

BACHELOR DEGREE THESIS

TITLE: Development of an SDN control plane for Time-Sensitive
Networking (TSN) endpoints

DEGREE: Double Bachelor Degree on Network Engineering and
Telecommunications Systems Engineering

AUTHOR: Jordi Cros Mompart

DIRECTORS: David Rincon Rivera
 Anna Agustí Torra

DATE: 21 June 2021

Títol: Desenvolupament d’un pla de control SDN per terminals de Time-
Sensitive Networking (TSN).

Autor: Jordi Cros Mompart

Director: David Rincón Rivera
 Anna Agustí Torra

Data: 21 Juny 2021

Resum

Dins el món industrial i d’automatització, com ara indústria 4.0 o busos de
comunicació de vehicles, l’extensió d’Ethernet amb capacitats relacionades
amb la sincronia i la qualitat de servei (reserves d’ample de banda o garanties
de retard) es defineix a una sèrie d’estàndards que descriuen com es podrien
unificar les comunicacions deterministes amb les best-effort dins d’una mateixa
xarxa. Aquesta extensió a l’Ethernet convencional s’anomena Time-Sensitive
Networking (TSN) i ha estat creada pel TSN task group del comitè IEEE 802.1.

Per una altra banda, la gestió del pla de control de les xarxes locals (LAN)
evoluciona cap al concepte Software Defined Networking (SDN). En aquesta
arquitectura, un controlador centralitzat s’encarrega de configurar els nodes de
xarxa per tal de satisfer els requeriments dels usuaris. Les capacitats lògiques
del controlador SDN venen a partir d’implementacions de codi obert i
propietàries, permetent una gran flexibilitat en la gestió de la xarxa.

Finalment, OPC-UA és una arquitectura que permet la interconnexió de
qualsevol tipus de dispositiu industrial o administratiu, i que obre la porta a
l’automatització i digitalització dels processos industrials. Ofereix molts graus
de llibertat, ja que tan sols defineix interfícies entre elements, la seva estructura
de dades i diferents modalitats de transmissió de dades.

L’objectiu d’aquest projecte és desenvolupar un prototip de l’arquitectura de
gestió de terminals TSN basada en SDN, tal com es defineix a l’estàndard IEEE
802.1Qcc. Aquest element, la Centralized User Configuration (CUC), es
comunicarà a través de OPC-UA amb els dispositius que vulguin enviar fluxos
TSN per proporcionar-los la configuració necessària. També es comunicarà
amb el controlador de xarxa, per tal d’establir correctament el flux TSN extrem
a extrem (des del terminal emissor fins al receptor, passant pels commutadors
TSN). Addicionalment, es dissenyaran els dispositius que consumiran el trànsit
time-sensitive, que necessiten aplicar la configuració que els arriba de manera
automatitzada.

S’ha aconseguit implementar la CUC i els terminals de l’arquitectura seguint
l’arquitectura SDN. A més, s’ha deixat preparada la interfície amb el component
que falta, la Centralized Network Configuration (CNC).

Overview

In the industrial and automation world, such as Industry 4.0 or vehicle
communication buses, an Ethernet extension that provides timing and quality
of service (bandwidth reservations or delay guarantees) has been defined in a
series of standards whose aim is to describe how deterministic, time-sensitive
and best-effort communications can use the same network. This Ethernet
extension is called Time-Sensitive Networking (TSN) and it has been defined
by the TSN Task Group of the IEEE 802.1 committee.

The field of the management of the control plane of Local Area Networks
(LANs) is evolving towards the Software Defined Networking (SDN) concept,
based on a centralized network controller. This controller configures all of the
network nodes to satisfy user requirements. The capabilities in SDN controllers
come from both open-source and proprietary implementations. Due to this, the
SDN controller is a flexible element in terms of network management.

Finally, OPC-UA is an architecture that interconnects any kind of industrial or
administrative device, with the aim to standardize and automate industrial
communications in the application layer. It achieves this goal by only defining
the interfaces between elements, its data structure and different
communication modes, which allows it to be versatile.

The goal of this thesis is to build a prototype part of the TSN endpoint
management architecture, based on SDN as defined in the IEEE 802.1Qcc
standard. This element, the Centralized User Configuration (CUC), will
establish a session using OPC-UA with the endpoints that want to take part in
a TSN flow, so that they can be properly configured, and it will also
communicate with the network controller, so that the TSN flow is established
end-to-end (from the talker endpoint to the listener endpoint, passing through
the TSN switches). Additionally, this thesis includes the design of the endpoints
that will generate and listen to the TSN flow, which will be automatically
configured.

The results of this thesis include the development of the CUC and the endpoints
following the SDN concept. In addition, the interface with the Centralized
Network Configuration is prepared for further integrations.

Title: Development of an SDN control plane for Time-Sensitive
Networking (TSN) endpoints

Author: Jordi Cros Mompart

Directors: David Rincón Rivera
 Anna Agustí Torra

Date: 06/21/2021

Acknowledgements

Gràcies als meus pares per la vida plena d’oportunitats
que m’han donat, el recolzament i la seva companyia.

Especial agraïment als meus tutors David Rincón i Anna Agustí.
A banda del seguiment, valoro molt el seu rigor en la docència.

A Gabriel, mi compañero de laboratorio, por su ayuda

e interesantísimas aportaciones a este proyecto.

Finally, my sincere love and gratitude to Julie Kim, since
nothing would be the same without her by my side.

“No one wants to learn by mistakes, but we cannot learn enough from
successes to go beyond the state of the art.” – Henry Petroski

TABLE OF CONTENTS

INTRODUCTION .. 1

CHAPTER 1. DATA LINK LAYER AND IEEE STANDARDS 5

1.1. Data Link layer ... 5
1.1.1 IEEE 802.1Q - VLAN .. 6
1.1.2 IEEE 1588/ 802.1AS – Precision Time Protocol .. 7

1.2. Time Sensitive Network standards .. 10
1.2.1 IEEE 802.Qbv – Enhancements for Scheduled Traffic .. 10
1.2.2 IEEE 802.Qav – Credit Based Shaper ... 13
1.2.3 Standards in process .. 14

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA 16

2.1 NETCONF, RESTCONF, YANG and Configuration Data Models 16
2.1.1 Information models and data models ... 16
2.1.2 YANG .. 18
2.1.3 NETCONF .. 22
2.1.4 RESTCONF .. 25

2.2 OPC-UA ... 26
2.2.1 Clients and Servers .. 29

CHAPTER 3. IEEE 802.1QCC ... 32

3.1 IEEE 802.1Qcc clause 46 – Time Sensitive Networking Configuration...................... 32
3.1.1 UNI Integration ... 33
3.1.2 Stream Transformation ... 36
3.1.3 Example workflow ... 37

CHAPTER 4. SOFTWARE AND HARDWARE FOR TSN ENDPOINTS 40

4.1 Kalycito – Linux and TSN using open62541 ... 41

4.2 Linux, kernel and Linux Network Stack .. 41
4.2.1 General system architecture ... 42
4.2.2 Linux kernel .. 43
4.2.3 Linux Network Stack ... 44

4.3 Intel i210 features related to TSN ... 45

CHAPTER 5. ARCHITECTURE DESIGN .. 46

5.1 Statement of the objectives .. 46

5.2 Centralized User Configuration.. 47
5.2.1 OPC-UA Client.. 48
5.2.2 Logic Unit Center .. 48
5.2.3 RESTCONF Client .. 57

5.3 Endpoints ... 58
5.3.1 Address Space definition .. 59
5.3.2 Interface configuration .. 62

CHAPTER 6. IMPLEMENTATION ... 63

6.1 LAN ... 63

6.2 Time synchronization between Endpoints and the TSN switch 63
6.2.1 Installation and use of linuxptp ... 64
6.2.2 Interconnection with the TSN switches .. 66

6.3 Details on OPC-UA Address Spaces ... 67

6.4 Endpoint configuration ... 68

6.5 Prototype integration and set up ... 70
6.5.1 System requirements .. 70
6.5.2 Set up of the components ... 70

CHAPTER 7. TESTS AND RESULTS ... 76

7.1 Basic scheduling test and evaluation with OPC-UA Pub/Sub implementation 76
7.1.1 Set up and configuration properties ... 76
7.1.2 Results .. 78
7.1.3 Test conclusions ... 87

7.2 Scheduling performance test with TSN traffic generated by iperf 87
7.2.1 Set up and configuration properties ... 87
7.2.2 Results .. 89
7.2.3 Test conclusions ... 94

CHAPTER 8. CONCLUSIONS AND FUTURE LINES 96

8.1 Conclusions ... 96

8.2 Future lines of development ... 97

8.3 Sustainability considerations ... 98

REFERENCES ... 99

GLOSSARY ... 105

ANNEX A. IEEE AND TSN STANDARDS ... 108

A.1 IEEE 802.1d – Spanning Tree Protocol ... 108

A.2 IEEE 802.1aq – Shortest Path Bridging and Shortest Path First 108

A.3 IEEE 802.1ab – Link Layer Discovery Protocol .. 109

A.4 IEEE 802.1Qat - Stream Reservation Protocol .. 110

A.5 IEEE 802.1Qch – Cyclic Queuing and Forwarding ... 111

A.6 IEEE 802.1Qci – Per Stream Filtering and Policing .. 112

A.7 IEEE 802.1Qbu / 802.3br – Frame Preemption .. 112

A.8 IEEE 802.1Qcr – Asynchronous Traffic Shaping .. 112

A.9 IEEE 802.1Qca – Path Control and Reservation ... 113

A.10 IEEE 802.1CB – Frame Replication and Elimination for Reliability 113

A.11 IEEE 802.1CM – Time Sensitive Networking for Fronthaul 115

A.12 IEEE 802.1AX – Link Aggregation .. 115

ANNEX B. UNI YANG MODULE ... 116

ANNEX C. PROJECT DEVELOPER’S GUIDE .. 120

C.1 Project Structure ... 120

C.2 CUC .. 121
C.2.1 OPC-UA Client.. 122
C.2.2 Logic Unit Center .. 123
C.2.3 RESTCONF Client .. 124

C.3 Endpoints .. 124
C.3.1 Talker .. 124
C.3.2 Listener ... 126

ANNEX D. ENDPOINT CONFIGURATION EXAMPLE 128

D.1 iptables .. 128

D.2 tc qdisc .. 129
D.2.1 taprio ... 129
D.2.2 etf .. 131
D.2.3 cbs .. 132

ANNEX REFERENCES ... 133

LIST OF FIGURES AND TABLES

Fig. 0.1 Fully centralized architecture applies to an SDN network

Fig. 1.1 Frame format for 802.3 - Ethernet and 802.11 – WiFi [8]

Fig. 1.2 Ethernet frame format adapted with the VLAN tag [11]

Fig. 1.3 BMCA clock distribution tree [12]. The blue lines are the logical tree that

distributes the timing

Fig. 1.4 PTP synchronization establishment [13] [14]

Fig. 1.5 gPTP port-bounded mechanism [13]

Fig. 1.6 802.1Qbv Cycle schema [15]

Fig. 1.7 802.1Qbv Cycle schema with guard band [15]

Fig. 1.8 Management of priority queues [16]

Fig. 1.9 Credit Based Shaper bandwidth limiter [17]

Fig. 2.1 Module definition in YANG language

Fig. 2.2 Header definition of the YANG module

Fig. 2.3 Core definition of the YANG module

Fig. 2.4 Configuration data definition of the YANG module

Fig. 2.5 State data definition of the YANG module

Fig. 2.6 Instance data of the YANG module

Fig. 2.7 Schema of a data model server

Fig. 2.8 OPC-UA schematic overview, from [28]

Fig. 2.9 OPC-UA over a Time Sensitive Network [29]

Fig. 2.10 Address Space Node classes [32]

Fig. 2.11 OPC-UA Pub/Sub logical overview [29]

Fig. 3.1 Fully Centralized model scheme, from [34]

Fig. 3.2 Stream Transformation in an endpoint device [34]

Fig. 4.1 Intel i210 Network Card Interface [36]

Fig. 4.2 Visual representation of a Linux system [38]

Fig. 4.3 Packet processing in a Linux system [35]

Fig. 5.1 Scenario of the project

Fig. 5.2 CUC overview

Fig. 5.3 Transmission selection choices [43]

Fig. 5.4 Stream Identification types [44]

Fig. 5.5 Sequence encoding and decoding method types [45]

Fig. 5.6 Error types on the Status group [46]

Fig. 5.7 Time aware shaper example

Fig. 5.8 Endpoint overview

Fig. 5.9 Overview of the architecture of the prototype

Fig. 6.1 LAN created for the prototype

Fig. 6.2 gPTP.cfg file

Fig. 6.3 Captures from ptp4l and phc2sys processes

Fig. 6.4 SoC-e MTSN 802.1AS synchronization tab

Fig. 6.5 Wireshark capture of gPTP protocol in interface enp2s0

Fig. 6.6 Address Space instances for Talker and Listener

Fig. 6.7 Listener’s config.json

Fig. 6.8 Talker’s config.json

Fig. 6.9 Configuration values for the Talker’s interface configuration

Fig. 6.10 Subscription triggered and received in Listener.

