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Abstract Thermal manifestations are commonly found in central Mexico as result of the volcanic activity originating
from the formation of the Trans-Mexican Volcanic Belt during the Quaternary. The Rancho Nuevo hot
spring is one of them that has not been described before with a discharge temperature near 92 °C. The goal



of the present study is to provide geothermal characteristics of thermal manifestations at Rancho Nuevo
location based on geochemical and mineralogical results to explain deep-subsurface processes that
occurred in the geothermal system. The presence of kaolinite, montmorillonite, opal, zeolite, barite, pyrite,
and stibnite in altered soil sediments or around the hot springs identified by the techniques used in the
present study, confirms the presence of hydrothermal activity. In addition, based on the X-ray diffraction,
calcite precipitates at the surface of the thermal springs. This mineral association reflects deep geothermal
processes and is eventually deposited in shallow zones. Fluid mixing processes and variations in redox
conditions are suggested by mineral association and isotopic sulfur data. Finally, based on the
physicochemical data provided by the water samples and the discharge conditions of the springs, stability
diagrams were constructed for pyrite, barite, and zeolites using the Geochemist’s Work Bench program to
corroborate these data with the mineralogical results. The mineralogical results and distribution and N-S
trend of mineral associations suggest interaction processes between geothermal fluid and rocks of the
stratigraphic sequence, and active major faults, enabling the upward flow of deep geothermal fluids. The
approach to the conceptual model of the Rancho Nuevo geothermal prospect reveals an attractive potential
for the exploration of a viable geothermal resource in central Mexico.

Resumen

En el centro de México es comun encontrar manifestaciones termales como resultado de la
actividad volcanica que originé la formacién del Cinturén Volcanico Trans-Mexicano durante el
Cuaternario. El manantial caliente de Rancho Nuevo es una de ellas el cual no ha sido descrita
antes cuya temperatura de descarga es de aproximadamente 92 °C. El objetivo del presente
estudio es proporcionar las caracteristicas geotérmicas de las manifestaciones termales
localizadas en el poblado de Rancho Nuevo, considerando los resultados geoquimicos y
mineraldgicos, para explicar los procesos ocurridos a profundidad en el sistema geotérmico. La
presencia de caolinita, montmorillonita, épalo, zeolita, barita, pirita y estibinita identificadas por
las técnicas utilizadas, tanto en sedimentos del suelo como alrededor de las fuentes termales,
confirma la presencia de actividad hidrotermal. Ademas, de acuerdo a los resultados de
difraccion de rayos X, la calcita precipita en la superficie de las fuentes termales. Esta
asociacion mineral refleja procesos geotérmicos profundos y finalmente es depositada en zonas
poco profundas. Los procesos de mezcla de fluidos y las variaciones en las condiciones redox
son sugeridas por la asociacion mineral y los datos de azufre isotopico. Finalmente, con base a
los datos fisicoquimicos proporcionados por las muestras de agua y las condiciones de descarga
de los manantiales, se construyeron diagramas de estabilidad para pirita, barita y zeolita para
corroborar estos datos con los resultados mineraldgicos. Los resultados mineraldgicos y su
distribucion, asi como la tendencia N-S de las asociaciones minerales, sugieren procesos de
interaccion entre el fluido geotérmico y las rocas de la secuencia estratigrafica, y fallas mayores
activas, que permiten el flujo ascendente de fluidos profundos. El enfoque del modelo
conceptual del prospecto geotérmico Rancho Nuevo revela un potencial atractivo para la
exploracion de un recurso geotérmico viable en el centro de México.
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processes
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Abstract

Thermal manifestations are commonly found in central Mexico as result of the volcanic activity originating from the forma- X3l

tion of the Trans-Mexican Volcanic Belt during the Quaternary. The Rancho Nuevo hot spring is one of them that has not
been described before with a discharge temperature near 92 °C. The goal of the present study is to provide geothermal char-
acteristics of thermal manifestations at Rancho Nuevo location based on geochemical and mineralogical results to explain
deep-subsurface processes that occurred in the geothermal system. The presence of kaolinite, montmorillonite, opal, zeolite,
barite, pyrite, and stibnite in altered soil sediments or around the hot springs identified by the techniques used in the present
study, confirms the presence of hydrothermal activity. In addition, based on the X-ray diffraction, calcite precipitates at the
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shallow zones. Fluid mixing processes and variations in redox conditions are suggested by mineral association and isotopic
sulfur data. Finally, based on the physicochemical data provided by the water samples and the discharge conditions of the
springs, stability diagrams were constructed for pyrite, barite, and zeolites using the Geochemist’s Work Bench program to
corroborate these data with the mineralogical results. The mineralogical results and distribution and N-S trend of mineral
associations suggest interaction processes between geothermal fluid and rocks of the stratigraphic sequence, and active major
faults, enabling the upward flow of deep geothermal fluids. The approach to the conceptual model of the Rancho Nuevo
geothermal prospect reveals an attractive potential for the exploration of a viable geothermal resource in central Mexico.

Keywords Geothermal potential - Rancho Nuevo geothermal prospect - Hot spring mineralization - Deep-subsurface
processes

Resumen
En el centro de México es comiin encontrar manifestaciones termales como resultado de la actividad volcanica que origind
la formacién del Cinturén Volcanico Trans-Mexicano durante el Cuaternario. El manantial caliente de Rancho Nuevo es
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una de ellas el cual no ha sido descrita antes cuya temperatura de descarga es de aproximadamente 92 °C. El objetivo del
presente estudio es proporcionar las caracteristicas geotérmicas de las manifestaciones termales localizadas en el poblado de
Rancho Nuevo, considerando los resultados geoquimicos y mineralégicos, para explicar los procesos ocurridos a profundidad
en el sistema geotérmico. La presencia de caolinita, montmorillonita, 6palo, zeolita, barita, pirita y estibinita identificadas
por las técnicas utilizadas, tanto en sedimentos del suelo como alrededor de las fuentes termales, confirma la presencia de
actividad hidrotermal. Ademas, de acuerdo a los resultados de difraccion de rayos X, la calcita precipita en la superficie de
las fuentes termales. Esta asociacién mineral refleja procesos geotérmicos profundos y finalmente es depositada en zonas
poco profundas. Los procesos de mezcla de fluidos y las variaciones en las condiciones redox son sugeridas por la asociacién
mineral y los datos de azufre isotépico. Finalmente, con base a los datos fisicoquimicos proporcionados por las muestras de
aguay las condiciones de descarga de los manantiales, se construyeron diagramas de estabilidad para pirita, barita y zeolita
para corroborar estos datos con los resultados mineraldgicos. Los resultados mineralégicos y su distribucidn, asi como la
tendencia N-S de las asociaciones minerales, sugieren procesos de interaccion entre el fluido geotérmico y las rocas de la
secuencia estratigrafica, y fallas mayores activas, que permiten el flujo ascendente de fluidos profundos. El enfoque del
modelo conceptual del prospecto geotérmico Rancho Nuevo revela un potencial atractivo para la exploracién de un recurso

geotérmico viable en el centro de México.

