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OBJECT MANIPULATION BASED ON TACTILE INFORMATION

Andrés Felipe Montaño Sarria

Abstract

In-hand dexterous manipulation of an object is the ability to change the configuration (position

and/or orientation) of the object held in the hand. This is an ability that has allowed humans to

use tools and interact with the environment effectively. In the past decades, robotics researchers

have worked to provide dexterous manipulation skills to the robots by designing robotic hands

that mimic the human hand and by developing applications that allow performing autonomous

manipulation or teleoperation in harsh environments. Despite the progress made, managing the

uncertainties that exist in the real world is one of the problems that still need to be worked on.

Many existing manipulation methods for controlling robotic hands require a priori information

about the object and high-fidelity sensors that are typically limited only to laboratory setups.

The main objective of this thesis is to develop strategies for the dexterous manipulation of

unknown objects, using the tactile information generated during the grasp of the object and

the manipulation process itself. In manipulation applications based on tactile information,

the robotic hand has access only to tactile and proprioceptive data, in addition, no a priori

information is known about the manipulated object. This reflects real-world applications,

where there is uncertainty in the models of the objects that are commonly manipulated in daily

activities, as well as in the sensorial measurements.

In this thesis, novel manipulation strategies based on heuristic and gradient optimization

methods are proposed. Three quality indexes are selected to measure the goodness of the grasp

during the manipulation, related to the configuration of the hand, the quality of the grasp, and

the configuration of the object. Starting from a given initial grasp, the manipulation strategies

are able to improve one quality index or a combination of them. The manipulation strategies

are validated with real experimentation using robotic hands equipped with tactile sensors,

allowing the execution of practical applications, such as object recognition, force optimization,

and telemanipulation.
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Notation and Acronyms

Notation

R
n n-dimensional Euclidean space

fi i-th finger
ni Number of DOF of the i-th finger
lij Length of the j-th link of the i-th finger
qij Joint value of the j-th joint of the i-th finger
qiv Joint value of the virtual joint of the i-th finger
qi Finger configuration
Q Hand configuration
v Vector
û Unit vector
vx, vy, vz Components of the vector v
W Absolute reference frame
O Object reference frame
Σij Reference frame located at j-th joint of the i-th finger
OΣij

Origin of the reference frame Σij

Σis Reference frame located at the sensor pad
P General point
Ci Contact point made by the i-th finger
γ Object orientation
Fi Force applied by a finger at the i-th contact point
τ Torque
µ Friction coefficient
sα, cα , tα sin(α), cos(α), tan(α)
Πi Working plane associated to finger i
| · | Euclidean norm
F(·) Forward kinematics
I(·) Inverse kinematics
J Jacobian matrix
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Acronyms

API Application Programming Interface
CAD Computer-Aided Design
CAN Controller Area Network
DOF Degrees Of Freedom
FC Force Closure
FK Forward Kinematics
GUI Graphical User Interface
IK Inverse Kinematics
IOC Institute of Industrial and Control Engineering
PID Proportional-Integral-Derivative
ROS Robot Operating System
URDF Unified Robot Description Format
XML Extensible Markup Language

Latin abbreviations

i.e -id est- that is
e.g. -exempli gratia- for instance
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“He had them as spellbound as a room

full of Ewoks listening to C-3PO.”

Cory Doctorow (1971 - )

1
Introduction

The word dexterous comes from the Proto-Indo-European (PIE) root desk- which means

“right, on the right hand, opposite left”, formed in English from Latin dexter that means

“skillful” plus -ous that is a word-forming element making adjectives from nouns, meaning

“having, full of, having to do with, doing, inclined to”. The word manipulation is a combination

of the PIE roots man- which means “hand” and pele- which means “to fill”, this combination

give rise to the Latin term manipulus which means “a handful”. Later in 1826, it was given the

sense of “skillful handling of objects”. The work presented in this thesis deals with the problem

of dexterous manipulation of unknown objects using robotic hands and tactile sensors. This

chapter presents the treated problem, defines the thesis objectives, and presents a brief outline

of the contents.

1.1 Motivation and objectives

Dexterous manipulation has taken diverse definitions in robotics literature, for instance,

Shimoga (1996) defines dexterity as “the ability of a grasp to achieve one or more useful

secondary objectives while satisfying the kinematic relationship (between joint and Cartesian

spaces) as the primary objective”; Han and Trinkle (1998) define it as “the manipulation

[action] that achieves the goal configuration for the object and the [grasp] contacts”;

Dafle et al. (2014) refer to dexterity as “the manipulation of an object in the hand, with

the hand”; more recently Prattichizzo et al. (2020) define the dexterous manipulation as

“the skillful execution of object reorienting and repositioning maneuvers, especially when



2 Introduction

performed within the grasp of an articulated mechanical hand”. There are other definitions

but all of them refer explicitly or implicitly to the manipulation of the object by properly

locating/changing the positions of the grasp contact points, that is, by properly managing

the finger configurations, which in turn give rise to the expression “in-hand manipulation”

to explicitly refer to the object manipulation using only finger movements (Ho et al. 2012;

Funabashi et al. 2015; Liarokapis and Dollar 2017; Shi et al. 2017).

To properly formulate the dexterous manipulation problem, an object-centered point of view

must be adopted (Okamura et al. 2000). The aim is to move the grasped object (by a robotic

hand) from a pose A to a pose B with respect to the palm. In order to achieve this, suitable finger

movements are computed considering some assumptions: the object is a rigid body in contact

with a rigid link of the robot hand, the object is grasped by the distal phalanges of the fingers,

and precise models of the hand and the object are known (Murray et al. 1994). In order to deal

with the manipulation problem, one option is to model it using the manipulation space, which

is the n-dimensional space defined by the values of all the finger joints. In this space, a point

represents a configuration of the hand and a curve represents finger movements (i.e. a sequence

of hand configurations). Thus, following a proper curve in this space it is possible to achieve a

successful object manipulation. However, when the model of the object is not known, computing

a manipulation curve in advance may not be possible, i.e. the manipulation constraints cannot

be computed a priori and therefore, planning a sequence of finger movements is not possible.

Under these conditions, manipulation must be handled as a reactive procedure that determines

on-line the proper hand movements. This is the approach followed in this thesis.

Dexterous manipulation is a relevant topic in robotics research, even more when a precise

model of the object is not known. Usually, in a realistic scenario, the geometric model of

the manipulated object is only partially known or even unknown. Several approaches to the

development of new manipulation strategies are inspired in the human capability to manipulate

quite different objects with the hands, and this has led to the development of a wide variety of

anthropomorphic robotic hands (Bicchi and Kumar 2000). The inclusion of tactile sensors into

robotic hands improves their manipulation capabilities, because these sensors provide contact

information during the manipulation process allowing the execution of more complex tasks

with better results, both in industrial and in everyday environments (Kappassov et al. 2015;

Nadon et al. 2018; Indri et al. 2019). A tactile sensor in robotics, like human tactile receptors,

is able to detect the contact and measure the applied forces. It can be used to obtain information

about the shape of the object, its pose, the location of the contact points and the contact

force applied to the object by the robotic fingers. Slippage detection and estimation of the
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friction coefficient between the fingers and the object are also some of the intended common

applications of tactile sensors (Sadigh and Ahmadi 2009). Summarizing, tactile sensors help to

recognize the manipulated object and to reduce the uncertainty in their geometric model.

The object manipulation process usually pursues three goals (Montaño and Suárez 2015), either

independently or in a combined way:

• From the hand point of view, the optimization of the hand configuration, i.e., searching for

a particular hand configuration satisfying some specific constraints that can be arbitrarily

defined.

• From the grasp point of view (relation hand-object), the optimization of the grasp quality,

i.e., searching for a grasp that can resist external force perturbations on the object.

• From the object point of view, the optimization of the object configuration, i.e., searching

for an appropriate object position and orientation that satisfy the requirements of a given

task.

The general dexterous manipulation problem leads to a variety of particular problems that still

require a satisfactory solution. The main objective of this work is to develop methods for the

dexterous in-hand manipulation of unknown objects using robotic hands with tactile sensors.

The methods developed herein apply to the real-world scenario where the robotic hand is

commanded using only proprioceptive and tactile information with no knowledge of the object

being grasped. It must be remarked that the expression “unknown object” means that the model

of the object is not used at all in the manipulation procedure. The objectives of this thesis are:

• Development of manipulation strategies to optimize: the hand configuration, the grasp

quality, and the object configuration. Strategies are validated using robotic hands with

tactile sensors to obtain information about the contact with the manipulated objects.

• Selection of grasp quality indexes considering their applicability to the dexterous

manipulation problem of unknown objects.

• Generalization of the manipulation strategies in order to apply them to hands with

different kinematic structures and number of fingers.

• Application of the developed manipulation strategies to real dexterous manipulation

problems.
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1.2 Thesis layout

The structure of the remainder of this thesis is presented below, including a brief summary of

the content introduced in each chapter.

Chapter 2 reviews the existing literature that addresses dexterous manipulation for robotic

hands, besides, it introduces the foundations of this thesis, presenting the basic concepts and

definitions involved in the manipulation problem.

Chapter 3 presents the principal features of the robotic hands and tactile sensors used in the

experimental validation of the proposed manipulation strategies. For each of the hardware

components, the libraries and software modules that were designed for the validation of the

proposed manipulation strategies are presented. The framework used for the hardware-software

integration, which allows the implementation of the manipulation strategies, is also introduced.

Chapter 4 presents the proposed dexterous manipulation strategies. After an introduction

section, the chapter includes another four sections. The first section presents the quality indexes

to be optimized during the manipulation process. The second section presents manipulation

strategies based on heuristic methods. The third section introduces manipulation strategies

based on gradient methods. The fourth section presents an approach to manipulate unknown

object using three fingers.

Chapter 5 presents applications that use the information generated during the manipulation to

achieve an extra goal, such as, the object identification, the force optimization, and the object

telemanipulation with and without tactile feedback.

Chapter 6 summarizes the contributions of the thesis, lists the derived publications and presents

directions for future research work.



“Whether we are based on carbon

or on silicon makes no fundamental

difference; we should each be treated

with appropriate respect.”

Arthur C. Clarke (1917 - 2008) 2
Related work

This chapter presents an overview of previous work related to the dexterous manipulation

problem dealt with in this Thesis. It also provides a general review of robotic hands, tactile

sensors, and grasp quality measures, all useful elements for the Thesis development.

2.1 Robotic hands

The two most distinguished features of humans among animals are the hands and

the mind. Since the time of the ancient philosophers it has been debated whether

the humans had dexterous hands and then they became intelligent, or the other way

around (Aristotle and Ogle 1908). Later anthropological studies showed that the dexterity of

the human hand has been a major factor in the changes of the homo sapiens brain size and

organization (Sherwood et al. 2008).

Human hand dexterity is an admirable feature that has been a source of inspiration in robotics,

in hardware design as well as in behavior emulation. Several approaches on manipulation

are inspired in the human capability to manipulate quite different objects leading to the

development of a wide variety of robotic hands (Bicchi and Kumar 2000). The mechanical

design of robotic hands can be categorized according to their number of degrees of freedom

(DOF) and actuators as: fully actuated mechanisms, when the number of actuator is equal to

the number of DOF, redundantly actuated mechanisms, the number of actuators is larger than

DOF, and underactuated mechanisms, when the number of DOF is larger than the number
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of actuators (Birglen et al. 2008). The two categories followed by the designers are the fully

actuated and underactuated mechanisms, in fact, redundantly actuated mechanisms are neither

useful nor desired, but they are present in some designs that use tendons. In these designs

two actuators (tendons) are required to extend and flex a single articulation, this mechanism

has been replaced by an actuator working jointly with a passive mechanism used to recover the

position of the articulation by moving it in the opposite direction to the active actuator.

One of the earliest designs of robotic hands was done by Mason and Salisbury (1985), who

established that nine is the minimum number of DOF to achieve dexterity using a hand with

rigid hard fingers. This is because, in order to completely restrain an object at least three hard-

finger contacts are necessary, and without rolling nor sliding movements, the fingers must keep

the contact locations and follow the path generated for the corresponding contact point on the

object, while the object moves in a three-dimensional space. Therefore, three DOF per finger

are strictly necessary. Following this principle, the Salisbury’s hand (Pellerin 1991) was designed

with nine joints divided into three fingers. Other contemporary models that also followed the

same design were built at the University of Karlsruhe (Wöhlke 1990), the Technical University of

Darmstadt (Weigl and Seitz 1994), and the Delft University (Jongkind 1993). Hands that follow

this design criterion and, in general, kinematically optimized hands (Tischler et al. 1998), are

not anthropomorphic.

Other hand designs add redundant DOF in order to achieve more flexibility of use, for example,

the Okada hand has two four-joint fingers and one three-joint thumb (Okada 1979); The

hand of the Technical University of München (Menzel et al. 1994) has three fingers, each

one with four joints, however the most distal joints are mechanically coupled, leaving the

hand with nine DOF. Other hand designs have more than three fingers, looking for two

goals: four- and five-fingered hands are more similar to the human hand, and with more

fingers involved in the grasp it is possible to apply richer manipulation strategies. The list

of anthropomorphic robotic hands is long but some representative examples are: the Belgrade-

USC Hand (Bekey et al. 1990), the University of Bologna Robotic Hand (Bonivento et al. 1991),

the DLR-HIT Hand II (Butterfass et al. 2004), the MA-I Hand (Grosch and Suárez 2004), the

Robonaut 2 Hand (Bridgwater et al. 2012), the Pisa/IIT SoftHand (Catalano et al. 2014),

the Shadow Hand (Shadow Robot Company 2015), the Allegro Hand (Wonik Robotics 2018),

the HRI hand (Park and Kim 2020), among several others. Figure 2.1 shows examples of robotic

hands, some of them with three fingers and others with four or five fingers having a more

anthropomorphic design. Hands like the Barrett, SDH, and Robonaut also include tactile sensors

to increase the capabilities and manipulation options of the hand.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Examples of robotic hands. (a) Salisbury’s hand. (b) Barrett hand. (c) Schunk SDH2 hand. (d) Robotiq
three-finger gripper. (e) MA-I Hand. (f) DLR-HIT Hand. (g) Allegro Hand. (h) Shadow Hand.

2.2 Tactile sensing

The design of robotic hands is a complex process that involves diverse knowledge areas

as mechanics, digital control, and digital signal processing (Righetti et al. 2014). In

particular, tactile sensing systems based on different techniques have been developed during

the last decades in order to equip robots with tactile feedback (Natale and Cannata 2017;

García et al. 2009; Zou et al. 2017). In general, the touch sensors improve the manipulation

capabilities of the robotic hands while providing contact information during the manipulation

process, allowing to perform complete tasks both in industrial environments and in daily life.

Two recent reviews on the state of the art regarding tactile sensors for dexterous hands were

presented by Kappassov et al. (2015) and Nadon et al. (2018). A complete overview of different

types of robot applications and the types of tactile information that they employ is presented

by Li et al. (2020).

A tactile sensor in robotics, like human tactile receptors, is able to detect the contact
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region between the sensor (generally located at the fingertip) and the manipulated object,

and also to measure the exerted force on the object (Dahiya and Valle 2013). The

information generated by the tactile sensors can be used to stabilize and make safer

the grasp (Sadigh and Ahmadi 2009; Laaksonen et al. 2012), to classify the manipulated

object according to its material stiffness (Delgado et al. 2017a), to identify the shape of

the grasped object (Pozo-Espín 2012; Montaño and Suárez 2013b; Chebotar et al. 2014), its

pose (Li et al. 2013), the location of the contact points (Liu et al. 2015), the contact force

applied by the robotic fingers (Bimbo et al. 2016), and the friction coefficient between the

object and the fingertip (Chen et al. 2018). Besides, they provide robustness in front of

variations in object properties (Takahashi et al. 2008; Laaksonen et al. 2012), perturbations

(Zhang and Chen 2000), and sensing errors (Hsiao et al. 2010; Jentoft et al. 2014). Slippage

detection, including grasp instabilities, and estimation of the friction coefficient between

the fingers and the object are also some of the intended common applications of tactile

sensors (Sadigh and Ahmadi 2009; Li et al. 2014; Shirafuji and Hosoda 2014; Su et al. 2015;

Agriomallos et al. 2018).

In object manipulation, tactile sensors can aid to reduce the uncertainty, allowing, for instance,

an improvement of the grasp stability and safety (Bekiroglu et al. 2011; Dang et al. 2011;

Boutselis et al. 2014). When the object model is partially or completely unknown tactile

sensors are used to reduce uncertainty and adjust the object geometric model, which can be

used to recognize the object (using a data base) (Kaboli et al. 2015; Delgado et al. 2017b;

Agulló 2017; Funabashi et al. 2018). The reconstruction of the shape of an unknown object

can be performed using tactile sensors without requiring object immobilization, instead, the

robot manipulates the object without grasping it. The robot can infer the shape, mass

and the center of mass of the object based on the motion of the contact points measured

by tactile sensors (Moll and Erdmann 2001). Another use of the tactile information is to

generate a contact point cloud and then, use statistical point cloud features to provide a robust

descriptions of the grasped object (Gorges et al. 2011). Besides, a compact 3-D representation

of unknown objects can be obtained using a probabilistic spatial approach based on Kalman

filters to build a probabilistic model of the contact point cloud (Meier et al. 2011). The

tactile information can be treated as a sequence of images in order to extract information

about the contact conditions between an object and the hand (Ho et al. 2012), and therefore,

image processing techniques can be used in order to process the tactile sensor information.

In some object recognition approaches the tactile information is treated as low-resolution

images. Then, different techniques are applied in order to perform the object identification,

for instance, the bag-of-words approach which, by unsupervised clustering of training
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data, learns a vocabulary from tactile observations that is used to generate a histogram

codebook (Schneider et al. 2009). Using a fusion sensor approach, a multi-sensory object

representation is built by fusion of tactile and kinesthetic features. The recognition approach is

based on extracting key features of tactile and kinesthetic data from multiple palpations using

a clustering algorithm (Navarro et al. 2012). On the other hand, machine learning techniques

has been also applied to recognize the manipulated object (Velasco et al. 2020), or to improve

the object manipulation using tactile information, specifically, in order to estimate the grasp

stability (Bekiroglu et al. 2011; Dang et al. 2011).

Tactile sensors are also used in manipulation strategies based on the tactile feedback without

caring about the object model, that is, the manipulation is performed even when the

object model is completely unknown (Montaño and Suárez 2015; Montaño and Suárez 2018c).

Tactile feedback is critical in applications that consider interactions of the manipulated

object with the environment (Kappassov et al. 2020), for example, in object relocation within

the hand, where the initial grasp is modified by pushing the object against other fixed

objects in the workspace (Chavan-Dafle et al. 2020). The tactile information obtained during

the manipulation can also be used jointly with visual feedback to improve the control

performance (Jara et al. 2014). The grasp stability of deformable objects can be improved

by adjusting the forces applied by the fingers when there are changes in the center of

mass of the grasped object (Kaboli et al. 2016). Contact forces were also used for assembly

planning and execution (Suárez et al. 1995). In some cases, the design of the gripper was

particularly influenced by a tactile application, designing specific fingers (Bicchi et al. 1999;

Ward-Cherrier et al. 2017; Palli and Pirozzi 2019), for instance, to roll on an unknown object in

order to do dexterous manipulation and identify the object surface or to manipulate wires for

manufacturing applications.

2.3 Grasp quality measures

A grasp quality measure is an index that quantifies the goodness of a grasp. There are

many quality indexes to evaluate the grasp quality, which are mostly related with the position

of the contact points on the object or with the hand configuration (Roa and Suárez 2014;

León et al. 2014; Roa et al. 2008). Other quality indexes combine different measures from the

two previous groups to obtain global quality measures.
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The quality measures related with the position of the contact points are grouped into measures

based on algebraic properties of the grasp matrix (Li and Sastry 1988; Byoung-Ho et al. 2001),

measures based on geometric relations (Park and Starr 1992; Mirtich and Canny 1994),

and measures considering limitations on the finger forces (Ferrari and Canny 1992;

Chinellato et al. 2003; Chinellato et al. 2005). However, all these measures require some

knowledge of the object model, mainly the center of mass and its shape.

On the other hand, the quality measures associated with hand configuration relate

features as the distance to singular configurations of the hand (Klein and Blaho 1987), the

volume of the manipulability ellipsoid (Yoshikawa 1985), the positions of the finger joints

(Salisbury and Craig 1982), or the task compatibility (Borst et al. 2004; Haschke et al. 2005).

In this case, the quality measures do not depend on the features of the object.

These quality indexes have been considered in order to improve the design of robotic

hands (Rubert et al. 2014).

In this thesis, the manipulation is carried out without having a priori information about the

object, so the quality indexes belonging to the group of measures related to the position of the

contact points on the object are not appropriate. Then, the used quality indexes are related to

the configuration of the hand, the configuration of the grasp without considering the shape of

the object, and the task. These quality measures are introduced in Chapter 4, Section 4.2, jointly

with the proposed manipulation strategies.

2.4 Contact models

Contact models can be considered as kinematic pairs. The type of pair is determined by the

contact surfaces of the finger and the object. The contact can occur at points, along lines,

or on planes. The possible combinations of these three elements generate nine possible types

of pairings. Besides, these contacts can occur with or with friction (Salisbury and Roth 1983).

Among the variety of contact models, the more common ones used in grasping are the frictionless

point contact, the frictional point contact and the soft-finger contact, shown in Figure 2.2.

As the name implies, a frictionless point contact considers that the contact takes place only at a

point, Ci, and that there is no friction between the fingertip and the object. In this case, the

finger can apply a force, Fi, only in the direction normal, n̂i, to the object surface, as shown
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Figure 2.2: Contact models commonly used in grasping and the forces that can be applied on the object: (a)
Frictionless point contact. (b) Frictional point contact. (c) Soft-finger contact.

in Figure 2.2a. This model does not represent the real contact situation that appears in real

grasps (Cutkosky 1989).

In a frictional point contact, the contact between the fingertip and the object occurs at a frictional

point, Ci, so the exerted force, Fi, have a component normal to the contact surface and also

can have a component tangential to the object surface. Several models have been proposed to

describe the frictional behavior (Howe et al. 1988). The most common is Coulomb’s friction

model, which is based on the idea that friction opposes to the motion and that its magnitude

is independent of the velocity and contact area. This is an empirical model that states that

slippage is avoided when Ft ≤ µFn, where, Fn is the magnitude of the normal component, Ft is

the magnitude of the tangential component and µ is the friction coefficient, which depends on

the materials that are in contact. The possible friction forces are geometrically constrained to be

inside a friction cone centered at the contact point, as shown in Figure 2.2b.

In a soft-finger contact, the contact between the fingertip and the object occurs on a contact

region, and there is friction between the parts. This type of contact allows the application of

the same forces described by the frictional contact model, plus a torque around the direction

normal to the contact region, as shown in Figure 2.2c, thus, the model is valid only for 3D

objects (Kao and Cutkosky 1992; Ciocarlie et al. 2005). Despite the soft-finger contact model

is more accurate than the other contact models, the frictional point contact model is the most

used in the field of robotic grasping because it presents a lower complexity and time-consuming

restrictions in the simulation of the contact behavior (León et al. 2014) and the application

results are good enough.

One of the most desired properties of multi-finger grasps is the resistance to external
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disturbances, ensuring the object immobilization. A grasp that guaranteed this property satisfies

one out of two conditions: form closure or force closure. A form closure grasp is such that

the location of the contact points on the object ensures a total kinematic constraint of the

object. A force closure (FC) grasp is such that the forces applied by the fingers on the object

can resist any external wrench applied on the object up to a certain magnitude (Bicchi 1995).

Both force closure and form closure allow the object immobilization, but form closure is a

purely geometrical condition while force closure relies on the applied forces to guarantee the

immobility of the object. A benefit of including friction in the analysis is a reduction in the

number of contact points needed for the closure. For instance, in the general case, a three-

dimensional object with six DOF requires seven contacts for form closure, but only three (non-

collinear) contacts are needed for force closure, if they are frictional contact points, and two

contacts, if soft-finger contacts are used (Prattichizzo and Trinkle 2008).

2.5 Dexterous manipulation

Dexterous manipulation could be decomposed into four basic manipulation modes, illustrated

in Figure 2.3: Coordinated manipulation, rolling motion, sliding motion and finger relocation.

These basic manipulation modes can be combined to get more complex manipulation

actions (Li et al. 1989).

