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Abstract This chapter describes the basic mechanics for building a forecasting
model that uses as input sentiment indicators derived from textual data. In addition,
as we focus our target of predictions on financial time series, we present a set
of stylized empirical facts describing the statistical properties of lexicon-based
sentiment indicators extracted from news on financial markets. Examples of these
modeling methods and statistical hypothesis tests are provided on real data. The
general goal is to provide guidelines for financial practitioners for the proper
construction and interpretation of their own time-dependent numerical information
representing public perception toward companies, stocks’ prices, and financial
markets in general.

1 Introduction

Nowadays several news technology companies offer sentiment data to assist the
financial trading industry into the manufacturing of financial news sentiment
indicators to feed as information to their automatic trading systems and for the
making of investment decisions. Manufacturers of news sentiment-based trading
models are faced with the problem of understanding and measuring the relationships
among sentiment data and their financial goals, and further translating these into
their forecasting models in a way that truly enhances their predictive power.
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Some issues that arise when dealing with sentiment data are: What are the
sentiment data—based on news of a particular company or stock—saying about
that company? How can this information be aggregated to a forecasting model
or a trading strategy for the stock? Practitioners apply several ad hoc filters, as
moving averages, exponential smoothers, and many other transformations to their
sentiment data to concoct different indicators in order to exploit the possible
dependence relation with the price or returns, or any other observable statistics. It is
then of utmost importance to understand why a certain construct of a sentiment
indicator might work or not, and for that matter it is crucial to understand the
statistical nature of indicators based on sentiment data and analyze their insertion in
econometric models. Therefore, we consider two main topics in sentiment analysis:
the mechanics, or methodologies for constructing sentiment indicators, and the
statistics, including stylized empirical facts about these variables and usage in price
modeling.

The main purpose of this chapter is to give guidelines to users of sentiment data
on the elements to consider in building sentiment indicators. The emphasis is on
sentiment data extracted from financial news, with the aim of using the sentiment
indicators for financial forecasting. Our general focus is on sentiment analysis for
English texts. As a way of example, we apply this fundamental knowledge to
construct six dictionary-based sentimental indicators and a ratio of stock’s news
volume. These are obtained by text mining streams of news articles from the Dow
Jones Newswires (DJN), one of the most actively monitored source of financial news
today. In the Empirical section (Sect. 4) we describe these sentimental and volume
indicators, and further in the Statistics section (Sect. 3) analyze their statistical
properties and predictive power for returns, volatility, and trading volume.

1.1 Brief Background on Sentiment Analysis in Finance

Extensive research literature in behavioral finance has shown evidence to the fact
that investors do react to news. Usually, they show greater propensity for making an
investment move based on bad news rather than on good news (e.g., as a general
trait of human psychology [5, 39] or due to specific investors’ trading attitudes
[17]). Li [27] and Davis et al. [11] analyze the tone of qualitative information
using term-specific word counts from corporate annual reports and earnings press
releases, respectively. They go on to examine, from different perspectives, the
contemporaneous relationships between future stock returns and the qualitative
information extracted from texts of publicly available documents. Li finds that
the two words “risk” and “uncertain” in firms’ annual reports predict low annual
earnings and stock returns, which the author interprets as under-reaction to “risk
sentiment.” Tetlock et al. [45] examine qualitative information in news stories at
daily horizons and find that the fraction of negative words in firm-specific news
stories forecasts low firm earnings. Loughran and McDonald [29] worked out
particular lists of words specific to finance, extracted from 10-K filings, and tested
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whether these lists actually gauge tone. The authors found significant relations
between their lists of words and returns, trading volume, subsequent return volatility,
and unexpected earnings. These findings are corroborated by Jegadeesh and Wu
[24] who designed a measure to quantify document tone and found significant
relation between the tone of 10-Ks and market reaction for both negative and
positive words. The important corollary of these works is that special attention
should be taken to the nature and contents of the textual data used for sentiment
analysis intended for financial applications. The selection of documents from where
to build a basic lexicon has major influence on the accuracy of the final forecasting
model, as sentiment varies according to context, and lists of words extracted from
popular newspapers or social networks convey emotions differently than words from
financial texts.

