
materials

Article

A 3D Finite Element Analysis Model of Single
Implant-Supported Prosthesis under Dynamic Impact Loading
for Evaluation of Stress in the Crown, Abutment and Cortical
Bone Using Different Rehabilitation Materials

Oriol Cantó-Navés 1, Raul Medina-Galvez 1 , Xavier Marimon 2,3,* , Miquel Ferrer 4 ,
Óscar Figueras-Álvarez 1 and Josep Cabratosa-Termes 1

����������
�������

Citation: Cantó-Navés, O.;

Medina-Galvez, R.; Marimon, X.;

Ferrer, M.; Figueras-Álvarez, Ó.;

Cabratosa-Termes, J. A 3D Finite

Element Analysis Model of Single

Implant-Supported Prosthesis under

Dynamic Impact Loading for

Evaluation of Stress in the Crown,

Abutment and Cortical Bone Using

Different Rehabilitation Materials.

Materials 2021, 14, 3519. https://

doi.org/10.3390/ma14133519

Academic Editor: Ivana Miletić
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Abstract: In the literature, many researchers investigated static loading effects on an implant. How-
ever, dynamic loading under impact loading has not been investigated formally using numerical
methods. This study aims to evaluate, with 3D finite element analysis (3D FEA), the stress transferred
(maximum peak and variation in time) from a dynamic impact force applied to a single implant-
supported prosthesis made from different materials. A 3D implant-supported prosthesis model was
created on a digital model of a mandible section using CAD and reverse engineering. By setting dif-
ferent mechanical properties, six implant-supported prostheses made from different materials were
simulated: metal (MET), metal-ceramic (MCER), metal-composite (MCOM), carbon fiber-composite
(FCOM), PEEK-composite (PKCOM), and carbon fiber-ceramic (FCCER). Three-dimensional FEA
was conducted to simulate the collision of 8.62 g implant-supported prosthesis models with a rigid
plate at a speed of 1 m/s after a displacement of 0.01 mm. The stress peak transferred to the crown,
titanium abutment, and cortical bone, and the stress variation in time, were assessed.

Keywords: FEA; FEM; impact test; transient analysis; dynamical forces; biomechanical behavior;
implant rehabilitation; rehabilitation materials; crown materials

1. Introduction

Currently, implant-supported prostheses are widely used for the rehabilitation of
partially and fully edentulous patients. This type of treatment has undergone significant
changes in the choice of materials since the first treatments carried out by Brånemark. The
use of gold or gold alloys, with and without resin veneering [1,2], has been discarded for
economic, esthetic, and functional reasons [3–5]. The increase in the price of gold led to the
use of much cheaper non-noble metals, although with different mechanical and biological
characteristics [3–6]. The composites and resins used at the end of the last century showed
significant deficiencies in esthetics and wear; they were replaced by ceramics and, currently,
by zirconia, [6–9] with different mechanical characteristics. The choice of the material
used for implant-supported prosthesis manufacturing is a crucial issue due to the dynamic
characteristics of the stomatognathic system.

Static forces are applied from the mandible to the maxilla, without mandibular move-
ments, and the intensity remains constant over time. In contrast, dynamic forces are related
to mandibular movements, and the intensity varies with time. The dynamic force mag-
nitude is calculated by multiplying the mass of the moving object and its acceleration in
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that direction. Static (clenching) and dynamic forces (chewing, swallowing, and eccentric
bruxism) occur in the masticatory system [10–15]. The literature shows that forces are
transferred to a lesser or greater extent to the peri-implant area [16] depending on whether
the applied force is static or dynamic [17–24]. Moreover, the results in recent publications
showed that static loading, compared with dynamic loading, caused increased stress, which
proves the need of transient analysis of dental implants [25,26].