Coordinated manipulation refers to the coordinated control of the fingers to move an object

from an initial configuration to a desired one, without changing the position of the fingertips on

the object surface, as shown in Figure 2.3a. The movements of the fingers must guarantee

that the contacts are fixed during the manipulation process, without allowing rolling and

sliding (Li, Canny, and Sastry 1989). Li, Hsu, and Sastry (1989) introduced a torque control

algorithm to perform in-hand relocation of an object using coordinated manipulation while

guaranteeing the grasp stability. Several works have been presented related to the coordinated

manipulation control, some of them integrating exteroceptive feedback, as for instance, tactile

feedback to control the contact forces (Liu et al. 2004; Shaw-Cortez et al. 2018), or visual

feedback for object tracking (Andrychowicz et al. 2020). Another approach in based on a bio-

inspired controller that guarantees the grasp stability and realizes dexterous manipulation of

tools to reach a desired grasp having minimal sensor information, but a good knowledge of the

kinematic model of the hand (Garate et al. 2018).
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(a) (b) (c)

(d)

Figure 2.3: Example of manipulation modes. (a) Example of coordinated manipulation. The fingers change the
object configuration keeping the contact points (in black). (b) Example of rolling motion. The fingers roll on the
object surface from the initial contact point locations (in black) generating new contact point locations (in white).
(c) Example of sliding motion. The fingers relax the contact forces allowing the object to slide due to the force of
gravity. (d) Snapshots of an example of finger gaiting, where a four-finger hand relocates the finger positions on the
object surface.

As the name implies, in the manipulation using rolling motion, the object is manipulated by

explicitly exploiting rolling movements of the fingers on the object, as shown in Figure 2.3b.

Kerr and Roth (1986) introduced the kinematics of rolling contacts for grasps using multi-

fingered hands. The analysis of manipulation in the presence of rolling was introduced

by Cai and Roth (1987) and Montana (1988). An analysis of the motion controllability of objects

manipulated using rolling movements was presented by Li and Canny (1990). The geometry of

the surfaces of the fingertip and the manipulated object is used to determine the differential

equations that describe the rolling motion, using such equations, control strategies have been

designed to manipulate an object using only rolling motions (Cole et al. 1989).

In the frictional point contact model the tangential and normal components of the contact

force are related by the Coulombs friction law, and a local sliding motion occurs when

the tangential component is larger than the normal component multiplied by the friction

coefficient (Murray et al. 1994). Figure 2.3c shows an example of sliding motion, where the
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fingers relax the contact force applied on the object and this moves due to the gravity force.

Contact sliding is a way to increase the mobility of the grasped object and the dexterity

of the hand. However, when a heavy or delicate object is manipulated sliding motion is

usually unwanted (Prattichizzo et al. 2020). One of the pioneers works on sliding motion was

presented by Cole et al. (1992), who introduced a dynamic model of a multi-fingered hand

manipulating an object with the fingertips, allowing that one of the fingers slides on the object.

Later, Howe and Cutkosky (1996) introduced a comprehensive analysis of multi-fingered hand

manipulation with contact sliding. More recently, a dynamic manipulation planner for n-finger

hands was developed using sliding motions and taking advantage of external forces such as the

gravity and object inertia (Shi et al. 2017).

In a manipulation with finger relocation, also known as “finger gaiting”, one or more fingers

can lose the contact with the object and touch it again at another point on the object surface,

changing the grasp configuration. While relocating fingers, the set of remaining contacts has to

maintain the grasp. Figure 2.3d shows snapshots of an example of finger gaiting with a four-

fingered hand grasping a squared object. The analysis of the dexterous manipulation considering

finger relocation and assuming a planar grasp was introduced by Hong et al. (1990), providing

solutions for finger gaiting for hands with three and four fingers. Finger gaiting helps

in the problem of dexterous manipulation by increasing the range of movements of the

object (Han and Trinkle 1998).

There exists a considerable amount of work analytically describing the motion of the object,

the fingertips and the contact points during manipulation (Billard and Kragic 2019). Generally,

these approaches assume knowledge of: the hand kinematics, object properties like shape, mass

and center of mass, the contact locations, friction coefficients, and the surface geometry of

both the object and fingertips. With this knowledge it is possible to compute, offline, finger

trajectories, and determine slipping and rolling motions of the fingertips to produce a desired

movement of the object during manipulation (Murray et al. 1994).

Control strategies have been proposed to deal with the manipulation of unknown objects,

for instance, Arimoto et al. (2005) proposed a grasping scheme, called “Blind Grasping” that

can realize dynamic object grasping without any external sensing. This blind grasping

has been mostly inspired by the unique configuration of the human hand, called “Fingers-

Thumb Opposability”, then, the approach was extended by considering the gravity force effect

during the manipulation (Arimoto et al. 2006). A torque controller was used to optimize

the grasping force applied on an object with smooth curvatures and a predefined shape, the
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approach can grasp objects with different shapes, but the experimental results were only

performed in simulations without tactile sensors (Song et al. 2012). A position-force control

scheme was used to manipulate the object following a predefined trajectory, but it was

also evaluated only in simulation introducing noise in the sensor measurements to simulate

a real environment (Li et al. 2012). A position-force controller with passive flexibility was

proposed for versatile in-hand manipulation based on posture interpolation (Or et al. 2016a;

Or et al. 2016b). Another approach uses only a position control law to change the

pose of the manipulated object, but it lacks of sensory feedback which is a hard

limitation (Tahara et al. 2010).

On the other hand, many approaches to dexterous manipulation are based on planning

methods, and in this case the models of both the hand and the object must be known

beforehand in order to compute trajectories for each manipulation mode, for instance, rolling

motions of the object using the fingertips (Bicchi and Sorrentino 1995; Cherif and Gupta 1999;

Doulgeri and Droukas 2013), rolling objects over the hand palm (Bai and Liu 2014),

sliding motions of the fingers on the object (Cherif and Gupta 1999), or finger gaiting

(Han and Trinkle 1998; Xu et al. 2007). Besides, planing methods allow to avoid the

complex analysis of geometric relations and apply offline techniques like Rapidly-exploring

Random Trees (RRT) and Probabilistic Road Maps (PRM) to the dexterous manipulation

problem (Yashima 2004; Saut et al. 2007). Exploiting the geometric features of the objects,

for instance, the axial symmetry of a light bulb, Xue et al. (2008) found contact trajectories to

screw the bulb. Hertkorn et al. (2013) formulated the problem of dexterous manipulation as

the search for a set of contact points on the manipulated object and the corresponding hand

configurations compatible with the task to be executed, and the task is represented as a desired

movement of the object and an external force to be applied or resisted. All these approaches

use physics simulations to model the interaction between the hand and the object. Dexterous

manipulation was also achieved by moving the fingers following a set of grasps, which are

computed by applying a sampling method that provides samples of force-closure or non force-

closure grasps on a discrete object (Roa and Suárez 2009).

Reinforcement learning has been also used to deal with the problem of reaching and grasping

objects (Brock et al. 2009; Lampe and Riedmiller 2013; Kroemer et al. 2015), as well as

changing the position of the object with respect to a global reference frame (Pastor et al. 2011;

Kroemer et al. 2015). However, regarding dexterous manipulation using anthropomorphic

hands, the amount of works is more limited (Andrychowicz et al. 2020). Reinforcement

learning has been used to optimize trajectories of a robot arm-hand system and the desired
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contact forces along this trajectory, this optimization allows to solve problems like opening a

door with a lever door handle and picking up a pen from the table (Kalakrishnan et al. 2011).

Dexterous manipulation can also be achieved by combining the different methods discussed

above (i.e. methods based on control, planning, and learning) but, in any case, sensory feedback

aids to reduce uncertainty and to increase the capabilities of the robotic system (Li et al. 2012;

Funabashi et al. 2015). For instance, Ozawa et al. (2005) proposed a controller, with the

only feedback of the internal joint angles and angular velocities, to achieve stable grasping,

orientation control, and position control of the grasped object. As stated in Section 2.2,

tactile sensing allows dealing with the lack of knowledge of some properties of manipulated

objects. Contact locations obtained using tactile sensors can be used to define a “virtual

object frame” determined by the centroid of the contact points, using this reference

frame control (Tahara et al. 2010) or learning methods can be applied to manipulate the

object (Li et al. 2014). Fast tactile feedback allows performing impressive demonstrations like,

for instance, to spin a pen of known shape at a high speed (Ishihara et al. 2006).

Others manipulation strategies decompose the manipulation problem into small movements

that allow the description of a complex task in terms of simpler actions (Felip et al. 2012) or

use geometric reasoning to manipulate unknown objects to improve the grasp quality from the

point of view of the hand, the grasp and the task (Montaño and Suárez 2018c).



“The nitrogen in our DNA, the calcium

in our teeth, the iron in our blood, the

carbon in our apple pies were made in

the interiors of collapsing stars. We are

made of starstuff.”

Carl Sagan (1934 - 1996) 3
Robotic Systems Used for

Experimental Validations

The approaches proposed in this thesis were validated experimentally using the Schunk

Dexterous Hand (SDH2) and the Allegro hand. The software implementation was done in

C++ using the Robotic Operating System (ROS) framework allowing the connection between the

hardware, drivers and the developed software modules. Details of the used robotic hardware,

hands and tactile sensors, as well as the developed software modules, are presented in this

chapter.

3.1 Tactile Sensors

One of the main features of the robotic hands used in the experimental validation of this thesis is

that they have the ability to obtain information about the contacts with the manipulated object

by using tactile sensors. Both, the Schunk Dexterous hand and the Allegro Hand are equipped

with tactile sensor systems developed by Weiss Robotics1. In this section, common functions to

exploit both tactile sensor systems are presented, which were developed as part of this thesis.

Specific details of each particular tactile system are discussed below when the robotic hands are

introduced.

The Weiss tactile sensors are arrays of tactile sensor cells (texels). The tactile sensors have

1https://weiss-robotics.com/

https://weiss-robotics.com/
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Figure 3.1: Example of a contact region on a tactile sensor.

an associated reference frame Σis , located in the left-bottom corner of the pad, as shown

in Figure 3.1. In this work, the contacts between the fingertips and the manipulated object

are modeled using the frictional point-contact model (Salisbury and Roth 1983). In the real

experimentation, in general, the contact between the object and the tactile sensor takes place

on a contact region including several texels, thus, the barycenter of this region, b ∈ R
2, is

considered as the current effective contact point, and the summation of the forces sensed over all

the texels is considered as the current contact force F . Figure 3.1 shows an example of a contact

region highlighted with an ellipse. The measures of pressure on the texels are represented by

colors. A measurement in a texel returns a value between 0, when no force is applied, and 4095

for the maximum measurable normal force, whose value depends on the type of sensor.

Tactile sensors can be connected to a PC via serial port or USB with a CDC profile2. The driver

provided by the manufacturer of the sensors has the basic functionalities for the configuration

of the sensor, the communication with it, and the reading of the pressure measurement on each

texel. The pressure measurement is done using the function getPressureOnTexel. A C++ library,

WEISSlib, was developed to manage, configure and read information from the tactile sensors.

The library provides more complex functions that simplify the data management. Among these

functions there is one, getContactInfo, to obtain processed information about the contact: the

barycenter, the contact force, and the contact area. The pseudo-code of the getContactInfo

function is shown in Algorithm 3.1. First, all the texels of the sensor pad are read using the

function getPressureOnTexel(x, y), if the returned pressure value on each texel, p, is larger than

a threshold, pressureThreshold, it is considered a valid value and the measurement is processed

to compute the contact information. The contact area is the product of the number of texels

with a valid measurements by the area of a single texel. The contact force is the product of the

2Communication Device Class (CDC) is a profile that allows the emulation of a Virtual COM-port using the ACM
(Abstract Control Model) function to connect devices over USB.
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Algorithm 3.1 getContactInfo

Ensure: contactArea, contactForce, b
procedure GETCONTACTINFO

sumPressure, sumX, sumY, numTexels← 0
contactArea, contactForce, bx, by ← 0
for all x in sensorPadColumns do

for all y in sensorPadRows do
p← getPressureOnTexel(x,y)
if p > pressureThreshold then

sumPressure← sumPressure + p
sumX← sumX + x p
sumY← sumY + y p
numTexels← numTexels + 1

end if
end for

end for
contactArea← numTexels by areaTexel
contactForce← forceFactor by sumPressure by contactArea
bx ← texelwide ( sumX / sumPressure )
by ← texelhigh ( sumY / sumPressure )
return contactArea, contactForce, b

end procedure

summation of pressures by the contact area, scaled by a calibration constant, forceFactor. The

barycenter (bx, by) of the contact region is computed as,

bx = texelwide

xmax
∑

x=1
(x p)

∑

p
(3.1)

by = texelhigh

ymax
∑

y=1
(y p)

∑

p
(3.2)

where xmax and ymax are the total numbers of columns and rows in the sensor pad, x is the

column, y is the row, and p is the measured pressure on the texel, respectively.

3.2 Schunk Dexterous Hand

The Schunk Dexterous Hand (SDH2)3, shown in Figure 3.2a, is a three finger hand with seven

active DOF. Each finger has two DOF, located at the proximal and distal links. The hand has

an additional DOF allowing the rotation of two fingers around their bases to work opposite to

each other in the same plane, as shown in Figure 3.2b.

3https://schunk.com/nl_en/gripping-systems/series/sdh/

https://schunk.com/nl_en/gripping-systems/series/sdh/
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Figure 3.2: (a) Schunk Dexterous Hand (SDH2) with labels showing its seven DOF. (b) Two fingers of the SDH2
working in the same plane.

Each finger has two tactile sensor pads attached on the surfaces of the proximal and the distal

links, thus, the tactile sensor system of the whole hand has six sensor pads. The pad over each

proximal link has 84 texels of 3.4 mm by 3.4 mm, and the pad over each distal link (fingertip)

has 68 texels, of the same size and with the following features. The pad on each fingertip has

a planar part with length 16 mm and a curve part with radius 60 mm, as shown in Figure 3.3a.

The planar part of the sensor pad includes the rows of texels 1 to 5 with 6-texel wide, and the

curved part the rows of texels 6 to 13 with 6-texel wide from rows 6 to 8 and 4-texel wide from

rows 9 to 13, making the total of 68 texels as shown in Figure 3.3. The maximum measurable

normal force per texel is 3 N. It must be noted that, when the contact is produced only on

one or two texels the measured force is therefore limited to up to 3 or 6 N, respectively, and

these cases must be specially considered to avoid pushing the fingers trying to get larger forces.

Besides, since the tactile sensors do not provide tangential components of the grasping forces, in

the experiments the actual contact force could be larger than the measured one, which is not a

significant problem, unless extremely fragile objects are manipulated and the normal forces are

quite close to the maximal tolerated forces. In this work, only the fingertips of the two fingers

working opposite to each other are used for the manipulation.

The SDH2 actuators are DC motors coupled with high-ratio gears. The hand is connected to a

computer using two interfaces, one to command/read information from the motors, which can
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Figure 3.3: (a) Lateral view of a SDH2 fingertip. (b) Front representation of a SDH2 fingertip sensor pad (all
dimensions are in millimeters).

be a serial port or a controller area network (CAN) bus, and another interface to communicate

with the tactile sensors, which is a serial port. The manufacturer provides a C++ driver for the

basic communication and control of the hand. The tactile sensors have independent drivers and

they are managed using the WEISSlib library introduced in the Section 3.1. A C++ library, SDHlib,

was developed based on the manufacturer library, to manage, configure and read information

from the hand. ROS modules were also developed to integrate the hand (SDHlib) and sensors

(WEISSlib) libraries with other ROS modules, as for instance robotic hardware like the robot

arms, or software components to test the approaches proposed in this thesis. Details of the

libraries are presented later in Section 3.4, where the developed software tools are introduced.

Figure 3.4 shows the geometric model used for the kinematic analysis of the hand. A finger fi,

i ∈ {1, 2}, is a kinematic serial chain with ni DOF and ni links with length lij, j ∈ {1, ..., ni}.

A joint angle qij relates the position of each link to the previous one. The configuration of the

finger fi is given by its joints angles as qi = {qi1 , · · · , qini
}. A hand configuration is given by the

concatenation of the configurations of the two used fingers as Q = {q1,q2}. Each finger fi has

a reference frame Σi0 with the origin OΣi0
fixed at its base. The absolute reference frame W is

located at the base of the finger f1, i.e. W coincides with OΣ10
.

Denavit-Hartenberg (DH) parameters (Craig 1986) are used to describe the kinematic model of

the fingers. Table 3.1 shows the DH-parameters for finger fi. The range of the joints qi2 and qi3
is from −90° to +90°. For the coupled joint, qi1, the range is from 0° to 90°, being 90° the value
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Figure 3.4: SDH2 kinematics model.

Table 3.1: Denavit-Hartenberg parameters for SDH2 fingers.

j αij aij dij qij
1 90 0 0 qi1
2 0 86.5 0 qi2
3 0 68 0 qi3

to work with the fingers opposite to each other.

Since the tactile sensor of each fingertip is not planar, the shape of the sensor has to be

considered in order to compute the position of the contact point in the absolute reference

frame W. The processing of a sensor measurement during contact returns, as effective punctual

contact point b ∈ R
2, the barycenter of the contact area in the sensor reference system Σis and,

as the effective force F , the summation of all the measured forces on all the texels. Given b,

the coordinates of the contact point Ci in the reference system of the fingertip Σi3 are given

by (Karakatsani 2011),

Cix =







17.5 + bx if bx < 16 mm

33.5 + 60 sin
(

bx−16
60

)

if bx ≥ 16 mm
(3.3)
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Ciy =







15 if 17.5 < Cix < 33.5 mm

−45 +
√

602 − (Cix − 33.5)2 if 33.5 ≤ Cix < 66.4 mm
(3.4)

A virtual link is used to include the contact point information into the kinematics of each finger

fi. This virtual link adds an extra non-controllable DOF, qiv , to fi (see Figure 3.4). qiv and the

length of the virtual link ri are directly determined by b. In the reference frame Σi3 , qiv and ri
are given by

qiv = tan−1
(

Ciy

Cix

)

(3.5)

ri =
√

Cix
2 + Ciy

2 (3.6)

The position of the contact point Ci referenced to the finger frame Σi0 , can be computed using

the virtual link values qiv and ri, and the finger joint values qij , j ∈ {1, 2, 3}, as,

Ci =









86.5 cqi1sqi2 + ricqi1cqi2 c(qi3−qiv ) − cqi1sqi2s(qi3−qiv )

86.5 sqi1sqi2 + risqi1cqi2 c(qi3−qiv )

86.5 cqi2 + ri(−c(qi3−qiv )sqi2 − cqi2s(qi3−qiv )









(3.7)

The inverse kinematics (IK) problem is set out as follows: given the position of the contact point

Ci with respect to the finger frame Σi0 and the value of the virtual joint qiv , find the joint values

qij , j ∈ {2, 3} to make the expected contact point on the fingertip (which coincides with the

barycenter, b, of the contact region) be coincident with Ci. There are different approaches to

compute the IK, for instance using numerical, analytical, or geometrical methods. In the case

of a finger with 3 DOF, a geometric approach gives a close-form solution to the IK problem.

Figure 3.5 shows the geometric model used to solve the IK problem of the SDH2. The values

of the angles ρ, σ and γ are computed using the cosine law over the triangle described by the

origins of the frames OΣi1
and OΣi3

, and by the position of the contact point Ci as,

ρ = cos−1

(

−|OΣi1
Ci|2 + L2

2 + r2i
2L2ri

)

(3.8)

σ = cos−1

(

−r2i + L2
2 + |OΣi1

Ci|2
2L2|OΣi1

Ci|

)

(3.9)
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Figure 3.5: Geometric model used to solve the inverse kinematic problem of the SDH2.

γ = tan−1
(

Ciy

Cix

)

(3.10)

As mentioned above, the value of qi1 is fixed to 90° to allow the fingers work opposite to each

other. Then, the values of qi2 and qi3, are given by,

qi2 = −σ − γ + sgn(Cix)π/2 (3.11)

qi3 = −ρ+ π/2 + qiv (3.12)

where

sgn(x) =







1 if x ≥ 0

−1 if x < 0

3.3 Allegro Hand

The Allegro Hand from Wonik Robotics4 is a four-finger anthropomorphic hand with 4 DOF in

each finger, as shown in Figure 3.6a. The Index (I), Middle (M), and Ring (R) fingers have the

4http://www.wonikrobotics.com/Allegro-Hand.htm

http://www.wonikrobotics.com/Allegro-Hand.htm
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Figure 3.6: (a) Anthropomorphic robotic hand Allegro Hand, with 16 degrees of freedom (DOF) and 4 fingertips
with tactile sensors WTS-FT 0408. (b) Detail of the fingertip with tactile sensor WTS-FT 0480.

same kinematic structure, the first degree of freedom fixes the orientation of the working plane

Πi, i ∈ {I,M,R}, within the finger workspace, while the other three DOF (flexion/extension)

are used to make the fingertip reach a point and an orientation in Πi. In the case of the Thumb

(T ), the first DOF produces the abduction movement and the second DOF fixes the orientation

of the working plane ΠT of the Thumb, leaving only two DOF to work on it, that is, for the

Thumb, the position and the orientation of the fingertip are not independent of each other.

The fingertips of the commercial version of the Allegro Hand do not have tactile sensors, thus, for

this work they were replaced in the Robotics Lab of the IOC by sensorized fingertips Weiss Tactile

Sensors WTS-FT 04085, increasing the capabilities of the hand for dexterous manipulation. The

WTS-FT are sensorized fingertips with the same functionality principle that the tactile sensors

of the SDH2, but with a different shape and size of the tactile sensing matrix, which in the case

of the WTS-FT has 4 by 8 texels of 3.8 mm by 3.8 mm, as shown in Figure 3.6b. The WTS-FT

sensors are connected to a PC via serial port with a transmission rate of 50 Hz. A measurement

of the pressure in each texel returns a value between 0 when no force is applied and 4095 for

the maximum measurable normal force of 1.23 N.

Figure 3.7 shows the dimensions and the reference systems used to compute the kinematics of

5https://weiss-robotics.com/

https://weiss-robotics.com/
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Figure 3.7: Allegro hand dimensions and reference frames used to compute the hand kinematics.

the Allegro Hand. The positions of the origins of the reference systems of the joints of the hand

are given in the Table 3.2.

Similarly to the SDH2, a finger, fi, is modeled as a kinematic serial chain with ni DOF,

i ∈ {I,M,R, T}. Each finger has ni links with length lij , j ∈ {1, ..., ni}, a joint angle qij relates

the position of each link to the previous one. The configuration of the finger fi is given by its

joints angles as qi = {qi1 , · · · , qini
}. A hand configuration is given by the concatenation of the

configurations of the fingers as Q = {qI ,qM ,qR,qT } Each finger fi has a reference frame Σi0 ,

with the origin, OΣi0
, fixed at its base. The absolute reference frame W is located at the base of

the finger fM , in the intersection point with the palm of the hand, as shown in Figure 3.7.

The Kinematics and Dynamics Library (KDL)6 is used to compute the kinematics of the hand.

This library requires the robot to be described using a Unified Robot Description Format (URDF)

which is based on extensible markup language (XML) and uses computer-aided design (CAD)

models for the graphical representation of the hand and the sensors. In order to include the

contact information in the kinematics of the hand, two virtual prismatic links liv1 and liv2 are

used to locate the contact point on the sensor pad, assuming that the sensor surface is flat. These

6https://www.orocos.org/kdl

https://www.orocos.org/kdl
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Table 3.2: Position of the reference frames of the fingers of the Allegro hand.

Index

Frame x y z

ΣI1 0 45.098 14.293
ΣI2 0 45.098 14.293
ΣI3 0 49.804 68.087
ΣI4 0 53.151 106.341

Middle

Frame x y z

ΣM1
0 0 16.6

ΣM2
0 0 16.6

ΣM3
0 0 70.6

ΣM4
0 0 109

Ring

Frame x y z

ΣR1
0 -45.098 14.293

ΣR2
0 -45.098 14.293

ΣR3
0 -49.804 68.087

ΣR4
0 -53.151 106.341

Thumb

Frame x y z

ΣT1
-18.2 16.958 -73.288

ΣT2
-13.2 72.147 -78.116

ΣT3
-13.2 72.147 -78.116

ΣT4
-13.2 123.351 -82.596

virtual links add two non-controlled DOF qiv1 and qiv2, at the end of the finger kinematic chain.

Figure 3.6b shows the barycenter b of the contact region and the virtual links that localize the

contact point with respect to the fingertip center point (FCP) on the sensor surface.