2 Mechanics of Textual Sentiment Analysis

We focus our exposition on sentiment analysis of text at the aspect level. This
means that our concern is to determine whether a document, or a sentence within
a document, expresses a positive, negative, or other sentiment emotions toward a
target. For other levels and data corpuses, consult the textbook by Bing Liu [28].

In financial applications, the targets are companies, financial markets, commodi-
ties, or any other entity with financial value. We then use this sentiment information
to feed forecasting models of variables quantifying the behavior of the financial
entities of interest, e.g., price returns, volatility, and financial indicators.

A typical workflow for building forecasting models based on textual data goes
through the following stages: (i) textual corpus creation and processing, (ii)

sentiment computation, (iii) sentiment scores aggregation, and (iv) modeling.

(i) Textual corpus management. The first stage concerns the collecting of textual
data and applying text mining techniques to clean and categorize terms within
each document. We assume texts come in electronic format and that each
document has a unique identifier (e.g., a filename) and a timestamp. Also,
that through whatever categorization scheme used, we have identified within
each document the targets of interest. Thus, documents can be grouped by
common target and it is possible that a document appears in two different groups
pertaining to two different targets.

Example 1 Targets (e.g., a company name or stock ticker) can be identified by
keyword matching or name entity recognition techniques (check out the Stanford
NER software.1) Alternatively, some news providers like Dow Jones Newswires
include labels in their xml files indicating the company that the news is about.

1https://nlp.stanford.edu/software/CRF-NER.shtml.

https://nlp.stanford.edu/software/CRF-NER.shtml
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(ii) Computing sentiment scores. Sentiment analysis is basically a text clas-
sification problem. Hence, one can tackle this algorithmic problem by
either 1) applying a supervised machine learning algorithm that is trained
on text already labeled as positive or negative (or any other emotion) or
2) using an unsupervised classification method based on the recognition
of some fixed syntactic patterns, or words, that are known to express a
sentiment (sentiment lexicon). The latter is frequently used by researchers
and practitioners in Finance, and it is the one applied on the data we have
at hand for sentiment analysis in this work. Hence, we will prioritize the
exposition of the lexicon-based unsupervised method and just give some
pointers to the literature in the machine learning approach to sentiment
classification.

(ii.A) Lexicon-based unsupervised sentiment classification.The key component
of this text classification method is a dictionary of words, and more
general, syntactic patterns, that denote a specific sentiment. For example,
positiveness is conveyed by words such as good, admirable, better, etc. and
emoticons such as :-) or ; -] and alike, often used in short messages like
those in Twitter [8, 19]. These groups of words conform a sentiment lexicon
or dictionary.

Given a fixed sentiment S (e.g., positive, negative, . . . ), determined by some
lexicon L(S ), a basic algorithm to assign a S -sentiment score to a document is to
count the number of appearances of terms from L(S ) in the document. This number
gives a measure of the strength of sentimentS in the document. In order to compare
the strengths of two different sentiments in a document, it would be advisable to rel-
ativize these numbers to the total number of terms in the document. There are many
enhancements of this basic sentiment scoring function, according to the different
values given to the terms in the lexicon (instead of each having an equal value of 1),
or if sign is considered to quantify direction of sentiment, and further considerations
on the context where, depending on neighboring words, the lexicon terms may
change their values or even shift from one sentiment to another. For example, good
is positive, but not good is negative. We shall revise some of these variants, but for
a detailed exposition, see the textbook by Liu [28] and references therein.

Let us now formalize a general scheme for a lexicon-based computation of a
time series of sentiment scores for documents with respect to a specific target (e.g.,
a company or a financial security). We have at hand λ = 1, . . . ,Λ lexicons Lλ,
each defining a sentiment. We have K possible targets and we collect a stream of
documents at different times t = 1, . . . , T . Let Nt be the total number of documents
with timestamp t . Let Dn,t,k be the n-th document with timestamp t and make
mention of the k-th target, for n = 1, . . . , Nt , t = 1, . . . , T and k = 1, . . . ,K .

Fix a lexicon Lλ and target Gk . A sentiment score based on lexicon Lλ for
document Dn,t,k relative to target Gk can be defined as

Sn,t (λ, k) =
Id∑

i=1

wiSi,n,t (λ, k) (1)
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where Si,n,t (λ, k) is the sentiment value given to unigram i appearing in the
document and according to lexicon Lλ, being this value zero if the unigram is not
in the lexicon. Id is the total number of unigrams in the document Dn,t,k and wi is
a weight, for each unigram that determines the way sentiment scores are aggregated
in the document.

