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Abstract

The coalitional multinomial probabilistic values extend the notion of multinomial probabilistic
value to games with a coalition structure, in such a way that they generalize the symmetric
coalitional binomial semivalues and link and combine the Shapley value and the multinomial
probabilistic values. By considering the property of balanced contributions within unions,
a new axiomatic characterization is stated for each one of these coalitional values, provided
that it is defined by a positive tendency profile, by means of a set of logically independent
properties that univocally determine the value. Two applications are also shown: (a) to the
Madrid Assembly in Legislature 2015–2019 and (b) to the Parliament of Andalućıa in Legis-
lature 2018–2022.

Keywords: (TU) cooperative game, coalition structure, Shapley value, multinomial probabilis-
tic value.
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1 Introduction

This paper focuses on coalitional multinomial probabilistic values, a family of coalitional values
introduced by Carreras and Puente [8]. These coalitional values combine the Shapley value [19]
and the corresponding multinomial probabilistic value [18] (see also [7], [9], [10], [13], [14]). They
first apply this latter value to the quotient game and obtain a payoff for each union; next, they
apply within each union the Shapley value to a reduced game, played in the union, for sharing
that payoff efficiently.

These values form a n–parametric family (n being the number of players) since they depend on
profiles p = (p1, p2, . . . , pn) that supply information not included in the characteristic function of
the game. We interpret each component pi as the tendency of player i to form coalitions. By using
coalitional multinomial probabilistic values one can take into account the influence of players’
different personalities in the study of the coalition formation process. The political examples
analyzed in Section 4 illustrate this idea and also the good behavior of these values as power
indices (i.e., acting on simple games). In fact, these coalitional values look highly interesting
for a voting setup since, once an alliance is formed —and, especially, if it supports a coalition
government—, cabinet ministries, parliamentary and institutional positions, budget management,
and other political responsibilities have to be distributed among the members of the coalition
efficiently, so the use of the Shapley value is crucial here.

Coalitional multinomial probabilistic values widely generalize the symmetric coalitional bino-
mial semivalues [6] (and, in particular, the symmetric coalitional Banzhaf value [1]) and they
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provide a promising framework for applications. One might think that we have to pay a price
in terms of mathematical properties for introducing n parameters in our evaluation of games and
games with a coalition structure. However, as it will be seen along this work, this is not true.

Summing up, the aim of this paper is to provide a new axiomatic characterization for each
coalitional multinomial probabilistic value defined by a positive tendency profile, by just replacing
the property of symmetry within unions with the property of balanced contributions within unions,
thus contributing to a better understanding of these coalitional values as a consistent alternative
or complement to classic coalitional values. The fact that they are based on tendency profiles
provides new tools to encompass a large variety of situations that arise when playing a given game,
as shown in the political examples studied in Section 4.

The organization of the paper is as follows. In Section 2, a minimum of preliminaries is given.
Section 3 includes the new axiomatic characterization of these coalitional values based on the prop-
erty of balanced contributions within unions, and translates this characterization to their restriction
to simple games, where they are interpreted as coalitional power indices. Section 4 contains two
political applications of the coalitional multinomial probabilistic values to the analysis of: (a)
the Madrid Assembly (Legislature 2015–2019) and (b) the Parliament of Andalućıa (Legislature
2018–2022).

2 Preliminaries

2.1 Games and values. Multinomial probabilistic values

Let N be a finite set of players, usually denoted as N = {1, 2, . . . , n}, and 2N be the set of coalitions
(subsets of N). A (cooperative) game in N is a function v : 2N → R that assigns a real number
v(S) to each coalition S ⊆ N , with v(∅) = 0. A game v is monotonic if v(S) ≤ v(T ) whenever
S ⊂ T ⊆ N . Player i ∈ N is a dummy in v if v(S∪{i}) = v(S)+v({i}) for all S ⊆ N\{i}, and null
in v if, moreover, v({i}) = 0. Two players i, j ∈ N are symmetric in v if v(S ∪ {i}) = v(S ∪ {j})
for all S ⊆ N\{i, j}.

Endowed with the natural operations for real–valued functions, i.e. v+ v′ and λv for all λ ∈ R,
the set GN of all games in N becomes a vector space. For every nonempty coalition T ⊆ N , the
unanimity game uT in N is defined by uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise, and it is
easily checked that the set of all unanimity games is a basis for GN . Then, for each v ∈ GN ,

v =
∑
∅6=T⊆N

αT (v)uT where αT (v) =
∑
S⊆T

(−1)t−sv(S), t = |T |, and s = |S|.

Let ∅ 6= R ⊂ N and w be a game in N . The restriction of w to R is the game wR in R defined
by

wR(S) = w(S) for all S ⊆ R.
Now let w be a game in R. The null extension of w to N is the game w∗ defined by

w∗(S) = w(S ∩R) for all S ⊆ N.

Then, the players in N\R become null players in w∗. The map from GR to GN defined by w 7→ w∗

is linear and, in particular, uT (in R) maps to (uT )∗ = uT (in N). We will apply these ideas later
to the case where R = N\{i} for some i ∈ N , and will denote the restriction to N\{i} as w−i.

By a value on GN we will mean a map f : GN → RN , that assigns to every game v a vector
f [v] with components fi[v] for all i ∈ N .

In particular, the Banzhaf value [4] β, is given by

βi[v] =
1

2n−1

∑
S⊆N\{i}

[v(S ∪ {i})− v(S)] for all i ∈ N and all v ∈ GN ,

and the Shapley value [19] ϕ by

ϕi[v] =
1
n

∑
S⊆N\{i}

1(
n−1

s

) [v(S ∪ {i})− v(S)] for all i ∈ N and all v ∈ GN .
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Notice that βi[v] is the average of the marginal contributions of player i to all coalitions to which
it does not belong and ϕi[v] is a weighted average of those contributions, where now the weights
depend on the size of coalitions S.

The multinomial probabilistic values form a subfamily of probabilistic values [20]. They were
introduced in reliability of systems by Puente [18] (see also [13]) as follows. Let N = {1, 2, . . . , n}
and let p ∈ [0, 1]n, that is, p = (p1, p2, . . . , pn) with 0 ≤ pi ≤ 1 for i = 1, 2, . . . , n, be given. Then
the coefficients

pi
S =

∏
j∈S

pj

∏
k∈N\S

k 6=i

(1− pk) for all i ∈ N and S ⊆ N\{i}

(where the empty product, arising if S = ∅ or S = N\{i}, is taken to be 1) define a probabilistic
value on GN that is called the p–multinomial probabilistic value and will be denoted here as λp.
Its action is then given, for all i ∈ N and v ∈ GN , by

λp
i [v] =

∑
S⊆N\{i}

[∏
j∈S

pj

∏
k∈N\S

k 6=i

(1− pk)
]
[v(S ∪ {i})− v(S)].

Remark 2.1 (a) For example, for n = 2 we have p = (p1, p2) and, if i 6= j,

λp
i [v] = (1− pj)[v({i} − v(∅)] + pj [v(N)− v({j})].

Thus, the payoff allocated by λp to player i does not depend on pi but only on pj . If player j is
not greatly interested in cooperating, and hence pj is small, player i mainly receives his individual
utility whereas, otherwise, if player j is interested in cooperating, and hence pj is great, player i
mainly receives his marginal contribution to the grand coalition.

(b) It is easy to check that the action of λp on a unanimity game uT is given by:

λp
i [uT ] =

∏
j∈T\{i}

pj if i ∈ T or else λp
i [uT ] = 0. (1)

This will be used in Example 4.1.

From now on, we will assign to parameter pi the meaning of generic tendency of player i to form
coalitions, assuming that pi and pj are independent of each other if i 6= j. We also assume that
0 ≤ pi ≤ 1 for each player i and collect all parameters in the tendency profile p = (p1, p2, . . . , pn).

2.2 Games with a coalition structure. The coalitional multinomial prob-
abilistic value

Given N = {1, 2, . . . , n}, we will denote by B(N) the set of all partitions of N . Each B ∈ B(N)
is called a coalition structure in N , and each member of B is called a union. The so–called trivial
coalition structures are Bn = {{1}, {2}, . . . , {n}} (singletons) and BN = {N} (grand coalition). A
(cooperative) game with a coalition structure in N is a pair [v;B], where v ∈ GN and B ∈ B(N)
for a given N . Each partition B gives a pattern of cooperation among players. We denote by
Gcs

N = GN ×B(N) the set of all games with a coalition structure and player set N .
If [v;B] ∈ Gcs

N and B = {B1, B2, . . . , Bm}, the quotient game vB is the game played by the
unions or, rather, by the quotient set M = {1, 2, . . . ,m} of their representatives, as follows:

vB(R) = v

(⋃
r∈R

Br

)
for all R ⊆M.

