
DEGREES OF COMPRESSION AND INERTIA FOR FREE-ABELIAN TIMES

FREE GROUPS
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Abstract. We introduce the concepts of degree of inertia, diG(H), and degree of compression,

dcG(H), of a finitely generated subgroup H of a given group G. For the case of direct products
of free-abelian and free groups, we compute the degree of compression and give an upper bound

for the degree of inertia. Imposing some technical assumptions to the supremum involved in the

definition of degree of inertia, we introduce the notion called restricted degree of inertia, di′G(H),
and, again for the case Zm×Fn, we provide an explicit formula relating it to the restricted degree

of inertia of its projection to the free part, di′Fn (Hπ).

1. Introduction

For a group G, we write r(G) to denote the rank of G, i.e., the minimum cardinal of a generating
set for G. To work with group morphisms, we use the notational convention of writing arguments
on the left, i.e., φ : G1 → G2, g 7→ gφ; and so, compositions as written: gφψ = (gφ)ψ. Accordingly,
we write conjugations on the right, Hg = g−1Hg, and commutators in the form [a, b] = a−1b−1ab.
For a subgroup H 6 G, we shall use the notation H 6fg G to emphasize that H is finitely generated,
and H 6fi G (resp., H 6∞ G, or H 6l G) to emphasize it is of finite index (resp., infinite index, or
index l) in G.

In the commutative realm, the rank function is increasing in the sense that H 6 K 6 G implies
r(H) 6 r(K). This is far from true in general, and the main expression of this phenomena can
be found in the context of free groups Fn, where the free group of countably infinite rank easily
embeds into the free group of rank 2, Fℵ0 6 F2. However, when restricting ourselves to certain
families of groups and subgroups, the rank function tends to behave less wildly and somehow closer
to the commutative behaviour. An example of this situation is again in finitely generated free
groups, but restricting our attention to subgroups fixed by automorphisms or endomorphisms: the
story began in [7], where Dyer–Scott showed that the fixed subgroup Fix(ϕ) is a free factor of Fn
for every finite order automorphism ϕ ∈ Aut(Fn), and conjectured that r(Fix(ϕ)) 6 n, in general.
This was proved later by Bestvina–Handel [2], and extended several times in subsequent papers,
all of them pointing to the direction that the rank function, when restricted to subgroups fixed by
endomorphisms, tends to behave similarly to the abelian case. In this spirit, the following concepts
were first introduced by Dicks–Ventura in [6] and turned out to be quite relevant in the subsequent
literature:
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Definition 1.1. Let G be a group. A finitely generated subgroup H6fgG is said to be compressed
in G if r(H) 6 r(K), for every K such that H 6 K 6 G. And H is said to be inert in G if
r(H ∩K) 6 r(K), for every K 6 G. (Note that, equivalently, in both definitions one can restrict
the attention to those subgroups Ks being finitely generated.)

Observe that, directly by induction from the definition, inert subgroups are closed under finite
intersections. Also, inert subgroups are compressed, while the other implication is not known to be
true or false in free groups (this is the so-called inertia conjecture, see Zhang–Ventura–Wu [21] for
partial results), and it is not true in general:

Example 1.2. Consider the direct product of the Klein bottle group with the group of integers,
say G = 〈a, b | bab−1a〉 × 〈c | 〉, and its subgroup H = 〈a, b2, c〉 ' Z3. By Corollary 4.3 and
Proposition 4.4 from [21], H is compressed but not inert in G.

Several known results involving these concepts include the following:

Theorem 1.3. (i) (Dicks–Ventura, [6]): Arbitrary intersections of fixed subgroups of injective
endomorphisms of Fn are inert in Fn;

(ii) (Martino–Ventura, [12]): arbitrary intersections of fixed subgroups of endomorphisms of Fn
are compressed in Fn;

(iii) (Wu–Zhang, [20]): arbitrary intersections of fixed subgroups of automorphisms of closed
surface groups G with negative Euler characteristic are inert in G;

(iv) (Wu–Ventura–Zhang, [19]): arbitrary intersections of fixed subgroups of endomorphisms of
surface groups G are compressed in G.

Also, in [19] and [21], Zhang–Ventura–Wu studied similar questions within the family of finite
direct products of free and surface groups, where more interesting phenomena show up.

In the present paper we introduce a quantification for these two concepts and study it within
the families of free groups, and free-abelian times free groups. For technical reasons it is better
to work with the so-called reduced rank of a group G, defined as r̃(G) = max{0, r(G) − 1}, i.e.,
one unit less than the rank except for the trivial group for which we take zero (note that then,
r̃(1) = r̃(Z) = 0 while 0 = r(1) 6= r(Z) = 1). Observe that H 6 G is compressed in G if and only
if r̃(H)/ r̃(K) 6 1 for every K such that H 6 K 6fg G; and that H 6 G is inert in G if and only
if r̃(H ∩ K)/ r̃(K) 6 1 for every K 6fg G (understanding always 0/0 = 1). This motivates the
following quantitative definitions:

Definition 1.4. Let G be a group and H 6fg G. The degree of compression of H in G is dcG(H) =
supK{r̃(H)/ r̃(K)}, where the supremum is taken over all subgroups K with H 6 K6fgG. Similarly,
the degree of inertia of H in G is diG(H) = supK{r̃(H ∩K)/ r̃(K)}, where the supremum is taken
over all K6fgG satisfying H ∩K 6fg G and, in both cases, 0/0 is understood to be 1.

Note that, taking K = H, we get dcG(H) > 1 and diG(H) > 1. So, the possibility of K being
cyclic (which leads in both cases to 0/0 = 1) is irrelevant in both definitions and we can restrict
the two supremums to non-cyclic Ks without changing their final values.

Note also that the supremum in the definition of degree of compression is always a maximum,
since the numerator has a fixed value and the denominator takes only natural values. Although we
do not have any particular example, the supremum in the definition of degree of inertia could, in
principle, not be attained at any particular subgroup K. In this sense, the following is an intriguing
question for which, at the time of writing, we have no idea how to answer:



DEGREES OF COMPRESSION AND INERTIA FOR FREE-ABELIAN TIMES FREE GROUPS 3

Question 1.5. Is there a (finitely generated) group G and a subgroup H 6fg G such that diG(H)
is a transcendental number? Or an irrational number? Or such that the supremum in diG(H) is
not a maximum?

Observe that in the definition of degree of inertia, we take the supremum only over those sub-
groups K 6fg G whose intersection with H is again finitely generated. In groups G with the Howson
property (the intersection of any two finitely generated subgroups is again finitely generated), like
free groups or surface groups, this is no restriction and that supremum is over all finitely generated
Ks. Otherwise, if G is not Howson we are eliminating, on purpose, those possible finitely generated
Ks having non-finitely generated intersection with H (which would force diG(H) to be automat-
ically infinite). However observe that, even with the present limited definition, diG(H) may be
infinite as well; explicit examples will be shown later.

We adapt the definition of inertia to the non-Howson environments by saying that a subgroup
H 6 G is finitary inert in G if r(H ∩K) 6 r(K) for every K 6fg G such that H ∩K 6fg G. The
following observation then follows directly from the definitions and presents the values of dcG(H)
and diG(H) as a quantification of how far is the subgroup H 6fg G from being compressed and
from being finitary inert in G, respectively:

Observation 1.6. Let G be a group and H 6fg G. Then,

(i) 1 6 dcG(H) 6 diG(H);
(ii) dcG(H) = 1 if and only if H is compressed in G;
(iii) diG(H) = 1 if and only if H is finitary inert in G.

The following intriguing question is open, as far as we know:

Question 1.7. Is there a (finitely generated) group G with a subgroup H 6fg G being finitary
inert but not inert? (i.e., satisfying r̃(H ∩K) 6 r̃(K) for every K 6fg G with H ∩K 6fg G, but
simultaneously admitting some K0 6fg G with r̃(H ∩K0) =∞?).

In the present paper we study these notions for the case of the free group and obtain the following
result in Section 2:

Theorem 1.8. For any finitely generated free group G = Fn, the function dcFn(·) is computable;
more precisely, there is an algorithm which, on input h1, . . . , hr ∈ Fn, computes the value of
dcFn(〈h1, . . . , hr〉) and outputs a free basis of a subgroup K 6fg Fn where the corresponding supre-
mum is attained.

The question whether diFn(·) is computable in free groups (related to the question whether the
corresponding supremum is a maximum or not) seems to be much more delicate. In Section 2 we
refer to a quite similar question, which was successfully solved recently by S. Ivanov in [9]. However,
at the time of writing, we do not know how whether one can use this result to compute diFn(·).

Then, we concentrate on free-abelian times free groups, G = Zm × Fn, where the situation is
richer and trickier because, for m > 1, n > 2, G is known to be non-Howson (the following easy
example already appears in [3] attributed to Moldavanskii: G = Z × F2 = 〈t〉 × 〈a, b〉, H = 〈a, b〉,
K = 〈ta, b〉, and H ∩ K = 〈w(a, b) | |w|a = 0〉 = 〈a−nban, n ∈ Z〉, where |w|a denotes the a-
coordinate of the abelianization of w). Denoting by π : G � Fn the natural projection, we study
in Section 3 the degree of compression and prove the following result (see Theorem 3.3 for more
details and an explicit formula):
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Theorem 1.9. Let G = Zm×Fn. There is an algorithm which, on input h1, . . . , hr ∈ G, computes
the value dcG(〈h1, . . . , hr〉) and outputs a basis of a subgroup K 6fg G where that supremum is
attained.

In Section 4, we study the degree of inertia, also for groups of the form G = Zm × Fn, and get
the following result:

Theorem 1.10. Let H6fgG = Zm × Fn, and let LH = H ∩ Zm.

(i) If r(Hπ) 6 1 then diG(H) = 1;
(ii) if r(Hπ) > 2 and [Zm : LH ] =∞ then diG(H) =∞;
(iii) if r(Hπ) > 2 and [Zm : LH ] = l <∞ then diG(H) 6 l diFn(Hπ).

We conjecture that the inequality in Theorem 1.10 (iii) is, in fact, an equality, i.e.,

Conjecture 1.11. For G = Zm ×Fn and H6fgG with r(Hπ) > 2, we have the equality diG(H) =
[Zm : LH ] · diFn(Hπ), where LH = H ∩ Zm.

Unfortunately, we cannot complete a general proof for this equality. Instead, we get an ap-
proximation to it by introducing a technical modification to the definition of diG(·), the so-called
restricted degree of inertia:

Definition 1.12. Let G be a group and π : G� G/Z(G) the projection modulo its center Z(G)EG.
Let H 6fg G be such that Hπ is not virtually cyclic and Hπ 
 [Gπ,Gπ]. The restricted degree
of inertia of H in G is di′G(H) = supK{r̃(H ∩ K)/ r̃(K)}, where the supremum is taken over all
K 6fg G satisfying H ∩ K 6fg G, [Hπ : Hπ ∩ Kπ] = ∞, and Hπ ∩ Kπ 
 [Gπ,Gπ] (again,
understanding 0/0 = 1).

