
 
 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

 

 

This is a post-peer-review, pre-copy edit version of an article 
published in Journal of Mathematical Fluid Mechanics. The final 
authenticated version is available online at: 
http://dx.doi.org/10.1007/s00021-021-00629-4. 

 

Published paper: 

Ostoja-Starzewski, M.; Quintanilla, R. Spatial behaviour of solutions 
of the Moore-Gibson-Thompson equation. "Journal of Mathematical 
Fluid Mechanics", Novembre 2021, vol. 23, núm. 4, art. 105. 
doi:10.1007/s00021-021-00629-4 
 
 

URL d'aquest document a UPCommons E-prints:  

https://upcommons.upc.edu/handle/2117/355708 

 

 

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://dx.doi.org/10.1007/s00021-021-00629-4
http://dx.doi.org/10.1007/s00021-021-00629-4
https://upcommons.upc.edu/handle/2117/355708


SPATIAL BEHAVIOUR OF SOLUTIONS OF THE

MOORE-GIBSON-THOMPSON EQUATION

M. OSTOJA-STARZEWSKI AND R. QUINTANILLA

SUMMARY: In this note we study the spatial behaviour of the Moore-Gibson-Thompson equa-
tion. As it is a hyperbolic equation, we prove that the solutions do not grow along certain
spatial-time lines. Given the presence of dissipation, we show that the solutions also decay
exponentially in certain directions.

KEY WORDS: Moore-Gibson-Thompson equation, spatial estimates, domain of influence, ex-
ponential decay.
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1. INTRODUCTION

The Moore-Gibson-Thompson (MGT) equation has attracted much attention in recent years,
see e.g. [5, 7, 8, 9, 17, 18, 21, 23, 24]. While the model was originally introduced in the context
of fluid mechanics, this equation can be also obtained by introducing a relaxation parameter
into the type III heat conduction [12, 13, 14]1. For this reason, it has recently been also adopted
as the heat conduction equation. Furthermore, in [6, 22, 25] it is the heat equation for a so
called MGT thermoelasticity. At the same time, it can also be obtained as a particular case of
the three-phase-lag theory proposed by Choudhuri [4].

The study of the spatial behaviour of solutions was motivated by a desire to understand the
Saint-Venant principle from a mathematical point of view. With that goal in mind, considerable
mathematical analysis has been developed to clarify the spatial behaviour of solutions for a
general class of partial differential equations and systems. In particular, some studies on the
high-order partial differential equations have been developed in recent years [26, 20].

1Note that the introduction of a relaxation parameter is natural in view that the waves for the type III
heat conduction propagates instantaneously and therefore this theory violates the principle of causality (see
[11, 27]). Then, we use a similar argument to the one involved in the Cattaneo-Maxwell heat conduction and the
thermoelasticity with one relaxation time [16].

1



2 M.Ostoja-Starzewski and R. Quintanilla

In this short note, we study the spatial behaviour of solutions of the problem determined by
the MGT equation on a three-dimensional semi-infinite cylinder R = D × [0,∞) where D is
a two-dimensional bounded domain. As the MGT equation is an hyperbolic linear equation,
in this work we follow the typical approach to study the spatial behaviour of hyperbolic linear
equations and systems [3, 10, 15]. It is worth recalling that the results obtained in [26] can be
applied to the MGT equation. However, the approach we propose here improves the kind of
results which we specify with our equation. In fact, we will be able to give a more accurate
description of the spatial behaviour. Moreover the results of the last section do not have a
counterpart in the reference [26]. The end face of the finite cylinder is in the plane x3 = 0,
while the boundary of its cross-section, ∂D, is supposed to be regular enough to allow the use
of the divergence theorem. By R(z) we denote the set of points of the cylinder R such that x3
is greater than z, and by D(z) the cross-section of the points such that x3 = z.

