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Abstract Many bodies around the world make their decisions through voting sys-
tems in which voters have several options and the collective result also has several
options. Many of these voting systems are anonymous, i.e., all voters have an iden-
tical role in voting. Anonymous simple voting games, a binary vote for voters and
a binary collective decision, can be represented by an easy weighted game, i.e., by
means of a quota and an identical weight for the voters. Widely used voting systems
of this type are the majority and the unanimity decision rules.

In this article we analyze the case in which voters have two or more voting options
and the collective result of the vote has also two or more options. We prove that
anonymity implies being representable through a weighted game if and only if the
voting options for voters are binary. As a consequence of this result several significant
enumerations are obtained.
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1 Introduction

In the context of simple voting games a single alternative, such as a bill or an amend-
ment, is pitted against the status quo. In this setting, a collection of voters is said to
form a winning coalition if passage of the issue at hand is guaranteed by yes votes
from precisely those voters in the collection. Some few simple games are anonymous
and many simple games are weighted, i.e., representable by a weight for each voter
and a quota or threshold which serves to separate winning coalitions from losing
coalitions. A seminal work that studies which simple games are weighted is Taylor
and Zwicker (1992). Several works have continued the study, one of the most recent
is Freixas et al. (2017).

Trivially, each anonymous simple game is weighted and admits a representation
which assigns a weight of 1 to each voter, while the quota is a given integer number.
Most of the real voting simple games are weighted and some examples of them al-
ready appear in the seminal book Von Neumann and Morgenstern (1944) but also in
some other books, see e.g. Taylor and Zwicker (1999); Taylor and Pacelli (2008).

A class called (j, k)-simple games, Freixas and Zwicker (2003), extends the class
of simple games which is met for j = k = 2. In (j, k)-simple games, voters are
allowed to choose among a finite number of ordered alternatives, say j, expressing,
for example, the degree of support to an amendment, and the output set is formed
by several, say k, ordered aggregated decisions. An output is assigned to each com-
bination of inputs for voters in a (j, k)-simple game. An example of a (j, k)-simple
game is the case in which voters can abstain, an alternative in between voting yes
and voting no, giving rise to (3, 2)-simple games. Games with abstention have been
intensively studied, see e.g. Felsenthal and Machover (1997, 1998); Pongou et al.
(2011); Freixas et al. (2014a,b). Quite surprisingly, the class of anonymous (3, 2)-
simple games, in which all voters play an equivalent role in the voting rule, become
very large and complex Freixas and Zwicker (2009) and there exist many anonymous
(3, 2)-simple games which are not weighted. Thus, the link between to be anonymous
and to be weighted for a (j, k)-simple game is not obvious as it is in simple games,
and becomes a challenging problem since these structures arise in many contexts.

The problem of aggregating ordinal preferences on a set of ordered alternatives
into a consensus has been the subject of study for more than two centuries. These
problems have been studied from the perspectives of Social Choice, see e.g., May
(1952); Gibbard (1973); Satterthwaite (1975); Fishburn (1973); Moulin (1983); Cato
(2011); Freixas and Parker (2015) and to a lesser extent in Multiple-criteria decision-
making (MCDM) or Multiple-Criteria Decision Analysis (MCDA), see Cook (2006)
and even in Risk Analysis, see e.g., Aven (1992); Kuo and Zhu (2012). In most of
these situations the actors or decision-makers are anonymous.

To a lesser extent, anonymous and weighted structures also appear in other dis-
ciplines. In Reliability, multistate monotone systems extend binary monotone sys-
tems where components and systems are allowed to have an arbitrary (finite) num-
ber of states/levels. Multistate monotone systems are used to model, e.g., production
and transportation systems for oil and gas, and power transmission systems. Some
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multistate monotone systems are anonymous in the sense that all components play
and identical role in the system. Some multistate monotone systems are weighted
in the sense that they are representable by quotas and vectors of weights for each
component. We refer the interested reader to Aven and Jensen (1999); Rausand and
Høyland (2004); Levitin (2003); Levitin et al. (2003). In Neural Networks both multi-
anonymous and multi-threshold logic gates are considered. In multi-anonymous logic
gates all the inputs that intervene play a symmetrical role so that they are replaceable.
Multi-threshold logic gates work in exactly the same way as a single output thresh-
old gate, except that there are several outputs. Each output is delimited between two
thresholds, so that the weighted sum is compared to these values. Multi-threshold
logic gates are very versatile. We refer to Roychowdhury et al. (1994); Picton (2000).