The chosen material for single implant-supported prostheses manufacturing has little
relevance in the transmission of static forces, as explained in the Saint-Venant principle,
which states that the difference between the effects of two different but statically equivalent
loads becomes minimal at sufficiently large distances from the load [27–29]. Dynamic
forces and the impact of the moving mandible against the maxilla are transferred very
differently in single and multiple implant-supported prostheses, depending on the material
that the prostheses are made from. Rigid materials, such as zirconia, ceramics, and metals,
generate higher dynamic forces [17,19–21] than other materials used in veneering pros-
thetic frameworks (composites, hybrid composites, or resins) or in prosthetic framework
manufacturing (carbon fiber, fiberglass, or polyether-ether-ketone (PEEK)), which absorb
and dissipate the impact energy with lower dynamic forces [28–40].

There are different in vitro methods for studying the transmission of static and dy-
namic forces to the peri-implant area from single and partial implant-supported prostheses
made from different materials, such as the use of photoelastic resins [18,29,41–43], digital
image correlation (DIC) [29,44,45], strain gauges [19,46], loss coefficient (LC) [21], and finite
element analysis (FEA) in two (2D FEA) and three dimensions (3D FEA) [22,24,31,47–51].
All of them provide very similar results [29,52–54] in terms of stress.

Photoelastic resins allow visualizing the stress generated in the peri-implant area
after the application of a static or dynamic force with isochromatic fringes. The color
and number of the shown isochromatic fringes indicates the magnitude of the generated
stress. Digital image correlation (DIC) is an optical-numerical system using resins with
randomly colored microdots, where the displacement of these microdots is calculated after
the application of a force, both vertically and horizontally. The magnitude of transferred
forces is determined according to the magnitude of the displacements.

Magne et al. [21] used the Periometer (University of Southern California, Los Angeles,
CA, USA) to calculate the energy absorbed by prostheses made with different frameworks
and veneer materials, such as composite, ceramic, and zirconia. The Periometer is a
handheld percussion probe that records the rebound suffered by the object of study, so the
energy absorbed by the material can be calculated by subtracting the applied force and the
rebound force.

Another system is the use of strain gauges, which are sensors that measure the material
strain when loads are applied. Gracis [19] recorded the impact force transmitted by a steel
ball rolled along a slope to discs made from different materials. Menini [17,20], used strain
gauges to design a device that applied oscillating movements to monolithic prostheses
of different materials (gold, zirconia, ceramics, composites, and resins) against an upper
dental arch made of a Co-Cr alloy. The force transferred to the crowns (made from different
materials) by the simulation of the mandibular movements was recorded.

Dental biomechanics based on finite element analysis (FEA) is attracting huge interest
in many areas: biomedical sciences, anthropology and, odontology. However, several
shortcomings in FEA modeling exist, mainly due to unrealistic (static) loading imposi-
tion [55]. FEA analysis is the most widely used numerical procedure today, since it allows
reproducing mechanical behavior under a mechanical load based on the known properties
of the material. Density, the Poisson coefficient, and Young’s modulus values can be set
in 2D or 3D FEA software, which also includes the depth dimension. Three-dimensional
FEA permits the visualization of the stresses on the entire body of the implants. In the
consulted dental literature, dynamic FEA studies are still scarce [25,26,55–58] compared to
the large number of existing FEA studies with static loads. Moreover, very few studies that
simulate dynamic forces under impact loading using 2D or 3D FEA have been found. Thus,
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this article is devoted exclusively to the study of the impacts on dental implants, which is
minimally covered in the literature.

Knowledge about stress distribution in the peri-implant area may be essential for
predicting the survival of dental implants, especially in patients with risk factors such
as smoking, poor hygiene habits, previous periodontitis, or predisposing genetic fac-
tors [59–63]. These patients present, to a greater or lesser extent, gingival inflammation
that may cause peri-implant bone loss [64–72]. This peri-implant bone loss may be di-
rectly affected by the stress generated in the implant-bone-prosthesis area; the higher the
transferred force, the higher the risk of peri-implantitis [21,73–79]. The amount of cortical
bone could also be a factor to be considered when choosing the material for manufacturing
the prosthesis, as this cortical bone is poorly vascularized, fragile, rigid, and regenerates
slowly [80–84].