In the next section we recall the problem we want to study as well as several easy calculations
which are relevant in our study. Later, we show the spatial behaviour of solutions in the sense
that the solutions are not increasing on several space-time lines. In particular a domain of
influence result will be obtained. We complete the paper by noting the exponential decay of
solutions along certain space-time lines. We note that the results that we will obtain in section
3 are the usual ones in the study of the spatial behaviour for linear hyperbolic equations and
systems. However the results proposed in section 4 are not usual in the literature, because, to
the best of the authors’ knowledge, the only similar contribution of this kind was proposed in
[15].

2. PRELIMINARIES

We consider solutions u(x, t) for the MGT equation which can be proposed by

4û = ˙̃u, (1)

where ∆ is the three-dimensional Laplace operator and the superposed dot denotes the derivative
with respect to time t. The variables x and t have been suitably non-dimensionalized. We have
used the notation

û = k∗u+ ku̇, ũ = u̇+ τ ü, (2)

where τ > 0, k > τk∗2are the dimensionless parameters. Our equation for the dimensionless
u(x, t) can be written

τ
...
u + ü− k4u̇− k∗4u = 0. (3)

We study the spatial behaviour of the solutions u(x, t) of our equation subject to the initial
conditions

u(x, 0) = u0(x), u̇(x, 0) = ϑ0(x), ü(x, 0) = φ0(x), x ∈ D × [0,∞), (4)

and the boundary conditions

u(x, t) = 0, x ∈ ∂D × [0,∞), t > 0, (5)

u(x1, x2 , 0, t) = g(xα , t) on D × {0}× [0,∞), (6)

2This assumptioin is fundamental in the studies related with the MGT equation. It guarantees the stability
of the solutions.
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where the proposed boundary data g on the finite end x3 = 0 is such that g(xα, 0, 0) = u0(xα, 0),
ġ(xα, 0, 0) = ϑ0(xα, 0), g̈(xα, 0, 0) = φ0(xα, 0) and g is assumed to vanish on ∂D× [0,∞) for
every t > 0. We do not impose any a priori assumption about the spatial behaviour of solutions3.

In the course of our calculations, we will make use of the fact that the eigenvalues of the real
symmetric positive definite matrix (

a b
b c

)
, (7)

with a, b, c real numbers, are

ν± =
1

2

(
a+ c±

√
(a− c)2 + 4b2

)
. (8)

So that the smallest eigenvalue is:

ν− =
1

2

(
a+ c−

√
(a− c)2 + 4b2

)
. (9)

We will use the constants in two particular cases.

(i) When

a = k∗, b = τk∗, c = τk, (10)

it can be easily verified that the matrix is positive definite and so its smallest positive eigenvalue,
denoted by ν0, is given by

ν0 =
1

2

(
k∗ + τk −

√
(k∗ − τk)2 + 4τ2(k∗)2

)
. (11)

(ii) When

a = δk∗, b = τδk∗ c = δτk + 2(k − τk∗), τ > 0, (12)

the matrix (7) is positive definite with the smallest eigenvalue, denoted by νδ, given by

νδ =
1

2

(
δ(k∗ + kτ) + 2(k − k∗τ)−

√
[δ(τk − k∗) + 2(k − k∗τ)]2 + 4τ2δ2(k∗)2

)
. (13)

To understand the analysis of the last section it will be relevant that the sign of νδ − ν0δ is
positive. We have

2(νδ − ν0δ) = 2(k − k∗τ) +
√
δ2(k∗ − τk)2 + 4τ2(k∗)2δ2

−
√

(δ(k∗ − τk) + 2(k − k∗τ))2 + 4τ2(k∗)2δ2 = A−B.
(14)

To prove that A−B > 0 it will be sufficient to show that A2 > B2. But

A2 −B2 = 4(k − k∗τ)
(√

δ2(k∗ − τk)2 + 4τ2(k∗)2δ2 − δ(τk − k∗)
)
> 0,

whenever δ > 0.