Fig. 6.11 config.json for the CUC

Fig. 6.12 CUC waking up process

Fig. 6.13 CUC logs regarding the instantiation of the UNI groups.

Fig. 6.14 CUC generated GCL for the Talker.

Fig. 6.15 CUC sending TSN and Subscription config

Fig. 6.16 Equipment used in the testbed. From left to right: Linux PC running the

Talker, TSN switch, Linux PC running the Listener

Fig. 7.1 First scenario, with the TSN flow

Fig. 7.2 Second scenario: similar to the first one, with an additional best-effort

traffic.

Fig. 7.3 TSN configuration is disabled for the third test case

Fig. 7.4 Wireshark capture showing TSN flow and gPTP protocol

Fig. 7.5 OPC-UA Pub/Sub traffic delay in milliseconds (Y axis), versus

Subscribe message sequence number (X axis)

Fig. 7.6 OPC-UA Pub/Sub traffic jitter in milliseconds (Y axis), versus Subscribe

message sequence number (X axis)

Fig. 7.7 Network delay for the case of 1MByte every 1s TSN traffic, in

microseconds (Y axis), versus Subscribe message sequence number (X axis)

Fig. 7.8 Network jitter for the case of 1MB every 1s TSN traffic in microseconds

(Y axis), versus Subscribe message sequence number (X axis)

Fig. 7.9 OPC-UA Pub/Sub traffic delay (after the modification) in milliseconds

(Y axis), versus Subscribe message sequence number (X axis)

Fig. 7.10 OPC-UA Pub/Sub traffic jitter (after modification) in milliseconds (Y

axis), versus Subscribe message sequence number (X axis)

Fig. 7.11 Scheduling performed with simultaneous OPC-UA Pub/Sub and best-

effort traffics

Fig. 7.12 Delay for the TSN flow (100ms interval) when there is best-effort traffic,

in milliseconds (Y axis), versus Subscribe sequence number (X axis)

Fig. 7.13 Desynchronization coming from the Node application

Fig. 7.14 Listener receiving nonscheduled traffic

Fig. 7.15 Delay for the non-TSN configuration case and 1MB every 1s, in

milliseconds (Y axis), versus Subscribe message sequence number (X axis)

Fig. 7.16 Jitter for the non-TSN configuration case and 1MB every 1s, in

milliseconds (Y axis), versus Subscribe message sequence number (X axis)

Fig. 7.17 First scenario with the iperf traffic. Basic scheduling in a large TAS cycle

Fig. 7.18 Second scenario, with the shortest time slot for a given gate state

Fig. 7.19 Third scenario, for testing the shortest scheduler cycle in the prototype

endpoints

Fig. 7.20 Basic scheduling performance with iperf traffic

Fig. 7.21 Some Ethernet frames captured with Wireshark

Fig. 7.22 Wireshark capture with a transmission time slot of 100 µs for the TSN

flow

Fig. 7.23 Incorrect plotting of the 100µs time slot scheduling

Fig. 7.24 Scheduling performed in 100µs time slots for the TSN filter

Fig. 7.25 Bandwidth obtained by the iperf flow when TSN is active.

Fig. 8.1 Global industrial network scenario

Fig. 8.2 Modification on the Talker endpoint design

Fig. A.1 LLDP payload format [5]

Fig. A.2 Stream Reservation Protocol stack

Fig. A.3 FRER sample schema [15]

Fig. C.1 Workflow of the CUC project

Fig. C.2 Set up of the node that will be Published

Fig. C.3 Binding of the Subscription method on the Listener’s Address Space

Table 5.1 Example GCL

INTRODUCTION 1

INTRODUCTION

Industrial and automation communications are facing fundamental changes in
their architecture. Current solutions are mostly based on proprietary protocols
(see Profibus [1] or CAN [2]), causing a market fragmentation. Using these
protocols, modifying the structure in order to incorporate new elements or
connections, always requires a high operational cost. Apart from that, these
solutions offer bandwidths that are orders of magnitude below from what Ethernet
is offering nowadays. Time-Sensitive Networking (TSN) is the natural solution to
this situation.

The Time-Sensitive Networking Task Group [3] of the IEEE 802.1 committee aims
to provide determinism by releasing new standards that apply to the regular
Ethernet. These standards, such as IEEE 802.1Qbv or IEEE 802.1Qav, define
how to perform traffic scheduling and shaping in order to bound latencies and
guarantee a bandwidth for a given stream. Therefore, the Quality of Service
(QoS) guarantees are satisfied. This means that by using TSN standards,
Ethernet can transport time-sensitive flows and best-effort data in the same
network. For example, highly time-sensitive industrial devices, such as sensors
or automators, could communicate between them using the same physical
Ethernet infrastructure used by office computers, facilitating the design of the
networks and reducing operational cost and initial investment.

Software Defined Networking (SDN) [4] is a modern approach to network
management which is based on the use of software-based controllers to manage
the control plane of a network. The controller is a centralized entity that configures
every device to enable a new service in the network, so that other network
elements will only need to apply the incoming configuration with no extra logic.
Currently, there are already several mature implementations of SDN controllers,
such as OpenDaylight (ODL), Operating Network Operating System (ONOS) or
Ryu. All of them, generally, provide a generic northbound interface to set service
requirements and a southbound interface to configure elements in the network;
they all give the possibility to implement extra modules in them to extend their
functionalities. Therefore, one of these modules could manage TSN devices,
giving the SDN controller the capacity to serve time-sensitive traffic to its users.

If the necessity of change towards more standardization in the industrial and
automation world is combined with the SDN network management architecture,
an SDN solution for TSN networks comes up naturally.

One of the most recent TSN standards, IEEE 802.1Qcc Fully Centralized Network
model [5], defines an SDN-inspired management place. All of the computational
logic of the control plane is performed by two centralized components: the
Centralized User Configuration (CUC) and the Centralized Network Configuration
(CNC) modules. The CUC polls traffic requirements and device specifications
from endpoints. The CNC receives all the information grouped by the CUC and
configures all the network nodes to forward the traffic in a deterministic manner.
Both centralized entities perform the functionalities expected in an SDN
controller.

2 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Some proprietary implementations of a Fully Centralized Network model exist,
such as the one from Cisco for its IE-4000 TSN switches [6], providing a private
solution including a CUC, a CNC, TSN bridges and endpoints. Nevertheless, it is
a proprietary solution, and since its architecture is closed, it cannot be integrated
to any SDN controller as an external module.

Industrial frameworks and software solutions tend to be device-specific. In order
to correct this trend and to unify industrial communication protocols, the OPC
Foundation released in 2008 the OPC Unified Architecture (OPC-UA) [7]. OPC-
UA is an application layer protocol aimed at providing a platform-independent
architecture in which any kind of device can establish a standardized
communication with another endpoint in the network, avoiding translations
between different device-specific implementations.

The goal of this thesis is to provide an innovative prototype of an open-based
software solution that integrates a CUC and the time-sensitive endpoints. Since
the implementation will be based on standards and industry trends, the prototype
designed in this project can be considered the base of a bigger design, including
a CNC and the integration to any existing SDN controller. Figure 0.1 shows the
scope of the thesis’ prototype. In addition, it shows the CNC and the CUC, the
modules that can be integrated in an SDN controller.

Fig. 0.1 Fully centralized architecture applied to an SDN network.

Additionally, the endpoints will be OPC-UA devices, meaning that configuration
process will be based on this protocol. The configuration will allow the endpoints

INTRODUCTION 3

to take part in the transmission and reception of time-sensitive flows. To the best
of our knowledge, our work is the first open-source implementation of the
standardized TSN Fully Centralized Network model. This opens the line in the
industry to further developments, as there is still a lack of products in the market
that aim to integrate a Time Sensitive Network over a Software Defined
Networking solution.

Following the objectives stated above, the thesis has been organized in several
chapters that can be further divided into three major blocks. The first block aims
to contextualize and give all the necessary details to design a proper solution,
including the following goals:

1. Chapter 1 focuses on providing the basics of networks, reviewing
concepts of the data link layer. This will be followed by a description of
the most important standards and protocols required in our design: a
time scheduler, a traffic shaper and a time synchronization mechanism
in the network.

2. Chapter 2 describes the newest paradigms regarding network
management. It introduces concepts such as YANG, NETCONF and
RESTCONF, as required by the IEEE 802.1Qcc standard. This section
also takes a deeper look into OPC-UA, presenting how the clients and
servers communicate and how the data are handled, so that CUC and
endpoints are designed appropriately.

3. Chapter 3 focuses on the IEEE 802.1Qcc standard. It also defines

important details for the implementation. It includes the definition of the
interface between the CUC and the CNC and the workflow that has to
be followed by the whole architecture to properly establish a TSN flow
in the network.

4. Chapter 4 provides details of the endpoints, because specific hardware

is required to generate or receive TSN flows. A detailed description of
the Linux system architecture is provided from a networking point of
view, to understand how endpoints need to be configured for further
automation. Finally, the TSN-capable Intel i210 network interface card
(NIC) is reviewed.

The second block focuses on the design and implementation of the prototype,
based on all the concepts described in the first block.

5. Chapter 5 starts with a more detailed description of the designed

architecture, followed by the specification of both the CUC and the
endpoints (Talker and Listener). In-depth guidelines of the interfaces
between components and logical insights are provided to refine the
design of the implementation.

6. Chapter 6 provides details of the implementation, starting from the
deployment of a common Local Area Network (LAN) and a time-
synchronized domain among all the devices that take part in it. This is

4 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

followed by the instantiation of the OPC-UA endpoints and the details
on how their time-sensitive configurations will be performed. At the end
of the chapter, a final prototype architecture is presented.

The last block consists of testing the prototype, and discussing the results and
the conclusions. Additionally, it proposes future directions that the project may
follow with the current development of new TSN standards.

7. Chapter 7 is the presentation of the testbed where the solution has

been tested. Practical results of TSN configurations are evaluated to
determine the reliability of the configuration computed by the CUC and
the configuration of the endpoints.

8. Chapter 8 describes the conclusions obtained throughout the research,
development and implementation of the project, and discusses future
directions.

The document includes some annexes with additional information. It is
recommended to read them to fully understand the software implementation of
this project, as well as broaden the context of the project. The annexes are as
follows:

1. Annex A includes a list of the standards that are related with Time
Sensitive Networking. Other standards are also mentioned because
they may interfere with some of the qualities that TSN brings. For
example, Spanning Tree Protocol may limit the number of disjoint paths
for a TSN stream. Some of the TSN standards specify protocols and
methodologies for network elements, such as Frame Replication and
Elimination for Redundancy.

2. Annex B provides a description of the UNI YANG module, the data
interface that defines the communication between the CUC and the
CNC.

3. Annex C is the project developer’s guide for the software

implementation. Based on NodeJS, CUC can be set up in any device,
while the endpoints need to have a TSN compatible interface. This
annex aims to describe the project’s structure and some of its insights
to help future developers.

4. Annex D gives a sample of an endpoint configuration, providing specific

details on how the Linux system tools are used. Its content is very
important to understand how the devices are automated from the CUC
configuration, since these tools are used in the prototype.

CHAPTER 1. DATA LINK LAYER AND IEEE STANDARDS 5

CHAPTER 1. DATA LINK LAYER AND IEEE STANDARDS

This chapter describes some technologies and implementations related to the
design and deployment of the thesis’ prototype. It provides information from
standards that helps the reader to completely understand the current status of
TSN.

1.1. Data Link layer

Time Sensitive Networking is aimed to be implemented within the Layer 2 of the
OSI model, the Data Link layer. The Data Link layer is responsible for preparing
the data that will be transmitted through a physical channel. Its goal is to transmit
the data without errors between two adjacent network nodes. To achieve that, it
offers medium access mechanisms, by performing device addressing and
defining the network topology.

The functionalities that are closer to the physical layer rely on frames, composed
of payload and headers (additional information related to routing and forwarding).
This frame’s format is not unique, it depends on the physical access they have
been designed for. Figure 1.1 shows the generic Ethernet and WiFi frames. Their
definition belongs to the Medium Access Control (MAC) sublayer, defined in IEEE
802.3 and 802.11 standards, respectively.

Fig. 1.1 Frame format for 802.3 - Ethernet and 802.11 – WiFi [8].

In a higher level there is Logical Link Control (LLC), in charge of offering to upper
layers an interface that is independent from the physical device that will be used.

6 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

From a practical point of view, we can consider the LLC as the network driver that
uses the Network Interface Card (NIC) and the MAC handles the protocol
performance that will be executed at the system kernel, before sending a payload
to the physical device.

The services that the Data Link layer provides are the following [9]:

1. Generic

a. Conforming frames from upper layer data packets.

b. Frame synchronization

2. LLC

a. Flow and error control, commonly used in wireless protocols, since
wired Ethernet is nowadays practically error free.

3. MAC

a. Medium Access Control (CSMA/CA, CSMA/CD)

b. Physical addressing.

c. LAN switching, including Spanning Tree Protocol or Shortest Path

Bridging.

d. Queues and scheduling

e. Quality of Service (QoS)

f. Virtual LAN (VLAN)

As we can see, the second OSI layer includes a wide variety of functions. Some
of them are not related to our working context, but others are important, such as
VLAN, QoS, queuing or scheduling.