Numerous studies have shown, using 2D or 3D FEA, the behavior of implants reha-
bilitated with single crowns made with different materials. In these studies, all of them
used a static force to simulate the oral environment. Our study has aimed to show, using
dynamic 3D FEA, the dynamic impact forces related to oral function.

This in vitro study aims to evaluate, with three-dimensional finite element analysis
(3D FEA), the stress transferred (time to peak, maximum peak, and variation in time) from
an impact, a dynamic force, on a single implant-supported prosthesis made from differ-
ent restorative materials (metal, metal-ceramic, metal-composite, carbon fiber-composite,
PEEK-composite, and carbon fiber-ceramic), applied to the crown, titanium abutment, and
cortical mandibular bone.

2. Materials and Methods
2.1. The Whole Implant Model

The 3D digital model simulated dental rehabilitation on the implants used in this study
to evaluate the stress (von Mises stress) on the inner part of the crown, the external part of
the neck of the titanium abutment, and the top of the cortical bone, using different implant
crowns in a dynamic situation (chewing, swallowing, or eccentric bruxing). This was
obtained from the integration of six independently developed models from real elements:
(1) the crown, (2) an anti-rotatory abutment, (3) a fixation screw, (4) a single implant-
supported prosthesis, (5) a section of the mandibular bone (cortical and cancellous bone),
and (6) the plate. Total osseointegration of the implant was considered, assuming a perfect
relation between the nodes at the interface of the implants and the bone.

2.1.1. The Crown

In order to obtain a solid model of the crown, a high-resolution 3D Exocad model was
imported to SolidWorks. Then, two parts were created within the crown geometry (the
core and the esthetic veneering), separated by an inner boundary. The framework and the
veneering material were delimited from the single implant-supported prosthesis. The total
volume of the crown was 411.5 mm3. The framework core accounted for 51.3% of the total
crown volume, and the remaining 39.7% was esthetic veneering.

2.1.2. The Abutment and Fixation Screw

The abutment’s function is to join the crown and the implant with a thread mechanism.
Also, an anti-rotation system must be available to prevent the relative movement between
the implant and the abutment (in this case, a hexagonal anti-rotational system). The
abutment and the fixation screw were fully modeled using the CAD software SolidWorks
v.2021 (Dassault Systèmes, SolidWorks Corp., Waltham, MA, USA) [85] in order to reduce
the typical surfaces of a 3D scanning process to triangular forms, thus maintaining simpler
geometries. The abutment used in this study was the MIS implant with an internal
hexagonal connection.
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2.1.3. The Implant

Accurate measurements of implant geometry were obtained by 3D digital scan (Visual
Computing Lab, Pisa, Italy) of a 4.2 × 11.5 mm implant with an internal hexagon (MIS
Implants Technology, Bar-Lev, Tel Aviv-Yafo, Israel), which was converted into an STL
(Standard Tessellation Language) mesh. Then, it was converted into a solid with the
SolidWorks Software (Dassault Systèmes, Vélizy-Villacoublay, France) in order to obtain
the measurements of the implant. Finally, it was modeled with the CAD SolidWorks
software in order to guarantee more precise geometry and to avoid too many surfaces
being shown.

2.1.4. The Mandible

The section of the mandible bone was designed from a sectional image of cone-beam
computed tomography (CBCT) (NewTom Giano, Newtom, Imola, Italy). Keypoints were
drawn at a fixed distance over the section image of the CT scan in order to transfer it to the
computer. The geometry of the mandible could be obtained with SolidWorks software by
measuring the distances of the points and calculating the real value through the scanning
scale. Two different bounded solids were created over the mandible geometry to apply the
mechanical properties of both trabecular and cortical bone.