Remark 1.13. The conditions on the projection of the subgroup Hπ not to be virtually cyclic
and not to be contained in the commutator [Gπ,Gπ] are just to make sure the supremum is not
over the empty set: assuming these two conditions, let h ∈ H be such that hπ /∈ [Gπ,Gπ] and take
K = 〈h〉 6 G; clearly, K = H∩K = 〈h〉 is cyclic and so finitely generated, Hπ∩Kπ = 〈hπ〉 6∞ Hπ
because Hπ is not virtually cyclic, and hπ ∈ Hπ 
 [Gπ,Gπ]. Moreover, r̃(H ∩K)/ r̃(K) = 0/0 = 1
and so, di′G(H) > 1.

Note that our two cases of interest are the following: (i) G = Fn, n > 2 so, Z(G) = 1, G/Z(G) =
Fn, and the definition applies to any non-cyclic subgroup H 6 G such that H 66 [Fn, Fn]; and (ii)
G = Zm × Fn, n > 2 so Z(G) = Zm, G/Z(G) = Fn, and the definition applies to any subgroup
H 6 G such that Hπ is not cyclic and Hπ 66 [Fn, Fn].

Observe that the definition of restricted degree of inertia coincides with that of degree of inertia,
except for the extra technical conditions required for the subgroups K over which the supremum
runs. Hence, 1 6 di′G(H) 6 diG(H) and we conjecture that, at least in the free and free-abelian
times free cases, they do coincide.

Conjecture 1.14. For G = Fn and G = Zm × Fn, di′G(·) = diG(·).

Our main result in Section 5 is the desired equality from Theorem 1.10 (iii), but expressed with
the restricted degrees of inertia:

Theorem 1.15. Let H6fgG = Zm × Fn be such that Hπ is not cyclic and Hπ 
 [Fn, Fn], and let
LH = H ∩ Zm.
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(i) If [Zm : LH ] =∞ then di′G(H) =∞;
(ii) if [Zm : LH ] = l then di′G(H) = l di′Fn(Hπ).

Theorem 1.15 is the most involved and technical result in the paper. We hope in the future some
new ideas come up allowing to avoid the technical working conditions (namely, Hπ ∩ Kπ having
infinite index in Hπ, and not being contained in [Fn, Fn]) and to recycle the proof of Theorem 1.15
into a proof for Conjecture 1.11 (or, better, for Conjecture 1.14).

We conclude the present section with a straightforward result which will be used later.

Lemma 1.16. Let φ : G1 → G2 be an isomorphism of groups. For every H 6fg G1,

(i) dcG2(Hφ) = dcG1(H);
(ii) diG2

(Hφ) = diG1
(H);

(iii) with the extra assumptions that Hπ1 is not virtually cyclic and Hπ1 
 [G1π1, G1π1], where
πi : Gi → Gi/Z(Gi) is the natural projection modulo the center Z(Gi) E Gi, i = 1, 2, we
have di′G2

(Hφ) = di′G1
(H).

Proof. For every K 6fg G1 with H 6 K, we have Kφ 6fg G2 and Hφ 6 Kφ so, r̃(H) = r̃(Hφ) 6
dcG2

(Hφ) · r̃(Kφ) = dcG2
(Hφ) · r̃(K). Therefore, dcG1

(H) 6 dcG2
(Hφ). By symmetry, we get (i).

Similarly, for every K 6fg G1 with H ∩ K 6fg G1, we have Kφ 6fg G2 and Hφ ∩ Kφ =
(H∩K)φ 6fg G2 so, r̃(H∩K) = r̃((H∩K)φ) = r̃(Hφ∩Kφ) 6 diG2(Hφ) · r̃(Kφ) = diG2(Hφ) · r̃(K).
Therefore, diG1(H) 6 diG2(Hφ). By symmetry, we deduce (ii).

The argument in the previous paragraph also shows (iii), provided we see that the technical
conditions in the supremum of the definition of restricted degree of inertia get preserved under φ.
And in fact they do: suppose K 6fg G1 is such that H ∩ K 6fg G1, Hπ1 ∩ Kπ1 6∞ Hπ1 and
Hπ1∩Kπ1 
 [G1π1, G1π1]; since, φ is an isomorphism, Kφ 6fg G2 andHφ∩Kφ = (H∩K)φ 6fg G2;
also, since φ maps Z(G1) onto Z(G2), there exists an isomorphism φ̄ : G1/Z(G1)→ G2/Z(G2) such
that π1φ̄ = φπ2 and, hence, Hπ1 ∩ Kπ1 6∞ Hπ1 implies Hφπ2 ∩ Kφπ2 = Hπ1φ̄ ∩ Kπ1φ̄ =
(Hπ1 ∩ Kπ1)φ̄ 6∞ Hπ1φ̄ = Hφπ2; finally, Hφπ2 ∩ Kφπ2 = Hπ1φ̄ ∩ Kπ1φ̄ = (Hπ1 ∩ Kπ1)φ̄ 

[G1π1, G1π1]φ̄ = [G1φπ2, G1φπ2] = [G2π2, G2π2]. This completes the proof of the lemma. �

Corollary 1.17. Let G be a group. For every H 6fg G and every g ∈ G, dcG(Hg) = dcG(H),
diG(Hg) = diG(H), and (with the extra assumptions on H and so, on Hg) di′G(Hg) = di′G(H). �

2. The free case

For all the paper, we fix an alphabet of n letters, X = {x1, . . . , xn}, and consider the free group
on it, F (X), also denoted by Fn. In the present section we study the degrees of compression and
inertia in the context of the free group, i.e., the functions dcFn(·) and diFn(·).

Hanna Neumann proved in [15] that r̃(H ∩K) 6 2 r̃(H) r̃(K), for every H,K 6fg Fn. The same
assertion removing the factor “2” became soon known as the Hanna Neumann conjecture. This has
been a major problem in Geometric Group Theory, with lots of partial results and improvements
appearing in the literature since then. An interesting one was done by W. Neumann [16], who proved
the stronger fact

∑
x∈S r̃(H ∩ Ks) 6 2 r̃(H) r̃(K) (known as the strengthened Hanna Neumann

inequality), where S is any set of double coset representatives of Fn modulo H on the left and
K on the right (i.e., S ⊆ Fn contains one and only one element in each double coset H\Fn/K);
in particular, this implies that, for all H,K 6fg Fn, all except finitely many of the intersections
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H ∩Kx, x ∈ Fn, are trivial or infinite cyclic. A few years ago the Hanna Neumann conjecture, even
in its strengthened version, was completely resolved in the positive, independently by Friedman [8]
and by Mineyev [14] (see also Dicks [5]). This can be interpreted as the following upper bound for
dcFn(H) and diFn(H) in terms of the subgroup H 6fg Fn:

Observation 2.1. For H 6fg Fn, we have 1 6 dcFn(H) 6 diFn(H) 6 r̃(H).

Friedman–Mineyev’s inequality is easily seen to be tight (consider, for example, the subgroups
H = 〈a, b−1ab〉 and K = 〈b, a2, aba〉 of F2, and its intersection H ∩ K = 〈a2, b−1a2b, b−1aba〉);
therefore, it can be interpreted in the following way: “the smallest possible multiplicative constant
α ∈ R satisfying r̃(H ∩K) 6 α r̃(H) r̃(K), for every H,K 6fg Fn, is α = 1”. Now fix the subgroup
H: by definition, the smallest possible constant α ∈ R satisfying r̃(H ∩K) 6 α r̃(H) r̃(K), for every
K 6fg Fn, is α = diFn(H)/ r̃(H).

Ivanov [9] already considered and studied the strengthened version of what we call here
the degree of inertia. He defined the Walter Neumann coefficient of H 6fg Fn as σ(H) =
supK6fgFn

r̃(H,K)/
(

r̃(H) r̃(K)
)
, where r̃(H,K) =

∑
s∈H\Fn/K r̃(H∩Ks) (understanding 0/0 = 1).

In other words, σ(H) is the smallest possible constant α ∈ R such that r̃(H,K) 6 α r̃(H) r̃(K),
for every K 6fg Fn. Using linear programming techniques, Ivanov was able to prove the following
remarkable result:

Theorem 2.2 (Ivanov, [9]). For any finitely generated free group Fn, the function σ is computable
and the supremum is a maximum; more precisely, there is an algorithm which, on input h1, . . . , hr ∈
Fn, computes the value σ(〈h1, . . . , hr〉) and outputs a free basis of a subgroup K 6fg Fn where that
supremum is attained.

Ivanov’s proof is involved and technical. Although it looks quite similar, we have been unable
to adapt Ivanov’s arguments to answer any of the following questions which, as far as we know,
remain open:

Question 2.3. Is the function diFn(·) computable? Is the supremum defining diFn(·) always a maxi-
mum? Is there an algorithm which, on input h1, . . . , hr ∈ Fn, computes the value diFn(〈h1, . . . , hr〉)?
Or outputs a free basis of a subgroup K 6fg Fn where the supremum is attained?

The corresponding questions for the degree of compression are much easier and can be established
with the use of Stallings graphs, algebraic extensions, and Takahasi’s Theorem. We assume the
reader is familiar with these techniques; see [10, 13].

Definition 2.4. Let H 6fg K 6fg Fn. If H is a free factor of K we write H 6ff K. On the other
extreme, the extension H 6 K is said to be algebraic, denoted by H 6alg K, if H is not contained
in any proper free factor of K, i.e., if H 6 A 6 K = A ∗B implies B = 1; we denote by AEFn(H)
the set of algebraic extensions of H in Fn.

Theorem 2.5 (Takahasi, [17]; see also [10, 13]). Every H 6fg Fn has finitely many algebraic ex-
tensions, say AEFn(H) = {H = H0, H1, . . . ,Hr} (r depending on H), each Hi is finitely generated,
and free bases for all of them are algorithmically computable from a given set of generators for H.
Furthermore, for every extension H 6 K 6 Fn, there exists a unique (and computable) 0 6 i 6 r
such that H 6alg Hi 6ff K; this Hi is called the K-algebraic closure of H.
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Sketch of the proof. The original proof by M. Takahasi [17] was combinatorial, playing with words
and cancellation in the free group. We sketch the modern proof given in [13] following ideas of
Ventura [18], Kapovich–Miasnikov [10], and Margolis–Sapir–Weil [11].

We have the alphabet X fixed as a free basis for the ambient free group, Fn = F (X). Now,
given generators for H 6fg F (X), one can compute the Stallings graph Γ(H) for H (denote the
basepoint by �). Attaching the necessary infinite hanging trees so that it becomes an X-regular
graph (i.e., with all vertices having an incoming and an outgoing edge labelled xi for every xi ∈ X),
we obtain the Schreier graph χ(Fn, H,X) (which is finite if and only if H is of finite index in
Fn). Of course, χ(Fn, H,X) is a covering, χ(Fn, H,X) � R(X), of the bouquet R(X), the graph
with a single vertex and one loop labelled xi for every xi ∈ X; more precisely, it is the covering
of R(X) corresponding to the subgroup H 6fg π(R(X)) = Fn. By standard covering theory,
K ↔ χ(Fn,K,X) is a bijection between intermediate subgroups H 6 K 6 Fn and intermediate
coverings, χ(Fn, H,X) � χ(Fn,K,X) � R(X) (mapping finitely generated subgroups to graphs
with finite core, and viceversa).

