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DEGREES OF COMPRESSION AND INERTIA FOR FREE-ABELIAN TIMES
FREE GROUPS

MALLIKA ROY AND ENRIC VENTURA

ABSTRACT. We introduce the concepts of degree of inertia, dig(H), and degree of compression,
dcg(H), of a finitely generated subgroup H of a given group G. For the case of direct products
of free-abelian and free groups, we compute the degree of compression and give an upper bound
for the degree of inertia. Imposing some technical assumptions to the supremum involved in the
definition of degree of inertia, we introduce the notion called restricted degree of inertia, di/G(H),
and, again for the case Z™ x Fy,, we provide an explicit formula relating it to the restricted degree
of inertia of its projection to the free part, dian (Hm).

1. INTRODUCTION

For a group G, we write r(G) to denote the rank of G, i.e., the minimum cardinal of a generating
set for G. To work with group morphisms, we use the notational convention of writing arguments
on the left, i.e., ¢: G1 — G2, g — g¢; and so, compositions as written: gy = (gé)1p. Accordingly,
we write conjugations on the right, HY = g~'Hg, and commutators in the form [a,b] = a~1b~ab.
For a subgroup H < G, we shall use the notation H <¢; G' to emphasize that H is finitely generated,
and H <g G (resp., H <« G, or H <; G) to emphasize it is of finite index (resp., infinite index, or
index ) in G.

In the commutative realm, the rank function is increasing in the sense that H < K < G implies
r(H) < r(K). This is far from true in general, and the main expression of this phenomena can
be found in the context of free groups F,, where the free group of countably infinite rank easily
embeds into the free group of rank 2, Fy, < Fy. However, when restricting ourselves to certain
families of groups and subgroups, the rank function tends to behave less wildly and somehow closer
to the commutative behaviour. An example of this situation is again in finitely generated free
groups, but restricting our attention to subgroups fixed by automorphisms or endomorphisms: the
story began in [7], where Dyer—Scott showed that the fixed subgroup Fix(¢p) is a free factor of F,
for every finite order automorphism ¢ € Aut(F,), and conjectured that r(Fix(¢)) < n, in general.
This was proved later by Bestvina—Handel [2], and extended several times in subsequent papers,
all of them pointing to the direction that the rank function, when restricted to subgroups fixed by
endomorphisms, tends to behave similarly to the abelian case. In this spirit, the following concepts
were first introduced by Dicks—Ventura in [6] and turned out to be quite relevant in the subsequent
literature:
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Definition 1.1. Let G be a group. A finitely generated subgroup H <G is said to be compressed
in G if r(H) < r(K), for every K such that H < K < G. And H is said to be inert in G if
r(HNK) < r(K), for every K < G. (Note that, equivalently, in both definitions one can restrict
the attention to those subgroups Ks being finitely generated.)

Observe that, directly by induction from the definition, inert subgroups are closed under finite
intersections. Also, inert subgroups are compressed, while the other implication is not known to be
true or false in free groups (this is the so-called inertia conjecture, see Zhang—Ventura—Wu [21] for
partial results), and it is not true in general:

Example 1.2. Consider the direct product of the Klein bottle group with the group of integers,
say G = {(a,b | bab~'a) x {(c |), and its subgroup H = (a,b* ¢) ~ Z3>. By Corollary 4.3 and
Proposition 4.4 from [2I], H is compressed but not inert in G.

Several known results involving these concepts include the following;:

Theorem 1.3. (i) (Dicks—Ventura, [0]): Arbitrary intersections of fized subgroups of injective

endomorphisms of F,, are inert in Fy,;

(ii) (Martino—Ventura, [12]): arbitrary intersections of fized subgroups of endomorphisms of F,,
are compressed in Fy;

(iil) (Wu—Zhang, [20]): arbitrary intersections of fized subgroups of automorphisms of closed
surface groups G with negative Fuler characteristic are inert in G;

(iv) (Wu-Ventura—Zhang, [19]): arbitrary intersections of fixed subgroups of endomorphisms of
surface groups G are compressed in G.

Also, in [19] and [21], Zhang—Ventura—Wu studied similar questions within the family of finite
direct products of free and surface groups, where more interesting phenomena show up.

In the present paper we introduce a quantification for these two concepts and study it within
the families of free groups, and free-abelian times free groups. For technical reasons it is better
to work with the so-called reduced rank of a group G, defined as 7(G) = max{0,r(G) — 1}, i.e.,
one unit less than the rank except for the trivial group for which we take zero (note that then,
t(1) = 7(Z) = 0 while 0 = (1) # r(Z) = 1). Observe that H < G is compressed in G if and only
if 7(H)/T(K) < 1 for every K such that H < K <g G; and that H < G is inert in G if and only
if 1(H N K)/T(K) < 1 for every K <g G (understanding always 0/0 = 1). This motivates the
following quantitative definitions:

Definition 1.4. Let G be a group and H <tz G. The degree of compression of H in G is deq(H) =
supy {T(H)/1(K)}, where the supremum is taken over all subgroups K with H < K <¢G. Similarly,
the degree of inertia of H in G is dig(H) = supg {t(H N K)/T(K)}, where the supremum is taken
over all K<, G satisfying H N K <tz G and, in both cases, 0/0 is understood to be 1.

Note that, taking K = H, we get dcg(H) > 1 and dig(H) > 1. So, the possibility of K being
cyclic (which leads in both cases to 0/0 = 1) is irrelevant in both definitions and we can restrict
the two supremums to non-cyclic Ks without changing their final values.

Note also that the supremum in the definition of degree of compression is always a maximum,
since the numerator has a fixed value and the denominator takes only natural values. Although we
do not have any particular example, the supremum in the definition of degree of inertia could, in
principle, not be attained at any particular subgroup K. In this sense, the following is an intriguing
question for which, at the time of writing, we have no idea how to answer:
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Question 1.5. Is there a (finitely generated) group G and a subgroup H <jy G such that dig(H)
is a transcendental number? Or an irrational number? Or such that the supremum in dig(H) is
not a mazximum?

Observe that in the definition of degree of inertia, we take the supremum only over those sub-
groups K <gz G whose intersection with H is again finitely generated. In groups G with the Howson
property (the intersection of any two finitely generated subgroups is again finitely generated), like
free groups or surface groups, this is no restriction and that supremum is over all finitely generated
Ks. Otherwise, if G is not Howson we are eliminating, on purpose, those possible finitely generated
Ks having non-finitely generated intersection with H (which would force dig(H) to be automat-
ically infinite). However observe that, even with the present limited definition, dig(H) may be
infinite as well; explicit examples will be shown later.

We adapt the definition of inertia to the non-Howson environments by saying that a subgroup
H < G is finitary inert in G if r(H N K) < r(K) for every K <gz G such that H N K <g G. The
following observation then follows directly from the definitions and presents the values of dcg(H)
and dig(H) as a quantification of how far is the subgroup H <tz G from being compressed and
from being finitary inert in G, respectively:

Observation 1.6. Let G be a group and H <y G. Then,

(i) 1 <deg(H) < dig(H);
(ii) deg(H) =1 if and only if H is compressed in G;
(iii) dig(H) =1 if and only if H is finitary inert in G.

The following intriguing question is open, as far as we know:

Question 1.7. Is there a (finitely generated) group G with a subgroup H <;5 G being finitary
inert but not inert? (i.e., satisfying ¥(H N K) < #(K) for every K <y G with H N K <y G, but
simultaneously admitting some Ko <z G with T(H N Ky) = 00 ?).

In the present paper we study these notions for the case of the free group and obtain the following
result in Section 2

Theorem 1.8. For any finitely generated free group G = F,,, the function dcg, (-) is computable;
more precisely, there is an algorithm which, on input hy, ..., h, € F,, computes the value of
deg, ((h1, ..., hr)) and outputs a free basis of a subgroup K <y F,, where the corresponding supre-
mum is attained.

The question whether dig, (-) is computable in free groups (related to the question whether the
corresponding supremum is a maximum or not) seems to be much more delicate. In Section [2| we
refer to a quite similar question, which was successfully solved recently by S. Ivanov in [9]. However,
at the time of writing, we do not know how whether one can use this result to compute dig, (+).

Then, we concentrate on free-abelian times free groups, G = Z™ x F},, where the situation is
richer and trickier because, for m > 1, n > 2, G is known to be non-Howson (the following easy
example already appears in [3] attributed to Moldavanskii: G = Z x Fy = (t) x {(a,b), H = {a,b),
K = (ta,b), and HN K = (w(a,b) | lwly = 0) = (a""ba™,n € Z), where |w|, denotes the a-
coordinate of the abelianization of w). Denoting by 7: G — F;, the natural projection, we study
in Section |3| the degree of compression and prove the following result (see Theorem for more
details and an explicit formula):
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Theorem 1.9. Let G =Z™ x F,,. There is an algorithm which, on input hy, ..., h,. € G, computes
the value dcg((h1,...,hr)) and outputs a basis of a subgroup K <y G where that supremum is
attained.

In Section [4] we study the degree of inertia, also for groups of the form G = Z™ x F,,, and get
the following result:

Theorem 1.10. Let H<; G =Z™ x Fy,, and let Ly = HNZ™.

(i) If r(Hm) < 1 then dig(H) = 1;
(ii) if r(Hm) 2 2 and [Z™ : Ly] = co then dig(H) = oo;
(iii) if r(Hm) > 2 and [Z™ : Ly] =1 < oo then dig(H) < ldip, (Hm).

