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The benefits of blockchain technologies for industrial applications are unquestionable. However,
it is a considerable challenge to use a transparent system like blockchain and at the same time
provide privacy to sensitive data. Privacy technologies permit conducting private transactions about
sensitive data over transparent networks, but their inherent complexity has been overwhelming for
many developers. Closing the gap between developers and privacy-preserving technologies would
help to the full adoption of the privacy by design framework for blockchain software. To this end, in
this paper we present the software tools we have implemented to bring complex privacy technologies
closer to developers and facilitate the job of implementing privacy-enabled blockchain applications.

INTRODUCTION

Novel decentralized business processes are arising
thanks to blockchain technologies. A remarkable scenario
that can be better managed using blockchain is the new
smart manufacturing paradigm that uses on-demand ac-
cess to a shared collection of diversified and distributed
manufacturing resources [1]. In this context, the use of
blockchain can bring in significant business benefits, such
as greater transparency, improved traceability, enhanced
security, better reconciliation processes, increased trans-
action speed, and costs reduction [2].

While the public transparency of blockchains is a de-
sirable feature, it becomes a concern when dealing with
privacy. Although it may seem that guaranteeing pub-
lic transparency and privacy is incompatible, it is actu-
ally possible with a cryptographic technique called Zero-
Knowledge Proof (ZKP). ZKPs are very powerful tools
for implementing applications with sophisticated privacy
requirements. However, these tools have an inherent
complexity that has been overwhelming for many devel-
opers. For this reason, many times developers did not
participate in the design of the application’s privacy, and
it was mainly done by cryptographers.

Having developers and cryptographers without a com-
mon language is prone to cause misunderstandings. To
some extent, the situation is similar to what happened
between operation and development teams. The appear-
ance of DevOps practices that were able to connect the
two worlds not only reduced the frictions but contributed
to speed up the whole software development process. In
our opinion, an analogous situation could happen here.

In this paper, we present a novel framework that closes
the gap between ZKP technology and developers. We
describe the set of tools we have developed to express
privacy requirements in a friendly way. We also provide
links to guided tutorials of the different parts of the pro-
cess as well as the repositories of our software.

ZERO-KNOWLEDGE PROOFS

A ZKP is a protocol that enables one party, called
prover, to convince another, called verifier, that a state-
ment about certain data is true, without leaking or dis-
closing any extra information beyond the veracity of the
statement. That is, with ZKPs it is possible to prove the
veracity of logic statements that concern private data.
For example, a prover can create proofs for statements
like the following:

o “I know the private key that corresponds to this pub-
lic key”: in this case, the proof would not reveal any
information about the private key.

e “I know the preimage of this hash value”: in this
case, the proof would show that the prover knows
the preimage but it would not reveal any informa-
tion about the value of that preimage.

o “This transaction privately transfers a coin”, in
this case, the proof would not reveal any informa-
tion about the origin, destination or amount being
transferred but it would still ensure that the coin
has not been double spent.

In the past, ZKP systems were heavily coupled to
the statements being proved and changing a statement
required a redesign of the cryptographic system and a
new security analysis. As a result, modifying any pri-
vacy statement was hard to analyse and implement by
non-cryptographers. The appearance of modern ZKPs
shifted the paradigm by decoupling the statement defini-
tion from the proving mechanism. With modern ZKPs,
statements can be defined as arithmetic circuits and the
proof can be generated from the circuit definition.

CIRCUITS

Arithmetic circuits are circuits built connecting wires
that carry elements from a large prime field to addition



and multiplication gates. For example, a NAND gate can
be implemented with an arithmetic circuit, as shown in
Fig. 1.
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FIG. 1: The NAND gate implemented with an
arithmetic circuit: out = 1 - inl x in2.

This example is important because the NAND is a uni-
versal gate, meaning that any other logic gate can be rep-
resented as a combination of NAND gates. As a result,
any computation that a computer can perform can be
implemented with a combination of connected NANDs.
Therefore, since a NAND can be implemented with an
arithmetic circuit, with this type of circuits we can per-
form the same complex computations a computer can do,
like calculating a hash or verifying a digital signature.

The main feature of circuit-based ZKPs is that they
allow the prover to generate a proof that shows that she
has an assignment of inputs that produces a predefined
output, while keeping part or all the inputs secret. In
particular, proofs have two fundamental properties: (i)
a prover cannot generate a valid proof without knowing
correct inputs for the circuit, and (ii) proofs securely ob-
fuscate the private inputs, meaning that they do not leak
information about the private inputs to the verifier.