Example 2 If Si,n,t = 1 (or 0 if unigram i is not in the lexicon), for all i, and
wi = 1/Id , we have the basic sentiment density estimation used in [27, 29, 45]
and several other works on text sentiment analysis, giving equal importance to all
unigrams in the lexicon. A more refined weighting scheme, which reflects different
levels of relevance of the unigram with respect to the target, is to consider wi =
dist(i, k)−1, where dist(i, k) is a word distance between unigram i and target k

[16].

The sentiment score Si,n,t can take values in R and be decomposed into factors
vi · si , where vi is a value that accounts for a shift of sentiment (a valence shifter:
a word that changes sentiments to the opposite direction) and si the sentiment value
per se.

(ii.A.1) On valence shifters. Originally proposed and analyzed their contrarian
effect on textual sentiment in [34], these are words that can alter a polar-
ized word’s meaning and belong to one of four basic categories: negators,
amplifiers, de-amplifiers, and adversative conjunction. A negator reverses
the sign of a polarized word, as in “that company is not good investment.”
An amplifier intensifies the polarity of a sentence, as, for example, the
adverb definitively amplifies the negativity in the previous example: “that
company is definitively not good investment.” De-amplifiers (also known
as downtowners), on the other hand, decrease the intensity of a polarized
word (e.g., “the company is barely good as investment”). An adversative
conjunction overrules the precedent clause’s sentiment polarity, e.g., “I
like the company but it is not worthy.”

Shall we care about valence shifters? If valence shifters occur frequently in our
textual datasets, then not considering them in the computation of sentiment scores in
Eq. (1) will render an inaccurate sentiment valuation of the text. More so in the case
of negators and adversative conjunctions which reverse or overrule the sentiment
polarity of the sentence. For text from social networks such as Twitter or Facebook,
the occurrence of valence shifters, particularly negators, has been observed to be
considerably high (approximately 20% for several trending topics2), so certainly
their presence should be considered in Eq. (1).

We have computed the appearance of valence shifters in a sample of 1.5 million
documents from the Dow Jones Newswires set. The results of these calculations,
which can be seen in Table 1, show low occurrence of downtoners and adversatives
(around 3%), but negators in a number that may be worth some attention.

2https://cran.r-project.org/web/packages/sentimentr/readme/README.html.

https://cran.r-project.org/web/packages/sentimentr/readme/README.html
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Table 1 Occurrence % of valence shifters in 1.5 MM DJN documents

Text type Negators Amplifiers Downtoners Adversatives

DJN news articles 7.00% 14.13% 3.02% 3.02%

(ii.A.2) Creating lexicons. A starting point to compile a set of sentiment words
is to use a structured dictionary (preferably online as WordNet) that lists
synonyms and antonyms for each word. Then begin with a few selected
words (keywords) carrying a specific sentiment and continue by adding
some of the synonyms to the set, and to the complementary sentimental
set add the antonyms. There are many clever ways of doing this sentiment
keyword expansion using some supervised classification algorithms to find
more words carrying similar emotion. An example is the work of Tsai
and Tang [48] on financial keyword expansion using the continuous bag-
of-words model on the 10-K mandated annual financial reports. Another
clever supervised scheme based on network theory to construct lexicons
is given in [35]. For a more extensive account of sentiment lexicon
generation, see [28, Chap. 7] and the many references therein.

(ii.B) Machine learning-based supervised sentiment classification. Another
way to classify texts is by using machine learning algorithms, which rely
on a previously trained model to generate predictions. Unlike the lexicon-
based method, these algorithms are not programmed to respond in a certain
way according to the inputs received, but to extract behavior patterns from
pre-labeled training datasets. The internal algorithms that shape the basis
of this learning process have some strong statistical and mathematical
components. Some of the most popular are Naïve Bayes, Support Vector
Machines, and Deep Learning. The general stages of textual sentiment
classification using machine learning models are the following:

Corpus development and preprocessing. The learning process starts
from a manually classified corpus that after feature extraction will be
used by the machine learning algorithm to find the best fitted parameters
and asses the accuracy in a test stage. This is why the most important
part for this process is the development of a good training corpus. It
should be as large as possible and be representative of the set of data
to be analyzed. After getting the corpus, techniques must be applied to
reduce the noise generated by sentiment meaningless words, as well as to
increase the frequency of each term through stemming or lemmatization.
These techniques depend on the context to which it is applied. This means
that a model trained to classify texts from a certain field could not be
directly applied to another. It is then of key importance to have a manually
classified corpus as good as possible.