3A description of the way to prove the existence, uniqueness and regularity of the solutions to this problem
can be found in the appendix of this paper.
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3. NON-ZERO INITIAL CONDITIONS

In this Section we establish results on the spatial evolution of solutions of our problem, provided
that the initial data is assumed to be bounded in a certain norm and the boundary conditions
are determined by (5,6).

We start by considering the function

G(z, t) = −
∫ t

0

∫
D(z)

û,3ũdAds. (15)

We find that
∂G(z, t)

∂t
= −

∫
D(z)

û,3ũdA, (16)

and, upon the use of the divergence theorem on the cylinder determined by the sections D(z)
and D(z + h), we obtain

G(z + h, t)−G(z, t) = −
∫ t
0

∫ z+h
z

∫
D(η)(û,iũ),idV ds

= −
∫ t
0

∫ z+h
z

∫
D(η)(û,iiũ+ û,iũ,i)dV ds

−
∫ t
0

∫ z+h
z

∫
D(η)

(
ũsũ+ 1

2
d
ds(k

∗(u,i + τ u̇,i)(u,i + τ u̇,i) + τKu̇,iu̇,i) +Ku̇,iu̇,i

)
dV ds,

(17)

where from now on we use the notation K = k − τk∗.
Therefore

∂G(z,t)
∂z = −1

2

∫
D(z)

(
(ũ)2 + k∗(u,i + τ u̇,i)(u,i + τ u̇,i) + τKu̇,iu̇,i

)
dA

−
∫ t
0

∫
D(z)Ku̇,iu̇,idAds+ E1(z),

where

E1(z) =
1

2

∫
D(z)

(
(ũ0)2 + k∗(u0,i + τϑ0,i)(u

0
,i + τϑ0,i) + τKϑ0,iϑ

0
,i

)
dA. (18)

Here and from now on ũ0 = ϑ0 + τφ0.

It is worth noting that E1(z) is explicitly defined in terms of the initial data. On integration
with respect to the first parameter from 0 to z, we get

G(z, t)−G(0, t) = (19)

−1

2

∫ z

0

∫
D(η)

(
(ũ)2 + k∗(u,i + τ u̇,i)(u,i + τ u̇,i) + τKu̇,iu̇,i

)
dV −

∫ t

0

∫ z

0

∫
D(η)

Ku̇,iu̇,idV ds

+
1

2

∫ z

0

∫
D(η)

(
(ũ0)2 + k∗(u0,i + τϑ0,i)(u

0
,i + τϑ0,i) + τKϑ0,iϑ

0
,i

)
dV.

Our next step is to establish an inequality between the time and spatial derivatives of G(z, t).
We have that

∂G(z, t)

∂z
≤ −1

2

∫
D(z)

(
(ũ)2 + ν0(|∇u|2 + |∇u̇|2)

)
dA+ E1(z). (20)

where ν0 is defined at (11).

On applying Schwarz’s inequality, we get∣∣∣∣∂G∂t
∣∣∣∣ ≤ (∫

D(z)
(ũ)2dA

)1/2(∫
D(z)

((k∗)2u2,3 + k2u̇2,3 + 2kk∗u,3u̇,3)dA
)1/2

(21)
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≤ k∗
√

1 + (
k

k∗
)2
(∫

D(z)
(ũ)2dA

)1/2(∫
D(z)

(|∇u|2 + |∇u̇|2)dA
)1/2

≤ k∗

2

√
(1 + (

k

k∗
)2ν0

−1/2
(∫

D(z)

(
(ũ)2 + ν0(|∇u|2 + |∇u̇|2)

)
dA
)
,

where the weighted arithmetic-geometric mean inequality has been employed to obtain each of
the last two steps of (21).