Palabras clave Potencial geotérmico - Prospecto geotérmico de Rancho Nuevo - Mineralizacion de manantial caliente -

Procesos profundos-subsuperficiales

1 Introduction

Mineral alterations as a result of water—rock interaction pro-
cesses at depth provide evidence of the evolution of hydro-
thermal systems. In particular, mineral associations and their
distribution provide information about the main character-
istics of hydrothermal reservoirs and fluids, including their
(a) temperature and acidity (Browne, 1970; Elders et al.,
2014), (b) formation equilibrium conditions (Armansson,
2009; Henley & Ellis, 1983), and (c) permeability (Browne,
1970; Canet et al., 2015). Besides, alteration mineral asso-
ciations can be used for classifying geothermal systems
(Ronoh, 2015). Therefore, the study of alteration minerals
is one of the most important geological means of defining
the conditions of hydrothermal reservoirs and fluids during
the exploration of geothermal systems (e.g., Canet et al., ,
2015, 2019; Reyes, 1990).

The geological province known as the Trans-Mexican
Volcanic Belt (TMVB) extending across central Mexico
(Fig. 1) is an active volcanic arc. This province has under-
gone extensive events since the Late Miocene which are
shown in a large variation in the composition of volcanic
rocks and volcanic style, and an intra-arc extensional tec-
tonics (AlaniZ—Alvarez & Nieto-Samaniego, 2007; Ferrari
et al., 2012; Gémez-Tuena et al., 2007; Verma et al., 2016).
These characteristics generated favorable geological condi-
tions for the formation of geothermal systems (plays) of vol-
canic and intrusive type or extensional domain (e.g. Moeck,
2014), with a strong influence of regional extensional pro-
cesses (e.g. Gutiérrez-Negrin, 2015). Therefore, the geo-
logical environment of the TMVB and its high heat flow
(~80/200 mW/m?) has favored the formation of geothermal
fields and promising geothermal prospects (Prol-Ledesma

@ Springer

et al., 2018), such as Humeros Caldera (Juarez-Arriaga
et al., 2018; Carrasco-Niiiez et al., 2017), and Acoculco
Caldera (Sosa-Ceballos et al., 2018) eastern TMVB, Los
Azufres Caldera (Arce et al., 2012) and San Bartolomé de
Los Baiios (Canet et al., 2019) central TMVB, and La Pri-
mavera Caldera (Bolds et al., 2019) western TMVB. The
Trans-Mexican Volcanic Belt contains numerous thermal
manifestations whose mineral associations and distributions
indicate the occurrence of hydrothermal processes related to
magmatic activity and extensive fault systems (e.g., Canet
et al., 2019; Pérez-Martinez et al., 2020; Torres-Alvarado,
2000; Torres-Alvarado et al., 2007). In that geological prov-
ince, the study of alteration minerals has been a useful tool
for characterizing and understanding the potential of several
high-temperature geothermal fields, such as Los Azufres,
Michoacan (Molina-Martinez, 2013), and Los Humeros,
Puebla (Elders et al., 2014). Despite the current geothermal
interest in the TMVB, few studies have explored new geo-
thermal prospects, and such is the case for the Geothermal
Zone of Rancho Nuevo (GZRN) located along the central
edge of the province, whose prominent thermal activity,
characterized by thermal wells and two hot springs, has not
yet been studied even. Hence the area represents a suitable
area for geothermal exploration.

Therefore, the goal of the present study is to define the
geothermal characteristics of thermal manifestations at the
GZRN based on mineralogical evidence obtained from vari-
ous techniques that help to explain their geochemical pro-
cesses. Soil sediments and water samples for mineralogical
and hydrogeochemistry studies respectively were taken in
August 2016 (rainy season) and March 2017 (dry season) of
the Rancho Nuevo (GRN) hot spring and the Los Mezquites
(GHM) hot spring. The information generated from this
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Fig. 1 Map shows the location of the TMVB, the Taxco-San Miguel de Allende fault and the El Bajio basin delimited by two important faults, as
well as the local geology and the location of the GRN and GHM hot springs

study and its interpretation is useful for characterizing or
classifying a system based on its mineralogy. In addition, a
complementary geochemical study of the fluids in the geo-
thermal system was carried out.

2 Geological setting

The GZRN is located southeast of the state of Guanajuato
between the municipalities of Celaya and Apaseo el Grande
on the central edge of the TMVB where there are several
thermal wells and two hot springs defined as GRN and GHM
(Landa-Arreguin et al., 2017; Pita-de la Paz et al., 2016)
(Fig. 1).

The TMVB is a physiographic province located in center
of Mexico and it is considered a volcanic arc built on the
southern-edge of the North America plate and formed by
the subduction of the Rivera and Cocos plates (Ferrari et al.,
2012). The igneous activity of the TMVB has undergone
significant changes in the geographical location through-
out its geological history and in its volcanic style, thus in
its chemical composition (Gémez-Tuena et al., 2005). This
physiographic province also presents another particular
feature such as a significant variation in the arc width and
a slight obliquity with respect to the trench (Ferrari et al.,
2012). During the formation of the TMVB, there was an
extensional period with intense magmatism controlled by
the regional fault systems (NE-SW, NW-SE, E-W, and N-S;

Alaniz-Alvarez & Nieto-Samaniego, 2005; Gardufio-Monroy
et al., 1993; Rosas-Elguera & Urrutia-Fucugauchi, 1998).
The TMVB is represented by more than 8,000 structures
represented by stratovolcanoes, monogenetic volcanoes, cal-
deras, some intrusive bodies (Demant, 1978; Gémez-Tuena
et al., 2005) and where the Los Humeros, Los Azufres,
Domo San Pedro geothermal fields and many hot springs, all
of them formed by volcanic activity, are emplaced. There-
fore, in the whole of the TMVB has an important geothermal
potential, but few studies of the area have been done so far,
except for the areas where geothermal fields are located.
The TMVB is distributed along ~ 1,000 km, with a variable
amplitude between 80 and 230 km (G6émez-Tuena et al.,
2005) and currently emplaced in pre-existing, active tectonic
basins (Campos-Enriquez and Sanchez-Zamora 2000; Ven-
egas-Salgado et al., 1985). The study area is located in one
of these basins known as El Bajio, a semi-graben delimited
by the El Bajio and Taxco-San Miguel de Allende regional
faults (Botero-Santa et al., 2015).

The oldest lithological unit in the region, defined as the
basement, emerges to the north of the GZRN. It is defined
by Cretaceous volcano-sedimentary rocks and the clay-cal-
careous rocks (KiCz-Lm) of the Soyatal Formation (Cerca-
Martinez et al., 2000). Units of rhyolitic lavas and tuff rhyo-
lite of the Oligocene age were also identified in the area
(ToR). The Oligocene unit is unconformable and overlain by
well-consolidated and breached ignimbrites (TR) with inter-
calations of pyroclastic deposits of the Miocene-Pliocene
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age. Overlying these units are two pyroclastic and volcanic
units: (a) Huapango Ignimbrite (TmR) with a radiometric
age of 5.3 Ma (Aguirre-Diaz & Loépez-Martinez, 2001,
2003) and (b) a sequence composed of alternating lava
flows of andesitic and basalt composition (TmA-B) and
andesitic pyroclastic deposits of the Pliocene age (TplA-B)
(Aguirre-Diaz & Lopez-Martinez, 2003; Nieto-Samaniego
et al., 1999).

The youngest units are located south and west of the hot
springs. They comprise andesitic-basaltic lavas (QptA-B)
produced by eruptions of the Llano Grande and La Gavia
volcanoes (Nieto-Samaniego et al., 1999) associated with
the Michoacan-Guanajuato Volcanic Field (Aguirre-Diaz &
Lopez-Martinez, 2003). According to dating and paleomag-
netic data, the age of these events is from 1.3 to 0.83 Ma
(CEAG, 2000). A lacustrine sequence of the Pliocene—Pleis-
tocene-Holocene (Qhola) composed of alternating pyroclas-
tic conglomerates and sandstone sediments, as well as fine
sediment units ca. 100 m thick (Nieto-Samaniego et al.,
1999), hosts the hot springs examined in the present study
(Fig. 1). Alluvial deposits (Qhoal) are also widely distrib-
uted throughout the study area.