Among modern ZKP-circuit based protocols, the
most interesting ones for blockchain are ZK-SNARKs
(Zero-knowledge Succinct Non Interactive ARgument of
Knowledge), because verification is not intensive in terms
of bandwidth and computing, and they can be imple-
mented in a blockchain smart contract [3]. In particular,
ZK-SNARK proofs are always small (= 200 bytes), re-
gardless of the size of the circuit, and the time to verify
a proof is also short and constant [4].

ZK-SNARKS

As shown in Fig. 2, the first step for creating an ap-
plication powered by ZK-SNARKSs is the definition of a
circuit. An option is to provide this definition in the
form of connected addition and multiplication gates (low-
level circuit description). However, for complex circuits,
writing such a low-level description implies dealing with
millions of gates, becoming an extremely laborious and

error-prone task. A more practical option is to use a
tool (a circuit compiler) that allows developers to pro-
vide high-level circuit definitions that can be compiled
to their corresponding low-level descriptions.
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FIG. 2: Overview of how ZK-SNARKSs work.

At this point, we must remark that the low-level de-
scription of a circuit is not enough to use a ZK-SNARK.
A second step called trusted setup (TS) [4] is also needed.
In the TS, a trusted entity produces the cryptographic
material needed by the prover (proving key) and by the
verifier (verification key). The entity that runs the TS
is trusted because it needs to generate and then destroy
certain random values. In fact, if the random values are
ever exposed, the security of the whole scheme is compro-
mised. Centralization in this delicate setup phase can be
avoided by means of a multi-party computation (MPC)
[5]. MPC allows multiple independent parties to collabo-
ratively construct the TS parameters and, in this process,
it is enough that one single participant deletes its secret
counterpart of the contribution to keep the whole scheme
secure.

With the proving key, the prover can create proofs us-
ing public and private values (step three), and with the
verification key, the verifier can later verify these proofs
(step four). It is important to remark that it is always
possible to check that the proving and verification keys
derive from a certain circuit and MPC.

APPLICATIONS

The importance of efficient circuit-based ZKPs for
blockchain is two-fold. On the one hand, they allow ef-
ficient implementations of privacy requirements, and on
the other, their small proof size and verification time can
be used for enhancing the scalability of blockchains.



Regarding privacy, ZKPs can be applied to enhance
authentication processes, as we will discuss using an ex-
ample in the context of a smart factory. ZKPs can also be
used to improve the privacy of payments. Examples are
the Zcash blockchain [6] and Tornado Cash [7], which is
implemented over the Ethereum public network using our
software. Implementations of legal compliance and con-
trolled disclosure of personal information are also impor-
tant applications of ZKPs. For example, one can prove
to a bank that earns above a certain minimum amount
that is required to repay a loan, without revealing the
actual salary.

The other big area where ZKPs are being applied to
blockchain is for improving the network scalability. In
this context, the emergence of Decentralized Finance
(DeFi) has put pressure to increase the number of trans-
actions per second that a blockchain can support. Many
blockchains are using the concept of ZK-Rollups to en-
hance scalability. The idea of a ZK-Rollup is to use
mass transfer processing rolled into a single transaction
and check the correctness of the final state with a zero-
knowledge proof. Hermez Network [8] is a project using
our software to implement a ZK-Rollup over Ethereum.

OUR SOFTWARE CONTRIBUTIONS

At iden3, in collaboration with the Ethereum founda-
tion [9] and the research teams of several universities, we
have developed a new language for describing circuits,
its associated compiler called cIRcOM [10], and a crypto-
compiler called SNARKJS [11] for generating and verifying
ZK-SNARK proofs as defined in [4].

There are other solutions that allow the generation and
verification of zero-knowledge proofs, such as LibSnark
(written in C++, developed by SCIPR Lab), ZoKrates
(in Python, by TU Berlin), Bellman (in Rust, by Zcash),
Snarky (in OCaml, by ol-labs), Zinc (in Rust, by Mat-
terLabs), WasmSnark (in WebAssembly, by iden3). The
main contribution and novelty of our framework is that:

e It decouples the circuit definition (CIRCOM) from
the proving system (SNARKJS). This makes it easier
to update and integrate other crypto-compilers.

e It covers the MPC generation and verification pro-
cesses, providing a holistic framework for building
privacy-enabled applications.