2.1.5. The Plate

A fixed rigid body with a flat surface was required to simulate impact loads on the
tooth during chewing. To this end, a rectangular-shaped plate (w = 10, h = 12, e = 2 mm)
was set up to apply the impact load on the three parts of the whole model: the crown, the
implant, and the mandible. The initial distance between the plate and the crown was only
0.01 mm. The collision with the plate was frictionless. This means that a zero coefficient of
friction was assumed and allowed free sliding. In addition, normal pressure equaled zero
if separation occurred.

2.2. Material Properties

All materials were modeled as linear elastic isotropic and homogeneous. Young’s
modulus and Poisson ratio of each material are shown in Table 1. The mechanical properties
of the different materials of the crowns have been provided by the manufacturers.

Table 1. Properties of materials used in the prothesis and the bone (trabecular and cortical).

Kerrypnx Material Name Manufacturer
E

Young Modulus
(MPa)

v
Poisson

Ratio

ρ
Density
(g/cm3)

Crown

FCOM
Carbon fiber-composite [86]
BioCarbon Bridge fibers Micro Medica 300,000 0.3 1.40

Composite BioXfill Micro Medica 22,000 0.3 8.30

MCER
Metal-ceramic [87,88]

Co-Cr alloy Renishaw 208,000 0.31 8.90
Ceramic VMK 95 Vita 69,000 0.28 2.50

MCOM
Metal-composite [86,87]

Co-Cr alloy Renishaw 208,000 0.31 8.90
Composite BioXfill Micro-Medica 22,000 0.3 8.30
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Table 1. Cont.

Kerrypnx Material Name Manufacturer
E

Young Modulus
(MPa)

v
Poisson

Ratio

ρ
Density
(g/cm3)

MET [89]
Full metal

Co-Cr Alloy, Mo, W Heraeus Kulzer 208,000 0.31 8.90
FCCER

Carbon fiber-ceramic [86,90]

Carbon Fiber Bridge Micro-Medica 66,000 0.3 1.4
Ceramic IPS e.max Ivoclar Vivadent 95,000 0.2 2.5

PKCOM
PEEK-composite [86,91]

PEEK Optima Invibio 4100 0.36 1.3
Composite BioXfill Micro-Medica 22,000 0.3 8.30

Implant Ti-6-Al-4V ELI MIS [92] 113,800 0.34 4.43

Bone
Cortical bone [93,94] 15,000 0.3 1.79

Trabecular bone [93] 500 0.3 0.45

Abbreviated names of the crown materials are the following: FCOM is a carbon fiber-
composite crown, MCER is a metal-ceramic crown, MET is a metal crown alloy (Cr-Co, Mo,
and W).

2.3. Numerical Methods

All independent models were put together by assembly modeling, generating a unique
prosthesis-implant-bone model (Figure 1). The geometry was converted to an IGES file,
and Ansys Workbench Software (Ansys Inc., Canonsburg, PA, USA) was used to determine
the stress transferred to the crown, titanium abutment, and cortical bone before the FEA
simulation by the implant-supported prosthesis made from different materials.

Materials 2021, 14, x FOR PEER REVIEW 5 of 15 
 

 

MCOM     
Metal-composite [86,87]    

Co-Cr alloy Renishaw 208,000 0.31 8.90 
Composite BioXfill Micro-Medica 22,000 0.3 8.30 

MET [89]    
Full metal     

Co-Cr Alloy, Mo, W Heraeus Kulzer 208,000 0.31 8.90 
FCCER 

Carbon fiber-ceramic [86,90]    

Carbon Fiber Bridge Micro-Medica 66,000 0.3 1.4 
Ceramic IPS e.max Ivoclar Vivadent 95,000 0.2 2.5 

PKCOM  
PEEK-composite [86,91]    

PEEK Optima  Invibio 4100 0.36 1.3 
Composite BioXfill Micro-Medica 22,000 0.3 8.30 

Implant Ti-6-Al-4V ELI MIS [92] 113,800 0.34 4.43 

Bone Cortical bone  [93,94] 15,000 0.3 1.79 
Trabecular bone  [93] 500 0.3 0.45 

2.3. Numerical Methods 
All independent models were put together by assembly modeling, generating a 

unique prosthesis-implant-bone model (Figure 1). The geometry was converted to an 
IGES file, and Ansys Workbench Software (Ansys Inc., Canonsburg, PA, USA) was used 
to determine the stress transferred to the crown, titanium abutment, and cortical bone 
before the FEA simulation by the implant-supported prosthesis made from different ma-
terials. 