We can write ∣∣∣∣∂G∂t
∣∣∣∣+ β

∂G

∂z
≤ βE1(z), (22)

where

β = k∗
√

(1 + (
k

k∗
)2ν0

−1/2. (23)

This inequality implies that
∂G

∂t
+ β

∂G

∂z
≤ βE1(z), (24)

and
∂G

∂t
− β∂G

∂z
≥ −βE1(z). (25)

On integrating and taking into account the definition of E1(z) we obtain

G(z, β−1(z − z∗)) ≤ 1

2

∫ z

z∗

∫
D(η)

(
(ũ0)2 + k∗(u0,i + τϑ0,i)(u

0
,i + τϑ0,i) + τKϑ0,iϑ

0
,i

)
dV, (26)

where z ≥ z∗. Similarly, on integrating we obtain

G(z, β−1(z∗∗ − z)) ≥ −1

2

∫ z∗∗

z

∫
D(η)

(
(ũ0)2 + k∗(u0,i + τ ϑ̇0,i)(u

0
,i + τϑ0,i) + τKϑ0,iϑ

0
,i

)
dV, (27)

where z∗∗ ≥ z.
If we now assume that the initial data satisfies

G(0, 0) =
1

2

∫
R

(
(ũ0)2 + k∗(u0,i + τϑ0,i)(u

0
,i + τϑ0,i) + τKϑ0,iϑ

0
,i

)
dV <∞. (28)

Then the previous inequalities imply that, for each finite time t,

lim
z→∞

G(z, t) = 0. (29)

Therefore, we have

G(z, t) =
1

2

∫
R(z)

(
(ũ)2 + k∗(u,i + τ u̇,i)(u,i + τ u̇,i) + τKu̇,iu̇,i

)
dV +

∫ t

0

∫
R(z)

Ku̇,iu̇,idV ds (30)

−1

2

∫
R(z)

(
(ũ0)2 + k∗(u0,i + τϑ0,i)(u

0
,i + τϑ0,i) + τKϑ0,iϑ

0
,i

)
dV.

Now we see that

G(z, t) ≤ G(z∗, 0), (31)

where

G(z, t) =
1

2

∫
R(z)

(
((ũ)2 + k∗(u,i + τ u̇,i)(u,i + τ u̇,i) + τKu̇,iu̇,i

)
dV (32)
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+

∫ t

0

∫
R(z)

Ku̇,iu̇,idV ds,

and z, z∗ and t are related by t = β−1(z − z∗). In a similar way, we get

G(z, t) ≥ G(z∗∗, 0), (33)

for t = β−1(z∗∗ − z). From the previous inequalities we conclude that

G(z, t) ≤ G(z∗, t∗), (34)

for |t− t∗| ≤ β−1(z − z∗). Thus, we have proved:

Theorem 3.1. Let u be a solution of our initial-boundary-value problem where g satisfies the
conditions (52-54) of the appendix. We also assume that τk∗ < k. Then the energy function
G(z, t) defined in (32) satisfies the inequality (34) whenever |t− t∗| ≤ β−1(z− z∗), provided that
the initial data satisfy (28).

If one defines the measure

G∗(z, t) =

∫ t

0
G(z, s)ds, (35)

the following inequalities can be obtained as in [1]:

G∗(z, t) ≤ β−1
∫ z

z−βt
G(η, 0)dη, βt ≤ z, (36)

G∗(z, t) ≤ β−1
∫ z

0
G(η, 0)dη +

(
1− z

βt

)
G∗(0, t), βt ≥ z. (37)

Theorem 3.1 and estimates (36) and (37) are usual in the study of hyperbolic equations and
systems. They allow to control the energy of the system contained in a sub-cylinder until a time
t in terms of the energy of the cylinder on a previous time.

It is worth noting that in case that the initial data vanish we will obtain that the solution also
vanishes whenever βt ≤ z. This is a result of the domain of influence type. To be precise we
obtain that

u(x1, x2, x3, t) = 0,

whenever βt ≤ x3. That is u vanishes in the subset of points (x1, x2, x3, t) ∈ R such that βt ≤ x3.