The aim of this paper is to provide a unified formalization, useful for all the
contexts described above, from which the link between anonymity (to be anonymous)
and weightedness (to be weighted) is studied.

Boolean functions assign an aggregate binary output to any vector of binary com-
ponents. We extend these functions to (j, k)-functions, which assign an aggregate
output (among k possible values) to any vector with j possible inputs for each com-
ponent. Both sets of possible choices, for the input indices and for the aggregate
output, are assumed to be ordered from the lowest level to the highest level. The
binary case achieved for j = k = 2 reduces to the well-known Boolean functions
or simple games. Monotonic (j, k)-functions are considered in this paper. We focus
in two significant subclasses: weighted and anonymous (j, k)-functions, and the re-
lationship between them is studied. We prove that the property of anonymity for a
function of this type implies that the function is weighted if and only if j = 2. Thus,
the implication does not depend at all on the number of outputs. Models very close
to the (j, k) functions can be found in some recent studies, Courtin et al. (2016) and
Kurz et al. (2019).

As a consequence of this result several enumerations are obtained concerning
the number of: anonymous (2, k)-functions of n variables, the number of exhaustive
(2, k)-functions of n variables, and the number of pseudo-Boolean functions in a
given quotient set.

The rest of the paper is organized as follows. Section 2 formally introduces the
functions that are object of study of this paper. Section 3 introduces the most relevant
subclasses of these functions. Section 4 contains the main result of the paper which
characterizes the anonymous functions that are weighted in terms of the number of
inputs for the indices. As a consequence, several enumerations are deduced in Sec-
tion 5 for some anonymous functions and some pseudo-Boolean functions. A brief
Conclusion ends the paper in Section 6.

2 (j, k)-functions

In this section we introduce several types of what we call (j, k)-functions. We start
with some basic preliminaries.
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Let N = {1, 2, . . . , n} denote a finite set of indices.1 Let J = {0, 1, . . . , j −
1} with j ≥ 2 be the set of inputs for the indices for a given task, i.e., levels of
performance for the indices or levels of support to a given proposal. The implicit
ordering of the elements in J varies from the lowest level 0 to the greatest level
j − 1; these numbers may have a qualitative meaning. Let J n = {0, 1, . . . , j − 1}n
be the n-Cartesian product of J . Let K = {0, 1, . . . , k − 1} with k ≥ 2 be the set of
outputs for the aggregated performance of the indices. Similarly, the implicit ordering
of these numbers varies from the lowest level 0 to the greatest one k − 1.

Let x = (x1, . . . , xn) ∈ J n be a vector. The component xi ∈ J indicates the
level of performance of the index i ∈ N for a given task, or the input level of index i.

A (j, k)-function of n variables f : J n → K assigns to each vector x ∈ J n an
aggregated output f(x) ∈ K.

An index i is irrelevant for a (j, k)-function f if for any x ∈ J n it is f(x) = f(y)
for all y ∈ J n such that y` = x` for any ` 6= i.

In many contexts it is natural to add the property of monotonicity. The order
relation we consider in J is componentwise, i.e., given two vectors x,y ∈ J n we
write x ≤ y when xi ≤ yi for every index i = 1, . . . , n.

Definition 1 Monotonic (j, k)-function
Let f be a (j, k)-function.

f is monotonic ⇐⇒ For all x,y ∈ J n, x ≤ y ⇒ f(x) ≤ f(y)

Hereafter the monotonicity of the (j, k)-functions considered in this paper will be
assumed and will not be necessarily stated.