Definition 2.2 Given a tendency profile p and a coalition structure B in N , a tendency profile p
in M is a tendency profile induced by p iff: (i) each pr depends only on those pi such that i ∈ Br;
and (ii) if, for a given Br ∈ B, there is some q ∈ [0, 1] such that pi = q for all i ∈ Br then pr = q.1

Of course, if Br = {i} then pr = pi.
1Condition (ii) ensures consistency with symmetric coalitional binomial semivalues (cf. [5, 2, 6]).
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The interpretation attached to p1, p2, . . . , pn in Subsection 2.1 will be kept in passing to
the quotient. Among the infinitely many possibilities to define an induced tendency profile
p = (p1, p2, . . . , pm) in terms of p, let us suggest a few ones only as a matter of example:

(α) pr = min
i∈Br

{pi}

(β) pr = pi for some i ∈ Br arbitrarily chosen

(γ) pr =
1
br

∑
i∈Br

pi, where br = |Br|

(δ) pr = max
i∈Br

{pi}

We will not try to discuss here which is the best option. It may happen that different situations
require different ways to define p1, p2, . . . , pm. Even more, nothing prevents different unions to
make different choices when defining their respective tendencies in the quotient game —this is the
reason for having imposed conditions (i) and (ii) for each union. Fortunately, the great freedom
in this choice will not affect the validity of the theoretical results: the theory developed in this
paper will be of application provided that p is a tendency profile induced by p, no matter by which
mechanism.2

By a coalitional value on Gcs
N we will mean a map g : Gcs

N → RN , which assigns to every pair
[v;B] a vector g[v;B] with components gi[v;B] for each i ∈ N .

If f is a value on GN and g is a coalitional value on Gcs
N , it is said that g is a coalitional value

of f (or a coalitional f–value, for short) iff g[v;Bn] = f [v] for all v ∈ GN .
The coalitional p–multinomial probabilistic values were introduced in [8]. They represent a

two–step bargaining procedure where, first, each union obtains in the quotient game the payoff
given by the p–multinomial probabilistic value λp and, then, this payoff is efficiently shared within
each union according to the Shapley value ϕ.3

Definition 2.3 Let N = {1, 2, . . . , n} be a finite player set and p = (p1, p2, . . . , pn) be a tendency
profile in N . The coalitional p–multinomial probabilistic value is the coalitional value Λp : Gcs

N →
RN defined as follows. If [v;B] ∈ Gcs

N and i ∈ Bk ∈ B,

Λp
i [v;B] =

∑
R⊆M\{k}

[ ∏
j∈R

pj

∏
h∈M\R

h 6=k

(1− ph)
] ∑

T⊆Bk\{i}

v(Q ∪ T ∪ {i})− v(Q ∪ T )
bk
(
bk−1

t

) ,

where p is a tendency profile induced by p in M , Q =
⋃
r∈R

Br, bk = |Bk|, and t = |T |.

As this has just been said, there are infinitely many possibilities to define an induced tendency
profile p = (p1, p2, . . . , pm) in terms of p but this does not affect the theoretical results of the
paper. In order to simplify the notation and avoid any ambiguity, we will implicitly assume from
now on that, for any given N , a unique mechanism has been chosen to induce, given p and B in
N , a tendency profile p in M .

2Although the results obtained in practice will depend in general on this mechanism.
3The reduced game to which the Shapley value is applied is as follows. First, if S ⊆ Bk, let vB

S be the
pseudoquotient game in M defined by

vB
S (R) = v

[
(
⋃

r∈R

Br)\(Bk\S)
]

for each R ⊆M.

This game is the modification of the standard quotient game vB when S replaces union Bk, as if the players of
Bk\S were temporarily inactive. The reduced game of v in Bk, denoted by wk, is then given by

wk(S) = λp
k [vB

S ] for each S ⊆ Bk.
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In particular, let uT be a unanimity game in N . Let T = {k ∈M : T ∩Bk 6= ∅}, and, for each
k ∈ T , Tk = T ∩Bk. If i ∈ Tk, and p is a tendency profile induced by p in M , then

Λp
i [uT ;B] =

1
|Tk|

∏
r∈T\{k}

pr. (2)

This will be used in Sections 3 and 4.

2.3 Properties and a first axiomatic characterization

In this section we will present an existing characterization result given in [8]. To do this, first of
all, we consider standard properties for a generic coalitional value g on Gcs

N :

• linearity : g[αv + βv′;B] = αg[v;B] + βg[v′;B] for all α, β ∈ R, v, v ∈ GN and B ∈ B(N).
• positivity : if v ∈ GN is monotonic, then g[v;B] ≥ 0 for all B ∈ B(N).
• dummy player property : if i is a dummy in v ∈ GN , then gi[v;B] = v({i}) for all B ∈ B(N).
• symmetry within unions: if i, j ∈ Bk are symmetric players in v ∈ GN then

gi[v;B] = gj [v;B].

• symmetry in the quotient game: if r, s ∈ M are symmetric players in vB ∈ GM , B ∈ B(N),
then ∑

i∈Br

gi[v;B] =
∑
j∈Bs

gj [v;B].

• quotient game property : for all [v;B] ∈ Gcs
N and all k ∈M ,∑

i∈Bk

gi[v;B] = gk[vB ;Bm].4

In order to obtain a first axiomatic characterization of each coalitional multinomial probabilistic
value, two additional nonstandard properties are considered.

Definition 2.4 Let p be a tendency profile in N . A coalitional value g on GCS
N satisfies the

coalitional p–multinomial total power property iff, for all [v;B] ∈ Gcs
N ,∑

i∈N

gi[v;B] =
∑
k∈M

∑
R⊆M\{k}

[ ∏
j∈R

pj

∏
h∈M\R

h6=k

(1− ph)
]
[v(Q ∪Bk)− v(Q)],

where p is any tendency profile induced by p in M and Q =
⋃
r∈R

Br.

Remark 2.5 This property is the natural extension of a total power property that was first stated
for the Banzhaf value [15] (cf. also [12, 11]) and gave rise later, among others, to the coalitional q–
binomial total power property [5, 2, 6] and the p–multinomial total power property [7]. It reduces
to this latter if B = Bn but it also extends efficiency, to which it reduces if B = BN .

Moreover, as Λp is a coalitional λp–value, that property is a consequence of the quotient game
property—maybe more compelling at first glance—and can be simply written as∑

i∈N

Λp
i [v;B] =

∑
k∈M

λp
k [vB ],

thus establishing that the total amount shared according to Λp in [v;B] coincides with the amount
shared according to λp in the quotient game vB .

4In principle, this property makes sense only for coalitional values defined for all N ; in such a case, one generally
abuses the notation and uses a unique symbol g on both GCS

N and GCS
M . However, the property also makes sense

for a coalitional value g on a given Gcs
N provided, at least, that it induces a coalitional value g on Gcs

M for each
B ∈ B(N). And this is precisely the case of the coalitional multinomial probabilistic values.
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Definition 2.6 Let p be a tendency profile in N . A coalitional value g on GCS
N satisfies the

property of p–weighted payoffs for quotients of unanimity games iff, for any B ∈ B(N) and any
nonempty T ⊆ N ,

pk

∑
i∈Bk

gi[uT ;B] = p`

∑
j∈B`

gj [uT ;B] for all Bk, B` ∈ B intersecting T ,

where p is any tendency profile induced by p in M .

Remark 2.7 The coalitional p–multinomial probabilistic value fails to satisfy the standard prop-
erty of symmetry in the quotient game. It should be clear that the failure is essentially due to the
fact that, in general, neither λp nor λp satisfy anonymity. But this is precisely the positive reason
by which we are considering here multinomial probabilistic values instead of binomial semivalues:
the possibility, offered by profiles p and p, to discriminate among players and unions, respectively.

Remark 2.8 The property of p–weighted payoffs for quotients of unanimity games does not hold
for general quotients. The corresponding statement, that could be called “p–weighted symmetry
in the quotient game” would look as follows: if k, ` ∈M are symmetric players in vB then

pk

∑
i∈Bk

Λp
i [v;B] = p`

∑
j∈B`

Λp
j [v;B].

Again it is easy to see (even for n = 2) that this is not true in general. Also it can be easily
shown that the p–coalitional multinomial probabilistic value satisfies p–weighted symmetry in the
quotient game iff it is a symmetric coalitional binomial semivalue, but then the property becomes
just symmetry in the quotient game (and p1 = p2 = · · · = pn).