Fix H 6fg K 6fg Fn, and consider their Stallings graphs Γ(H) = core(χ(Fn, H,X)) and Γ(K) =
core(χ(Fn,K,X)), both being finite graphs. The above bijection means that χ(Fn,K,X) is a
quotient of χ(Fn, H,X), i.e., the result of χ(Fn, H,X) after identifying vertices and edges in a
compatible way (i.e., modulo a congruence, an equivalence relation on the set of vertices satisfying
that if p ∼ q and e1 and e2 are edges with the same label and ιe1 = p and ιe2 = q, then τe1 ∼ τe2).
There are two cases: if no pair of vertices in Γ(H) 6 χ(Fn, H,X) become identified then Γ(H) is a
subgraph of Γ(K) = core(χ(Fn,K,X)) and so, H 6ff K; otherwise, we loose H from the picture,
but we can still say that some compatible quotient of Γ(H) will be visible as a subgraph of Γ(K).
Since Γ(H) is finite, it has finitely many compatible quotients and, therefore, computing all of them
and computing free bases for their fundamental groups, we obtain a finite list of finitely generated
subgroups OFn(H) = {H = H0, H1, . . . ,Hs} (s depending on H), called the fringe of H in [13], all
of them containing H and satisfying the following property: for every H 6fg K 6fg Fn there exists
(a non necessarily unique) i = 0, . . . , s such that H 6 Hi 6ff K.

It only remains to clean this list: for each pair of indices i, j, check whether Hi 6ff Hj (this can
be done using the classical Whitehead algorithm) and, in case it is, remove Hj from the list. It is
not difficult to see that the resulting reduced list is precisely AEFn(H) ⊆ OFn(H). Uniqueness of
the K-algebraic closure follows directly from the definition of algebraic extension. �

As an easy corollary, we obtain the following result which immediately proves Theorem 1.8:

Corollary 2.6. For any subgroup H 6fg Fn, we have dcFn(H) = supH6K6fgFn
{r̃(H)/ r̃(K)} =

maxK∈AEFn (H){r̃(H)/ r̃(K)}; furthermore, we can effectively compute dcFn(H) and a free basis of
a subgroup K ∈ AEFn(H) where the maximum is attained.

Proof. By Theorem 2.5, every H 6 K 6fg Fn uniquely determines the K-algebraic closure of H, i.e.,
an H ′ ∈ AEFn(H) such that H 6alg H

′ 6ff K. Since r̃(H ′) 6 r̃(K), we can restrict the supremum
in the definition of dcFn(H) to those subgroups in AEFn(H). And, since the set AEFn(H) is finite
and computable, this supremum is a maximum and we can effectively compute both dcFn(H) and
a free basis of a subgroup K where the maximum is attained. �
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3. Degree of compression in free-abelian times free groups

For the rest of the paper we work in free-abelian times free groups G = Zm×Fn, i.e., direct prod-
ucts of a free-abelian group Zm and a free group Fn, investigating here the degrees of compression
and inertia of subgroups.

Taking a free-abelian basis {t1, . . . , tm} for Zm (with multiplicative notation), and a free basis
X = {x1, . . . , xn} for Fn, we have

G = Zm × Fn =

〈
t1, . . . , tm, x1, . . . , xn

∣∣∣∣ titj = tjti, tixk = xkti
i, j = 1, . . . ,m
k = 1, . . . , n

〉
.

A normal form for elements in G is

ta11 · · · tamm u(x1, . . . , xn) = t(a1,...,am)u(x1, . . . , xn),

where a = (a1, . . . , am) ∈ Zm is a row integral vector, and u = u(x1, . . . , xn) is a reduced word
in Fn. Note that the symbol t by itself has no real meaning; it just allows us to convert the
ambient notation for the abelian group Zm from multiplicative into additive (since tatb = ta+b, for
a, b ∈ Zm).

At first glance, solving problems in Zm × Fn seems to be easily reducible to the corresponding
problems in Zm and Fn. However, this is not always the case and many naive looking questions are
much more complicated to answer in Zm × Fn than in Zm and Fn. This is the case, for example,
with the Howson property: both Zm and Fn are Howson but, as we saw above, G = Zm × Fn is
not (as soon as m > 1 and n > 2).

Let π : G = Zm × Fn � Fn, tau 7→ u, be the natural projection. For a subgroup H 6fg G, a
basis of H is a set of generators for H of the form {ta1u1, t

a2u2, . . . , t
arur, t

b1 , tb2 , . . . , tbs}, where
{u1, . . . , ur} is a free basis of Hπ, ai ∈ Zm for i = 1, 2, . . . , r, and {b1, . . . , bs} is a free-abelian basis
for LH = H∩Zm (to avoid confusions, we will maintain the full names, free-abelian basis, free basis,
and just basis, to refer to Zm, Fn, and G = Zm × Fn, respectively). According to [4, Prop. 1.9],
every subgroup H 6fg G admits a basis, computable from any given set of generators. Observe also
that a subgroup H 6 G is finitely generated if and only if Hπ 6 Fn is so.

In this section we study the degree of compression of a given subgroup H 6fg G. The first lemma
says that it is enough to consider those overgroups K such that Hπ 6alg Kπ.

Lemma 3.1. Let H 6fg G = Zm × Fn. Then,

dcG(H) = sup
H6K6fgG

{
r̃(H)

r̃(K)

}
= max

H 6 K 6fg G
Hπ 6alg Kπ

{
r̃(H)

r̃(K)

}
.

Proof. We already observed above that the supremum defining the degree of compression is always
a maximum. The inequality > is clear.

Fix a basis for H, say {ta1u1, . . . , t
arur, t

b1 , . . . , tbs}. To see the other inequality, take a subgroup
H 6 K 6fg G and we shall construct H 6 K ′ 6fg G such that Hπ 6alg K

′π and r̃(H)/ r̃(K) 6
r̃(H)/ r̃(K ′).

We have LH = H ∩ Zm = 〈tb1 , . . . , tbs〉 6 K ∩ Zm = LK and Hπ 6 Kπ so, r(LH) 6 r(LK)
and Hπ 6alg J 6ff Kπ, for some J ∈ AEFn(Hπ). Take a free basis {v1, . . . , vp} for J and extend
it to a free basis {v1, . . . , vp, vp+1, . . . , vq} for Kπ, p 6 q. Now, consider a basis for K of the form
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{tc1v1, . . . , t
cpvp, t

cp+1vp+1, . . . , t
cqvq, t

d1 , . . . , td`}, where ci ∈ Zm, i = 1, . . . , q, are certain integral
vectors, and {td1 , . . . , td`} is a free-abelian basis for LK .

Let K ′ = 〈tc1v1, . . . , t
cpvp, t

d1 , . . . , td`〉 6fg K 6 G and we claim that H 6 K ′. In fact, we already
know that tbi ∈ LH 6 LK = LK′ = 〈td1 , . . . , td`〉 6 K ′ for i = 1, . . . , s. Now, for i = 1, . . . , r we
see that taiui ∈ K ′: write ui as a word ui = wi(v1, . . . , vp) (unique up to reduction) and compute
wi(t

c1v1, . . . , t
cpvp) = teiwi(v1, . . . , vp) = teiui ∈ K ′ 6 K, where ei = |wi|v1c1 + · · ·+ |wi|vpcp. But

taiui ∈ H 6 K so, tei−ai ∈ LK = LK′ 6 K ′ and hence, taiui = (tei−ai)−1(teiui) ∈ K ′.
So, for everyH 6 K 6fg G we have found a finitely generated subgroup in between, H 6 K ′ 6 K,

such that Hπ 6alg J = K ′π and

r̃(K ′) = r̃(K ′π) + r(LK′) = (p− 1) + r(LK′) 6 (q − 1) + r(LK) = r̃(K);

therefore, r̃(H)/ r̃(K ′) > r̃(H)/ r̃(K) and the proof is completed. �

Fix H 6fg G together with a basis for it {ta1u1, . . . , t
arur, t

b1 , . . . , tbs}, and consider the matrices

A =

 a1

...
ar

 ∈Mr×m(Z) and B =

 b1
...
bs

 ∈Ms×m(Z).

For every J ∈ AEFn(Hπ) given with a free basis, say J = 〈v1, . . . , vp〉, we can consider the (unique
reduced) word expressing each ui in terms of v1, . . . , vp, say ui = wi(v1, . . . , vp), abelianize, and get
the vector (|wi|v1 , . . . , |wi|vp) ∈ Zp, i = 1, . . . , r; collecting all of them into the rows of a matrix,

UJ =

 |w1|v1 · · · |w1|vp
...

|wr|v1 · · · |wr|vp

 ∈Mr×p(Z).

According to Lemma 3.1, to compute dcG(H) it is enough to consider the subgroups of the form
K = 〈tc1v1, . . . , t

cpvp, LK〉 6fg G (where LK = K ∩ Zm, assume the given set of generators to
be a basis for K) such that H 6 K 6 G, Hπ = 〈u1, . . . , ur〉 6alg Kπ = 〈v1, . . . , vp〉, compute
r̃(H)/ r̃(K), and take the maximum of these values. (Observe that, although |AEFn(Hπ)| < ∞,
there are, possibly, infinitely many such Ks; however, r̃(K) = p−1+r(LK) takes only finitely many
values.)

So, fix such a K and consider the matrix

CK =

 c1
...
cp

 ∈Mp×m(Z).

Observe that the row space of the matrix A − UKπCK (i.e., the subgroup of Zm generated by its
rows) is contained in LK , row(A− UKπCK) 6 LK : in fact, for every i = 1, . . . , r, we have

K 3 wi(tc1v1, . . . , t
cpvp) = t|wi|v1c1+···+|wi|vpcpwi(v1, . . . , vp) = t(UKπ)iCKui,

where (UKπ)i is the i-th row of UKπ; therefore, H 6 K implies that ai − (UKπ)iCK ∈ LK , for
i = 1, . . . , r. This motivates the following definition, which allows us to obtain the main result in
this section.
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Definition 3.2. For given matrices A ∈ Mr×m(Z), B ∈ Ms×m(Z), and U ∈ Mr×p(Z), define
d(A,B,U) = minL6Zm{r(L) | ∃ C ∈Mp×m(Z) such that row(A− UC) 6 L, and row(B) 6 L}.
Theorem 3.3. For any given H 6fg G = Zm × Fn, and using the notation above, we have

dcG(H) = r̃(H)

/
min

J∈AEFn (Hπ)
{r̃(J) + d(A,B,UJ)}.

Proof. By Lemma 3.1, we know that the supremum in dcG(H) is attained at a certain subgroup K
such that H 6 K 6fg G and Kπ ∈ AEFn(Hπ). And, for every such K, r̃(K) = r̃(Kπ) + r(LK) so,

dcG(H) = max
H 6 K 6fg G
Hπ 6alg Kπ

{
r̃(H)

r̃(K)

}
= max
J∈AEFn (Hπ)

{
r̃(H)

r̃(J) + d(A,B,UJ)

}
=

(1) =
r̃(H)

minJ∈AEFn (Hπ){r̃(J) + d(A,B,UJ)}
since, by the argument above, every K with Kπ = J ∈ AEFn(Hπ) satisfies r(LK) > d(A,B,UJ),
one of them with equality. �

Finally, to prove Theorem 1.9 we need the computability of the value d(A,B,U).