3 Hydrothermal activity

In different municipalities of Guanajuato such as Juventino
Rosas, Celaya and Villagran located west near to the study
area, thermal activity was reported in lots of wells being
another proof of that activity in the region (Morales-Arre-
dondo et al., 2015; Landa-Arreguin et al., 2017; Ortega-
Gutiérrez et al., 2019, respectively), in addition to the sur-
face evidence characterized by GRN and GHM hot springs.
The GRN hot spring has a diameter of ca. 4 m. It may be
characterized as a hydrothermal manifestation with liquid
and gas emanations and discharge temperatures that can
reach 92 °C. The thermal water discharges into a channel
connected with a hot spring (Fig. 2a). In the surroundings,
there is also a fossil mud pool and depressions of paleo-
springs with white crust formation on the periphery and
irregular activity, since they may flood in the rainy season
yet contain no water in the dry season (Fig. 2b, c). In areas
of continuous venting and bubbling around the GRN hot
spring, there are sediments coated with orange-yellow and
greenish biofilms. The GHM hot spring is located north of
the main manifestation in a ranch called “Los Mezquites”
whose discharge temperature is around 32 °C whose diam-
eter is ca. 4 m. At the beginning of the last century, the
thermal springs of the Hacienda Los Mezquites were used as
recreational and medicinal baths (Fig. 2e). Currently, there
is only one main spring, and the spa is inactive (Fig. 2d).
Moreover, about 30 km east of the Rancho Nuevo location
is located San Bartolomé de los Bafios, another thermal site

@ Springer

where the oldest record of thermal activity (colonial period)
in the area within the El Bajio basin is known (Arredondo,
2012). Therefore, this region is considered an important
hydrothermal zone located in the TMVB and where there
are few studies about geothermal exploration.

4 Materials and methods
4.1 Sampling

To compare and analyze the physicochemical parameters of
thermal water in two different seasons, two sampling cam-
paigns were carried out in August 2016 (rainy season) and
March 2017 (dry season). In the first sampling campaign,
sediment samples were collected at sites near the springs at
a depth of 10 cm; the surface material, including the organic
matter, was removed before excavating the sample. Fossil
and mud pool samples were taken some meters near to the
GRN hot spring. Water samples of the springs were also
taken in high-density polyethylene bottles, washed before
use with 1 N HNO; and then with Milli-Q water, according
to Mexican official standard (NOM-014-SSA1-1993). The
water samples were filtered using 0.45 um cellulose mem-
brane, acidified by adding ultrapure HNO; until reaching a
pH of 2 and retained at 5 °C for their conservation prior anal-
ysis. The field parameters of the thermal water were meas-
ured, including the discharge temperature, electrical conduc-
tivity (EC), total dissolved solids (TDS), and pH (Table 1).
A multiparameter device (model MM 150, trademark sen-
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sION) employing measurement techniques previously vali- iXekilio

dated by the Standard Methods for the Examination of Water
and Wastewater (1995) was used. The device was calibrated
in the field with standard solutions of pH and EC before tak-
ing samples. The concentrations of silica and sulfide were
also determined in the field using a colorimeter (model
DR900, HACH). The silica concentration was assessed by
the 4500-Si0, SILICA (2017) molybdosilicate method and
the sulfide concentration by the 4500-S*~ SULFIDE (2017)
methylene blue method. The bicarbonate concentration was
measured by the acid titration method using an automatic
titrator (Metrohm model, Tritanto 905). Ionic charge balance
was calculated, and the results were < 5%; therefore, they are
considered very reliable (Rouwet, 2006; Taran et al., 1998;).
The second field campaign, random samples of wet sedi-
ments were collected from the interior periphery of the GRN
hot spring to identify the mineralogical phases of the sedi-
ments interacting with the thermal water of the hot spring.
To identify greater diversity of alteration minerals in
soil sediments of coarse grain (>0.074 mm) and fine grain
fraction (< 0.074 mm) sizes of both hot springs, different
techniques were used. Minerals of non-consolidated material
and without prior separation were identified by stereoscopic
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Fig.2 Photographs of the hot springs: a The GRN hot spring whose
diameter is~4 m and the discharge temperature of~92 °C; it is evi-
dent the gas emanation. Stars indicate sites where samples were taken
for mineralogical analysis into the GRN hot spring. b The fossil mud
pool in the rainy season located some meters of distance from GRN

microscopy, short-wave infrared (SWIR), environmental
scanning electron microscopy (ESEM), and by electron
probe microanalyzer (EPMA). Some clay minerals, such
as illite and kaolinite, are common alteration minerals of
hydrothermal systems, their formation is evidence of specific
conditions therefore, to identify and classify the minerals of
fine fraction with prior separation X-ray diffraction (XRD)
analysis was used.

4.2 Microscopy analysis

To identify some alteration minerals of soil sediment sam-
ples an Olympus SZX-9 stereoscopic microscope was used.
The observations of soil sediments samples of both hot
springs without prior treatment or separation were carried

hot spring and whose diameter is~1 m. ¢ The same fossil mud pool
in the dry season. d Hacienda Los Mezquites contains the old thermal
baths in the study area (1900). e The GHM hot spring whose diam-
eter is~4 m and the discharge temperature of ~32 °C

out at the Laboratory of Petrography and Microthermom-
etry (Laboratorio de Petrografia y Microtermometria)
of the Geophysics Institute of the National Autonomous
University of Mexico (Universidad Nacional Auténoma
de México [UNAM)]). Thin sections of non-consolidated
material in the soil sediment samples from the hot springs
were prepared, critical point-dried, and coated with a thin
layer of carbon in order to identify the alteration minerals
in coarse fraction. First, ESEM was used for the coarse soil
sediment fractions at the Laboratory of Petrography and
Microthermometry of the Geophysics Institute of UNAM.
Then, an electron probe microanalyzer (EPMA; model
JXA-8900 XR, JEOL) was used for identifying alteration
minerals in fine soil sediment fractions at the University
Laboratory of Petrology (Laboratorio Universitario de