The joints of the Allegro hand have DC motors as actuators and potentiometers to measure the

joint values with a resolution of 0.002°. The hand is connected to a computer by a controller

area network (CAN) bus. In order to control the position of the hand, a position controller was

developed to command the torque to be applied to each joint. The proposed controller includes

gravity compensation, and it is implemented according to the following control law,

τ (t) = u(t) + τ gc (3.13)

where τ gc is the torque to compensate the weight of the finger structure (gravity compensation),

and u(t) is the torque to reduce the position error, computed as,

u(t) = KPe(t) +KD
de(t)

dt
+KI

∫ t

0
e(t)dt (3.14)

where the gainsKP ,KD, andKI are the proportional, derivative and integral gains, respectively,

and e(t) is the position error, defined as the difference between the desired and the current hand

configurations Qd and Qk respectively, i.e.

e(t) = Qd(t)−Q(t) (3.15)

For the implementation of the controller the integral term is discretized, with a sampling time
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Algorithm 3.2 updateController

Require: Qk, Qd, KP , KD, KI , τgc

Ensure: τ (tk+1)
procedure UPDATECONTROLLER

Compute the position error e(tk) using Eq. (3.15)
Compute the integral component of the controller as

I = I+ e(tk)dt
Compute the derivative component of the controller as

D = (e(tk)− e(tk−1)/dt
Compute u(tk) as

u(tk) = KP e(tk) +KDD+KII

Compute τ (tk+1) as
τ (tk+1) = u(tk) + τ gc

end procedure

∆t, as
∫ t

0
e(t)dt ∼=

T
∑

k=1

e(tk)∆t (3.16)

and the derivative term is approximated as

de(t)

dt
∼= e(tk)− e(tk−1)

∆t
(3.17)

Algorithm 3.2 shows the pseudo-code of the function updateController which computes the

torque applied to the joints in each control cycle.

3.4 Developed Software Tools

Robot Operating System (ROS) (Quigley et al. 2015) is an open-source flexible framework that

aims to simplify the development of general-purpose collaborative software for robotics. It

provides services such as hardware abstraction, low-level device control, implementation of

commonly-used functionalities, message-passing between processes, and package management.

In the ROS framework, the processing takes place in nodes that can be running in the same or in

different CPU-cores or computers. Nodes, coordinated by a master node, send data streams to

each other and they can be dynamically configured by services. Data transferring between nodes

can be performed using service or topic kind messages. Services work under a request/reply

interaction, while topics under a publish/subscribe interaction.

Figure 3.8 shows the developed software modules to interact with the hardware used for

the validation of the manipulation approaches proposed in this thesis, the modules are

interconnected using the ROS framework. As can be seen in the figure, the designed software
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Figure 3.8: Hardware used in the experimentation and developed software modules.

modules are:

• two modules to command an read the current state of the robotics hands (SDH2 and

Allegro).

• a module to control the Allegro Hand using a PID controller.

• two modules to get the measurements of the tactile sensor system (DSA and WTS-FT).

• a module to run the manipulation algorithms proposed in this work.

• a module GUI to command the movements of each joint of the hands (GUI-Qt).

• a module GUI to visualize the hands and the applied and measured forces (GUI-rviz).

The SHD2 and Allegro Nodes are based on the SDHlib and AHandlib libraries respectively, these

nodes offer the basic functionalities to command movements and read the current state of the

hands, as well as functions to compute the kinematics of the hand. In the case of the SDH2
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hand, the hand is commanded by a set of desired joint values (desired hand configuration) Qd,

while the Allegro hand receives the torques τ to be applied by the joint motors, in both cases

feedback is given by the encoders of the joints that measure the hand configuration Q.

The aim of the PID controller Node in the Allegro Hand is to compute proper torques τ to

command the movements of the hand. The Node has as input the desired hand configuration Qd

from the Manipulation/Application Node and as feedback the current hand configuration Q

from the Allegro Node.

As with the robotic hands, there are two nodes to manage the DSA 9210 and the WTS-FT tactile

sensors; the nodes allow to compute the contact information, represented by the barycenter of

the contact region b and the contact force F applied on that region, both nodes are based on

the weisslib library, introduced in Subsection 3.1.

The approaches proposed in this thesis are coded in the Manipulation/Application Node, which

is able to connect with SDH2 and DSA or Allegro and WTS-FT nodes, respectively. Besides,

the Manipulation/Application Node also generates the hand state for the virtual representation

of the hand in the GUI-rviz Node and receives the desired configuration of the hand from the

GUI-Qt Node. rviz7 is a 3D visualization tool for ROS-based applications.

The GUI-Qt8 Node has independent inputs to command each joint of the hands. The number

of inputs depends on the selected hand. As output, the node publishes the desired hand

configuration Qd.

The GUI-rviz Node allows visualizing a rviz scene with the model of the hand, the forces involved

in the manipulation (forces measured by the tactile sensors and forces computed using the

applied torques on the hand joints), working planes for each finger, and the contact points,

among other elements. The scene is described using an URDF file which allows the inclusion of

CAD models for the graphical representation of the hand and the sensors.

The measured forces are represented by rviz markers (arrows in this particular case) using the

contact information, location and contact force, returned by the sensors. The computed contact

forces are obtained as

F = J(q)T
∗

τ (3.18)

where J(q)T
∗

is the inverse of the transposed Jacobian matrix, which depends on the joint values

7http://wiki.ros.org/rviz
8https://www.qt.io/

http://wiki.ros.org/rviz
https://www.qt.io/
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Figure 3.9: Screenshot of the visualization tool during an example using the Allegro Hand with tactile sensors.

of the hand, and τ is the vector of the applied torques at each joint.

A screenshot of the visualization tool during an example is being run using the Allegro hand with

the WTS-FT tactile sensors is shown in Figure 3.9. In the figure, there are five windows identified

with a circled number in red. The first window corresponds to a system console that executes

the nodes involved in the communication with the hand AHandlib and the sensors weisslib. The

second window shows the GUI-rviz Node, where the models of the hand and the tactile sensors

and the measured and the computed forces are displayed. The third window corresponds to a

system console that launches the GUI-Qt Node to control the individual movement of the joints

of the Allegro hand. The fourth window shows the graphical interface of the GUI-Qt Node. The

fifth window corresponds to the Manipulation/Application Node, which has an user interface to

execute a manipulation strategy and displays relevant information, as the measured forces and

computed forces exerted by the fingers.

The following examples illustrate the main functionalities of the developed system. Figure 3.10

shows three examples in which the operator interacts with the robot hand and touch the sensors

to generate forces without holding any object, the forces are displayed on the GUI. In the three

examples the hand was placed in a predetermined configuration and held static in it. The forces

registered by the tactile sensors are represented by blue arrows, while those calculated using

the torques applied to the joints are represented by red arrows. In the first example, pressure is

exerted directly on one of the tactile sensors and the force registered by the sensor is displayed

on the graphic interface. In the second example the finger is pushed from the back of the

fingertip trying to change the finger configuration. As a result of this action, the hand controller
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increases the torque at the finger joints to maintain the default setting, increasing the torques

produces a force at the fingertips that is displayed in red on the graphical interface but the tactile

sensor does not measure anything, so there is not any force represented in blue. In the third

example, the finger is pushed from the fingertip trying to change its configuration. In this case,

the force registered by the sensor and the calculated force due to the torques applied to the

joints are simultaneously displayed.

Figure 3.11 shows four examples grasping different objects. In the first example, a spherical

object is held using two fingers; in the second example, the hand holds a bottle with flat faces

using three fingers; in the third example, a jar is held at the upper and lower ends using three

fingers again; and, in the fourth example, a cylinder-shaped bottle is held using the four fingers

of the hand. In each example it is shown: an image with the grasp executed by the hand and two

screen captures of the graphical interface showing, in the first one, the forces computed using

the torques applied to the joints, and, in the second one, the forces registered on the tactile

sensors. Note that in the last two examples there is a noticeable difference between the forces

produced by the torques at the joints and those measured by the sensors. This is due to the fact

that tangential forces are being applied to the surface of the sensor pad and the sensors cannot

measure them. This effect shows the usefulness of the developed system that quickly allows to

graphically visualize this difference, and therefore what is actually happening with the grasping

forces.
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(a)

(b)

(c)

Figure 3.10: Examples of the interaction with fingers and tactile sensors producing forces that are visualized on
the GUI of the software tool. (a) Force measured by the tactile sensor due to the pressure exerted on the sensor.
(b) Computed force using the torques commanded by the controller to hold the hand in a static configuration while
an external force is applied to the finger but not on the sensor pad. (c) Measured and computed forces when a force
is pushing the finger on the sensor pad.
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(a)

(b)

(c)

(d)

Figure 3.11: Grasping examples of objects with different shapes: (a) Spherical object grasped using two fingers.
(b) Bottle with flat faces grasped using three fingers. (c) Jar grasped by the top and bottom faces using three fingers.
(d) Cylindrical bottle grasped using four fingers.



“If at first an idea does not sound absurd,

then there is no hope for it.”

Albert Einstein (1879 - 1955)

4
Dexterous Manipulation of Unknown Objects

A set of manipulation strategies to manipulate unknown objects is described in this chapter.

The manipulation strategies use as inputs only tactile and kinematic information obtained

during the manipulation process itself, thus, the manipulation is performed as a reactive process.

4.1 Introduction

In general, the manipulation process usually pursues three main goals, one from the hand point

of view, one from the grasp (relation hand-object) point of view and one from the object point

of view. These goals are, respectively:

• The optimization of the hand configuration, i.e. the search for a “comfortable” hand

configuration while holding the object;

• The optimization of the grasp quality, i.e. the search for a “secure” grasp such that the

hand can resist external perturbations applied on the object;

• The optimization of the object configuration, i.e. the search for an “appropriate” object

position and orientation to accomplish the requirements of a given task.

The manipulation strategies introduced in this chapter allows the manipulation of unknown

objects pursuing these three goals. The expression “unknown object” is used to indicate that

the model of the object is not needed during the manipulation process (note that “model of
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the object” includes shape, texture, stiffness, center of mass, friction coefficient and any other

related physical property of the object).

Manipulation of unknown objects can be performed as a reactive procedure using the tactile

information obtained at the contacts at the fingertips, and kinematic information of the hand.

It must be remarked that tactile information is used only to obtain knowledge of two relevant

things: the position of the contact point on each fingertip and the module of the corresponding

contact force.

The main goal of the approaches proposed in this thesis is the dexterous in-hand manipulation

(i.e. no need of wrist or arm movements) of an unknown object starting from a given initial

grasp, keeping the contact between each finger and the object during the manipulation (i.e.

finger gaiting is not applied) and the grasping forces within a desired range, while preventing

the object from falling. The manipulation process determines the movements (sequences of

hand configurations) to manipulate the object improving a quality index. The initial grasp could

be non-optimal due to several reasons (e.g. accessibility, position uncertainty or incomplete

information about the object), but, in any case, the planning and the execution of the initial

grasp are outside the scope of this work.

The computation of the finger movements is done following a specific manipulation strategy for

each of the goals mentioned above, and a specific index to be minimized is defined to measure

the quality of the manipulation actions.

The following assumptions are considered:

• The robotic hand used for the manipulation has tactile sensors to obtain information

about the contacts with the manipulated object, and no other external feedback source

is available, as, for instance, visual information.

• The manipulated objects are rigid bodies and their shape is unknown. The proposed

approaches could work also for soft objects, there is not any specific constraint for it,

but a limit for the acceptable softness is not determined in this work.

• The friction coefficient is not known neither identified during the manipulation. It

is assumed to be above a minimum security value which can be roughly determined

considering the object material and the rubber surface of the fingertips. In the

experimentation we compute the movements using the minimum value of the possible
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friction coefficient between the material of the fingertips and the used objects, i.e. a

conservative value below the real friction coefficient.

• The finger joints have a position control to make them trying to reach the commanded

positions, which is the most frequent case in a commercial hand with a closed controller.

No force control is required at the level of the joint controllers. The proposed approaches

use the tactile measurements to generate commanded positions taking into account the

current contact forces, thus, it is actually acting as an implicit upper level force control

loop.

As it was discussed in Section 3.3, the contact between a fingertip and the object produces

contact regions on the sensor pad. The contact between each fingertip and the object is modeled

using the punctual contact model (Mason 2001), thus, in order to adjust the contact model, the

barycenter of the actual contact region (either a single one or a set of disjoints sub-regions) is

considered as the current contact point. Besides, the summation of the forces sensed at each

texel in the actual contact region is considered as the current contact force applied by the finger

at the equivalent punctual contact.

Many actions in every-day and industrial tasks can be performed using only two fingers, for

instance, rotate one object for vision inspection or change the grasp posture and the object

position for more comfortable manipulation (Li et al. 2013). Increasing the number of fingers

increases the redundancy of the grasp allowing other types of movements such as finger gaiting,

re-grasping or finger pivoting/tracking (Ma and Dollar 2011), but also increases the complexity

of the grasp analysis.

In the particular case of dexterous manipulation using two fingers, the fingers perform a grasp

comparable with a human grasp when the thumb and index fingers are used to manipulate an

object, with the fingertips movements lying on a plane (MacKenzie and Iberall 1994). This type

of grasp limits the movement of the object to a plane but it allows different practical actions in

every-day and industrial tasks, like, for instance, matching the orientation of two pieces to be

assembled or inspecting an object (Toh et al. 2012). Figure 4.1 shows the geometric model of a

two-finger grasp.

The indexes to evaluate the quality of the grasp are introduced below, then, the manipulation

strategies using two fingers are presented considering heuristics and gradient based methods,

finally an extension for three fingers is discussed in the last section of the chapter.
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Figure 4.1: Geometric model for a two-finger grasp.

4.2 Quality Indexes

The following subsections introduce the indexes used to quantify the quality related to the hand

configuration, the grasp and the object orientation. The indexes, that are expressed as functions

of the hand joint values, must be optimized during the manipulation process.

4.2.1 Related to the Hand Configuration

The optimization of the hand configuration implies that the fingers must try to reach specific

positions while preventing the fall of the object. These positions are generally defined by the

middle-range of the joints because, in the middle-range positions the joints are far away from

their mechanical limits, thus, there is a potential wider range of movements, but it could be also

arbitrarily defined by the user according to the particular features of the robotic hand.

Let qij0 be the predefined desired specific position of the j-th joint of the finger i, then

Q0 = {qij 0, i ∈ {1, 2}, j ∈ {1, ni}} is the desired specific configuration of the hand. Then, the

goodness of the hand configuration is indicated by a quality index Qc computed according to
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Figure 4.2: Geometric model used to compute the friction constraints.

the current joint values qij as

Qc =

2
∑

i=1

ni
∑

j=1

(

qij − qij0
qijmax

− qijmin

)2

(4.1)

where qijmax
qijmin

and qij are the maximum limit, minimum limit and the actual position

of the j-th joint of fi, respectively. The hand configuration is improved by minimizing Qc,

which favors the hand configurations with the joints as close as possible to the desired specific

positions (Liégeois 1977).

4.2.2 Related to the Grasp

When the goal of the manipulation is the optimization of the grasp quality, the hand has to

manipulate the object optimizing the current FC grasp. We use a quality index Qg that relates

the angle between the normal forces at the contact points and the segment between the contact

points. Qg favors the finger forces closer to the surface normal. If the segment is close to the

boundary of the friction cone, i.e. far from the normal directions, the object could easily slip in

presence of perturbations (Liu et al. 2004). Qg is expressed as,

Qg =
β1 + β2

2
(4.2)

where β1 and β2 are the angles between the normal direction at each contact point and the

segment between contact points (see Figure 4.2).

The optimization of the grasp quality implies that the fingers must manipulate the object
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increasing the security margin of the FC grasp given by the angles βi. i.e. the segment connecting

both contact points must lie far from the boundary of the friction cones.

4.2.3 Related to the Object Orientation

The optimization of the object orientation γk implies that the fingers must rotate the object

towards a desired goal orientation γd. The orientation of the object in the initial grasp is

considered as γ0 = 0, and the desired orientation of the object γd is relative to it. Then, the

manipulation strategy must reduce the difference between γd and the current object orientation

γk. The quality index could be just the orientation error |γd − γk|, but in order to constrain it to

the range [0, 1] it is normalized dividing by γi − γd, γi being the current orientation at the time

γd is given, i.e.

Qr =

∣

∣

∣

∣

γd − γk
γd − γi

∣

∣

∣

∣

(4.3)

The orientation of the object γk can be computed using basic geometry and the information

obtained from the tactile sensors and the finger kinematics, no other external feedback is

considered (like, for instance, a vision system) although it could exist at a higher level (for

instance to determine γd, but this is outside of the scope of this work). For fingertips with

circular shape, the current object orientation γk is given by (Ozawa et al. 2004)

γk =
2R+ dk
dk

(θ0 − θ) +
R

dk

n1
∑

j=1

(q1jγ0
− q1jk )−

n2
∑

j=1

(q2jγ0
− q2jk ) (4.4)

being

θ: the average of the two angles between an arbitrary reference axis attached to the object and

the directions normal to each fingertip at the corresponding contact point,

θ0: the value of θ at the initial grasp (i.e. for γ0),

qijk : the current value of the ij-th joint, i.e. joint j = 1, ..., ni of finger i = 1, 2,

qijγ0
: the value of the ij-th joint at the initial grasp (i.e. for γ0),

dk: the distance between the contact points, and

R: the radius of the fingertip.
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The first term in Eq. (4.4) has a factor that depends on the variation of θ, then, since θ does not

change significantly during the manipulation (i.e. θ ≈ θ0) the first term can be neglected. Thus,

γk can be approximated by

γk ≈ R

dk

n1
∑

j=1

(q1jγ0
− q1jk )−

n2
∑

j=1

(q2jγ0
− q2jk ) (4.5)

Since the finger movements are small and γk is recomputed in each iteration, this approximation

is accurate enough for the optimization of Qr.

4.3 Manipulation Strategies - Heuristic Methods

One simple approach to decide how to move the fingers to improve the quality indexes is to

use intuitive movements, following the human behavior when manipulating an object with the

fingertips. The following subsections introduce a general algorithm and manipulation strategies

based on heuristics for the optimization of the quality indexes defined in Section 4.2.

4.3.1 General Manipulation Algorithm

The general algorithm introduced below could be used with any of the manipulation strategies

that will be presented in the following subsections. Indexes k and k + 1 are used to denote the

current and next iteration, respectively. The manipulation is a reactive process composed of the

five following steps:

1) Obtaining of the current state of the grasp.

2) Adjustment of the distance between contact points.

3) Computation of the new hand configuration.

4) Verification of termination conditions.

5) Movement of the fingers.

The first step is the computation of the variables that determine the current state of the grasp:
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• The absolute position of the current contact points C1k and C2k , which are obtained using

the tactile information provided by the tactile sensors to determine the contact points on

the fingertips and the hand kinematics to determine the absolute positions of these contact

points.

• The magnitude of the grasping force Fk, which is obtained as the average of the contact

forces F1k and F2k measured on each fingertip. Although, in the case of two fingers, F1k

and F2k should have the same magnitude and opposite direction, the use of the average

of both measured contact forces minimizes potential measurement errors, thus,

Fk =
F1k + F2k

2
(4.6)

• The Euclidean distance dk between the contact points C1k and C2k , which is given by

dk = |C1kC2k | =
√

(C1kx
− C2kx

)2 + (C1ky
− C2ky

)2 (4.7)

The second step is the adjustment of distance between contact points to try to keep the force

applied on the object around a desired value Fd. Since the shape of the object is unknown, any

movement of the fingers may alter the current contact force Fk, allowing potential damage of

the object or the hand if it increases or allowing a potential fall of the object if it decreases. The

error in the contact force efk is defined as

efk = Fk − Fd (4.8)

In order to reduce efk , the distance dk is adjusted in each iteration by adding an adjusting factor

∆d,

dk+1 = dk +∆d (4.9)

with

∆d =







F1(efk) if efk ≤ 0

F2(efk) if efk > 0
(4.10)

where F1(efk) and F2(efk) are user defined functions.

The third step is the computation of target contact points C1k+1
and C2k+1

, according to a

desired manipulation strategy. Moving the fingers such that the contact points are moved

towards the target contact points must improve the quality index associated with the desired
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manipulation strategy. The procedures to compute the target contact points are detailed in the

following subsections for manipulation strategies with different goals.

The fourth step is the verification of certain termination conditions. The iterative manipulation

procedure is applied until any of the following four termination conditions is activated, two of

them associated with the quality index and the other two with the motion constraints:

• The quality index reaches the optimal value.

• The current value of the quality index is not improved after a predetermined number of

iterations. Note that the index may not be improved monotonically, but it may become

worst during a few iterations or oscillate alternating small improvements and worsening.

• The expected grasp at the computed target contact points does not satisfy the friction

constraints.

• The computed target contact points do not belong to the workspace of the fingers. This

condition is activated when the computed target contact points C1k+1
and C2k+1

are

not reachable by the fingers, i.e. Qk+1 = {q1k+1
,q2k+1

} does not lie within the hand

workspace.

The fifth and last step is the execution of the movements of the fingers. When none of the

termination conditions is activated, the hand is moved towards Qk+1 to make the fingers try

to reach the desired target contact points C1k+1
and C2k+1

. After the finger movements a new

manipulation iteration begins.

The heuristic procedure proposed to manipulate an object using tactile feedback is summarized

in Algorithm 4.1.

The objective of the manipulation strategies introduced below is the generation of the target

contact points C1k+1
and C2k+1

that allow the optimization of the hand configuration, the grasp

quality and the object orientation, respectively.

4.3.2 Optimizing the Hand Configuration

In this manipulation strategy, one finger is moved independently according to the desired goal

and the other finger adapts its movement to follow the first finger and avoid the object fall. The
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Algorithm 4.1 Manipulation with tactile feedback - Heuristic methods

Require: Fd, the Manipulation Strategy (MS)
procedure REACTIVEMANIPULATION

stop←false
while stop 6=true do

\\ Computation of current state of the grasp

Compute Ci using Forward Kinematics
Compute Fk using Eq. (4.6)
\\ Adjustment of the distance between contact points

Compute dk+1 using Eq. (4.9)
\\ Computation of target contact points using a manipulation strategy (MS)

Compute Cik+1
according to MS

\\ Computation of new hand configuration

Compute Qk+1 from Cik+1
using Inverse Kinematics

Compute the quality indexQMS

\\ Verification of termination conditions

if a termination condition is not satisfied then
\\ Finger movement

Mover fi to Qk+1

else
stop←true

end if
end while

end procedure

fingers alternate their roles in order to balance the hand movements, in this way both fingers

advance to the goal configuration.

The configuration of the independent finger is computed varying each joint by a small value ∆q,

chosen small enough to ensure small changes in the position of the contact point. Assuming

that, in the k-th iteration, the independent finger is fi, the next joint values qijk+1
are given by,

qijk+1
= qijk + sgn(qij0 − qijk )∆q (4.11)

where the function sgn(x), introduced to move the joints toward the desired configuration, is

given by,

sgn(x) =



















−1 if x < 0

0 if x = 0

1 if x > 0

(4.12)

The configuration of the follower finger is computed under the hypothesis that it is moved over

a virtual circular path whose diameter is given by the distance dk+1 resulting from Eq. (4.9), as

shown in Figure 4.3. Given the coordinates of the independent finger (e.g. C1k+1
for the first
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Figure 4.3: Two-finger model for the optimization of the hand configuration.

iteration), the coordinates C2k+1
of the contact point of the follower finger are compute as,

C2yk+1
= C1yk+1

+



tan(ρ)

√

dk+1
2

tan(ρ)2 + 1



 (4.13)

C2xk+1
= C1xk+1

+
√

dk+1
2 − (C2yk+1

− C1yk+1
)2 (4.14)

where the angle ρ is computed as,

ρ = tan−1

(

C2yk
− C1yk+1

C2xk
− C1xk+1

)

(4.15)

This means that the contact point C2k+1
is computed on a circumference of diameter dk+1

centered at the contact point C1k+1
. The same procedure is applied when f2 is the independent

finger and f1 the follower.
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Figure 4.4: Two-finger model used for the optimization of the grasp quality.

4.3.3 Optimizing the Grasp Quality

In this manipulation strategy, we consider the hypothesis that the shape of the object is locally

circular, and therefore, it is possible to compute a proper movement over the object surface to

improve the grasp quality. The right direction of the movement depends on the computed angle

βi for each finger fi. The fingers have again different roles (independent and follower) and

iteratively change them. The new configuration for the independent finger is computed moving

the contact point over the hypothetical circular shape of the object, as a displacement over an

arc of circumference (dk+1/2)∆φ as shown in Figure 4.4.