Feature extraction. The general approach for extracting features con-
sists of transforming the preprocessed text into a mathematical expression
based on the detection of the co-occurrence of words or phrases. Intu-
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itively, the text is broken down into a series of features, each one
corresponding to an element of the input text.

Classification. During this stage, the trained model receives an unseen
set of features in order to obtain an estimated class.

For further details, see [40, 28].
An example of sentiment analysis machine learning method is Deep-

MLSA [13, 12]. This model consists of a multi-layer convolutional neural
network classifier with three states corresponding to negative, neutral,
and positive sentiments. Deep-MLSA copes very well with the short
and informal character of social media tweets and has won the message
polarity classification subtask of task 4 “Sentiment Analysis in Twitter” in
the SemEval competition [33].

(iii) Methods to aggregate sentiment scores to build indicators. Fix a
lexicon Lλ and target Gk. Once sentiment scores for each document
related to target Gk are computed following the routine described in
Eq. (1), proceed to aggregate these for each timestamp t to obtain the Lλ-
based sentiment score for Gk at time t , denoted by St (λ, k):

St (λ, k) =
Nt∑

n=1

βnSn,t (λ, k) (2)

As in Eq. (1), the weights βn determine the way the sentiment scores
for each document are aggregated. For example, considering βn =
1/length(Dn,t,k) would give more relevance to short documents.

We obtain in this way a time series of sentiment scores, or sentiment
indicator, {St : t = 1, . . . T }, based on lexicon Lλ that defines a specific
sentiment for target Gk . Variants of this Lλ-based sentiment indicator
for Gk can be obtained by applying some filters F to St , thus {F(St ) :
t = 1, . . . T }. For instance, apply a moving average to obtain a smoothed
version of the raw sentiment scores series.

(iv) Modeling. Consider two basic approaches: either use the sentiment indica-
tors as exogenous features for forecasting models, and test their relevance
in forecasting price movements, returns of price, or other statistics of the
price, or use them as external advisors for ranking the subjects (targets)
of the news—which in our case are stocks—and create a portfolio. A
few selected examples from the vast amount of published research on the
subject of forecasting and portfolio management with sentiment data are
[3, 4, 6, 21, 29, 44, 45, 49].

For a more extensive treatment of the building blocks for producing
models based on textual data, see [1] and the tutorial for the sentometrics
package in [2].
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3 Statistics of Sentiment Indicators

In this second part of the chapter, we present some observed properties of the
empirical data used in financial textual sentiment analysis, and statistical methods
commonly used in empirical finance to help the researchers gain insight on the data
for the purpose of building forecasting models or trading systems.

These empirical properties, or stylized facts, reported in different research
papers, seem to be caused by and have an effect mostly on retail investors, according
to a study by Kumar and Lee [26]. For it is accepted that institutional investors
are informationally more rational in their trading behaviors (in great part due
to a higher automatization of their trading processes and decision making), and
consequently it is the retail investor who is more affected by sentiment tone in
financial news and more prone to act on it, causing stock prices to drift away from
their fundamental values. Therefore, it is important to keep in mind that financial
text sentiment analysis and its applications would make more sense on markets
with a high participation of retail investors (mostly from developed economies,
such as the USA and Europe), as opposed to emerging markets. In these developed
markets, institutional investors could still exploit the departures of stock prices from
fundamental values because of the news-driven behavior of retail investors.

3.1 Stylized Facts

We list the most often observed properties of news sentiment data relative to market
movements found in studies of different markets and financial instruments and at
different time periods.

1. Volume of news and volatility correlation. The longer the stock is on the
news, the greater its volatility. This dependency among volume of news on a
stock and its volatility has been observed for various stocks, markets, and for
different text sources. For example, this relation has been observed with text data
extracted from Twitter and stocks trading in S&P 500 in [3].