Our axiomatic characterizations hold for any coalitional p–multinomial probabilistic value with
a positive tendency profile p = (p1, p2, . . . , pn), that is, a profile p such that pi > 0 for i =
1, 2, . . . , n.

Theorem 2.9 ([8]) (First axiomatic characterization of each coalitional multinomial probabilistic
value with positive profile) Let p be a positive profile in a given player set N . Then there is
a unique coalitional value on Gcs

N that satisfies linearity, the dummy player property, symmetry
within unions, the coalitional p–multinomial total power property, and the property of p–weighted
payoffs for quotients of unanimity games. It is the coalitional p–multinomial probabilistic value.
�

3 Second axiomatic characterization

3.1 Cooperative games

A new axiomatic characterization of each coalitional p–multinomial probabilistic value with posi-
tive tendency profile can be obtained by just replacing the property of symmetry within unions in
Theorem 2.9 with the property of balanced contributions within unions. Initially, we consider:

• balanced contributions within unions: for all [v;B] ∈ Gcs
N , Bk ∈ B and i 6= j in Bk ∈ B,

gi[v;B]− gi[v;B−j ] = gj [v;B]− gj [v;B−i],

where B−i is the coalition structure that results when player i disappears, i.e.,

B−i = {B1, . . . , Bk−1, Bk\{i}, Bk+1, . . . , Bm},

and B−j is defined analogously.
This property refers to players belonging to the same union and it states that the loss (resp.,

gain) of a player i ∈ Bk when a distinct player j ∈ Bk leaves the game is the same as the loss
(resp., gain) of player j when player i leaves the game.
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A problem of this statement of the balanced contributions property for a generic coalitional
value is that it should be restricted to coalitional values g defined not only on Gcs

N but also for
restricted games v−i with coalition structure B−i in other player sets of the form N−i = N\{i} for
some i ∈ N , and this would disturb the precision and reduce the scope of our axiomatization.

With the aim of going back to the initial setup, and to remain there, we consider in detail all
elements that intervene in the case of a coalitional multinomial probabilistic value Λp. Initially,
we have the player set N = {1, 2, . . . , n}, the coalition structure B = {B1, B2, . . . , Bm}, the
tendency profile p = (p1, p2, . . . , pn), and the game v, all of them defined in N . If i 6= j in
Bk ∈ B, a way to describe what happens if j leaves the game consists in considering N−j = N\{j}
as new player set, B−j = {B1, B2, . . . , Bk\{j}, . . . , Bm} as restricted coalition structure in N−j ,
p−j = (p1, p2, . . . , pi, . . . ,

∧
pj , . . . , pn) as restricted tendency profile in N−j , and v−j as restricted

game, defined by v−j(S) = v(S) for all S ⊆ N−j . A similar description holds when player i leaves
the game. Notice that, for unanimity games uT , if j ∈ T ⊆ N then uT

−j = 0.
Then, the property of balanced contributions within unions for the coalitional multinomial

probabilistic value Λp states that

Λp
i [v;B]− Λp−j

i [v−j ;B−j ] = Λp
j [v;B]− Λp−i

j [v−i;B−i].

(This property will be checked in the existence part of Theorem 3.2.) The crucial fact here is given
in the following result, where (v−j)∗ is the null extension of v−j to N , defined by (v−j)∗(S) =
v−j(S ∩N−j) for all S ⊆ N . We recall that j is a null player in this game.

Lemma 3.1 For any game v in N , any coalition structure B, any tendency profile p, all defined
in N , and any pair i 6= j in Bk ∈ B,

Λp−j

i [v−j ;B−j ] = Λp
i [(v−j)∗;B]

and, in particular, if ∅ 6= T ⊆ N then

Λp−j

i [uT
−j ;B−j ] = Λp

i [(uT
−j)∗;B].

Proof : By linearity, we just need to check the second equation, concerned with unanimity games
only. This is easy if we split it into the following three cases:

(a) If i, j ∈ T , then
Λp−j

i [uT
−j ;B−j ] = 0 = Λp

i [(uT
−j)∗;B]

since uT
−j = 0 and hence (uT

−j)∗ = 0. Something similar for j.

(b) If, e.g., i ∈ T and j /∈ T , then, on one hand, using Eq. (2),

Λp−j

i [uT
−j ;B−j ] =

1
|Tk|

∏
h∈M\{k}

ph = Λp
i [(uT

−j)∗;B]

since uT
−j = uT in N−j and (uT

−j)∗ = uT in N . And, on the other hand,

Λp−i

j [uT
−i;B−i] = 0 = Λp

j [(uT
−i)
∗;B]

since uT
−i = 0 and hence (uT

−i)
∗ = 0.

(c) If i, j /∈ T
Λp−j

i [uT
−j ;B−j ] = 0 = Λp

i [(uT
−j)∗;B]

since uT
−j = uT in N−j , (uT

−j)∗ = uT in N , and i is a null player in both games. Something
similar for j. �

Using this result we can provide an alternative and definitive expression for the property of
balanced contributions within unions: for all [v;B] ∈ Gcs

N and i 6= j in Bk ∈ B,

gi[v;B]− gi[(v−j)∗;B] = gj [v;B]− gj [(v−i)∗;B]. (3)
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Theorem 3.2 (Second axiomatic characterization of each coalitional multinomial probabilistic
value with positive tendency profile) Let p be a positive tendency profile in a given player set
N . Then there is a unique coalitional value on Gcs

N that satisfies linearity, the dummy player
property, balanced contributions within unions, the coalitional p–multinomial total power property,
and the property of p–weighted payoffs for quotients of unanimity games. It is the coalitional
p–multinomial probabilistic value.

Proof : (a) (Existence) Taking into account the results already obtained in Theorem 2.9, it suffices
to show that the coalitional p–multinomial probabilistic value Λp satisfies the property of balanced
contributions within unions as stated in Eq. (3). And, by linearity, we only need to deal with the
unanimity game uT with a coalition structure B in N for an arbitrary nonempty T ⊆ N , thus it
suffices to check that

Λp
i [uT ;B]− Λp

i [(uT
−j)∗;B] = Λp

j [uT ;B]− Λp
j [(uT

−i)
∗;B] for any i 6= j in Bk ∈ B.

Using the notation introduced for Eq. (2), we distinguish three cases:

(a) If i, j ∈ T then we obtain

Λp
i [uT ;B]− Λp

i [(uT
−j)∗;B] =

1
|Tk|

∏
r∈T\{k}

pr − 0 =
1
|Tk|

∏
r∈T\{k}

pr.

since (uT
−j)∗ = 0. Similarly, since (uT

−i)
∗ = 0,

Λp
j [uT ;B]− Λp

j [(uT
−i)
∗;B] =

1
|Tk|

∏
r∈T\{k}

pr − 0 =
1
|Tk|

∏
r∈T\{k}

pr.

(b) If, e.g., i ∈ T and j /∈ T then, on one hand,

Λp
i [uT ;B]− Λp

i [(uT
−j)∗;B] =

1
|Tk|

∏
r∈T\{k}

pr −
1
|Tk|

∏
r∈T\{k}

pr = 0,

since (uT
−j)∗ = uT ; on the other hand,

Λp
j [uT ;B]− Λp

j [(uT
−i)
∗;B] = 0− 0 = 0,

since j is null in uT and uT
−i.

(c) Finally, if i, j /∈ T then

Λp
i [uT ;B]− Λp

i [(uT
−j)∗;B] = 0− 0 = 0,

since i is null in both uT and (uT
−j)∗ = uT . Analogously,

Λp
j [uT ;B]− Λp

j [(uT
−i)
∗;B] = 0− 0 = 0.

