost in
terms of time required to compute our ML-based proposal
in the next section. As we will see, this computational time is
really insignificant: The computational cost incurred by our
proposal MPANN is below 0.2 msec, which is irrelevant con-
sidering the improvements obtained in terms of percentage of
packet losses and average end-to-end packet delay.

TABLE 4. Hardware specifications of the personal computer used to
obtain the computational cost in terms of time.

3) COMPUTATIONAL COST, IN TERMS OF COMPUTATIONAL
TIME
In this subsection, we have calculated the computational cost
in terms of time of our ML-based forwarding algorithm,
designed using an ANN as it was explained in Section IV.
This metric is frequently used to measure the efficiency and
viability of a designed algorithm. To calculate the compu-
tational cost, we have analyzed the time incurred by each
one of the forwarding algorithms used in the routing pro-
tocols. In addition, we have carried out two experiments
to obtain the computational time of our proposals using
Matlab: (i) A first experiment varying the vehicles’ den-
sity, and (ii) a second experiment making the vehicles’
density vary throughout time. For these two experiments,
we used the hardware described in Table 4. In both exper-
iments, we generate a traffic of 2 packets/sec. In this way,
we are able to replicate in Matlab an equivalent sequence
of packets transmitted that vehicles would process in our
OMNeT++/Veins/SUMO/OSM simulation framework.

(i). First experiment. We have generated random values
(in the range [0, 1]) inMatlab for each normalized rout-
ing metric (i.e., distance to destination, trajectory, vehi-
cles’ density, available bandwidth, and MAC losses).
Vehicles have a transmission range of 340 meters.
We have considered the same four different values
of the vehicles’ density as in our simulations with
OMNeT++/Veins/SUMO/OSM, i.e., 50, 100, 150,
and 200 vehicles/km2.
Fig. 14 shows the computational cost (in terms of
time) of the evaluated routing protocols for VANETs.
MPANN shows the highest computational cost, with
an increment of 0.02 msec with respect to 3MRP
and GPSR. However, notice that this value represents
an insignificant time amount compared to the end-
to-end average packet delays shown by ANN in the
range 20-40 milliseconds, as it was depicted in Fig. 12.
In Fig. 14 we can see that the maximum computational
time used by the CPU is 0.028 msec when the vehicles’
density is the maximum considered (200 vehicles/km2)
since the number of operations is maximum too. The
delay increment is due to the cost of the additional
operations included in the ANN forwarding algorithm.

(ii). Second experiment. In this second Matlab test,
we have set the number of neighbors per vehicle to
be a random value in the range [1, 50]. This range of
number of vehicles in OMNeT++/Veins/SUMO/OSM
would correspond with a vehicles’ density defined in
the range [3, 138] vehicles/km2 for a transmission range
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FIGURE 14. Computational cost (in time) of our ML-based forwarding
algorithm measured in Matlab, for four vehicles’ densities.

FIGURE 15. Computational cost (in time) of our ML-based forwarding
algorithm measured in Matlab, for each incoming packet measured in a
general node.

of 340m. In Fig. 15 we can see that MPANN produces a
computational time of 48µsec, whereas, for 3MRP and
GPSR, it is around 0.8µsec and 12µsec. EvenMPANN
needs 36 more times computational time than the oth-
ers, 48 µsec is still very small compared to the arrival
time between consecutive packets so that packets can
be processed quickly without any problem. Notice that
for a packet flow rate of 6 Mbps and a packet size
of 259 bytes (see Table 2), the average arrival time
between consecutive packets is 345.33 µsec/packet.

In summary, using Matlab we emulate the same
sequence of operations done over each packet and
for each neighbor node as we would have in the
OMNeT++/Veins/SUMO/OSM simulation framework.
Then, in Matlab it is easy to calculate the computational
time dedicated per packet by the different forwarding algo-
rithms that operate in GPSR, 3MRP, and MPANN. Then,
we can calculate the total computational time necessary to
process all the packets sent in a 100-sec simulation. This
way, we can assess the trade-off between benefits (shown

FIGURE 16. Overhead incurred by MPANN compared to GPSR [33] and
3MRP [1].

in section VII-A1) and costs in terms of computational time.
Effectively, the computational time needed is very low, and
it rewards the benefits of MPANN in terms of average per-
centage of packet losses (see Fig. 11) and average end-to-end
packet delay (see Fig. 12).