2. Larger volume of news near earnings announcement dates. The volume of
news about a company tends to increase significantly in the days surrounding
the company’s earnings announcement. This fact was observed by Tetlock, Saar-
Tsechansky, and Macskassy in [45] for news appearing in Wall Street Journal and
Dow Jones Newswires from 1980 to 2004, for companies trading in the S&P 500
index. The authors produced a histogram outlining the relationship between the
number of company-specific news and the number of days since (respectively,
until) the company’s last (respectively, next) earnings announcement (which is
the 0 in the plot). The authors did this for all companies collectively; we will
update this histogram and show particular cases for individual companies.
This fact suggests a possible statistical dependency relation among company-
specific news and company’s fundamentals.
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3. Negative sentiments are more related to market movements than positive
ones. This is observed in, e.g., [3, 29, 45] and [10], although the latter for data
in the pre-Internet era, and the phenomenon is most prominent for mid and
small-cap stocks.

4. Stronger effects observed for mid and small-capitalization stocks. This is
suggested and analyzed in [10]. It is related to the fact that retail investors are
those who mostly trade based on news sentiment, and this type of investors does
not move big-cap stocks.

3.2 Statistical Tests and Models

In order to make some inference and modeling, and not remain confined to
descriptive statistics, several tests on the indices, the targets, and their relationships
can be performed. Also, models and model selection can be attempted.

3.2.1 Independence

Previous to using any indicator as a predictor, it is important to determine whether
there is some dependency, in a statistical sense, among the target Y and the predictor
X. We propose the use of an independence test based on the notion of distance
correlation, introduced by Szekely et al. [43].

Given random variables X and Y (possibly multivariate), from a sample (X1, Y1),
. . . , (Xn, Yn), the distance correlation is computed through the following steps:

1. Compute all Euclidean distances among pairs of observations of each vector
‖Xi − Xj‖ and ‖Yi − Yj‖ to get 2 n × n distance matrices, one for each vector.

2. Double-center each element: to each element, subtract the mean of its row and
the mean of its column, and add the matrix mean.

3. Finally, compute the covariance of the n2 centered distances.

Distance correlation is obtained by normalizing in such a way that, when computed
with X = Y , the result is 1. It can be shown that, as n → ∞, the distance covariance
converges to a value that vanishes if and only if the vectors X and Y are independent.
In fact, the limit is a certain distance between the characteristic function ϕ(X,Y ) of the
joint vector (X, Y ) and the product of the characteristic functions of X and Y , ϕXϕY .

From this description, some of the advantages of the distance correlation are clear:
it can be computed for vectors, not only for scalars; it characterizes independence;
since it is based on distances, X and Y can have different dimensions—we can detect
dependencies between two groups, one formed by p variables and the other by q;
and it is rotation-invariant.

The test of independence consists of testing the null hypothesis of zero distance
correlation. The p-values are obtained by bootstrap techniques. The R package
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energy [38] includes the functions dcor and dcor.test for computing the
distance correlation and the test of independence.

3.2.2 Stationarity

In the context of economic and/or social variables, we typically only observe one
realization of the underlying stochastic process defining the different variables. It is
not possible to obtain successive samples or independent realizations of it. In order
to be able to estimate the “transversal” characteristics of the process, such as mean
and variance, from its “longitudinal” evolution, we must assume that the transversal
properties (distribution of the variables at each instant in time) are stable over time.
This leads to the concept of stationarity.

A stochastic process (time series) is stationary (or strictly stationary) if the
marginal distributions of all the variables are identical and the finite-dimensional
distributions of any arbitrary set of variables depend only on the lags that separate
them. In particular, the mean and the variance of all the variables are the same.
Moreover, the joint distribution of any set of variables is translation-invariant (in
time). Since in most cases of time series the joint distributions are very complicated
(unless the data come from a very simple mechanism, such as i.i.d. observations), a
usual procedure is to specify only the first- and second-order moments of the joint
distributions, that is, E Xt and EXt+hXt for t = 1, 2, . . . , h = 0, 1, . . . , focusing
on properties that depend only on these. A time series is weakly stationary if EXt is
constant and EXt+hXt only depends on h (but not on t). This form of stationarity is
the one that we shall be concerned with.

Stationarity of a time series can sometimes be assessed through Dickey–Fuller
test [14], which is not exactly a test of the null hypothesis of stationarity, but rather
a test for the existence of a unit root in autoregressive processes. The alternative
hypothesis can either be that the process is stationary or that it is trend-stationary
(i.e., stationary after the removal of a trend).