@ Springer

Journal : Large 41513 Article No : 173 Pages : 20

MS Code : 173

Dispatch : 24-7-2021 |

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290



Author Proof

Journal of Iberian Geology

2 Petrologia [LUP]) that belongs at the National Laborator
= o g g y
AR IRV S of Geochemistry and Mineralogy (Laboratorio Nacional
3 de Geoquimica y Mineralogia [LANGEM]) of the Geo-
2 physics Institute of UNAM. The electron probe enabled
= - back-scattered electrons (BSE) images to be obtained and
Yo T == X-ray energy dispersive spectroscopy (EDS) qualitative
Q analyses to be carried out.
2l 0o - o
9 N 0 N
<SS | o & o o
~
= QL .
g |8rI2 4.3 Short-wave infrared
oo _
Ls |22 2 % Sediment soil samples from the GRN and GHM hot
o springs, and from the fossil mud pool were analyzed at the
e pring p y
b Blg ez Laboratory of Petrography and Microthermometry of the
[« AN A A . .
- Geophysics Institute of UNAM by a portal LabSpec Pro
%é ~ o o spectrophotometer (Analytical Spectral Devices Inc.). The
rS|===9 reflectance was measured on dry surfaces without prior
e sample treatment. The range of selected wavelengths was
S £l e o 0 o 1300 to 2500 nm, corresponding with the SWIR region
T« [2F R spectrum. The sampling interval was 2 nm every 0.1 s. An
P pling y
& § “ internal radiation source and optical detector were used. The
g == I R identification of the minerals was carried out manually by
§ % comparing the position and shape of the absorption features
R LT S O I with spectra tables (Clark et al., 2007; Spectral International
=@ - aF Inc., 1994).
= o
=] N
Sl 9l zon <
ol | RE XL
S = 4.4 X-ray diffraction
Z 1.2 |2 o ¢ a
2lIZs |55 R . . . .
< | . The x-ray diffraction (XRD) technique was used to iden-
'_S % Q 7 el z tify the bulk mineralogy of the mineralized sediments of
§ = fine fraction (<0.074 mm) of both hot springs, the sedi-
:8 Eb ments interacting with the thermal water of the GRN hot
8 J ~ « spring and the white crust formation of the fossil mud pool.
£ |» = First, the samples were crushed, homogenized with an agate
< — . . .
§ A w§ o g mortar, and sieved to a mesh size of 0.074 mm. The min-
§ < @ " eral composition was determined using an EMPYREAN
5 | & diffractometer equipped with a nickel filter, a fine-focus
|2 copper tube, and a PIXcel3D detector operating at 40 mA
S| PNE=IE s B) . .
E g 3 & X and 45 kV at the National Laboratory of Geochemistry and
S| Mineralogy (Laboratorio Nacional de Geoquimica y Min-
§ E X YT eralogia [LANGEM)]) of the Geology Institute of UNAM.
s |H eSS The crushed samples were mounted on back-side aluminum
g p
§ T AR holders. The step-scan method was selected: Measurements
Slo were made at a 20 angular interval from 5-70° with an inte-
gL ration time of 40 s and a step size of 0.003°. The oriented
S|z g P
s | E “ o o N fraction method was used to identify clay minerals. Samples
o = .
g & R = were saturated with ethylene glycol and heated to 550 °C (to
o o T~ Q . . .. . .
8 2= 33 2 identify kaolinite in particular) (Moore & Reynolds, 1997).
3 |a Z Z E E :; g Phase identification was performed using the PDF-2 and
= ©ooo = g ICSD databases. The semiquantitative results were based
- | = . :
2 2 E_F = % on the intensity of the corundum peak as a standard for the
e 8 SE5EE| S+ relative intensity ratio (RIR; Hillier, 2000).
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4.5 Chemical analysis of thermal water

All the water samples were filtered in the field. The analysis
of major cations (Na*, K*, Li*, Ca**, Mg?*) and some trace
elements (Ba, As, Al, Fe) concentrations are used to built-
up the stability diagrams. An ionic chromatography system
(Dionex/5000, Thermo Scientific) was used to analyze the
ionic concentration of thermal waters at the Geothermal
Fluids Geochemical Laboratory of the Geophysics Insti-
tute of UNAM. The analysis of major anions (CI~, SO42_,
F~) was made using a Dionex Ion Pac AS11-HC column
(4x250 mm) with a mobile phase of NaOH 30 mM was
used; to analyze the cations, a Dionex Ion Pac CS11-HC
column (4 X250 mm) with a mobile phase of methanesul-
fonic acid mM. For both analyses, high purity standards of
each ion were used under the criterion that the coefficient
variation is < 2.0% of the reference standard for the cali-
bration curves. The ion balance (IB) was also performed;
both water samples had an IB <5%. To analyze the trace
elements, induced coupled plasma mass spectrometry (ICP-
MS) was performed with an ICP mass spectrometer (iCAP
Qc, Thermo Scientific) at the ICP-MS Laboratory of the
Geophysics Institute of UNAM. The ICP mass spectrometer
was previously optimized for sample analysis with a certified
aqueous solution suitable for a wide range of masses (Li,
Co, In, Ba, Bi, Ce, and U of 1 pug/L). The calibration curve
was prepared from a multi-elemental stock solution (QCS-
26) and was calculated for 16 concentrations (0, 0.1, 0.25,
0.5,0.75,1,2.5,5,7.5, 10, 25, 50, 100, 250, and 500 pg/L).
The instrumental drift was corrected with an Indium internal
standard (10 pg/L). The limit of detection was 0.117 pg/L for
Ba, 0.132 pg/L for As, and 8.1323 ug/L for Al.

4.6 Sulfurisotopes

Sulfur isotopes (**S) were measured in the authigenic barite
and pyrite of soil sediments and pyrite and stibnite of the
fossil mud pool. A Wilfley shaking table was used to con-
centrate dense metal minerals, especially sulfides and barite.
Thirty-five kilograms of samples were concentrated. Then,
the barite, pyrite, and stibnite were separated from the con-
centrated sample of each sampling campaign by handpicking
using the same Olympus SZX-9 stereoscopic microscope
with a 40 X magnification lens. The purity of the samples
was tested by examination with a binocular microscope.
The barite and pyrite from soils from both hot springs,
and the stibnite and pyrite from the fossil mud pool were
the only minerals obtained from the separation process.
Each sample was introduced into tin capsules that formed
balls ready to be analyzed. Pyrite, stibnite, and barite were
obtained by scratching the surface of polished samples,
avoiding contamination. Sulfur isotope analyses were car-
ried out at the Scientific and Technological Centers (Centres

Cientifics i Tecnologics [CCiT]) of the University of Barce-
lona using a continuous flow isotope-ratio mass spectrometer
(Delta Plus XP, Thermo Fisher) coupled with an elemental
analyzer (TC-EA; Carlo Erba 1108) according to the method
of Giesemann et al. (1994). Results are expressed in %o rela-
tive to the V-CDT standard. Analytical precision is within
+0.2 %o (1 SD).

4.7 Phase diagrams

The phase diagrams were made from the chemical com-
position of the water (Table 1) of the hot spring samples.
The chemical results were inputted into a database made in
the GSS module (Geochemist’s Spreadsheets) of the Geo-
chemist’s Workbench (GWB) version 11 Student Edition
program. The activities of the elements dissolved in water
were calculated with the GWB SpecE8 module. The model
used to calculate the activity coefficient was Debye-Hiickel
because the ionic strengths were 0.020 and 0.026 mol/kg
for the GHM and GRN hot springs, respectively. Based on
the activity values obtained by the equilibrium model, the
Act2 module of the GWB was used for the construction of
the Porbouix diagrams considering the mineralogical spe-
cies observed in each spring and the temperature, pH, and
Eh conditions.

5 Results
5.1 Physicochemical characteristics of springs

The field parameters of the water samples for both sampling
campaigns, as well as the concentrations of the major ions
and some trace elements, are shown in Table 1.

The EC ranging between 1189-1382 uS/cm and TDS
concentration 785-913 mg/L in the first field campaign of
both hot springs are similar but lesser than the dry season
[EC: 1940-1965 uS/cm; TDS: 1241-1258 mg/L (Fig. 3b)].
There is almost no change in pH in the hot springs for both
campaigns, in the GHM hot spring is neutral and slightly
more alkaline in the GRN hot spring (Fig. 3b). On the other
hand, the sample of the GRN hot spring shows the tem-
perature and SiO, concentration higher than those of the
GHM hot spring in both seasons. The dominant ions in both
springs are Na* and HCO;~ (Fig. 3a, b); therefore, according
to Giggenbach (1988), the thermal water of the study area
was classified as peripheral. However, there is also an impor-
tant concentration of Cl™ in the hottest spring (GRN) mainly
in the dry season which tends to mature water (Fig. 3a) and,
therefore Na-Cl type water. Arsenic is an element that has
an important implication in geothermal systems. Since it is
common for arsenic to be present in geothermal environ-
ments (Litter et al., 2019; Lopez et al., 2012) it is important
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Fig.3 Diagrams to classify thermal water; a water classification system proposed by Giggenbach (1988) using anions contents; b Durov Dia-
gram obtained from the ionic concentrations in the GSS module of the Geochemist’s Workbench (GWB) version 11 Student Edition program

to mention that the concentration of arsenic is high in both
hot springs (300-650 pg/l).