The angle variation ∆φ can be positive or negative to perform displacements of the contact

point in both directions with respect to the fingertip. The sign of ∆φ have to be chosen equal to

the sign of βi. The next coordinates for the independent finger (e.g. C1k+1
, assuming that the

independent finger is f1) are computed as,

C1xk+1
= Rxk

− dk+1

2
cos(γk +∆φ) (4.16)

C1yk+1
= Ryk −

dk+1

2
sin(γk +∆φ) (4.17)

where the point Rk is the middle point of the segment between the contact points C1k and C2k



4.3 Manipulation Strategies - Heuristic Methods 47

W Σ20

C1k

C2k

f1 f2

x

y

∆φ

Rk

C1k+1

C2k+1

dk+1

Figure 4.5: Two fingers model used for the optimization of the object orientation.

given by,

Rxk
=
C2xk

− C1xk

2
+ C1xk

(4.18)

Ryk =
C2yk

− C1yk

2
+ C1yk

(4.19)

Besides, in equations (4.16) and (4.17), ∆φ is chosen small enough to assure small movements

of the object on each manipulation step. The next coordinates of the follower finger (C2k+1
) are

computed using the same procedure as in the manipulation strategy for the optimization of the

hand configuration, described in Subsection 4.3.2.

4.3.4 Optimizing the Object Orientation

In this manipulation strategy, we consider the hypothesis that the fingers are moved over a

circular path whose diameter is given by the distance between the two current contact points,

dk+1, as shown in Figure 4.5.

In this case the fingers do not have different roles. The target contact points C1k+1
and C2k+1

are computed as,

C1xk+1
= Rxk

− (dk+1/2) cos(γk +∆φ) (4.20)
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(a) (b) (c)

Figure 4.6: Three manipulated objects used in the experimentation with the heuristic methods. (a) Object 1: elliptical
shape. (b) Object 2: two-curvature shape. (c) Object 3: cylinder.

C1yk+1
= Ryk − (dk+1/2) sin(γk +∆φ) (4.21)

C2xk+1
= Rxk

+ (dk+1/2) cos(γk +∆φ) (4.22)

C2yk+1
= Ryk + (dk+1/2) sin(γk +∆φ) (4.23)

where the point Rk, the center of the circular path, is computed using Eq. (4.18) and

Eq. (4.19), and ∆φ is chosen positive to turn the object clockwise or negative to turn the object

counterclockwise. ∆φ is chosen small enough to assure small movements of the object on each

manipulation step.

4.3.5 Experimental Validation

The described manipulation strategies have been fully implemented using C++ for the

manipulation of unknown objects with the SDH2 hand introduced in Chapter 3. Figure 4.6

shows three objects used in the real experimentation. Each object is held between the two

coupled fingers of the SDH2, then, the fingers are closed until the contact forces reach a desired

value Fd = 2 N. The initial grasp is executed without a precise knowledge of the object position

and therefore, the initial contact points are unknown and the initial grasp configuration changes

at each execution of the experiment.

The material of the sensor pads is rubber and the material of the objects is wood or cardboard,

thus, we consider a worst case friction coefficient µ = 0.4, which is lower than the friction

coefficient between rubber and wood µ = 0.7, and rubber and cardboard µ = 0.5 (Kutz 2005).
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Figure 4.7: Example of optimization of the hand configuration. (a) Qc during the manipulation of Object 1.
(b) Snapshots of the initial and final grasps.

One simple approach to define the functions F1 and F2, that adjust the distance between contact

points dk in Eq. (4.10), is to choose them as a constant value λ with the sign opposite to

the sign of efk , i.e. F1 = λ and F2 = −λ, being λ an empirically determined value. In the

experimentation presented below λ is set to 1 mm.

The joints of the SDH2 have an operation range from -90° to 90°, therefore the middle-range

position is 0°, however when the joints are in the middle-range position the hand is in a

singular configuration, thus, in this experimentation, each joint range has been constrained

to be between -90° and 0° for the proximal joints and, between 0° and 90° for the distal joints.

The joint variation in each manipulation step was set to ∆θ = 0.5°.

In the example shown in Figure 4.7, Object 1 was manipulated with the hand configuration

being optimized. Figure 4.7a shows the evolution of Qc during the manipulation. Note that

Qc decreases in each manipulation step, which is an indicator of an improvement in the hand

configuration. In this case, the manipulation had a duration of 10.31 s, and it ended because

Qc did not improve in the last 15 manipulation iterations. Figure 4.7b shows snapshots of the

initial and final grasp configurations.

In the example shown in Figure 4.8, Object 2 was manipulated with the grasp configuration

being optimized. Figure 4.8a shows the evolution of Qg during the manipulation. The parameter

to vary the position of the contact points was set to ∆φ = 0.5°. The manipulation ended when

the module of βi was below a threshold of 0.1, and this happened at 10.74 s. Figure 4.8b shows

snapshots of the initial and final grasp configurations.
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Figure 4.8: Example of optimization of the grasp configuration. (a) Qg during the manipulation of Object 2.
(b) Snapshots of the initial and final grasps.

In the example shown in Figure 4.9, Object 3 was rotated as much as possible in both senses.

Figure 4.9a and 4.9b show the change in the object orientation with respect to the initial grasp,

when the object was rotated clockwise and counterclockwise, respectively. The manipulation

took 5.32 s in the counterclockwise case and 5.53 s in the clockwise. The manipulation ended

when a finger reaches its workspace limit in both senses. Figure 4.9c shows snapshots of the

initial grasp configuration, and the final grasp configurations when the object was rotated as

much as possible counterclockwise and clockwise.

In the example shown in Figure 4.10, the goal is the improvement of the hand and grasp

qualities, using for it the corresponding individual strategies, one after the other. First, the

object was manipulated until the quality index Qc related to the hand configuration was not

improved anymore. Then, the motion strategy to improve the index Qg related to the grasp

quality was applied, allowing a variation of Qc within a given threshold (i.e. it can worsen

a limited amount). Figure 4.10 shows the obtained quality indexes Qc and Qg when the

Object 3 was manipulated. Even when both quality indexes are shown during the whole

manipulation process, until iteration 93 only Qc was considered as an optimization index, using

the corresponding motion strategy. At this point, since Qc has not improved after 15 consecutive

iterations, the optimization strategy was changed to improve Qg, but now checking that Qc

remains below the given threshold of 0.1 over the minimum reached value. The manipulation

ended when Qc reached the threshold value, with Qg being less than 0.1, this happened after

28.81 s.
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Figure 4.9: Example of optimization of the object orientation. (a) Orientation during the manipulation of
Object 3 when it was rotated clockwise. (b) Orientation during the manipulation of Object 3 when it was
rotated counterclockwise. (c) Snapshots of the initial grasp, and the final grasps when the object was rotated
counterclockwise and clockwise.

0 20 40 60 80 100 120 140 step
0

0.1

0.2

0.3

0.4

0.5

0.6

Qc/Qg

Figure 4.10: Example of the improvement of the hand and grasp qualities. Qc (in Red) and Qg (in Blue) resulting
from applying the strategies to improve Qc until iteration 93, when it has not improved anymore during 15 iterations,
then the strategy to improve Qg was applied while Qc remains within a given threshold.
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4.4 Manipulation Strategies - Gradient-based Methods

Considering that the quality indexes are expressed as functions of the hand joint values, a

procedure to optimize the grasp is the determination of the gradient of these functions and make

the hand movements to follow it. As a result, with relatively simple geometrical reasoning and

assumptions, an unknown object can be manipulated keeping the grasping forces in a desired

range and preventing the object from falling despite uncertainty.

In the same way as with the heuristics methods in Section 4.3, the following subsections

introduce a general algorithm and the gradient-based strategies for the optimization of the

quality indexes defined in Section 4.2.

4.4.1 General Manipulation Algorithm

In the case of gradient-based methods, the general algorithm has some differences from that

already presented for the heuristic methods, in this case the manipulation process is composed

of the following five steps:

1) Obtaining of the current state of the grasp.

2) Computation of auxiliary points using a manipulation strategy.

3) Computation of the target hand configuration based on the auxiliary points.

4) Verification of termination conditions.

5) Movement of the fingers.

The first step is the computation of the relevant variables of the current state of the grasp, which

are the same variables as in the heuristic methods and therefore, they are computed as it was

described in Section 4.3, i.e. the following variables are computed:

• The position of the current contact points C1k and C2k (obtained using tactile and

kinematic information).

• The magnitude of the grasping force Fk (obtained with Eq. (4.6)).
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Figure 4.11: Example of the computation of Cik+1
using C∗

ik+1
, adjusting the distance dk to dk+1 when the contact

force Fk is larger than Fd.

• The Euclidean distance dk between the contact points C1k and C2k (obtained with

Eq. (4.7)).

The second step is the computation of two auxiliary points C∗1k+1
and C∗2k+1

, according to the

desired manipulation strategy. Moving the fingers such that the contact points are moved

towards the auxiliary points must improve the quality index associated with the desired

manipulation strategy. The strategy to compute the auxiliary points for the optimization of

each quality index is detailed in the following subsections.

The third step is the adjustment of the auxiliary points to obtain new target contact points, C1k+1

and C2k+1
, that try to keep the force applied to the object within a desired range. The force error

efk is reduced, in the same way as in the heuristic methods, adjusting the distance dk in each

iteration by adding an adjusting factor ∆d, i.e.

dk+1 = dk +∆d (4.24)

with

∆d =







F1(efk) if efk ≤ 0

F2(efk) if efk > 0
(4.25)

The positions of the auxiliary points C∗1k+1
and C∗2k+1

are adjusted along the line that they define

in order to obtain the actual target contact points C1k+1
and C2k+1

at a distance dk+1 from each
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Figure 4.12: Relation between the measured variables, the role of the manipulation strategy, and the final adjustment
to obtain the new hand configuration.

other. This is done as,

Cik+1
= Rk+1 +

dk+1

2
δik+1

, i ∈ {1, 2} (4.26)

where Rk+1 is the middle point of the segment between C∗1k+1
and C∗2k+1

and δik+1
is the unitary

vector from Rk+1 to C∗ik+1
, as shown in Figure 4.11.

Finally, using the inverse kinematics of the fingers, from the points C1k+1
and C2k+1

it is possible

to obtain the corresponding hand configuration Qk+1 = {q1k+1
,q2k+1

}. Figure 4.12 illustrates

the relationship between the measured variables, the role played by the manipulation strategy in

the computation of the auxiliary points C∗ik+1
, and the variables involved in the final adjustment

to obtain the new hand configuration (with independence of the used manipulation strategy).

The fourth step is the verification of termination conditions. As in the Heuristic Methods, the

iterative manipulation strategy is applied until any of the following four termination conditions

is activated:

• The quality index reaches the optimal value.

• The current value of the quality index is not improved after a predetermined number of

iterations.

• The expected grasp at the computed target contact points does not satisfy the friction

constraints.

• The computed contact points do not belong to the workspace of the fingers.

The fifth and last step is the execution of the movements of the fingers. When none of the

termination conditions is activated, the hand is moved towards Qk+1 to make the fingers try
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Algorithm 4.2 Reactive manipulation algorithm

Require: Fd, tha Manipulation Strategy (MS)
procedure REACTIVEMANIPULATION

stop←false
while stop 6=true do

Computation of current state of the grasp

Compute Ci using Forward Kinematics
Compute Fk using Eq. (4.6)
Computation of new contact points for a manipulation strategy (MS)

Compute C∗
ik+1

according to MS
Adjustment of the virtual contact points

Compute dk+1 using Eq. (4.9)
Compute Cik+1

using Eq. (4.26)
Computation of new hand configuration

Compute Qk+1 from Cik+1
using Inverse Kinematics

Compute the quality indexQMS

Verification of termination conditions

if a termination condition is not satisfied then
Finger movement

Mover fi to Qk+1

else
stop←true

end if
end while

end procedure

to reach the desired target contact points C1k+1
and C2k+1

. After the finger movements a new

manipulation iteration begins.

Algorithm 4.2 shows the proposed reactive manipulation procedure using two fingers, which is

general and valid for any of the gradient-based manipulation strategies.

The objective of the manipulation strategies introduced below is to generate the auxiliary points

C∗1k+1
and C∗2k+1

to allow the optimization of the hand configuration, the grasp quality and the

object orientation, respectively. As it was shown in the scheme presented in Figure 4.12, the

manipulation strategy generates C∗1k+1
and C∗2k+1

which will be used later to compute the next

contact points C1k+1
and C2k+1

to properly manipulate the object.

4.4.2 Optimizing the Hand Configuration

In this strategy, the goal configuration of the hand is known with independence of the object

shape, thus, it is trivial to move the hand towards it, the key point is to do it allowing an

adequate adjustment of the distance dk between the contact points in each iteration to prevent



56 Dexterous Manipulation of Unknown Objects

Qk C∗
ik+1

∆Qk

Q∗

k+1

Q0

Figure 4.13: Variables involved in the optimization of the hand configuration.

the object from falling. Then, the hand configuration is updated in each iteration as

Q∗k+1 = Qk +∆Q (4.27)

where

∆Qk = η(Q0 −Qk) (4.28)

is a small enough vector pointing from the current configuration Qk = {q1k ,q2k} to Q0, i.e. η

must be chosen to properly fix the advance of the hand configuration in each iteration. As a

practical approach, when the angles are measured in degrees, ∆Q ≤ 1 was found to work well,

and this is achieved with

η =
tanh(||Q0 −Qk||)

||Q0 −Qk||
(4.29)

where tanh is used to bound η when the current configuration of the hand Qk is far from Q0.

From Eq. (4.28) and Eq. (4.29) results

∆Qk =
tanh(||Q0 −Qk||)

||Q0 −Qk||
(Q0 −Qk) (4.30)

Finally, from Q∗k+1 obtained in Eq. (4.27), it is straightforward to obtain the auxiliary points

C∗1k+1
and C∗2k+1

using the direct kinematics of the hand.

Figure 4.13 summarizes the relation between the variables involved in the computation of C∗1k+1

and C∗2k+1
for the optimization of the hand configuration (according to the general diagram

shown in Figure 4.12).

4.4.3 Optimizing the Grasp Quality

In this strategy, using basic geometry and the information obtained from the tactile sensors and

the finger kinematics, the angles βi are computed as functions of the current contact points Ci,
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Figure 4.14: Variables involved in the optimization of the grasp quality.

the position of the origin of reference frame Σini
, and the length ri and the joint angle qiv of

the virtual links at the fingertips as (all the variables are computed for the iteration k, thus, to

improve legibility, index k has been removed in these equations),

β1 = cos−1

(

−|Σ1ni
C2|2 + r21 + |C1C2|2

2r1|C1C2|

)

+ q1v − π (4.31)

β2 = cos−1

(

−|Σ2ni
C1|2 + r22 + |C1C2|2

2r2|C1C2|

)

+ q2v − π (4.32)

Note that βi depends on the current hand configuration Qk. Therefore, the gradient of βi (Qk)

at the current hand configuration, ∇βi (Qk), is used to compute the next auxiliary configuration

of the hand Q∗k+1 as

Q∗k+1 = Qk +∆Q (4.33)

where ∆Q is now given by

∆Q =
1

2
tanh(β1)

∇β1

||∇β1||
+

1

2
tanh(β2)

∇β2

||∇β2||
(4.34)

Finally, as in the previous strategy, from Q∗k+1 obtained in Eq. (4.33), it is straightforward to

obtain the auxiliary points C∗1k+1
and C∗2k+1

using the direct kinematics of the hand.

Figure 4.14 summarizes the relation between the variables involved in the computation of C∗1k+1

and C∗2k+1
for the optimization of the grasp quality (according to the general diagram shown in

Figure 4.12).
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Figure 4.15: Movements used for the optimization of the object orientation. C1k+1
and C∗

2k+1
are computed over a

circular path with diameter dk centered at Rk.

4.4.4 Optimizing the Object Orientation

In this strategy, the auxiliary points C∗1k+1
and C∗2k+1

are computed considering that the fingers

are moved to produce the displacement of the current contact points on the sensor pads along a

circular path given as (see Figure 4.15),

C∗1k+1x
= Rkx −

dk
2

cos(γk+1) (4.35)

C∗1k+1y
= Rky −

dk
2

sin(γk+1) (4.36)

C∗2k+1x
= Rkx +

dk
2

cos(γk+1) (4.37)

C∗2k+1y
= Rky +

dk
2

sin(γk+1) (4.38)

i.e. the new auxiliary positions are points on a circumference with diameter dk centered at the

middle point, Rk, between the points C1k and C2k , and

γk+1 = γk + tanh(γk)∆γ (4.39)

with ∆γ chosen empirically and small enough to assure small movements of the object in each

manipulation step.

Note that in this case it was not necessary to compute Qk+1 as an intermediate step to determine

the auxiliary points C∗ik+1
. Instead, now Qk+1 can be deduced from C∗ik+1

applying inverse

kinematics. This is relevant since the direction of ∆Q = Q∗k+1 −Qk is necessary to combine
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Figure 4.16: Variables involved in the optimization of the object orientation.

different manipulation strategies, as will be shown in Subsection 4.4.6.

Figure 4.16 summarizes the relation between the variables involved in the computation of C∗1k+1

and C∗2k+1
for the optimization of the object orientation (according to the general diagram

shown in Figure 4.12).

4.4.5 Experimental Validation

The approach described above, including the general algorithm and the manipulation strategies,

has been validated using the SDH2 described in Chapter 3. Some examples of experimental

results are presented below to illustrate the performance of the approach.

In the following examples the fingers are blindly closed around an unknown object until the

measured grasping force reaches a predefined desired value Fd = 5 N. This force value was

chosen considering the range of the tactile sensors, the forces the hand can apply and that

the manipulated objects were hard rigid bodies. The objects used for the experiments were

selected looking for different object shapes (with small and large curvatures) and different object

boundaries (smooth and irregular), so that the performance of the proposed approach can be

illustrated under different conditions. The initial position of the object varies in each execution

and is not known with precision, so the initial grasp configuration and the initial contact points

are unknown a priori by the system. The friction coefficient considered in the calculations was

µ = 0.4 (friction cone angle of only α = 21.8°), which is below the expected real physical value

considering the object materials and that the fingertips have rubber surface. The functions F1

and F2 involved in the adjustment of the distance between contact points dk in Eq. (4.10),

are defined depending on the module of the force error efk . In the following experiments we

use F1 = 2λ(efk + e2fk) and F2 = λefk , with λ being a predefined constant. The reason for the

difference between F1 and F2 is that a potential fall of the object (Fk → 0) is considered more
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Figure 4.17: SDH2 in the desired hand configuration.

critical that a potential application of large grasping forces (Fk ≫ Fd), and therefore, F1 has

larger gain, specially for large |efk |. The constant λ to adjust the distance between the contact

points according to Eq. (4.47) was set to λ = 0.25 mm. Videos of the experimental executions

can be found in http://goo.gl/ivFd0q.

In the examples shown in figures 4.18 to 4.21, four different objects are manipulated improving

the three quality indexes sequentially, first the manipulation optimizes Qc, then, Qg and finally

Qr. For the improvement of Qc, Q0 = {−45, 45,−45, 45} is considered as the desired hand

configuration, shown in Figure 4.17. When Qg is improved, the angles βi are minimized

according to the expected behavior of the manipulation strategy. Finally, for the improvement

of Qr, the desired goal is an object rotation of 5° clockwise. In the sub-figures showing charting

results, a vertical dotted line is depicted to highlight the iterations in which the optimization

index changes. Particular details of each experiment are given in the caption of each figure.

In the example shown in Figure 4.22 the object was successively rotated clockwise and

counterclockwise with desired orientations γd set to 5°, -5°, 10°, -10°, and 15°. The change of set-

point was manually done once the system has activated a termination condition for the current

set-point. In the first four cases the termination condition was the arrival of Qr to the expected

value according to the system internal measurements, i.e. γk ≈ γd (see Figure 4.22c), and in

the last case the manipulation ended because the expected next value of the angle β1 exceeded

the friction cone limit before arriving to γd = 15° (see the evolution of β1 in Figure 4.22f),

meaning that there was a risk of sliding and the object could flip away from the hand. The real

orientations of the object when the terminal conditions were activated, measured by an external

vision system, are given in Figure 4.22c between parenthesis below the corresponding values

obtained from internal measurements. ∆γ was set to 0.25°.

http://goo.gl/ivFd0q
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Figure 4.18: (a) Manipulated object. (b) Initial grasp. (c) Hand configuration after optimizing Qc. (d) Hand
configuration after optimizing Qg. (e) Hand configuration after optimizing Qr. (f)) Evolution of the quality indexes.
The manipulations improving Qc, Qg and Qr ended after 3.864 s and 43 iterations, 4.486 s and 70 iterations and
9.083 s and 73 iterations, respectively. (g) Evolution of the joints values in degrees, q11 in blue, q12 in red, q21 in
green, q22 in magenta. (h) Average force Fk in Newtons, the dashed line indicates Fd. (i) Evolution of the object
orientation in degrees. (j) Angles βi in degrees, β1 in blue and β2 in red (the dashed line indicates the optimal value
of βi). Note that the non-smooth and toothed surface of the manipulated object produces more than one contact
region on each fingertip without generating any manipulation problem.
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Figure 4.19: (a) Manipulated object. (b) Initial grasp. (c) Hand configuration after optimizing Qc. (d) Hand
configuration after optimizing Qg. (e) Hand configuration after optimizing Qr. (f) Evolution of the quality indexes.
The manipulations improving Qc, Qg and Qr ended after 1.171 s and 16 iterations, 4.687 s and 62 iterations and
9.709 s and 71 iterations, respectively. (g) Evolution of the joints values in degrees, q11 in blue, q12 in red, q21 in
green, q22 in magenta. (h) Average force Fk in Newtons, the dashed line indicates Fd. (i) Evolution of the object
orientation in degrees. (j) Angles βi in degrees, β1 in blue and β2 in red (the dashed line indicates the optimal value
of βi).



4.4 Manipulation Strategies - Gradient-based Methods 63

(a) (b) (c)

(d) (e)

Iteration
00

0.1

0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

20 100 18040 60 80 120 140 160

Qc Qg Qr

(f)

Iteration

-60

-40

-20

0

20

40

60

0 20 100 18040 60 80 120 140 160

qij

(g)

Iteration
0
1

2

3
4

5

6
7
8

9

10

0 20 100 18040 60 80 120 140 160

Fk

(h)

Iteration
-10
-8

-6

-4
-2

0

2
4
6

8
10

0 20 100 18040 60 80 120 140 160

γk

(i)

Iteration

-20

-15

-10

-5

0

5

10

15

20

0 20 100 18040 60 80 120 140 160

βi

(j)

Figure 4.20: (a) Manipulated object. (b) Initial grasp. (c) Hand configuration after optimizing Qc. (d) Hand
configuration after optimizing Qg. (e) Hand configuration after optimizing Qr. (f) Evolution of the quality indexes.
The manipulations improving Qc, Qg and Qr ended after 2.439 s and 26 iterations, 4.627 s and 75 iterations and
8.779 s and 82 iterations, respectively. (g) Evolution of the joints values in degrees, q11 in blue, q12 in red, q21 in
green, q22 in magenta. (h) Average force Fk in Newtons, the dashed line indicates Fd. (i) Evolution of the object
orientation in degrees. (j) Angles βi in degrees, β1 in blue and β2 in red (the dashed line indicates the optimal value
of βi). Note that, due to the shape of the manipulated object, the contact is produced on a limited region of the
sensor and therefore the measured force Fk cannot reach the desired force Fd.
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Figure 4.21: (a) Manipulated object. (b) Initial grasp. (c) Hand configuration after optimizing Qc. (d) Hand
configuration after optimizing Qg. (e) Hand configuration after optimizing Qr. (f) Evolution of the quality indexes.
The manipulations improving Qc, Qg and Qr ended after 2.122 s and 22 iterations, 5.558 s and 95 iterations and
5.347 s and 65 iterations, respectively. (g) Evolution of the joints values in degrees, q11 in blue, q12 in red, q21 in
green, q22 in magenta. (h) Average force Fk in Newtons, the dashed line indicates Fd. (i) Evolution of the object
orientation in degrees. (j) Angles βi in degrees, β1 in blue and β2 in red (the dashed line indicates the optimal value
of βi). Note that as in Example 3 the contact region is quite small due the object shape and therefore the force Fk

cannot reach the desired force. The manipulation ended without reaching the desired object orientation because the
friction constraints were not satisfied and the object could slip out of the hand.
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Figure 4.22: (a) Initial grasp. (b) Final grasp. (c) Evolution of the object orientation γk with sequential setpoints 5,
-5, 10, -10 and 15 degrees. (d) Evolution of the joints values in degrees, q11 in blue, q12 in red, q21 in green, q22 in
magenta. (e) Average force Fk in Newtons, the dashed line indicates Fd. (f) Angles βi in degrees, β1 in blue and β2

in red, the dashed line indicates the optimal value of βi.