Proposition 3.4. For any given matrices A ∈ Mr×m(Z), B ∈ Ms×m(Z), and U ∈ Mr×p(Z),
the value d(A,B,U) is algorithmically computable, together with a free-abelian basis of a subgroup
L 6 Zm attaining the minimum, and the corresponding matrix C ∈Mp×m(Z).

Proof. Recall that d(A,B,U) is the minimum rank of those subgroups L 6 Zm satisfying row(B) 6
L, and row(A − UC) 6 L for some C ∈ Mp×m(Z). Observe first that, replacing B by B′ with
row(B) 6fi row(B′) 6⊕ Zm, we have d(A,B′, U) = d(A,B,U); in fact, d(A,B′, U) > d(A,B,U)
is clear from the definition, and for every L 6 Zm containing row(B) and row(A − UC) for some
C ∈Mp×m(Z), we have the subgroup L+ row(B′) 6 Zm which contains row(B′) and row(A−UC)
for the same matrix C, and has the same rank, r(L + row(B′)) = r(L), since L 6fi L + row(B′);
this proves the equality.

Let us do a few reductions to the problem. Compute matrices P ∈ GLr(Z), Q ∈ GLp(Z),
and positive integers d1, . . . , d` ∈ N, ` 6 min{r, p}, satisfying 1 6 d1 | d2 | · · · | d` 6= 0, such that
PUQ = U ′, where U ′ = diag(d1, . . . , d`) ∈ Mr×p(Z) (understanding the last r − ` > 0 rows and
the last p − ` > 0 columns full of zeros); this is the Smith normal form for U ; see [1] for details.
Writing A′ = PA, B′ = B, and doing the change of variable C = QC ′, we have row(A − UC) =
row(PA− PUQC ′) = row(A′ − U ′C ′). So, d(A,B,U) = d(A′, B′, U ′).

To compute d(A′, B′, U ′), we have to find a subgroup L 6 Zm of the minimum possible rank,
and vectors c′1, . . . , c

′
p ∈ Zm, such that row(B′) 6 L,

(2)
a′1 − d1c

′
1 ∈ L

· · ·
a′` − d`c′` ∈ L

 ,

and

(3)
a′`+1 ∈ L
· · ·

a′r ∈ L

 .
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Note that the last p − ` > 0 columns of U ′ are full of zeroes so, no condition concerns the vectors
c′`+1, . . . , c

′
p and we can take them to be arbitrary (say zero, for example). That is, taking c′`+1 =

· · · = c′p = 0, denoting A′′ = A′ ∈ Mr×m(Z), B′′ = B′ ∈ Ms×m(Z), U ′′ ∈ Mr×`(Z) the matrix U ′

after deleting the last p− ` > 0 columns (and C ′′ ∈M`×m(Z) the matrix C ′ after deleting the last
p− ` > 0 rows), we have d(A′, B′, U ′) = d(A′′, B′′, U ′′).

Now, we can ignore conditions (3) by adding the vectors a′′`+1, . . . , a
′′
r as extra rows at the bottom

of B: let A′′′ ∈M`×m(Z) be A′′ after deleting the last r− ` > 0 rows, B′′′ ∈M(s+r−`)×m(Z) be B′′

enlarged with r− ` extra rows with the vectors a′′`+1, . . . , a
′′
r , U ′′′ ∈M`×`(Z) be the matrix U ′′ after

deleting the last r−` > 0 rows (and C ′′′ = C ′′), and we have that d(A′′, B′′, U ′′) = d(A′′′, B′′′, U ′′′).
Note that now, U ′′′ = diag(d1, . . . , d`) is a square matrix.

Finally, if d1 = 1 we can take c′1 = a′1 and the first condition in (2) becomes trivial; so, deleting
the possible ones at the beginning of the list d1 | d2 | · · · | d` (and their rows and columns from U ′′′),
and deleting also the corresponding first rows of A and C, we can assume d1 6= 1.

Altogether, and resetting the notation to the original one, we are reduced to compute d(A,B,U)
in the special situation where A ∈Mr×m(Z), B ∈Ms×m(Z), and U = diag(d1, . . . , dr) ∈Mr×r(Z),
with 1 6= d1 | d2 | · · · | dr 6= 0, and further, by the argument in the first paragraph of the present
proof, with row(B) being a direct summand of Zm. That is, we have to compute a subgroup L 6 Zm
of the minimum possible rank, and vectors c1, . . . , cp ∈ Zm satisfying row(B) 6 L and

(4)
a1 − d1c1 ∈ L

· · ·
ar − drcr ∈ L

 ,

where ai is the i-th row of A. Let us think of the conditions in (4) as saying that ai ∈ L modulo
diZm, i = 1, . . . , r. To solve this, let us start with L0 = row(B) 6⊕ Zm and let us increase it the
minimum possible in order to fulfill conditions (4).

Since d1 | d2 | · · · | dr, the natural projections πi : Zm � (Z/diZ)m factorize through the chain
of morphisms Zm � (Z/drZ)m � (Z/dr−1Z)m � · · · � (Z/d1Z)m. Starting with L > L0 and
collecting the last condition in (4), we deduce that L must further satisfy Lπr > L0πr + 〈v0

rπr〉,
where v0

r = ar ∈ Zm. Now the second condition from the end in (4) adds the requirement Lπr−1 3
ar−1πr−1. But ar−1πr−1 ∈ (Z/dr−1Z)m has finitely many (more precisely, (dr/dr−1)m) pre-images
in (Z/drZ)m; compute them all, take pre-images vr−1 up in Zm, and we get that L must further
satisfy Lπr > L0πr + 〈v0

rπr, vr−1πr〉, where vr−1πr is one of these (dr/dr−1)m pre-images. Repeat
this same argument with all the conditions in (4), working from bottom to top: we deduce that L
must further satisfy Lπr > L0πr+〈v0

rπr, vr−1πr, . . . , v1πr〉, where vi ∈ Zm is a vector such that viπr
is one of the computed (dr/di)

m pre-images of aiπi ∈ (Z/diZ)m up in (Z/drZ)m, i = r − 1, . . . , 1,
i.e., vi ≡ ai mod di. This makes a total of (dr/dr−1)m · · · (dr/d1)m possible lower bounds for Lπr:
compute them all, find one with minimal possible rank, say Lπr > L0πr + 〈v0

rπr, v
0
r−1πr, . . . , v

0
1πr〉,

and we deduce that d(A,U,B) > r(L1πr), where L1 = L0 + 〈v0
r , v

0
r−1, . . . , v

0
1〉 6 Zm.

We claim that this lower bound is tight, i.e., d(A,B,U) = r(L1πr). To see this, we have to
construct a subgroup L 6 Zm of rank exactly r(L1πr), containing L0 and satisfying (4) for some
vectors c1, . . . , cr ∈ Zm (which must also be computed). Since L0 is a direct summand of Zm, say
with free-abelian basis {w1, . . . , wk}, we deduce that L0πr is a direct summand of (Z/drZ)m with
abelian basis {w1πr, . . . , wkπr}. So, L0πr is also a direct summand of L1πr 6 (Z/drZ)m; compute
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a complement and get vectors v′1, . . . , v
′
l ∈ Zm, l 6 r, such that {w1πr, . . . , wkπr, v

′
1πr, . . . , v

′
lπr} is

an abelian basis of L1πr = L0πr ⊕ V ; in particular, r(L1πr) = k + l.

Finally, take L = 〈w1, . . . , wk, v
′
1, . . . , v

′
l〉 6 Zm. This subgroup has the desired rank r(L) =

k + l = r(L1πr) (since the given generators are linearly independent because their πr-projections
are so), and satisfies the required conditions: on one hand, L0 = 〈w1, . . . , wk〉 6 L; on the other
hand, for every i = 1, . . . , r, v0

i πr ∈ L1πr = 〈w1πr, . . . , wkπr〉 ⊕ 〈v′1πr, . . . , v′lπr〉 so,

v0
i πr = λ1(w1πr) + · · ·+ λk(wkπr) + µ1(v′1πr) + · · ·+ µl(v

′
lπr)

= (λ1w1 + · · ·+ λkwk + µ1v
′
1 + · · ·+ µlv

′
l)πr,

for some integers λ1, . . . , λk, µ1, . . . , µl ∈ Z; thus, L contains the vector ci = λ1w1 + · · · + λkwk +
µ1v
′
1 + · · ·+µlv

′
l which satisfies ci ≡ v0

i mod dr and so, ci ≡ v0
i mod di too; since v0

i ≡ ai mod di,
we deduce ci ≡ ai mod di and we are done. �

Proof of Theorem 1.9. In order to compute the value dcG(H) using the expression from Theo-
rem 3.3, we can do the following: first compute AEFn(Hπ); for each member J = 〈v1, . . . , vp〉,
write each ui in the free basis of Hπ in terms of the free basis {v1, . . . , vp} of J , and obtain the
matrix UJ ; then compute d(A,B,UJ)+ r̃(J) (which is effectively doable by Proposition 3.4). When
this procedure is done for each of the finitely many J ∈ AEFn(Hπ), take the minimum of the
values d(A,B,UJ) + r̃(J) and, by (1), we are done. Moreover, the elements of the free basis for the
subgroup J attaining this minimum, together with the rows of the matrix C just computed and
realizing the minimum in d(A,B,UJ), are the ingredients to build a basis for a subgroup K 6fg G
attaining the minimum in dcG(H). �

It is natural to ask whether the minimum minJ∈AEFn (Hπ){r̃(J) + d(A,B,UJ)} in Theorem 1.9
is attained at an algebraic extension J ∈ AEFn(Hπ) of minimal rank. Unfortunately, this is not
always the case, as shown in the following example. In order to compute dcG(H), this fact forces
us to run over all algebraic extensions J of Hπ, and compute d(A,B,UJ) following the algorithm
given in Proposition 3.4, for each one. We do not see any shortcut to this procedure, for the general
case.

Example 3.5. We exhibit an explicit example of a subgroup H 6fg G having two algebraic
extensions J, J ′ ∈ AEFn(Hπ) with r̃(J) < r̃(J ′) but r̃(J) + d(A,B,UJ) > r̃(J ′) + d(A,B,UJ′).

Let H = 〈t(−1,0)b2, t(1,0)ac−1ac−1, t(0,1)bac−1〉 6fg G = Z2 × F3. Projecting, we have Hπ =
〈b2, ac−1ac−1, bac−1〉, and Fig. 1 represents the Stallings graph ΓA(Hπ) for Hπ as a subgroup of
F3 with respect to the ambient free basis A = {a, b, c}. Successively identifying pairs of vertices
of ΓA(Hπ) and reducing the resulting A-labeled graph in all possible ways, one concludes that
ΓA(Hπ) has nine congruences, whose corresponding quotient graphs are depicted in Figs. 1 and 2;
this is the fringe OFn(Hπ) of Hπ; see the proof of Theorem 2.5 above.