 
Figure 1. View of the whole 3D FEA model (A). Sectional model (B). 

The prosthesis-implant-bone model was simulated to collide with a 10 × 12 × 2 mm 
fixed and rigid plate at a speed of 1 m/s after a displacement of 0.01 mm. For accurate 
results, the size of the elements is very important. The FEA model had 96,160 nodes and 
62,606 elements to simulate the real models (prosthesis, implant, and bone) (see Figure 1). 
Young’s modulus, Poisson’s coefficient, and density were assigned to each material used 

Figure 1. View of the whole 3D FEA model (A). Sectional model (B).



Materials 2021, 14, 3519 6 of 16

The prosthesis-implant-bone model was simulated to collide with a 10 × 12 × 2 mm
fixed and rigid plate at a speed of 1 m/s after a displacement of 0.01 mm. For accurate
results, the size of the elements is very important. The FEA model had 96,160 nodes and
62,606 elements to simulate the real models (prosthesis, implant, and bone) (see Figure 1).
Young’s modulus, Poisson’s coefficient, and density were assigned to each material used
in the manufacturing of the implant-supported prosthesis: CoCr (MET), CoCr-Ceramic
(MCER), CoCr-Composite (MCOM), Carbon Fiber-Composite (FCOM), PEEK-Composite
(PKCOM), Carbon Fiber-Ceramic (FCCER), the titanium abutment, and the cortical bone of
the model (Table 1). For the FEA, all materials were considered isotropic and homogeneous,
displacements were only in the vertical direction, perfect osseointegration was assumed, the
impact was carried out on a rigid object (plate), and, finally, the collision was frictionless.

2.3.1. Mesh Definition

Before performing the simulation with the finite element method, the mesh size and
the element type must be defined. The accuracy of the results depends directly on the
size of the elements. The smaller the elements, the more accurate the solution. Therefore,
small elements were used in order to improve precision. However, this affected the
computational time. While CPU time is not that important in static analyses, it is crucial in
transient dynamic analyses.

The solid 3D element SOLID187 (Ansys Inc., Canonsburg, PA, USA) [85] was used,
with 10 nodes and quadratic interpolation functions that are more suitable for irregular
geometries. The element had three degrees of freedom per node, i.e., the three translations
in the global coordinate directions x, y, z. Surface-to-surface contact was defined with the
element CONTA174.

In the process of creating the mesh, a refinement process was carried out in order to
obtain a stable solution independent of the mesh size, especially around the impact zone,
thereby ensuring high accuracy in this area. Therefore, as this refinement had been done, it
was not necessary to use an area to obtain an average solution, since the nodal solution
was especially accurate. Thus, the corresponding mesh was then considered to be optimal.

In addition, Ansys software performs control of the aspect ratio systematically. The
accuracy of the results depends directly on the size of the finite element mesh. The smaller
the mesh, the more accurate the solution obtained. Near the loading point and the threaded
part, where higher accuracy was needed, the size was 0.2 mm, but in the other parts it was
larger, from 0.5 to 2 mm. Even if the different parts of the implant are assembled together,
the finite element results can be analyzed independently. Six solids were considered
individually: the crown, the abutment, the implant, the fixation screw, the mandible, and
the plate.

2.3.2. Simulation Time

Regarding simulation time, 0.4 ms were simulated. The number of substeps is the
number of intervals into which the simulation time is divided. That is to say, the calculation
time-step between one instant to the next. If they are too small, the computing time
increases considerably and, if they are set too high, the accuracy of the time-history response
decreases. A value of 53 substeps, i.e., a time-step of 7.55 µs, was found to be reasonable.