(b) (Uniqueness) Since, according to Theorem 2.9, Λp satisfies the property of coalitional p–
multinomial total power property, this property can be rewritten for an arbitrary coalitional value
g as ∑

i∈N

gi[v;B] =
∑
i∈N

Λp
i [v;B],

which will be used here. Let g be a coalitional value on Gcs
N that satisfies the stated properties for

a given tendency profile p. We will show that g is uniquely determined on all [v;B] ∈ Gcs
N , so it

must coincide with Λp. Using linearity we only need to prove that g is uniquely determined on
each unanimity game uT .
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Let again T = {k ∈ M ;T ∩ Bk 6= ∅} and Tk = T ∩ Bk for each k ∈ T . By the dummy
player property, gi[uT ;B] = 0 if i /∈ T . This leaves us with the players of T . By the coalitional
p–multinomial total power property,∑

k∈T

∑
i∈Tk

gi[uT ;B] =
∑
i∈T

gi[uT ;B] =
∑
i∈T

Λp
i [uT ;B]. (4)

By the property of p–weighted payoffs for unanimity games, for all k, h ∈ T we have

pk

∑
i∈Tk

gi[uT ;B] = ph

∑
j∈Th

gj [uT ;B]. (5)

Now we assume that the induced tendency profile p is positive too. This is not a restrictive
assumption, as the final result will not depend on the induced tendency profile and, e.g., possibilities
(α), (β), (γ) and (δ) suggested after Definition 2.2 are positive if so is tendency profile p. Thus,
setting αk =

∑
i∈Tk

gi[uT ;B] for all k ∈ T and using Eqs. (4) and (5), we obtain a linear system
of t equations with t unknowns αk. The determinant of the matrix of coefficients of this system is
inductively shown to be

D = (−1)t−1
∑
k∈T

p1p2 . . .
∧
pk . . . pt 6= 0.

This implies that the system has a unique solution, i.e.,
∑

i∈Tk
gi[uT ;B] is uniquely determined

for each k ∈ T . Finally, by the property of balanced contributions within unions, if i, j ∈ Tk then

gi[uT ;B]− gi[(uT
−j)∗;B] = gj [uT ;B]− gj [(uT

−i)
∗;B].

Given that uT
−j = 0 = uT

−i, it follows that, for all i, j ∈ Tk,

gi[uT ;B] = gj [uT ;B]

and hence, for any k ∈ T and any i ∈ Tk,

gi[uT ;B] =
1
|Tk|

∑
j∈Tk

gj [uT ;B]

is uniquely determined. �

3.2 Discussion

In this section we compare the characterizations of the coalitional multinomial probabilistic value
with parallel axiomatizations of other coalitional values such as the Owen value [16], the Banzhaf–
Owen value [17] or the symmetric coalitional Banzhaf value [1].

The Owen value can be viewed as a two–step allocation rule. First, each union Bk receives
its payoff in the quotient game according to the Shapley value; then, each Bk splits this amount
among its players by applying the Shapley value to a game played in Bk as follows: the worth of
each subcoalition T of Bk is the Shapley value that T would get in a “pseudoquotient game” played
by T and the remaining unions on the assumption that Bk\T leaves the game, i.e. the quotient
game after replacing Bk with T . This is the way to bargain within the union: each subcoalition
T claims the payoff it would obtain when dealing with the other unions in absence of its partners
in Bk. The Owen value is characterized uniquely by efficiency, the null player property, symmetry
within unions, symmetry in the quotient game, and additivity.

The Owen–Banzhaf value [17] follows a similar scheme. The resulting formula parallels that of
the Owen value by replacing everywhere the Shapley value with the Banzhaf value. This value,
which is a coalitional value of the Banzhaf value β, does not satisfy efficiency, but neither symmetry
in the quotient game nor the quotient game property.
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Alonso and Fiestras [1] introduced a modification of the Owen–Banzhaf value. This coalitional
value applies the Banzhaf value in the quotient game and the Shapley value within unions. This
symmetric coalitional Banzhaf value satisfies the same properties as the Owen value, with the
sole exception of efficiency —replaced by a total power property—, as well as the quotient game
property, and it is a coalitional value of the Banzhaf value.

Notice that the coalitional multinomial probabilistic values satisfy additivity, positivity, the
dummy player property, balanced contributions within unions, symmetry within unions, and the
quotient game property. Among these values, as we have said before, we find all symmetric coali-
tional binomial semivalues and, in particular, the symmetric coalitional Banzhaf value, that also
satisfy symmetry in the quotient game. Instead, the Banzhaf–Owen value [17] and its counterpart
[3] fall out of this class. Λp is a coalitional λp–value for any tendency profile p.

Moreover, the only distinction between the Owen value [16] and any coalitional p–multinomial
probabilistic value is that the former satisfies efficiency and symmetry in the quotient game, whereas
the latter satisfies local efficiency (i.e., within unions) and the coalitional p–multinomial total power
property, in a way that parallels the distinction between the Shapley value and any p–multinomial
probabilistic value. Symmetry in the quotient game cannot be satisfied in general by the coalitional
multinomial probabilistic values because the tendency profile usually breaks symmetry in the mere
game. All these features may provide criteria to decide what coalitional multinomial probabilistic
value to use.

Remark 3.3 The only difference between Theorem 2.9 and Theorem 3.2 is the substitution of
symmetry within unions (SU, for short) by balanced contributions within unions (BCU). In general,
these two properties are not related. However, in presence of the dummy player property and
linearity, it is not difficult to see that BCU is stronger than SU, in the sense that BCU implies SU
but the converse is not true.

3.3 Simple games

Finally, let us consider simple games, which form an especially interesting class of cooperative
games, denoted by SN for each player set N . A cooperative game v in N is a simple game iff it
is monotonic, v(S) ∈ {0, 1} for every S ⊆ N , and v(N) = 1. A coalition S ⊆ N is winning in
v if v(S) = 1 (otherwise it is called losing), and W (v) denotes the set of winning coalitions in v.
Due to monotonicity, the subset Wm(v) of all minimal winning coalitions determines W (v) and
hence the game. A simple game v is a weighted majority game iff there are nonnegative weights
w1, w2, . . . , wn allocated to the players and a positive quota q ≤

∑n
i=1 wi, such that

v(S) = 1 iff
∑
i∈S

wi ≥ q.

We then write v ≡ [q;w1, w2, . . . , wn], although this representation is never unique. SN (and even
GN ) becomes a lattice under the standard composition laws defined by (v∨v′)(S) = max{v(S), v′(S)}
and (v∧v′)(S) = min{v(S), v′(S)}. In particular, uR∧uT = uR∪T . We denote as Scs

N = SN×B(N)
the class of simple games with a coalition structure in N . When restricting a value (coalitional or
not) to SN or Scs

N it is customary to speak of a “power index”.
In the case of Theorem 3.2 we reach a “parallel” axiomatization on the class of simple games

by just replacing additivity with the
• transfer property : g[v ∨ v′;B] = g[v;B] + g[v′;B]− g[v ∧ v′;B] for all v, v′ and B.

The analogue of Theorem 3.2 for simple games is given below without proof (it is very similar to
that of Theorem 3.2).

Theorem 3.4 (Axiomatic characterization of each coalitional multinomial probabilistic power in-
dex with positive tendency profile) Let p be a positive tendency profile in a given player set N .
Then there is a unique coalitional power index on SGcs

N that satisfies the transfer property, the
dummy player property, balanced contributions within unions, the coalitional p–multinomial total
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power property, and the property of p–weighted payoffs for quotients of unanimity games. It is (the
restriction of) the coalitional p–multinomial probabilistic value. �

Remark 3.5 The logical independence of the axiomatic systems used in Theorems 3.2 and 3.4 is
shown in the Appendix.

4 Two applications to the political analysis

Example 4.1 We consider here the Madrid Assembly in Legislature 2015–2019. Four parties
elected members to this regional parliamentary body (129 seats) in the elections held on 24 May
2015. The seat distribution among the parties was as follows.

1: PP (Partido Popular), conservative party: 48 seats.

2: PSOE (Partido Socialista Obrero Español), moderate left–wing party: 37 seats.

3: Podemos, radical left–wing party: 27 seats.

4: C’s (Ciudadanos), liberal party: 17 seats.

Under the standard absolute majority rule, and assuming voting discipline within parties, the
structure of this parliamentary body can be represented by the weighted majority game

v ≡ [65; 48, 37, 27, 17].

Therefore, the situation is described by the family of minimal winning coalitions

Wm(v) = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}},

so players 2, 3 and 4 are symmetric in v, and the expression of v in terms of unanimity games is

v = u{1,2} + u{1,3} + u{1,4} + u{2,3,4} − u{1,2,3} − u{1,2,4} − u{1,3,4}.

A main feature of the Madrid Assembly issued from the elections was the absence of a party
enjoying absolute majority, so a coalition government was expected to form. We will not try to
give here a full description of the political complexity in Madrid at regional level. We wish only to
state that the politically most likely coalitions to form, and the corresponding coalition structures
to which we are going to restrict our analysis, are clearly the following:

• PP + C’s, the right–wing majority alliance: BR = {{1, 4}, {2}, {3}}.

• PSOE + Podemos + C’s, the left–wing majority alliance: BL = {{1}, {2, 3, 4}}.

We would like to analyze this situation. Of course, our main interest will center on the strategic
possibilities of party 4 (C’s), whose position is crucial in the two–alternative scenario we are
considering.