Now following the cleaning process, we get the set of algebraic extensions for Hπ, namely
AE(Hπ) = {Hπ, J}, where J = 〈b, ac−1〉}. (To this goal, the following fact helps: suppose N is ob-
tained from M by a single identification of a pair of vertices followed by foldings; if r(N) = r(M)+1
then M is a free factor of N , otherwise, M 6alg N .)
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Figure 2. The eight non-trivial quotients of ΓA(Hπ)



14 MALLIKA ROY AND ENRIC VENTURA

Following the notation above, we have

A =

 −1 0
1 0
0 1

 , B = ∅, UHπ =

 1 0 0
0 1 0
0 0 1

 , UJ =

 2 0
0 2
1 1

 .

According to Theorem 1.9,

(5) dcG(H) = r̃(H)/min{r̃(Hπ) + d(A,B,UHπ), r̃(J) + d(A,B,UJ)}.

Since H 6 H, we see that d(A,B,UHπ) = r(LH) = 0 and the first term on the minimum in (5) is
r̃(Hπ) + d(A,B,UHπ) = (3− 1) + 0 = 2.

Following the algorithm given in Proposition 3.4, let us compute now d(A,B,UJ), where J =
〈b, ac−1〉; we have r = 3, m = 2, s = 0, and p = 2. Computing the Smith normal form for UJ , we
get

P =

 0 0 1
0 1 0
1 1 −2

 ∈ GL3(Z), Q =

(
1 −1
0 1

)
∈ GL2(Z), U ′ =

 1 0
0 2
0 0

 ,

with d1 = 1, d2 = 2, and ` = min{r, p} = 2. Diagonalyzing the problem, we obtain

A′ = PA =

 0 1
1 0
0 −2

 , B′ = B = ∅, U ′ =

 1 0
0 2
0 0

 ,

and d(A,B,UJ) = d(A′, B′, U ′) (under the change of variable C = QC ′). Since p = ` = 2 the next
reduction is empty and A′′ = A′, B′′ = B′, and U ′′ = U ′. Applying the following reduction to
delete the last r − ` = 3− 2 = 1 zero rows in U ′′, we get

A′′′ =

(
0 1
1 0

)
, B′′′ =

(
0 −2

)
, U ′′′ =

(
1 0
0 2

)
.

Finally, in order to delete d1 = 1 from the list of divisors, we take c′′′1 = (0, 1) and get

A′′′′ =
(

1 0
)
, B′′′′ =

(
0 −2

)
, U ′′′′ =

(
2
)
.

Going up by finite index, we replace the matrix B′′′′ to (0, 1), and are reduced to compute
d(A′′′′, (0, 1), U ′′′′); this is the smallest rank of a subgroup L 6 Z2 such that 〈(0, 1)〉 6 L and
(1, 0)− 2c′′′′2 ∈ L for some c′′′′2 ∈ Z2. Clearly, d(A′′′′, (0, 1), U ′′′′) = 2, and one (non unique) solution
is given by L = Z2 and c′′′′2 = (1, 0). Collecting the c1 computed before, and undoing the change of
variable, we get

C = QC ′ = QC ′′′ =

(
1 −1
0 1

)(
0 1
1 0

)
=

(
−1 1
1 0

)
.

We conclude that d(A,B,UJ) = 2 and one of the subgroups K with the smallest possible rank
satisfying Kπ = J and H 6 K 6 Z2 × F3 is K = 〈t(−1,1)b, t(1,0)ac−1, t(1,0), t(0,1)〉. So, the second
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term on the minimum in (5) is r̃(J) + d(A,B,UJ) = (2− 1) + 2 = 3. Therefore,

dcG(H) =
r̃(H)

min{r̃(Hπ) + d(A,B,UHπ), r̃(J) + d(A,B,UJ)}

=
3− 1

min{(3− 1) + 0, (2− 1) + 2)}

=
2

2
= 1.

In particular, H is compressed in G.

As seen in this example, the algebraic extension J looks better than the other one Hπ because
it contributes to the free rank in 2 units instead of 3. However, in order to match the free-abelian
part, J forces us to take two more units of rank, while Hπ requires zero units. Note that in this
example, d(A,B,UJ) is as big as it could be since, in general, d(A,B,UJ) 6 m = 2. The example
can easily be extended to an arbitrary m.

4. Degree of inertia in free-abelian times free groups

In this section, we study the degree of inertia for subgroups H of G = Zm × Fn and relate it
to the corresponding degree of inertia of Hπ in Fn. The goal is to prove Theorem 1.10: when Hπ
is cyclic then H is inert (i.e., diG(H) = 1), and when r(Hπ) > 2 then it heavily depends on the
index of LH = H ∩ Zm in Zm; when this index is infinite diG(H) is infinite as well, and when
it is finite then diG(H) 6 [Zm : LH ] diFn(Hπ). Unfortunately, the situation here is much more
complicated and we can only prove this inequality, while we conjecture that the equality is true;
see Conjecture 1.11. The computability of diG(·) remains open, as in the free case.

Lemma 4.1. For positive real numbers a, b, c, d > 0,

a

b
6
c

d
⇒ a

b
6
a+ c

b+ d
6
c

d
. �

Proof of Theorem 1.10. (i). The hypothesis r(Hπ) 6 1 implies that H = 〈tau, LH〉, for some
a ∈ Zm and u ∈ Fn (possibly trivial). Then, for every K 6fg G, we have (H∩K)π 6 Hπ∩Kπ 6 〈u〉
so, (H ∩K)π = 〈ur〉 for some r ∈ Z. Hence, H ∩K = 〈tbur, LH ∩ LK〉 for some b ∈ Zm and we
get r(H ∩ K) 6 r(K). Therefore, r̃(H ∩ K)/ r̃(K) 6 1, which is valid for every K 6fg G. Thus,
diG(H) = 1 (i.e., H is inert in G).

(ii). Consider the (unique) subgroup L̃H satisfying LH6fi L̃H6⊕ Zm, and take a free-abelian

basis {b1, . . . , bs} of L̃H , such that {λ1b1, . . . , λsbs} is a free-abelian basis of LH for appropriate
integers λ1, . . . , λs ∈ Z (there is always a basis like this by the fundamental theorem of finitely
generated abelian groups). By hypothesis, s = r(LH) < m and, completing to a free-abelian basis
{b1, . . . , bs, bs+1, . . . , bm} of the ambient Zm, we get at least one extra vector bs+1 (which, of course,
is primitive in Zm and so has relatively prime coordinates).

Now fix a basis for H of the form {ta1u1, . . . , t
an1un1

, tλ1b1 , . . . , tλsbs}, where a1, . . . , an1
∈ Zm,

and {u1, . . . , un1
} is a free basis for Hπ; in particular, we have r(Hπ) = n1 > 2, r(LH) = s < m,

and r(H) = n1 + s.

For proving diG(H) = ∞, we shall construct a family of subgroups KN 6fg Zm × Fn, indexed
by N ∈ N, all of them with constant rank 3 (i.e., r̃(KN ) = 2), with all the intersections H ∩KN

being finitely generated, but with r̃(H ∩KN ) tending to ∞, as N →∞.
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Let KN = 〈ta′1u1, t
a′2u2, LKN 〉 6 Zm × Fn, where the vectors a′1, a

′
2 ∈ Zm and the subgroup

LKN 6 Zm are to be determined; note that for all choices r(KNπ) = 2, and here we are already
using the hypothesis n1 > 2.

Let us understand the intersection H ∩KN following the procedure (and notation) given in [4,
Thm. 4.5]: we have n2 = r(KNπ) = 2, Hπ ∩KNπ = 〈u1, u2〉 and so n3 = r(Hπ ∩KNπ) = 2, and
we consider the matrices

A =

 a1

...
an1

 ∈Mn1×m(Z), A′ =

(
a′1
a′2

)
∈M2×m(Z).

Let ρ1 : Hπ � Zn1 , ρ2 : KNπ � Z2, and ρ3 : Hπ ∩KNπ � Z2 be the corresponding abelianization
maps (not to be confused with the restrictions of the global abelianization map Fn � Zn to the
corresponding domains). Clearly, the inclusion maps ιH : Hπ∩KNπ ↪→ Hπ and ιK : Hπ∩KNπ ↪→
KNπ abelianize, respectively, to the morphisms Z2 → Zn1 and Z2 → Z2 given by the matrices

P =

(
1 0 0 . . . 0
0 1 0 . . . 0

)
∈M2×n1(Z), P ′ = I2 =

(
1 0
0 1

)
∈M2×2(Z).

Moreover, let

R = PA− P ′A′ =

(
a1

a2

)
−
(
a′1
a′2

)
=

(
a1 − a′1
a2 − a′2

)
∈M2×m(Z),

and let us put all these ingredients into the following diagram:

(6)

6

(H ∩KN )π

Hπ ∩KNπHπ KNπ? _ιoo � � ι′ //

Z2Zn1 Z2

ρ3

����

ρ1

����

ρ2

����

/// ///

Z2Zn1 Z2Poo P ′ //

Zm

A

""

A′

||

R

��

According to the argument in [4, Thm. 4.5], the subgroup (H ∩KN )π 6 Hπ ∩KNπ is, precisely,
the full preimage by R and ρ3 of LH + LKN 6 Zm.

Let us choose now the vectors a′1 = a1 − bs+1 and a′2 = a2, and the subgroup LKN = 〈Nbs+1〉,
N ∈ N; the matrix R becomes

R =

(
bs+1

0

)
.
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We have LH + LKN = 〈λ1b1, . . . , λsbs, Nbs+1〉 and then,

(LH + LKN )R−1 = {(x, y) ∈ Z2 | (x y)R ∈ LH + LKN }
= {(x, y) ∈ Z2 | xbs+1 ∈ LH + LKN }
= {(x, y) ∈ Z2 | xbs+1 ∈ 〈Nbs+1〉}
= NZ× Z 6N Z2

(the last equality being true because bs+1 has relatively prime coordinates). As ρ3 is onto, taking
ρ3-preimages preserves the index and we have

(H ∩KN )π = (LH + LKN )R−1ρ3
−1 = (NZ× Z)ρ3

−1 6N Hπ ∩KNπ.

Thus, by the Schreier index formula, r̃((H ∩KN )π) = N r̃(Hπ ∩KNπ) = N and we deduce that
r̃(H ∩KN ) = N + r(LH ∩ LKN ) = N + 0 = N tends to ∞, as N → ∞. This completes the proof
that diG(H) =∞.

(iii). Fix a basis for H, say {ta1u1, . . . , t
an1un1

, tb1 , . . . , tbm}, where a1, . . . , an1
∈ Zm,

{u1, . . . , un1
} is a free basis for Hπ, and {b1, . . . , bm} is a free-abelian basis for LH 6l Zm; in

particular, r(Hπ) = n1 > 2, r(LH) = m, and r(H) = n1 +m.

In order to show the inequality diG(H) 6 l diFn(Hπ), let us fix an arbitrary subgroup K 6fg G,
assume that H ∩K is finitely generated, and let us prove that r̃(H ∩K)/ r̃(K) 6 l diFn(Hπ). Fix

a basis for K, say K = 〈ta′1v1, . . . , t
a′n2 vn2

, LK〉 and we have

(7)
r̃(H ∩K)

r̃(K)
=

r̃((H ∩K)π) + r(LH ∩ LK)

r̃(Kπ) + r(LK)
.

If Kπ is trivial or cyclic this value is clearly less than or equal to 1, which is less than or equal to
l diFn(Hπ) and we are done. Hence, let us assume n2 > 2.