4.4.6 Combining Manipulation Strategies

The approach allows the combination of two or more manipulation strategies, for this purpose a

combined quality index Qm is computed as a lineal combination of the quality indexes associated

to the combined manipulation strategies, i.e.

Qm =
∑

j

ωjQj (4.40)

where ωj > 0 are arbitrarily defined weighting coefficients.

When two or more manipulation strategies are combined, the target configuration of the hand

Qk+1 is computed as the current hand configuration plus a lineal combination of the incremental

movements ∆Qj obtained individually by each manipulation strategy j, i.e.

Q∗k+1 = Qk +
∑

j

ωj∆Qj (4.41)
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Figure 4.23: (a) Initial grasp. (b) Final grasp. (c) Evolution of the index Qm = 0.5Qc + 0.5Qg . (d) Evolution of the
joints values in degrees, q11 in blue, q12 in red, q21 in green, q

22 in magenta. (e) Average force Fk in Newtons, the
dashed line indicates Fd. (f) Angles βi in degrees, β1 in blue and β2 in red (the dashed line indicates the optimal
value of βi).

with ωj > 0 satisfying
∑

j ωj = 1 to avoid unexpected large movements. The coefficients ωj

can be arbitrarily adjusted to give different weights to each individual strategy. It must be

remarked that the final movement determined to optimize the combined index does not imply

the individual optimization of all the involved individual indexes.

Then, from Q∗k+1 it is straightforward to obtain the auxiliary points C∗1k+1
and C∗2k+1

using the

direct kinematics of the hand. Once the auxiliary points are computed, the same procedure

as in the other manipulation strategies is applied, i.e. the computation of the target hand

configuration based on the auxiliary points, the verification of the termination conditions, and

finally the movement of the fingers.

In the example shown in Figure 4.23 two manipulation strategies were combined, optimizing

the hand configuration and the grasp quality simultaneously. The strategies were combined

using ω1 = ω2 = 0.5 in Eq. (4.40) and Eq. (4.41), i.e. Qm = 0.5Qc + 0.5Qg. In this example βi
tends to zero according to the optimization of the grasp quality while the joints tend to their

desired specific positions. The manipulation ended after 2.85 s and 38 iterations because Qm

did not improve the current optimal value after 10 iterations. Note that the optimization of Qm

does not imply the optimization of Qc and Qg.
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4.5 Three Finger Extension using Virtual Contact Points

A natural extension of the manipulation strategies introduced in the previous sections is to

increase the number of fingers involved in the manipulation process. For this, a robotic hand

with a higher number of DOF per finger is considered for the manipulation. Inspired by

the typical movements that a human being does to rotated an object, three fingers of an

anthropomorphic hand are used to rotate an unknown object forward and backward. This

new manipulation strategy introduces a simple geometric procedure based on the commanded

positions of the fingertips, which are used to define a set of virtual contact points without caring

about the positions of the real contact points between the fingertips and the object.

Considering that the finger joints of the hand work under position control, the commanded

hand configurations must be such that the commanded positions of the fingertips lie “inside”

the object in order to apply a force on the object surface. It must be noted that if the fingertips

are positioned exactly on the surface of the object, they will not produce grasping forces on it.

From now on, we will refer to the commanded fingertip positions located “inside” the object as

“virtual contact points”, since they are not physically reachable. Furthermore, the magnitude

of the force applied by each fingertip on the object surface depends on the distance between

the virtual contact point and the real contact point actually reached on the object surface.

Thus, each virtual contact point is adjusted as a function of the force error, i.e. the difference

between the desired and the current contact force sensed on each fingertip. Determining the

finger movements using only the virtual contact points allows the object manipulation without

knowing its real shape or any other physical property.

In the experimentation, three fingers of a robotic hand are used to grasp and manipulate

the object, using tripod grasp (Feix et al. 2016), i.e. the thumb works opposite to the other

two fingers (abduction movement) in the same way as humans do it. In this work, we will

consider that the Thumb works as supporting finger, while the Index and Middle fingers lead

the object movements. Besides, the user continuously provides manipulation commands at a

high level, that is, in each iteration the system receives a user command indicating the sense of

the rotation movement and the system autonomously determines the finger movements. There

is no external measurement of the object orientation but adding, for instance, a vision system,

the proposed methodology could be used to positioning the object in an absolute orientation, if

such orientation is actually reachable.
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4.5.1 Proposed Manipulation Strategy

The manipulation is performed as an iterative process such that, in each iteration, the finger

movements are computed according to the sense of rotation, sk, indicated by the user.

As introduced in Chapter 3 Section 3.3, the fingers of the Allegro Hand fi, i ∈ {I,M, T} with I,

M and T corresponding respectively to the Index, Middle and Thumb, is modeled as a kinematic

serial chain with ni DOF and ni links. Each finger link has an associated reference frame Σij ,

j ∈ {1, ..., ni}, which defines its position in the absolute reference frame W. The position of

each link j with respect to the previous one is determined by the joint angle qij . The finger

configuration qi is given by the concatenation of all the joint angles as qi = {qi1 , · · · , qini
}. The

hand configuration is given by the concatenation of the configurations of the fingers used for

the manipulation, i.e. Q = {qI ,qM ,qT }.

The flexion/extension joints of each finger i move the finger within a working plane Πi, in this

work Πi is defined by three points corresponding to the positions of the reference frames Σij

of the three phalanges of the finger. The variables involved in the manipulation are computed

using the projections of the relevant points on the working plane of each finger. In a tripod

grasp, the finger working planes must be oriented as parallel as possible to each other, as shown

in Figure 4.24. In this way, the fingers can perform cooperative movements and the object can

be rotated around an axis orthogonal to the working planes of the fingers, as it is usually done

by human beings. Nevertheless, the proposed procedure can be generalized to rotate objects

around any arbitrary axis, there is no restriction that prevents this, but it is evident that the

kinematics of the hand may allow very small rotations around some particular axis.

Given the current virtual contact points Pik , the computation of points Pik+1
for the leading

fingers (Index and Middle) is done as follows. Two auxiliary points P∗ik+1
, i = {I,M} are

defined as the points resulting from a displacement ± ζ of Pik along the line perpendicular to

the segment between Pik and PTk
, as shown in Figure 4.25. The intention is to make the axis

of rotation passing through PTk
. The sign of the displacement ζ depends on the desired sense

of rotation for the current iteration. Thus,

P∗ik+1
= Pik ± ζp̂ (4.42)

with p̂ ∈ R
3 and p̂ · (Pik −PTk

) = 0.

Since the shape of the object is unknown, any movement of the fingers may alter the contact
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ΠT

W

Figure 4.24: Allegro hand with the finger working planes Πi for Index, Middle and Thumb fingers and the axis for
the object rotation.

force Fik . The module of Fik must remain within a threshold around a desired value Fid because

if it increases a lot the object or the hand may be damaged and if it decreases the grasp may fail

and the object may fall down. In order control the value of the grasping forces, a force error efik
is defined as the difference between the desired force Fid and the current force measured by the

sensors Fik , i.e.

efik = Fik − Fid (4.43)

Now, consider the distance di defined as the Euclidean distance between each virtual contact

point Pi, i = {I,M} and the rotation point PT ,

dik = |Pik −PTk
| (4.44)

An adjustment of dik allows to change the grasping force applied on the object, then, dik is

modified in each iteration depending on the force error efik by properly determining the final

positions of Pik+1
, i = {I,M} and PTk+1

. Pik+1
is determined as,

Pik+1
= P∗ik+1

+∆dik p̂
∗
i (4.45)
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Figure 4.25: Example of the computation of Pik+1
, i = {I,M}, when the contact force Fik is larger than Fid (i.e.,

efik
≤ 0). After obtaining P ∗

ik+1
with a displacement ζ from the current position Pik , the target virtual contact point

Pik+1
is obtained applying the adjustment ∆dik to displace P ∗

ik+1
away from PTk+1

. All the points are projections
onto Πik .

with

p̂∗i =
P∗ik+1

−PTk

|P∗ik+1
−PTk

| (4.46)

and

∆dik =







λ(|eik |+ e2ik) if eik ≤ 0

−λeik if eik > 0
(4.47)

being λ a predefined constant, empirically obtained. In the same way than in the manipulation

using two fingers, different gains are defined depending on the sign of efik , because a potential

fall of the object (Fik → 0) is considered more critical that a potential application of large

grasping forces (Fik ≫ Fid).

In the case of the Thumb, since it is only used as supporting point for the object rotation,

the computation of PTk+1
is done with the only aim of adjusting the contact force without

computing any intermediate virtual point. PTk+1
is computed considering an adjustment with

respect to the Index and Middle fingers as,

PTk+1
= PTk

+∆dTk
p̂T (4.48)
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Algorithm 4.3 Manipulation algorithm

Require: Fd

procedure MANIPULATE

k ← 0
repeat

Read the direction of rotation sk
Compute finger working planes Πik
Project Pik onto Πik
for i = {I,M} do

Compute Pik+1
according to sk

Compute ∆dik
Adjust Pik+1

to obtain Pik+1

end for
Compute ∆dTk

Adjust PTk
to obtain PTk+1

Compute Qk+1 from Pik+1
using IK

if Qk+1 belong to the hand workspace then
Mover hand to Qk+1

k ← k + 1
end if

until stop by user
end procedure

with

∆dTk
= −∆dIk +∆dMk

2
(4.49)

and

p̂T =
p̂∗I + p̂∗M
|p̂∗I + p̂∗M | (4.50)

Finally, the new hand configuration Qk+1 is computed using inverse kinematics of Pik+1
,

i = {I,M, T}. The movements of the fingers are executed only if each Pik+1
belongs to the

workspace of the corresponding finger, i.e. the target Qk+1 lies within the hand workspace.

Algorithm 4.3 summarizes the main steps for the computation of the hand configuration that

allows the desired object manipulation.

4.5.2 Experimental Validation

The experimental validation of the proposed approach was done using the Allegro Hand

introduced in Chapter 3 Section 3.3. The fingers Index, Medium and the Thumb were closed

around an unknown object, until approximately reaching a desired contact force Fd = 5 N.

In a first set of experiments, the initial grasp was obtained by moving the fingers using the

graphical application introduced in Chapter 3 Section 3.4 to control individually each hand

joint. This application also allows the visualization of the measured force on each sensor at the

fingertips. The objects used for the experimentation, shown in Figure 4.26, were chosen looking
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Figure 4.26: Set of everyday objects used for the first set of experiments: Bottle with multiple curvatures (left), jar
with flat faces (center) and regular bottle (right).

for different shapes and stiffness, so that the proposed approach performance can be illustrated

under different conditions. The constant λ to compute ∆di and the distance ζ to compute

the auxiliary points P∗ik+1
were all set to 1 mm. The manipulation experiment for each object

includes the following steps: a) obtaining the initial grasp; b) rotation of the object clockwise

until reaching the limit of the hand workspace; c) rotation of the object counterclockwise until

reaching the limit of the hand workspace; and, finally, d) release the object.

Figure 4.27 shows snapshots of the manipulation of the three objects. From left to right, the

first picture shows the user putting the object in the workspace of the hand; the second picture

shows the hand performing the initial grasp; the third picture shows the configuration of the

hand when the limit of the hand workspace was reached after rotating the object clockwise; and

the last picture shows the configuration of the hand when the limit of the hand workspace was

reached after rotating the object counterclockwise.
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Regular bottle

Bottle with multiple curvatures

Jar with flat faces

Figure 4.27: Snapshots of the manipulation of three objects with different shapes. Objects were rotated clockwise
and counterclockwise until reaching the limits of the hand workspace.
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Figure 4.28: Experimental results of the manipulation of the regular bottle. (a) Evolution of joint values (in Radians):
the commanded joints values in dashed line and the reached joint values in continuous line. (b) Evolution of the
measured forces (in Newtons) at the fingertips.

Figures 4.28 to 4.30 show the evolution of the commanded and reached values of the finger

joints, and the evolution of the measured forces at the fingertips when the regular bottle (first

row in Figure 4.27), the bottle with multiple curvatures (second row in Figure 4.27) and jar

with flat faces (third row in Figure 4.27) were manipulated, respectively. The commanded joint

values correspond to the virtual contact points Pik , i = {I,M, T} and the reached joint values

are those obtained due to the real contact with the object surface. In these figures, five regions

are remarked using vertical dashed lines and a number inside a circle: region 1 shows the

values at the initial hand configuration before grasping the object; region 2 shows the evolution

of the values while the initial grasp was being performed; region 3 shows the evolution of

the values while the object was rotated clockwise; region 4 shows the evolution of the values

while the object was rotated counterclockwise; and, finally, region 5 shows the values when

the object was released and the hand returned to the initial configuration. In each region, the

contact forces have the following behaviors. In region 1, the contact forces were zero at all

the fingertips, since there were no contact between them and the object. In region 2, when

the initial grasp was performed, the contact forces at each fingertip did not appear at the same

time because the movements of the fingers were performed sequentially using the graphical

interface to command the finger movements individually. In region 3 and region 4, during the

manipulation, the measured forces remained close to the desired value. Finally, in region 5, the

measured forces were constant until the object was released.
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Figure 4.29: Experimental results of the manipulation of the bottle with multiple curvatures. (a) Evolution of joint
values (in Radians): the commanded joints values in dashed line and the reached joint values in continuous line.
(b) Evolution of the measured forces (in Newtons) at the fingertips.
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Figure 4.30: Experimental results of the manipulation of a jar with flat faces. (a) Evolution of joint values (in
Radians): the commanded joints values in dashed line and the reached joint values in continuous line. (b) Evolution
of the measured forces (in Newtons) at the fingertips.

Figure 4.31 shows the resulting contact points on the sensor surface for the three manipulation

examples. In the first example, the resulting contact points for the three fingers are distributed in

a similar way because the relatively small and constant curvature of the object surface produces

rolling over all the sensor surfaces. In the last two examples, the contact points on the Thumb

are concentrated in a smaller region because the object surface has a larger curvature at the

contact regions.
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Figure 4.31: Contact point positions on the tactile sensor pads (in millimeters) when manipulating: (a) The regular
bottle. (b) The bottle with multiple curvatures. (c) A jar with flat faces.
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Figure 4.32: Set of objects used for the second set of experiments: plastic box (left) and shampoo bottle (right).

In a second set of experiments, the used hand is part of a dual-arm mobile manipulator and

the initial grasps of the objects (shown in Figure 4.32) were done by the robot itself. In must

be noted that one of the objects (the plastic box) is almost completely rigid. The arm moves

the hand to a position such that it envelopes the object and then, the fingers are closed until

grasping the object with contact forces close to the desired value. We have to remark that, as it

was stated before, the problem of obtaining optimized initial grasps is outside the scope of this

work. Once the object is grasped, it is lifted and then, rotated counterclockwise and clockwise

until reaching the limits of the hand workspace. The adjustable parameters were set to the same

values as in the first set of experiments.

Figure 4.33 shows snapshots of the manipulation of the two objects. Figures 4.34 and 4.35 show

the evolution of the commanded and reached values of the finger joints and the evolution of the

measured forces at the fingertips for each manipulation example. In these figures four regions

are remarked using vertical dashed lines and a number inside a circle: region 1 and region 4

show the values before and after the manipulation process; region 2 shows the values during

the counterclockwise rotation and region 3 shows the values during the clockwise rotation of

the objects. Videos showing the system performance for each case in both sets of experiments

can be found in https://bit.ly/2lLvbDY.

https://bit.ly/2lLvbDY
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Plastic box

Shampoo bottle

Figure 4.33: Snapshots of the manipulation of a plastic box and a shampoo bottle. Objects were rotated
counterclockwise and clockwise until reaching the limits of the hand workspace.
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Figure 4.34: Experimental results of the manipulation of the plastic box. (a) Evolution of the joint values (in Radians)
of the three fingers: the commanded joints values in dashed line and the reached joint values in continuous line.
(b) Evolution of the measured forces (in Newtons) at the fingertips.
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Figure 4.35: Experimental results of the manipulation of the shampoo bottle. (a) Evolution of the joint values (in
Radians) of the three fingers: the commanded joints values in dashed line and the reached joint values in continuous
line. (b) Evolution of the measured forces (in Newtons) at the fingertips.





“Success depends upon previous prepa-

ration, and without such it there is sure

to be failure.”

Confucius (551 BC - 479 BC)

5
Applications

The data generated during the manipulation can be used in several applications besides

the manipulation process itself, such as, for instance, the identification of the manipulated

object, the optimization of the forces applied on the manipulated object, and the teleoperation.

The developments done for each of these applications and experimental results are presented in

each of the following sections.

5.1 Object Recognition

Human beings use tactile feedback for retrieving object information, such as texture,

temperature and shape, as well as to assist grasping and manipulation actions with the detection

of important events, like slippage or object deformation. By monitoring these events, the human

hand can update the grasping force according to the object weight, stiffness or friction. It

has been shown that people have difficulties to perform manipulation tasks when they are

deprived of tactile feedback (Johansson and Westling 1984). Besides, several characteristics of

the grasped objects can also be recognized by touching. The shape of the object, the irregularity

of the contact surface and the temperature of the object are some of them (Drimus et al. 2011).

The object shape reconstruction using tactile information is useful in applications where it is

not possible to apply artificial vision. Even providing artificial vision, the tactile information is a

good complement to reduce uncertainty in the object model (Prats et al. 2010).

The tactile and kinematic data collected during the manipulation process are used here to
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Figure 5.1: Flow chart for object identification.
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identify points on the surface of the object in contact with the hand in order to allow the

reconstruction of the object shape. The object identification is performed using basic distance

invariants, which are measured on the reconstructed shape of the object. For this same purpose,

there are other more complex and sophisticated procedures but keeping coherence with the

approaches proposed, a simple, but effective, geometrical reasoning is proposed here for the

object recognition. Figure 5.1 shows the flow chart of the object identification procedure.

5.1.1 Local Shape Reconstruction

The local shape reconstruction uses the data collected during the object manipulation. The

contact points Cik are mapped from the reference frame W to a reference frame O associated

to the object, being the origin of O at the first contact point CW10 , where the superscript W refers

to the absolute reference frame, and the orientation of O coincident with that of W, both at the

initial blind grasp, i.e. for k = 0 as show in Figure 5.2.
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Figure 5.3: Circular regions with radius L1k and L2k , where the points belonging to the object surface are located.

The mapping of the contact points is performed using: the distance between contact points dk,

the rolled distances on the fingertip surfaces Lik (computed from consecutive measurements

of the contact points on the tactile sensor), and the object orientation γk relative to the object

orientation in the initial grasp. The mapped contact points COik , i = {1, 2}, where the superscript

O refers to the reference frame of the object, belong to two regions defined by circular paths

with radius L1k and L2k , centered on the contact points CO10 and CO20 respectively, as shown in

Figure 5.3.

In order to improve legibility, the subscript k is removed in the following expressions. The

circular paths, referenced to the object reference frame O, are described by:

C1x
2 + C1y

2 = L2
1 (5.1)

(C2x − d cos γ)2 + (C2y − d sin γ)2 = L2
2 (5.2)

Besides, the contact points C1 and C2 must satisfy

d =
√

(C2x − C1x)
2 + (C2y − C1y)

2 (5.3)

(C2y − C1y) = (C2x − C1x) tan γ (5.4)

Eq. (5.1), Eq. (5.2), Eq. (5.3) and Eq. (5.4) are solved for C1x , C2x , C1y and C2y resulting in:

C1x = C2x −
√

d2

1 + (tan γ)2
(5.5)
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C1y = C2y − tan γ

√

d2

1 + (tan γ)2
(5.6)

C2x =
−b±

√
b2 − 4ac

2a
(5.7)

C2y =
√

L2
2 − (C2x − d cos γ)2 + d sin γ (5.8)

where

a = (−2d sin γ + 2β)2 + (−2d cos γ + 2ρ)2 (5.9)

b =− 2d cos γ(−2d sin γ + 2β)2 − 2ψ(−2d cos γ + 2ρ)

+ 2d sin γ(−2d sin γ + 2β)(−2d cos γ + 2ρ) (5.10)

c =(d cos γ)2(−2d sin γ + 2β)2 + ψ2 − 2ψd sin γ(−2d sin γ + 2β)

+ (d sin γ)2(−2d sin γ + 2β)2 − L2
2(−2d sin γ + 2β)2 (5.11)

ρ =

√

d2

1 + (tan γ)2
(5.12)

β = tan γ

√

d2

1 + (tan γ)2
(5.13)

ψ = L2
2 − L2

1 − (d cos γ)2 − (d sin γ)2 + ρ2 + β2 (5.14)

Computing iteratively the points C1k and C2k for each iteration k, the object shape is

reconstructed as it is shown in Figure 5.4.

5.1.2 Object Recognition

The distance invariants are defined as the distances dij, with i 6= j and i, j ∈ {1, ..., 4}, between

each pair of the extreme points Pi belonging to the reconstructed object shape as shown in

Figure 5.5. The distance invariants are computed after the reconstructed object shape has been

obtained.
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Figure 5.4: (a) Representation of a reconstructed object shape (numbered points) applying iteratively the
identification of boundary points. (b) Reconstructed object shape.
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Figure 5.5: Example of reconstructed shape for finger f1 (red) and finger f2 (blue), and their distance invariants.
Points P1, P2, P3 and P4 are the extreme points of the reconstructed shape.

The reconstructed object shape and distance invariants are considered as a pattern (signature)

of the manipulated object, which is used for object recognition. Using previously stored models

from a database of objects, the matching of the object signature and the points of the models

is searched as follows. First, the extreme points P1 and P2 of the portion of the reconstructed

shape corresponding to finger f1 are matched against the object model being evaluated. If a

good match is found, then, extreme points P3 and P4 of the portion of the reconstructed shape

corresponding to finger f2 are matched against the points in the object model. If the signature

matches well with the object model, i.e. the four points Pi have a match with points on the

model under consideration, then, a local comparison of all the points in the reconstructed object

shape is performed against the points in the corresponding part of the model, considering a

tolerance margin in the points positions.

An example of the matching of the object pattern (signature) and the database objects models

is shown in Figure 5.6. In the first two cases, the computed signature does not match with the

model of a circumference (Figure 5.6b), nor with that of a ellipse (Figure 5.6c). Figures 5.6d

and 5.6e show a positive matching of the signature in a false case and with the correct object,
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(a) (b) (c)

(d) (e)

Figure 5.6: Example of the matching of the reconstructed object signature with different object models: (a) object
signature. (b) Matching with a circular model. (c) Matching with an elliptical model. (d) Matching with an object
model producing a false positive. (e) Positive matching with an object model.

respectively. These two positive cases are then evaluated using all the points in the recontructed

object shape to select the correct model.

5.1.3 Experimental Validation

The proposed approach has been implemented using C++ for the manipulation process with the

SDH2 hand and Matlab for the data analysis and the object identification. In order to validate

the proposed approach, different experiments were carried out. Table 5.1 shows the relevant

properties of three different objects, which were manipulated using the two coupled fingers of

the SDH2 hand.

Each object was manipulated using the manipulation strategy that optimizes the object

orientation (introduced in Chapter 4), rotating the object with two fingers. Each object was

rotated three times, first counterclockwise and then clockwise, until the contact forces tend to

exceed the friction cone limits or the fingers reach the limit of their workspace.

Figure 5.7 shows the real object contour and the reconstructed object shape. The noise in the

reconstructed shape due to the sensor noise and the computational approximations was not

significant in the matching procedure. Figure 5.8 shows snapshots of a real execution of the

manipulation and recognition process where the hand holds the object with cylindrical shape.
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Table 5.1: Objects used for the validation of the object recognition approach.