5.2 Mineral composition in soil sediments
All the mineralogical identification of soil sediment samples

collected near both hot springs and into the GRN hot spring
by the different analytical techniques is shown in Table 2.

The most abundant mineral identified in both sites
is plagioclase followed by quartz. Small barite crystals
(<1 mm) with tabular forms (Fig. 4a, b) and pyrite crys-
tals (<1 mm) were observed in both hot springs (Fig. 4c).
A pyrite crystal with arsenic was identified using elec-
tron microprobe analysis, was found with soil sediments
from the GHM hot spring (Fig. 4d). Unfortunately, it
was not possible to distinguish between arsenopyrite and

Table 2 Compilation of all minerals observed and identified by the different techniques used in the study, as well as the semiquantitative propor-

tion for XRD analyses

Qualitative Semiquantitative XRD of ~ Semiquantitative XRD of Semiquantitative XRD
Observed by: soil sediments (wt %) sediments inside GRN hot fossil mud pool (wt %)
spring (wt %)

Mineralogical phases ~ Stereoscopic ~ SWIR ESEM Rancho Los Samples 1-3  Samples 4-6 Rancho Nuevo (GRN)

Microscopy and Nuevo Mezquites
EPMA (GRN) (GHM)

Plagioclase X N.A N.A 53% 64% 35-46% 35-39% N.O

Feldespar X N.A N.A N.O N.O 19-25% 17-25% 8%

Quartz X N.A N.A 26% 28% 20-26% 19-33% N.O

Tridymite N.O N.A N.A N.O N.O 11-13% 7-9% N.O

Opal N.O X N.A N.O N.O N.O N.O 5%

Calcite N.O N.O N.A 19% N.O N.O 8% N.O

Barite X N.O X N.O 5% N.O N.O N.O

Pyrite X N.O X <5% <5% N.O N.O N.O

Stibnite X N.O X N.O N.O N.O N.O N.O

Montmorillonite N.O X N.O N.O N.O N.O N.O N.O

Smectite N.O N.O N.O <5% <5% <5%-6% 5-10%

Zeolite N.O N.O N.O N.O N.O N.O <5% N.O

Kaolinite N.O X N.O N.O N.O N.O N.O 77%

Alunite N.O N.O N.O N.O N.O N.O N.O 10%

Cross mark (X) means that the mineralogical phase was observed

N.O. mineral not observed, N.A. mineral not analyzed
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Fig.4 Images of the sulfur minerals found at both hot springs. Barite
crystals from the a GRN and b GHM hot springs identified by stereo-
scopic microscopy; ¢ pyrite crystal identified by stereoscopic micros-

As-bearing pyrite using XRD because of their deficient
concentrations and very small size (<50 pm), so it was
not possible to separate.

Stibnite crystals were also identified in soil sediments of
both hot springs by electron microprobe analysis. In general,
stibnite has prismatic and columnar forms, which often have
longitudinal striations or fractures characterized by smoothly
curving surfaces. At the GRN hot spring, stibnite crystals
were found in the fossil mud pool. These crystals are sub-
angular and present tabular habits; however, they are very
reworked and eroded, mainly at the corners, due to transport
processes (Fig. 5a, b). On the other hand, at the GHM hot
spring, the stibnite crystals are columnar, well-formed, and
slightly eroded, thereby evidencing less transport than the
GRN hot spring. The crystal shapes are tabular and cubic
(Fig. 5¢, d).

According to the SWIR analysis, other alteration miner-
als such as opal and montmorillonite are present in the soil
sediment samples of both hot springs and kaolinite only
in the GRN hot spring, specifically in the fossil mud pool
(Fig. 6).

copy. d Pyrite with arsenic content crystal identified in the GHM hot
spring by electron microprobe analysis. With circles highlight all
minerals

5.3 Mineral composition of fine grain fraction in soil
sediments by XRD

The XRD analysis was used to identify with better accuracy
all the mineralogical phases in fine grain fraction and to
obtain a weight proportion (wt %) of each one (Table 2).

According to the XRD technique, the most abundant
phase in wt % in both hot springs is plagioclase, followed
by quartz and, with much less, pyrite. Barite was only
identified in the GHM hot spring soil sediment in a low
weight proportion (Fig. 7b, Table 2). Calcite was only
found in the GRN hot spring, both on the soil sediment
samples (Table 2) and in the sediment interacting with
thermal water (Fig. 7a, Table 2); moreover, calcite was
absent in the samples of the GHM hot spring, where the
mineral was not identified.

After the clay grain fraction of the soil sediments were
separated for XRD analysis by flocculation, poorly crys-
talline smectite was also identified in deficient weight
proportion at both sampling sites (Table 2). That smec-
tite shows no evidence of interstratification with other
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x200 500 um

Fig.5 Prismatic and columnar stibnite crystals identified by ESEM a, b from the fossil mud pool of the GRN hot spring sized between 0.5 and
1 mm and clearly eroded; ¢, d from soil sediments of the GHM hot spring sized 0.5 mm, then smaller and not eroded

minerals of the clay group. Other valuable alteration min-
erals identified by XRD in clay grain fraction, particularly
in white crust formation of the fossil mud pool in the GRN
hot spring (Fig. 2b, c¢) were alunite and kaolinite (Fig. 7c).

5.4 Hydrothermal alteration minerals in the GRN
hot spring

The mineral associations identified inside the GRN hot
spring through XRD analysis were: intermediate plagi-
oclase with the highest weight proportion followed by
quartz, potassium feldspar, and tridymite. Identification
and detailed characterization of the clay minerals pre-
sent are based on studies of clay-sized fractions by XRD,
the presence of smectite in deficient weight proportion
was recognized. Minerals from the zeolite group were
also found in some samples. However, it was not possible
to identify by XRD analyses due to the deficient weight

@ Springer

proportion (Fig. 7d, Table 2). At the edge of the discharge
zone of the GRN hot spring, crystallized calcite was pre-
sent in the form of crusts (evidence with HCI 10%) in the
field. Also, this was corroborated by the results of the
XRD analysis, too (Table 2).

5.5 Sulfurisotopes

The two barite samples collected in the sediments show pos-
itive and similar isotope values and enrichment with both
8Spuite (%o V-CDT) and 8'*0, ;.. (Table 3). The results
for §3*Sy e Were 11.5%0 and 12.1%o in the GRN hot spring
and the GHM hot spring, respectively, and for §'%0, ;.. were
7.9%0 and 7.6%o. These values, as shown in Fig. 8, evidence
of the occurrence of mixing processes between Na-Cl water
type with meteoric water in the geothermal system.

On the other hand, the 634Spyrite the two pyrites of
soil sediment samples showing **S-depleted values
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Fig.6 SWIR spectra of soil sediments from the GRN and GHM hot
springs. Opal, montmorillonite and kaolinite were identified

(Table 3), therefore negative values were found in both hot
springs: —9.7%o in the GHM hot spring and—15.2%o in the
GRN hot spring. The value of §**S of stibnite of the fossil
mud pool is also depleted (— 9.9), however the 634Spyrite of
pyrite show different isotopic signature than the other sam-
ples having an enrichment whose value is+ 1.5.