At the same when βt > z we have

G∗(z, t) =

∫ t

β−1z
G(z, s)ds ≤

∫ t−β−1z

0
G(0, s)ds = G∗(0, t∗),

where t∗ = t − β−1z. This estimate is also usual for linear hyperbolic equations and systems,
but in the general case we do not know how to obtain a decay estimate for hyperbolic problems
which describes the decay along these lines. However as there exists dissipation in the system
we consider, it seems possible to obtain some decay estimates. We will see this effect for the
MGT in the next section.
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4. ZERO INITIAL CONDITIONS

In this section we study the spatial behaviour of solutions of our problem subject to the boundary
conditions (5,6) where g satisfies the conditions (52-54) of the appendix, but in the case where
we assume homogeneous initial conditions.

In this situation we define the function

Gδ(z, t) = −
∫ t

0

∫
D(z)

exp(−δs)û,3ũdAds, (38)

where δ > 0 is an arbitrary positive constant. We have

Gδ(z, t) = Gδ(0, t)−
1

2

∫ z

0

∫
D(η)

exp(−δt)
(

(ũ)2 + k∗(u,i + τ u̇,i)(u,i + τ u̇,i) + τKu̇,iu̇,i

)
dV (39)

−δ
2

∫ t

0

∫ z

0

∫
D(η)

exp(−δs)
(

(ũ)2 + k∗(u,i + τ u̇,i)(u,i + τ u̇,i) + τKu̇,iu̇,i

)
dV ds

−
∫ t

0

∫ z

0

∫
D(η)

exp(−δs)Ku̇,iu̇,idV ds.

On using arguments similar to those of the previous Section, we obtain∣∣∣∣∂Gδ∂t

∣∣∣∣+ β
∂Gδ
∂z
≤ 0, (40)

where β is given as previously.

The inequality (40) implies that

∂Gδ
∂t

+ β
∂Gδ
∂z
≤ 0,

∂Gδ
∂t
− β∂Gδ

∂z
≥ 0. (41)

Thus, we can write

Gδ(z, t) =
1

2

∫
R(z)

exp(−δt)
(

(ũ)2 + k∗(u,i + τ u̇,i)(u,i + τ u̇,i) + τKu̇,iu̇,i

)
dV (42)

+
τ

2

∫ t

0

∫
R(z)

exp(−δs)
(

(ũ)2 + k∗(u,i + τ u̇,i)(u,i + τ u̇,i) + τKu̇,iu̇,i

)
dV ds

+

∫ t

0

∫
R(z)

exp(−δs)Ku̇,iu̇,idV ds.

Next, we obtain the main spatial estimate of this section. To this end we estimate the absolute
value of Gδ in terms of its derivative with respect to a space-time direction. On using Schwarz’s
inequality in (38), we get

|Gδ| ≤
(∫ t

0

∫
D(z)

exp(−δs)(ũ)2dAds
)1/2(∫ t

0

∫
D(z)

exp(−δs)((k∗)2u2,3+k2u̇2,3+2kk∗u,3u̇,3)dAds
)1/2

.

(43)
On twice using the weighted arithmetic-geometric mean inequality we find that

|Gδ| ≤ k∗
√

(1 + (
k

k∗
)2
(∫ t

0

∫
D(z)

exp(−δs)(ũ)2dAds
)1/2(∫ t

0

∫
D(z)

exp(−δs)(|∇u|2+|∇u̇|2)dAds
)1/2
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≤ 1

2

√
(k2 + (k∗)2)

δνδ

(∫ t

0

∫
D(z)

exp(−τs)
(
δ(ũ)2 + νδ(|∇u|2 + |∇u̇|2)

)
dAds

)
.