Object Shape Dimensions

r

Cylindrical r = 40

a

b

Elliptical a = 37, b = 20

r1

r2 Two curvatures r1 = 45, r2 = 20

Figure 5.7: Results of the object shape reconstruction for three objects. The right images show the object model (in
blue) and the reconstructed shape (in red).
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(a) (b) (c) (d)

Figure 5.8: Snapshots of a real execution of the manipulation of a cylinder. (a) The SDH2 hand in the initial
position. (b) Cylinder grasped before that the manipulation process starts. (c) Configuration where the fingers reach
their workspace limit in counterclockwise motion. (d) Idem in clockwise motion.

5.2 Force Optimization

Another application related with the shape identification during the manipulation of unknown

objects is the optimization of the applied forces on the manipulated object. Combining the

recognition of the local curvature of the object surface at the contacted regions with a proper

manipulation strategy it is possible to optimize the contact forces during the manipulation

process. The approach described in this section iteratively determines a sequence of hand

configurations that allows the secure object manipulation and, at the same time, obtain

information on the object shape in order to improve the contact forces during the manipulation.

5.2.1 Manipulation Strategy

Algorithm 5.1 shows the main steps of the manipulation procedure. The desired contact force Fd

and the desired object orientation γd relative to the initial object orientation γ0 are the algorithm

inputs. The manipulation begins once the object has been properly grasped with a FC grasp. The

manipulation procedure iteratively computes the target hand configurations to rotate the object

towards the desired orientation.

In order to improve the contact forces, the manipulation is divided into two stages, in the first
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Algorithm 5.1 Force optimization based on manipulation

Require: Fd, γd
procedure FORCEOPTIMIZATION

k ← 0, stop← false
while stop 6=true do

Compute Ci using Forward Kinematics
Compute dk using Eq. (5.38)
Compute Fk using Eq. (4.6)
Compute γk using Eq. (5.15)
Compute εok using Eq. (5.16)
if k ≤ m then

Compute C∗
ik+1

using Eq. (5.17) to (5.20)

else
Compute the local curvatures
Compute C∗

ik+1
using Eq. (5.22) to (5.25)

end if
Compute dk+1 using Eq. (4.9)
Compute Cik+1

Compute Qk+1 from Cik+1
using Inverse Kinematics

if a termination condition is not satisfied then
Move fi to Qk+1

k ← k + 1
else

stop←true
end if

end while
end procedure

one, the fingertip positions are computed using a path on a single virtual circumference (as it

was done in the approach described in Chapter 4), and in the second one, each fingertip follows

a specific circumference computed according to the estimated local curvature of the object at the

contact point. These two specific circumferences are computed using a circular regression over

the set of resulting contact points of the previous manipulation iterations, thus, the second stage

can start only after m iterations, being m the number of points used to properly compute the

circular regression. The local curvatures provide information about the object shape and their

use in the computation of the resulting target hand configurations improves the forces applied

on the manipulated object. Each manipulation iteration k involves the following steps:

• Computation of the current state of the grasp.

• Computation of two auxiliary points C∗1k+1
and C∗2k+1

, to be used in the computation of

the target contact points C1k+1
and C2k+1

.

• Computation of the distance dk between contact points to improve the contact force.

• Computation of the target contact points Cik+1
using C∗ik+1

and dk.

• Computation of the target hand configuration Qk+1.
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• Verification of the termination conditions.

• Movement of the fingers to the target configuration if none of the termination conditions

is activated.

The computation of the current state of the grasp implies the computation of the position of the

current contact points C1k and C2k , the magnitude of the grasping force Fk, the orientation of

the object γk, and the orientation error εok . C1k and C2k are computed using FK and the virtual

link information, as described in Chapter 3, Section 3.2. Fk is the average of the contact forces

F1k and F2k measured on each fingertip. The value of γk in the initial grasp is considered as

γ0 = 0, and it is used as reference for the object orientation. During the iterative process, γk
is computed using the information obtained from the tactile sensors and the finger kinematics.

For fingertips with circular shape, the current object orientation γk can be approximated by,

γk ≈ R

dk

n1
∑

j=1

(q1jγ0 − q1jk)−
n2
∑

j=1

(q2jγ0 − q2jk) (5.15)

In this manipulation strategy, the goal is to reduce the orientation error εok between the desired

orientation γd and the current object orientation γk, i.e.

εok = γd − γk (5.16)

During the first m iterations there is no information about the object shape, therefore the two

auxiliary points C∗1k+1
and C∗2k+1

are computed considering them as the result of a displacement

of the current contact points on the sensor pad along a virtual circular path with diameter dk,

centered at the middle point Rk between the points C1k and C2k , i.e. the auxiliary points are

given by (see Figure 5.9):

C∗1k+1x
= Rkx −

dk
2

cos(γk+1) (5.17)

C∗1k+1y
= Rky −

dk
2

sin(γk+1) (5.18)

C∗2k+1x
= Rkx +

dk
2

cos(γk+1) (5.19)

C∗2k+1y
= Rky +

dk
2

sin(γk+1) (5.20)

with

γk+1 = γk + tanh(εo)∆γ (5.21)
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Figure 5.9: Movements used to change the object orientation. C∗
1k+1

and C∗
2k+1

are computed over a circular path
with diameter dk centered at Rk.

where ∆γ > 0 is chosen, empirically, small enough to assure small movements of the object in

each iteration and the function tanh is used to limit the gain for large values of γk. Note that

the point Rk is recomputed in each iteration.

Then, after m iterations (i.e. k > m), C∗1k+1
and C∗2k+1

are computed considering them as the

result of a displacement of the current contact points on the sensor pad along circular paths

described by the circumferences Cik with center at (cikx , ciky ) and radius rcik obtained using

circular regression, as described below in Subsection 5.2.2, i.e. the initial virtual circular path

is replaced by paths described by circumferences computed using the data obtained during the

manipulation (see Figure 5.10). Therefore, C∗1k+1
and C∗2k+1

are given by,

C∗1k+1x
= c1xk − (rc1k ) cos(γk+1) (5.22)

C∗1k+1y
= c1yk − (rc1k ) sin(γk+1) (5.23)

C∗2k+1x
= c2xk + (rc2k ) cos(γk+1) (5.24)

C∗2k+1y
= c2yk + (rc2k ) sin(γk+1) (5.25)

From this point on, i.e. after computing the auxiliary points C∗1k+1
and C∗2k+1

, the algorithm

follows the same steps as those of the general algorithm for manipulation strategies based on

the gradient method presented in Chapter 4, Section 4.4.
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Figure 5.10: Movements used to change the object orientation improving the contact force. C∗
1k+1

and C∗
2k+1

are
computed over the circular paths generated by the circular regressions using the previous contact points.

5.2.2 Computation of the Local Curvature of the Object

The local curvature of the object is determined on-line applying a circular regression over a set of

contact points already obtained during the manipulation. The contact points have to be mapped

from the reference frame W to a reference frame associated to the object O, being the origin of

O at the first contact point CW1 and its orientation coincident with that of W, both at the initial

blind grasp. This mapping is done with the same procedure explained in Subsection 5.1.1 for

the reconstruction of the local shape of the object.

Let SCi
, i ∈ {1, 2} be the set of m mapped contact points COih , h ∈ {k−m, ..., k − 1, k}. The goal

of the circular regression is to determine the circumference Ci with center point (cix , ciy) and

radius rci , such that the sum of the squared distances from each point in SCi
to Ci is minimized,

i.e. the points must be as close as possible to Ci (Chernov 2010). The assumption of circular

shapes is based on the fact that “most objects in the world are made up of circular arcs and

straight segments” (Perkins 1978). Note that a straight segment can be seen as a circular arc

with large enough radius. The obtained Ci are mapped back to the absolute reference frame

W by locating the center point (cix , ciy) at a distance rci from the contact point Cik along the

normal direction to the fingertip at Cik , as shown in Figure 5.10. Then, CWi is used to compute

the auxiliary points C∗ik+1
as described in the manipulation strategy in Eq. (5.22) to Eq. (5.25)

in Subsection 5.2.1.
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(a) (b) (c) (d)

Figure 5.11: Set of objects used in the experimentation of the force optimization approach. (a) Object 1: elliptical
shape. (b) Object 2: two-curvature shape. (c) Object 3: USB pendrive. (d) Object 4: industrial gear.

5.2.3 Experimental Validation

The Schunk Dexterous Hand (SDH2) was used for the experimental validation. A detailed

description of the hand kinematics was presented in Chapter 3. In each of the following

illustrative examples an object was brought close to the hand and the hand closed the fingers to

perform a blind grasp. The desired contact force was set to Fd = 4 N. The friction coefficient was

assumed to be µ = 0.4, which is lower than the real physical value considering that the fingertips

are made of rubber. The constant λ to adjust the distance between the contact points according

to Eq. (4.47) was set to λ = 0.25 mm. The constant ∆γ to change the object orientation was

set to ∆γ = 0.25°. The number of points to compute the local curvatures was set to m = 30.

The object was rotated first to a desired orientation γd = 5° and then, to γd = −5°. In order to

illustrate the effect of using the local curvatures in the computation of the hand configurations,

after these movements the object was rotated without using the local curvatures to γd = 5°

and then, to γd = 0°. In this is way the resulting contact forces in both cases can be directly

compared. Figure 5.11 shows the set of objects used in the experimentation.

Figure 5.12 shows the results of the manipulation of Object 1. Figure 5.12a to 5.12c show

snapshots of the object in the initial grasp, rotated to 5° and rotated to -5°, respectively.

Figure 5.12d shows the contact points CWi . Figure 5.12e shows the contact points COi and

the last computed circumferences Ci. Figure 5.12f shows the evolution of the object orientation

γk, and Figure 5.12g the contact force Fk, with and without the use of the local curvatures.
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Figure 5.12: Experimental results of the manipulation of Object 1: (a) Initial grasp. (b) Object rotated to 5°.
(c) Object rotated to -5°. (d) Resulting contact points CW

i with zoomed interest regions. (e) Contact points Ci

and circumferences Ci computed in the last circular regression, with zoomed interest regions. (f) Evolution of the
orientation γk (in degrees). (g) Evolution of the contact force Fk (in Newtons), the horizontal dashed line indicates
Fd and the vertical dashed line the iteration in which the manipulation stops using the local curvatures.
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Figure 5.13: Experimental results of the manipulation of Object 2.

Figures 5.13 to 5.15 show the results of equivalent experiments using the other three objects.

Each case shows: on the left, a snapshot of the initial grasp, and, on the right, a chart with the

evolution of the contact force Fk (in Newtons), the horizontal dashed line indicates the desired

contact force Fd and the vertical dashed line the iteration in which the manipulation stops using

the local curvatures.

Table 5.2 summarizes, for each object manipulation, the average contact force Fk, the

corresponding force variance σ2, the number of executed iterations, and the average time

per iteration, with and without using the computed local curvatures. The improvement of the

resulting contact force is indicated by its variance σ2, when the local curvature is used in the

computation of the target hand configurations the contact force has a lower variance. A video

of the experimental executions can be found in http://goo.gl/Wz7UH3.

Table 5.2: Experimental results of the force optimization.

Object 1 Object 2 Object 3 Object 4

with without with without with without with without

Fk 3.7284 3.9288 4.0072 4.2874 3.3971 3.7385 3.6060 3.9790

σ2 0.0321 0.1056 0.0826 0.8161 0.1207 0.5450 0.0953 0.3222

Number of iterations 308 306 223 210 272 259 386 335

Time per iteration 69.41 73.48 81.78 76.06 67.96 69.17 63.67 69.97

http://goo.gl/Wz7UH3


96 Applications

0 100 200 300 400 500

Iteration

0

1

2

3

4

5

6

7

8

9

10

k = 272

t = 18484 ms

Fk

with curvature without curvature
identification identification

Figure 5.14: Experimental results of the manipulation of Object 3.
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Figure 5.15: Experimental results of the manipulation of Object 4.
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5.3 Telemanipulation without haptic feedback

Teleoperation of robots is a challenging subject in applications in which an operator

takes decisions and the robots perform actions following the operator commands. Some

scenarios where the teleoperation is relevant are: handling hazardous material, telesurgery,

underwater vehicles, space robots, mobile robots, among others (Hokayem and Spong 2006;

Basañez and Suárez 2009; Hvilshøj et al. 2012). Object dexterous manipulation is a problem

that can be included in these fields. The problem addressed in this work is the remote dexterous

manipulation of an unknown object. The proposed approach uses a shared telemanipulation

schema in which the operator provides high-level commands to the robotic hand to change

the orientation of the grasped object, and the robotic system uses the tactile and kinematics

information to generate proper set-points for the low-level control of the finger joints (which

may be a commercial close controller, as it is our case), besides, the robotic system controls

locally the forces and movements in order to avoid object falls.

It must be remarked that the geometric model of the object is unknown and that, during the

manipulation, the rotation limits are given by the friction constraints (supervised during the

manipulation to avoid object falls) and by the kinematic constraints of the fingers (joint limits).

The proposed approach is intended to perform rotations of objects in a plane, like, for instance,

to match the orientation of two pieces to do an assembly or to inspect an object. This type of

rotation, jointly with planar sliding, is a quite frequent manipulation action in every-day and

industrial tasks (Toh et al. 2012).

5.3.1 Manipulation State Machine

The behavior of the telemanipulation process is described by the state machine shown in

Figure 5.16, which includes the following states:

Sinit: The hand is in the initial configuration, ready to perform a grasp.

Sclose: The fingers are being closed until reaching a desired grasp force.

Sopen: The fingers are being opened to release the grasped object.

Sgrasp: The object is grasped and the hand is waiting for a command.
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SturnC: The next configuration for a clockwise rotation of the grasped object is computed.

SturnCC: The next configuration for a counterclockwise rotation of the grasped object is

computed.

Smove: The hand executes the next configuration, rotating the object.

The state transitions are determined by:

Keyboard signals Kc, Ko, Ktc and Ktcc: These are four signals generated by the operator using

a standard keyboard, each signal is simply generated by pressing a predetermined key.

The signals command the four possible actions during the teleoperation: close the fingers

(Kc), open the fingers (Ko), rotate clockwise the object(Ktc) and rotate counterclockwise

the object(Ktcc).

Force signal SF : It is a binary signal that is activated when Fk > Fd, where Fk is the grasp

force in the k-th step and Fd is the desired grasping force. This condition is reached when

the hand has been closed and the object is in contact with the sensor pads.

Friction signal SG: It is a binary signal that is activated when the friction constraints allow the

grasp to firmly hold the object. The binary complement of SG is represented as SG.

The state machine for the teleoperation starts in the state Sinit, where the hand is waiting for the

command Kc to be introduced by the operator in order to close the fingers. When the command

Kc is introduced, the system evolves to the state Sclose. The system remains in the state Sclose

until the measured force on the sensor pads is greater than a desired grasp force, and the object

has been actually grasped. Once the grasp is done and the proper force is detected, the system

evolves to state Sgrasp. In the state Sgrasp the system is waiting for the commandsKtc, Ktcc or Ko,

in order to do a clockwise rotation, a counterclockwise rotation or to open the fingers to release

the object, respectively. The finger movements to rotate the object are computed in the states

SturnC and SturnCC depending on the direction of rotation indicated by the operator. In these

states an autonomous dexterous manipulation algorithm (introduced later in Section 5.3.2) is

used to compute the next finger positions (but no movement is executed yet). If reachable

finger positions are found and the friction constraints are satisfied, then, the system evolves to

the state Smove, where the fingers are moved towards their new positions, and, once they are

reached, the system comes back to Sgrasp. If reachable finger positions are not found or they

do not satisfy the friction constraints, then, the system comes back to Sgrasp without passing
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Figure 5.16: State machine of the teleoperation system.

through Smove, i.e. without executing any movement. Note that the time-delay that may exist

in the communication channel between the operator and the hand controller does not affect the

robustness of the manipulation, which is locally assured by the system. When new commands

arrive while an action is being executed, i.e. many commands are sent to the hand before the

end of executing a previous command, these commands are stored in a stack to be executed

once the executions of the movements in progress are finished.

5.3.2 Manipulation Strategy

The manipulation strategy used in this application is the one introduced in Chapter 4, Section 4.3

for the optimization of the object orientation using heuristic methods. This strategy is briefly

summarized here remarking the steps performed in each state of the manipulation state

machine. The strategy determines a sequence of finger movements to perform the desired

rotation of the object, while trying to keep the grasping force Fk as close as possible to the

desired contact force Fd. The force Fk applied to the object is controlled by adjusting the distance

dk between the contact points C1k and C2k .
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The object orientation γ is computed using only proprioceptive information. The object

orientation resulting from the initial grasp is considered as the reference orientation, i.e. γ0 = 0.

The current state of the grasp is determined by the grasping force Fk, the position of the contact

points C1k and C2k , the distance between contact points dk and the object orientation γk, all of

them are computed in state Sgrasp.

The distance between contact points is adjusted by adding a factor δd, in order to control the

force applied on the object. The expected positions of the contact points in the next step are

computed considering the hypothesis that the fingers are moved over a circular path whose

diameter is given by the distance dk+1. This is actually a general approximation, since the

manipulated object is unknown. The target contact points C1k+1
and C2k+1

, are computed as,

C1xk+1
= Rxk

− dk+1

2
cos(γk +∆φ) (5.26)

C1yk+1
= Ryk −

dk+1

2
sin(γk +∆φ) (5.27)

C2xk+1
= Rxk

+
dk+1

2
cos(γk +∆φ) (5.28)

C2yk+1
= Ryk +

dk+1

2
sin(γk +∆φ) (5.29)

where ∆φ is chosen positive to turn the object clockwise or negative to turn the object

counterclockwise. ∆φ is chosen small enough to assure small movements of the object in each

manipulation step. The point Rk is the middle point of the segment between the two contact

points C1k and C2k . The expected contact points C1k+1
and C2k+1

are computed in states SturnC

and SturnCC depending on the command introduced by the operator to rotate the object clockwise

or counterclockwise, respectively.

In order to avoid sliding, each force applied on the object must lie inside the friction cone

centered at the direction normal to the sensor surface at the contact point. When this condition

is satisfied, the binary signal SG is activated allowing a transition in the manipulation state

machine to the state Smove, where the finger motions are executed. When SG is not activated

(i.e. SG is activated) the state changes to Sgrasp and the system waits for new commands.
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Figure 5.17: Set of telemanipulated objects.

5.3.3 Experimental Validation

The described approach has been implemented using C++ for unknown object telemanipulation

with the SDH2 hand. For the experiments, the hand was fixed on a base over a table, but it could

be assembled in a robotic arm as well, this is not of relevance for the proposed approach, since

the teleoperation of the robotic arm is out of the scope of this approach. The absolute position of

the object in the space could be controlled by the robotic arm, and therefore, only the orientation

will be controlled by the fingers of the hand. In the experiments, an unknown object is grasped

and its orientation is changed by rotating it with the fingers. The operator introduces commands

in a very simple and intuitive way using a keyboard to indicate the desired action, i.e. there are

commands to close and open the fingers, and to turn the object clockwise or counterclockwise

once it has been grasped.

Figure 5.17 shows the set of objects used in the examples below. When an object is located

between the two opposed fingers of the SDH2, the operator generates, clicking the proper

key in the keyboard, the command to close the fingers until the measured force reaches the

desired value Fd = 2 N. Note that the initial contact points are unknown, i.e. the initial

grasp configuration changes at each execution of the experiment. After this, the operator

can manipulate the object, rotating it clockwise or counterclockwise by means of simple

teleoperation commands.

The material of the sensor pads is rubber and the material of the objects is wood, cardboard

or plastic, thus, we consider a worst case friction coefficient µ = 0.4, which is lower than the

friction coefficient between rubber and wood µ = 0.7, rubber and cardboard µ = 0.5, and rubber

and plastic µ = 0.6 (Kutz 2005). The constant λ to adjust the distance dk was set to 1 mm. The

orientation variation in each manipulation step was set to ∆φ = 0.25°.
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Figure 5.18: (a) Initial grasp configuration. (b) Grasp configuration when the limit of rotation is reached in
counterclockwise direction. (c) Grasp configuration when the limit of rotation is reached in clockwise direction.
(d) Evolution of the object orientation for each step during the telemanipulation.
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Figure 5.19: (a) Initial grasp configuration. (b) Grasp configuration when the limit of rotation is reached in
counterclockwise direction. (c) Grasp configuration when the limit of rotation is reached in clockwise direction.
(d) Evolution of the object orientation for each step during the telemanipulation.

In the examples, each object was grasped and rotated as much as possible in both directions.

Figures 5.18 to 5.23 show, for each example, the initial configuration of the grasped object,

the configuration when the limits of rotation are reached in counterclockwise and clockwise

directions, and a graphical representation of the evolution of the object orientation for each step

during the telemanipulation process.

These examples have shown the evolution of the object rotation per step, Figure 5.24 shows an

example detailing also the involved variables as a function of time. The commands introduced

by the operator to rotate the object in each step are shown in Figure 5.24a and in Figure 5.24b

they are shown as a function of time. Figure 5.24c and Figure 5.24d show the variation of the

joints for each step and over time during the manipulation, respectively, and Figure 5.24e and

Figure 5.24f do so for the object orientation. The time elapsed between the reception of two
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Figure 5.20: (a) Initial grasp configuration. (b) Grasp configuration when the limit of rotation is reached in
counterclockwise direction. (c) Grasp configuration when the limit of rotation is reached in clockwise direction.
(d) Evolution of the object orientation for each step during the telemanipulation.
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Figure 5.21: (a) Initial grasp configuration. (b) Grasp configuration when the limit of rotation is reached in
counterclockwise direction. (c) Grasp configuration when the limit of rotation is reached in clockwise direction.
(d) Evolution of the object orientation for each step during the telemanipulation.

commands in the remote system is shown in Figure 5.24g, it includes the system delays and

the operator response time. A snapshot when the limit of rotation was reached in clockwise

direction is shown in Figure 5.24h. This experiment lasted for 270 steps with a duration of

306.1 s. Note that the clockwise object rotation reached a maximum value -14.88° in the step

175 and remains there until step 186, even when the operator is still sending rotation commands

in that sense. The reason for this is that the grasp is on the limit of the friction constraints and

therefore, the system did not go further in order to assure the grasp robustness and avoid the

object fall. Between steps 49 and 71 and between steps 234 and 253 the operator introduced

commands to rotate the object alternately in both senses, and the system responds correctly.

In order to show that the delays in the network do not affect the robustness of the manipulation

we include another example in which high and random time delays were included in the
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Figure 5.22: (a) Initial grasp configuration. (b) Grasp configuration when the limit of rotation is reached in
counterclockwise direction. (c) Grasp configuration when the limit of rotation is reached in clockwise direction.
(d) Evolution of the object orientation for each step during the telemanipulation.
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Figure 5.23: (a) Initial grasp configuration. (b) Grasp configuration when the limit of rotation is reached in
counterclockwise direction. (c) Grasp configuration when the limit of rotation is reached in clockwise direction.
(d) Evolution of the object orientation for each step during the telemanipulation.

communication channel between the local station with the input interface and the remote station

with the robotic hand. The delays were randomly generated between 0 and 1.5 s, in both

senses of the communication. In this example the aim of the telemanipulation was to rotate

the object to -5° with respect to the initial orientation at the grasping time, and the feedback

received by the operator in the local station is only the object orientation, no visual feedback was

allowed in this case. We asked an untrained person without knowledge of the system response

to execute the task. The commands introduced by the operator are shown in Figure 5.25a, per

step, and in Figure 5.25b, over time. The task was accomplished after 57 steps with a duration of

114.5 s. The joint values in each step and over time are shown in Figure 5.25c and Figure 5.25d,

respectively, and the orientation of the object, per step and over time, are shown in Figure 5.25e

and in Figure 5.25f. Note that despite the small variations of the object orientation around -5°,
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the object manipulation is always robust and stable. The random delays introduced per step in

both senses of the communication channel are shown in Figure 5.25g and Figure 5.25h. A video

of the execution of these examples is available at https://goo.gl/3QECq1.
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Figure 5.24: (a) Introduced commands per step. (b) Introduced commands over time. (c) Evolution of the joints in
each step. (d) Evolution of the joints over time. (e) Evolution of the object orientation in each step. (f) Evolution
of the object orientation over time. (g) Time elapsed between the reception of two commands in the remote station.
(h) Limit of rotation reached in clockwise direction (steps 175 to 186).

https://goo.gl/3QECq1
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Figure 5.25: (a) Introduced commands per step. (b) Introduced commands over time. (c) Evolution of the joints in
each step. (d) Evolution of the joints over time. (e) Evolution of the object orientation in each step. (f) Evolution of
the object orientation over time. (g) Time delays introduced per step. (h) Time delays introduced over time.