As in the proof of part (ii), we consider the intersection diagram to understand H ∩K:

(8)

6

(H ∩K)π

Hπ ∩KπHπ Kπ? _ιoo � � ι′ //

Zn3Zn1 Zn2

ρ3

����

ρ1

����

ρ2

����

/// ///

Zn3Zn1 Zn2
Poo P ′ //

Zm

A

""

A′

||

R

��

where ρ1 : Hπ � Zn1 , ρ2 : Kπ � Zn2 , and ρ3 : Hπ∩Kπ � Zn3 are the corresponding abelianization
maps (here, n3 = r(Hπ∩Kπ) <∞), where ι and ι′ are the natural inclusions, where P ∈Mn3×n1

(Z)
and P ′ ∈ Mn3×n2(Z) are the matrices of their respective abelianizations (note that ι and ι′ being
injective do not imply P and P ′ necessarily being so; in particular, n3 may very well be bigger than
n1 or n2), where A ∈Mn1×m(Z) and A′ ∈Mn2×m(Z) are the matrices with rows {a1, . . . , an1

} and
{a′1, . . . , a′n2

} respectively, and where R = PA − P ′A′ ∈ Mn3×m(Z). According to the argument

in [4, Thm. 4.5], the crucial property of diagram (8) is the fact that (H∩K)π = (LH +LK)R−1ρ−1
3 .
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From the hypothesis, LH 6l Zm and so, LH + LK 6l′ Zm, where 1 6 l′ 6 l. As in general
R is not necessarily onto, (LH + LK)R−1 6l′′ Zn3 with 1 6 l′′ 6 l′. And, since ρ3 is onto,
(H ∩K)π = (LH + LK)R−1ρ−1

3 6l′′ Hπ ∩Kπ. Therefore, by the Schreier index formula,

(9) r̃((H ∩K)π) = l′′ r̃(Hπ ∩Kπ) = l′′ r̃(Hπ∩Kπ)
r̃(Kπ) r̃(Kπ) 6 l′′ diFn(Hπ) r̃(Kπ).

Now, using (7), we have

(10)
r̃(H ∩K)

r̃(K)
6
l′′ diFn(Hπ) r̃(Kπ) + r(LH ∩ LK)

r̃(Kπ) + r(LK)
6
l′′ diFn(Hπ) r̃(Kπ)

r̃(Kπ)
= l′′ diFn(Hπ),

where the second inequality is an equality if LK = {0}, and follows from applying Lemma 4.1 to
r(LH∩LK)

r(LK) 6 1 6 l′′ diFn(Hπ) otherwise. Therefore

(11)
r̃(H ∩K)

r̃(K)
6 l′′ diFn(Hπ) 6 l′ diFn(Hπ) 6 l diFn(Hπ),

as we wanted. �

5. Restricted degree of inertia for free-abelian times free groups

To improve the inequality from Theorem 1.10 (iii) into an equality, we need to add a couple of
technical restrictions on the subgroups K over which the supremum in the definition of degree of
inertia runs. This gives rise to the notion of restricted degree of inertia given in Definition 1.12; in
the particular case of interest, G = Zm × Fn, it is the following:

di′G(H) = sup
K 6fg G

H ∩K 6fg G
[Hπ : Hπ ∩Kπ] = ∞
Hπ ∩Kπ 
 [Fn, Fn]

{
r̃(H ∩K)

r̃(K)

}
6 diG(H),

applied to subgroups H 6fg G such that r(Hπ) > 2 and Hπ 
 [Fn, Fn]. The main result in the
present section is Theorem 1.15. The proofs for part (i) and for the inequality 6 from (ii) work
almost exactly in the same way as the corresponding parts from Theorem 1.10. The inequality
diG(H) > l diFn(Hπ) from (ii) is more involved and will require the previous development of several
lemmas about intersections of subgroups of Fn, and a strong use of the well-known tool of pull-backs
of graphs for working with intersections of finitely generated subgroups of Fn; we concentrate these
technicalities into Claim 5.1 and postpone its proof until having the lemmas available.

Proof of Theorem 1.15. (i). Follow the same arguments as in Theorem 1.10 (ii) with the following
detail in mind: by the assumption Hπ 6∈ [Fn, Fn] we can assume, from the very beginning and
without loss of generality, that u1 /∈ [Fn, Fn], i.e., the first element in the chosen free-basis for Hπ
is outside the commutator [Fn, Fn]. Now the goal is to construct a family of subgroups KN 6fg

Zm × Fn, indexed by N ∈ N, all of them having rank 3, with all the intersections H ∩KN being
finitely generated, and further satisfying [Hπ : Hπ ∩KNπ] = ∞ and Hπ ∩KNπ 
 [Fn, Fn], such
that r̃(H ∩KN ) tends to infinity, as N →∞.

The construction of theseKN s will be similar to that in Theorem 1.10(ii), but with slight technical

modifications in order to get the extra conditions. Take KN = 〈ta′1u2
1, t

a′2u2
2, LKN 〉 6 Zm × Fn,

where the vectors a′1, a
′
2 ∈ Zm and the subgroup LKN 6 Zm are to be determined. Note that
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Hπ ∩KNπ = 〈u2
1, u

2
2〉 6∞ Hπ, and also Hπ ∩KNπ 
 [Fn, Fn] as u2

1 /∈ [Fn, Fn] (since u1 /∈ [Fn, Fn]
and Fn/[Fn, Fn] = Zn is torsion-free).

The rest of the argument works in a parallel way, just realizing that now P = ( 2 0 0 ··· 0
0 2 0 ··· 0 ) ∈

M2×n1
(Z) and so,

R = PA− P ′A′ =

(
2a1

2a2

)
−
(
a′1
a′2

)
=

(
2a1 − a′1
2a2 − a′2

)
∈M2×m(Z),

Choosing the vectors a′1 = 2a1 − bs+1 and a′2 = 2a2, and the subgroup LKN = 〈Nbs+1〉 6 Zm, the
rest of the proof proceeds verbatim.

(ii)-6. In order to show the inequality di′G(H) 6 l di′Fn(Hπ), let us fix an arbitrary subgroup
K 6fg G, assume H ∩ K 6fg G and also [Hπ : Hπ ∩ Kπ] = ∞ and Hπ ∩ Kπ 
 [Fn : Fn],
and we have to prove that r̃(H ∩ K)/ r̃(K) 6 l di′Fn(Hπ). Exactly the same arguments as in
Theorem 1.10 (iii) work here, with the caution that the inequality in Equation (9) is still true
with diFn(Hπ) replaced by the (possibly smaller) value di′Fn(Hπ), since the involved subgroup Kπ
further satisfies Hπ ∩Kπ 6∞ Hπ and Hπ ∩Kπ 
 [Fn, Fn], by construction.

(ii)->. By hypothesis, r(Hπ) > 2 and so, the Stallings graph Γ(Hπ) has at least one vertex p
of degree bigger than 2. Without loss of generality, we can assume that it is the basepoint � who
has degree at least 3: in fact, let w ∈ Fn be the label of any path from � to p and, replacing H by
Hw (and so, Hπ by Hwπ = (Hπ)w), the inequality to prove does not change; see Lemma 1.17.

Let {ta1u1, . . . , t
an1un1

, tb1 , . . . , tbm} be a basis for the subgroup H 6fg G, where a1, . . . , an1
∈

Zm, {u1, . . . , un1} is a free basis for Hπ, u1 6∈ [Fn, Fn], and {b1, . . . , bm} is a free-abelian basis for
LH 6l Zm; in particular, r(Hπ) = n1 > 2, r(LH) = m, and r(H) = n1 +m.

In order to prove the inequality, di′G(H) > l di′Fn(Hπ), we fix ε > 0 and will construct a subgroup
Kε 6fg G satisfying H ∩Kε 6fg G, [Hπ : Hπ ∩Kεπ] =∞, Hπ ∩Kεπ 
 [Fn, Fn] and, furthermore,
r̃(H ∩Kε)/ r̃(Kε) > l di′Fn(Hπ)− ε. For any candidate K 6 G, equations (9), (10), and (11) above

(with di′Fn instead of diFn) contain all possible reasons for which the quotient r̃(H ∩K)/ r̃(K) may

be less than l di′Fn(Hπ), namely:

(I) r̃(Hπ ∩Kπ)/ r̃(Kπ) 6 di′Fn(Hπ);

(II)
l′′ di′Fn (Hπ) r̃(Kπ)+r(LH∩LK)

r̃(Kπ)+r(LK) 6
l′′ di′Fn (Hπ) r̃(Kπ)

r̃(Kπ) ;

(III) l′ 6 l;
(IV) l′′ 6 l′.

Choosing Kπ so that r̃(Hπ ∩ Kπ)/ r̃(Kπ) > di′Fn(Hπ) − ε we can make the inequality in (I)
arbitrarily tight; choosing LK = 0 inequalities (II) and (III) become equalities; and, finally, if the
linear map R : Zn3 → Zm from diagram (8) is onto then inequality (IV) becomes an equality. In
view of these, we claim that

Claim 5.1. Given ε > 0, there exists M 6fg Fn (with a free basis {v1, . . . , vn2}), and there exist
vectors a′1, . . . , a

′
n2
∈ Zm such that:

(i) [Hπ : Hπ ∩M ] =∞;
(ii) Hπ ∩M 
 [Fn, Fn];

(iii) r̃(Hπ ∩M)/ r̃(M) > di′Fn(Hπ)− ε;
(iv) R = PA − P ′A′ : Zn3 → Zm is onto, where P,A, P ′ are the matrices appearing in dia-

gram (8) and A′ is the matrix with rows a′1, . . . , a
′
n2
∈ Zm.
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Observe that the existence of M satisfying (i), (ii), and (iii) is immediate from the definition
of di′Fn(Hπ). Assuming condition (iv) on top of these is more tricky: the choice of M determines
the ranks n2 = r(M) and n3 = r(Hπ ∩M), and it could very well happen that n3 < m, making
it impossible to choose the vectors a′1, . . . , a

′
n2
∈ Zm in such a way that R is onto. This situation

forces us to manipulate M and make sure to get n3 big enough, to have enough freedom, to choose
A′, so that R is onto; and all these without loosing the ε inequality (iii) (neither (i) nor (ii)). Here
is where the extra technical conditions (i) and (ii) added to the definition of restricted degree of
inertia are going to play a crucial role. Let us postpone the proof of the claim and continue with
the main argument.

Given ε > 0, apply Claim 5.1 to ε/l: we get M = 〈v1, . . . , vn2
〉 6fg Fn, and vectors

a′1, . . . , a
′
n2
∈ Zm satisfying (i), (ii), r̃(Hπ ∩M)/ r̃(M) > di′Fn(Hπ) − ε/l, and (iv). The subgroup

Kε = 〈ta′1v1, . . . , t
a′n2 vn2

〉 6fg G satisfies Kεπ = M and LKε = 0 hence,

• H ∩Kε 6fg G, since (H ∩Kε)π = (LH + LKε)R
−1ρ−1

3 6l′′ Hπ ∩Kεπ,
• [Hπ : Hπ ∩Kεπ] = [Hπ : Hπ ∩M ] =∞,
• Hπ ∩Kεπ = Hπ ∩M 
 [Fn, Fn],

and also

r̃(H ∩Kε)

r̃(Kε)
=

r̃((H ∩Kε)π) + r(LH ∩ LKε)
r̃(Kεπ) + r(LKε)

=
r̃((H ∩Kε)π)

r̃(Kεπ)
=
l′′ r̃(Hπ ∩Kεπ)

r̃(Kεπ)
=

=
l′ r̃(Hπ ∩M)

r̃(M)
=
l r̃(Hπ ∩M)

r̃(M)
> l(di′Fn(Hπ)− ε/l) = l di′Fn(Hπ)− ε.