Thus we find that

| Gδ | ≤

√
(k2 + (k∗)2)

δνδ

( ∣∣∣∣∂Gδ∂t

∣∣∣∣− β∂Gδ∂z

)
, (44)

where the constant νδ is given explicitly in (13), and β is given in (23). On letting ξ measure
the distance along the line

β(t− t∗) = z, (45)

the inequality (44) implies that

∂Gδ
∂ξ

+

√
δνδ

(k2 + (k∗)2))(1 + β2)
Gδ ≤ 0. (46)

An integration from the point (0, t∗) to the point (z, t) along the line (45) leads to

Gδ(z, t) ≤ Gδ(0, t∗) exp
(
−

√
δνδ

(k2 + (k∗)2)
z
)
. (47)

On recalling the definition of G, we may write

G(z, t) ≤ exp(δt)Gδ(z, t) ≤ exp(δt)Gδ(0, t
∗) exp

(
−

√
δνδ

(k2 + (k∗)2)
z
)
. (48)

We thus obtain

G(z, t) ≤ exp(δt∗)Gδ(0, t
∗) exp

((
β−1δ −

√
δνδ

k2 + (k∗)2
)
z
)
. (49)

The constant δ > 0 is an arbitrary constant. We may now choose δ so that the quantity

β−1δ −

√
δνδ

(k2 + (k∗)2))
=

δ1/2√
k2 + (k∗)2

(ν
1/2
0 δ1/2 − ν1/2δ ), (50)

is negative. This implies that the energy decays exponentially along the line (45).

We have proved:

Theorem 4.1. Let u be a solution of our initial-boundary-value problem when the initial con-
ditions vanish where g satisfies the conditions (52-54) of the appendix. We also assume that
τk∗ < k. Then the energy function G(z, t) satisfies the inequality (49) whenever t, t∗ and z are
related by the condition (45).

It is worth noting that the estimates of the type proposed by this theorem are not usual to find
in the literature. In fact we obtain a spatial decay estimate along the line (45), which improves
the estimate obtained at the end of the previous section. We do not know estimates of this kind
apart the one proposed at [15].

We also note that estimate (49) implies that

G∗(z, t) ≤
[ ∫ t

t−β−1z
exp(δ(ξ − β−1z))Gδ(0, ξ − β−1z)dξ

]
exp

((
β−1δ −

√
δνδ

k2 + (k∗)2
)
z
)
.
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After the change of variable η = ξ − β−1z we get

G∗(z, t) ≤
[ ∫ t∗

0
exp(δη)Gδ(0, η)dη

]
exp

((
β−1δ −

√
δνδ

k2 + (k∗)2
)
z
)
,

where t∗ = t− β−1z. Therefore, we conclude

G∗(z, t) ≤ exp(δt∗)

∫ t∗

0
Gδ(0, η)dη exp

((
β−1δ −

√
δνδ

k2 + (k∗)2
)
z
)
.

This is an estimate where we can see that the energy contained in the sub-cylinders decays in
an exponential way.

5. CONCLUSION

In this note we have analyzed the spatial behaviour of solutions of the Moore-Gibson-Thompson
equation. As this is an hyperbolic equation, we have obtained spatial estimates. In particular,
the domain of influence result has been established. We have also demonstrated that the solu-
tions decay exponentially along the lines determined by eq. (45). This alternative result is not
well known in the literature.
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[2] Brezis, H. Analyse fonctionelle. Théorie et Applications, Masson, Paris (1983).
[3] Chirita, S. and Quintanilla, R. Saint-Venant’s principle in linear elastodynamics, J. Elast. 1996 ; 42, 201-215.
[4] Roy Choudhuri, S. K. On A Thermoelastic Three-Phase-Lag Model, J. Therm. Stresses 2007 ; 30, 231–238.
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[7] Dell’Oro, F., Lasiecka, I. and Pata, V. The Moore-Gibson-Thompson equation with memory in the critical

case, J. Diff. Equa. 2016 ; 261, 4188–4222.
[8] Dell’Oro, F. and Pata, V. On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity,

Appl. Math. Optim. 2017 ; 76, 641–655.
[9] Dell’Oro, F. and Pata, V. On a fourth-order equation of Moore-Gibson-Thompson type, Milan J. Math.