6 Discussion
6.1 Geology pattern of the geothermal system

The spatial distribution of both hot springs shows a N-S
trend along with the Taxco-San Miguel de Allende fault
system (Fig. 1). The thermal manifestations in San Bar-
tolomé de Los Bafios exhibits also N-S pattern, related to
regional faulting of the San Miguel de Allende-Querétaro
system (Aguirre-Diaz et al., 2005; Alaniz-Alvarez et al.,
2001; Canet et al., 2019). Therefore, major geological struc-
tures and their spatial relationship, N-S Taxco-San Miguel
de Allende fault system related to the intra-arc extension
of the TMVB, control the occurrence of the GZRN, being
an important geological feature in the region. Locally, the
intersection of N-S regional trend and NW-SE and NE-SW

faults controls the occurrence of thermal activity of the GRN
and GHM hot springs. These structural patterns configure
the southern limit of the El Bajio basin (Botero-Santa et al.,
2015).

The intense volcanism and the high heat flow distinguish
the central region of the TMVB (Pérez-Lopez et al., 2011;
Prol-Ledesma and Moran-Zenteno, 2019) being the most
recent in the Pleistocene. It consisted of several andesitic
lavas and monogenetic volcanoes related to the volcanic
events of the last stage of the formation of the TMVB
(Lesser y Asociados SA de CV 2000); it could suggest hypa-
byssal bodies in the area and promote a thermal source.

6.2 Hydrogeochemistry of hot spring waters

In dry season rise the EC and TDS of both springs, as well
as ionic concentrations, mainly in the GRN hot spring, due
to an evaporation process which causes a concentration of
some ions in thermal water. EC and TDS of both springs in
the dry season are higher than those of reporter for ground-
water (150=1000 puS/cm and < 1000 mg/L respectively;
Younger, 2007), indicating brackish water and influenced
by thermal activity, mainly for the GRN hot spring.

The dominant ions in both springs are Na* and HCO;™;
however, there is also an important concentration of C1™ in
the hottest spring (GRN) mainly in dry season indicating
a dilution process in the thermal fluid caused by the rainy
season and decreasing the chemical concentration of almost
all ions. Concentrations of chloride are causing by a deep
flow characterized by acidic and reducing conditions (T6th,
2005). The high values of HCO;™ may occur due to the dis-
solution and re-precipitation process of calcareous base-
ment rock, as well as to a mixing process between that
deep chloride water with shallow bicarbonate water. Also,
although water from the springs is not for drinking, the
concentrations of As and F~ are high according to Mexican
regulations for the use and consumption of drinking water
(NOM-127-SSA1).

6.3 Hydrothermal alteration

The analysis of the recent deposits (soil sediments) and
their alteration minerals observed by different analytical
techniques, as well as the mineralogy found from the white
crust of the fossil mud pool evidence the occurrence and
periodicity of hydrothermal activity in the study area.
According to SWIR and XRD results, non-crystalline
silica phases (opal and tridymite) were identified in both
springs of the GZRN, being opal a mineral often associ-
ated with hot springs. In the geothermal zone of San Barto-
lomé de los Banos, near to the GZRN, were also identified
phases from the silica group as opal and quartz formed in
permeable formations at shallow depths, below the steam
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Fig. 7 Diffractograms of the fine grain fraction of soil sediment
samples of the a GRN hot spring and b GHM hot spring. ¢ Alunite
and kaolinite identified from white crust formation of the fossil mud
pool; d interior soil sediment samples of the GRN hot spring. Min-

Table 3 5°*S values of barite, pyrite and stibnite samples in both hot
springs and in the fossil mud pool

&S (%o V-CDT) 5180 (%o)
GRN GHM Fossilmud  GRN GHM
pool GRN
Barite +11.5 +12.1 - +7.9 +7.6
Pyrite -9.7 - 152 +1.5 - -
Stibnite - £ —-99 - -

condensation zone (Canet et al., , 2015, 2019) and suggest
temperatures of ~ 100 °C and moderate acidic conditions
(Corbett & Leach, 1998). The presence of kaolinite in any
environment indicates an advanced argillic alteration of vol-
canic rocks (Canet et al., 2015) and is considered, along the
alunite, as a replacement of volcanic glass in the ignimbrites
at shallow depths (Arellano et al. 1998), as it occurs in the
Los Humeros geothermal field (Elders, et al., 2014) situated
in the east of the TMVB. That advanced argillic alteration
is also indicative of a low pH and is produced by H,SO,
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formed by oxidation of H,S at the surface (Elders et al.,
2014) whose formation range of temperature is ~ 100 —to
~200 °C (Browne, 1978; Henley & Ellis, 1983; Reyes, 1990,
1992). Besides, kaolinite is associated with other minerals
such as alunite, opal, tridymite (Garcia-Valles et al., 2015)
and all of them are also result of acidic conditions (Cor-
bett & Leach, 1998).Therefore, kaolinite, alunite and opal
found in the soil sediments of the GZRN are indicating an
advanced argillic alteration in an acidic and oxidizing envi-
ronment. The association of alunite and kaolinite suggests
a relationship between the geothermal system and volcanic
activity, as it happens in Acoculco and San Bartolomé de
los Bafios geothermal zones (Canet et al., 2015; Sanchez-
Cordova et al., 2020 respectively) and is evidence of pos-
sible emission of partially acidic gases that occur in the
past. Thus, the thermal conditions of the GZRN may have
varied over time being is at first more acidic than now and/
or altered minerals formed in acidic environment can have
rapidly transported from deep to surface through the faults.

Other alteration minerals found in the GZRN, as well
as in Los Humeros geothermal field, were quartz, calcite,
pyrite and smectite are produced by neutral or alkaline flu-
ids (Elders et al., 2014). Smectite, associated with opal and
zeolites, was also found in the geothermal zone of San Bar-
tolomé de los Bafios and was defined as argillic alteration
(Canet et al., 2019). However, in some cases the identifi-
cation of smectite is ambiguous, owing to they can have
their origin in hydrothermal or supergenic (weathering)
processes (Thompson & Thompson, 1996), it is the case of
the poorly crystalline smectite found in the GZRN. How-
ever, the smectite in the GZRN was identified along with
other alteration minerals such as zeolite and calcite, then it
is supposed to be formed by hydrothermal processes even
though the XRD results does not show a clearly evidence
of hydrothermal genesis of smectites. Zeolite is a mineral
that changes as a function of temperature, rock, and fluid
composition (Browne, 1978; Henley & Ellis, 1983; Reyes,
1990, 1992), then its precipitation in the GZRN is evidence
of neutral to alkaline environment at a range of temperature
of ~100 —~200°C.

Moreover, other siliceous phases were also identified in
the GZRN, such as plagioclases, feldspars, and volcanic
glass, as well as detrital components inherited from the igne-
ous and pyroclastic rocks present in the stratigraphic column
of the region. It is known that vitreous material in geother-
mal springs is usually altered, mainly to clay minerals, opal,
zeolite, or calcite (web'), thus the thermal fluid interacted
with the volcanic glass of Oligocene breached ignimbrites of
the stratigraphic sequence in the study area could have been
altered to those minerals because all of them were identified
in the sediments of the hot springs.