3.2.3 Causality

It is also important to assess the possibility of causation (and not just dependency)
of a random process Xt toward another random process Yt . In our case Xt being
a sentiment index time series and Yt being the stock’s price return, or any other
functional form of the price that we aim to forecast. The basic idea of causality is
that due to Granger [20] which states that Xt causes Yt , if Yt+k , for some k > 0
can be better predicted using the past of both Xt and Yt than it can by using
the past of Yt alone. This can be formally tested by considering a bivariate linear
autoregressive model on Xt and Yt , making Yt dependent on both the histories of Xt

and Yt , together with a linear autoregressive model on Yt , and then test for the null
hypothesis of “X does not cause Y ,” which amounts to a test that all coefficients
accompanying the lagged observations of X in the bivariate linear autoregressive
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model are zero. Then, assuming a normal distribution for the data, we can evaluate
the null hypothesis through an F-test. This augmented vector autoregressive model
for testing Granger causality is due to Toda and Yamamoto [47] and has the
advantage of performing well with possibly non-stationary series.

There are several recent approaches to testing causality based on nonparametric
methods, kernel methods, and information theory, among others, that cope with
nonlinearity and non-stationarity, but disregarding the presence of side information
(conditional causality); see, for example, [15, 30, 50]. For a test of conditional
causality, see [41].

3.2.4 Variable Selection

The causality analysis reveals any cause–effect relationship between the sentiment
indicators and any of the securities’ price function as target. A next step is to analyze
these sentiment indicators, individually or in an ensemble, as features in a regression
model for any of the financial targets. A rationale for putting variables together could
be at the very least what they might have in common semantically. For example,
joint together in a model, all variables express a bearish (e.g., negativity) or bullish
(e.g., positivity) sentiment. Nonetheless, at any one period of time, not all features
in one of these groups might cause the target as well as their companions, and
their addition in the model might add noise instead of value information. Hence,
a regression model which discriminates the importance of variables is in order.

Here is where we propose to do a LASSO regression with all variables under
consideration that explain the target. The LASSO, due to Tibshirani [46], optimizes
the mean square error of the target and linear combination of the regressors,
subject to a L1 penalty on the coefficients of the regressors, which amounts to
eliminating those which are significantly small, hence removing those variables
that contribute little to the model. The LASSO does not take into account possible
linear dependencies among the predictors that can lead to numerical unstabilities,
so we recommend the previous verification that no highly correlated predictors are
considered together. Alternatively, adding a L2 penalty on the coefficients of the
regressors can be attempted, leading to an elastic net.

4 Empirical Analysis

Now we put into practice the lessons learned so far.

A Set of Dictionary-Based Sentiment Indicators Combining the lexicons defined
by Loughran and McDonald for [29] with extra keywords manually selected, we
build six lexicons. For each one of these lexicons, and each company trading in the
New York Stock Exchange market, we apply Eq. (1) to compute a sentiment score
for each document extracted from a dataset of Dow Jones Newswires in the range
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of 1/1/2012 to 31/12/2019. We aggregate these sentiment scores on an hourly and a
daily basis using Eq. (2) and end up with 2 × 6 hourly and daily period time series
of news sentiment values for each NYSE stock. These hourly and daily sentiment
indicators are meant to convey the following emotions: positive, Financial Up
(finup), Financial Hype (finhype), negative, Financial Down (findown),
and fear. Additionally, we created daily time series of the rate of volume of news
referring to a stock with respect to all news collected within the same time frame.
We termed this volume of news indicator as Relative Volume of Talk (RVT).

We use historic price data of a collection of stocks and their corresponding sen-
timent and news volume indicators (positive, finup, finhype, negative,
fear, findown, and RVT) to verify the stylized facts of sentiment on financial
securities and check the statistical properties and predictive power of the sentiment
indicators to returns (ret), squared returns (ret2, as a proxy of volatility), and rate
of change of trading volume (rVol). We sample price data with daily frequency
from 2012 to 2019 and with hourly frequency (for high frequency tests) from
11/2015 to 11/2019. For each year we select the 50 stocks from the New York Stock
Exchange market that have the largest volume of news to guarantee sufficient news
data for the sentiment indicators. Due to space limitations, in the exhibits we present
the results for 6 stocks from our dataset representatives of different industries:
Walmart (WMT), Royal Bank of Scotland (RBS), Google (GOOG), General Motors
(GM), General Electric (GE), and Apple Inc. (AAPL).