Note that if j = 2 a (2, k)-function f is a particular case of a pseudo-Boolean
function, see e.g. Hammer et al. (1988); Crama and Hammer (2011), which associates
with every n-tuple x ∈ {0, 1}n a real number f(x).

3 Two significant subclasses of monotonic (j, k)-functions

3.1 Anonymous (j, k)-functions

Definition 2 Anonymous (j, k)-function
Let Π be the set of permutations of N and let f be a monotonic (j, k)-function.

f is anonymous ⇐⇒ f(π(x)) = f(x) for all π ∈ Π and for all x ∈ J n.

Let Aj,k(n) be the number of anonymous (j, k)-functions of n variables. We
collect some known results about these numbers in the following proposition. The

1 The term index covers a broad spectrum of possibilities from physical components to persons or
entities.
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first one is a result of an easy check and the other two were proved in Freixas and
Zwicker (2009).

Proposition 1

a. A2,2(n) = n+ 2
b. A3,2(n) = 2n+1

c. Aj,2(n) = An+1,2(j − 1)

As a consequence of the main result in this paper, in Section 4, we deduce a closed
formula for the number A2,k(n) of anonymous (2, k)-functions of n variables.

3.2 Weighted (j, k)-functions

Definition 3 Weighted (j, k)-function
f is a weighted function if for every i ∈ N there exist a sequence of integer2 weights:

wi(j − 1) ≥ · · · ≥ wi(1) ≥ wi(0) = 0 (1)

and there exists a sequence of integer quotas qk−1 ≥ qk−2 ≥ · · · ≥ q1 ≥ 0 such that
for each x ∈ J n:

f(x) = b ∈ K if and only if qb+1 > w(x) ≥ qb, where w(x) :=
∑
i∈N

wi(xi)

(2)
where, for convenience, it is assumed that:

a. q0 = 0 and qk = 1 +
∑

i∈N wi(j − 1), and
b. qk is strictly greater than w(x) for any x.

As wi(0) = 0 for all i ∈ N in Definition 3, there is no need to consider this
weight anymore.

The set of weights w = {wi(`) | 1 ≤ i ≤ n, 1 ≤ ` ≤ j − 1} together with
the set of quotas q = {qb | 1 ≤ b ≤ k − 1} constitute the representation [w, q] for
the weighted (j, k)-function f . Two different representations in weights and quotas
are tantamount if they represent the same weighted (j, k)-function f . The number of
representations of a given weighted (j, k)-function f is unbounded. Indeed, if [w, q]
is a representation for f , then for any t > 0, [t · w, t · q] is also a representation for
f , where t · w = {t · wi(`) | wi(`) ∈ w} and t · q = {t · qb | qb ∈ q}, since the
inequalities in Definition 3 are preserved. Thus, all these representations obtained for
t > 0 are tantamount.

The following properties of weighted (j, k)-functions can be easily stated.

2 An apparent more general definition would allow weights and quotas to be real numbers. However, it
could be proved that any such representation with real weights and quotas has an equivalent representation
in non-negative integer weights and quotas, so there is no reason here to add unnecessary complexity by
allowing weights and quotas to be real numbers.
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Proposition 2
Let f be a weighted (j, k)-function with representation [w, q], and x,y ∈ J n. Then,

i) x ≤ y =⇒ w(x) ≤ w(y)
ii) w(x) ≤ w(y) =⇒ f(x) ≤ f(y),
iii) f(x) > f(y) =⇒ w(x) > w(y).

Proof Part i) is an immediate consequence of (1). To prove part ii) let x,y ∈ J n

be such that w(x) ≤ w(y) and set f(x) = b. From (2) it is f(x) = b if and only if
qb+1 > w(x) ≥ qb. Now, if w(y) < qb+1 it is f(y) = f(x), and if w(y) ≥ qb+1

then f(y) ≥ b + 1 > f(x). Thus, in any case it is f(x) ≤ f(y). Part iii) comes
immediately from ii).

An immediate consequence of this proposition is the following:

Corollary 1 Every weighted (j, k)-function is monotonic.