4) OVERHEAD
Fig. 16 shows the overhead incurred by each one of the
routing protocols analyzed in this performance evaluation.
Although GPSR [33] has the lowest overhead (14%), it pro-
duces the highest percentage of packet losses, see Fig. 11 and
Fig. 12, respectively. On the other hand, the other routing
protocols (3MRP andMPANN) increase the overhead to 22%
(i.e., a relative 57% higher amount). The reason is that those
two routing protocols use additional fields (whose size is from
2 to 8 bytes) in the hello messages to carry the values needed
to calculate the routing metrics (in 3MRP) and inputs (in
MPANN). Notice that our proposal MPANN uses the same
additional fields included in our former protocol 3MRP [1],
so there was no need to increase the overhead. Those fields
are updated by each vehicle at the moment of sending the
current hello message (or beacon). Those additional fields
carry an 8-byte field with the (vx , vy) velocity coordinates of
the node, an 8-byte field for the MAC layer losses value, and
a 4-byte field for the vehicles’ density value. The calculation
of the five routing metrics (available bandwidth, vehicles’
density, distance to destination, vehicle’s trajectory, andMAC
losses) computed from those values carried in the beacons
was explained in Section V.

The forwarding algorithm uses these routing metrics at
the vehicle currently holding the packet to make the for-
warding decision and choose the next node to forward the
packet. Besides, MPANN does not produce any additional
overload compared to 3MRP since it uses the same beacon
structure already established in 3MRP [1] to gather the val-
ues to compute the inputs (i.e., the same routing metrics as
3MRP) for the ML-based forwarding algorithm. Although
our prediction model includes a small extra cost in terms of
packet delay (delay in MPANN is maximum 20 msec. higher
than in 3MRP, according to Fig. 12), the benefits obtained in
terms of packet losses for MPANN are significantly notable,
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FIGURE 17. Average percentage of packet losses for MPANN vs. 3MRP [1]
in the 3 city maps considered (5 repetitions/point, 95% CI).

as it is shown in Fig. 11. This improvement is achieved in
MPANN without having introduced any additional overhead
with respect to 3MRP (see Fig. 16).

B. TEST 2: PERFORMANCE EVALUATION OF THE
PROPOSED MPANN ROUTING PROTOCOL IN OTHER CITY
MAPS
In this second test, we have considered two different VANET
scenarios where we have evaluated both routing protocols:
our proposal MPANN (presented in Section VII) and our
previous proposal 3MRP [1]. These scenarios are different
from the Barcelona scenario (Fig. 1), which was the scenario
used to gather the dataset with which we trained and validated
our ANN forwarding model, see Section IV). In this last
phase of our performance evaluation, we want to assess the
flexibility of our proposals over other city maps with different
characteristics. We have evaluated the performance of both
routing protocols in an area of Berlin (Fig. 9 (similar in size
but more complex in street layout) and in an area of Rome
(Fig 10) (larger in size and much more complex in street
layout). Our goal is to validate if the prediction model of our
ML-based forwarding algorithm can classify data correctly
in different city maps (different from the map from which we
took the data to train the ANN model).

Fig. 17 shows the average percentage of packet losses for
both MPANN and 3MRP [1] routing protocols for the three
different city maps and four vehicles’ densities. As it can be
seen, our MPANN routing protocol performs better in the
three urban scenarios, even in the more complex city map
of Rome. Notice that for both routing protocols, the highest
percentage of packet losses corresponds to the Rome sce-
nario, since the considered area of Rome is more complex

FIGURE 18. Average end-to-end packet delay for MPANN vs. 3MRP [1] in
the 3 city maps considered (5 repetitions/point, 95% CI).

with narrow and one-way streets. In Rome, the percentage of
packet losses with MPANN is around 55% for a sparse vehi-
cles’ density, and it improves for the 150 vehicles/km2 density
to around 30%, since the network connectivity improves.
Overall, we see that MPANN outperforms 3MRP in around
5-20% in the Rome results.

Additionally, MPANN also improves 3MRP over the
Berlin map for the four vehicles’ densities. MPANN achieves
average packet losses from 8% for 100 vehicles/km2 to a
maximum of 18% for 200 vehicles/km2.

Fig. 18 shows the average end-to-end packet delay for
both MPANN and 3MRP [1] routing protocols for the three
city maps and different vehicle densities. On the one hand,
for the same map used to create the dataset (Barcelona city
area), delays with MPANN are higher than with 3MRP [1] in
around 18 to 40 milliseconds. On the other hand, however,
this slight increase in delay pays off since MPANN offers
a lower percentage of packet losses than 3MRP, in around
5-20% according to Fig. 17.