1. Classic, non-parametric coalitional values.

A classic approach to study the problem would consist in using either (a) the Shapley value and
the Owen value, (b) the Banzhaf value [15, 4] and the Banzhaf–Owen value, or (c) the Banzhaf
value and the symmetric coalitional Banzhaf value [1], in order to evaluate the strategic possibilities
of each party under both hypotheses. The results are given in Table 1, where (–) means no coalition
formation, (R) means that PP + C’s forms, and (L) means that PSOE + Podemos + C’s forms.

According to (a), the a priori power of C’s duplicates in both alliances. Instead, according to
(b), C’s is indifferent among the three options. Finally, according to (c), C’s would strictly prefer
joining PSOE and Podemos instead of PP.

2. Binomial semivalues and symmetric coalitional binomial semivalues.
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(a) (b) (c)

(–) (R) (L) (–) (R) (L) (–) (R) (L)

PP 0.5000 0.6667 0.0000 0.7500 0.7500 0.0000 0.7500 0.7500 0.0000

PSOE 0.1667 0.0000 0.3333 0.2500 0.0000 0.2500 0.2500 0.0000 0.3333

Podemos 0.1667 0.0000 0.3333 0.2500 0.0000 02500 0.2500 0.0000 0.3333

C’s 0.1667 0.3333 03333 0.2500 0.2500 0.2500 0.2500 0.2500 0.3333

Table 1: classic measures of power in the Madrid Assembly 2015–2019

Now we will use binomial semivalues [18] (a generalization of the Banzhaf value and a particular
case of the multinomial probabilistic values when pi = p for all i ∈ N), and symmetric coalitional
binomial semivalues [6] (a generalization of the symmetric coalitional Banzhaf value and a partic-
ular case of the coalitional multinomial probabilistic values when pi = p for all i ∈ N) whenever a
coalition structure exists.

The conclusion derived from the results of the theoretical analysis, given in Table 2, is as
follows. Both alliances increase the a priori power of C’s for all values of p ∈ [0, 1]. However, C’s
would strictly prefer the left–wing alliance if p belongs to the interval ( 3−

√
3

6 , 3+
√

3
6 ) (i.e., in 57.7%

of cases) and the right–wing alliance otherwise.

(–) (R) (L)

PP 3p(1− p) 1+2p
2 − p2 0.0000

PSOE p(1− p) 0.0000 0.3333

Podemos p(1− p) 0.0000 0.3333

C’s p(1− p) 1−2p
2 + p2 03333

Table 2: Binomial semivalues and symmetric coalitional binomial semivalues in the Madrid As-
sembly 2015–2019

3. Multinomial probabilistic values and coalitional multinomial probabilistic values.

We first apply a multinomial probabilistic value λp[v] for a tendency profile p using Eq. (1):

λp
1 [v] = p2 + p3 + p4 − p2p3 − p2p4 − p3p4,

λp
2 [v] = p1 + p3p4 − p1p3 − p1p4 = p1(1− p3 − p4) + p3p4,

λp
3 [v] = p1 + p2p4 − p1p2 − p1p4 = p1(1− p2 − p4) + p2p4,

λp
4 [v] = p1 + p2p3 − p1p2 − p1p3 = p1(1− p2 − p3) + p2p3.

These allocations reflect the a priori power distribution. (a) The payoff to each party depends
on the tendencies of the remaining parties as to coalition formation, and not on its own tendency.
(b) The payoff to party 1 increases if p2 increases, provided that p3+p4 ≤ 1; otherwise, it decreases.
(c) The payoff to party 2 is improved by either the interest of party 1 combined with the apathy
of parties 3 and 4 or, alternatively, by the interest of these parties combined with the unconcern
of party 1. (d) The same is true, mutatis mutandis, for parties 3 and 4.

Now, we use the coalitional multinomial probabilistic value Λp. The calculation of Λp[v;B]
follows from Eq. (2). The analysis is divided into two stages.

First stage. We apply Λp in cases B = BR and B = BL. Then,
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• For the right–wing majority alliance PP + C’s:

Λp
1 [v;BR] =

1
2

(1 + p2 + p3)− p2p3 and Λp
4 [v;BR] =

1
2

(1− p2 − p3) + p2p3.

Notice that the maximum of Λp
4 [v;BR] is 1

2 for p2 = 1 = p3.

• For the left–wing majority alliance PSOE + Podemos + C’s:

Λp
2 [v;BL] = Λp

3 [v;BL] = Λp
4 [v;BL] =

1
3
.

It is not true that all players get profit, with respect to the a priori power distribution, from
entering a coalition. There always exist suitable values of the pi’s that produce a damage to a
given player when joining.

Incidentally, let us notice that tendency profile p does not appear in these expressions for several
reasons: (a) the payoffs to the members of a union depend only on the tendencies of the remaining
unions and not on the individual tendencies of its members because the multinomial value λp is
applied in the quotient game played by the unions; (b) if a union Br reduces to a singleton {j}
then pr = pj ; (c) in both BR and BL, only one coalition with more than one member forms, so the
payoffs to its players can be expressed, according to (b), only in terms of tendency profile p for
any induced tendency profile p; (d) since the coalition that forms is winning, the quotient game is
a dictatorship, and hence the outside players become null and get 0. In both scenarios, the payoffs
sum up to 1 by local efficiency.

Of course, the property of balanced contributions within unions is well illustrated in this ex-
ample. (a) For parties 1 and 4, which form B1 in the coalition structure BR, we have

Λp
1 [v;BR]− Λp

1 [(v−4)∗;BR] =
[1
2

(p1 + p2 + p3)− p2p3

]
−
[
p2 + p3 − p2p3

]
=

1
2

(1− p2 − p3),

Λp
4 [v;BR]− Λp

4 [(v−1)∗;BR] =
[1
2

(p1 − p2 − p3) + p2p3

]
−
[
p2p3

]
=

1
2

(1− p2 − p3

)
.

(b) For e.g. parties 2 and 4, which belong to B2 in the coalition structure BL, we find

Λp
2 [v;BL]− Λp

2 [(v−4)∗;BL] =
1
3
− 1

2
p1 = Λp

4 [v;BL]− Λp
4 [(v−2)∗;BL]

Second stage. Finally, we discuss the strategic possibilities of party 4 (C’s). The power of
party 4 in BR and BL is, respectively,

1
2

(1− p2 − p3) + p2p3 and
1
3
.

The coincidence arises when
3p2 + 3p3 − 6p2p3 − 1 = 0.

If p2 6= 1
2 , it follows that

p3 =
1
2

(
1− 1

3
1

1− 2p2

)
.

Consider p3 as a function of p2 ∈ [0, 1] \ { 1
2}. This function is decreasing and concave if p2 <

1
2

and decreasing and convex if p2 >
1
2 , tends to +∞ when p2 tends to 1

2

+, and tends to −∞ when
p2 tends to 1

2

− (see Fig. 1).

• For p2 < 1
2 , the open region S1, limited by lines p2 = 1

2 , p2 = 0, p3 = 0 and the curve,
represents the cases where party 4 strictly prefers BR. Its area is

A(S1) =
∫ 1

3

0

1
2

(
1− 1

3
1

1− 2x

)
dx =

1
6
− 1

12
log 3 = 0.0751
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Figure 1: p3 as a function of p2

• For p2 > 1
2 the open region S2, limited by lines p2 = 1

2 , p2 = 1, p3 = 1 and the curve,
represents the cases where party 4 strictly prefers BR. Its area is

A(S2) =
1
3
−
∫ 1

2
3

1
2

(
1− 1

3
1

1− 2x

)
dx =

1
6
− 1

12
log 3 = 0.0751

The sum of these areas, that is, 0.1502, can be taken as a measure of the probability that
C’s finally decides joining PP instead of PSOE and Podemos. If p2 and p3 are small enough (say,
roughly speaking, near to 0) or, instead, if they are great enough (say, near to 1), then party 4 would
prefer the right-wing coalition, where it would obtain a power between 1

3 and 1
2 (maximum power

for this party). Hence there are “many” cases (15%) where party 4 should prefer party 1 instead of
parties 2 and 3. The increase of strategic options for C’s, cannot be discovered by merely using the
traditional coalitional values: it follows only from the possibility to let n parameters vary, which
is just one of the main features of the coalitional multinomial probabilistic values. The conclusion
is that it is not unreasonable that C’s decided to join PP and VOX, as it actually happened.

Example 4.2 We consider here the Andalusian Parliament in Legislature 2018–2022. In this
case, five parties elected members for 109 seats in the elections held on 2 December 2018. The seat
distribution among the parties is as follows.