IEEE 802.1 group is responsible for developing LAN standards (see [10] for more
information about the standards). The number of protocols that this group defines
is quite big, so short a list with the ones that are related in some way or another
with our project follows.

1.1.1 IEEE 802.1Q - VLAN

TSN relies on VLANs to distinguish different streams and priorities.

A Virtual LAN is an independent logical network that uses a shared physical
network, so that several logical networks can coexist. Thanks to this concept,
different flows can be maintained as if they were all in separate networks with its

CHAPTER 1. DATA LINK LAYER AND IEEE STANDARDS 7

own broadcasting domain. VLANs can be defined in various manners, such as
in/out port, MAC address based or other static methodologies, but VLAN tagging,
as defined in IEEE 802.1Q, is the predominant solution.

If we consider the Ethernet in Figure 1.1 frame with the VLAN tag, the frame is
modified as Figure 1.2 shows:

Fig. 1.2 Ethernet frame format adapted with the VLAN tag [11].

802.1Q adds four extra bytes to the original Ethernet frame, and the original’s
EtherType value is assigned to 0x8100 in order to flag the altered format of the
frame and avoid compatibility issues with non-VLAN devices. The 802.1Q tag
found in the modified Ethernet frame provides the VLAN information, as follows:

1. User priority (three bits): used by TSN (and other protocols) to
determine the priority of the flow in the network.

2. Canonical Format Indicator (one bit)

3. VLAN ID (12 bits): used to uniquely identify the VLAN

1.1.2 IEEE 1588/ 802.1AS – Precision Time Protocol

The goal of this protocol is to synchronize the internal clocks of the elements
inside a LAN. These clocks may have distinct features, and the first goal of
generic Precision Time Protocol (gPTP) is to find the clock with the highest
accuracy (Grand Master, GM). That will be the reference for all the other clocks
in the network. This process is called Best Master Clock Algorithm (BMCA) and
it generates a time distribution tree with the GM as root, as Figure 1.3 shows. In
addition, it also handles faults from the Master Clock and resynchronizes all
devices.

8 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 1.3 BMCA clock distribution tree [12]. The blue lines are the logical tree
that distributes the timing.

Once the Master Clock is chosen, other devices will be considered Slaves and
will be synched to the Master. Figure 1.3 also shows how network elements set
their ports states, to obtain the synchronization from the port with the best timing
source.

Once the type of every device’s clock is determined, the synchronization process
begins, as shown in Figure 1.4:

1. Slave clocks periodically receive a Sync message from the Master, which
includes the time as seen from the Master (T1), which is received at local
time T2 by the slave, but it is still not correct because of the delay between
the slave and the master (offset).

2. Slaves send the Delay Request message in the instance T3 and the
Master marks the timestamp before sending it back (T4) using the Delay
Response.

3. Slave clocks can calculate their offset with the Master, and use it correctly.

CHAPTER 1. DATA LINK LAYER AND IEEE STANDARDS 9

Fig. 1.4 PTP synchronization mechanism [13] [14].

The offset between Master and Slave clocks is determined by the following
expressions:

𝑂𝑓𝑓𝑠𝑒𝑡 = (𝑇2 − 𝑇1) − 𝑃𝑎𝑡ℎ 𝐷𝑒𝑙𝑎𝑦 (1.1)

𝑃𝑎𝑡ℎ 𝐷𝑒𝑙𝑎𝑦 =
(𝑇2−𝑇1)+(𝑇4−𝑇3)

2
 (1.2)

The precision level depends on the network’s performance, since a high jitter
implies an inaccurate path delay estimation and, consequently, an imprecise
offset. Once all clocks are synchronized, PTP/gPTP protocols are only useful to
maintain this status in case of failures or disconnections.

In order to improve the accuracy, and since the actual time of emission of the
Sync message may not be exactly the same T1 that appears in the message, a
Follow Up message (carrying the actual time the previous Sync message was
sent) can be used. The process is shown in Figure 1.5, where the middle bridge
computes its own clock before forwarding a new generated Follow Up message.
Note that Figure 1.4 shows the Sync and Follow up transmissions into a single
one to simplify the communication between endpoints, even though both are
separate transmissions.

10 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 1.5 gPTP port-bounded mechanism [13].

All devices that take part in a TSN network must implement gPTP, since an
accurate synchronization is crucial for a good performance of the real time
standards.

1.2. Time Sensitive Network standards

Since TSN is the most important field of knowledge of this document, there is a
need to review all the contents inside 802.1 standards and, specifically, the
amendments to 802.1Q standard. Each one of the standards gives different
approaches on TSN.

1.2.1 IEEE 802.Qbv – Enhancements for Scheduled Traffic

The Time Aware Scheduler (TAS) defines a periodical cycle in which it is possible
to specify slices of the link capacity. These slices are slots of time in which the
data transmission is reserved only from specified queues. Its objective is to
distribute all the different TSN priorities and best-effort flows in this interval and
ensure a reservation of the bandwidth for all of them. An example of this idea is
shown in Figure 1.6.

CHAPTER 1. DATA LINK LAYER AND IEEE STANDARDS 11

Fig. 1.6 802.1Qbv Cycle schema [15].

The only problems that may emerge from this time distribution is that the sending
of the frame starts too close to the next reserved slot. Therefore, the transmission
may invade the next slot. In order to avoid that, it is necessary to add a guard
interval. The size of the interval should correlate with the transmit time that it takes
to send the maximum size Ethernet frame, 1524 bytes. This guard avoids the
current data to overlap with the next priority slot. Because of the guard intervals,
the transmission time will be reduced, as shown in Figure 1.7.

Fig. 1.7 802.1Qbv Cycle schema with guard band [15].

Since the publication of IEEE 802.1Q-2014, a new enhancement proposal named
Enhancements for Scheduled Traffic (EST) dynamically establishes a status for
every different priority. A gate is associated with each different traffic priority, and
the gate state determines if it is possible to transmit a packet from a certain queue
or not. More specifically:

12 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

1. Open: frames are selected to be transmitted according to the

algorithm in the queue, such as Credit Based Shaper (seen in the
following section 1.2.2) or First in First Out (FIFO).

2. Closed: frames from this priority will not be transmitted.

In order to have control over the gates’ status, there is a list known as Gate
Control List (GCL), which every entry in it contains the gate status for all priorities.
Figure 1.8 shows an example with different priorities, all with their own
transmission algorithm and a gate controlled by the GCL pointer.

Fig. 1.8 Management of priority queues [16].

Thanks to this gate management, it is possible to prioritize the frames from a
given VLAN tag, ensuring a deterministic transmission time and bandwidth. The
operations that can be performed on the gates include:

1. SetGateState: changes the gate state of the gate, specifying a duration
interval to avoid premature changes.

2. Set-And-Hold-MAC: acts as SetGateState, but it indicates the moment in
which the sending of a preemptible frame shall be interrupted (check an
introduction to Frame Preemption in section A.7 of the annexes).

3. Set-And-Release-MAC: equivalent to the previous one, but instead of
indicating the interruption point it indicates the resume point.

CHAPTER 1. DATA LINK LAYER AND IEEE STANDARDS 13

One of the main goals of prototype developed in this thesis is to provide the TSN
endpoints with the necessary configuration to perform this traffic scheduling.

1.2.2 IEEE 802.Qav – Credit Based Shaper

Originally, the 802.1Qav standard was independent, but since the release of
802.1Q-2011 we can find it inside 802.1Q standard. The important content of
802.1Qav is the Credit Based Shaper (CBS), which is used as a bandwidth limiter
for different traffic queues that follow VLAN’s priority codes. The bandwidth limiter
relies on several parameters, as follows:

1. portTransmitRate: link speed.

2. idleSlope: when the queue is not transmitting, it gains credits based on this
rate. It can never be higher than the portTransmitRate.

3. transmit: boolean value that maps the current door status (transmitting or

idle). If combined with frame pre-emption, the door status will be idle every
time that pre-emption takes part. Because of that combination, the CBS is
not losing credits from overheads, for example.

4. credit: number of bits available to be sent.

5. sendSlope: when the queue is transmitting, it loses credits based on this

rate. It is a value obtained straight from idleSlope and portTransmitRate:

𝑠𝑒𝑛𝑑𝑆𝑙𝑜𝑝𝑒 = 𝑖𝑑𝑙𝑒𝑆𝑙𝑜𝑝𝑒 − 𝑝𝑜𝑟𝑡𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑅𝑎𝑡𝑒 (1.3)

6. transmitAllowed: boolean value that maps if the credit is positive or

negative to determine the possibility to dequeue data.

Figure 1.9 illustrates how the process works and the role of these parameters.
More details of this standard may be found in Annex L of the official IEEE 802.1Q-
2018 standard [18].

14 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 1.9 Credit Based Shaper bandwidth limiter [17].

1.2.3 Standards in process

As of June 2021, the TSN IEEE group is still developing new standards and sub
standards from 802.1 and 802.1Q, respectively. In the future, some of them may
have been already released. Here is a list of all of them [19]:

1. Standalone

a. IEC/IEEE 60802 - TSN Profile for Industrial Automation

b. P802.1CS - Link-Local Registration Protocol

c. P802.1CQ - Multicast and Local Address Assignment

d. P802.1DC - Quality of Service Provision by Network Systems

e. P802.1DF - TSN Profile for Service Provider Networks

f. P802.1DG - TSN Profile for Automotive In-Vehicle Ethernet
Communications

2. Amendments

a. P802f - YANG Data Model for EtherTypes

CHAPTER 1. DATA LINK LAYER AND IEEE STANDARDS 15

b. P802.1Qcj - Automatic Attachment to Provider Backbone Bridging

services

c. P802.1Qcw - YANG Data Models for Scheduled Traffic, Frame
Preemption and Per-Stream Filtering and Policing

d. P802.1Qcz - Congestion Isolation

e. P802.1Qdd - Resource Allocation Protocol

f. P802.1Qdj - Configuration Enhancements for TSN

g. P802.1ABcu - LLDP YANG Data Model

h. P802.1ABdh - Support for Multiframe Protocol Data Units

i. P802.1ASdm - Hot Standby

j. P802.1ASdn - YANG Data Model

k. P802.1CBcv - FRER YANG Data Model and MIB

l. P802.1CBdb - FRER Extender Stream Identification Functions

This chapter is extended in Annex A with all the standards that are not in contact
with the current project, but they are still related to time-sensitive networking.

16 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA

This chapter presents the technologies that are candidates to be used in the CUC
prototype. It starts with the description of YANG, NETCONF and RESTCONF,
which are new approaches to network management. In addition, the chapter
introduces OPC-UA, a framework that aims to enable the communication
between any device in a network.

2.1 NETCONF, RESTCONF, YANG and Configuration Data
Models

The goal of this section is to introduce the concepts and protocols related to
network management. Traditionally, network management has been based on
tools such as scripts, Command Line Interface (CLI) and Simple Network
Management Protocol (SNMP). We will comment how ineffective these tools are
in terms of network automation. Additionally, we will introduce the new network
management paradigm, based on NETCONF and YANG, for building the TSN
prototype [20].

Before describing NETCONF and YANG, it is important to define the difference
between information models and data models.

2.1.1 Information models and data models

First, we will describe how CLI, and SNMP have been used for network
management [21]. These tools are based on information models and its
disadvantages are presented in the following lines.

2.1.1.1 Command-Line Interface (CLI)

CLI requires proprietary implementations for each different model, preventing
quality or robust automation. It is sensitive to different modifications on network
structure, device configuration or firmware. Moreover, when a device is being
configured, there is a period of time in which only part of the configuration is
loaded to the component. If an error in the configuration script occurs, then the
device will remain corrupted, implying a high operational cost for its recovery.

In conclusion, handling these processes is too expensive and requires
complicated programming. Also, this methodology is inefficient in reporting the
devices’ status to a possible network controller, since polling would be required,
a non-efficient technique.

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA 17

2.1.1.2 SNMP

The SNMP protocol was designed to monitor and manage a network. It is capable
of writing changes in the devices’ configurations and receiving asynchronous
notifications from them. Nevertheless, it is typically only used for fault monitoring
and actuation, not for configuring devices. The reason is that SNMP does not
offer a standard or automated manner of identifying the different modules in the
Management Information Base (MIB), forcing the operators to perform that
discovery stage for every device. Also, disadvantageously, it relies on UDP
transport, yielding the opportunity to lose some critical configuration or
operational data.

2.1.1.3 Information models and data models

If we consider a network controller based on either of the tools just mentioned,
we would have to use information models to maintain the control of each
configuration for every different network element.

An information model has a goal of organizing the data at a conceptual level,
independent from the different configuration means the device may have. To
simplify an information model, any detail referred on the implementation
necessary to set up the configuration is avoided. It only handles the actual data
that will be configured. This type of model is useful for network designers to
describe elements’ details. It also supplies operators with a reference to what
data has to be set up. If that model becomes more specific, we may get a data
model [22].