6.4 Barite deposition and its connotation
in the GZRN

Barite (BaSO,) is a mineral mainly present in environments of
hydrothermal origin (Canic et al., 2015; Dubé, 1988; Poole,
1988; Bloun, 1977; Striibel, 1967) especially in low-tempera-
ture fluids (< 120 °C) (Dubé, 1988; Hein et al., 2007; Mergner
et al., 2012; Poole, 1988; Scheiber et al., 2012), Chemically,
the precipitation of barite occurs due to its low solubility; the
concentration of barium in water (Bodek et al., 1988) and its
solubility increases when salinity increases at a temperature of
100 to 250 °C (Holland & Malinin, 1979). Barite can precipi-
tate in some thermal springs under surface conditions through
the alteration of volcanic rocks by acidic fluids or as a result
of marine contribution as occurs in Mapachitos, Peninsula de
Baja California, another geothermal zone in northwestern of
Mexico (Arellano-Ramirez et al., 2017; Rodriguez-Diaz et al.,
2019). Accordingly, barite deposition may be interpreted as
a near-surface assemblage (kaolinite + opal) produced under
acidic and oxidizing conditions. Therefore, the barite pre-
cipitation in the soil sediments of the GZRN under surface
conditions is suggested and it occurs due to the alteration of
volcanic rocks by low temperature acidic fluids and oxidizing
conditions as occurs also in the geothermal zone of San Bar-
tolomé de los Bafios. Besides, barite precipitation in both sites
confirms the hydrothermal activity in the region.

The deep and acidic thermal fluid rises to the shallow
aquifer where the conditions are oxidizing and colder caus-
ing a precipitation process of sulfates such as barite. This
mineral suddenly precipitates as BaSO, at the subsurface
due to the circulation of fluids driven by the high heat
flow of the tectonic environment, as occurs in the southern
California Continental Borderland, part of the broad San
Andreas transform-fault plate boundary (Hein et al., 2007).
In this system, tectonic and subsidence faults and fractures
allow for the rapid ascension of thermal fluid.

Barium may associate with potassium in aqueous solu-
tions and may even substitute potassium in rock-forming
minerals containing this mineral (Naimy, 2008), and/or
can be released from the plagioclases of the volcanic rock
sequences during alteration reactions. These released ions
are dissolved and incorporated into thermal fluid under oxi-
dizing to semi-reducing, slightly acidic conditions in deep.
Finally, the thermal fluid rises to the shallow aquifer caus-
ing cooling and a mixing process of late-stage hydrothermal
fluids and meteoric water in a neutral and oxidizing environ-
ment, thus precipitating the barite (Rye, 2005). Therefore,
these processes can occur for the formation and precipitation
of barite in the GZRN. That mixing process is demonstrated
in Fig. 8 where positive slope of the sulfur and oxygen—iso-
tope data for barite is interpreted to represent mixing of
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SO42_ derived from the disproportionation of magmatic
SO, at depth (magmatic-hydrothermal) with sulfate formed
during the oxidation of H,S near the surface (Rye, 2005).
Alternatively, barite in the environment may be a product
of the interaction between thermal fluid and ignimbrites and
andesites at depth given the affinity between barium and
igneous rocks, particularly potassic and calc-alkaline vol-
canic rocks (Yavuz et al., 2002).

6.5 The implication of sulfide minerals and arsenic
in the GZRN

Pyrite may precipitate when H,S directly derived from
igneous activity reacts with Fe-bearing wall rocks (Rye,
2005). Thus, it could have been a product of acidic altera-
tion involving the oxidation of H,S and precipitated from
interaction and reaction processes between volcanic rocks
and acidic fluids during the last volcanic activity in the
region (between 1.3 to 0.83 Ma, CEAG, 2000). Moreover,
few previous studies report the occurrence of stibnite, a
sulfide mineral, in geothermal fields, yet some reports the
presence of stibnite in low-sulfidation epithermal deposits
(Lattanzi, 1999; Mclver, 1997) and in the surface and sub-
surface zones of geothermal systems in Italy and El Sal-
vador (Cappetti et al., 1995; Raymond et al., 2005), as is
the case of the GZRN where stibnite was found at surface
in soil sediments. It is known that antimony in geothermal
systems is transported almost exclusively in liquid-phase
geothermal fluids (Spycher & Reed, 1989). Its deposition
is influenced by the decreasing temperature of hydrother-
mal fluids (~ 100-~200 °C) and the change in pH conditions
from acidic to neutral (Wilson et al., 2007). Besides, under
nearly neutral pH (~7-8), stibnite and calcite can be depos-
ited in thermal fluids (Kristmannsdottir 1989), comparable
to what was observed in the GZRN.

On the other hand, arsenic is also commonly associated
with pyrite (Webster & Nordstrom, 2003) and is indicative
of some conditions and processes that occur in deep (Vil-
lanueva-Estrada et al., 2013). For instance, this metalloid
can be leached along with other elements (such as antimony,
barium, lithium and fluoride) and hydrogen sulfide (Ellis &
Mahon, 1964; Maity et al., 2011; Webster & Nordstrom,
2003), their presence in thermal waters is evidence of Na-Cl
water type in the reservoir, reducing conditions and high
temperatures (Webster & Nordstrom, 2003). The assembly
of these other elements with arsenic presents evidence of
mixing processes in geothermal systems (Webster & Nord-
strom, 2003). At temperatures of 150-250 °C, arsenic is usu-
ally found as As-bearing pyrite (Ballantyne & Moore, 1988;
Bundschuh & Maity, 2015; Ewers & Keays, 1977) or can
be released from andesites (Webster & Nordstrom, 2003).

Several studies in Guanajuato near to the study area simi-
larly found also high concentrations of geogenic arsenic in
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groundwater wells with thermal activity (Landa Arreguin
et al. 2021; Morales-Arredondo et al., , 2015, 2016; Rod-
riguez et al., 2006). It is related to the silicate weathering
process in the region caused by water—rock interaction
(Morales-Arredondo et al., 2020), then devitrification of
volcanic glass and felsic rocks and finally the release of
arsenic (Morales-Arredondo 2018). In the GZRN important
concentrations of arsenic (Table 1) are also reported whose
origin is related to: a) the weathering of volcanic rocks of
the stratigraphic sequence in the study area of mostly acidic
composition by the water—rock interaction; and/or, b) the
leaching of As-bearing pyrite and finally its precipitation as
As-bearing pyrite. The presence of arsenic in pyrite and its
high concentrations of hot springs reveal reducing condi-
tions and a range temperature of 150 to 250 °C in the reser-
voir, as well as confirm the mixing process occurred in the
GZRN. The Na-ClI water type in the GRN hot spring sample
of dry season reveals that the water flow is intermediate or
even regional, then a high residence of thermal water.

6.6 Sulfurisotopes in the GZRN

The results for the sulfur isotopes in barite corroborate the
mixing process (Fig. 8) between thermal fluid and mete-
oric water of shallow aquifer and show that an oxidation
process occurs during the rise of thermal fluid because of
the presence of atmospheric oxygen in subsurface zones,
which produces an enrichment of S relative to the starting
material (Seal II 2006). It is due to the heavier isotope of
sulfur is enriched in the higher oxidation state (Seal II et al.
2000). Considering the barites formed close and below the
water table in Wiesbaden thermal spring system in Germany
whose isotopic values of **S are in a range from + 11.6%o
to+ 14.7%o and the fact that they are lesser positive than fos-
sil barites located above the zone of the recently upwelling
thermal water (+ 15%o0 to+ 16.9%0) (Wagner et al., 2005),
the isotopes values of 8**S of barites from the GRN (+11.5
%o) and GHM (4 12.1 %0) hot springs may have formed
recently and near to the water table.