1: PSOE (Partido Socialista Obrero Español), moderate left–wing party: 33 seats.

2: PP (Partido Popular), conservative party: 26 seats.

3: C’s (Ciudadanos), liberal party: 21 seats.

4: AA (Adelante Andalućıa), radical left–wing party: 17 seats.

5: VOX, far–right party: 12 seats.

Under the standard absolute majority rule, and assuming voting discipline within parties, the
structure of this parliamentary body can be represented by the weighted majority game

v ≡ [55; 33, 26, 21, 17, 12].

Therefore, the situation is described by the family of minimal winning coalitions

Wm(v) = {{1, 2}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}},
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so, on one hand, players 1 and 2 are symmetric in v and, on the other hand, players 3, 4 and 5 are
also symmetric in v. The expression of v in terms of unanimity games is

v = u{1,2} + u{1,3,4} + u{1,3,5} + u{1,4,5} + u{2,3,4} + u{2,3,5} + u{2,4,5}

− 2u{1,2,3,4} − 2u{1,2,3,5} − 2u{1,2,4,5} − 2u{1,3,4,5} − 2u{2,3,4,5} + 4u{1,2,3,4,5}.

As in the case of the Madrid Assembly, there is not a party enjoying absolute majority, so a
coalition government was expected to form. The corresponding coalition structures to the analysis
of which we will limit ourselves, are the following:

• PP + C’s + VOX, the right–wing majority alliance: BR = {{1}, {2, 3, 5}, {4}}.

• PSOE + C’s + AA, the left–wing majority alliance: BL = {{1, 3, 4}, {2}, {5}}.
Our main interest will center on the strategic possibilities of party 3 (C’s), whose position is again
crucial in the two–alternative scenario we are considering.

Now, we use the coalitional multinomial probabilistic value Λp. Again, the calculation of
Λp[v;B] follows from Eq. (2). We divide the study into two stages.

First stage. We apply Λp in cases B = BR and B = BL for any tendency profile p. Then,

• For the right–wing majority alliance PP + C’s + VOX:

Λp
2 [v;BR] =

1
3

(1 + p1 + p4 − 2p1p4),

Λp
3 [v;BR] =

1
6

(2− p1 − p4 + 2p1p4),

Λp
5 [v;BR] =

1
6

(2− p1 − p4 + 2p1p4),

Λp
1 [v;BR] = Λp

4 [v;BR] = 0.

• For the left–wing majority alliance PSOE + C’s + AA:

Λp
1 [v;BL] =

1
3

(1 + p2 + p5 − 2p2p5),

Λp
3 [v;BL] =

1
6

(2− p2 − p5 + 2p2p5),

Λp
4 [v;BL] =

1
6

(2− p2 − p5 + 2p2p5),

Λp
2 [v;BL] = Λp

5 [v;BL] = 0.

Notice that tendency profile p does not appear in these expressions for the same reasons as in the
previous example. And, again, the property of balanced contributions within unions is illustrated
by this example. (a) For parties 2 and 5, which belong to B2 in the coalition structure BR, we
have

Λp
2 [v;BR]− Λp

2 [(v−5)∗;BR] =
[1
3

(1 + p1 + p4 − 2p1p4)
]
−
[
p1 +

1
2
p4 − p1p4

]
=

1
6

(2− 4p1 − p4 + 2p1p4),

Λp
5 [v;BR]− Λp

5 [(v−2)∗;BR] =
[1
6

(2− p1 − p4 + 2p1p4)
]
−
[1
2
p1

]
=

1
6

(2− 4p1 − p4 + 2p1p4).

(b) For parties 1 and 4, which belong to B1 in the coalition structure BL, we find

Λp
1 [v;BL]− Λp

1 [(v−4)∗;BL] =
[1
3

(1 + p2 + p5 − 2p2p5)
]
−
[
p2 +

1
2
p5 − p2p5

]
=

1
6

(2− 4p2 − p5 + 2p2p5),

Λp
4 [v;BL]− Λp

4 [(v−1)∗;BL] =
[1
6

(2− p2 − p5 + 2p2p5)
]
−
[1
2
p2

]
=

1
6

(2− 4p2 − p5 + 2p2p5).
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Figure 2: The hyperbolic paraboloid p4 =
p1 + 2p2p5 − p2 − p5

2p1 − 1

A study of the payoffs obtained by the parties under the coalition structures BR or BL, in the 16
vertices of the hypercube [0, 1]4, the domain of (p1, p2, p4, p5) —the tendency of party 3 does not
matter, as it belongs to both winning coalitions—, gives only two different results for the three
members of each winning coalition: ( 2

3 ,
1
6 ,

1
6 ) or ( 1

3 ,
1
3 ,

1
3 ). Party 1 gets its maximum payoff in 8

vertices: those where only party 2 is fully cooperative (p2 = 1) and only party 5 is not at all
cooperative (p5 = 0), or conversely. Analogously, party 2 gets its maximum payoff in 8 vertices:
those where only party 1 is fully cooperative (p1 = 1) and only party 4 is not at all cooperative
(p4 = 0), or conversely. The maximum payoff for parties 3, 4 and 5 appears in 8 of the 16 vertices.
The inner point p1 = p2 = p4 = p5 = 1

2 is only a saddle point and gives 1
3 to all parties that form

one of the winning coalitions.

Second stage. Finally, we will discuss the strategic possibilities of party 3 (C’s). The power
of party 3 in BR and BL is, respectively,

1
6

(2− p1 − p4 + 2p1p4) and
1
6

(2− p2 − p5 + 2p2p5).

The coincidence arises when

p1 + p4 − p2 − p5 − 2p1p4 + 2p2p5 = 0, (6)

and we distinguish two cases.

(a) If p1 = 1
2 then p2 = 1

2 or p5 = 1
2 for any value of p4. In this case, the sharing in BR gives 1

2
to party 2 and 1

4 each to parties 3 and 5; and the sharing in BL gives 1
2 to party 1 and 1

4 each to
parties 3 and 4.

(b) If p1 6= 1
2 , from Eq.(6) it follows that

(2p1 − 1)p4 = p1 + 2p2p5 − p2 − p5 and hence p4 =
p1 + 2p2p5 − p2 − p5

2p1 − 1
,

so party 3 strictly prefers BL if

(2p1 − 1)p4 < p1 + 2p2p5 − p2 − p5.

Let us take p1 ∈ [0, 1] \ { 1
2} as a parameter and consider p4 as a function of (p2, p5) ∈ [0, 1]2.
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Figure 3: Projection of D1 in the plane p2p5 if 0 ≤ p1 < 1/2

• For 0 ≤ p1 <
1
2 , party 3 strictly prefers BL if

p4 >
p1 + 2p2p5 − p2 − p5

2p1 − 1
,

and hence the points of the solid D1 limited by the plane p4 = 1 and the surface

p4 =
p1 + 2p2p5 − p2 − p5

2p1 − 1
for (p2, p5) ∈ [0, 1]2

(the hyperbolic paraboloid described in Fig. 2) represent the cases where party 3 strictly prefers
BL for a given p1. Its volume can be taken as a measure of the probability that C’s finally decides
to join PSOE and Podemos instead of PP and VOX.

Notice that the intersection between the surface

p4 =
p1 + 2p2p5 − p2 − p5

2p1 − 1

and the plane p4 = 0 is the curve p2+p5−2p2p5 = p1 in this plane (recall that p1 is a parameter), and
the intersection between the same surface and the plane p4 = 1 is the curve p2 +p5−2p2p5 = 1−p1

in this second plane. Then, the projection R of solid D1 in the plane p2p5 is given in Fig. 3, and
the volume of D1 is

V = V (D1) =
∫ p1

0

∫ 1−p1−x
1−2x

p1−x
1−2x

[
1− p1 + 2xy − x− y

(2p1 − 1)

]
dy dx+∫ 1−p1

p1

∫ 1

0

[
1− p1 + 2xy − x− y

(2p1 − 1)

]
dy dx+

∫ 1

1−p1

∫ p1−x
1−2x

1−p1−x
1−2x

[
1− p1 + 2xy − x− y

(2p1 − 1)

]
dy dx =

1− 2p1

2
[1− log(1− 2p1)].