Data models are more closely linked to the implementation than information
models; these include structures related to the process of setting up the device,
such as rules, restrictions or permissions. The objective of data models is to
maintain the controller and device with the same instance configuration data. This
data has a strict design on how changes must be done and must ensure that
input parameters are set accordingly.

As an example, the configuration process for an Ethernet interface needs the IP
address, the default gateway and the subnetwork mask. If an information model
is used, the values for all fields are given and the configuration setting is not
handled. For the case of a data model, the fields are given in a known object
instance. As the configured device knows it, it has the automated process to set
up the configuration, because the data received is known and valid.

These new concepts about data models can be better explained by introducing
YANG and NETCONF/RESTCONF.

18 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

2.1.2 YANG

Yet Another Next Generation (YANG) [23] is an encoding language used to
describe data models, maintained by NETMOD (an IETF working group) and
specified in RFC 7950.

Its main strength is that it uses a strict syntax to define data models and ease
automated reading and writing. To understand more clearly the data models’
goals and how YANG achieves them, we will base the explanation in a practical
example [24] – the process of creating a data model to describe an Ethernet
interface. We will begin with the module definition, which includes brackets with
all of the module content inside.

Fig. 2.1 Module definition in YANG language.

Add the header information of the module, shown in Figure 2.2:

Fig. 2.2 Header definition of the YANG module.

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA 19

1. yang-version: version of the YANG standard used.

2. namespace: used to identify the module uniquely, so that URL/URI
formats are used, since it is unlikely that two independent developers use
the same one.

3. prefix: identifies the defined module used when another YANG module

imports the current one the use their properties.

4. organization and contact: provide information about the creators of the
module.

5. description: short summary about the module’s goals and what it includes.

6. revision: version control field. Each new version a revision entry is added

with the details about the latest changes.

Until this point, there is only a header, with more bureaucratic than useful
information. Figure 2.3 shows the different elements that conform the YANG
module’s core:

Fig. 2.3 Core definition of the YANG module.

Figure 2.3 shows a new type definition, specifically a type that can be used to
instantiate IP addresses or masks (check the regular expression). Since this is
basically a string, it is easy to wonder why is it useful to define a new type for it.
The reason is that it may contain fields inside, such as pattern. This property
coerces that any instance of this type must be compliant with a given format. If a
value of a dotted-quad type is “TSN Network”, it will not be accepted in the
instance data, since it can generate configuration failures. Now, understanding
the use of new types, we need to locate them in the module. Specifically, all types
are found inside the container.

A container includes configuration data, which are all the fields that can be read
or written, such as the value of the IP address or the “up” and “down” interface

20 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

status. Also, it can contain state data, read-only properties of a module, such as
the number of packets transmitted by the given interface.

First, let’s take a look at the configuration data, an easy example compared to
the ones used by the IEEE standards. In Figure 2.4 there is a definition of four
leaves, which maps information from an interface. Each leaf specifies its own type
and description, but also can include various inner properties. As an example, the
pattern used in Figure 2.3 or the default flag found in the “enabled” property.
Notice that the “address” and “subnet-mask” are defined as dotted-quad types,
so the pattern designed in it will be applied.

Fig. 2.4 Configuration data definition of the YANG module.

After the definition of the configuration data, the state data definition is presented.
All state data is embedded in a list that contains more than a subtype of every
element. Every entry on the list will have a specific leaf “name” and another
named “oper-status”. The “name” is a common string and “oper-status” is an
enumeration defined inside the leaf. This enumeration can only be used by the
“oper-status” variable, different to the type definition defined in Figure 2.3. If we
take a look to Figure 2.5, the “interface-state” list has a property “config” set to
false. This means that the list is a state variable and cannot be modified as a

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA 21

configuration variable. In addition, the “key” property sets the attribute that will be
used as unique reference to the element.

Fig. 2.5 State data definition of the YANG module.

With all these definitions, this is a built YANG module. This module can be
instantiated with data, like example is shown in the Figure 2.6. YANG instances
intend to be sent to a network element that has the same YANG module. Since
they share the same module definition, a correct configuration is ensured. The
following XML contains two distinct interfaces that contain an IP address and a
subnet mask assigned to each of them. Since the “enable” field is not included,
both will adopt the default state, which is set to “false”.

22 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 2.6 Instance data of the YANG module.

According to this example, the YANG modules specify formats on the
configuration of the different protocols that a machine can implement.
Additionally, it offers the possibility to give these configurations with a well-formed
guarantee to avoid misconfigurations.

Despite having a clear definition of the YANG modules, there is a need to set up
an environment and logic on them that sends and receives the instance data.
This point is where NETCONF or RESTCONF come in play, since they equip the
logic on the establishment and monitoring of the configuration, as well as the
status of the devices based on the YANG modules shared by the controller and
the device.

2.1.3 NETCONF

NETCONF [25] appeared as an answer to the inefficiency of SNMP and other
network configuring protocols, not user friendly or standardized. It needs specific
implementations for each device model.

NETCONF is based on a client – server communication, where the controller acts
as a client and the network element as the server. In summary, this protocol
performs two different operations: read the operational status of a device or
update its configuration. Moreover, it allows the servers to perform actions,
configuration or management processes triggered by the clients. In addition,
clients can subscribe to notifications, so that they receive the updated information
without the need of a request. Normally, every message exchanged between
client and server is a Remote Procedure Call (RPC) or RPC-Reply, the response
generated by the server. An RPC-Reply can be a simple OK indicating the
success of the operation or it may contain the entire device configuration,
depending on what is requested. By standard, RPC is encoded in XML and the

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA 23

communication between client and server is performed by SSH using the port
830, as default.

Before diving into the contents of the different RPCs, the architecture of a server
based on data models will be presented, as it helps the understanding of
NETCONF and RESTCONF functionalities.

2.1.3.1 Data model-based server architecture

Figure 2.7 summarizes the general architecture of a server, valid for both
NETCONF and RESTCONF servers.

Fig. 2.7 Schema of a data model server.

YANG modules follow a model-based server architecture because, as
mentioned, they are used to defining the servers’ needs in terms of
implementation and monitoring. These YANG modules will be integrated in the
system, so that the server’s configuration and status can be mapped to the
instance YANG data and treated with RPCs. When the NETCONF core receives
a request from a client, it parses the content, verifies the YANG models and
executes the demanded actions. This process includes setting the configuration
database and the configuration of the device in a strict controlled manner. If an
error occurs, a roll back of the steps is performed by the server. In some cases,
the actions will be to poll data to update the client. Others can be to modify any
configuration entry in the configuration database, which is the storage that maps
the actual configuration of the device. After processing all the different requests

24 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

that a client has sent, a single response will be generated, containing the results
for all the requests.

2.1.3.2 NETCONF features

This protocol provides several improvements over CLI or SNMP-based
management:

1. NETCONF transactions guarantee that the configuration is applied
entirely, following the ACID concept used in databases:

a. Atomicity: if all changes are not applied, all new configuration
will be discarded. This avoids the chance to abort during the
middle of the configuration process.

b. Consistency: all in one. All the new configurations that are
included in the instance YANG data are applied at the same
time, avoiding transactional states and increasing the simplicity
in servers.

c. Independence: multiple clients can perform changes in the

configuration without interfering.

d. Durability: when a transaction has been performed, there are
guarantees of not losing them, even with a total disconnection
from the device.

2. NETCONF can manage different contexts, such as global configuration

and specific YANG modules.

3. NETCONF servers offer the distinction between distributing data model
instances and applying them. This means that a certain configuration
may be received and processed by the server, but not applied until the
client specifies to do so.

These features come from the fact that NETCONF includes mechanisms to
control the configuration database. However, the server does not only have one
database; it has three, all of them modifiable:

1. Startup configuration datastore: its content is read and applied to the
running datastore when the device is powered on. This means that the
device will be configured at power on as stated in the content of this
database.

2. Running datastore: contains the actual configuration of the device.

3. Candidate datastore: space to apply changes without affecting the

active configuration. When a server receives an RPC “commit

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA 25

configuration”, the content of this datastore will be transferred to the
running datastore.

Prior to the RPC exchange between a client and a server, the NETCONF protocol
starts by sending a hello message, where parties specify the protocol version and
expose the supported YANG modules. After this first exchange, RPC and RPC-
Reply can be performed. The main different calls are listed below:

1. get-config: to obtain a part or the whole configuration datastore.

2. edit-config: change the content of the configuration datastore.

3. copy-config: copy content from a datastore to another. For example, to

set the startup datastore with the content of the running one.

4. delete-config: deletes the specified contents of the given datastore.

5. lock: locks a datastore, avoiding it to be changed by another client or

datastore.

6. unlock: releases the locking of a datastore.

7. get: returns the running datastore and the device status information.

8. close-session: finishes the NETCONF session.

9. kill-session: forces the finalization of the NETCONF session.

10. get-data: a more flexible manner to get configuration and state

information.

11. edit-data: also, a more flexible way to modify the contents of a

datastore.

As a result of the configuration datastores and the types of operations that RPCs
perform to the server, the transactions that include changes in the configuration
can be protected from interferences. As an example, the configuration is sent to
the configuration datastore (locking it) and the update to the running datastore is
triggered. By locking the configuration datastore, others cannot interfere in the
current configuration process, so that all configuration processes can be handled
in a controlled manner.

2.1.4 RESTCONF

This protocol can be considered an adaptation from NETCONF to the known
RESTful APIs, basing the communication on HTTPS requests, instead of a
persistent communication like SSH that NETCONF uses. Due to this,
RESTCONF [26] is considered a subset of NETCONF, with some differences:

26 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

1. RESTCONF considers in its standard both JSON and XML encodings for

the requests (YANG data instances). NETCONF only takes XML into
account.

2. Due to the nature of HTTPS, it is not possible to split requests in different

messages. All of the information is sent together.

3. RESTCONF does not have any manner to validate the changes before
applying a new configuration. Instead, RESTCONF implicitly checks the
data during the request, validating the YANG module. In other terms, the
only datastore available in RESTCONF is the running datastore, so it is
not possible to modify the candidate datastore to perform more complex
testing before commitment.

To summarize, RESTCONF does not have any notion about the lock, candidate
datastore or operation commitment. We could conclude that it is not an optimal
protocol to manage different devices, since clients have less control over the
servers. Nevertheless, it is interesting to rely on this protocol to communicate with
the network controller’s northbound interface (explanation extended in Chapter
3).

2.2 OPC-UA

OPC-UA [27] is the evolution from OPC Classic, and can be described as a
workspace or architecture that aims to communicate different platforms in a
secure way. It is arranged for services in the industrial or business environment,
to interconnect every single device to the processes. All communications
performed in OPC-UA are done between a client and a server.

The client and the server identity may be confusing at first for some software
developers, due to the fact that in automation, all endpoints (such as sensors or
actuators), are considered servers. Then, the clients are typically the controllers
or managers. The clients obtain as much information as needed from the servers
distributed on the industrial floor, being able to have control over all these
elements. Figure 2.8 shows an overview on how a server can receive requests
from several different clients. Each of the clients performs an operation with the
server, which may include, for example, an action or a data poll.

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA 27

Fig. 2.8 OPC-UA schematic overview, from [28].

The main differences between OPC-UA and OPC Classic are the following ones:

1. OPC Classic is strictly dependent on Microsoft, since the communication
relies on DCOM, a technology considered today as deprecated.

2. Insufficient data models: OPC Classic is not able to represent data types

and their relations, which may be essential for an accurate industrial
design and data treatment.

3. Security: DCOM is not a safe protocol. As an enhancement, OPC-UA

bases all its communications in secure channels, using TLS and
certificates to authenticate every device.

OPC-UA is designed to connect all levels of data management that may partake
in an activity. For example, in an industrial context, for example, OPC-UA can
communicate databases, the ERP (SAP, Odoo, among others), sensors,
controllers or monitoring devices. OPC-UA aims to be scalable, because it does
not provide many specifications on how to configure a device to take part in the
system. This offers the possibility to very different elements to take part in the
architecture. It intends to be secure, since it uses the TLS protocol for the
communications, as well as being resilient, offering alarms, events, discovering,
reading or writings, among others.

OPC-UA is a service-oriented architecture, which includes:

1. Discovery: clients can get to know which data is available, its relation with
other fields and which metadata can be processed.

2. Publish and Subscribe: clients use this type of communication to choose

how and when they want to receive the desired data. For instance, a
Publish/Subscribe communication requires time-sensitive handling.

28 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

3. Node: used to create, delete or modify the data structure, known as

Address Space, which the server maintains.

4. Methods: nodes used to call functions in the servers.

OPC-UA extends beyond the boundaries for this project, because it brings all the
necessary parts to interconnect any system in an industrial network. However, its
utilization between endpoints and the controller element of a TSN network may
be a viable solution. There also is growing research on the combination of both
architectures, which state that implementing OPC-UA over a TSN network may
provide real time and loss guarantees between OPC-UA components. Using this
solution, there can be a temporal synchronization in the critical processes that
may require a strict synchronization with other elements. The idea of OPC-UA
over TSN is shown in Figure 2.9.

Fig. 2.9 OPC-UA over a Time Sensitive Network [29].