4 Relationship between anonymous and weighted (j, k)-functions

This section contains two results. The first establishes that any anonymous and weighted
(j, k)-function admits a representation in which the vectors of weights associated to
the indices can be the same. The second constitutes the main result of the paper and
characterizes which anonymous (j, k)-functions are weighted in terms of the number
of inputs.

Proposition 3 If f is an anonymous weighted (j, k)-function then there exist a rep-
resentation of f that assigns, for each input level ` ∈ J , the same weight w.(`) to all
indices i ∈ N .

Proof Let f be a weighted (j, k)-function with a representation [w, q]. We will start
by unifying the weights corresponding to the level 1. Setw′(1) = 1

n

∑
i∈N wi(1) and

define a new set of weights w′ in the following way: for any level ` ∈ {1, . . . , j − 1}
and any index i ∈ N ,

w′i(`) =

{
w′(1), if ` = 1
wi(`), if ` 6= 1

It is clear that w′(j − 1) ≥ · · · ≥ w′(1) ≥ 0. We will prove that [w′, q] is also
a representation of f . Let x = (x1, . . . , xn) ∈ J n with f(x) = b ∈ K, so that
qb+1 > w(x) =

∑
i∈N wi(xi) ≥ qb. Let s be the number of components of x equal

to 1, i.e., s is the cardinal of the set {i ∈ N |xi = 1}. Assume, without loss of
generality, that w1(1) ≥ w2(1) ≥ · · · ≥ wn(1). Then, if y is a vector obtained from
x by allocating all its components equal to 1 in the last places we have f(y) = b,
because f is anonymous, and therefore qb+1 > w(y) ≥ qb. Thus,

w′(x) =
∑
xi 6=1

wi(xi) + sw′(1) ≥
∑
xi 6=1

wi(xi) +

n∑
i=n−s+1

wi(1) = w(y) ≥ qb
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On the other hand, if z is a vector obtained from x by allocating all its components
equal to 1 in the first places we have f(z) = b and therefore qb+1 > w(z) ≥ qb.
Thus,

w′(x) =
∑
xi 6=1

wi(xi) + sw′(1) ≤
∑
xi 6=1

wi(xi) +

s∑
i=1

wi(1) = w(z) < qb+1

Hence, it is qb+1 > w′(x) ≥ qb. Conversely, if qb+1 > w′(x) ≥ qb then, from qb+1 >
w′(x) ≥ w(y) we deduce that f(x) = f(y) ≤ b and, from w(z) ≥ w′(x) ≥ qb we
deduce that f(x) = f(y) ≥ b. Thus, f(x) = b.

The same procedure can be applied recursively to the remaining levels 2, . . . j−1,
and we end up with a set of common weights w′(j − 1) ≥ · · · ≥ w′(1) ≥ 0 to all
indices in such a way that [w′, q] is a representation of f .

An anonymous (j, k)-function is not necessarily weighted. Although, remarkably,
this is true for j = 2, as the next theorem shows.

Theorem 1 Every anonymous (j, k)-function is weighted if and only if j = 2.

Proof Assume j = 2. If f is anonymous (and monotonic) then
n∑

i=1

xi =
n∑

i=1

yi ⇒ f(x) = f(y)

n∑
i=1

xi <
n∑

i=1

yi ⇒ f(x) ≤ f(y)

f(x) > f(y)⇒
n∑

i=1

xi >
n∑

i=1

yi

(3)

To prove that f is weighted we assign weights wi(1) = 1 for all i ∈ N , and
we will find appropriate thresholds qk−1 ≥ qk ≥ · · · ≥ q1 ≥ 0. Notice that, for all

x ∈ J n it is w(x) =
n∑

i=1

xi. Since w(1, . . . , 1) = n is the maximum possible weight

for a vector in J n we will set qk = n+ 1.

If f takes only one value, say f(x) = a ∈ K for all x ∈ J n, then we can take
the thresholds qb = 0 if b ≤ a and qb = n+ 1 if b > a. Clearly f(x) = a if and only
if qa+1 = n+ 1 > w(x) ≥ qa = 0.