Notice that, for p1 = 0, the projection of the solid D1 is the square [0, 1]× [0, 1], and V = 1
2 is

the maximum of V because

dV

dp1
= log(1− 2p1) ≤ 0 for all p1 ∈ [0, 1/2).
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Figure 4: Projection of D2 in the plane p2p5 if 1/2 < p1 ≤ 1

• For 1
2 < p1 ≤ 1, party 3 strictly prefers BL if

p4 <
p1 + 2p2p5 − p2 − p5

2p1 − 1
,

and hence the points of the solid D2 limited by the plane p4 = 1 and the same surface as in the
previous case represent the cases where party 3 strictly prefers BL for a given p1. Its volume can be
taken as a measure of the probability that C’s finally decides joining PSOE and Podemos instead
of PP and VOX.

In this case, the projection R of the solid D2 is given in Fig. 4 and, by symmetry, its volume,
that is, the probability that C’s finally decides joining PSOE and Podemos instead of PP and
VOX, is

V = V (D2) =
∫ 1−p1

0

∫ p1−x
1−2x

1−p1−x
1−2x

[
p1 + 2xy − x− y

(2p1 − 1)

]
dy dx+∫ p1

1−p1

∫ 1

0

[
p1 + 2xy − x− y

(2p1 − 1)

]
dy dx+

∫ 1

p1

∫ 1−p1−x
1−2x

p1−x
1−2x

[
p1 + 2xy − x− y

(2p1 − 1)

]
dy dx =

2p1 − 1
2

[1− log(2p1 − 1)].

Notice that, for p1 = 1, the projection of the solid D2 is the square [0, 1]× [0, 1], and V = 1
2 is

the maximum of V because

dV

dp1
= − log(2p1 − 1) ≥ 0 for all p1 ∈ (1/2, 1].

Then, summing up, for p1 6= 1
2 the probability that C’s finally decides joining PSOE and

Podemos instead of PP and VOX, is

P = P (party 3 chooses BL) =
|2p1 − 1|

2
(1− log |2p1 − 1|).

Table 3 displays P for different values of p1 (for p1 = 0.5 the value of P is the limit when p1 tends
to 0.5 from either the left and the right). The conclusion is that C’s would be more inclined to join
PP and VOX, as it actually happened.
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p1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P 0.50 0.49 0.45 0.38 0.26 0 0.26 0.38 0.45 0.49 0.50

Table 3: P for different values of p1

If we had taken in (6) p2 ∈ [0, 1]\{ 1
2} as a parameter and consider p5 as a function of (p1, p4) ∈ [0, 1]2

then,

p5 =
p2 + 2p1p4 − p1 − p4

2p2 − 1
for (p1, p4) ∈ [0, 1]2

and the results obtained for P = P (party 3 chooses BL) would be the same as the previous case,
by just replacing p1 with p2 in P . The discussion for p2 = 1/2 is analogous to that for p1 = 1/2.

Following a suggestion of a referee, we include here a study of the effects of a third coalition
structure:

BC = {{1, 4}, {2, 5}, {3}}.

In this case no winning coalition is formed. However, the interest of this coalition structure lies
in the fact that it highlights the strategic position of C’s, a partner desired by the two coalitions
already formed: PSOE + AA on one hand and PP + VOX on the other.

We first recall in Table 4 the power distributions under BL and BR for subsequent comparisons.

coalition structure BL = {{1, 3, 4}, {2}, {5}} BR = {{1}, {2, 3, 5}, {4}}

1
1 + p2 + p5 − 2p2p5

3
0

2 0
1 + p1 + p4 − 2p1p4

3

3
2− p2 − p5 + 2p2p5

6
2− p1 − p4 + 2p1p4

6

4
2− p2 − p5 + 2p2p5

6
0

5 0
2− p1 − p4 + 2p1p4

6

Table 4: Power distribution in [v;BL] and [v;BR]

First stage. We apply Λp for player 3 in case B = BC for any tendency profile p and obtain

Λp
3 [v;BC ] = p1 + p2 − 2p1p2.

Now, Λ3[v;BC ] depends on p1 and p2 and ranges from 0 when (p1, p2) = (0, 0) or (1, 1), to 1, when
(p1, p2) = (1, 0) or (0, 1). Nevertheless, this structure of non–winning protocoalitions (following
Owen’s nomenclature) represents only an intermediate step addressed to form a winning coalition
in a subsequent bargaining.
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Second stage. In order to form a winning coalition, the three main coalition structures of
second order that can arise from BC are

B′L = {{{1, 4}, 3}, . . . }, B′R = {{{2, 5}, 3}, . . . }, B′M = {{{1, 4}, {2, 5}, 3}},

described, in an informal but appealing way, as

B′L : (1 + 4) + 3, . . . ; B′R : (2 + 5) + 3, . . . ; and B′M : (1 + 4) + (2 + 5) + 3.

In the two first cases, the dots . . . mean that the players not mentioned may remain together or
alone since this does not have influence on the power distribution among the players that form the
winning coalition in each case.

The power distribution under the second order coalition structures can be determined taking 14
and 25 as players in the quotient set M = {14, 25, 3}, the quotient game vM defined by vM (S) = 0
if |S| ≤ 1 and vM (S) = 1 if |S| ≤ 2, and the coalition structures B′L, B′R, and B′M defined above.
The payoffs obtained by the players when the coalitional multinomial value Λp is applied to these
coalition structures are given in Table 5.

coalition structure B′L = {143, 25} B′R = {14, 253} B′M = {14, 25, 3}

14 1/2 0 1/3

25 0 1/2 1/3

3 1/2 1/2 1/3

Table 5: Power distributions in M

Now all is ready to summarize and discuss this additional analysis of the Andalusian Parliament.

We first adopt the viewpoint of player 3 and recall the result of comparing the coalition struc-
tures BL = {{1, 3, 4}, 2, 5} and BR = {1, {2, 3, 5}, 4}. We found that, on one hand,

Λ3[v;BL] =
2− p2 − p5 + 2p2p5

6
,

which depends on p2 and p5 and ranges from 1/6 = 0.1667, when (p2, p5) = (1, 0) or (0, 1), to 1/3
= 0.3333, when (p2, p5) = (0, 0) or (1, 1).

On the other hand,

Λ3[v;BR] =
2− p1 − p4 + 2p1p4

6
,

which depends on p1 and p4 and also ranges from 1/6 = 0.1667, when (p1, p4) = (1, 0) or (0, 1), to
1/3 = 0.3333, when (p1, p4) = (0, 0) or (1, 1).

In spite of the apparent structural symmetry between BL and BR, from Table 3 it follows that
player 3 prefers in general BR whatever is the value of parameter p1 because Λ3[v;BR] ≥ Λ3[v;BL].
This player is indifferent in the extreme cases p1 = 0 and p1 = 1; otherwise, the probability that
this player chooses BR is at least 0.55 and tends to 1 when p1 tends to 1/2.

When considering the coalition structure BC = {{1, 4}, {2, 5}, 3}, at first glance player 3 might
think that, once the protocoalitions {1, 4} and {2, 5} are formed, each one of them would be very
interested in opening a further negotiation with this player to form a winning coalition (of second
order): either {{1, 4}, 3} or {{2, 5}, 3}. Player 3 might think that entering one of these coalitions
would imply getting a payoff greater than in {1, 3, 4} or {2, 3, 5}, respectively. As it is shown in
Table 5, the payoff obtained by player 3 in both cases would be 1/2.

Following Table 5 and comparing the payoff to player 3 under each coalition structure, it is
easy to find that this player is indifferent between B′L and B′R. Moreover, it strictly prefers B′L to
BL and B′R to BR for any values of the involved parameters p2 and p5 or p1 and p4, respectively.
From Table 5 again, this player also prefers B′L and B′R to B′M , which in turn is preferred to BL
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and BR with the sole exception of a few cases where indifference occurs. With a symbolic notation,
the preferences of player 3 can be described by

B′L ≡ B′R > B′M ≥ BL ≡ BR.

However, we should take into account the viewpoint of the other players, especially the main ones.
We can see that players 1 and 4 prefer, as a single player, BL instead of B′L, and players 2 and 5
prefer BR instead of B′R.

Table 6 and Table 7 display the payoffs obtained by the players for different values of p and
different coalition structures.