In the Berlin city area, which has a similar street layout
as the Barcelona city area, MPANN shows a similar aver-
age end-to-end packet delay for the four vehicles’ densi-
ties, of around 10 msec 3MRP gets more variable delays,
from 10 msec for 100 and 200 vehicles/km2 to 50 msec
for 150 vehicles/km2. In the Rome scenario, MPANN shows
average packet delays under 20 msec for the four densities,
whereas 3MRP offers a maximum delay around 60 msec for
200 vehicles/km2.

Overall, we can conclude that our ANN-based proposal
of a routing protocol for VANETs called MPANN shows a
good adaptation in a quite similar Berlin scenario. However,
a lower prediction power is presented in the Rome scenario.
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The reason is that the model does not have enough expe-
rience with an urban configuration so complex as the one
of the Rome city. Therefore, although the model can face
new scenarios, its prediction power is not so good when the
city layout differs a lot from the city map used to create
the dataset. Anyway, we can also notice that our proposal
MPANN outperforms 3MRP in terms of packet losses and
packet delay for most cases.

To further improve these results, we should include a larger
amount of registers in our dataset, taken from diverse cities
with different street layouts, and then train the ANN-based
model again. Alternatively, another option should be to train
a small set of different models, each one for a type of city.
This way, we would have a model for cities like Barcelona or
Berlin, another model for cities like Rome, and so on. These
are goals pointed out in the future work that will follow our
research work.

VIII. CONCLUSION AND FUTURE WORK
In this work, we have presented a novel ML-based mul-
timetric routing protocol for VANETs whose forwarding
algorithm is based on machine learning decisions. Our pro-
posal is named multimetric predictive artificial neural
network-based (MPANN) routing protocol.
We have created a dataset from a large number of simu-

lations in an urban scenario, recording five routing metrics
(distance to destination, vehicle path, vehicle density, avail-
able bandwidth, and MAC losses) calculated from the data
exchanged between nodes through periodic hello messages.
The dataset collected has been used to train different learning
algorithms using traditional machine learning performance
metrics (accuracy, ROC, AUC). Then, we have chosen the
ML model that showed the best performance, an artificial
neural network named ANN-based forwarding model.
To evaluate our proposal MPANN, we have used two tests

for four different vehicles’ densities: (i) A first test in the
same city map with which the dataset was created, i.e., a
2300m × 2100m area of Barcelona; (ii) a second test using
two different city maps: a similar area of Berlin, and a larger
and more complex area of Rome. Our goal was to measure
the level of flexibility and adaptation attained by our designed
ML-based forwarding algorithm in the MPANN routing pro-
tocol. We have compared our MPANN learning model to
the well-known GPSR [33], and to our previous proposal of
multimetric routing protocol for VANETs name 3MRP [1].
Results show improvements up to 20% of packet losses and
up to 0.04 ms (60%) in average end-to-end packet delay, see
Fig. 17 and Fig. 18.
We have also evaluated the performance of our proposal in

terms of simulation run-time, computational cost (in terms
of time) and overhead. MPANN shows a slight increment
around 1.5 msec in the computational time with respect to
GPSR and 3MRP. However, these values are minimal com-
pared to the end-to-end average packet delays shown byANN
in the range 20-40 ms, see Fig. 12. Our proposal MPANN
does not add any extra overhead compared to 3MRP, since

it uses the same header fields in the beacon messages as
3MRP [1] to carry the values to compute the five routing
metrics needed in the ANN model.

Finally, we can conclude that our designed MPANN rout-
ing protocol adapts very well in scenarios with similar streets
layout as the Barcelona scenario. However, we also conclude
that it would still be advisable to learn more with new data
from other different scenarios to generalize it further. This
way, we would obtain a model able to adapt to most of the
kind of city environments and street layouts. Accordingly,
as future work, we will extend our dataset with new values
from new scenarios using heterogeneous city maps with very
different street layouts and orography. Notice that it would
just be necessary to conduct a large amount of new simula-
tions and process the data properly to include more registers
in the dataset. We would then follow the same procedure
designed in this work to train and validate a new version of
the ANN-based forwarding algorithm. Finally, an evaluation
of the performance in different types of cities will show the
accuracy of results concerning the current MPANN version.
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