Stylized fact 1. We have observed, through independence tests based on distance
correlation, that during relatively long periods of time, ret2, a proxy of volatil-
ity, and our RVT index are dependent variables, in particular, for “mediatic”
companies, such as Amazon, Google, Apple, and blue chips in general. This
is illustrated in Fig. 2.

Stylized fact 2. We take on the graphical idea of Tetlock et al. [45] representing
the relation of news volume to earnings announcement date. However, instead
of the bar plot of accumulated volumes for each date, we propose a more
informative graphical representation of the distribution of the daily accumulated
volumes of news (Fig. 1). This is constructed by drawing the boxplots [31] of
volumes of news rather than its simple aggregation on the earning’s day and
previous/successive days. Moreover, since the effect of news on financial market
behavior (and its reciprocal) around earnings announcement is noticeable only
for short periods, we reduce the scope of analysis to 25 days after and before
earnings announcement days (which are all placed as the 0 of the plot) and
thus consider each news once (either as preceding or succeeding an earnings
announcement).

In all the periods, the distribution of the number of news is highly asymmetric (all
means are larger than medians), and their right tails are heavy, except on earning’s
day itself, where it looks more symmetric. From this new plot, we can see that, not
only on earnings day but 1 and 2 weeks before and after earnings day, there is a
rise in the volume of news. The most prominent increase in volume of news is seen
the exact day of earnings announcement, and the day immediately after earnings
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announcement has also an abnormal increase with respect to the rest of the series
of volumes, indicating a flourish of after-the-facts news. The number of extreme
observations of each day is small: at most five companies exceed the standard limit
(1.5 times the inter-quartile range) for declaring the value an “outlier”.

We cannot then conclude from our representation of the media coverage of
earnings announcements that the sentiments in the news may forecast fundamental
indicators of the health of a company (e.g., price-to-earnings, price-to-book value,
etc.) as it is done in [45], except perhaps for the few most talk-about companies,
the outliers in our plot. However, we do speculate that the sentiment in the news
following earnings announcements is the type of information useful for trading short
sellers, as such has been considered in [17].

Stylized fact 3. Again by testing independence among sentiment indices and
market indicators (specifically, returns and squared returns), we have observed
in our experiments that most of the time, sentiment indices related to negative
emotions show dependency with ret and ret2 (mostly Financial Down and
less intensive negative) more often than sentiment indices carrying positive
emotions. This is illustrated in Fig. 2.

Independence and Variable Selection The distance correlation independence
tests are exhibited in Fig. 2 and the results from LASSO regressions in
Fig. 3. From these we observed the consistency of LASSO selection with
dependence/independence among features and targets. The most sustained
dependencies through time, and for the majority of stocks analyzed, are observed
between RVT and ret2, RVT and rVol, findown and ret2, and finup and
ret. LASSO selects RVT consistently with dependence results in the same long
periods as a predictor of both targets ret2 and rVol, and it selects findown
often as a predictor of ret2, and finup as a predictor of ret. On the other hand,
positive is seldom selected by LASSO, just as this sentiment indicator results
independent most of the time to all targets.

Stationarity Most of the indices we have studied follow some short-memory
stationary processes. Most of them are Moving Averages, indicating dependency
on the noise component, not on the value of the index, and always at small lags, at
most 2.

Causality We have performed Granger causality tests on sentiment data with the
corresponding stock’s returns, squared returns, and trading volumes as the targets.
We have considered the following cases:

• Data with daily frequency, performing the tests on monthly windows within the
2012–2019 period.

• Data with hourly frequency ranging from November 2015 to November 2019. In
this case, we evaluated on both daily and weekly windows. Additionally, for the
weekly windows, an additional test was run with overlapping windows starting
every day.
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Fig. 2 Dependency through distance correlation tests (significance level at 0.1) performed on
quarterly windows of daily data from 2012 to 2019
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Fig. 4 Total success rate of the causality tests (significance level at 0.05) performed on monthly
windows of daily data of the 2012–2019 period, across all stocks considered

In both cases, we find that for almost all variables, the tests only find causality in
roughly 5% of the observations, which corresponds to the p-value (0.05) of the test.
This means that the number of instances where causality is observed corresponds
to the expected number of false positives, which would suggest that there is no
actual causality between the sentiment indicators and the targets. The only pair of
sentiment variable and target that consistently surpasses this value is RVT and ret2,
for which causality is found in around 10% of the observations of daily frequency
data (see Fig. 4).