5.4 Telemanipulation with Haptic Feedback

Improving teleoperation by adding haptic feedback is another proposed application related with

the manipulation of unknown objects. The autonomy level of the robotic system in teleoperation

has been addressed following different approaches. On the one side, the operator has the

full control of the movements and actions of the robot (a fully teleoperated system), and,
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on the other side, the control can also be shared between the remote operator and the local

robot (Mindell 1993).

Performing dexterous telemanipulation by commanding each joint of a robotic hand as a

function of each joint of the human operator hand is a complex problem mainly due three

factors:

• The kinematics of the robotic and the human hands are not fully coincident, which easily

generates differences in the fingertip positions during the manipulation that may produce

the loss of contacts on the object and therefore, the object might fall.

• Even when there exist several proposals, up to our knowledge, there is not any practical

device that allows haptic feedback with enough precision at the level of finger joints, thus

it is difficult for the operator to feel (in real practical situations) the precise state of the

real grasping forces and therefore, how critical the grasp is at any time.

• Time-delays are ubiquitous in telemanipulation scenarios and they affect the stability of

the overall closed-loop system.

In this scenario, telecommand the remote robotic hand using high-level commands to

autonomously perform the object manipulation within some security margins and providing

the human operator with a sense of the general state of the manipulation via haptic feedback is

a useful idea. A detailed discussion of the general problems related to teleoperation as well as a

description of typical applications was presented in Basañez and Suárez (2009).

Different input interfaces has been used to perform teleoperation, like, in the case of the arms,

trackers (Rosell et al. 2014) or wiimotes (Ciobanu et al. 2013), and in the case of the hands,

gloves (Rosell et al. 2014; Kukliński et al. 2014), multi touch interfaces (Toh et al. 2012), or

video based systems (Ciobanu et al. 2013). One of the main problems in these approaches is

the determination of an adequate mapping of the human pose and movements to those of the

robot (Meattini et al. 2020).

5.4.1 Approach Overview

The idea is that the human operator uses a haptic device to command the movements that

the robotic hand must perform in order to do the in-hand manipulation of an unknown object.
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Figure 5.26: Diagram with the main elements of the proposed approach for telemanipulation with haptic feedback.

Figure 5.26 shows a diagram representing the main elements of the proposed system.

In the local station there are three main elements: a Haptic Device that, manipulated by the

human operator, generates a vector ql of joint values qli, which is properly transformed into

a vector with the desired configuration γl of the manipulated object by a Forward Kinematics

module. γ l is the information transmitted to the remote station through the communication

channel. The third relevant block in the local station is the Local Controller, which is in charge of

generating the vector τ l of torques τli that the haptic device produces as a response to the human

movements. The inputs to the Local Controller are two variables generated in the local station,

ql and γl, plus another two variables received from the remote station, the object position

γr(t − T r(t)) and the special binary signal B(t − T r(t)) (explained below), with T r being the

delay in the communication channel.

In the remote station there are four main elements, three of them equivalent, in some way,

to those in the local station, and a special fourth element that plays a key role in the proposed

approach. The first three elements are: a Robotic Hand whose configuration Q is the vector of its

joint values qri , a Forward Kinematics module that uses Q to compute the current configuration
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of the manipulated object γr, and a Remote Controller, which is in charge of generating the

vector of torques τ r that commands the robotic hand as a function of the error between its

current configuration Q and a set-point qr
d . This set-point qr

d is generated by the special fourth

element, called Checker, as a function of the error between γr and the commanded variable

γ l(t− T l(t)) received from the local station with a delay T l. Basically, the Checker computes qrd
using a manipulation strategy that tends to displace γr towards γl(t− T l(t)) with a reasonable

small displacement that ensures the physical robustness of the grasp during the manipulation.

Besides, since the object is unknown, it is not possible to predict the variation of the contact

forces after each movement of the fingers and, for this reason, the potential increment or

decrement of the grasping forces is also considered in the computation of qr
d , trying to keep

the forces stable around a predefined value. The Checker is also in charge of detecting when

a finger configuration is close to a joint limit as well as of predicting when a manipulation

movement (computed according to the used manipulation strategy) may produce a grasping

failure that makes the object to flip away or to fall down because a grasping force reaches the

limit of the friction cone. In order to communicate these situations to the local station, the

Checker generates the binary signal B that indicates whether the expected movement of the

hand, computed to follow the command γl(t − T l(t)) received from the local station, is valid

(safe and reachable) or not.

The elements mentioned above work within control loops with different frequencies, which must

be taken into account for the correct operation of the whole system. The Remote Controller

controls the hand actuators with a sampling period ∆r1, but it receives the set-points from

the Checker with a different period ∆r2 and the Checker receives the information from the

communication channel with a different sampling time ∆r3.

In the next section, this approach is particularized for a specific type of manipulation and details

of the particular implementation are also provided.

5.4.2 Particular Implementation

The proposed approach has been implemented with the particular goal of remotely commanding

the rotation of an unknown grasped object around a predetermined axis. As stated in

previous chapters, this type of manipulation is frequently done by human beings in daily

tasks, for instance, to inspect an object. The main features and assumptions of this particular

implementation are:



110 Applications

1) The robotic hand uses only two fingers to grasp and rotate the object, as when the human

being uses the thumb and index finger to hold and rotate an object.

2) The hand fingers are equipped with tactile sensors that allow the determination of the

contact points on the fingertips and an estimation of the grasping forces.

3) One DOF of a haptic device in the local station is used to command the rotation of the

grasped object in the remote station.

4) The hand movements executed to grasp the object are outside the scope of this work. The

telemanipulation is done starting with the object already hold by the two used fingers.

5) There is no knowledge about the shape or any other physical property of the manipulated

object, like the center of mass. Nevertheless, it is assumed that the friction coefficient

between the object and the fingertips is above an estimated value. This is a realistic

assumption because, even when the object is unknown, the material of the fingertip is

known and usually it has a large friction coefficient (like rubber or a similar materials).

The implementation of the proposed approach for the desired type of manipulation as well as

the setup used in the real experimentation is described below.

Experimental setup

For the validation of the proposed approach, transatlantic experiments have been carried on

between the local station located at the Robotics lab of the CUCEI-UDG in Guadalajara, Mexico,

and the remote station located at the Robotics lab of the IOC-UPC in Barcelona, Spain. The data

transmission between the local and remote stations is done through UDP ports, and the main

hardware is the following:

• A PHANTOM Premium 1.5 High Force® is used as the haptic device. It provides three

DOF with positional sensing and force feedback. This device is commercially available

from 3D SYSTEMS®. The communication at the local station between Simulink® and the

haptic is done using the homemade library PhanTorque_3Dof, which is publicly available

at http://shorturl.at/kAE17.

• The Schunk Dexterous Hand (SDH2), introduced in Chapter 3 Section 3.2, is used as

robotic hand, which is suitable for both, service robotics and industrial applications. In

http://shorturl.at/kAE17
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(a) (b)

Figure 5.27: (a) Testbed at local station located in Guadalajara, Mexico. (b) Testbed at the remote station located in
Barcelona, Spain, with the SDH2 hand using two fingers opposite to each other to grasp an object.

this work, the fingertips of the two coupled fingers are used to grasp and manipulate an

unknown object, performing a tip-pinch grasp (Feix et al. 2016).

Local station

As mentioned is Subsection 5.4.1 and illustrated in Figure 5.26, the local station has three

elements: a haptic device, a Forward Kinematics module and the Local Controller. One DOF

q1 of the haptic device is used to command the object rotation γl. For this reason the Forward

Kinematics module is straightforward, and only a scaling factor is introduced to take advantage

of the haptic device workspace, establishing the relation between these variables as γl = 0.4 ql.

Regarding the Local Controller, it is implemented according to the following control law

(Aldana et al. 2018),

τ l = −kl
(

γl − θl
)

(5.30)

where the gain kl is any positive number and θl stands for the generalized coordinate of the

controller, that is obtained by solving the following second order ordinary-differential-equation

θ̈l = −kl(θl − γl)− dlθ̇l − pl(θl − γr(t− T r(t))) (5.31)

with dl, pl > 0 being the damping and the proportional gains.

Since the SDH2 hand does not allow the user to set a desired torque, the Remote Controller is

implemented as a set-point position-based scheme that works with the proprietary SDH2 hand
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controller. For this application, it is assumed that such controller is a simple proportional plus

damping scheme with control gains dl ≈ dr and pl ≈ pr. In order for the controller to be robust

to time-delays, the control gains have to satisfy

dl >
1

2
(◦T l + ◦T r)pl (5.32)

where ◦T l and ◦T r are the bounds of the time-delays (Aldana et al. 2018).

This proposal does not require velocity measurements and, provided that sufficiently large

damping is injected, i.e. Eq. (5.32) holds, this scheme guarantees that lim
t→∞

γl(t) − γr(t) = 0

(Aldana et al. 2018; Nuño et al. 2018).

Remote station

The main element of the remote station is the Checker, which has two main duties: a) compute

the set-point qrd for the Remote Controller to move the hand fingers according to the information

received from the local station, and, b) generate the binary signal B to indicate whether the

computed set-point is not reachable or unsafe, because, respectively, the fingers would reach

joint limits or the grasping forces would be close to the limits of the friction cone and therefore,

the object could fall down or flip away.

Duty (a) is based on the manipulation strategy for the optimization of the object orientation

using gradient-based methods introduced in Chapter 4, Section 4.4, and briefly summarized

here. First, the current state of the grasp is determined by computing the current absolute

positions of the contact points Cik , i ∈ {1, 2}, and the current grasping forces Fik . Cik , i ∈ {1, 2},

are directly computed using the tactile information (to identify the contact points on the sensor

pads) and the hand forward kinematics. In the case of a two-finger grasp, the contact forces

Fik should have the same magnitude and opposite direction, but due to different sources of

uncertainties and measurement errors this may not be exactly true. In order to minimize errors,

Fik , i ∈ {1, 2}, are considered to have the right direction defined by the fingertip contact points

and a magnitude Fk equal to the average of the measured values at each fingertip.

Then, new contact points Cik+1
are computed aiming for a proper object rotation and adjustment

of Fk+1. For this matter, two auxiliary points C∗1k+1
and C∗2k+1

are computed by displacing Cik

along a circular path with diameter dk and centered at Rk (middle point between C1k and C
k
),
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Figure 5.28: Example of computation of Cik+1
using the auxiliary points C∗

ik+1
and the adjustment of the distance dk.

as shown in Figure 5.28, i.e.

C∗1k+1x
= Rkx −

dk
2

cos(φ+ sr∆γ) (5.33)

C∗1k+1y
= Rky −

dk
2

sin(φ+ sr∆γ) (5.34)

C∗2k+1x
= Rkx +

dk
2

cos(φ+ sr∆γ) (5.35)

C∗2k+1y
= Rky +

dk
2

sin(φ+ sr∆γ) (5.36)

where dk is the Euclidean distance between the contact points C1k˙∆γ is an empirical value

chosen small enough to assure small movements of the object on each manipulation step k, and

sr depends on the difference between the current object orientation γr (computed in the remote

station) and the desired orientation γ l(t− T l(t)) (received from the local station), as

sr = − tanh(γr − γl(t− T l(t))) (5.37)

Note that the direction of the displacement of C∗ik+1
with respect to Cik corresponds to the

desired sense of rotation of the object given by the sign of γr − γ l(t− T l(t)).

Any finger movement may alter the grasping force Fk, which must remain within a threshold
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around a desired value Fd, thus in each iteration Fk is adjusted by adjusting dk as

dk+1 = dk +∆dk (5.38)

with ∆dk depending on efk as

∆dk =







2λ(‖efk‖+ e2fk) if efk ≤ 0

−λefk if efk > 0
(5.39)

being λ a predefined constant, empirically obtained. As discussed in Chapter 4, the reason for

the different gain is the same than in other manipulation strategies, a potential fall of the object

is considered more critical that a potential application of large grasping forces.

The next (expected) contact points Cik+1
that intend to change the object orientation γr and

also adjust the force Fk, are computed as,

Cik+1
= Rk +

dk+1

2
δik+1

(5.40)

where δik+1
is the unitary vector from Rk to C∗ik+1

(see Fig. 5.28).

Finally, the hand configuration qr
dk+1

is obtained from the points Cik+1
using the inverse

kinematics of the fingers, i.e. qr
dk+1

= IK(C1k+1
,C2k+1

).

Duty (b) of the Checker is solved as follows. The binary signal is set as B = 0 when qrdk+1
is

reachable and safe to keep the grasp, and therefore, the manipulation movement can be safely

done, andB = 1 otherwise. Determining whether qr
dk+1

is reachable is straightforward, it simply

means that qr
dk+1

= IK(C1k+1
,C2k+1

) returns a valid hand configuration. Determining whether

qr
dk+1

produces a safe grasp is done by checking whether the expected applied force Fik+1
lies

inside the friction cone. As stated above, the grasping forces Fik+1
are aligned with the segment

defined by C1k+1
and C2k+1

, so their directions are known, and the direction n̂i normal to each

fingertip at C1k+1
is also known (the shape of the fingertip is known). Then, if the angle βi

between Fik+1
and n̂i is smaller that the angle of the friction cone, α = arctan(µ), being µ the

friction coefficient, the grasp can be considered safe, i.e. B = 0 if βi < α. Note that the actual

friction coefficient is not known, neither explicitly computed during the manipulation, thus, a

given minimum value is assumed in order to determine B. This is a reasonable assumption,

since the material of the fingertips (rubber) is known and it produces a reasonable µ for most of

the unknown manipulated objects. Algorithm 5.2 summarizes the steps done by the Checker.
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Algorithm 5.2 Steps done in the Checker.
Require: Fik , Fd, γr , γl(t − T l(t))
Ensure: Qk+1, B

procedure CHECKER

k ← 0
loop

Check for new values of γl(t − T l(t))
Compute Cik using FK
Compute Fk

Compute dk using (4.7)
Compute C∗

ik+1
using (5.33 to 5.36)

Compute dk+1 using (5.38)
Compute Cik+1

using (5.40)
Compute Qk+1 using IK(C1k+1

,C2k+1
)

if Qk+1 is reachable and safe then
Send Qk+1 to Remote Controller
B ← 0

else
B ← 1

end if
Send B to local station
k ← k + 1

end loop
end procedure

Another element of the remote station is the Forward Kinematics module, which is in charge

of computing the current orientation of the object γr from the current configurations of

the fingers Qk+1. Since the object is unknown, the object orientation cannot be fully

determined without using external sensors (like, for instance, a vision system), but, as shown

by Montaño and Suárez (2018c), it can be estimated with enough precision using the following

expression initially proposed for fingertips with circular shape,

γr ≈ R

dk





n1
∑

j=1

(q1jγ0 − q1jk)−
n2
∑

j=1

(q2jγ0 − q2jk)



 (5.41)

5.4.3 Experimental Validation

The grasped object shown in Figure 5.29 is used in the experiments described below, using the

following gains and parameters. At the local station the Local Controller gains are kl = 15,

dl = 8 and pl = 2. At the remote station the desired grasping force is set to Fd = 5 N, the

constant to adjust the distance between contact points is set to λ = 0.1, the constant ∆γ is set

to 0.25°, and the minimum friction coefficient is assumed to be µ = 0.4 (i.e. α ≈ 0.38 rad).

Figure 5.29 shows snapshots of the telemanipulation experimentation. A video showing the

system performance can be found in https://sir.upc.edu/projects/dexterous_telemanipulation/.

https://sir.upc.edu/projects/dexterous_telemanipulation/
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Figure 5.29: Snapshots of the telemanipulation experimentation from Guadalajara to Barcelona.

Figure 5.30 shows the current orientation of the object (γr) and the desired orientation (γl)

commanded by the local operator through the first joint of the haptic device. It can be observed

that the object follows the desired orientation and, when it is pushed to perform a non valid

movement, it keeps the current orientation until a valid movements is demanded, this effect can

be clearly appreciated in the intervals 12 s to 22 s, 38 s to 48 s and 65 s to 72 s. Figure 5.31

shows the torque applied to the haptic device and the behavior of the binary signal B. It can

be observed that when the non-valid movement signal is received (i.e. B = 1), an increasing

torque is applied to the haptic device emulating a wall for the local operator, this allows the

local operator to realize that the movement of the object is reaching a limit. Figure 5.32 shows

the friction cone angle α and the angles β1 and β2 that indicate whether the movement defined

by Qk+1 is safe. Angles βi are computed using the kinematic information of the target hand

configuration Qk+1 and if one of their values exceeds the friction cone, then, the movement of

the fingers is not executed and the binary signal B is set to 1 to inform of this event to the local

station. When ‖β1‖ and ‖β2‖ are smaller than ‖α‖, the binary signal B = 0 indicates to the local

station that the movement can be executed safely. Figure 5.33 shows the grasping force Fk and

the desired force Fd. The variable time-delay between the local and remote stations along the

experiment can be observed in Figure 5.34, being the bound values ◦T l ≈ ◦T r ≈ 0.65 s.

Figures 5.35 to 5.38 show the results of a second experiment. The variable time-delays are

similar to those shown in Figure 5.34 so they are not shown. Note that in this case the local

operator demands twice a non-valid movement, in the intervals 34s to 40s and 85s to 90s.
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Figure 5.30: Local orientation γl and remote object orientation γr.
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Figure 5.31: Local torque τ l and the signal B indicating valid (B = 0) and non valid (B = 1) movements.

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

ra
d

Figure 5.32: Angles β1 and β2, and the friction cone angle α.
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Figure 5.33: Grasping force Fk and desired force Fd.

0 10 20 30 40 50 60 70 80 90 100

Time [s]

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

s

Figure 5.34: Time-delay in the communication channel T l + T r.
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Figure 5.35: Local orientation γl and remote object orientation γr.
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Figure 5.36: Local torque τ l and the signal B indicating valid (B = 0) and non valid (B = 1) movements.
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Figure 5.37: Angles β1 and β2, and the friction cone angle α.
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Figure 5.38: Grasping force Fk and desired force Fd.





“To surrender to ignorance and call it

God has always been premature, and it

remains premature today.”

Isaac Asimov (1920 - 1992)

6
Conclusions and Future Research Directions

As in any research, the work presented in this thesis raises more questions than it solves.

This chapter presents the conclusions, summarizes the contributions of the thesis, discusses

the future research directions and finally lists the publications already presented as a result of

this work.

6.1 Contributions of the thesis

This thesis is focused on the manipulation of unknown objects using tactile information as

feedback. The manipulation starts from a given initial grasp and keeps the contact between

each finger and the object (i.e. finger gaiting is not considered) while the grasping forces are

kept within the desired range preventing the object from falling. Three quality indexes were

chosen to evaluate the quality of the configuration of the hand, of the grasp, and of the object

configuration related to a given task. The tactile sensors are used to detect the contact points that

provide information about the position and orientation of the object. Using this information, the

fingers are able to rotate the object until the contact forces reach the friction cone limits or the

fingers reach the mechanical limit of movement. Furthermore, the measured contact forces are

used to adjust the forces that the fingers apply on the object during the manipulation, adapting

them to the object shape. In this context, the main contributions of this work are:

• The proposal of three manipulation strategies based on heuristics, imitating the human

behavior, to improve three quality indexes related to the configuration of the hand, the
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quality of the grasp, and the configuration of the object. The manipulation is done as a

reactive procedure considering only the tactile information and the kinematic data of the

hand measured during the manipulation itself.

• The proposal of a relationship between the quality indexes and the finger joints, i.e. the

indexes are expressed as functions of the hand joint values. Using these relationships,

a simple procedure to determine on-line the hand movements to manipulate the object

following the gradient of these functions is also proposed.

• The proposal of an approach that, based on the commanded positions of the fingertips,

defines a set of virtual contact points between the fingertips and the object (without caring

about the positions of the real contact points) that allows the object manipulation using a

relatively simple geometric reasoning.

In addition to the manipulation strategies mentioned above, other original contributions of this

work are the implementation of:

• A C++ library, WEISSlib, to configure, manage and read information from the Weiss tactile

sensors.

• A C++ library, AHandlib, including a PID controller to command the Allegro hand.

• An application, based on the ROS framework, for the visualization of the robotic hand,

the forces measured by the tactile sensors and the contact forces computed from the joint

torques, while the hand interacts with the environment.

The proposed manipulation approaches were successfully tested in real experimentation using

two robotic hands with different features, the SDH2 that is a three-fingered industrial gripper,

and the Allegro hand that is a four-fingered anthropomorphic hand. In addition, the following

practical approaches were developed applying the proposed manipulation strategies and the

contact and kinematic data obtained during the manipulation process:

• An approach for the object shape reconstruction and the object recognition. The object

shape is reconstructed by geometrical reasoning about the location of the contact points

and the kinematic data of the hand. Then, distance invariants are computed using the

reconstructed object shape. The reconstructed object shape and the distance invariants
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form a signature of the object, which is compared with a database of models of the

manipulated objects.

• An approach to improve the grasping forces based on the recognition of the local curvature

of the object surface at the contacted points. The computation of the finger movements

using a model of the object closer to the real one (obtained during the manipulation)

allows the reduction of the error in the contact forces during the manipulation.

• Two dexterous telemanipulation approaches, with and without haptic feedback, robust

against variable time-delays in the communication channel. The approaches employ

tactile and kinematic information to manipulate an unknown object with the commanded

orientation given remotely by a human operator. When haptic feedback is used, the human

operator receives force feedback information regarding the object manipulation and the

feasibility of the commanded movements.

The manipulated objects in the experimental evaluation of the proposed manipulation strategies

were selected having different shapes, with small and large curvatures and smooth and irregular

boundaries. The proposed manipulation strategies can deal with any type of objects, as long as

they fit between the fingers of the hand. These strategies are independent of the hardware,

so they can be implemented for any robotic hand with tactile feedback that may be provided

by current commercial tactile sensors. It must be remarked that in the procedures proposed

to compute the hand movements only the inverse kinematic of the hand is necessary, thus,

independently of the hand complexity the only requirement to apply the strategies is to know

the hand kinematics.

To the best of the author knowledge, other works dealing with dexterous manipulation of

unknown objects do not solve problems equivalent to the ones addressed in this thesis. Another

types of manipulation tasks are performed in these works or the software implementation is

not available, therefore, there is not enough information to compare them with the approaches

proposed in this thesis. For instance, Shaw-Cortez et al. (2018) proposed a robust discrete-time

controller to manipulate unknown objects, ensuring that the object does not slip during the

manipulation. In order to define the manipulation task, they define a reference frame (task

frame) depending on the hand kinematic and the main goal of the proposed controller is to

minimize the position and orientation error of the task frame. In the experimentation they rotate

an object without using real tactile information, instead of that, they simulate the tactile sensor

signals. Another work proposed an approach based on machine learning and visual feedback. A

fixed point in the object surface is defined using a marker and the manipulation task emulates
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handwriting by controlling the movements of the fingers by tracking the fixed reference point

on the object, i.e. the reference point on the object is considered as the pen and the hand must

move it following a defined path for each letter (Morgan et al. 2019). The used robotic hand is

an underactuated hand without tactile feedback and visual markers on the fingertips are used

to obtain the fingertip locations.

This thesis also opens new research problems that require further exploration, as described

below.

6.2 Future works

As discussed in Chapter 2, in the last decade, the development of robotic hardware has had

significant advances, both in mechanical hands and tactile sensors, thus, it can be considered

that the development of new manipulation strategies is currently necessary to exploit the exiting

hardware. Even when the approaches proposed in this thesis solve some problems related to the

dexterous manipulation of unknown objects, additional work is still required in this field. The

following are some open research lines that could be treated in future work:

• The improvement of the force controller used to keep the contact force around a desired

value, like, for instance, in the case of the Allegro hand, exploring a hybrid controller that

combines position and force.

• The inclusion of finger gaiting like a possible manipulation mode, allowing to manipulate

the object with a wider range of movements.

• The extension of the proposed approaches to allow the rotation of the object around any

arbitrary axis in the space.

• The combination of the proposed manipulation strategies with planning-based or learning-

based approaches, to extend the manipulation capabilities of the robotic system.

• The inclusion in the object identification approaches of the raw data generated by the

tactile sensors during the manipulation, considering in this way more detailed information

about the manipulated object.

• The implementation of the proposed approaches considering different types of tactile

sensors.
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• The extension of the teleoperation approaches to use of more than two fingers of a force-

controlled hand.

• The integration of the dexterous object telemanipulation with the teleoperation of the

robotic arm.