2017 ; 85, (215–234).
[10] Flavin, J. N., Knops, R. J. and Payne, L. E. Energy bounds in dynamical problems for a semi-infinite elastic

beam, in Elasticity: Mathematical Methods and Applications (Ellis-Horwood Chichester, 1989) pp. 101–111.
[11] Giorgi, C., Grandi, D. and Pata, V. On the Green-Naghdi type III heat conduction model, Discrete Contin.

Dyn. Syst. Ser. B 2014 ; 19, 2133-2143.
[12] Green, A. E. and Naghdi, P. M. On undamped heat waves in an elastic solid, J. Therm. Stresses 1992 ; 15,

253–264.
[13] Green, A. E. and Naghdi, P. M. Thermoelasticity without energy dissipation, Green, A. E. Naghdi, P. M.

J. Elast. 1993 ; 31, 189–208.
[14] Green, A. E. and Naghdi, P. M. A verified procedure for construction of theories of deformable media. I.

Classical continuum physics, II. Generalized continua, III. Mixtures of interacting continua, Proc. Roy.
Society London A 1995; 448, 335–356, 357–377, 378–388.



10 M.Ostoja-Starzewski and R. Quintanilla

[15] Horgan, C.O. and Quintanilla R. Spatial behaviour of solutions of the dual-phase-lag heat equation Math.
Meth.Appl. Sci. 2005; 28, 43-57.

[16] Ignaczak, J. and Ostoja-Starzewski, M. Thermoelasticity with Finite Wave Speeds, Oxford University Press,
New York (2010).

[17] Kaltenbacher, B., Lasiecka, I. and Marchand, R. Wellposedness and exponential decay rates for the Moore-
Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet. 2011; 40, 971–988.

[18] Lasiecka, I. and Wang, X. Moore-Gibson-Thompson equation with memory, part II: General decay of energy,
J. Diff. Equa. 2015; 259, 7610–7635.

[19] Lasiecka, I. and Wang, X. Moore-Gibson-Thompson equation with memory, part I: exponential decay of
energy, Z. Angew. Math. Phys. 2016; 67, 67–17.

[20] Lesduarte, M. C. and Quintanilla, R. Spatial behavior in high-order partial differential equations, Math.
Methods Appl. Scie. 2018; 41, 2480-2493.

[21] Marchand, R., McDevitt, T. and Triggiani, R. An abstract semigroup approach to the third order Moore-
Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition,
spectral analysis, exponential stability, Math. Methods Appl. Sci. 2012; 35, 1896–1929.

[22] Pellicer, M. and Quintanilla, R. On uniqueness and instability for some thermoemechanical problems involving
the Moore-Gibson-Thompson equation , Z. Angew. Math. Phys. 2020; in press.

[23] Pellicer, M. and Said-Houari, B. Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-
Thompson equation arising in high intensity ultrasound, Appl. Math. Optim. 2017; 35, 1–32.

[24] Pellicer, M. and Sola-Morales, J. Optimal scalar products in the Moore-Gibson-Thompson equation, Evol.
Equ. Control Theory 2019; 8, 203–220.

[25] Quintanilla, R. Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 2019; 24, 4020-4031.
[26] Quintanilla, R. and Racke, R. Spatial behavior in phase-lag heat conduction, Diff. Int. Equa., 2015; 28,

291-308.
[27] Renardy, M., Hrusa, W.J. and Nohel, J.A. Mathematical Problems in Viscoelasticity, John Wiley & Sons,

Inc., New York, (1987).