OPC-UA allows communication between any elements in the industrial network.
If TSN network is the infrastructure used, then OPC-UA communications become
deterministic [30]. In addition, open standards are used throughout all the OSI
layers, avoiding any proprietary protocol. By this, it is much easier to combine
real time-aware devices with common ones. The time-aware devices need
determinism in the network, while others flood the network with best-effort traffic,
congesting it.

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA 29

2.2.1 Clients and Servers

It is important to remark how the concept of client and server differs from what
non-automation developers are used to. Clients are the centralized controlling
elements and the servers are the distributed endpoints that perform some actions
on the industrial network. Due to this, servers are prepared to receive more than
one connection from clients to receive data, process some logic or call
asynchronous functions [31].

All the communication between the client and a server is based on the server’s
Address Space.

2.2.1.1 Address Space

Address Space is the way that an OPC-UA server structures and presents the
content to its clients. It is organized in folders, so that the client has a controlled
and orderly access to the contents. For example, it is possible to distribute the
content of an Endpoint in two different sections: “InterfaceConfiguration” and
“TrafficSpecification”. The Address Space has different types of entries, called
nodes, whose types can be seen in Figure 2.10:

Fig. 2.10 Address Space Node classes [32].

1. Object: represents a system, a component or other objects. For example, a

network interface card.

2. Variable: used to represent objects’ properties.

3. Method: represents a function that can be called and executed in the server.

4. ReferenceType: used to reference other nodes instances.

5. ObjectType: straight analogy to objects in Object Oriented Programming.

30 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

6. DataType: contains all data types that a Variable can adopt.

7. View: it restricts the number of visible nodes in an Address Space.

All these nodes in the Address Space are made from one of these classes. The
node contents, in general, are attributes and references:

1. Attributes: describe the nodes. Read, write and query accessible, also to

Subscription and Monitoring services. Every attribute must contain id, name,
description, data type and mandatory/optional indicator.

2. References: used to relate nodes with other nodes. They are instances of the

node class ReferenceType that can be found in the same or other Address
Space.

As a conclusion, the OPC-UA servers will maintain the Address Space, which the
clients are forced to interact with. All communication between the client and the
server will be based on the data in the Address Space. Therefore, there is an
important need to design it accordingly to our needs, since we are using our
Endpoints as OPC-UA servers and our CUC unit as the client.

2.2.1.2 Publish/Subscribe

The Publish/Subscribe technique is a part in the OPC-UA specification. The main
goal is to increase the situations in which OPC-UA can be feasible for automation,
both for plant communications and cloud-based operations.

Clients subscribe to a certain node in the Server’s Address Space. By doing this,
the Client will receive any variable changes pushed by the Server, not polling for
them. Thus, it offers enormous benefits regarding industrial automation; since
anytime new data is set by the Server, it will be instantly sent. This permits the
chance to handle the sending with time-sensitive performance [33]. Apart from
that, the Servers can publish data to multiple Clients, meaning that the standard
gives a lot of flexibility to the implementations it may support.

Figure 2.11 presents an overview of what can be achieved with Pub/Sub from
OPC-UA, enabling any kind of non-polled communication regardless of the
network’s architecture, since all devices would use OPC-UA.

CHAPTER 2. NETWORK MANAGEMENT AND OPC-UA 31

Fig. 2.11 OPC-UA Pub/Sub logical overview [29].

32 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

CHAPTER 3. IEEE 802.1QCC

This chapter is where the Fully Centralized architecture from the IEEE 802.1Qcc
standard is presented. This is the architecture that this thesis’ is following. Thus,
this standard must be reviewed in detail [34].

3.1 IEEE 802.1Qcc clause 46 – Time Sensitive Networking
Configuration

In general terms, the 46th clause from 802.1Qcc exposes the different network
architectures for TSN networks. It provides the details of different
communications from the control plane, necessary to successfully use the TSN
network and its advantages. This project will focus on the content of this clause,
specifically the content inside the “Fully centralized model”, as seen in Figure
3.1.

Fig. 3.1 Fully Centralized model scheme, from [34].

The advantage that this architecture has over the others (“Centralized network /
User distributed” and “Fully distributed”) is that it can centralize user’s and
network elements’ configuration. This means that the controller will be completely
aware of the entire network’s topology, so it can compute an optimal
configuration. In fact, this advantage is also found in the “Centralized network /
User distributed” model; however, the Centralized User Configuration is the key
difference, because it manages all the endpoints’ configurations to partake in a
successful TSN communication. In the “Centralized network / User distributed”
the endpoint configuration is managed by the network elements, lacking
centralization.

CHAPTER 3. IEEE 802.1QCC 33

First of all, the CUC discovers all the TSN endpoints in the network, obtaining its
capabilities and requirements. With all the requirements obtained for a certain
TSN communication, the CUC must give the computed endpoints’ configuration
to the CNC. The CNC configures the TSN domain in the network and responds
the CUC with extra configuration. The CUC will compute and send the different
TSN requirements for the Endpoints.

It is important to state that the communication protocol between the endpoints
and the CUC falls out of the scope of the IEEE specification. As a result, in Figure
3.1 such communication does not appear.

Finally, the CUC manages the different endpoints that may share TSN streams
by combining their properties and building the User / Network Interface (UNI)
(explained in the following Section 3.1.1). The logical process to obtain the data
from the endpoints and generate a UNI is the designer’s responsibility.

The UNI is the interface that exists between the CUC and CNC (see Figure 3.1)
and defines all the data exchanged in the communication using YANG data
models. As described in Section 2.1, by using YANG modules and
NETCONF/RESTCONF based communication, we ensure that the data
transmitted is well formatted and validated before being processed. The YANG
data model is the encoding of the UNI into a data model detailed below.

3.1.1 UNI Integration

The UNI consists of three high level information groups, considering only the use
of a “Fully Centralized” model:

1. Talker: elements provided from the CUC that specify a Talker for a given TSN

stream.

2. Listener: elements provided from the CUC that specify a Listener of a given

TSN stream.

Both the previous groups’ data have to be encoded to a YANG instance, coming
from the configuration polled from the endpoints (via OPC-UA, for example).

3. Status: elements that are given back from the CNC to the CUC, which specify

the result of the configuration of the network elements and part of the
configuration needed for Talker and Listeners. They use it to set up their
interfaces to emit and receive the TSN stream successfully in the network. It
also can contain the failure code in order to give the CUC the enough
knowledge to solve the problem with its users.

The unique identifier that must be used for a message is called “StreamID”, which
identifies the generated configuration over the stream that is going to be
transmitted. Conceptually, the communication between CUC and CNC can be
interpreted as a request – response process: the CUC sends the Talker and

34 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Listener groups to the CNC and it responds with a Status group. Using the fully
centralized model, the CUC may combine multiple groups in a single request.
Due to this, the CNC is able to compute the all the requirements, avoiding further
costs of reconfiguration and giving the response all in once.

It must be noted that the standard does not specify how these groups should be
combined or how the CNC may compute them to offer the best solution to the
network. This means that the standard provides only an architecture design,
including specified parts, such as the UNI Interface. It also contains unspecified
parts that are left to the designer criteria or to future TSN standard releases.

When the CUC is specifying information from a Talker or a Listener, there are two
possible actions:

1. Join: an endpoint (talker or listener) joins a stream, so the CNC prepares
the network elements to handle the TSN requirements.

2. Leave: alert that the endpoint is no longer taking part of the stream, so that

the CNC can perform a resource release.

The CNC should accept the separate reception of the messages, meaning that it
may first receive the groups and, afterwards, a call to “Join” or “Leave”. Let’s
check the content of each different group in detail, as it will be needed to
understand for a good architecture design.

3.1.1.1 Talker

This group specifies the following, grouping the capabilities and requirements that
an emitter may request:

1. Talker’s behavior regarding the stream (when it transmits, how, etc.).

2. Talker’s real-time requirements.

3. TSN capabilities of the endpoint’s network interface.

All this information is contained in the following subgroups:

1. StreamID

2. StreamRank

3. EndStationInterfaces

4. DataFrameSpecification

5. TrafficSpecification

6. UserToNetworkRequirements

CHAPTER 3. IEEE 802.1QCC 35

7. InterfaceCapabilities

Groups “StreamRank” and “TrafficSpecification” should be in every “Join” request
from Talkers. It is also recommended that they include the
“UserToNetworkRequirements” and “InterfaceCapabilities”, since they would
receive default values that would lower the optimization of the TSN flow
performance. “DataFrameSpecification” should be also specified in a Talker
group, unless the subgroup “InterfaceCapabilities” contains
“ActiveDestinationMAC” and “VlanStreamIdentification” meaning that the
endpoint is able to perform Stream Transformation (introduced in Section 3.2.1).

3.1.1.2 Listener

This group contains the following, providing details of what a listener user is
expecting from a stream and its capabilities:

1. Listener’s network requirements.

2. TSN capabilities of the Listener’s network interface.

All this information, as the Talker’s, can be found in the subgroups below:

1. StreamID

2. EndStationInterfaces

3. UserToNetworkRequirements

4. InterfaceCapabilities

“UserToNetwork” requirements and “InterfaceCapabilities” should be included in
any “Join” call in order to avoid the use of default values. “StreamID” and
“EndStationInterfaces” must be included for every operation and for any endpoint
type, both talkers and listeners.

3.1.1.3 Status

Status group provides the results of a TSN stream configuration, coming from the
CNC. In the “Fully Centralized” it is received by the CUC. It is the CUC’s job to
process this group data in order to compute the configuration needed for the
endpoints involved. It groups the following:

1. StreamID

2. StatusInfo

3. AccumulatedLatency

36 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

4. InterfaceConfiguration

5. FailedInterfaces

For every talker or listener, the groups “AccumulatedLatency” and
“InterfaceConfiguration” are different. Then, the separation between “Status”
instances must be highlighted, so that it is splitted and treated independently in
the CUC. “StreamID” and “StatusInfo” must be included in every response, both
for “Join” or “Leave” events. “AccumulatedLatency” must be included in the “Join”
responses, meanwhile “InterfaceConfiguration” is optional. Every time that a
group is optional it is recommended to be included anyways, because it provides
better details, thus a better network optimization. “FailedInterfaces” is an optional
subgroup that specifies which and why network interfaces have failed in the
configuration.

These three groups, “Talker”, “Listener” and “Status” are mapped onto a YANG
module interface that the 802.1Qcc standard provides in one of their annexes.
This module interface needs an implementation, that can be found in Annex B of
this document. With this YANG module, it is possible to establish a NETCONF or
RESTCONF communication between the CUC and the CNC.

3.1.2 Stream Transformation

In order to apply the TSN behavior to the network interface of the endpoints, the
network needs a way to identify which streams take part in the TSN domain and
which ones are best-effort. Commonly, the TSN streams are identified according
to the VLAN ID (see Section 1.1.1). Nevertheless, it is possible that this VLAN ID
differs from the endpoint and the network. To mitigate this difference, the groups
“InterfaceCapabilities” and “EndStationInterfaces” are used. This distinction and
adaptation between different VLAN IDs may be performed by the endpoint or the
gateway switch.

When the endpoint sends the “InterfaceCapabilities” it informs the CNC about the
Stream Transformation features of the device. Then, the CNC will return the
“InterfaceConfiguration” subgroup, the stream identifier in the network. With this
information, the endpoint can perform the stream transformation, if necessary.
This transformation can be seen in Figure 3.2.

CHAPTER 3. IEEE 802.1QCC 37

Fig. 3.2 Stream Transformation in an endpoint device [34].

This previous case supposes that the endpoint is not applying any specific VLAN
or destination MAC address indicated by the TSN configuration. Due to the lack
of this, the Stream Transfer Function uses IP header fields to identify the packets
from the given stream and applies the desired values for VLAN ID and/or
destination MAC address. In the same manner, the Stream Transfer Function
(STF) is able to map the incoming VLAN or MAC in order to place the endpoint’s
values back for the upper layer application.

3.1.3 Example workflow

The 802.1Qcc standard provides an example case for the “Fully Centralized”
architecture, showing the needed steps to establish a TSN stream and network
configuration. This workflow only considers a single CUC and CNC. Next, each
step will be listed in order to give the needed details to extrapolate ideas for our
design. Some of the steps do not need to occur sequentially. Rather, they can be
performed in a parallel fashion.

3.1.3.1 CUC discovers Talkers and Listeners

The protocol used to communicate the CUC with the endpoints is out of the scope
of the 802.1Qcc standard. As we have already described, OPC-UA is a good
candidate framework to handle this communication interface. The servers will be
the endpoints and the client will be the CUC, that will perform requests against
the endpoints’ Address Space.

3.1.3.2 CUC reads each endpoint capabilities and requirements

This information includes TSN capabilities, the details about the device and its
requirements in order to fill all the UNI fields. All these features must be handled
in the Address Space of the endpoints, since the CUC will poll the data from it.

38 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

3.1.3.3 CUC generates the UNI instance data

When the CUC realizes it has enough information to perform a request to the
CNC, it instantiates the UNI YANG module groups. All the logic that the CUC
must perform in order to determine the moment of generating groups and sending
to the CNC is out of the specification. It is noticeable that the specification defines
the flow, the architecture, some of the interfaces between components and
components’ functionalities, but it is not specified how the implementation shall
be done.