We conjecture that the inequality in Theorem [I.10] (iii) is, in fact, an equality, i.e.,

i)
Conjecture 1.11. For G =Z™ x F,, and Hgng with r(Hm) > 2, we have the equality dig(H) =
[Z™ : Ly -dig, (Hm), where Ly = HNZ™.

Unfortunately, we cannot complete a general proof for this equality. Instead, we get an ap-
proximation to it by introducing a technical modification to the definition of dig(+), the so-called
restricted degree of inertia:

Definition 1.12. Let G be a group and 7: G — G/Z(G) the projection modulo its center Z(G)<G.
Let H < G be such that Hr is not virtually cyclic and Hn £ [Gm, Gr]. The restricted degree
of inertia of H in G is di(H) = supx{t(H N K)/T(K)}, where the supremum is taken over all
K < G satisfying H N K <y G, [Hr : Hr N Kn] = oo, and Hr N K7 £ [Gr,Gn] (again,
understanding 0/0 = 1).

Remark 1.13. The conditions on the projection of the subgroup H7m not to be virtually cyclic
and not to be contained in the commutator [Gm, G7] are just to make sure the supremum is not
over the empty set: assuming these two conditions, let h € H be such that hw ¢ [Gm, Gr] and take
K = (h) < G; clearly, K = HNK = (h) is cyclic and so finitely generated, HrNK7 = (hr) <o H7
because H is not virtually cyclic, and hr € Hr & [Gm, Gr]. Moreover, F(HNK)/#(K) =0/0=1
and so, dig(H) > 1.

Note that our two cases of interest are the following: (i) G = Fy,, n > 20, Z(G) =1, G/Z(G) =
F,, and the definition applies to any non-cyclic subgroup H < G such that H £ [F,,, F,]; and (ii)
G=7Z"xF,,n>2s0ZG)=7Z" G/Z(G) = F,, and the definition applies to any subgroup
H < G such that Hr is not cyclic and Hr £ [Fy,, F,].

Observe that the definition of restricted degree of inertia coincides with that of degree of inertia,
except for the extra technical conditions required for the subgroups K over which the supremum
runs. Hence, 1 < dig(H) < dig(H) and we conjecture that, at least in the free and free-abelian
times free cases, they do coincide.

Conjecture 1.14. For G = F,, and G = Z™ x F,,, dig(-) = dig(").
Our main result in Section [5|is the desired equality from Theorem m (iii), but expressed with
the restricted degrees of inertia:

Theorem 1.15. Let H<;,G = Z™ x F,, be such that Hr is not cyclic and Hr £ [F,, F,,], and let
Lgy=HnNzZ".
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(i) If [Z™ : Lg] = oo then di(H) = oo;
(ii) i [Z™ : L) =1 then dig(H) = 1di}, (Hm).

Theorem [T.T5]is the most involved and technical result in the paper. We hope in the future some
new ideas come up allowing to avoid the technical working conditions (namely, Hr N K7 having
infinite index in H7, and not being contained in [F,,, F},]) and to recycle the proof of Theorem m
into a proof for Conjecture m (or, better, for Conjecture .

We conclude the present section with a straightforward result which will be used later.

Lemma 1.16. Let ¢: G1 — Ga be an isomorphism of groups. For every H <z5 G,

(i) deg,(H¢) = deg, (H);
(iii) with the extra assumptions that Hmy is not virtually cyclic and Hmy ;( [G1m1, G1m1], where
mi: Gi = G;/Z(G;) is the natural projection modulo the center Z(G;) < G;, i = 1,2, we
have dig, (Ho) = dig, (H).

Proof. For every K <tz G1 with H < K, we have K¢ <g G2 and Hop < K¢ so, T(H) =T(H¢) <
deg, (Ho) - T(K¢) = deg, (Ho) - 7(K). Therefore, deg, (H) < deg, (H¢). By symmetry, we get (i).

Similarly, for every K <g G1 with H N K <g Gh, we have K¢ <¢ G2 and Hp N K¢ =
(HNK)é <ty Ga s0, {(HNK) = ((HNK)$) = {(HONK ) < dig, (Ho)-F(K ) = i, (H)-i(K).
Therefore, dig, (H) < dig,(H¢). By symmetry, we deduce (ii).

The argument in the previous paragraph also shows (iii), provided we see that the technical
conditions in the supremum of the definition of restricted degree of inertia get preserved under ¢.
And in fact they do: suppose K <g G is such that H N K < G1, Hm N K7 <o Hm and
HmNnKm &£ [Gim, Gim]; since, ¢ is an isomorphism, K¢ <z G2 and HpNK ¢ = (HNK )¢ <gz Go;
also, since ¢ maps Z(G1) onto Z(G3), there exists an isomorphism ¢: G1/Z(G1) — G2/Z(G2) such
that 7r1q_5 = ¢mo and, hence, Hm N Km <o Hm implies Hopmo N Kome = H7r1<;_5 N K7r1gz_5 =
(Hmy N Km)¢ <oo Hmi¢p = Homy; finally, Homo N K¢my = Hmop N Kmi¢ = (Hmy N K)o £

(G171, G171 = [G1¢ma, G1dma] = [Gama, Gams]. This completes the proof of the lemma. O

Corollary 1.17. Let G be a group. For every H <g3 G and every g € G, deg(HY) = deg(H),
dig(HY) = dig(H), and (with the extra assumptions on H and so, on H9) dig(H9) = dig(H). O

2. THE FREE CASE

For all the paper, we fix an alphabet of n letters, X = {x1,...,2,}, and consider the free group
on it, F(X), also denoted by F,. In the present section we study the degrees of compression and
inertia in the context of the free group, i.e., the functions dcg, () and dig, ().

Hanna Neumann proved in [I5] that 7(H N K) < 21(H) 1(K), for every H, K <gz F,. The same
assertion removing the factor “2” became soon known as the Hanna Neumann conjecture. This has
been a major problem in Geometric Group Theory, with lots of partial results and improvements
appearing in the literature since then. An interesting one was done by W. Neumann [16], who proved
the stronger fact > oT(H N K*®) < 27(H)T(K) (known as the strengthened Hanna Neumann
inequality), where S is any set of double coset representatives of F, modulo H on the left and
K on the right (i.e., S C F,, contains one and only one element in each double coset H\F,,/K);
in particular, this implies that, for all H, K <¢ F,, all except finitely many of the intersections
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HNK?* x € F,, are trivial or infinite cyclic. A few years ago the Hanna Neumann conjecture, even
in its strengthened version, was completely resolved in the positive, independently by Friedman [8]
and by Mineyev [14] (see also Dicks [5]). This can be interpreted as the following upper bound for
dep, (H) and dig, (H) in terms of the subgroup H < F:

Observation 2.1. For H <y, F,,, we have 1 < dcp, (H) < dip, (H) < 1(H).

Friedman—Mineyev’s inequality is easily seen to be tight (consider, for example, the subgroups
H = {(a,b~tab) and K = (b,a? aba) of F,, and its intersection H N K = {(a? b~ 1a?b,b"'aba));
therefore, it can be interpreted in the following way: “the smallest possible multiplicative constant
a € R satisfying 1(H N K) < of(H)1(K), for every H, K <tz F},, is @« = 17. Now fix the subgroup
H: by definition, the smallest possible constant « € R satisfying 7(H N K) < at(H) F(K), for every
K gfg Fn, isa = len(H)/f(H)

Ivanov [9] already considered and studied the strengthened version of what we call here
the degree of inertia. He defined the Walter Neumann coefficient of H <z F,, as o(H) =
SUPg <, F, T(H, K)/(f(H)T(K)), where f(H,K) = > semr,/x F(HNK?) (understanding 0/0 = 1).
In other words, o(H) is the smallest possible constant o € R such that ¥(H, K) < af(H)I(K),
for every K <g; F),. Using linear programming techniques, Ivanov was able to prove the following
remarkable result:

Theorem 2.2 (Ivanov, [9]). For any finitely generated free group F,, the function o is computable
and the supremum is a mazimum; more precisely, there is an algorithm which, on input hy, ... h. €
F,, computes the value o((h1,...,h,)) and outputs a free basis of a subgroup K <y F,, where that
supremum is attained.

Ivanov’s proof is involved and technical. Although it looks quite similar, we have been unable
to adapt Ivanov’s arguments to answer any of the following questions which, as far as we know,
remain open:

Question 2.3. Is the function dip, (-) computable? Is the supremum defining dir, () always a mazi-
mum? Is there an algorithm which, on input hy, ..., h, € F,, computes the value dip, ({(h1,...,h.))?
Or outputs a free basis of a subgroup K <yq F,, where the supremum is attained?

The corresponding questions for the degree of compression are much easier and can be established
with the use of Stallings graphs, algebraic extensions, and Takahasi’s Theorem. We assume the
reader is familiar with these techniques; see [10, [13].

Definition 2.4. Let H <tz K <¢g F,,. If H is a free factor of K we write H <g K. On the other
extreme, the extension H < K is said to be algebraic, denoted by H <, K, if H is not contained
in any proper free factor of K, i.e., if H < A< K = A« B implies B = 1; we denote by AEr (H)
the set of algebraic extensions of H in F,.

Theorem 2.5 (Takahasi, [17]; see also [10, 13]). Every H <y F, has finitely many algebraic ex-
tensions, say AEp, (H) = {H = Hy, H1,...,H,} (r depending on H ), each H; is finitely generated,
and free bases for all of them are algorithmically computable from a given set of generators for H.
Furthermore, for every extension H < K < F,,, there exists a unique (and computable) 0 < i <r
such that H <q9 H; <g K; this H; is called the K-algebraic closure of H.
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Sketch of the proof. The original proof by M. Takahasi [I7] was combinatorial, playing with words
and cancellation in the free group. We sketch the modern proof given in [13] following ideas of
Ventura [18], Kapovich-Miasnikov [I0], and Margolis—Sapir—Weil [I1].