BL B′L

(p1, p2, p3, p4, p5) 1 2 3 4 5 1 2 3 4 5

(0.6, 0.6, 0.2, 0, 0) 0.533 0 0.233 0.233 0 0.250 0 0.500 0.250 0

(0.2, 0.2, 0.4, 0.2, 0.2) 0.440 0 0.280 0.280 0 0.250 0 0.500 0.250 0

(0.1, 0.3, 0.5, 0.4, 0.1) 0.447 0 0.277 0.277 0 0.250 0 0.500 0.250 0

(0.1, 0.5, 0.5, 0.4, 0.2) 0.500 0 0.250 0.250 0 0.250 0 0.500 0.250 0

(1, 1, 1, 1, 1) 0.333 0 0.333 0.333 0 0.250 0 0.500 0.250 0

(0, 1, 0.5, 1, 0) 0.667 0 0.167 0.167 0 0.250 0 0.500 0.250 0

Table 6: Power distribution in [v;BL] and [v;B′L] for different values of p

BR B′R

(p1, p2, p3, p4, p5) 1 2 3 4 5 1 2 3 4 5

(0.6, 0.6, 0.2, 0, 0) 0 0.533 0.233 0 0.233 0 0.250 0.500 0 0.250

(0.2, 0.2, 0.4, 0.2, 0.2) 0 0.440 0.280 0 0.280 0 0.250 0.500 0 0.250

(0.1, 0.3, 0.5, 0.4, 0.1) 0 0.473 0.263 0 0.263 0 0.250 0.500 0 0.250

(0.1, 0.5, 0.5, 0.2, 0.2) 0 0.500 0.250 0 0.250 0 0.250 0.500 0 0.250

(1, 1, 1, 1, 1) 0 0.333 0.333 0 0.333 0 0.250 0.500 0 0.250

(0, 1, 0.5, 1, 0) 0 0.677 0.167 0 0.167 0 0.250 0.500 0 0.250

Table 7: Power distribution in [v;BR] and [v;B′R] for different values of p

Summing up, the assumption that player 3 would prefer that, first, the protocoalitions form
and then this party chooses joining one of them is rather illusory. The main parties 1 and 2, with
their respective minor partners 4 and 5, absolutely and strictly prefer BL and BR, respectively.
Therefore player 3 prefers BR according to Table 3. This means that our initial conclusion is the
most plausible and, incidentally, it fits well the actual behavior of the parties.

5 Conclusions

The paper is essentially self–contained, and provides in Section 3 a new axiomatic characterization
of the coalitional multinomial probabilistic values for games with a coalition structure on the full
domain of all cooperative games. It is the second axiomatization of these values obtained from [8]
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by just replacing the property of symmetry within unions with the balanced contributions property,
a property of different nature very appreciated in cooperative game theory. The elaboration on the
balanced contributions property, which follows from Lemma 3.1, leads to an equivalent statement
of this property exclusively referred to games in the player set and not to any subgame.

In Section 3.2 we have compared our axiomatic characterization with parallel characterizations
of the classic, non-parametric coalitional values, as well as the symmetric coalitional binomial
semivalues. A replication of the axiomatic characterization for coalitional power indices on simple
games can be achieved by just replacing linearity with the classic transfer property. Moreover, the
logical independence of the two corresponding sets of axioms has been checked in the Appendix.

The intensive use of unanimity games in the theoretical part gives rise to easier proofs. They
are also used for the computation of values in practice (numerical examples), thus avoiding the
recourse to the more cumbersome multilineal extension procedure.

Finally, in Section 4 the application to two actual examples of different difficulty degree illus-
trates the analysis of a game in terms of coalitional multinomial probabilistic values, showing that
this greatly enlarge the set of strategic options of the players with respect to classic values.
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Appendix: logical independence

Proposition A.1 The axiomatic system used in Theorem 3.2 is logically independent.

Proof : We will assume that a player set N (with n = |N | ≥ 2) and a positive tendency profile p
in N are given. We will abbreviate the properties as follows: LI = linearity, DP = dummy player
property, BC = balanced contributions within unions, TP = coalitional p–multinomial total power
property, and WU = property of p–weighted payoffs for quotients of unanimity games.

1. LI is logically independent of DP, BC, TP and WU.

We define a coalitional value g for all [v;B] ∈ Gcs
N as follows.

(a) Unanimity games. If v = uT with ∅ 6= T ⊆ N then

gi[v;B] = Λp
i [v;B] for each i ∈ N.

(b) Otherwise, that is, if v is not a unanimity game,

gi[v;B] =


Λp

i [v;B] = v({i}) if i is a dummy in v,
1
b′k

∑
j∈B′k

Λp
j [v;B] if i ∈ Bk ∈ B is not a dummy in v,

where B′k denotes the set of players of Bk that are not dummies in v, and b′k = |B′k|.

DP, BC, TP and WU are clearly satisfied by g. However, this value fails to satisfy LI for e.g. game
v = u{1} + 2u{1,2} and the trivial coalition structure B = BN .

2. DP is logically independent of LI, BC, TP and WU.

We define a coalitional value g for all [v;B] ∈ Gcs
N as follows. For each i ∈ N ,

gi[v;B] =
v(N)
n

if B = BN ,
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and otherwise
gi[v;B] = Λp

i [v;B].

LI, BC, TP and WU are clearly satisfied by g. However, this value fails to satisfy DP for the
unanimity game v = u{1} and the trivial coalition structure B = BN .

3. BC is logically independent of LI, DP, TP and WU.

We define a coalitional value g for all [v;B] ∈ Gcs
N as follows.

(a) If n = 2 and B = BN , then {
g1[v;B] = v({1}),
g2[v;B] = v(N)− v({1}).

(b) Otherwise, that is, if some of the above conditions does not hold,

gi[v;B] = Λp
i [v;B] for each i ∈ N.

LI, DP, TP and WU are clearly satisfied by g. However, this value fails to satisfy BC for the
unanimity game v = u{1,2} and the trivial coalition structure B = BN .

4. TP is logically independent of LI, DP, BC and WU.

We define a coalitional value g for all [v;B] ∈ Gcs
N as follows.

(a) If n = 2 and B = Bn, then {
g1[v;B] = v({1}),
g2[v;B] = v({2}).

(b) Otherwise, that is, if some of the above conditions does not hold,

gi[v;B] = Λp
i [v;B] for each i ∈ N.

LI, DP, BC and WU are clearly satisfied by g. However, this value fails to satisfy TP for the
unanimity game v = u{1,2} and the trivial coalition structure B = Bn.

5. WU is logically independent of LI, DP, BC and TP.

Let α, β be real numbers such that α+ β = p1 + p2 and αp1 6= βp2. We define a coalitional value
g for all [v;B] ∈ Gcs

N as follows.
(a) If n = 2 and B = Bn, then{

g1[v;B] = v({1}) + α[v(N)− v({1})− v({2})],
g2[v;B] = v({2}) + β[v(N)− v({1})− v({2})].

(b) Otherwise, that is, if some of the above conditions does not hold,

gi[v;B] = Λp
i [v;B] for each i ∈ N.

LI, DP, BC and TP are clearly satisfied by g. However, this value fails to satisfy WU for the
unanimity game v = u{1,2} and the trivial coalition structure B = Bn. �

Proposition A.2 The axiomatic system used in Theorem 3.4 is logically independent.

Proof : We continue to assume that a player set N (with n = |N | ≥ 2) and a positive tendency
profile p in N are given. We will continue to abbreviate the properties as follows: LI = linearity,
DP = dummy player property, BC = balanced contributions within unions, TP = coalitional
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p–multinomial total power property, and WU = property of p–weighted payoffs for quotients of
unanimity games. We will also abbreviate TR = transfer property.

Let us consider now the restriction to simple games of each coalitional value g defined for Propo-
sition A.1 in parts 2, 3, 4 and 5. In each case, this restriction is a coalitional power index that
satisfies the desired properties with the sole exception of linearity, which does not make sense
for simple games. But the transfer property is also satisfied by all these coalitional values. The
argument is as follows.

The composition laws ∨ and ∧ make sense and satisfy

u ∨ v + u ∧ v = u+ v,

for all cooperative games. If u and v are simple games and, for a while, we think of them as
cooperative games then, using linearity, we obtain for each g used in Proposition A.1

g[u ∨ v;B] + g[u ∧ v;B] = g[u;B] + g[v;B] for all B,

which is precisely TR.

Moreover, all counterexamples provided in cases 2, 3, 4 and 5 for Proposition A.1 are simple games,
so they can be used also for this Proposition A.2. Thus, it only remains to check the following.

1bis. TR is logically independent of DP, BC, TP and WU.

We define a coalitional power index g for all [v;B] ∈ SGcs
N as follows.

(a) If n = 2, v = u{1} ∨ u{2} and B = Bn, then{
g1[v;B] = 2,
g2[v;B] = −p1 − p2.

(b) Otherwise
gi[v;B] = Λp

i [v;B] for each i ∈ N.

DP, BC, TP and WU are clearly satisfied by g. However, this power index fails to satisfy TR for
game v = u{1} ∨ u{2} and the trivial coalition structure B = Bn. �
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