3.1.3.4 CNC discovers network elements

Simultaneously to the first three steps, the CNC discovers the network elements
until it is able to describe the network topology, thanks to Link Layer Discovery
Protocol (LLDP).

3.1.3.5 CNC reads TSN capabilities

Thanks to the remote management protocol, such as NETCONF, that is based
on different YANG modules, specifically designed for TSN standards.

3.1.3.6 CUC sends the Talker and Listener groups to the CNC

The CUC sends a “Join” operation with the talker and listeners groups for a given
stream. The subgroups “EndStationInterfaces” identify the endpoints in the
network thanks to the MAC address, so that the CNC is able to identify them. The
communication protocol between the CUC and the CNC is again out of the scope
of the standard. However, our proposal will use RESTCONF, since it is the best
option for the communication with network controllers. As commented in Section
2.1.4, RESTCONF uses NETCONF’s principles, which brings all the advantages
of using YANG modules. Since the information that the CUC does not configure
the CNC, it is not needed to use the bigger datastore system that NETCONF
provides.

3.1.3.7 CNC configures the TSN domain for the given stream

Assuming that steps in the Sections 3.1.3.4 and 3.1.3.5 are already performed
and the CNC knows the network topology and details, the CNC has to compute
the configuration of each network element. By this, the incoming TSN stream gets
its reservation established in the network. CNC will base the configuration on the
location of the endpoints involved and the VLAN ID, which will be provided back
in the “Status” groups.

CHAPTER 3. IEEE 802.1QCC 39

3.1.3.8 CNC configures the stream features

CNC uses its capabilities in order to enable the TSN features to the stream
domain. This configuration will give all the real time requirements, if possible. If
the configuration is unsuccessful, the following status groups will contain the
details in the “FailedInterfaces” subgroup.

3.1.3.9 CNC returns the Status groups

When the CNC is finished with the device configuration, it generates the “Status”
groups and gives them back to the CUC.

3.1.3.10 CUC configures each endpoint

If the CUC received the results of a bad “Status” group, it can retry the attempt
after rechecking the sending Listener and Talker groups. Assuming that the CUC
has received a successful response, it will generate the needed configuration for
each endpoint that takes part. It will also send them through the OPC-UA
interface, calling the configuration of the interface.

All the logic required to perform all of these steps are in the hands of the designer.
This means that it can be implemented in different workflows. As a simple
example, the first discovery step can be performed during several minutes before
starting to instance the UNI groups. As another example, the prototype designed
in this project knows the number of endpoints that participate in the network.
Thus, it connects to both of them and proceeds with the pending steps.

40 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

CHAPTER 4. SOFTWARE AND HARDWARE FOR TSN
ENDPOINTS

This chapter describes the endpoints. It introduces the basics of computer
systems and how a Linux system can be managed to configure TSN
requirements. This analysis is focused on the Intel i210 network card, used in this
thesis’ prototype.

The Intel i210 will be an important piece of our testbed, and therefore it deserves
a detailed description. It is a network interface designed for real-time Ethernet
applications; thus, it can be the ideal network interface for an endpoint in a TSN
network [35]. It is a device that provides a hardware-based timestamping
mechanism embedded in it. Thanks to this timestamping, it is able to support
standards such as 802.1AS (gPTP, for clock synchronization with each network
element) or different implementations found for 802.1Qbv and 802.1Qav
specifications, all of them mentioned and treated in the other sections of this
document.

Fig. 4.1 Intel i210 Network Card Interface [36].

There are several software implementations that take advantage of the physical
timestamping of the network card. Some of the implementations come from Intel,
others from open-source communities. The majority of them use similar
processes and configuration tools, but with different final goals.

CHAPTER 4. SOFTWARE AND HARDWARE FOR TSN ENDPOINTS 41

One of the objectives of this project is to extract the necessary information from
these implementations. After understanding them, we can provide the endpoints
with the capacity of applying dynamically the configuration provided by the CUC.

An interesting source found is a prototype from Kalycito, which is helpful in terms
of introducing to the configuration of the endpoints’ interfaces.

4.1 Kalycito – Linux and TSN using open62541

This project [37] uses two endpoints with Intel i210 network cards and a switch to
build a small TSN domain. This domain is used by an OPC-UA open-source
software written in C, establishing a Publish/Subscribe communication between
endpoints. In order to give the endpoints enough tools to handle a TSN
communication, the device must be prepared in the following aspects:

1. The device must have a real-time kernel. For Linux devices, this means
that the kernel must be the low latency version, if possible. Also, the kernel
contains several tools that are only found in latest versions.

2. The network interfaces must be configured to participate in the network.

This process is done as with any other network interface (providing the IP
address and network mask).

3. Configure the interfaces to support the TSN stream.

4. Start the OPC-UA Pub/Sub to send and receive data between endpoints

over the TSN domain created.

Kalycito’s project provides the introduction to the tools that will be used to set up
the network cards for TSN stream requirements. In addition, it presents certain
parts of the Linux operating system and its tools. All the details regarding the
used tools will be given later in the document (see Section 5.3.2, Section 6.4 and
Annex D), but before that it is interesting to introduce some concepts about Linux
and its kernel.

4.2 Linux, kernel and Linux Network Stack

Linux is an operating system used by many developers and researchers. Since it
is open-source, different communities, companies, associations and individuals
take part on its constant enhancement. They all contribute in adding new features
and optimizing the system. At first, it was designed for computers, but nowadays
servers, routers, TVs, mobile phones and other embedded systems are Linux-
based. For example, the Android operating system is based on the Linux Kernel.

42 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

4.2.1 General system architecture

A system architecture is represented in Figure 4.2, which is appliable to any
operating system. In general terms, the goal of this architecture is to offer
computing resources to applications and services.

Fig. 4.2 Visual representation of a Linux system [38].

At the center of the figure there is the Hardware. Basically, it represents all the
physical devices that build up the computer. For example, the Intel i210 network
card belongs in the Hardware. The responsibility of the kernel is to virtualize all
the hardware resources. Because of this, the processes can use them. Also, the
kernel handles the conflicts that may occur in order to gain access to the
resources.

In an upper layer there are the Shell and the System Library. Both of them offer
an interface to the kernel, so that its complexity is hidden to upper layer users.
These upper layer applications will use these interfaces to interact and use the
kernel. Then, the kernel will communicate with the physical components. The
applications mentioned are, basically, the System Utilities and the Applications.
These applications are, in general, all the different software developed for the
user of the system.

Having a look at this general architecture, we may guess that the kernel must
perform the packet communication from the software to the NIC. Since this
communication will need to comply with TSN requirements, the kernel packet
management must be modified accordingly. Also, there has to be a way of
identifying a given application traffic in the system kernel, because this specific

CHAPTER 4. SOFTWARE AND HARDWARE FOR TSN ENDPOINTS 43

traffic needs to be handled. To have a good understanding of all the packet
processing starting from an application to the network interface, we will take a
deeper look in the Linux kernel. Afterwards, the Linux Networking Stack will be
described.

4.2.2 Linux kernel

Linux kernel [39] is the most important piece of the operating system. In order to
complement its definition, the kernel takes the responsibility of four different
tasks:

1. Memory management

2. Process management

3. Device drivers

4. Security and system calls

Of the 28 million lines of code in the kernel, the majority of it goes to the drivers’
section. This means that it ensures compatibility with a lot of different devices,
but at the same time, its performance is a little worsened. As we saw in the
previous section, the kernel is responsible for sending and receiving data through
the network interfaces. Thus, we need to understand how it works to understand
the modifications to handle TSN flows.

The kernel is responsible to control up to the Transport Layer, meaning that
Ethernet and IP Layers are controlled and managed by the system kernel. A
kernel user that needs to communicate data to the NIC will create and use a
socket [40]. This socket is used to identify the application’s traffic in the kernel,
allowing to establish rules for this specific flow. Even though it is mentioned that
the kernel works in Layers 2, 3 and 4, it is possible to implement higher layers,
just by adding this feature to its source code.

To modify Linux kernel’s behavior regarding different sockets, we have different
interfaces. For instance, netfilter is an interface of the kernel used by the module
iptables that manages the treatment of the packets at the network layer (NAT,
firewall, etc.). There is also netcat, which enables the user to manage the
Transport layer inside the kernel, so that it can be used by other applications.
These two examples are configuration tools for both network and transport layers.
Since TSN is implemented in the link layer, there is a need to know about the link
layer tool, called qdisc.

Queuing Disciplines (qdisc) is a tool found between the IP Stack and the network
card driver. It is the orchestrator of the traffic that is being sent to the driver’s
buffers [41]. With this tool it is possible to determine how packets will be sent
through the network interface, being able to prioritize and conform the outgoing

44 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

traffic. Later in this document this tool will be recovered, since it is the best one
to configure the endpoints’ interfaces.

Linux kernel is being constantly updated. Its versions are based on an “a.b.c.d”
format. Nowadays, the newest main version (‘a’) is 5.0. This version already
includes the tools that are used in this thesis to configure the TSN endpoints.

With this overview of the kernel, focused on the network stack, it is the best
moment to describe how Linux processes the network packets.

4.2.3 Linux Network Stack

To develop the endpoints in our prototype, it is important to understand how a
Linux system treats the packets before being sent to the NIC. Figure 4.3
summarizes the process that a packet follows before arriving to the network
interface.

Fig. 4.3 Packet processing in a Linux system [35].

CHAPTER 4. SOFTWARE AND HARDWARE FOR TSN ENDPOINTS 45

According to the configuration established in the kernel, the data pointed by the
socket will be processed by the system and sent. In a more detailed view, the
kernel treats the upper layers of the packet (transport and network) and right
before the driver’s buffers we have the Queuing Disciplines. These queues take
care of prioritizing the order of the frames and, basically, act as
schedulers/shapers to determine how the frames will be sent to the driver’s
buffers.

4.3 Intel i210 features related to TSN

In the Intel i210 overview webpage and its datasheet [42], we can find useful
information to implement our prototype. Nowadays, there are different kernel
interfaces that allow us to configure TSN parameters to some given outgoing
traffic. These interfaces are called TAPRIO (Time Aware Priority), CBS (Credit
Based Shaper) and ETF (Earliest TxTime First). All these interfaces can be
configured with the qdisc tool. Actually, qdisc will hold different rules, so that traffic
that coincides with them is accordingly scheduled [35]:

1. Earliest TxTime First: gives a scheduling temporally based on the
transmission queues. It permits the application to determine the time to
send the frame. It has a feature called Launch Time that gives the
opportunity to give the exact time of transmission for TSN applications.

2. TAPRIO: this algorithm performs the scheduling based on priorities as

defined in 802.1Qbv (see Section 1.2.1). It includes a way to parse the
incoming different priorities to traffic classes perform traffic scheduling with
them.

3. CBS: implementation of the 802.1Qav (see Section 1.2.2), acting as a

bandwidth limiter and requiring the same parameters as specified in the
previous section.

Understanding basic system architecture is recommended to contextualize how
the TSN requirements can be satisfied in the endpoints from the thesis’ prototype.
In addition, tools provided since the release of kernel 5.0 can interact with Intel
i210 buffers and become a TSN device The prototype designed for the thesis
needs to use these tools to apply the configuration coming from the CUC.

46 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

CHAPTER 5. ARCHITECTURE DESIGN

After the introduction to the basic concepts seen in the previous chapters, we will
now define an architecture for the prototype of this project.

5.1 Statement of the objectives

The scenario of the project is the Fully Centralized architecture as defined by
IEEE 802.1Qcc – clause 46. We will focus our development in the endpoints and
the Centralized User Configuration, as illustrated in Figure 5.1.

Fig. 5.1 Scenario of the project.

The figure shows that both endpoints will be OPC-UA-capable devices. These
devices must be able to offer the needed information to the CUC, to get
configured and transmit a data stream with TSN requirements. To understand
how this will be performed, we need to analyze how each component will perform
its functions.

The prototype consists of the Centralized User Configuration (CUC) and the
endpoints. Both solutions can be provided to a future CNC development. When
this prototype is integrated with a CNC, all the solution can be used as an SDN
module in any current commercial controller.

Since the implementation of the CNC is not the focus of this thesis, the
functionality expected in our prototype is focused on the following points:

CHAPTER 5. ARCHITECTURE DESIGN 47

1. The CUC polls the features required from the Talker and the Listener.

2. The TSN configuration is generated by the CUC and sent to the
devices.

3. The Talker device applies the configuration to send traffic scheduled

by the CUC logic.

Nevertheless, from the design of the fully centralized architecture described in
the IEEE 802.1Qcc standard, the interface between CUC and CNC is also a
requirement and needs to be implemented. Even though, it cannot be tested in
this prototype, because the CNC prototype developed in parallel to this project is
still in an early phase. the design is made considering the communication with
the CNC. This allows an easier integration in the future.

5.2 Centralized User Configuration

This module will act as a client for the Centralized Network Configuration and for
the endpoints. The CUC must manage the TSN requirements from endpoints and
communicate them to the CNC. This is a meticulous process that has to be
precise enough to be all TSN flows and requirements from all TSN endpoints.