We have the alphabet X fixed as a free basis for the ambient free group, F,, = F(X). Now,
given generators for H <g F(X), one can compute the Stallings graph I'(H) for H (denote the
basepoint by ®). Attaching the necessary infinite hanging trees so that it becomes an X-regular
graph (i.e., with all vertices having an incoming and an outgoing edge labelled z; for every z; € X),
we obtain the Schreier graph x(F,, H,X) (which is finite if and only if H is of finite index in
F,). Of course, x(Fy, H, X) is a covering, x(F,, H, X) - R(X), of the bouquet R(X), the graph
with a single vertex and one loop labelled z; for every z; € X; more precisely, it is the covering
of R(X) corresponding to the subgroup H <f m(R(X)) = F,. By standard covering theory,
K « x(F,, K, X) is a bijection between intermediate subgroups H < K < F, and intermediate
coverings, x(F,, H,X) - x(F,, K,X) - R(X) (mapping finitely generated subgroups to graphs
with finite core, and viceversa).

Fix H <tz K <¢z F},, and consider their Stallings graphs I'(H) = core(x(F,, H, X)) and I'(K') =
core(x(Fp, K, X)), both being finite graphs. The above bijection means that x(F,, K, X) is a
quotient of x(F,, H,X), i.e., the result of x(F,, H,X) after identifying vertices and edges in a
compatible way (i.e., modulo a congruence, an equivalence relation on the set of vertices satisfying
that if p ~ ¢ and e; and ey are edges with the same label and te; = p and tea = ¢, then Te; ~ Tes).
There are two cases: if no pair of vertices in I'(H) < x(Fy,, H, X) become identified then T'(H) is a
subgraph of T'(K) = core(x(Fy, K, X)) and so, H <g K; otherwise, we loose H from the picture,
but we can still say that some compatible quotient of I'(H) will be visible as a subgraph of I'(K).
Since I'(H) is finite, it has finitely many compatible quotients and, therefore, computing all of them
and computing free bases for their fundamental groups, we obtain a finite list of finitely generated
subgroups O (H) ={H = Hy, Hy,...,H;} (s depending on H), called the fringe of H in [13], all
of them containing H and satisfying the following property: for every H <;3 K <y, F;, there exists
(a non necessarily unique) i =0,...,s such that H < H; <g K.

It only remains to clean this list: for each pair of indices ¢, j, check whether H; <g H; (this can
be done using the classical Whitehead algorithm) and, in case it is, remove H; from the list. It is
not difficult to see that the resulting reduced list is precisely AE g, (H) C O, (H). Uniqueness of
the K-algebraic closure follows directly from the definition of algebraic extension. |

As an easy corollary, we obtain the following result which immediately proves Theorem [I.8}

Corollary 2.6. For any subgroup H <j; Fy,, we have dcp,(H) = supyck<,r, {T(H)/T(K)} =
maxgeae ., ()AT(H)/T(K)}; furthermore, we can effectively compute dcr, (H) and a free basis of
a subgroup K € A€, (H) where the mazimum is attained.

Proof. By Theorem every H < K <y F), uniquely determines the K-algebraic closure of H, i.e.,
an H' € A€, (H) such that H <.z H' <g K. Since T(H') < T(K), we can restrict the supremum
in the definition of dcp, (H) to those subgroups in AEg, (H). And, since the set AEg, (H) is finite
and computable, this supremum is a maximum and we can effectively compute both dcg, (H) and
a free basis of a subgroup K where the maximum is attained. ]
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3. DEGREE OF COMPRESSION IN FREE-ABELIAN TIMES FREE GROUPS

For the rest of the paper we work in free-abelian times free groups G = Z™ x F,,, i.e., direct prod-
ucts of a free-abelian group Z™ and a free group F,,, investigating here the degrees of compression
and inertia of subgroups.

Taking a free-abelian basis {t1,...,tm,} for Z™ (with multiplicative notation), and a free basis
X ={x1,...,x,} for F,, we have

5,7 =1,...
G:ZmXFn:<t1,...,tm,$1,...,J}n titj:tjti, tixkzxkti 27];;7_1’ ’:ln >
=1,...,

A normal form for elements in G is
a a ai,...,a
t11-~-tmmu(x1,...,mn):t( 1 m)u(ajl,...,a;n),

where a = (a1,...,a,) € Z™ is a row integral vector, and u = u(x1,...,2,) is a reduced word
in F,. Note that the symbol ¢ by itself has no real meaning; it just allows us to convert the
ambient notation for the abelian group Z™ from multiplicative into additive (since t3* = ¢+  for
a,bezZ™).

At first glance, solving problems in Z™ x F,, seems to be easily reducible to the corresponding
problems in Z™ and F;,. However, this is not always the case and many naive looking questions are
much more complicated to answer in Z™ x F,, than in Z™ and F,. This is the case, for example,
with the Howson property: both Z™ and F,, are Howson but, as we saw above, G = Z™ x F,, is
not (as soon as m > 1 and n > 2).

Let m: G = Z™ x F,, = F,, t*u — u, be the natural projection. For a subgroup H <z G, a
basis of H is a set of generators for H of the form {t® wuy,t%uy, ..., t%u,, t% t*2 ...t} where
{u1,...,u,} is a free basis of Hr, a; € Z™ for i = 1,2,...,r, and {by,...,bs} is a free-abelian basis
for Ly = HNZ™ (to avoid confusions, we will maintain the full names, free-abelian basis, free basis,
and just basis, to refer to Z™, F,, and G = Z™ x F,,, respectively). According to [4, Prop. 1.9],
every subgroup H <y G admits a basis, computable from any given set of generators. Observe also
that a subgroup H < G is finitely generated if and only if Hr < F), is so.

In this section we study the degree of compression of a given subgroup H < G. The first lemma
says that it is enough to consider those overgroups K such that Hm <ug K.

s o rm)

K <y
galg K

Lemma 3.1. Let H <zy G =Z™ x F,. Then,

deg(H) = sup {f(H)}:

H<K<,G | T(K)

H <
Hm
Proof. We already observed above that the supremum defining the degree of compression is always
a maximum. The inequality > is clear.

Fix a basis for H, say {t*uy, ..., t%u,,t*1 ... t’}. To see the other inequality, take a subgroup
H < K <4z G and we shall construct H < K’ < G such that Hr <, K'm and #(H)/T(K) <
I(H)/T(K').

We have Ly = HNZ™ = (t, ... t) < KNZ™ = Lig and Hr < K7 so, 1(Ly) < r(Lg)
and Hr <a J <g K, for some J € AEp, (Hn). Take a free basis {v1,...,v,} for J and extend
it to a free basis {v1,...,Up, Vpt1,...,04} for Km, p < g. Now, consider a basis for K of the form
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{tervy, .. vy, 1990y, .t t L tde) where ¢; € Z™, i = 1,...,q, are certain integral
vectors, and {t%,...,t%} is a free-abelian basis for L.

Let K/ = (t vy, ..., t%v,, t4, .. t%) < K < G and we claim that H < K'. In fact, we already
know that t% € Ly < Lx = Ly = (¢, ... t%) < K' fori =1,...,s. Now, fori =1,...,r we
see that t*u; € K': write u; as a word u; = w;(v1,...,vp,) (unique up to reduction) and compute
wi (L vy, ..., tP0p) = tCwi(ve, .., vp) = 9 € K <K, where e; = |wily, c1 + - + Jwily, cp. But

t%u; € H < K so, t%~% € Lig = Lg < K’ and hence, t%u; = (t%~%) "1 (t%u;) € K'.

So, for every H < K <j; G we have found a finitely generated subgroup in between, H < K’ < K,
such that Hm < J = K'm and

B(K') = §(K'7) + r(Lie) = (p— 1) + r(Lir) < (g - 1) + r(Lg) = 5(K);

therefore, T(H)/T(K') > t(H)/t(K) and the proof is completed. O
Fix H <g; G together with a basis for it {t* u,,...,t% u,, tbr ... t’}, and consider the matrices
a by
A= € Myym(Z) and B= € My (Z).
Ay bs
For every J € AR, (Hm) given with a free basis, say J = (v1,...,v,), we can consider the (unique
reduced) word expressing each w; in terms of v1, ..., vp, say u; = w;(v1,...,v,), abelianize, and get
the vector (|wil,, ..., |w,;|vp) €7ZP,i=1,...,r; collecting all of them into the rows of a matrix,
lwil,, - wily,
Uy = € erp(Z)~
|wT|v1 ‘wr|vp

According to Lemma to compute decg(H) it is enough to consider the subgroups of the form
K = (t®vy,...,t%v,, Lg) <tz G (where Ly = K NZ™, assume the given set of generators to
be a basis for K) such that H < K < G, Hr = (w1,...,uy) <alg Km = (v1,...,vp), compute
I(H)/1(K), and take the maximum of these values. (Observe that, although |[AER (Hm)| < oo,
there are, possibly, infinitely many such K's; however, 7(K) = p—1+r(Lg) takes only finitely many
values.)