If f takes more than one value, then, letK′ ⊆ K be the image of f . Let us assume
that the elements in K′ are ordered as in K and write K′ = {1̃, . . . , k̃}. In this way, 1̃

is the minimum value in K′ and k̃ is the maximum value in K′. For b ∈ K′ we denote
by s(b) its successor in K′ and by p(b) its predecessor in K′. Obviously, p(1̃) and
s(k̃) do not exist.

Now, for each b ∈ K′ with 1̃ ≤ b ≤ p(k̃) let

Mb = max{w(x) | f(x) = b} and mb = min{w(x) | f(x) = b}.

It is clear that ms(b) > Mb because of (3).
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Define the following thresholds, for b ∈ {1, . . . , k − 1}:

qb =


0 if b ≤ 1̃
mt if p(t) < b ≤ twitht ∈ K′

n+ 1 if b > k̃

We need to prove that

f(x) = b ∈ K if and only if qb ≤ w(x) < qb+1.

Assume that f(x) = b. Then b ∈ K′, and there are three possible cases:

(i) If b = 1̃ then qb = 0 and qb+1 = ms(b) so that qb = 0 ≤ w(x) ≤Mb < ms(b) =
qb+1.

(ii) If 1̃ < b < k̃ then qb = mb and qb+1 = ms(b) so that qb = mb ≤ w(x) ≤ Mb <
ms(b) = qb+1.

(iii) If b = k̃ then qb = mb and qb+1 = n+ 1 so that mb ≤ w(x) < n+ 1 = qb+1.

Conversely, assume that qb ≤ w(x) < qb+1. If b /∈ K′ then either b < 1̃, or b > k̃ or
there is some t ∈ K′ such that p(t) < b < t. In any of these possibilities it would be
qb = qb+1 and we are assuming that qb < qb+1.

Thus, b ∈ K′ and there are three cases to consider:

(i) If b = 1̃ then qb = 0 and qb+1 = ms(b) so that 0 ≤ w(x) < ms(b). This implies
f(x) < s(b) and, since b = 1̃, the only possibility is f(x) = b.

(ii) If 1̃ < b < k̃ then qb = mb and qb+1 = ms(b) so that mb ≤ w(x) < ms(b).
From the inequality on the left hand side we have b ≤ f(x). From the inequality
on the right hand side we have f(x) < s(b). Thus, b ≤ f(x) < s(b) and the only
possibility is f(x) = b.

(iii) If b = k̃ then qb = mb and qb+1 = n + 1 so that mb ≤ w(x) < n + 1. But
mb ≤ w(x) implies b ≤ f(x), and the only possibility is f(x) = b.

It has been proved that for j = 2 any anonymous (j, k)-function is weighted.
Conversely, we see that for j > 2 there are anonymous (j, k)-functions which are not

weighted with the following example:

Let f be the anonymous (j, 2)-function with j > 2 of 4 variables defined as:
f(x) = 1 if x is either one the seven following vectors:

(2, 2, 0, 0), (2, 0, 2, 0), (2, 0, 0, 2), (1, 1, 1, 1), (0, 2, 2, 0), (0, 2, 0, 2), (0, 0, 2, 2)

or x is a vector greater componentwise of any of them, and f(x) = 0 otherwise.
Thus, f(2, 1, 1, 0) = f(0, 1, 1, 2) = 0. As f is anonymous then, by Proposition 3,

it admits a representation with the same weights assigned to all the indices for each
input level. Let w·(2) and w·(1) the weights for the input levels 2 and 1 respectively.
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By considering the vectors (2, 0, 0, 2), (1, 1, 1, 1) and (2, 1, 1, 0) twice, any represen-
tation of f should fulfill at least the next inequalities:

2w·(2) ≥ q 4w·(1) ≥ q
w·(2) + 2w·(1) < q w·(2) + 2w·(1) < q

By adding the two inequalities in each of the two rows we obtain

2q < 2w·(2) + 4w·(1) ≥ 2q

which leads to a contradiction.