Basically, the CUC has two interfaces:

1. OPC-UA Interface: responsible of polling the endpoint’s requirements and
give them back a configuration for their TSN interfaces. The requests must
be designed in order to correctly point to the desired Address Space
nodes. It will also communicate to the Talker the TSN configuration, so it
can autoconfigure the device to perform the scheduled emission of data.

2. User to Network Interface (UNI): This interface exchanges the endpoint’s
requirements grouped by the CUC and the results obtained in the CNC.
The YANG module provided in the standard has to be used. In addition,
the most optimal communication protocol to handle the requests is
RESTCONF, chosen for this prototype.

Figure 5.2 summarizes the aforementioned points about the CUC.

48 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 5.2 CUC overview.

5.2.1 OPC-UA Client

This is the module of the CUC that is responsible of communicating with the
Endpoints. On the one hand, it requests the OPC-UA servers the information that
they have established as Talkers or Listeners. This information contains the
enough data to generate UNI instance data in the Logic Unit Center (LUC). On
the other hand, when the CNC has replied the CUC and the LUC has generated
the endpoints’ configurations, the OPC-UA Client will provide the endpoints all
these computed TSN fields and trigger its establishment on the endpoints.

To successfully retrieve and send data with the OPC-UA servers, the Client must
get to know the organization of the objects in the Address Space. By this, it can
identify each node successfully. The definition of the Address Space will be
described in the following section.

5.2.2 Logic Unit Center

This part of the CUC generates YANG instances for those TSN flows that have
configuration for at least one Talker and one Listener. This means that the LUC
is responsible of managing the different TSN stream details and treat them
independently. This module uses the RESTCONF Client to push the
configuration and receive a response from the CNC. With it, it will generate the
Endpoint’s configuration. This configuration consists in the Gate Control List
(shown in Figure 1.8) and shaping mechanisms.

CHAPTER 5. ARCHITECTURE DESIGN 49

5.2.2.1 UNI Instance details

The UNI’s interface structure is defined previously in this document (see Section
3.1.1), but with a more general overview. The YANG module definition can also
be found in Annex B, which uses the YANG interface from the IEEE standard to
provide a YANG module ready to be used between clients and servers.

This section is aimed to detail the origin and description for all different fields that
conform the UNI requests. It defines every property that needs to be generated
in the CUC.

The “request” container contains the fields below:

1. stream-id: unique identifier for the TSN flow. It is the key value for all main
groups, so it is mandatory in all of them. It has to be compliant with a
regular expression, in which the first 48 bits are the Talker’s MAC and the
last 16 correspond to a pseudo randomly generated UID.

2. stream-rank:rank: value that determines if the stream is considered as high
priority (0) or best-effort (1). Included in the Talker group.

3. end-station-interfaces: specified by both endpoints

a. mac-address: interface from which the TSN flow will be sent or
received.

b. interface-name: name of the TSN interface.

c. data-frame-specification: list that may contain the following fields
with stream identification goals and the use of redundancy.

i. index: identifier of the list element.

ii. ieee802-mac-addresses: gives the MAC address of the

talker and the possible listeners.

iii. ieee802-vlan-tag: specifies the VLAN that the talker uses for
the stream.

iv. ipv4-tuple: if the endpoints do not know Ethernet details, they

can use this field to provide their IPv4 address.

v. ipv6-tuple: same case as the previous field, but providing an
IPv6 address instead.

4. traffic-specification: this fields are specified by the talker

a. interval: contains two fields, numerator and denominator. By
dividing them, the number of seconds for a time window is obtained.

50 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

For example, knowing a numerator is equal to four and denominator
equal to five, it means that the interval is 0.8 seconds long.

b. max-frames-per-interval: number of frames that will be sent during
an interval.

c. max-frame-size: maximum size of a frame in bytes.

d. transmission-selection: specifies which shaper to use. The choices

can be found in Figure 5.3, where CBS is one of the options. In
addition to CBS, Strict priority bases the frame transmission purely
based on queue priorities and Enhanced Transmission Selection
assigns a bandwidth percentage to every traffic class.

Fig. 5.3 Transmission selection choices [43]

e. time-aware:

i. earliest-transmit-offset: minimum amount of time from the
start of an interval in which the device is able to transmit the
frames. It is expressed in nanoseconds.

ii. latest-transmit-offset: maximum amount of time from the
start of the interval in which the frames can be sent before
being considered as deprecated in time. It is expressed in
nanoseconds.

iii. jitter: maximum difference in time between the previous
offsets and the network time (gPTP). It comes from the
network synchronization jitter and application
synchronization with system close regarding packet
transmission.

CHAPTER 5. ARCHITECTURE DESIGN 51

5. user-to-network-requirements: the listener may only specify the required
latency for the traffic. The number on seamless trees can only be provided
by the Talker.

a. num-seamless-trees: number of independent paths for every
Listener.

b. max-latency: maximum value of latency required for the TSN flow,
expressed in nanoseconds.

6. interface-capabilities: specified by both endpoints

a. vlan-tag-capable: boolean value that indicates if the endpoint
supports VLAN tagging.

b. cb-stream-iden-type-list: list for the type of Stream Identification,
formed by the values OUI/CID + Type (see Figure 5.4).

Fig. 5.4 Stream Identification types [44].

c. cb-sequence-type-list: list for the encoding and decoding types of

the sequence number for the Ethernet frames (see Figure 5.5).

52 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 5.5 Sequence encoding and decoding method types [45].

After reviewing the fields for the Talker and Listener groups, we will now focus on
the Status group fields. The CUC has to parse this last group and compute a
correct configuration for the endpoints involved.

1. status-info: provides information about the status of the configuration for a
given stream.

a. talker-status: enumeration that may specify “No Talker”, “Talker

ready” or “Failed”.

b. listener-status: another enumeration that may be “Listener ready”,
“Failed” or “Partial failed”, which means that in scenarios with more
than a listener, some of them succeeded and some of them did not.

c. failure-code: error code according to Figure 5.6.

CHAPTER 5. ARCHITECTURE DESIGN 53

Fig. 5.6 Error types on the Status group [46].

2. accumulated-latency: integer value that represents the value in
picoseconds of the worst-case latency for a stream. The talker receives
the maximum delay over all the listeners. If received by a listener, only the
latency to this same listener is given.

3. group-interface-configuration:interface-list: list that contains different
configurations for every combination of MAC address and interface-name
of a device.

a. group-interface-id: tuple with the MAC address and the interface-
name.

54 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

b. config-list:

i. index: identifier for the element of the list

ii. ieee802-mac-address: source and destination MAC
addresses. Tend to be the same as the request, even though
the destination MAC address may be turned to multicast.

iii. ieee802-vlan-tag: specifies the VLAN tag that will be used in

the network for this TSN stream.

iv. ipv4-tuple: IPv4 address of the received to use for Stream
Identification purposes.

v. ipv6-tuple: analogous of the previous field for a IPv6

address.

vi. time-aware-offset: instant if time determined by the CNC.
The Talker must transmit its data at this precise moment.
This value is between the “earliest-transmit-offset” and
“latest-transmit-offset” given by the same Talker (see
Section 5.2.2.1.4.e).

5.2.2.2 Gate Control List

The CUC also has a logical part aimed to compute the entries of the GCL [16] of
the TAS (see Section 1.2.1). To automate the GCL creation, the CUC must
manage every variable that may be involved in the scheduling of the endpoints.

Because of the complexity derived from the calculation of the GCL, a simplified
sample will be shown, in order to describe the process that the UNI needs to take
to create this field.

Traffic specification Traffic 1:

• Interval: 100 ms
• Max frames per interval: 1
• Max frame size: 500 bytes
• Earl/Lat transmit offsets:

10/20 ms
• Jitter: 1 ms

Traffic specification Traffic 2:

• Interval: 1 s
• Max frames per interval: 2
• Max frame size: 500 bytes
• Earliest/Latest transmit

offsets: 250-300 ms
• Jitter: 1 ms

CHAPTER 5. ARCHITECTURE DESIGN 55

A sample response from the CNC for all these values could be the one below.
Note that both traffics get a VLAN priority assigned and a transmit time. If we
compare them to the earliest/latest transmit offsets, all of them can transmit at
their correct moment.

1. time-aware-offset traffic 1: 10 ms

2. VLAN priority traffic 1: 6

3. Time-aware-offset traffic 2: 250 ms

4. VLAN priority traffic 2: 5

With these values combined with the ones obtained from the Talker, the CUC
must be able to compute the Time Aware Scheduler, as shown in Figure 5.7.

Fig. 5.7 Time aware shaper example.

1. The time slots in which the TSN traffic can be transmitted coincides with
the “time-aware-offset” that the CNC is providing to the talker. This
restriction would imply that the second traffic “Traffic 2” is splitted in
another priority. By this, both TSN traffics are able to transmit at the exact
“time-aware-offset” the CNC has proposed.

2. There is a need to specify how long a gate status will be held. In other

words, each GCL value needs to provide the amount of time that the gates
will have a state mapped (either transmit or idle).

56 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

3. There is a need to have synchronization regarding the instant of time in
which the TAS cycle begins. If not, the “time-aware-offset” cannot be
placed correctly inside. This can be done easily by matching the “interval”
time given from the Talker with the cycle duration of the traffic scheduler.

In conclusion, the CUC needs to specify the following for a GCL: TAS interval
duration and GCL. This last element includes the status of the gates for each
priority and the amount of time. Table 5.1 shows an example of a GCL that
complies with the aforementioned requirements.

Table 5.1 Example GCL

0 1 2 3 4 5 6 7

g0 (10ms) 1 1 1 1 1 0 0 1

g1 (1ms) 0 0 0 0 0 0 1 1

g2 (39ms) 1 1 1 1 1 0 0 1

g3 (1ms) 0 0 0 0 0 1 0 1

g4 (49ms) 1 1 1 1 1 0 0 1

1. g0: best-effort traffic, since we know frames from priorities 5 and 6
will not be transmitted during this time. Open from 0 to 10ms.

2. g1: priority 6 transmission interval. Open from 10 to 11 ms.

3. g2: best-effort traffic, open from 11 to 50 ms.

4. g3: priority 5 transmission. Open from 50 to 51 ms.

5. g4: best-effort traffic, open until the end of the cycle.

An alternative, for example, is that a CBS assigns a higher throughput and weight
to the priority 5 queue. By doing this, that particular traffic would be prioritized
against others. Other approaches can also comply with the requirements.

It is important to note that the computation of the GCL is not simple. The IEEE
provides a paper with guidelines on how to implement the computation [47]. Since
our focus is on the design of the prototype and not on the scheduling, a simple
GCL computation is implemented in the prototype.

CHAPTER 5. ARCHITECTURE DESIGN 57

5.2.3 RESTCONF Client

As seen in Section 2.1.4, RESTCONF relies on the HTTP client/server
architecture. This forces the same configuration data to not be splitted in different
requests, since there is no datastore other than the running datastore. The
datastore directly sets the configuration to the device. This means that our
RESTCONF client shall send only fully prepared requests, including the talker
and listener’s information all in once. In addition, to enhance the data control (one
of the lacks of RESTCONF), different assertions should be checked by the LUC
before sending a request:

1. Check the information coming from the OPC-UA client and parse
all the fields.

2. Use the parsed fields in order to build an instance YANG module
(described in Annex B).

3. Use a YANG validator to check the instanced data against the

YANG module definition.

Apart from preparing the data to be send later to the CNC, the RESTCONF client
also may request configuration from it. Then, it needs to have an interface with
the Logic Unit Center to perform any kind of request. Keep in mind that this
interface has been designed and implemented. However, it is not used by the
final prototype, because a prototype of a CNC is under development.

5.2.3.1 HTTP/2 details

Since RESTCONF is implemented over HTTP/2 [48], it requires HTTPS Mutual
Authentication. This means that a TLS Handshake authenticating both the server
and the client must be performed. In order to do this, we need to build a root
certificate for the RESTCONF server and different certificates signed by it. This
client certificates can be used by clients.

In addition, since requests are performed as a RESTful service, API endpoints
should be defined by the CNC to give the clients the best detail about how to use
them. In the current state of the CNC, these endpoints are defined as follows.

1. “https://{{host}}:{{port}}/restconf/data/ieee802-dot1q-tsn-types-upc-
version:tsn-uni

▪ POST method

▪ Body type: JSON

▪ Content expected: instance of the YANG module referenced
in Annex B.

▪ Response: HTTP status code

58 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

2. “https://{{host}}:{{port}}/restconf/data/ieee802-dot1q-tsn-types-upc-

version:tsn-uni

▪ Same endpoint used, but with a GET method.

▪ Response type: JSON

▪ Response content: current status groups from the UNI,
including TSN information to configure the endpoints.

As previously mentioned, at the moment of finishing this document, there is no
CNC prototype, since it is under development. This means that all the API
endpoints cannot be fully provided and the generation of the information from the
CNC is mocked. For this project, the CUC uses sample values that can later be
used to configure the endpoints as if they were real.