Nonetheless, the lack of causality does not imply the lack of predictive power of
the different features for the targets, only that the models will not have a causal inter-
pretation in economic terms. Bear in mind that causality (being deterministic) is a
stronger form of dependency and subsumes predictability (a random phenomenon).

5 Software

R
There has been a recent upsurge in R packages specific for topic modeling and
sentiment analysis. The user has nowadays at hand several built-in functions in R
to gauge sentiment in texts and construct his own sentiment indicators. We make a
brief review below of the available R tools exclusively tailored for textual sentiment
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analysis. This list is by no means exhaustive, as new updates are quickly created due
to the growing interest in the field, and that other sentiment analysis tools are already
implicitly included in more general text mining packages as tm [32], openNLP [22],
and qdap [37]. In fact, most of the current packages specific for sentiment analysis
have strong dependencies on the aforementioned text mining infrastructures, as well
as others from the CRAN Task View on Natural Language Processing3

SentimentAnalysis (2019-03): Performs a sentiment analysis of textual con-
tents in R. Incorporates various existing dictionaries (e.g., Harvard IV or
finance-specific dictionaries such as Loughran-McDonald), and it can also create
customized dictionaries. The latter uses LASSO regularization as a statistical
approach to select relevant terms based on an exogenous response variable [18].

RSentiment (2018-07): Analyzes the sentiment of a sentence in English and
assigns score to it. It can classify the sentences to the following categories
of sentiments: positive, negative, very positive, very negative, and neutral. For
a vector of sentences, it counts the number of sentences in each category of
sentiment. In calculating the score, negation and various degrees of adjectives
are taken into consideration [9].

sentimentr (2019-03): Calculates text polarity sentiment [36].
sentometrics (2019-11): An integrated framework for textual sentiment time

series aggregation and prediction. It contains all of the functions necessary to
implement each one of the stages in the workflow described in Sect. 2 for building
news sentiment-based forecasting models [2].

quanteda (2019-11): Quantitative analysis of textual data [7].
syuzhet (2017): Extracts sentiment and sentiment-derived plot arcs from the

text [25].

Python
For Python’s programmers there are also a large number of options for sentiment
analysis. In fact, a quick search for “Sentiment Analysis” on The Python Package
Index (PyPI)4 returns about 6000 items. Here we include a reduced list of the most
relevant modules.

Vader: Valence Aware Dictionary for sEntiment Reasoning is a rule-based model
[23], mainly trained on the analysis of social texts (e.g., social media texts,
movie reviews, etc.). Vader classifies the sentences in three categories: positive,
negative, and neutral representing the ratios of proportions of text that fall into
each category (the summation is 1 or close). It also provides a compound score
which is computed by summing the valence scores of each word in the lexicon;
this value is normalized between −1 and 1.5 An implementation of Vader can
also be found in the general-purpose library for Natural Language Processing
nltk.

3https://cran.r-project.org/web/views/NaturalLanguageProcessing.html.
4https://pypi.org/.
5https://github.com/cjhutto/vaderSentiment#about-the-scoring.

https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
https://pypi.org/
https://github.com/cjhutto/vaderSentiment#about-the-scoring
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TextBlob: From a given input text, the library6 computes the sentiment in terms
of polarity and subjectivity scores lying on the ranges [−1.0, 1.0] and [0.0, 1.0],
respectively. For the subjectivity scores 0 means very objective and 1 is very
subjective.

Pattern: It is a multipurpose package for web mining, NLP tasks, machine
learning, and network analysis. The sentiment is outputed in the form of polarity
and subjectivity, and these can be retrieved at document level or at word level
[42].

pycorenlp: Provides an interface to the Stanford CoreNLP Java package from
where several functionalities are inherited.7 It provides sentiment annotations
for each sentence included in a given text. The full list of CoreNLP wrappers can
be found in its website.8

The survey in [51] introduces 24 utilities for sentiment analysis—9 of these
tools have an API for common programming languages. However, several of these
utilities are paid, but most of them provide free licenses for a limited period.
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