6.3 Derived publications

The following published papers were derived from this thesis.

Refereed Journals

• Montaño and Suárez (2017), Robust dexterous telemanipulation following object-

orientation commands. Industrial Robot: An International Journal 44(5), 648–657.

The paper contributions were described in Chapter 5.

• Montaño and Suárez (2018c), Manipulation of Unknown Objects to Improve the Grasp

Quality Using Tactile Information. Sensors 18(5), 1412.

The paper contributions were described in Chapter 4.

• Montaño and Suárez (2019a), Dexterous Manipulation of Unknown Objects Using Virtual

Contact Points. Robotics 8(4), 86.

The paper contributions were described in Chapter 4.

International Refereed conferences

• Montaño and Suárez (2013b), Object shape reconstruction based on the object

manipulation. In 16th International Conference on Advanced Robotics (ICAR 2013),

Montevideo, Uruguay, pp. 1–6.

The paper contributions were described in Chapter 5.

• Montaño and Suárez (2014), Getting comfortable hand configurations while manipulating

an object. In 19th IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA 2014), Barcelona, Spain, pp. 1–8.

The paper contributions were described in Chapter 4.
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• Montaño and Suárez (2015), Unknown object manipulation based on tactile information.

In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Hamburg, Germany, pp. 5642–5647.

The paper contributions were described in Chapter 4.

• Montaño and Suárez (2016), Commanding the Object Orientation Using Dexterous

Manipulation. In L. Reis, A. Moreira, P. Lima, L. Montano, and V. Muñoz-Martinez

(Eds.), Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems

and Computing, Volume 418, pp. 69–79. Springer.

The paper contributions were described in Chapter 5.

• Montaño and Suárez (2018a), Improving Grasping Forces During the Manipulation of

Unknown Objects. In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Madrid, Spain, pp. 3490–3495, 2018.

The paper contributions were described in Chapter 5.

• Montaño and Suárez (2019d), Model-free in-hand manipulation based on commanded

virtual contact points. In 24th IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA 2019), Zaragoza, Spain, pp. 586–592, 2019.

The paper contributions were described in Chapter 4.

• Montaño, Suárez, Aldana, and Nuño (2020), Bilateral telemanipulation of unknown

objects using remote dexterous in-hand manipulation strategies. In 21st International

Federation of Automatic Control World Congress (IFAC-V 2020), Berlin, Germany.

The paper contributions were described in Chapter 5.

National Refereed conferences

• Montaño and Suárez (2013a), Manipulación de objetos con dos dedos usando

información táctil. In XXXIV Jornadas de Automática, Terrassa, Spain, pp. 618–625.

The paper contributions were described in Chapter 3.

• Montaño and Suárez (2018b), Manipulación de Objetos Desconocidos Analizando

Localmente su Forma para Optimizar las Fuerzas de Prensión. In XXXIX Jornadas de

Automática, Badajoz, Spain, pp. 276–282.

The paper contributions were described in Chapter 5.

• Montaño and Suárez (2019b), Herramienta para visualización gráfica de fuerzas de

contacto y de movimientos de una mano robótica con sensores táctiles. In XL Jornadas
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de Automática, Ferrol, Spain, pp. 749–755.

The paper contributions were described in Chapter 3.

• Montaño and Suárez (2019c), Manipulación Diestra de Objetos Desconocidos Usando

Puntos de Contacto Virtuales. In Jornadas Nacionales de Robótica (Spanish National

Robotics Conference)(JNR19), Alicante, Spain, pp. 221–228.

The paper contributions were described in Chapter 4.

Obtained Awards

ROBOTNIK 2013 Award for the best work in Robotics, awarded to: Andrés Montaño and

Raúl Suárez for the work “Manipulación de objetos con dos dedos usando información táctil”,

presented in the XXXIV Jornadas de Automática, 2013, Terrassa, Spain.
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Kukliński, K., K. Fischer, I. Marhenke, F. Kirstein, M. V. Aus Der Wieschen, D. Sølvason,
N. Krüger, and T. R. Savarimuthu (2014). Teleoperation for learning by demonstration:
Data glove versus object manipulation for intuitive robot control. In International Congress

on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp.
346–351.

Kutz, M. (2005). Mechanical Engineers’ Handbook. John Wiley & Sons, Inc.

Laaksonen, J., E. Nikandrova, and V. Kyrki (2012). Probabilistic sensor-based grasping. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2019–2026.

Lampe, T. and M. Riedmiller (2013). Acquiring visual servoing reaching and grasping skills
using neural reinforcement learning. In International Joint Conference on Neural Networks

(IJCNN), pp. 1–8.

León, B., A. Morales, and J. Sancho-Bru (2014). From Robot to Human Grasping Simulation.
Cognitive Systems Monographs. Springer.

León, B., C. Rubert, J. Sancho-Bru, and A. Morales (2014). Characterization of grasp quality
measures for evaluating robotic hands prehension. In IEEE International Conference on

Robotics and Automation, pp. 3688–3693.

Li, M., Y. Bekiroglu, D. Kragic, and A. Billard (2014). Learning of grasp adaptation through
experience and tactile sensing. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 3339–3346.

Li, M., H. Yin, K. Tahara, and A. Billard (2014). Learning object-level impedance control for
robust grasping and dexterous manipulation. In IEEE International Conference on Robotics

and Automation, pp. 6784–6791.

Li, Q., R. Haschke, H. Ritter, and B. Bolder (2012). Towards unknown objects manipulation.
In IFAC Proceedings Volumes, pp. 289–294. Elsevier.

Li, Q., O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter (2020). A Review of Tactile
Information: Perception and Action Through Touch. IEEE Transactions on Robotics 36(6),
1–16.

Li, Q., M. Meier, R. Haschke, H. Ritter, and B. Bolder (2013). Rotary object dexterous
manipulation in hand: a feedback-based method. International Journal of Mechatronics

and Automation 3(1), 36.



BIBLIOGRAPHY 135

Li, Z. and J. Canny (1990). Motion of two rigid bodies with rolling constraint. IEEE

Transactions on Robotics and Automation 6(1), 62–72.

Li, Z., J. Canny, and S. Sastry (1989). On motion planning for dexterous manipulation. I. The
problem formulation. In IEEE International Conference on Robotics and Automation, pp.
775–780.

Li, Z., P. Hsu, and S. Sastry (1989). Grasping and Coordinated Manipulation by a
Multifingered Robot Hand. The International Journal of Robotics Research 8(4), 33–50.

Li, Z. and S. Sastry (1988). Task-oriented optimal grasping by multifingered robot hands.
IEEE Journal on Robotics and Automation 4(1), 32–44.

Liarokapis, M. V. and A. M. Dollar (2017). Deriving dexterous, in-hand manipulation
primitives for adaptive robot hands. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 1951–1958.

Liégeois, A. (1977). Automatic Supervisory Control of the Configuration and Behavior of
Multibody Mechanisms. IEEE Transactions on Systems, Man, and Cybernetics 7(12), 868–
871.

Liu, G., J. Xu, X. Wang, and Z. Li (2004). On quality functions for grasp synthesis, fixture
planning, and coordinated manipulation. IEEE Transactions on Automation Science and

Engineering 1(2), 146–162.

Liu, H., K. C. Nguyen, V. Perdereau, J. Bimbo, J. Back, M. Godden, L. D. Seneviratne,
and K. Althoefer (2015). Finger contact sensing and the application in dexterous hand
manipulation. Autonomous Robots 39(1), 25–41.

Ma, R. R. and A. M. Dollar (2011). On dexterity and dexterous manipulation. In IEEE

International Conference on Advanced Robotics, pp. 1–7.

MacKenzie, C. L. and T. Iberall (1994). The Grasping Hand. Advances in Psychology 104, 482.

Mason, M. T. (2001). Mechanics of Robotic Manipulation. The MIT Press.

Mason, M. T. and J. K. Salisbury (1985). Robot Hands and the Mechanics of Manipulation. The
MIT Press.

Meattini, R., D. Chiaravalli, L. Biagiotti, G. Palli, and C. Melchiorri (2020). Combined
Joint-Cartesian Mapping for Simultaneous Shape and Precision Teleoperation of
Anthropomorphic Robotic Hands. In IFAC Proceedings Volumes, pp. 1–6. Elsevier.

Meier, M., M. Schopfer, R. Haschke, and H. Ritter (2011). A Probabilistic Approach to Tactile
Shape Reconstruction. IEEE Transactions on Robotics 27(3), 630–635.

Menzel, R., K. Woelfl, and F. Pfeiffer (1994). Grasping with a dexterous robot hand. In IFAC

symposium Robot Control, pp. 303–308. Elsevier.

Mindell, D. A. (1993). Telerobotics, automation, and human supervisory control [Review].
IEEE Technology and Society Magazine 12(3), 7.

Mirtich, B. and J. Canny (1994). Easily computable optimum grasps in 2-D and 3-D. In IEEE

International Conference on Robotics and Automation, pp. 739–747.

Moll, M. and M. A. Erdmann (2001). Reconstructing shape from motion using tactile sensors.
In IEEE/RSJ International Conference on Intelligent Robots and Systems., pp. 692–700.



136 BIBLIOGRAPHY

Montana, D. J. (1988). The Kinematics of Contact and Grasp. The International Journal of

Robotics Research 7(3), 17–32.

Montaño, A. and R. Suárez (2013a). Manipulación de objetos con dos dedos usando
información táctil. In XXXIV Jornadas de Automática, Terrassa, Spain, pp. 618–625.

Montaño, A. and R. Suárez (2013b). Object shape reconstruction based on the object
manipulation. In International Conference on Advanced Robotics, pp. 1–6.

Montaño, A. and R. Suárez (2014). Getting comfortable hand configurations while
manipulating an object. In IEEE International Conference on Emerging Technologies and

Factory Automation, pp. 1–8.

Montaño, A. and R. Suárez (2015). Unknown object manipulation based on tactile
information. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
5642–5647.

Montaño, A. and R. Suárez (2016). Commanding the Object Orientation Using Dexterous
Manipulation. In L. Reis, A. Moreira, P. Lima, L. Montano, and V. Muñoz-Martinez
(Eds.), Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems

and Computing, pp. 69–79. Springer.

Montaño, A. and R. Suárez (2017). Robust dexterous telemanipulation following object-
orientation commands. Industrial Robot 44(5), 648–657.

Montaño, A. and R. Suárez (2018a). Improving Grasping Forces During the Manipulation of
Unknown Objects. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3490–3495.

Montaño, A. and R. Suárez (2018b). Manipulación de Objetos Desconocidos Analizando
Localmente su Forma para Optimizar las Fuerzas de Prensión. In XXXIX Jornadas de

Automática, pp. 276–282.

Montaño, A. and R. Suárez (2018c). Manipulation of Unknown Objects to Improve the Grasp
Quality Using Tactile Information. Sensors 18(5), 1412.

Montaño, A. and R. Suárez (2019a). Dexterous Manipulation of Unknown Objects Using
Virtual Contact Points. Robotics 8(4), 86.

Montaño, A. and R. Suárez (2019b). Herramienta para visualización gráfica de fuerzas de
contacto y de movimientos de una mano robótica con sensores táctiles. In XL Jornadas de

Automática, pp. 749–755.

Montaño, A. and R. Suárez (2019c). Manipulación Diestra de Objetos Desconocidos Usando
Puntos de Contacto Virtuales. In Jornadas Nacionales de Robótica (Spanish National

Robotics Conference), pp. 221–228.

Montaño, A. and R. Suárez (2019d). Model-free in-hand manipulation based on commanded
virtual contact points. In IEEE International Conference on Emerging Technologies and

Factory Automation, pp. 586–592.

Montaño, A., R. Suárez, C. I. Aldana, and E. Nuño (2020). Bilateral telemanipulation
of unknown objects using remote dexterous in-hand manipulation strategies. In IFAC

Proceedings Volumes, pp. 1–8. Elsevier.



BIBLIOGRAPHY 137

Morgan, A. S., K. Hang, W. G. Bircher, and A. M. Dollar (2019). A Data-Driven Framework for
Learning Dexterous Manipulation of Unknown Objects. In IEEE International Conference

on Intelligent Robots and Systems, pp. 8273–8280.

Murray, R. M., Z. Li, and S. Sastry (1994). A Mathematical Introduction to Robotic

Manipulation. CRC Press LLC.

Nadon, F., A. Valencia, and P. Payeur (2018). Multi-Modal Sensing and Robotic Manipulation
of Non-Rigid Objects: A Survey. Robotics 7(4), 74.

Natale, L. and G. Cannata (2017). Tactile Sensing. In Humanoid Robotics: A Reference, pp.
1–24. Springer.

Navarro, S. E., N. Gorges, H. Worn, J. Schill, T. Asfour, and R. Dillmann (2012). Haptic object
recognition for multi-fingered robot hands. In IEEE Haptics Symposium, pp. 497–502.

Nuño, E., M. Arteaga-Pérez, and G. Espinosa-Pérez (2018). Control of bilateral teleoperators
with time delays using only position measurements. International Journal of Robust and

Nonlinear Control 28(3), 808–824.

Okada, T. (1979). Object-Handling System for Manual Industry. IEEE Transactions on

Systems, Man and Cybernetics 9(2), 79–89.

Okamura, A. M., N. Smaby, and M. R. Cutkosky (2000). An overview of dexterous
manipulation. In IEEE International Conference on Robotics and Automation, pp. 255–262.

Or, K., M. Tomura, A. Schmitz, S. Funabashi, and S. Sugano (2016a). Interpolation control
posture design for in-hand manipulation. In IEEE/SICE International Symposium on System

Integration, pp. 187–192.

Or, K., M. Tomura, A. Schmitz, S. Funabashi, and S. Sugano (2016b). Position-force
combination control with passive flexibility for versatile in-hand manipulation based on
posture interpolation. In IEEE International Conference on Intelligent Robots and Systems,
pp. 2542–2547.

Ozawa, R., S. Arimoto, S. Nakamura, and Ji-Hun Bae (2005). Control of an object with
parallel surfaces by a pair of finger robots without object sensing. IEEE Transactions on

Robotics 21(5), 965–976.

Ozawa, R., S. Arimoto, M. Yoshida, and S. Nakamura (2004). Stable grasping and relative
angle control of an object by dual finger robots without object sensing. In IEEE

International Conference on Robotics and Automation, pp. 1694–1699.

Palli, G. and S. Pirozzi (2019). A Tactile-Based Wire Manipulation System for Manufacturing
Applications. Robotics 8(2), 46.

Park, H. and D. Kim (2020). An open-source anthropomorphic robot hand system: HRI hand.
HardwareX 7, e00100.

Park, Y. C. and G. P. Starr (1992). Grasp Synthesis of Polygonal Objects Using a Three-
Fingered Robot Hand. The International Journal of Robotics Research 11(3), 163–184.

Pastor, P., M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal (2011). Skill learning and
task outcome prediction for manipulation. In IEEE International Conference on Robotics

and Automation, pp. 3828–3834.



138 BIBLIOGRAPHY

Pellerin, C. (1991). Salisbury hand. Industrial Robot 18(4), 25–26.

Perkins, W. A. (1978). A Model-Based Vision System for Industrial Parts. IEEE Transactions

on Computers c-27(2), 126–143.

Pozo-Espín, D. (2012). Identificación y posicionamiento de objetos mediante manipulación
con una mano robótica sensorizada. Master’s thesis, Universitat Politècnica de Catalunya.

Prats, M., P. J. Sanz, and Á. P. del Pobil (2010). Reliable non-prehensile door opening through
the combination of vision, tactile and force feedback. Autonomous Robots 29(2), 201–218.

Prattichizzo, D., M. Pozzi, and M. Malvezzi (2020). Dexterous Manipulation. In M. H. Ang,
O. Khatib, and B. Siciliano (Eds.), Encyclopedia of Robotics, pp. 1–8. Springer.

Prattichizzo, D. and J. C. Trinkle (2008). Grasping. In Springer Handbook of Robotics, pp.
671–700. Springer.

Quigley, M., B. Gerkey, and W. Smart (2015). Programming robots with ROS. O’Reilly Media,
Inc.

Righetti, L., M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. C. Voorhies, G. S. Sukhatme,
and S. Schaal (2014). An autonomous manipulation system based on force control and
optimization. Autonomous Robots 36(1-2), 11–30.

Roa, M. A. and R. Suárez (2009). Regrasp planning in the grasp space using independent
regions. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1823–
1829.

Roa, M. A. and R. Suárez (2014). Grasp quality measures: review and performance.
Autonomous Robots 38(1), 65–88.

Roa, M. A., R. Suárez, and J. Cornellà (2008). Medidas de calidad para la prensión de objetos.
Revista iberoamericana de Automatica e Informatica Industrial 5(1), 66–82.

Rosell, J., R. Suárez, and A. Pérez (2014). Safe teleoperation of a dual hand-arm robotic
system. In M. Armada, A. Sanfeliu, and M. Ferre (Eds.), Robot 2013: First Iberian Robotics

Conference. Advances in Intelligent Systems and Computing, pp. 615–630. Springer.

Rubert, C., B. León, and A. Morales (2014). Grasp quality metrics for robot hands
benchmarking. In IEEE-RAS International Conference on Humanoid Robots, pp. 761–766.

Sadigh, M. J. and H. Ahmadi (2009). Safe grasping with multi-link fingers based on force
sensing. In IEEE International Conference on Robotics and Biomimetics, pp. 1796–1802.

Salisbury, J. K. and J. J. Craig (1982). Articulated Hands. The International Journal of Robotics

Research 1(1), 4–17.

Salisbury, J. K. and B. Roth (1983). Kinematic and Force Analysis of Articulated Mechanical
Hands. Journal of Mechanisms, Transmissions, and Automation in Design 105, 35–41.

Saut, J.-P., A. Sahbani, S. El-Khoury, and V. Perdereau (2007). Dexterous manipulation
planning using probabilistic roadmaps in continuous grasp subspaces. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 2907–2912.

Schneider, A., J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, and W. Burgard (2009).
Object identification with tactile sensors using bag-of-features. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 243–248.



BIBLIOGRAPHY 139

Shadow Robot Company (2015). Shadow Dexterous Hand. https://
www.shadowrobot.com/products/dexterous-hand/.

Shaw-Cortez, W., D. Oetomo, C. Manzie, and P. Choong (2018). Tactile-Based Blind
Grasping: A Discrete-Time Object Manipulation Controller for Robotic Hands. IEEE

Robotics and Automation Letters 3(2), 1064–1071.

Sherwood, C. C., F. Subiaul, and T. W. Zawidzki (2008). A natural history of the human
mind: Tracing evolutionary changes in brain and cognition. Journal of Anatomy 212(4),
426–454.

Shi, J., J. Z. Woodruff, P. B. Umbanhowar, and K. M. Lynch (2017). Dynamic In-Hand Sliding
Manipulation. IEEE Transactions on Robotics 33(4), 778–795.

Shimoga, K. B. (1996). Robot grasp synthesis algorithms: A survey. The International Journal

of Robotics Research 15(3), 230–266.

Shirafuji, S. and K. Hosoda (2014). Detection and prevention of slip using sensors with
different properties embedded in elastic artificial skin on the basis of previous experience.
Robotics and Autonomous Systems 62(1), 46–52.

Song, S. K., J. B. Park, and Y. H. Choi (2012). Dual-fingered stable grasping control for an
optimal force angle. IEEE Transactions on Robotics 28(1), 256–262.

Su, Z., K. Hausman, Y. Chebotar, A. Molchanov, G. E. Loeb, G. S. Sukhatme, and
S. Schaal (2015). Force estimation and slip detection/classification for grip control using
a biomimetic tactile sensor. In IEEE-RAS International Conference on Humanoid Robots, pp.
297–303.

Suárez, R., L. Basañez, and J. Rosell (1995). Using configuration and force sensing in
assembly task planning and execution. In IEEE International Symposium on Assembly and

Task Planning, pp. 273–279.

Tahara, K., S. Arimoto, and M. Yoshida (2010). Dynamic object manipulation using a virtual
frame by a triple soft-fingered robotic hand. In IEEE International Conference on Robotics

and Automation, pp. 4322–4327.

Takahashi, T., T. Tsuboi, T. Kishida, Y. Kawanami, S. Shimizu, Masatsugu Iribe, Tetsuharu
Fukushima, and Masahiro Fujita (2008). Adaptive grasping by multi fingered hand with
tactile sensor based on robust force and position control. In IEEE International Conference

on Robotics and Automation, pp. 264–271.

Tischler, C. R., A. E. Samuel, and K. H. Hunt (1998). Dextrous robot fingers with desirable
kinematic forms. The International Journal of Robotics Research 17(9), 996–1012.

Toh, Y. P., S. Huang, J. Lin, M. Bajzek, G. Zeglin, and N. S. Pollard (2012). Dexterous
telemanipulation with a multi-touch interface. In IEEE-RAS International Conference on

Humanoid Robots, pp. 270–277.

Velasco, E., B. S. Zapata-Impata, P. Gil, and F. Torres (2020). Clasificación de objetos
usando percepción bimodal de palpación única en acciones de agarre robótico. Revista

Iberoamericana de Automática e Informática industrial 17(1), 44–55.



140 BIBLIOGRAPHY

Ward-Cherrier, B., N. Rojas, and N. F. Lepora (2017). Model-Free Precise in-Hand
Manipulation with a 3D-Printed Tactile Gripper. IEEE Robotics and Automation

Letters 2(4), 2056–2063.

Weigl, A. and M. Seitz (1994). Vision assisted disassembly using a dexterous hand-arm-
system: An example and experimental results. In IFAC Proceedings Volumes, pp. 315–320.
Elsevier.

Wöhlke, G. (1990). A programming and simulation environment for the karlsruhe dextrous
hand. Robotics and Autonomous Systems 6(3), 243–263.

Wonik Robotics (2018). Allegro Robotic Hand. http://www.simlab.co.kr/Allegro-Hand.htm.

Xu, J., T. J. Koo, and Z. Li (2007). Finger gaits planning for multifingered manipulation. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2932–2937.

Xue, Z., J. M. Zollner, and R. Dillmann (2008). Dexterous manipulation planning of objects
with surface of revolution. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 2703–2708.

Yashima, M. (2004). Manipulation Planning for Object Re-orientation based on Randomized
Techniques. In IEEE International Conference on Robotics and Automation, pp. 1245–1251.

Yoshikawa, T. (1985). Manipulability and redundancy control of robotic mechanisms. In IEEE

International Conference on Robotics and Automation, pp. 1004–1009.

Zhang, H. and N. N. Chen (2000). Control of contact via tactile sensing. IEEE Transactions on

Robotics and Automation 16(5), 482–495.

Zou, L., C. Ge, Z. Wang, E. Cretu, and X. Li (2017). Novel Tactile Sensor Technology and
Smart Tactile Sensing Systems: A Review. Sensors 17(11), 2653.


	Acknowledgements
	Agradecimientos
	Abstract
	Notation and Acronyms
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and objectives
	Thesis layout

	Related work
	Robotic hands
	Tactile sensing
	Grasp quality measures
	Contact models
	Dexterous manipulation

	Robotic Systems Used for Experimental Validation
	Tactile Sensors
	Schunk Dexterous Hand
	Allegro Hand
	Developed Software Tools

	Dexterous Manipulation of Unknown Objects
	Introduction
	Quality Indexes
	Related to the Hand Configuration
	Related to the Grasp
	Related to the Object Orientation

	Manipulation Strategies - Heuristic Methods
	General Manipulation Algorithm
	Optimizing the Hand Configuration
	Optimizing the Grasp Quality
	Optimizing the Object Orientation
	Experimental Validation

	Manipulation Strategies - Gradient-based Methods
	General Manipulation Algorithm
	Optimizing the Hand Configuration
	Optimizing the Grasp Quality
	Optimizing the Object Orientation
	Experimental Validation
	Combining Manipulation Strategies

	Three Finger Extension using Virtual Contact Points
	Proposed Manipulation Strategy
	Experimental Validation


	Applications
	Object Recognition
	Local Shape Reconstruction
	Object Recognition
	Experimental Validation

	Force Optimization
	Manipulation Strategy
	Computation of the Local Curvature of the Object
	Experimental Validation

	Telemanipulation without haptic feedback
	Manipulation State Machine
	Manipulation Strategy
	Experimental Validation

	Telemanipulation with Haptic Feedback
	Approach Overview
	Particular Implementation
	Experimental Validation


	Conclusions and Future Research Directions
	Contributions of the thesis
	Future works
	Derived publications

	Bibliography