So, fix such a K and consider the matrix
C1
Ck = : € Mpxm(Z).
Cp
Observe that the row space of the matrix A — Ug,Ck (i.e., the subgroup of Z™ generated by its
rows) is contained in Ly, row(A — Ux.Ck) < Lk: in fact, for every i = 1,...,r, we have
K 3w (t%v,...,t%0,) = t‘wi‘”1cl+'"+|wi|vpcpwi(v1, CeUp) = tUkn)iCryy

where (Ukr); is the i-th row of Ug,; therefore, H < K implies that a; — (Uk,);Ck € Lk, for
i =1,...,r. This motivates the following definition, which allows us to obtain the main result in
this section.
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Definition 3.2. For given matrices A € M, ym(Z), B € Myym(Z), and U € M,+,(Z), define
d(A,B,U) = mingp¢zm{r(L) | 3 C € Mpxm(Z) such that row(A —UC) < L, and row(B) < L}.

Theorem 3.3. For any given H <y G = Z™ x F,,, and using the notation above, we have
d t(H) d(A, B,U.
ca(H /]e.Agp,, (H7r) () +d( I}

Proof. By Lemma we know that the supremum in deg(H) is attained at a certain subgroup K
such that H < K <t G and K7 € AEp, (Hm). And, for every such K, 1(K) = T(Kw) +r(Lk) so,

G {Egi } T JeAg i () {fw +fcz(<i[1?3, Uy) } -

) - un
minye4e, (amit(J) +d(A, B,Uy)}

since, by the argument above, every K with Km = J € AEp, (Hn) satisfies r(Lg) > d(A, B,Uy),
one of them with equality. |

deg(H) =

m
HgKgg
Hr <ag K

Finally, to prove Theorem we need the computability of the value d(A, B,U).

Proposition 3.4. For any given matrices A € Myxm(Z), B € Mgxm(Z), and U € M,x,(Z),
the value d(A, B,U) is algorithmically computable, together with a free-abelian basis of a subgroup
L <Z™ attaining the minimum, and the corresponding matriz C € Myyxm(Z).

Proof. Recall that d(A, B,U) is the minimum rank of those subgroups L < Z™ satisfying row(B) <
L, and row(A — UC) < L for some C € M,y (Z). Observe first that, replacing B by B’ with
row(B) <g row(B’) <g Z™, we have d(A,B’',U) = d(4, B,U); in fact, d(4,B',U) > d(4,B,U)
is clear from the definition, and for every L < Z™ containing row(B) and row(A — UC) for some
C € Myxm(Z), we have the subgroup L+ row(B’) < Z™ which contains row(B’) and row(4A —UC)
for the same matrix C, and has the same rank, r(L 4+ row(B’)) = r(L), since L <g L + row(B’);
this proves the equality.

Let us do a few reductions to the problem. Compute matrices P € GL,.(Z), @ € GL,(Z),
and positive integers dy,...,dy € N, ¢ < min{r,p}, satisfying 1 < dy|da| --- |d¢ # 0, such that
PUQ = U’, where U’ = diag(ds,...,ds) € M,xp(Z) (understanding the last » — ¢ > 0 rows and
the last p — ¢ > 0 columns full of zeros); this is the Smith normal form for U; see [I] for details.
Writing A’ = PA, B’ = B, and doing the change of variable C' = QC’, we have row(4 — UC) =
row(PA — PUQC") =row(A' —U'C"). So, d(A, B,U) = d(A',B',U’).

To compute d(A’, B',U’), we have to find a subgroup L < Z™ of the minimum possible rank,

and vectors ¢}, ..., ¢, € Z™, such that row(B’) <L,
dlcl e L
(2) ;
dgcf el
and
gy €L

a, € L
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Note that the last p — £ > 0 columns of U’ are full of zeroes so, no condition concerns the vectors
Cyy1s--+5Cp and we can take them to be arbitrary (say zero, for example). That is, taking cj,, =
cee = c; =0, denoting A” = A’ € M,«n(Z), B" = B’ € Msym(Z), U’ € Myx¢(Z) the matrix U’
after deleting the last p — £ > 0 columns (and C"" € My, (Z) the matrix C” after deleting the last
p — £ > 0 rows), we have d(A', B',U’) = d(A”,B",U").

Now, we can ignore conditions by adding the vectors ay/, ,,...,a; as extra rows at the bottom
of B: let A" € Myxm(Z) be A" after deleting the last r — ¢ > 0 rows, B"”" € M(s4,_¢)xm(Z) be B”
enlarged with r — £ extra rows with the vectors ay,,,...,a;, U" € Myx¢(Z) be the matrix U" after

deleting the last r — ¢ > 0 rows (and C"" = C"'), and we have that d(A”, B",U") = d(A",B",U"").
Note that now, U"” = diag(dy, . ..,ds) is a square matrix.

Finally, if d; = 1 we can take ¢} = a} and the first condition in becomes trivial; so, deleting
the possible ones at the beginning of the list dq |dz2| -+ | d¢ (and their rows and columns from U"),
and deleting also the corresponding first rows of A and C, we can assume d; # 1.

Altogether, and resetting the notation to the original one, we are reduced to compute d(A, B,U)
in the special situation where A € M,.x,,(Z), B € Msxm(Z), and U = diag(dy,...,d,) € My« (Z),
with 1 # dy |d2]| -+ |d, # 0, and further, by the argument in the first paragraph of the present
proof, with row(B) being a direct summand of Z™. That is, we have to compute a subgroup L < Z™
of the minimum possible rank, and vectors ¢y, ..., ¢, € Z™ satisfying row(B) < L and

a1 —dicy € L
(@) R

ar —dpc,. € L

where a; is the i-th row of A. Let us think of the conditions in as saying that a; € L modulo
d;Z™, i =1,...,r. To solve this, let us start with Ly = row(B) <g Z™ and let us increase it the
minimum possible in order to fulfill conditions .

Since dy |da | - -+ |d,, the natural projections m;: Z™ — (Z/d;Z)™ factorize through the chain
of morphisms Z™ — (Z/d,Z)™ — (Z/d,1Z)™ — --- — (Z/d1Z)™. Starting with L > Lo and
collecting the last condition in , we deduce that L must further satisfy Lw, > Lom,. + (v07,.),
where v? = a, € Z™. Now the second condition from the end in adds the requirement L7,._; 3
r—1Tp—1. But ap_17m—1 € (Z/d,—1Z)™ has finitely many (more precisely, (d,/d,—1)™) pre-images
in (Z/d,Z)™; compute them all, take pre-images v,_; up in Z™, and we get that L must further
satisfy L, > Lom, + (v07,, v,_17,), where v,_1m, is one of these (d,./d,_1)™ pre-images. Repeat
this same argument with all the conditions in , working from bottom to top: we deduce that L
must further satisfy L, > Lo, +(vm,., vp_17,, ..., v17,), where v; € Z™ is a vector such that v;m,
is one of the computed (d,/d;)™ pre-images of a;m; € (Z/d;Z)™ up in (Z/d,Z)™, i =r —1,...,1,
ie., v; = a; mod d;. This makes a total of (d,/d,—1)™ -+ (d,/d1)™ possible lower bounds for L,:

compute them all, find one with minimal possible rank, say L, > Lo, + (v07,, v0_ 7, ..., 09m,.),
and we deduce that d(A,U, B) > r(Li7,), where Ly = Lo + (v2, v0_,,...,00) < Z™.

We claim that this lower bound is tight, i.e., d(A, B,U) = r(Lim,). To see this, we have to
construct a subgroup L < Z™ of rank exactly r(Li7,), containing Ly and satisfying for some
vectors ¢y, ..., ¢, € Z™ (which must also be computed). Since Ly is a direct summand of Z™, say
with free-abelian basis {ws,...,wy}, we deduce that Lom, is a direct summand of (Z/d,Z)™ with
abelian basis {wym,, ..., wgm}. So, Lo, is also a direct summand of Ly, < (Z/d,Z)™; compute
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a complement and get vectors v{,...,v; € Z™, I < r, such that {wm,, ..., wem,, V7, ..., V7, } is
an abelian basis of Ly, = Lom, @ V; in particular, r(Ly7,) = k + L.

Finally, take L = (w,...,wg,v],...,v)) < Z™. This subgroup has the desired rank r(L) =
k41 = r(Lym,) (since the given generators are linearly independent because their m.-projections
are s0), and satisfies the required conditions: on one hand, Ly = (w1,...,wx) < L; on the other
hand, for every i = 1,...,7, ¥971, € Lim, = (1T, ..., weTy) B (V) Tp, ..., 0]7,) SO,

V)me = A (wimy) + -+ 4 A (wimy) + o (Vi) + -+ (v
= (AMw1 + -+ Agwg + 0] + -+ o)),

for some integers A1,..., Ak, t1,. ..,y € Z; thus, L contains the vector ¢; = AMwy + -+ + A\pwy +
p1vy + - - -+ o) which satisfies ¢; = v? mod d, and so, ¢; = v) mod d; too; since v{ = a; mod d;,
we deduce ¢; = a; mod d; and we are done. O

Proof of Theorem[1.9 In order to compute the value dcg(H) using the expression from Theo-
rem we can do the following: first compute AER, (H); for each member J = (v1,...,v,),
write each w; in the free basis of H7 in terms of the free basis {vy,...,v,} of J, and obtain the
matrix Uy; then compute d(A, B,U;) +1(J) (which is effectively doable by Proposition . When
this procedure is done for each of the finitely many J € AEp, (Hw), take the minimum of the
values d(A, B,U;) +1(J) and, by , we are done. Moreover, the elements of the free basis for the
subgroup J attaining this minimum, together with the rows of the matrix C just computed and
realizing the minimum in d(A, B, Uy), are the ingredients to build a basis for a subgroup K <z G
attaining the minimum in dcg(H). O

It is natural to ask whether the minimum minjcag, (gm){¥(J) + d(A, B,U;)} in Theorem
is attained at an algebraic extension J € AEp, (H7) of minimal rank. Unfortunately, this is not
always the case, as shown in the following example. In order to compute deg(H), this fact forces
us to run over all algebraic extensions J of Hr, and compute d(A, B,U;) following the algorithm
given in Proposition 3.4} for each one. We do not see any shortcut to this procedure, for the general
case.