APPENDIX

In the development of the paper we have assumed the existence, uniqueness and regularity of
the solutions to the proposed problem (3-6). To be precise we have used that

û ∈W 2,2(R); ũ, u, u̇ ∈W 1,2
0 (R). (51)

In this appendix we prove that these properties hold whenever we assume that

g ∈ C4(0, T,W 2,2(D) ∩W 1.2
0 (D)), (52)

as well as

g(x1, x2, 0, 0) = u0(x1, x2, 0), ġ(x1, x2, 0, 0) = ϑ0(x1, x2, 0), g̈(x1, x2, 0, 0) = φ0(x1, x2, 0),
(53)

and
k∗u0 + kϑ0 ∈W 2,2(R), u0 − g(x1, x2, 0) exp(−γx3) ∈W 1,2

0 (R),

ϑ0 − ġ(x1, x2, 0) exp(−γx3), φ0 − g̈(x1, x2, 0) exp(−γx3) ∈W 1,2
0 (R), (54)

where γ is an arbitrary positive constant.

First, we will need the following result:

Theorem 5.1. Let us consider the problem determined by the equation

τ
...
w + ẅ − k4ẇ − k∗4w = f(x, t), (55)

the initial conditions

w(x, 0) = a0(x), ẇ(x, 0) = b0(x), ẅ(x, 0) = c0(x), (56)
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and the boundary conditions

w(x, t) = 0, x ∈ ∂R × [0,∞), (57)

where a0(x) ∈ W 1,2
0 (R), b0(x) ∈ W 1,2

0 (R), c0(x) ∈ W 1,2
0 (R) and k∗a0(x) + kb0(x) ∈ L2(R).

We also assume that f(x, t) ∈ C1(0, T, L2(R)). Then, there exists a unique solution w(x, t) ∈
W 1,2

0 (R) such that ẇ(x, t) ∈W 1,2
0 (R) , ẅ(x, t) ∈ L2(R), ŵ(x, t) ∈W 2,2(R), w̃(x, t) ∈W 1,2

0 (R)

Proof. We consider the Hilbert space H = W 1,2
0 (R) ×W 1,2

0 (R) × L2(R) and we can write our
problem as

d

dt

wθ
ϕ

 = A

wθ
ϕ

+

0
0
f

 , w(0) = a0(x), θ(0) = b0(x), ϕ(0) = c0(x), (58)

where

A

wθ
ϕ

 =

 θ
ϕ

τ−1[k∗∆w + k∆θ − ϕ]

 . (59)

The domain of this operator is the subspace of H such that k∗∆w + k∆θ ∈ L2(R) and ϕ ∈
W 1,2

0 (R). Following the arguments proposed in ([25], p. 4025), we can prove that A generates a
C0-semigroup of contractions. As f(x, t) ∈ C1(0, T, L2(R)) we can conclude the existence and
uniqueness of solutions (see [2], p.117). We also know that the solutions belong to the domain
of A and then the required regularity conditions are satisfied.

Theorem 5.2. Let us assume that the boundary and initial datas satisfy the conditions proposed
at the begin of the appendix (52-54). Then, there exists a unique solution to the problem (3-6).
Moreover, this solution satisfies the regularity conditions.

Proof. We define the function H(x, t) = g(x1, x2, t) exp(−γx3) where γ is an arbitrary positive
number. We denote by w(t) the solution of the problem (55-57) when

f(x, t) = τ
...
H + Ḧ − k∆Ḣ − k∗∆H,

and
a0(x) = u0(x)−H(x, 0), b0(x) = ϑ0(x)− Ḣ(x, 0), c0(x) = φ0(x)− Ḧ(x, 0).

We note that f(x, t) and a0(x), b0(x), c0(x) satisfy the conditions of the previous theorem.

The solution to the problem (3-6) can be obtained by taking

u(x, t) = w(x, t) +H(x, t). (60)

Existence, uniqueness and regularity of the solution are clearly checked in view of the previous
theorem.
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