Therefore, di′G(H) > l di′Fn(Hπ) as we wanted to prove. �

It only remain to prove Claim 5.1. Before doing this, we need to develop several lemmas about
intersections of subgroups of Fn. A well-known tool for understanding these intersections is the
pull-back of graphs.

Definition 5.2. Let N,M 6fg Fn and consider their Stallings graphs Γ(N),Γ(M), respectively.
Their direct product, Γ(N)× Γ(M), is defined as the new graph having as set of vertices V Γ(N)×
V Γ(M), set of xi-labelled edges ExiΓ(N) × ExiΓ(M) (here, ExiΓ denotes the set of edges in Γ
labelled by the letter xi ∈ X), with the natural incidence functions ι(e, f) = (ιe, ιf) and τ(e, f) =
(τe, τf), and with basepoint being the pair of basepoints (�,�).

Clearly, Γ(N)×Γ(M) is folded, but neither connected nor free of degree one vertices, in general.
The pull-back of Γ(N) and Γ(M), denoted Γ(N) ∧ Γ(M) is the result of trimming (i.e., repeat-
edly deleting vertices of degree one different from the basepoint) the connected component of the
basepoint (�,�).

It is well known (see, for example, [10] for details) that Γ(N)∧Γ(M) ' Γ(N ∩M), the Stallings
graph for N ∩M . In particular, if both N,M are finitely generated then so is N ∩M ; this is a
quick proof of the Howson property for Fn.

Definition 5.3. Let Γ(N) be the Stallings graph for N 6fg Fn. For every vertex p ∈ V Γ(N) and
every element w ∈ Fn, we define pw to be the terminal vertex of the unique reduced path γ in Γ(N)
starting at p and with label w, in case it exists; otherwise, pw is undefined. Note that w ∈ N if
and only if �w is defined and equals �. Note also that N has finite index in Fn if and only if �w
is defined in Γ(N), for every w ∈ Fn.
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Lemma 5.4. Let N,M 6fg Fn, with the basepoint from Γ(N) having degree at least 3. Then,
N ∩M has infinite index in N if and only if there exists w ∈ N such that �w is undefined in Γ(M).

Proof. Suppose N ∩ M has finite index in N ; so, there is r > 1 such that, for every w ∈ N ,
wr ∈ N ∩M . This means that, for every cyclically reduced w ∈ N , (�,�)wr, and so (�,�)w, is
defined in Γ(N ∩M); hence, projecting to Γ(M), �w is defined in Γ(M). For those w ∈ N not
cyclically reduced, write w = u−1 ·w′ ·u, without cancellations, with w′ cyclically reduced, and with
u 6= 1; in this case, we just have that (�,�)wr = (�,�)u−1w′ru, and so (�,�)u−1w′, is defined
in Γ(N ∩M). But the basepoint in Γ(N) has degree at least 3 so we can take a cyclically reduced
1 6= v ∈ N such that the product w · v = u−1 · w′ · u · v ∈ N has no cancellation and is cyclically
reduced again; then (�,�)wv, and so (�,�)w, is defined in Γ(N ∩M) and, hence, �w is defined
in Γ(M).

For the other implication, suppose that, for every w ∈ N , �w is defined in Γ(M), say �w ∈
{p0 = �, p1, . . . , pr} ⊆ V Γ(M). Choose a maximal tree T in Γ(M) and define wi to be the label
of the T -geodesic from � to pi, wi = lab(T [�, pi]) ∈ Fn for i = 0, . . . , r (note that w0 = 1).
The hypothesis tells us that N ⊆ M t Mw1 t · · · t Mwr. Intersecting with N , we get N ⊆
(N ∩M) t (N ∩M)v1 t · · · t (N ∩M)vs for some vi ∈ N and s 6 r (where we have deleted the
possibly empty intersections). Since the other inclusion is immediate, we deduce that N ∩M has
finite index in N . �

Proposition 5.5. [p-Expansion] Let N,M 6fg Fn, and suppose that r(N) > 2, the basepoint � of
Γ(N) has degree at least 3, and N ∩M 6∞ N . Then, for every 1 6 p 6 ∞, there exist p freely
independent elements w1, . . . , wp ∈ N such that M 6ff M ′ = M ∗ 〈w1, . . . , wp〉 and N ∩M 6ff

(N ∩M) ∗ 〈w1, . . . , wp〉 6ff N ∩M ′ 6∞ N .

Proof. Let ea, eb, ec be three different edges going out from � in Γ(N), ιea = ιeb = ιec = �, with
pairwise different labels a, b, c ∈ X±1, respectively. By Lemma 5.4, there is u0 ∈ N such that
�u0 is undefined in Γ(M). Realize u0 as a reduced closed path γ0 at � in Γ(N) and, without
loss of generality, we can assume it finishes with e−1

a . For α = a, b, c, take a non-trivial reduced
path ηα in the graph Γ(N) \ {eα} and closed at τeα (there always exists such a path because
r(N) > 2, even if eα is a bridge since Γ(N) has no vertices of degree 1 except possibly �); now
consider γα = eαηαe

−1
α , a reduced closed path at � in Γ(N), beginning with eα and ending with

e−1
α (so, its label uα = lab(γα) ∈ N is a reduced word on X±1 beginning with α and ending with
α−1). Note then that the paths γ0, γ1 = γ0γb, γ2 = γ0γbγa, γ3 = γ0γbγaγb, . . ., and also the paths
γiγcγ

−1
i , i > 1, are reduced as written; furthermore, all of them are closed paths at � in Γ(N) so,

wi = lab(γiγcγ
−1
i ) ∈ N , for all i > 1.

Now, let us extend the graph Γ(M) by adding the necessary vertices and edges so that we can
read all the paths γiγcγ

−1
i from �, i = 1, . . . , p: since �u0 was undefined in Γ(M), possibly an initial

segment of γ0 is readable in Γ(M) but not the entire path, forcing us to append at least a new edge
sticking out from Γ(M); behind it, we add the rest of the construction, see Fig. 3 (this means adding
infinitely many new vertices and edges in the case p =∞). Since the added paths are all reduced,
the resulting graph presents no foldings and so it is a (possibly infinite) Stallings graph, having Γ(M)
as a subgraph. Hence, M is a free factor of its fundamental group, M 6ff M

′ = M ∗ 〈w1, . . . , wp〉.
Further, it is also clear from Fig. 3 that the wis are freely independent.

And let us compare the pull-backs Γ(N) ∧ Γ(M) = Γ(N ∩M) and Γ(N) ∧ Γ(M ′) = Γ(N ∩M ′).
Since wi ∈ N for all i > 1, it is clear that Γ(N) ∧ Γ(M ′) contains, as a subgraph, Γ(N) ∧ Γ(M)
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Γ(M)�

ηc ηc

ec ec

γ0

γb

γa

γb

Figure 3. Expansion of Γ(M).

with the same additions as in Fig. 3, and, possibly, more edges which we do not control. Therefore,
N ∩M 6ff (N ∩M) ∗ 〈w1, . . . , wp〉 6ff N ∩M ′.

Finally, to see thatN∩M ′ is still an infinite index subgroup ofN , observe that w = lab(γ0γc) ∈ N
is such that �w is not defined in Γ(M ′) (see Fig. 3) and apply Lemma 5.4. �

Observation 5.6. Let K E Fn be a normal subgroup of Fn. For any M 6 Fn, KM = 〈K,M〉.

Proof. It is obvious that KM = {km | k ∈ K, m ∈ M} ⊆ 〈K,M〉. For the other inclusion note
that, by normality, given m ∈ M and k ∈ K, there exists k′ ∈ K such that mk = k′m. Repeated
applications of this fact converts an arbitrary expression k1m1 · · · krmr ∈ 〈K,M〉, with ki ∈ K,
mi ∈M , into a single product km, k ∈ K, m ∈M . Therefore, KM = 〈K,M〉. �

Lemma 5.7. Let G be a group and N,M 6 G. Then, [N : N ∩M ] 6 [G : M ], with equality if
MN = G. If additionally [N : N ∩M ] is finite, the equality holds if and only if MN = G.

Proof. Let G = ti∈IMgi be the coset decomposition of G modulo M , where |I| = [G : M ] 6 ∞.
Intersecting with N (and removing the possibly empty terms), we have N = ti∈I(N ∩Mgi) =
ti′∈I′(N ∩M)ni, for some I ′ ⊆ I and ni ∈ N . So, [N : N ∩M ] = |I ′| 6 |I| = [G : M ].

Furthermore, for g ∈ G, Mg intersects N non-trivially if and only if g ∈ MN . So, if G = MN
then I ′ = I and [N : N ∩M ] = |I ′| = |I| = [G : M ] (with the converse being also true whenever
|I ′| <∞). �

Corollary 5.8. Let K Ed Fn, and M 6 Fn, then [M : M ∩K] = d if and only if 〈K,M〉 = Fn. �

Let us now fix a letter xj ∈ X, and an integer d > 0, and consider the particular normal subgroup

Kj
d = {w ∈ Fn | |w|xj ∈ dZ}E Fn, where |w|xj denotes the xj-th coordinate of the abelianization

of w. The Stallings graph Γ(Kj
d) is depicted in Fig. 4 (the loops at each vertex representing all the

n− 1 remaining letters). It is clear that Kj
d Ed Fn.

Lemma 5.9. Let M 6fg Fn, and fix a letter xj ∈ X and an integer d > 0. Then the following
conditions are equivalent:

(a) Kj
dM = 〈Kj

d,M〉 = Fn;

(b) M ∩Kj
d 6d M ;

(c) there exists a word m ∈M such that gcd(|m|xj , d) = 1;

(d) the direct product Γ(M)× Γ(Kj
d) is connected.
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0 1 2 d−1

xj xj

xj

Figure 4. Stallings graph for Kj
d

Proof. (a)⇔ (b). True by Observation 5.6 and Corollary 5.8.

(a)⇒ (c). From the hypothesis, xj ∈ Fn can be written as xj = km, for some k ∈ Kj
d and some

m ∈M . Thus, 1 = |xj |xj = |k|xj + |m|xj = λd+ |m|xj for some λ ∈ Z and hence, gcd(|m|xj , d) = 1.

(c)⇒ (d). In the direct product Γ(M)×Γ(Kj
d), consider the d full subgraphs ∆i, i = 0, . . . , d−1,

whose vertices are V∆i = {(p, i) | p ∈ V Γ(M)}. In order to see that Γ(M) × Γ(Kj
d) is connected,

we shall prove the existence of a path from (�, i) to (�, i+ 1), for every i (indices modulo d), and
that each ∆i is connected.