Example 3.5. We exhibit an explicit example of a subgroup H <z G having two algebraic
extensions J,J' € AEp, (Hm) with T(J) < #(J’) but ¥(J) +d(A, B,Uy) > t(J') + d(A, B,Uy).

Let H = (t-10p2 100gc e #OVbac™!) <4y G = Z? x Fy. Projecting, we have Hr =
(b, ac tac™!,bac™ 1), and Fig. [1] represents the Stallings graph T'4(H) for Hm as a subgroup of
F5 with respect to the ambient free basis A = {a, b, c}. Successively identifying pairs of vertices
of I'y(H~) and reducing the resulting A-labeled graph in all possible ways, one concludes that
T'4(Hm) has nine congruences, whose corresponding quotient graphs are depicted in Figs. [I| and
this is the fringe O, (Hm) of H; see the proof of Theorem above.

Now following the cleaning process, we get the set of algebraic extensions for Hw, namely
AE(Hr) = {Hr,J}, where J = (b,ac™1)}. (To this goal, the following fact helps: suppose N is ob-
tained from M by a single identification of a pair of vertices followed by foldings; if r(N) = r(M)+1
then M is a free factor of N, otherwise, M a5 N.)
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FIGURE 2. The eight non-trivial quotients of I' 4 (H)
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Following the notation above, we have

-1 0 1 0 0 2 0
A= 1 o), B=0, Uz.=|010], U;=[0 2
0 1 0 0 1 1 1
According to Theorem
(5) de(H) =t(H)/ min{¥(H7) + d(A, B,Unx), ¥(J) + d(A, B,U,)}.

Since H < H, we see that d(A, B,Ug,) = r(Lg) = 0 and the first term on the minimum in is
HHr)+d(A,B,Uygr)=(3-1)+0=2.

Following the algorithm given in Proposition let us compute now d(A, B,Uy), where J =
(b,ac™1); we have r = 3, m = 2, s = 0, and p = 2. Computing the Smith normal form for Uy, we
get

0 0 1 1 -1 10
P=101 0 € GL3(Z), Q= ( 0 1 ) € GLy(2), U=|(0 21,
1 1 -2 0 0
with d; = 1, dy = 2, and ¢ = min{r, p} = 2. Diagonalyzing the problem, we obtain

0 1 1
A=pAa=(1 0 |, B=B=0, U=|0
0 -2 0

O o O

and d(A, B,Uy) = d(A’, B’,U’) (under the change of variable C' = QC"). Since p = ¢ = 2 the next
reduction is empty and A” = A’, B” = B’, and U” = U’. Applying the following reduction to
delete the last 7 — £ = 3 — 2 = 1 zero rows in U", we get

"o 0 1 "o " o_ 1 0
A _(1 O), B —(0 -2), U _<0 2).

Finally, in order to delete d; = 1 from the list of divisors, we take ¢/’ = (0,1) and get
A////:(l 0), B/I//:(O 72)’ U”/I:(Q).

Going up by finite index, we replace the matrix B"” to (0,1), and are reduced to compute
d(A"",(0,1),U""); this is the smallest rank of a subgroup L < Z?2 such that ((0,1)) < L and
(1,0) — 2¢4" € L for some ¢ € Z2. Clearly, d(A"””,(0,1),U"") = 2, and one (non unique) solution

/111

is given by L = Z? and ¢4 = (1,0). Collecting the ¢; computed before, and undoing the change of

variable, we get
_ ; m (1 -1 01y (-11
c=qc=qe"= (4 7 )(V)=(3 o)

We conclude that d(A,B,U;) = 2 and one of the subgroups K with the smallest possible rank
satisfying K7 = J and H < K < Z? x Fyis K = (t(-1Dp, (00 ge=1 ¢(10) ¢(01)) Qo the second
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term on the minimum in (5)) is #(J) + d(4, B,U;) = (2 — 1) + 2 = 3. Therefore,

- F(H)
dea (M) = i) + d(A, B, Una), 7(0) + d(A, B.U)
3-1
T min{(3-1)+0, (2—1)+2)}
2
= 5 =

In particular, H is compressed in G.

As seen in this example, the algebraic extension J looks better than the other one H7 because
it contributes to the free rank in 2 units instead of 3. However, in order to match the free-abelian
part, J forces us to take two more units of rank, while H7 requires zero units. Note that in this
example, d(A, B,Uy) is as big as it could be since, in general, d(A, B,U;) < m = 2. The example
can easily be extended to an arbitrary m.

4. DEGREE OF INERTIA IN FREE-ABELIAN TIMES FREE GROUPS

In this section, we study the degree of inertia for subgroups H of G = Z™ x F,, and relate it
to the corresponding degree of inertia of Hm in F,,. The goal is to prove Theorem when Hr
is cyclic then H is inert (i.e., dig(H) = 1), and when r(Hm) > 2 then it heavily depends on the
index of Ly = H NZ™ in Z™; when this index is infinite dig(H) is infinite as well, and when
it is finite then dig(H) < [Z™ : Ly|dip, (Hm). Unfortunately, the situation here is much more
complicated and we can only prove this inequality, while we conjecture that the equality is true;
see Conjecture The computability of dig(+) remains open, as in the free case.

Lemma 4.1. For positive real numbers a,b,c,d > 0,
a c a—+
— < - = — <
b~ d b b+

o

O

al

d
Proof of Theorem[I.10, (i). The hypothesis r(Hr) < 1 implies that H = (t%u, Ly), for some
a € Z™ and u € F,, (possibly trivial). Then, for every K <z G, we have (HNK)r < HtNKn < (u)
so, (HN K)m = (u") for some r € Z. Hence, HN K = (t'u", Ly N Lg) for some b € Z™ and we
get r(H N K) < r(K). Therefore, T(H N K)/ (K) < 1, which is valid for every K <tz G. Thus,
dig(H) =1 (i.e., H is inert in G).

(ii). Consider the (unique) subgroup Ly satisfying Ly <g EHg@ Z™, and take a free-abelian
basis {b1,...,bs} of Ly, such that {A1b1,...,Asbs} is a free-abelian basis of Ly for appropriate
integers A1,...,As € Z (there is always a basis like this by the fundamental theorem of finitely
generated abelian groups). By hypothesis, s = r(Ly) < m and, completing to a free-abelian basis
{b1,...,bs,bs11,...,by} of the ambient Z™, we get at least one extra vector bs11 (which, of course,
is primitive in Z™ and so has relatively prime coordinates).

Now fix a basis for H of the form {t®1uy, ..., t% 1w, tMb1 . At} where ay,...,a,, € Z™,
and {uq,...,u,, } is a free basis for Hr; in particular, we have r(Hw) = ny > 2, r(Ly) = s < m,
and r(H) = n;1 + s.

For proving dig(H) = oo, we shall construct a family of subgroups Ky <t Z™ x F),, indexed

by N € N, all of them with constant rank 3 (i.e., T(Ky) = 2), with all the intersections H N Ky
being finitely generated, but with r(H N Ky) tending to co, as N — oo.
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Let Ky = (t%uy,t%ug, Li,) < Z™ x F,, where the vectors a},a}, € Z™ and the subgroup
Lk, < Z™ are to be determined; note that for all choices r(Ky7) = 2, and here we are already
using the hypothesis n; > 2.

Let us understand the intersection H N Ky following the procedure (and notation) given in [4}
Thm. 4.5]: we have ny = r(Kn7) =2, Hr N Kym = (u1,us) and so ng = r(Hn N Kym) = 2, and
we consider the matrices

ay
A= : € My, xm(Z), A = (

%

a/
p ) € Moy (Z).
Qg

1

Let py: Hr — Z™, py: Kym — Z2, and p3: Hr N K7 — Z2 be the corresponding abelianization
maps (not to be confused with the restrictions of the global abelianization map F,, — Z" to the
corresponding domains). Clearly, the inclusion maps ¢y: HrNKy7m — Hm and tx: HtNKym —
K7 abelianize, respectively, to the morphisms Z2 — Z"™ and Z? — Z? given by the matrices

1 0 0 ... 0 1 0
P:(O 10 ... 0>€M2Xm(Z), P/:D:(o 1>€M2x2(Z)-

Moreover, let

- _ plal a . all _ al_all
w2 ) ()= (2% ) vt

and let us put all these ingredients into the following diagram:

(HNKy)w
N
Hr <—HrN Kyt ———=Kn7

p1 /// es[]/ P2

Zm

According to the argument in [4, Thm. 4.5], the subgroup (H N Kn)7m < Hm N Ky is, precisely,
the full preimage by R and p3 of Ly + Lg, < Z™.

Let us choose now the vectors a} = a1 — bsy1 and a}, = as, and the subgroup Lk, = (Nbsy1),
N € N; the matrix R becomes
_ bs+1
R ( . ) |
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We have Ly + Lk, = (Mb1,..., Asbs, Nbsy1) and then,

(Lu+ Lgy)R™" = {(z,y) €Z?|(x y)Re Ly + Ly}
= {(z,y) €Z? | absy1 € Ly + Ly}

{(z,y) € Z? | wbsi1 € (Nbsi1)}

= NZXxXZ <y 7.2

(the last equality being true because bs11 has relatively prime coordinates). As ps is onto, taking
ps-preimages preserves the index and we have

(HNEKn)m = (Ly + Lgy)R o3 ' = (NZ x Z)ps~! <y Hr N K.
Thus, by the Schreier index formula, T((H N Ky)n) = Ni(Hr N Ky7) = N and we deduce that
T(HNKy)=N+1r(LyNLky)=N+0= N tends to oo, as N — oo. This completes the proof
that dlg(H) = OQ.