CIRCOM is a developer-friendly language that makes
it possible to create large circuits by combining smaller
ones called templates. We provide a library of templates
called CIRCOMLIB [12] with hundreds of circuits such as
comparators, hash functions, digital signatures, binary
and decimal convertors, and many more. The idea of
building large and complex circuits from small individual
components makes it easier to test, review and audit the

resulting code. In this regard, CIRCOM users can create
their own custom templates, but using circuits from the
library has the advantage that they have been reviewed
by our research team and the open-source community
supporting the project. Once a circuit is created in CIR-
COM, SNARKJS makes the proof generation and the proof
validation automatic and transparent.

We would like to remark that the library, the language
and both compilers are open source and publicly available
to practitioners and developers. In the following section,
we use an illustrative example in the context of a dis-
tributed smart factory to show how the whole process
works.

A DISTRIBUTED SMART FACTORY

To illustrate the process of building a blockchain ap-
plication with privacy powered by ZK-SNARKSs, we con-
sider a smart contract deployed in a blockchain that rules
the production of a distributed smart factory. When
the smart contract receives an appropriate transaction, it
registers the action “start fabricating a certain amount of
products”. Then, systems in the factory, which look for
such registrations in the blockchain, automatically start
the corresponding fabrication processes.

In this context, consider that transactions with orders
for approving fabrication can be given by any of two au-
thorized parties, denoted by A and B. As a privacy re-
quirement, we want to avoid that competitors learn who
is giving a particular order in the smart factory. Note
that public blockchains are transparent, so sending reg-
ular transactions is not adequate, since anyone could de-
duce the identity of the party approving the order just
by looking at the transaction’s signature. In this section,
we show how to use ZK-SNARKSs to keep the signer’s
identity hidden making use of our framework.

Circuit Design

We want parties A and B to be able to interact with
the smart contract ruling the smart factory, without re-
vealing which of the two identities is giving an order. As
shown in Fig. 3, instead of using regular signed trans-
actions, A and B can send a transaction that includes
a proof that shows that an authorized public key signed
the order. That is, given a fabrication order, we want A
and B to be able to generate a proof for the statement

“this fabrication order is signed by one of the two
authorized public keys (pka or pkp)”,

without revealing the signer’s identity. In this case, we
need a circuit that, given two authorized public keys, a
message (the fabrication order) and a signature, checks
if the signature is valid for one of the two public keys.
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FIG. 3: Authorized parties A and B can send a
transaction to the blockchain smart contract with a
proof showing that the fabrication order was emitted by
one of them, but without revealing who.

The circuit from Fig. 3 checks if a signature sig on
a message msg corresponds to a signature emitted by
one of two authorized public keys, pkA or pkB. Each
digital signature verifier box represents a subcir-
cuit that combines addition and multiplication gates to
check if sig is a valid digital signature on msg by a given
public key. That is, given pk, the digital signature
verifier template outputs 1 if sig is a valid signature
on msg for pk, and 0 otherwise. As a result, the circuit is
satisfied if either outA = 1 or outB = 1. Equivalently, if
we assume that pkA and pkB are different, the circuit is
satisfied if and only if

outA + outB = 1.

A valid proof on this circuit would demonstrate that
the prover has the correct inputs that satisfy the circuit
but would not reveal any information about the private
input sig (the signature). This way, an authorized party
can show that she holds a valid public key to sign the
fabrication order but keep her signature secret. Next, we
explain how to implement the circuit with CIRCOM.

High-level Definition with CIRCOM

The mechanism to define circuits in CIRCOM is through
the use of templates. The instantiation of a template
called component. We implement the circuit from Fig. 3
in a template named AuthorizeFabricationOrder, and
instantiate it in the main component.

include "eddsa.circom";

template AuthorizeFabricationOrder () {
signal public input pkA;
signal public input pkB;
signal public input msg;
signal private input sig;

signal outA;
signal outB;

EdDSAVerifier ();
EdDSAVerifier ();

component verifyA
component verifyB

// verify signature with pkA
verifyA.pk <== pkA;
verifyA.msg <== msg;
verifyA.sig <== sig;

outA <== verifyA.out;

// verify signature with pkB
verifyB.pk <== pkB;
verifyB.msg <== msg;
verifyB.sig <== sig;

outB <== verifyB.out;

outA + outB === 1;
}

component main = AutorizeFabricationOrder ();

Arithmetic circuits implemented with CIRCOM op-
erate on signals, which are declared using the key-
word signal. An input of a circuit is a particu-
lar type of signal and it can be public or private.
AuthorizeFabricationOrder has three public inputs
(the two authorized public keys and the message) and
one private input (the signature).