From the procedure followed in the proof of Theorem 1 we may derive some
enumerations for monotonic anonymous functions with two inputs which are stated
in next section.

5 Some enumerations of anonymous (j, k)-functions and anonymous
pseudo-Boolean functions

The enumerations provided in this section concern the classes of monotonic and
anonymous: i) (2, k)-functions, ii) exhaustive (2, k)-functions, and iii) pseudo-
Boolean functions.

5.1 (2, k)-functions

Let A2,k(n) be the number of monotonic anonymous (2, k)-functions of n variables.

Corollary 2 For all n ≥ 1 and k ≥ 2 it holds

A2,k(n) =

(
n+ k

k − 1

)
Proof From Theorem 1,A2,k(n), coincides with the number of quotas (qk−1, qk−2, . . . , q1)
satisfying the condition:

n+ 1 ≥ qk−1 ≥ qk−2 ≥ · · · ≥ q1 ≥ 0. (4)

Thus, the result follows from combinations with repetition.

From this corollary, interesting properties about the numbers A2,k(n) can be eas-
ily deduced. Some of them are summarized in the next corollary.

Corollary 3 For all n ≥ 1 and k ≥ 2 it yields
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a. A2,k+1(n) =
n∑

t=−1
A2,k(t), with A2,k(−1) = 1 and A2,k(0) = k.

b. A2,k(n+ 1) =
k∑

t=1
A2,t(n), with A2,1(n) = 1 and A2,2(n) = n+ 2.

c. A2,k+1(n+ 1) = A2,k(n+ 1) +A2,k+1(n).
d. A2,k(n) = A2,n+2(k − 2).

Note the similarity of Corollary 3-d with Proposition 1-c, result obtained in Freixas
and Zwicker (2009).

5.2 Exhaustive (2, k)-functions

Let Aj,k(n) be the number of exhaustive anonymous (j, k)-functions of n variables.
If f is exhaustive every image for f must be achieved and therefore all the inequalities
in (4) must be strict. From this it easily follows that A2,2(n) = A2,2(n)− 2 because
the number of anonymous (2, 2)-functions of n variables, A2,2(n), coincides with
the number of integer values for the threshold q such that n + 1 ≥ q ≥ 0, but only
q = n+ 1 and q = 0 lead to a failure for f of being exhaustive.

Note that non-exhaustive anonymous (2, 2)-functions are avoided in the voting
context because coalitions are not allowed to be either all winning or all losing.

Corollary 4 For all n ≥ 1 and k ≥ 2 it holds

a. A2,k(n) = 0 if k > n+ 1,
b. A2,k(n) =

(
n

k−1
)

if k ≤ n+ 1.

Proof From Theorem 1 for j = 2 it exists a representation w such that wi(1) = 1,
for each integer i such that 0 ≤ i ≤ n, and quotas (qk−1, qk−2, . . . , q1) satisfying the
condition: n+ 1 ≥ qk−1 ≥ qk−2 ≥ · · · ≥ q1 ≥ 0. Thus f is exhaustive if and only if

n+ 1 > qk−1 > qk−2 > · · · > q1 > 0.

The previous condition is never achieved if k > n+1, while it is in the opposite case.
The number of elections for the quotas follows from combinations without repetition.

LetAj(n) be the number of exhaustive anonymous (j, k)-functions for all k ≥ 2.
The next result easily follows from the previous Corollary 4.

Corollary 5 For all n ≥ 1 it holds

A2(n) = 2n − 1

Proof It holds A2(n) =
∞∑
k=2

A2,k(n) and from the previous Corollary

A2(n) =

n+1∑
k=2

(
n

k − 1

)
= 2n − 1.
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5.3 Pseudo-Boolean functions

Let f : {0, 1}n → R be a monotonic anonymous function of n variables (pseudo-
Boolean function). Let m be an integer verifying 0 ≤ m ≤ n. From the anonymity
of f it holds that f(x) is constant for any vector x such that

∑n
i=1 xi = m. Thus,

we can identify f(x) with f(m) where the domain of f is taken as the set of integer
numbers {0, 1, . . . , n}. From now on, we think only in this domain for f . As f is
monotonic it additionally holds

f(0) ≤ f(1) ≤ f(2) ≤ · · · ≤ f(n) (5)

Being a pseudo-Boolean function, f cannot be exhaustive, by definition, but regarded
in the domain {0, 1, . . . , n} it can be injective. This only happens if all the inequalities
in (5) are strict.