(iii). Fix a basis for H, say {t%uy,...,t%1u,, ,t, ... t*»} where ai,...,a,, € Z™,
{u1,...,un, } is a free basis for Hr, and {b1,...,bn} is a free-abelian basis for Ly <; Z™; in
particular, r(H7m) =ny > 2, r(Ly) =m, and r(H) = ny +m.

In order to show the inequality dig(H) < [dip, (H7), let us fix an arbitrary subgroup K <t G,
assume that H N K is finitely generated, and let us prove that 7(H N K)/#(K) < ldig, (Hw). Fix

a basis for K, say K = (t%uvy, ... % Un,, L) and we have
% T(HNK) F(HNK)r)+r(LyNLk)
i(K) I(K7) +r(Lg) '

If K is trivial or cyclic this value is clearly less than or equal to 1, which is less than or equal to
ldip,(Hm) and we are done. Hence, let us assume ng > 2.

As in the proof of part (ii), we consider the intersection diagram to understand H N K:

(HNK)m

VA
Hr <=—— HrnKnr “—— Kr
p1 /// p3 /// p2

8 ,
( ) an P an P an
A A’
R
Zm

where py: Hm — Z™, po: Km — Z™, and p3: HrtNK® — Z™ are the corresponding abelianization
maps (here, ng = r(HrNK7) < 00), where ¢ and ¢’ are the natural inclusions, where P € M, xn, (Z)
and P’ € M, xn,(Z) are the matrices of their respective abelianizations (note that ¢+ and ¢’ being
injective do not imply P and P’ necessarily being so; in particular, ng may very well be bigger than
ny or ng), where A € My, xm(Z) and A" € My, «m(Z) are the matrices with rows {aq,...,an, } and
{al,...,ay,} respectively, and where R = PA — P'A" € My,xm(Z). According to the argument
in [4, Thm. 4.5], the crucial property of diagram (8) is the fact that (HNK)r = (Lg+Lg)R " p3*.
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From the hypothesis, Ly <; Z™ and so, Ly + Lx <; Z™, where 1 < I’ < I. As in general
R is not necessarily onto, (Ly + Lxg)R™' <pv Z™ with 1 < I” < I'. And, since p3 is onto,
(HNK)r=(Lg + LK)R_lpgl <y Hm N K7, Therefore, by the Schreier index formula,

(9) F(HNK)r) =1"#f(Hr N Kr) = 1"UZEED§(Kr) < 17 dig, (Hr) §(K7).

Now, using , we have
f(HNK) < I"dip, (Hr)t(K7) +v(Lg N Lk) . " dig, (Hr)t(Kn)

(10) i(K) t(K7)+r(Lk) = i(K)

=" dip, (Hn),

where the second inequality is an equality if Lx = {0}, and follows from applying Lemma to
MLuDlr) < 1 < 1" dip, (Hr) otherwise. Therefore

r(Lk)
r(HNK
(11) r((;;)) <" dip, (Hr) < U'dip, (Hr) < dig, (Hn),
T
as we wanted. O

5. RESTRICTED DEGREE OF INERTIA FOR FREE-ABELIAN TIMES FREE GROUPS

To improve the inequality from Theorem m (iii) into an equality, we need to add a couple of
technical restrictions on the subgroups K over which the supremum in the definition of degree of
inertia runs. This gives rise to the notion of restricted degree of inertia given in Definition [I.12} in
the particular case of interest, G = Z™ x F,,, it is the following:

{f(HmK)

dig(H) = sup ) } < dig(H),

K <gz G
HNEK < G

[Hr : Hr N K7] = oo

Hr O Kn £ [Fn, Fyl
applied to subgroups H <g G such that r(Hn) > 2 and Hm & [F,, F,,]. The main result in the
present section is Theorem [L.15] The proofs for part (i) and for the inequality < from (ii) work
almost exactly in the same way as the corresponding parts from Theorem [I.1I0] The inequality
dig(H) > ldip, (H7) from (ii) is more involved and will require the previous development of several
lemmas about intersections of subgroups of F},, and a strong use of the well-known tool of pull-backs
of graphs for working with intersections of finitely generated subgroups of F),; we concentrate these

technicalities into Claim and postpone its proof until having the lemmas available.

Proof of Theorem[I.15. (i). Follow the same arguments as in Theorem (ii) with the following
detail in mind: by the assumption Hr ¢ [F,, F,] we can assume, from the very beginning and
without loss of generality, that uy ¢ [F,, F,], i.e., the first element in the chosen free-basis for Hrm
is outside the commutator [F),, F,,]. Now the goal is to construct a family of subgroups Kn <o
Z™ x F,, indexed by N € N, all of them having rank 3, with all the intersections H N Ky being
finitely generated, and further satisfying [Hm : Hr N Kn7] = 0o and Hr N Knm & [F,, F,], such
that ¥(H N Ky) tends to infinity, as N — oo.

The construction of these K s will be similar to that in Theorem|1.10(ii), but with slight technical
modifications in order to get the extra conditions. Take Ky = (t%1u2,t%u2, Lg,) < Z™ x F,,
where the vectors a},al, € Z™ and the subgroup Lk, < Z™ are to be determined. Note that
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HrNKym = (u},u3) <oo Hm, and also Hr N Ky7 & [F,, F,] as uf ¢ [F,,, F,,] (since uy ¢ [F,,, Fy]
and F, /[F,, F,] = Z" is torsion-free).

The rest of the argument works in a parallel way, just realizing that now P = (299 ::9) €
Msyn, (Z) and so,
’ o
R=PA-PA = ( 2. ) — ( “ ) = ( 201 — a1 ) € Maum(Z),

/ /
2az as 2ay — ag

Choosing the vectors af = 2a; — bs41 and afy = 2a9, and the subgroup L, = (Nbsy1) < Z™, the
rest of the proof proceeds verbatim.

(ii)-<. In order to show the inequality dig(H) < [dif, (Hm), let us fix an arbitrary subgroup
K < G, assume H N K <g G and also [Hm : Hr N Kn] = co and Hr N Kn & [F, : F,],
and we have to prove that T(H N K)/T(K) < ldip (Hm). Exactly the same arguments as in
Theorem m (iii) work here, with the caution that the inequality in Equation @D is still true
with dig, (H) replaced by the (possibly smaller) value dif, (Hr), since the involved subgroup Kr
further satisfies Hm N K7 <oo Hm and Hr N K7 & [F,, F,,], by construction.

(#i)->. By hypothesis, r(Hm) > 2 and so, the Stallings graph I'(Hn) has at least one vertex p
of degree bigger than 2. Without loss of generality, we can assume that it is the basepoint ® who
has degree at least 3: in fact, let w € F,, be the label of any path from ® to p and, replacing H by
H" (and so, Hr by HYnw = (Hm)"), the inequality to prove does not change; see Lemmam

Let {t"uy,...,t% 1 u,,,t", ..., t*} be a basis for the subgroup H <¢; G, where ay,...,an, €
Z™, {u1,...,un, } is a free basis for Hr, uy & [Fy, Fy], and {b1,...,bn} is a free-abelian basis for
Ly <; Z™; in particular, r(H7n) = n; > 2, v(Ly) =m, and r(H) = ny; + m.

In order to prove the inequality, dig(H) > ldi;;n (Hm), we fix € > 0 and will construct a subgroup
K. < G satisfying H N K, <gg G, [Hr : Hr N K.7] = 0o, Hr N K7 &£ [F,, F,,] and, furthermore,
I(HNK.)/#(Kc) > ldif, (Hr) — e. For any candidate K < G, equations (9)), (10), and above
(with dif, instead of dip, ) contain all possible reasons for which the quotient T(H N K)/T(K) may
be less than [ dif, (Hw), namely:

(I) #(Hr N K7)/H(Km) < dif, (H);

(II) l”di/Fn(H‘/r)f(Kﬂ)Jrr(LHﬁLK) < l”di}n(Hﬂ)f‘(K‘/r)_
(III) Vel F(Km)+r(Lk) = F(Km) )
av) 1" < I

Choosing K so that f(Hm N K7)/T(Km) > dif, (Hm) — € we can make the inequality in (I)
arbitrarily tight; choosing Lx = 0 inequalities (II) and (III) become equalities; and, finally, if the
linear map R: Z™ — Z™ from diagram is onto then inequality (IV) becomes an equality. In
view of these, we claim that

Claim 5.1. Given € > 0, there exists M <y5 F,, (with a free basis {v1,...,vn,}), and there exist
vectors ay,. .., a,, € Z™ such that:

(i) [Hm: Hr N M) = oo;

(i) Hr O M & [F,, F,);

(iii) TF(Hr N M)/T(M) > di, (Hr) —¢;

(iv) R = PA—P'A": 7™ — Z™ is onto, where P, A, P’ are the matrices appearing in dia-
gram and A’ is the matriz with rows o}, ...,a,, € Z™.

s Uno
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Observe that the existence of M satisfying (i), (ii), and (iii) is immediate from the definition
of dif, (Hw). Assuming condition (iv) on top of these is more tricky: the choice of M determines
the ranks no = r(M) and ny = r(Hmx N M), and it could very well happen that ns < m, making

it impossible to choose the vectors af,...,a,, € Z™ in such a way that R is onto. This situation

'
forces us to manipulate M and make sure to éet ng big enough, to have enough freedom, to choose
A’, so that R is onto; and all these without loosing the € inequality (iii) (neither (i) nor (ii)). Here
is where the extra technical conditions (i) and (ii) added to the definition of restricted degree of
inertia are going to play a crucial role. Let us postpone the proof of the claim and continue with

the main argument.