3. Results
3.1. Stress Results

The von Mises stress value (obtained from a Cauchy stress tensor) was calculated
over time in the dynamic FEA simulation and compared for each node (Figure 2) in a time
interval of 0.4 ms. The stress peak values in the crown, titanium abutment, and cortical
bone are summarized in Table 2.



Materials 2021, 14, 3519 7 of 16
Materials 2021, 14, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 2. The nodes selected for numerical simulation. (A) Sectional view of the 3D FEA model at 
the crown node. (B) The abutment node. (C) The node on top of the cortical bone. 

Table 2. Maximum equivalent von Mises stress transferred to the crown, the titanium abutment, 
and the cortical bone by the different prosthesis materials. 

Node/Material 
Maximum von Mises Stress σVMmax (MPa) 

MET MCER MCOM FCOM PKCOM FCCER 
Crown 103.81 91.18 51.05 49.98 31.51 61.82 

Abutment 89.27 81.91 77.82 50.80 77.78 82.80 
Cortical 63.35 72.06 40.71 35.70 32.05 75.46 

At the crown node (Figure 3) the maximum peaks were found at the MET and MCER 
crown, followed by that at FCCER. The lower values were found at MCOM and FCOM, 
and the lowest at the PKCOM crown. 

Figure 3. Comparison of equivalent von Mises stress at the crown node. 

At the same time, Figure 4 compares the displacement of each crown during impact. 

Figure 2. The nodes selected for numerical simulation. (A) Sectional view of the 3D FEA model at
the crown node. (B) The abutment node. (C) The node on top of the cortical bone.

Table 2. Maximum equivalent von Mises stress transferred to the crown, the titanium abutment, and
the cortical bone by the different prosthesis materials.

Node/Material
Maximum von Mises Stress σVMmax (MPa)

MET MCER MCOM FCOM PKCOM FCCER

Crown 103.81 91.18 51.05 49.98 31.51 61.82

Abutment 89.27 81.91 77.82 50.80 77.78 82.80

Cortical 63.35 72.06 40.71 35.70 32.05 75.46

At the crown node (Figure 3) the maximum peaks were found at the MET and MCER
crown, followed by that at FCCER. The lower values were found at MCOM and FCOM,
and the lowest at the PKCOM crown.
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At the same time, Figure 4 compares the displacement of each crown during impact.
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All the crowns except FCOM showed high peak intensity values at the titanium
abutment node (Figure 5). MET and MCER showed higher stress rebound over time, while
MCOM, FCOM, PKCOM, and FCCER showed no rebound peaks after the impact (See
Figure 5).
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Figure 5. Comparison of equivalent von Mises stress at the titanium abutment node.

Composite-veneered implant-supported prostheses (MCOM, FCOM, and PKCOM)
generated lower stress peaks at the cortical bone than ceramic-veneered (MCER and
FCCER) or all-metal (MET) implant-supported prostheses. The implant-supported ceramic-
veneered (MCER and FCCER) or all-metallic (MET) prostheses exhibited a more significant
and earlier stress peak on the cortical bone than those veneered with composite (MCOM,
PKCOM, and FCOM) (Figure 6). The highest stress rebound peaks happened in MET
and MCER implant-supported prostheses. Implant-supported prostheses made of carbon
fiber-ceramic (FCCER) showed the highest maximum peak of stress, but it dissipated
quickly with rebound peaks of lower intensity. A rapid reduction in stress was observed in
implant-supported prostheses veneered with composite (MCOM, PKCOM, and FCOM)
and in those made with carbon fiber-ceramic (FCCER) (Figure 6).
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3.2. Elastic Failure Test