Ohmoto and Lasaga (1982) have evaluated the kinet-
ics of sulfur isotope exchange between SO,*~ and H,S and
found that pH, temperature, and the total concentration of
dissolved sulfur are dependent on the exchange rates. For
instance, rates increase with increasing temperature and
sulfur concentration and decreasing pH. So, it was found
that for “typical” hydrothermal systems of near-neutral to
slightly acidic conditions (pH 4 to 7), such as in the GZRN
whose pH is acidic at depth and neutral to slightly alkaline
on the surface and the isotopic equilibrium cannot reached
temperatures below 200 °C. The positive value of & 3*S of
pyrite in the fossil mud pool can be evidence of oxidizing
processes of H,S and SO, towards the surface.
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6.7 Dissolution of the calcareous basement

Another process that appears to be occurring in the GZRN
is the dissolution of the calcareous basement due to the pos-
sible slightly acidic composition of thermal fluid at depth.
Despite carbonates having inverse solubility concerning
temperature (Eq. 3), they can dissolve and precipitate in
hydrothermal environments. For instance, any chemical
reaction capable of releasing protons can produce carbonate
dissolution (Eq. 1), including the oxidation reaction of H,S
to sulfate (Eq. 2) (Corbella et al., 2007), which is detailed
at following:

CaCOy,, + 2H' = Ca™ + CO,,, + H,O' (1)

H,S. + 2045, = SO + 2HT )

The acidity of the protons (H*) associating with dis-
solved carbonate ions (CO,%7) in the thermal fluid leads to
the formation of bicarbonates (HCO;"), thereby increasing
the pH (> 6.3) (Appelo & Postma, 2005). Also, accord-
ing to Nicholson (1993), water contained in limestone or
water interacting with rocks rich in carbonates will have
a high concentration of bicarbonates. These processes,
as well as mixing process with shallow water, may cause
high concentrations of bicarbonate in both hot springs,
whose chemical composition indicated that HCO;~ was
the dominant anion.
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Fig.9 Stability and activity diagrams of the GRN and GHM hot
spring samples: stability diagram of a barite and b pyrite in the
GRN hot spring samples. Activity diagrams: ¢ clinoptilolite K and d
clinoptilolite Ca in the GRN hot spring samples. Stability diagrams

Notably, the solubility of calcite is retrograde and is
expressed by a reaction defined as dissolution—precipita-
tion (Nicholson, 1993), as follows:

Cat + 2HCO;

) a9 = CaC05 + H,0p + COyy (3)

Applying the Le Chatelier principle in Eq. (3), an
increase in CO, produces CaCO; dissolution, and a
decrease in CO, produces CaCOj; precipitation (Appelo
& Postma, 2005). Calcite appears to be forming in the
discharge zones of the GZRN because the ascension of
thermal fluid to the surface produces a loss of CO,. The
dissolution of the calcareous basement produces high con-
tents of calcium in thermal water. However, the Ca>* can
be precipitate as calcic plagioclase, mineral with a greater
presence in the area.

The thermal fluid is being saturated with calcite as a
result of the dissolution of basement rocks, it ascends
through faults and is modified by boiling and mixing pro-
cesses, leading to an increase in pH and pressure and a
decrease in temperature. Finally, the thermal water arrives
at the surface, and calcite is precipitated in the discharge
zone of the springs.

6.8 Final remarks on mineral deposition
in the GZRN

Phase diagrams were made to confirm the presence of some
alteration minerals observed and identified by the different
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analytical techniques (microscopy, electron microprobe, and
XRD) used in the geological study. The diagrams of both
springs were made considering their specific conditions.
According to the Eh—pH stability diagrams, barite (Fig. 9a
and 9e) and pyrite (Fig. 9b and 9f) can precipitate in both
springs. Moreover, the activity diagrams demonstrate that
zeolites can also be formed, which, owing to the stability
diagrams, are defined as calcium and potassium clinoptilo-
lites ((Ca,K)4(S13,Al5)04,%20H,0) (Fig. 9¢, d, g, h).
Meteoric water is infiltrated through faults; subsequently
heated at depth by a convective process and/or by a mag-
matic source whose depth is unknown. The acidic environ-
ment in the reservoir zone can be caused by emission of
partially acid gases of that magmatic source or by partially
acidic gases released of the last volcanic activity in the
region producing the dissolution of the calcareous base-
ment rock. During the rise of the thermal fluid (Na-Cl water
type) through the up-flow zone, the H,S suffers an oxidation
process, the formation of H,SO, and the precipitation of
kaolinite, alunite, pyrite, and opal in an acidic environment.
Under similar acidic and oxidizing conditions but at lower
temperatures, the barite precipitates in subsurface zones.
Finally, the thermal fluid reaches the shallow aquifer (Na-
HCO;™ type water), thus the mixing process is carried out,
therefore the conditions of the geothermal system are also

\ \\ \' meteoric\ \ )\ \\\

\\ \
iy \

modified from acidic to neutral-slightly alkaline, decreasing
the temperature of the thermal fluid and precipitating altera-
tion minerals such as calcite, stibnite, zeolite and smectite
near to the surface or even in the discharge zone.

7 Conclusions

In the GZRN the alteration minerals and the geothermal
activity are influenced by the Taxco-San Miguel de Allende
regional fault, besides of the recent volcanism of the Llano
Grande and La Gavia volcanoes in the study area, therefore
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the GZRN is defined as a convective geothermal system con-{{ekilko

trolled by fault systems of an extensional tectonic regime
with probable magmatic contribution (Fig. 10).

According to some altered minerals identified, such as
kaolinite, alunite, opal, pyrite, stibnite, zeolite, as well as the
high concentrations of arsenic found in both hot springs and
its association with pyrite in soil sediments, the reservoir
temperature range in the GZRN is~ 150 to ~200 °C, cor-
responding to an intermediate-temperature system, however
it isrecommended to corroborate with geothermometers and
mineral saturation indexes.
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The degree of development of each mineral assemblage
varies from site to site in the GZRN area, resulting in the
formation of inactive (for instance, hydrothermal activity
decreases in the GHM hot spring) or active hot springs that
reflect the long-lived evolution and high residence of hydro-
thermal fluids, so it is assumed that thermal activity in the
region has been intermittent and varied over time being at
first more acidic than now.

The presence of kaolinite and alunite reveal an advanced
argillic alteration of different volcanic rocks of the study area
and are considered as a replacement of volcanic glass of the
Oligocene breached ignimbrites, and along with opal, pyrite
and barite reveal an acidic and oxidizing environment. How-
ever, barite is formed recently at low temperatures and near
to the water table. The precipitation of calcite and stibnite
at the surface is influenced by the decreasing temperature of
hydrothermal fluid due to the mixing process with a shallow
aquifer (meteoric water) and the change in pH conditions
from acidic to neutral (~7-8), therefore these minerals are
evidence of change conditions in the geothermal system.
Zeolite and smectite deposition occur by low-temperature
thermal fluid in a neutral or alkaline environment. On the
other hand, the presence of arsenic, along with high con-
centrations of fluorides, corroborate the mixing process
in the GZRN and reveals high residence of thermal fluid
under reducing conditions and high temperatures, as well
as an intermediate or even regional flow water and whose
evidence is the Na-Cl type pf water of the GRN hot spring.

The most important process that is occurring in the
GZRN is the water—rock interaction between geothermal
fluid and rocks of the stratigraphic sequence of the region
including the basement rock, causing the formation of
alteration minerals; some of them are in thermodynamic
equilibrium.
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