Given € > 0, apply Claim to €/l: we get M = (vi,...,Un,) <gg Fn, and vectors
ai,...,al,, € Z™ satisfying (i), (i), {(Hm N M)/¥(M) > di, (H7) — €/l, and (iv). The subgroup

» Yo

K, = (t“llvl, . ,ta;'z Un,) <gg G satisfies K.m = M and Lk, = 0 hence,

o HNK, <¢; G, since (HNK)m = (Ly +LK€)R*1p51 <y Hr N K.,
o [Hr: Hr N K]l = [Hm : Hr N M] = oo,
° Hﬂ'ﬂKeﬂ':HTrﬁM% [Fn, Frl,

and also
t(HNK,) Tt(HNK)m)+r(LgNnlg,) T(HNK)r) 1"f(HrNKem)
i(K.) t(K.m) +1(Lk,) - (K)o T(K.m)
Ui(Hr M)  1§(Hrn M) . y
— = H — = H - C.
1) ) > I(dif, (Hm) —€/l) = 1dip, (Hm) — €
Therefore, dig;(H) > [ di, (Hm) as we wanted to prove. O

It only remain to prove Claim Before doing this, we need to develop several lemmas about
intersections of subgroups of Fj,. A well-known tool for understanding these intersections is the
pull-back of graphs.

Definition 5.2. Let N, M < F, and consider their Stallings graphs I'(N),I'(M), respectively.
Their direct product, T(N) x T'(M), is defined as the new graph having as set of vertices VI'(N) x
VI'(M), set of z;-labelled edges E,,I'(N) x E,; ,I'(M) (here, E;,I" denotes the set of edges in T’
labelled by the letter z; € X), with the natural incidence functions c(e, f) = (ce,cf) and 7(e, f) =
(te,7f), and with basepoint being the pair of basepoints (®, ®).

Clearly, I'(N) x I'(M) is folded, but neither connected nor free of degree one vertices, in general.
The pull-back of T'(N) and T'(M), denoted I'(N) A T'(M) is the result of trimming (i.e., repeat-
edly deleting vertices of degree one different from the basepoint) the connected component of the
basepoint (®,®).

It is well known (see, for example, [10] for details) that I'(N) AT(M) ~ T'(N N M), the Stallings
graph for N N M. In particular, if both N, M are finitely generated then so is N N M; this is a
quick proof of the Howson property for F,.

Definition 5.3. Let I'(/V) be the Stallings graph for N < F,,. For every vertex p € VI'(IN) and
every element w € F,,, we define pw to be the terminal vertex of the unique reduced path « in I'(N)
starting at p and with label w, in case it exists; otherwise, pw is undefined. Note that w € N if
and only if ®w is defined and equals ®. Note also that IV has finite index in F;, if and only if Gw
is defined in T'(IV), for every w € Fj,.
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Lemma 5.4. Let N, M <y, F,, with the basepoint from T'(N) having degree at least 3. Then,
NNM has infinite index in N if and only if there exists w € N such that GQw is undefined in T'(M).

Proof. Suppose N N M has finite index in N; so, there is » > 1 such that, for every w € N,
w” € NN M. This means that, for every cyclically reduced w € N, (®,®)w", and so (®,®)w, is
defined in T'(N N M); hence, projecting to I'(M), Gw is defined in T'(M). For those w € N not
cyclically reduced, write w = v~ -w’ - u, without cancellations, with w’ cyclically reduced, and with
u # 1; in this case, we just have that (®,®)w” = (®,®)u " w' u, and so (®,®)u"1w’, is defined
in I'(N N M). But the basepoint in I'(/V) has degree at least 3 so we can take a cyclically reduced
1 # v € N such that the product w-v = u~!-w'-u-v € N has no cancellation and is cyclically
reduced again; then (®, ®)ww, and so (®, ®)w, is defined in T'(N N M) and, hence, ©Gw is defined
in T(M).

For the other implication, suppose that, for every w € N, GQw is defined in I'(M), say Qw €
{po = ®,p1,...,p-} C VI'(M). Choose a maximal tree T in T'(M) and define w; to be the label
of the T-geodesic from ® to p;, w; = lab(T[®,p;]) € F, fori = 0,...,r (note that wy = 1).
The hypothesis tells us that N € M U Mw; U --- U Mw,. Intersecting with N, we get N C
(NNM)U(NNM)vy U---U(NNM)vs for some v; € N and s < r (where we have deleted the
possibly empty intersections). Since the other inclusion is immediate, we deduce that N N M has
finite index in N. O

Proposition 5.5. [p-Expansion] Let N, M <y F,,, and suppose that r(N) > 2, the basepoint © of
D(N) has degree at least 3, and N N M <o N. Then, for every 1 < p < oo, there exist p freely
independent elements wy,...,w, € N such that M <g M' = M * (wq,...,wp) and N N M <g
(NOM)* (wi,...,wp) <g NNM' < N.

Proof. Let eq, €p, €. be three different edges going out from ® in T'(N), te, = tep = te. = ©, with
pairwise different labels a,b,c € X*!, respectively. By Lemma there is uyp € N such that
Quyp is undefined in T'(M). Realize ug as a reduced closed path 79 at ® in I'(N) and, without
loss of generality, we can assume it finishes with e;!. For o = a,b, ¢, take a non-trivial reduced
path 7, in the graph I'(N) \ {e.} and closed at Te, (there always exists such a path because
r(N) > 2, even if e, is a bridge since I'(N) has no vertices of degree 1 except possibly ®); now
consider v, = eanae, ! , a reduced closed path at ® in I'(IV), beginning with e, and ending with
ez! (so, its label u, = lab(y,) € N is a reduced word on X*! beginning with o and ending with
a~1). Note then that the paths 70,71 = Y07,72 = Y0V6Ya, V3 = Y0V6VaVbs - - -, and also the paths
ViYeYi 1 i > 1, are reduced as written; furthermore, all of them are closed paths at ® in T'(N) so,

w; = lab(y;yey; Y) € N, for all 4 > 1.

Now, let us extend the graph I'(M) by adding the necessary vertices and edges so that we can
read all the paths 'yl-’yc'yi_l from ®,i=1,...,p: since Oug was undefined in I'(M ), possibly an initial
segment of g is readable in I'(M) but not the entire path, forcing us to append at least a new edge
sticking out from I'(M); behind it, we add the rest of the construction, see Fig. [3| (this means adding
infinitely many new vertices and edges in the case p = c0). Since the added paths are all reduced,
the resulting graph presents no foldings and so it is a (possibly infinite) Stallings graph, having T'(M)
as a subgraph. Hence, M is a free factor of its fundamental group, M <g M’ = M * (w1, ..., wp).
Further, it is also clear from Fig. [3| that the w;s are freely independent.

And let us compare the pull-backs T(N) AT (M) =T(NNM) and T(N)AT(M') =T(NnNM').
Since w; € N for all ¢ > 1, it is clear that I'(N) AT'(M’) contains, as a subgraph, I'(N) AT (M)
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.o

FIGURE 3. Expansion of I'(M).

with the same additions as in Fig. [3] and, possibly, more edges which we do not control. Therefore,
NNM <g (NﬂM)*(wl,...,wp> <gNNM.

Finally, to see that NNM is still an infinite index subgroup of N, observe that w = lab(yov.) € N
is such that Gw is not defined in T'(M") (see Fig. [3) and apply Lemma O

Observation 5.6. Let K 4 F,, be a normal subgroup of F,,. For any M < F,,, KM = (K, M).

Proof. It is obvious that KM = {km | k € K, m € M} C (K, M). For the other inclusion note
that, by normality, given m € M and k € K, there exists k¥’ € K such that mk = k'm. Repeated
applications of this fact converts an arbitrary expression kym;y ---k.m, € (K, M), with k; € K,
m,; € M, into a single product km, k € K, m € M. Therefore, KM = (K, M). |

Lemma 5.7. Let G be a group and N,M < G. Then, [N : NN M] < [G : M|, with equality if
MN = G. If additionally [N : N N M] is finite, the equality holds if and only if MN = G.

Proof. Let G = U;erMg; be the coset decomposition of G modulo M, where |I| = [G : M] < oo.
Intersecting with N (and removing the possibly empty terms), we have N = U;e;(N N Mg;) =
Uirer (N N M)n;, for some I' C T and n; € N. So, [N: NN M| =|I'| < |I| =[G : M].

Furthermore, for g € G, Mg intersects N non-trivially if and only if g € MN. So, if G = MN
then I' =T and [N : NN M| = |I'| = |I| = [G : M] (with the converse being also true whenever
[I'| < 00). O

Corollary 5.8. Let K <4 F,,, and M < F,,, then [M : MNK] =d if and only if (K, M) =F,. O

Let us now fix a letter z; € X, and an integer d > 0, and consider the particular normal subgroup
K)={weF,| |w|., € dZ} Q F,, where |wl|,, denotes the x;-th coordinate of the abelianization
of w. The Stallings graph T'(K fl) is depicted in Fig. 4| (the loops at each vertex representing all the
n — 1 remaining letters). It is clear that Kg <4 F,.