An interpretation for an injective monotonic anonymous pseudo-Boolean func-
tion is that the more support for an option (if m is strictly greater than m′) the more
profit people get (then f(m) is strictly greater than f(m′)). Instead, a non–injective
monotonic anonymous pseudo-Boolean function models a situation where more sup-
port for an option can lead to the same collective profit.

Let B(n) be the infinite set of monotonic anonymous pseudo-Boolean functions
of n variables and B(n) be the infinite set of injective monotonic anonymous pseudo-
Boolean functions of n variables. On B(n), we define an equivalence relation ∼ by:
f ∼ g if for all m (0 ≤ m ≤ n− 1) it holds

f(m) < f(m+ 1) if and only if g(m) < g(m+ 1).

Thus, f ∼ g means that f and g show the same ranking, no matter what values take
the two functions.

Let’s consider the quotient set of B(n) by∼, i.e. B(n)/ ∼, and denote it by C(n).
The elements in the quotient set, C(n), constitute a partition of the set of monotonic
anonymous pseudo-Boolean functions of n variables, B(n). In particular, f ∈ C(n)
means that f = {g ∈ B(n) : g ∼ f}.

Analogously, let’s consider the quotient set of B(n) by ∼, i.e. B(n)/ ∼, and
denote it by C(n). The elements in the quotient set, C(n), constitute a partition of
the set of injective monotonic anonymous pseudo-Boolean functions of n variables,
B(n).

The following result is an enumeration for the finite sets C(n) and C(n), whose
respective cardinalities are denoted by |C(n)| and |C(n)|. Of course, |C(n)| ≤ |C(n)|.

Corollary 6 For all n ≥ 1 it holds:

a.

|C(n)| =
(

2n+ 1

n

)
b.

|C(n)| = 1
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Proof For the first part note that the maximum number of different images for any
element f ∈ C(n) is n+ 1. Corollary 2 gives A2,k(n) =

(
n+k
k−1
)
, which is the number

of anonymous (2, k)-functions of n variables. Then, observe that |C(n)| = A2,k(n)
for k = n+ 1, and from this equality it follows |C(n)| =

(
2n+1

n

)
.

The injectivity of f ∈ C(n) implies that f(0) < f(1) < · · · < f(n). Thus, |C(n)|
coincides with the number of exhaustive monotonic anonymous (2, n)-functions. By
Corollary 4 this number is A2,k(n) =

(
n

k−1
)

for k = n+ 1. Thus, |C(n)| = 1.

All the combinatorial numbers in the Corollaries of this section appear in OEIS
(1964) under different interpretations. We have provided a new interpretation for
them.

6 Conclusion

In this paper we have provided a unified framework for the class of (j, k)-functions
in which j ordered inputs are allowed to indices or components and k aggregated
ordinal outputs are feasible. We have considered monotonic functions of this type
and studied the relationship between anonymous and weighted (j, k)-functions. The
main result of the paper establishes that the anonymity of f implies that f is weighted
if and only if the number of allowed inputs for indices is two. Thus, the implication
does not depend at all on the number of outputs. The procedure followed in the proof
allows to easily enumerate different types of anonymous (2, k)-functions and pseudo-
Boolean functions.

A challenging problem consists of enumerating the class of anonymous and weighted
(j, k)-functions for different combinations of the numbers, j (the number of inputs), k
(the number of outputs) and n (the number of indices). Particularly interesting would
be the combination for j > 2 and k = 2, whose simplest case corresponds to enu-
merating anonymous and weighted (3, 2)-functions. Any progress in this line would
be a valuable result.
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