For the implementation of the digital signature
verifier box, we use a template called EdDSAVerifier
that is imported from CIRCOMLIB. Note that the tem-
plating mechanism provided by CIRCOM allows us to use
the EdDSAVerifier template as a black box that returns
a signal that determines if a signature [13] is valid for
a given message and public key. The EdDSAVerifier
template is defined in the file eddsa. circom, which is in-
cluded in our circuit using the keyword include. Notice
that since we need to verify the signature twice, one per
key, the template EdDSAVerifier is instantiated in two
different components: verifyA and verifyB.

The expression outA + outB === 1, imposes the con-
straint that the circuit AutorizeFabricationOrder is
satisfied only if the output of verifyA or verifyB is 1.

With the high-level circuit definition, a developer can
download our circuit compiler (CIRCOM) and our crypto-
compiler (SNARKJS) from our repositories and follow the
tutorial in [11] to run an MPC, generate the proving and
verification keys and finally, create and verify proofs.
However, to make this process even easier and facili-
tate collaboration, we have created a service called CIR-
CcOMHUB. As we explain in the following section, CIR-
COMHUB hosts circuit definitions and their associated
cryptographic material, making it easy to share data be-
tween developers, provers and verifiers.



Trusted Setup, Proof Generation and Proof
Verification

As shown in Fig. 4, developers can upload their
high-level circuit definitions to CIRCOMHUB. Then,
CIRCOMHUB compiles the defintion with cIRCcOM and
passes the result (the low-level circuit description) to the
SNARKJS compiler.

SNARKJS provides an MPC module that allows multi-
ple independent parties to collaboratively construct the
trusted setup following the protocol from [5]. CIR-
COMHUB acts as a cloud service that facilitates the stor-
age of the different phases of the MPC.
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FIG. 4: Our framework tools.

The SNARKJS compiler uses the CIRCOM circuit defini-
tion and the MPC result to generate the cryptographic
material for the prover and the verifier (step 2). In addi-
tion, the crypto-compiler also generates smart contract
code for proof verification on blockchain. More precisely,
the compiler generates Solidity code, which is one of the
most widely used languages for writing smart contracts.
All this information is stored in CIRCOMHUB and made
available through a public API. It is important to re-
mark that CIRCOMHUB acts as a repository and not as
a trusted party, since everything hosted there (circuit,
compilation of the circuit, proving and verification keys)
is publicly available and verifiable according to [5].

Developers can use the on-chain verifier generated by
SNARKJS to deploy a smart contract in the blockchain
that integrates a ZK-SNARK verifier. This way, it is a
smart contract (step 4) who verifies if a proof included
in a transaction is valid according to [4].

On the other hand, an authorized party can use
SNARKJS and the proving key stored in CIRCOMHUB to
generate a proof. SNARKJS will use the proving key, the
authorized public keys (public inputs), the fabrication or-
der (public input) and a valid signature (private input)
to generate a proof (step 3).

Finally, the prover can include this proof in the fabri-
cation order transaction, which will only take place if the
verifier in the smart contract accepts the proof.

There is still one issue related to privacy that needs to
be solved. Transactions in blockchain need to be signed
by the sender, so if the prover signs the transaction she
would lose her anonymity. To obfuscate the member’s
identity, a simple solution is to use relayers. In this case,
the prover sends the proof to a relayer, who signs and
sends the transaction to the blockchain. Relayers do not
need to be trusted, since it is not possible for them to
generate fake proofs. An example of a relayer network
for the Ethereum blockchain is the Gas Station Network
(GSN), which is a decentralized network of relayers [14].

CONCLUDING REMARKS

Developer-friendly languages like CIRCOM, that allows
us to express privacy requirements in a friendly way,
will bring complex privacy technologies closer to develop-
ment. We would like to encourage interested readers to
follow our guided tutorials to get familiar with our tools
and explore the possibilities they offer.
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