Lemma 5.9. Let M <y, F,, and fix a letter x; € X and an integer d > 0. Then the following
conditions are equivalent:

(a) KJM = (K3, M) = F,;

(b) MNK} <qM;

(c) there exists a word m € M such that ged(|m|.,,d) = 1;
(d) the direct product T'(M) x F(K{g) is connected.
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FI1GURE 4. Stallings graph for Ké

Proof. (a) < (b). True by Observation and Corollary

(a) = (c). From the hypothesis, z; € F;, can be written as x; = km, for some k € Kg and some
m € M. Thus, 1 = |z;|,; = |k[z; +|m|s; = Ad+|m],, for some X € Z and hence, ged(|m|,;,d) = 1.
(¢) = (d). In the direct product I'(M) x I‘(Ké), consider the d full subgraphs A;,¢=0,...,d—1,
whose vertices are VA; = {(p,i) | p € VI'(M)}. In order to see that I'(M) x I'(K})) is connected,

we shall prove the existence of a path from (®, ) to (®,i+ 1), for every ¢ (indices modulo d), and
that each A; is connected.

In fact, by hypothesis there exists m € M and «, 8 € Z such that ged(|m|,,,d) = a|m|,,+8d = 1.
Let 7, denote the path in T'(M), closed at ®, whose label is m, and note that lab(y2) = m®.
Furthermore, in the X-regular graph F(Kg), i-m® is defined and equals i + 1 mod d (by Bezout
equality above). Hence, there is also a path labelled m® in T'(M) x F(Kgé) from (®,1) to (®,i+ 1),
for every i =0,...,d — 1.

Now, let p be an arbitrary vertex in I'(M). As I'(M) is connected, there is a path, say =, from
t(y) = © to 7(y) = p. Let w = lab(y) € F,, let s = |w|;;, and consider the path v,,~sa,, starting
at ©, reading m~**w, and ending at p. Since |m~**w|,, = —sa|m|,; + |w|;; =0 mod d, and Kg
is X-regular, m~°“w is the label of a closed path in I‘(Kg) at any vertex. Hence, there is a path in
A; CT(M) x T(K?) starting at (©,4) and ending at (p, ).

(d) = (b). The graph F(Ké) has exactly d vertices, and d edges labelled by each letter; see
Fig. 4 As T'(M) x F(Kg) is connected, we have

F(M N K3) = —|[VI(M N K%)| + |ET(M 0 K3))|
=~V (T(1) x T(K) | + [B(T(M) x T(K3) )|
— —d|VT(M)| + d|ED(M)]
— di(M).
Hence, by Schreier index formula, M N K7 <4 M (and not less). O
With these ingredients we can finally prove Claim [5.1
Proof of Claim[5.1 We are given a subgroup H <g G with r(Hn) > 2, Hr & [F,, F,], with the

basepoint in I'(H7) having degree at least 3, with Ly = H NZ™ <; Z™ (and so, r(Ly) = m),
and with basis {t®'uy,...,t%1u,, ,t*, ...t} such that u; & [F,, F,]; we are also given ¢ > 0,
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L(Fn) . T(K)

v Y,
['(M) > I'(Mz) < (M)
v Y, vV

I'(Hm) > T(HmNM,) ,» T(HrNM,) <, T'(HrnNM)
FI1GURE 5. Diagram of pull-backs

and we have to find a subgroup M <y, F, and vectors ay,...,a;,, € Z™, ny = r(M), satisfying

simultaneously conditions (i) to (iv). Let us distinguish two cases.

Case (1): di'Fn (Hm) > 1. Making € smaller if necessary, there always exists a subgroup M; <jg
F,, such that [Hm : Hr N M| = oo, Hr N My & [F,, F,,] and
F(Hm N M)
(M)
Hence, both reduced ranks are T(Hw N M;) > 1 and ©(M;) > 1 (recall that, in the definition of
dif, (+), 0/0 is understood to be 1). As Hm N My & [Fy,, F,,], there exists v € Hm N M; and a letter
r; € X such that |v],, = XA # 0. Write A = pi"* - -- pgi~, where each p; is a prime divisor of A. Now
choose a big enough prime number d > 0, such that ged(),d) = 1 and d > 2mdiy (Hm)/e. We
have eF(My)(dT(My) + m) > edt(My) > 2mdif, (Hm) (M) > 2mT(Hm N M) and so,
2(dE(Hm N M) +m) T(My) > 2dT(Hm N M) T(My)

> 2dT(Hm N My) T(My) + 2mT(Hm N My) — ef(My) (dT(My) +m)

=2F(Hm N My)(dt(My) +m) — e¥(My)(dT(My) +m)

= (25(Hm N M) — e£(My)) (dF(My) + m).
Dividing both sides by 2(d#(M1) + m) ¥(M;) > 0, we get

dif(HmOMy)+m _ T(HrNM;) e

(13) di(M,) +m > i(My) 2

(12) > dil, (Hrm) — % > 1.

Now, consider Kg <4 F, and My = My N Kg. Since the element v € Hm N M; < M; satisfies
ged(|vle,, d) = ged(N, d) =1, Lemmatells us that My <q My and HrNM; = (HwﬂMl)ﬂKé <4
HrNM,, and also T(M;)AT(K?) = T(M;) xT(K3) and T(HrNM,;)AT(K?) = T(HrNM;) xT(K?);
note further that I'(Hm N M;) x I'(Ms) is not necessarily connected, but its connected component
containing the basepoint (after trimming, if necessary) coincides with I'(Hw N M;) x I'( K é), both
being the Stallings graph of (Hmw N M) N Kg = (Hm N M) N Ms; see Fig. |5, where every graph in
the second and third columns having a neighbour on its left and another above is the pull-back of
those two. Moreover, from the hypothesis we have Hr N M7 <., Hm and so, Hr N My <o H.

Now, let us apply Proposition and consider the m-expansion (so p = m), of the subgroups
Hr (as N) and My (as M): we are under the hypothesis (r(Hw) > 2, the basepoint ® of I'(H ) has
degree at least 3, and Hm N My <o, Hm) so we get m freely independent elements wy, ..., w, € F,
such that My <g M = Maox(w1, ..., wy) and HrNMy <g (HrNMs)* (w1, ..., wy) <g HTNM <o
Hr; in particular, ng = (M) = 1(Mz)+m and T(HrNM) > T(HrNMsz)+m. This is our candidate
subgroup M < Fy,: in fact, (i) Ht N M <o Hm; (ii) Hr N M; £ [Fp, F,] so, HT N My £ [F,,, Fy,]
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(since F,/[Fp, F,]) ~ Z™ is torsion free) and Hr N M £ [F,, Fy,]; and (iii), by the Schreier index
formula and equations —,
T(Hm N M) >f(H7TﬂM2)+m_df(H7rﬂM1)+m F(HrNM;) e

= > — = >dip (Hr) —e.

FM)  © i(Ma)+m di(My) +m (M) 5 > dip, (Hm) —e
It remains to choose appropriate vectors al, ..., a,, € Z™ satisfying (iv). Take a free basis for M,
{v1,...,vx}, and extend it to a free basis for M, {v1,..., vk, w1,..., Wy }. We have that ny = r(Hr),

k = r(Ms), and ng = k+m = r(M). Similarly, as a free basis for Hm N M, take a free basis for
Hrm N My (say, made of ¢ = r(Hm N My) freely independent elements) followed by possibly some
more, say p > 0, and finally followed by {w1,...,wn}; we have ng =rv(HrNM) =q+p+m > m.
Finally, consider the intersection diagram for Hm and M,

Hr <—— HrnM “——= M

p1 /// P3 /// p2

Zm

where P € Mgipim)xn, (Z) and P' € Mg pim)x(k+m)(Z) are the abelianization of the inclusions
HrNM — Hm and Hr N M — M, respectively, where A € M,,, «xm(Z) is the matrix with rows
ai,...,an,, and where A" € My p)xm(Z) is the matrix with rows ay,...,aj_,, to be determined
in such a way that R = PA — P'A’: Z9tP+™ — Z™ is onto.

Note that, by construction, the first g elements in the free basis for HrNM are freely independent

from {wy,...,wn}, and that {wy,...,w,} are present in the last positions of the chosen bases for
both Hm N M and M; therefore, P’ has the form
x| 0
P=| %]
0| I,

Let Q be the lower m x m block in PA € Mg} pim)xm(Z), and define

0
A’ — (M) S M(k+m)><m(Z)

Separating the rows in the natural blocks, we have that

* x| 0 0 * 0 *
R=PA—-PA = * — x| % <—I—|—Q> = * — * = *
Q 0| Inm " Q —I,+Q I,

is a surjective map from Z4TPT™ onto Z™, proving condition (iv). This concludes the proof for this
Case (1).
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Case (2): dif, (Hm) = 1. Recall that we already fixed a basis {t* uy, ..., t*m Up,, 100, ..., t0m}
for H, with uy & [Fy,, Fy]. Let M = (u1,us ™ uqug, . .., ug~ ™ Dujus™ 1) <tg Hm, a subgroup with
ny = (M) = m already satisfying the first three required conditions: (i) Hn "M = M <, Hr =
(U1, upy); (i) vy € HrNM = M £ [F,, FJ; and (iii) f(Hr N M)/T(M) = 1 > di, (Hn) — e,
independently from the given e.

Finally, we have to choose appropriate vectors af,...,al, € Z™ so that (iv) holds. To do this,
look at the intersection diagram for Hr and M (see Fig. : we have n3 = no, = m and
1 0 ... 0
1 0 ... 0
P= .. . € Myxn, (Z), P' =1, € Mpwm(Z)
1 0 0
and, therefore,
a
R=PA-PA = : — A" € My (Z)
aq

will become the identity I,,,, and so represent an onto morphism, after choosing A’ appropriately.
This shows (iv) and concludes the proof. O
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