In fact, by hypothesis there exists m ∈M and α, β ∈ Z such that gcd(|m|xj , d) = α|m|xj+βd = 1.
Let γm denote the path in Γ(M), closed at �, whose label is m, and note that lab(γαm) = mα.

Furthermore, in the X-regular graph Γ(Kj
d), i ·mα is defined and equals i + 1 mod d (by Bezout

equality above). Hence, there is also a path labelled mα in Γ(M)×Γ(Kj
d) from (�, i) to (�, i+ 1),

for every i = 0, . . . , d− 1.

Now, let p be an arbitrary vertex in Γ(M). As Γ(M) is connected, there is a path, say γ, from
ι(γ) = � to τ(γ) = p. Let w = lab(γ) ∈ Fn, let s = |w|xj , and consider the path γm−sαw starting

at �, reading m−sαw, and ending at p. Since |m−sαw|xj = −sα|m|xj + |w|xj = 0 mod d, and Kj
d

is X-regular, m−sαw is the label of a closed path in Γ(Kj
d) at any vertex. Hence, there is a path in

∆i ⊆ Γ(M)× Γ(Kj
d) starting at (�, i) and ending at (p, i).

(d) ⇒ (b). The graph Γ(Kj
d) has exactly d vertices, and d edges labelled by each letter; see

Fig. 4. As Γ(M)× Γ(Kj
d) is connected, we have

r̃(M ∩Kj
d) = −|V Γ(M ∩Kj

d)|+ |EΓ(M ∩Kj
d)|

= −|V
(

Γ(M)× Γ(Kj
d)
)
|+ |E

(
Γ(M)× Γ(Kj

d)
)
|

= −d|V Γ(M)|+ d|EΓ(M)|
= d r̃(M).

Hence, by Schreier index formula, M ∩Kj
d 6d M (and not less). �

With these ingredients we can finally prove Claim 5.1.

Proof of Claim 5.1. We are given a subgroup H 6fg G with r(Hπ) > 2, Hπ 6∈ [Fn, Fn], with the
basepoint in Γ(Hπ) having degree at least 3, with LH = H ∩ Zm 6l Zm (and so, r(LH) = m),
and with basis {ta1u1, . . . , t

an1un1 , t
b1 , . . . , tbm}, such that u1 6∈ [Fn, Fn]; we are also given ε > 0,
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Γ(Fn)
d> Γ(Kj

d)
∨ ∨

Γ(M1)
d> Γ(M2) 6ff

Γ(M)
∨ ∨ ∨

Γ(Hπ) ∞> Γ(Hπ ∩M1)
d> Γ(Hπ ∩M2) 6ff

Γ(Hπ ∩M)

Figure 5. Diagram of pull-backs

and we have to find a subgroup M 6fg Fn and vectors a′1, . . . , a
′
n2
∈ Zm, n2 = r(M), satisfying

simultaneously conditions (i) to (iv). Let us distinguish two cases.

Case (1): di′Fn
(Hπ) > 1. Making ε smaller if necessary, there always exists a subgroup M1 6fg

Fn such that [Hπ : Hπ ∩M1] =∞, Hπ ∩M1 
 [Fn, Fn] and

(12)
r̃(Hπ ∩M1)

r̃(M1)
> di′Fn(Hπ)− ε

2
> 1.

Hence, both reduced ranks are r̃(Hπ ∩M1) > 1 and r̃(M1) > 1 (recall that, in the definition of
di′Fn(·), 0/0 is understood to be 1). As Hπ ∩M1 
 [Fn, Fn], there exists v ∈ Hπ ∩M1 and a letter
xj ∈ X such that |v|xj = λ 6= 0. Write λ = pα1

1 · · · pαrr , where each pi is a prime divisor of λ. Now

choose a big enough prime number d � 0, such that gcd(λ, d) = 1 and d > 2m di′Fn(Hπ)/ε. We

have ε r̃(M1)
(
d r̃(M1) +m

)
> εd r̃(M1) > 2mdi′Fn(Hπ) r̃(M1) > 2m r̃(Hπ ∩M1) and so,

2
(
d r̃(Hπ ∩M1) +m

)
r̃(M1) > 2d r̃(Hπ ∩M1) r̃(M1)

> 2d r̃(Hπ ∩M1) r̃(M1) + 2m r̃(Hπ ∩M1)− ε r̃(M1)
(
d r̃(M1) +m

)
= 2 r̃(Hπ ∩M1)

(
d r̃(M1) +m

)
− ε r̃(M1)(d r̃(M1) +m)

=
(
2 r̃(Hπ ∩M1)− ε r̃(M1)

)(
d r̃(M1) +m

)
.

Dividing both sides by 2
(
d r̃(M1) +m

)
r̃(M1) > 0, we get

(13)
d r̃(Hπ ∩M1) +m

d r̃(M1) +m
>

r̃(Hπ ∩M1)

r̃(M1)
− ε

2
.

Now, consider Kj
d Ed Fn and M2 = M1 ∩ Kj

d. Since the element v ∈ Hπ ∩M1 6 M1 satisfies

gcd(|v|xj , d) = gcd(λ, d) = 1, Lemma 5.9 tells us that M2 6d M1 and Hπ∩M2 = (Hπ∩M1)∩Kj
d 6d

Hπ∩M1, and also Γ(M1)∧Γ(Kj
d) = Γ(M1)×Γ(Kj

d) and Γ(Hπ∩M1)∧Γ(Kj
d) = Γ(Hπ∩M1)×Γ(Kj

d);
note further that Γ(Hπ ∩M1)× Γ(M2) is not necessarily connected, but its connected component

containing the basepoint (after trimming, if necessary) coincides with Γ(Hπ ∩M1)× Γ(Kj
d), both

being the Stallings graph of (Hπ ∩M1) ∩Kj
d = (Hπ ∩M1) ∩M2; see Fig. 5, where every graph in

the second and third columns having a neighbour on its left and another above is the pull-back of
those two. Moreover, from the hypothesis we have Hπ ∩M1 6∞ Hπ and so, Hπ ∩M2 6∞ Hπ.

Now, let us apply Proposition 5.5, and consider the m-expansion (so p = m), of the subgroups
Hπ (as N) and M2 (as M): we are under the hypothesis (r(Hπ) > 2, the basepoint � of Γ(Hπ) has
degree at least 3, and Hπ∩M2 6∞ Hπ) so we get m freely independent elements w1, . . . , wm ∈ Fn
such that M2 6ff M = M2∗〈w1, . . . , wm〉 and Hπ∩M2 6ff (Hπ∩M2)∗〈w1, . . . , wm〉 6ff Hπ∩M 6∞
Hπ; in particular, n2 = r̃(M) = r̃(M2)+m and r̃(Hπ∩M) > r̃(Hπ∩M2)+m. This is our candidate
subgroup M 6fg Fn: in fact, (i) Hπ ∩M 6∞ Hπ; (ii) Hπ ∩M1 66 [Fn, Fn] so, Hπ ∩M2 66 [Fn, Fn]
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(since Fn/[Fn, Fn] ' Zn is torsion free) and Hπ ∩M 66 [Fn, Fn]; and (iii), by the Schreier index
formula and equations (12)-(13),

r̃(Hπ ∩M)

r̃(M)
>

r̃(Hπ ∩M2) +m

r̃(M2) +m
=
d r̃(Hπ ∩M1) +m

d r̃(M1) +m
>

r̃(Hπ ∩M1)

r̃(M1)
− ε

2
> di′Fn(Hπ)− ε.

It remains to choose appropriate vectors a′1, . . . , a
′
n2
∈ Zm satisfying (iv). Take a free basis for M2,

{v1, . . . , vk}, and extend it to a free basis for M , {v1, . . . , vk, w1, . . . , wm}. We have that n1 = r(Hπ),
k = r(M2), and n2 = k + m = r(M). Similarly, as a free basis for Hπ ∩M , take a free basis for
Hπ ∩M2 (say, made of q = r(Hπ ∩M2) freely independent elements) followed by possibly some
more, say p > 0, and finally followed by {w1, . . . , wm}; we have n3 = r(Hπ ∩M) = q+ p+m > m.
Finally, consider the intersection diagram for Hπ and M ,

(14)

Hπ ∩MHπ M? _ιoo � � ι′ //

Zq+p+mZn1 Zk+m

ρ3

����

ρ1

����

ρ2

����

/// ///

Poo P ′ //

Zm

A

""

A′

||

R

��

where P ∈M(q+p+m)×n1
(Z) and P ′ ∈M(q+p+m)×(k+m)(Z) are the abelianization of the inclusions

Hπ ∩M ↪→ Hπ and Hπ ∩M ↪→ M , respectively, where A ∈ Mn1×m(Z) is the matrix with rows
a1, . . . , an1

, and where A′ ∈ M(k+m)×m(Z) is the matrix with rows a′1, . . . , a
′
k+m to be determined

in such a way that R = PA− P ′A′ : Zq+p+m → Zm is onto.

Note that, by construction, the first q elements in the free basis for Hπ∩M are freely independent
from {w1, . . . , wm}, and that {w1, . . . , wm} are present in the last positions of the chosen bases for
both Hπ ∩M and M ; therefore, P ′ has the form

P ′ =

 ∗ 0
∗ ∗
0 Im

 .

Let Q be the lower m×m block in PA ∈M(q+p+m)×m(Z), and define

A′ =

(
0

−Im +Q

)
∈M(k+m)×m(Z).

Separating the rows in the natural blocks, we have that

R = PA−P ′A′ =

 ∗
∗
Q

−
 ∗ 0
∗ ∗
0 Im

( 0
−Im +Q

)
=

 ∗
∗
Q

−
 0

∗
−Im +Q

 =

 ∗
∗
Im


is a surjective map from Zq+p+m onto Zm, proving condition (iv). This concludes the proof for this
Case (1).
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Case (2): di′Fn
(Hπ) = 1. Recall that we already fixed a basis {ta1u1, . . . , t

an1un1 , t
b1 , . . . , tbm}

for H, with u1 6∈ [Fn, Fn]. Let M = 〈u1, u2
−1u1u2, . . . , u2

−(m−1)u1u2
m−1〉 6fg Hπ, a subgroup with

n2 = r(M) = m already satisfying the first three required conditions: (i) Hπ ∩M = M 6∞ Hπ =
〈u1, . . . , un1

〉; (ii) u1 ∈ Hπ ∩M = M 66 [Fn, Fn]; and (iii) r̃(Hπ ∩M)/ r̃(M) = 1 > di′Fn(Hπ) − ε,
independently from the given ε.

Finally, we have to choose appropriate vectors a′1, . . . , a
′
m ∈ Zm so that (iv) holds. To do this,

look at the intersection diagram for Hπ and M (see Fig. 8): we have n3 = n2 = m and

P =


1 0 . . . 0
1 0 . . . 0
...

...
...

1 0 . . . 0

 ∈Mm×n1
(Z), P ′ = Im ∈Mm×m(Z)

and, therefore,

R = PA− P ′A′ =

 a1

...
a1

−A′ ∈Mm×m(Z)

will become the identity Im, and so represent an onto morphism, after choosing A′ appropriately.
This shows (iv) and concludes the proof. �

Acknowledgements. The first author thanks the support and hospitality from the Barcelona
Graduate School of Mathematics and the Departament de Matemàtiques of the Universitat
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