A failure test was carried out to see if the dental implants could withstand the me-
chanical conditions to which they were subjected. Elastic failure criteria establish different
approaches for different materials. In this case, the von Mises or maximum elastic distor-
tion energy criterion was used. This criterion says that a structural element fails when at
some point the distortion energy per unit volume exceeds a certain threshold. In stress
terms, this means that the equivalent stress at a point, which is the von Mises stress, cannot
exceed the elastic limit or the yield strength of the material, σy:

σVM ≤ σy (1)

Consequently, research on the elastic limits of the different materials was needed. After
obtaining the values, a comparison was made for each model of the dental implant with
each of the studied nodes used before. In Table 3, the yield stress, σy, and the maximum
value of stress, σVMmax, are compared for each material and node. In this table, we can
observe how the largest stresses occurred in the most rigid models.

In order to prevent uncertainties that may occur when real loads act on the implant, a
safety factor is used. The safety factor is defined as the ratio between the yield strength of
the material and the maximum value of von Mises equivalent stress. A usually applied
Safety Factor is 1.5.

γSF =
σy

σVM
= 1.5. (2)

Taking yield strength as the 100% value and rearranging Equation (2):

σVM ≤
100% · σy

1.5
= 66.67% · σy (3)

Figure 7 shows the yield strength ratio for each material and node. The red line
indicates the 66.67% value of yield stress.
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Table 3. Comparison of the yield stress, σy, and the maximum value of stress, σVMmax, for each
material and node.

Material Node Yield Strength
σy (MPa)

Maximum von Mises
σVMmax (MPa)

MET

Crown 145–270 103.81

Abutment 880–920 89.27

Cortical 100–150 63.35

MCER

Crown 150 91.18

Abutment 880–920 81.91

Cortical 100–150 72.06

MCOM

Crown 280 51.05

Abutment 880–920 77.82

Cortical 100–150 40.71

FCOM

Crown 280 49.99

Abutment 880–920 50.80

Cortical 100–150 35.70

PKCOM

Crown 280 31.51

Abutment 880–920 77.78

Cortical 100–150 32.05

FCER

Crown 380 61.82

Abutment 880–920 82.80

Cortical 100–150 75.46

There was no elastic failure in any model, since all von Mises stresses were below the
elastic limit, taking an arbitrary safety factor of 1.5. In the bar plots, we can observe how
the von Mises stresses did not surpass 66.67% of the yield stress (red line). The most rigid
models with the highest von Mises stresses were the ones closest to the 66.67% of the yield
stress of each material.

In summary, the assumption of linearity of the behavior of materials was fulfilled
in the studied model, and the calculated stresses were below the yielding limits of the
materials, so we can consider that there was no plasticization.

The spider plots of Figure 8 show a comparison between the yield strength, σy, of the
materials and the maximum values of von Mises stress, σVMmax, obtained in the numerical
simulations for each node.
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Figure 7. Comparison of the yield strength ratio depending on the node and crown material.
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4. Conclusions

Denture forces, such as those from chewing, are transferred to implants and cause
stress in the bone and the implant. That is why it is important to study the stresses (or
strains) transferred to the implant and the bone in situations of maximum stress, modeled
by dynamic forces under impact loading.

It can be concluded from the results of this study that the stress transferred to the
crown, the abutment, and the peri-implant bone by an impact load on an implant-supported
prosthesis varies according to the rigidity of the material and whether it is used as a
framework or veneering material. It can also be stated that the more elastic material used
for the crown, the lower the stresses generated in the bone. Too much stress induces bone
resorption, which ultimately causes loosening of the implant, and overstrain can instigate
bone failure. It turns out that the use of PEEK or carbon fibers as framework materials
made stress dissipate faster than when using metal at the bone. By using these materials
that can absorb and/or dissipate the stress transferred to the implant, we can reduce the
risk of having bone resorption around the implant.

Therefore, with the use of more elastic materials that can better dissipate the impact
energy and reduce the stress transferred to the implant, the risk of having bone resorp-
tion around the implant can also be reduced, especially in patients at risk of gingival
inflammation that may cause peri-implant bone loss.
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