5.3 Endpoints

Our endpoints are software-based, running on common PCs equipped with an
Intel i210 network interface card. On the one hand, the endpoints need to
establish their features and requirements in their Address Spaces to offer them
to the CUC. On the other hand, they need to receive the information from the
CUC and perform an automated TSN configuration of its interface. It has two
virtual interfaces against the rest of the setup, as follows:

1. OPC-UA Interface: the other side of the CUC OPC-UA Interface. This
device needs to prepare an optimal Address Space in order to publish all
the requirements for the TSN stream. Also, a method to configure itself
with the incoming configuration from the CUC, when the endpoint is a
Talker. If it is a Listener, there is a need to set up the traffic receiver in
order to evaluate the TSN flow.

2. TSN Interface: the interface that will be used to transmit or receive the
TSN stream, having its performance adapted to the configuration received
by the CUC.

Both interfaces can be seen in Figure 5.8.

CHAPTER 5. ARCHITECTURE DESIGN 59

Fig. 5.8 Endpoint overview.

The workflow that the endpoints follow to obtain configuration and apply it is
defined below.

1. On wake up, set the interface details and flow requirements at the
Address Space of an OPC-UA instanced server.

2. Flush any previous TSN configuration that may be applied to the TSN
Interface and load the actual ones.

3. Enable write permissions on the configuration variables coming from
the CUC, so that they can be under the endpoint’s control.

4. Expose a method node to trigger the applying of the new earned

configuration or start a receiver, depending on endpoint’s nature.

5. TSN Flow will be established.

5.3.1 Address Space definition

Most of the variables that need to be in the OPC-UA servers will be basic well-
known types. However, the aforementioned method node will be used to apply
the received configuration. All the properties described below make a direct
reference to the different fields on the UNI defined in Section 3.1.1.

60 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

5.3.1.1 EndpointFeatures

It contains the device’s features and requirements used both by a talker and a
listener.

1. endpointType: String that determines if the endpoint is Talker o
Listener.

2. identificationType: UInt32 reserved for future use for Stream
Identification.

3. interfaceName: String with the name of the TSN interface of the

endpoint.

4. macAddress: String that contains the MAC address of the TSN

interface.

5. maxDelay: UInt32 that expresses the maximum latency required in

nanoseconds. Reserved for future use.

6. redundancy: Boolean expressing the requirement of path redundancy.

Reserved for future use.

7. streamId: String that uniquely identifies the TSN flow.

8. streamIdTypes: String reserved for future use for Stream Identification.

9. vlanCapable: Boolean to determine if the endpoint manages VLANs.

The talkers, in addition, have extra variables in EndpointFeatures in order to
specify the traffic to be transmitted:

1. earliestTransmitOffset: UInt32 expressed in nanoseconds.

2. intervalDenominator: UInt32 that gives the numerator of a rational
value to express the time interval in seconds.

3. intervalNumerator: UInt32 that gives the denominator of the same

previous value.

4. jitter: UInt32 expressed in nanoseconds.

5. latestTransmitOffset: UInt32 expressed in nanoseconds

6. maxFrameNumber: UInt32 during the interval

7. maxFrameSize: UInt32 of the TSN frames.

8. priority: UInt32 that states the priority for the given TSN stream.

CHAPTER 5. ARCHITECTURE DESIGN 61

9. transmissionSelection: UInt32 identifying the transmission selection
algorithm.

5.3.1.2 TSNInterfaceConfig

In addition, as stated in the previous lines, the Address Space also needs an
object to store the configuration from the CUC and trigger its setting. The
variables that will be used in that object, called TSNInterfaceConfig, are as
follows:

1. LaunchConfig: Method that triggers the setting of the TSN configuration
and the flow transmission.

2. gclGates: [UInt32] array of gate status. It indicates which priority is able
to dequeue data.

3. gclGatesTimeInterval: [UInt32] time associated to each state in the
previous variable.

4. interval: UInt32 expressing the interval duration of the scheduler.

5. latency: UInt32 maximum latency among all listeners. Reserved for

future use

6. vlanIdValue: UInt32 that determines the VLAN ID to be used.

5.3.1.3 PublishObject

Moreover, for testing purposes, talkers need to have a changing variable that will
be published through the TSN Flow to listeners. The object is called
PublishObject and it only has one variable, which its content defines the traffic
specification of the emitting TSN flow based on OPC-UA Publish/Subscribe:

1. publishObjectData: String

5.3.1. SubscribeClientObject

Finally, the listeners need an entry point on their Address Spaces in order to start
a subscription or any other data receiver. To do that, the following object is
present in the Address Space. It is called SubscribeClientObject and contains
only a variable that will trigger an OPC-UA Client instance to Subscribe for the
talker’s changing variable.

62 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

If the TSN flow is not an OPC-UA based communication, the suitable receiver is
powered on, such as an iperf1 server.

1. initSubcription: Method

2. interval: UInt32 (only used by OPC-UA Subscription)

5.3.2 Interface configuration

Interface configuration will be an automated process that will parse the new CUC
configuration and apply it on the specified interface. The details of this automation
can be found in Section 6.4 and Annex D.

After making definition on how both components are, it is a good moment to
introduce the overall architecture. The CUC and the endpoints are contained in
Figure 5.9, representing the logical view of the prototype.

Fig. 5.9 Overview of the architecture of the prototype

1 Iperf is a client-server-based tool that helps to determine the available bandwidth between

participants. In addition, it provides jitter details. It is used to test the TSN configuration becauseit
contantly generates a given bandwidth. This means that packets will always be ready to be sent,
a different approach than the OPC-UA Publish/Subscribe traffic.

CHAPTER 6. IMPLEMENTATION 63

CHAPTER 6. IMPLEMENTATION

This chapter presents the process to set up the developed environment. It begins
with the network, followed by the time synchronization between participants in the
prototype. In addition, the instance of the used Address Spaces and an endpoint
sample configuration are shown. To integrate all of these parts, a general
prototype performance is presented in the last section of this chapter.

6.1 LAN

This step consists in the connection between elements of the prototype: two
endpoints (Linux PCs), the CNC/CUC (another PC) and a SoC-e MTSN switch
[49]. Figure 6.1 illustrates the network topology, together with additional data (IP
and MAC addresses, interfaces, ports).

Fig. 6.1 LAN created for the prototype.

Endpoints (Linux systems) need to get their interfaces configured in order to be
in the network, as any other device taking part in a LAN. Note that the CUC and
the Talker are located in the same physical machine. This decision is taken only
for resource optimization, since the CUC can be set up in any other device
connected to the network.

6.2 Time synchronization between Endpoints and the TSN
switch

In previous works [50] [51], there were several unsuccessful attempts to
synchronize the clocks of the Intel i210 NICs and the SoC-e MTSN switches. We
now know that the switches’ implementation of the 802.1AS standard comes from
the “linuxptp” [52] package. This is a relevant information, since our endpoints
can run the same software, thus minimizing compatibility issues.

64 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

6.2.1 Installation and use of linuxptp

From the README of the package:

1. Using git, clone the repository from http://git.code.sf.net/p/linuxptp/code
linuxptp.

2. Open a terminal on the root of the cloned folder and type the command

make (a known tool to specify the compiling process of C programs). Call
the command make install in order to bring the tools ptp4l and phc2sys to
the system path. As an alternative, it is possible to install linuxptp by typing
the command sudo apt install linuxptp.

3. To initialize it, the command

4. “sudo ptp4l -i enp3s0 -f configs/gPTP.cfg –step-threshold=1 -m”, where “-
i” gives the interface going to be synchronized and the flag “-m” gives
output to the terminal. The flag “-f” specifies the configuration file, getting
the standard gPTP parameters, as shown in Figure 6.2.

Fig. 6.2 gPTP.cfg file.

If we enable the 802.1AS in both endpoints, their network interfaces become
synchronized. For more details on the use of the “ptp4l” tool, check the manual

http://git.code.sf.net/p/linuxptp/code%20linuxptp
http://git.code.sf.net/p/linuxptp/code%20linuxptp

CHAPTER 6. IMPLEMENTATION 65

page [53]. To apply this network interface clock synchronization to the actual
system clock, the phc2sys tool [54] is used with the following command:

“sudo phc2sys -s enp3s0 -c CLOCK_REALTIME --step_threshold=1 \ --
transportSpecific=1 -w -m -l 7”

The “-s” flag indicates the master clock and “-c” will be the slave, meaning that
the system clock will map its value from the network interface. The
“transportSpecific” flag is needed to communicate with ptp4l when it uses gPTP.
“-w” means a wait flag to wait for ptp4l values. The last value, “-l”, is the log level,
set to the maximum.

Fig. 6.3 Captures from ptp4l and phc2sys processes

Figure 6.3 shows two captures from the terminals. The first capture shows ptp4l
syncing the clock with the GrandMaster clock, which is the Talker/CUC device.
The offset values between clocks ranges from two to five nanoseconds. The
second capture shows messages from the phc2sys process. It is noticeable that
sometimes it loses the synchronization, reaching values of offset close to a
millisecond. This may be a problem. Other computers where we tested the same

66 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

set up do not provide these peaks, meaning that the reason may be found in the
physical hardware of the device. Specifically, on the Listener machine. It is
important to remind these peaks during the results of the tests reported in Chapter
7.

6.2.2 Interconnection with the TSN switches

To enable 802.1AS on the TSN switches, the configuration webpage must be
used. We can login using admin as user and soc-e as password. Then, if we
navigate to the Advanced mode and click on the Synchronization tab, we can see
the screenshot shown in Figure 6.4.

Fig. 6.4 SoC-e MTSN 802.1AS synchronization tab.

After making sure that the linuxptp daemons in the TSN switches and the
endpoints are running, they will synchronize. Figure 6.5 is a Wireshark capture
that shows the interface enp2s0 from one of the endpoints.

CHAPTER 6. IMPLEMENTATION 67

Fig. 6.5 Wireshark capture of gPTP protocol in interface enp2s0.

The dissection of the PTP frame shows how the frame is being generated in the
TSN switch. It computes its own correction and resends a new frame (see Section
1.1.2). We now have all the elements in the scenario synchronized, and the
endpoints need to get their TSN configuration and start streaming or receiving
the flows.

6.3 Details on OPC-UA Address Spaces

As stated during the course of this document, there is a need to design the
Address Spaces, so the CUC can poll variables, update configuration and call the
self-configuration methods. Thus, the CUC can provide all the data to configure
the TSN domain.

After creating all the nodes and starting the servers, the Address Space structure
can be obtained by using a free OPC-UA client named “freeOpcUaClient”. In
order to get access to the variables, the CUC needs the NodeId values, shown in
Figure 6.6.

68 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 6.6 Address Space instances for Talker and Listener.

The figure includes an overview of all the variables that the OPC-UA servers
manage. For more detail on each field, see Section 5.3.1. For all fields used in
the sample demo, the namespace is the same, set as 1. The identifier value “i”
points to each variable node.

6.4 Endpoint configuration

Setting up the endpoints to act as Talkers or Listeners in a TSN stream requires
the configuration received from the OPC-UA client to be mapped to different
configuration commands. In fact, as shown in Figure 6.6, variables LaunchConfig
and InitSubcription are method types. This means that a call to these nodes will
trigger a function. Therefore, we need to implement the configuration function to
perform the following steps:

CHAPTER 6. IMPLEMENTATION 69

1. Parse the Address Space TSNInterfaceConfig in order to retrieve the
Gate Control List and the other properties that customize the endpoint
for a specific TSN flow.

2. Delete any previous set configuration to avoid overlapping.

3. Build the tc qdisc, iptables and ip link commands in order to apply the

new scheduling and shaping.

4. Apply the created commands by calling a generated script or a CLI

handler in the server.

As seen in Section 4.2, the use of qdisc tools will modify the standard queuing of
the system. In order to ensure the best performance, the iptables tool may be
used in order to map the chosen traffic into a custom socket priority. By doing so,
endpoints will be able to handle all traffic types in the scheduler, because it will
be distinguished by kernel socket priorities.

The details of the use of all these tools mentioned below are described in Annex
D. These tools are automated in the prototype by a JavaScript function based on
the commands below:

1. “iptables -t mangle -F” – Flushes the Mangle table entries.

2. “iptables -t mangle -X” – Resets the Mangle table.

3. “"tc qdisc del dev {{interfaceName}} root" – Deletes any existing
configuration on the queuing disciplines.

4. "iptables -t mangle -A POSTROUTING -o {{interfaceName}} -p tcp --

sport 4333 -j CLASSIFY --set-class 0:2" – Maps the TSN traffic into the
second socket priority.

5. “"iptables -t mangle -A POSTROUTING -o {{interfaceName}} -j

CLASSIFY --set-class 0:3" – Maps all IP traffic to the third socket
priority, in order to perform traffic scheduling with both different
priorities.

6. “"tc qdisc replace dev "+interfaceName.value+" parent root handle 100

taprio num_tc 3 map 0 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 queues 1@0 1@1
2@2 base-time 1536883100000000000 {{sched-entries}} clockid
CLOCK_TAI" – Establishes the parsed Time Aware Scheduler to the
queuing disciplines of the network interface. It maps every socket
priority into a defined traffic class. In addition, it defines how the traffic
classes are mapped into the NIC’s queues.

70 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

6.5 Prototype integration and set up

This section links all the previous steps in order to fully instantiate the prototype
of the thesis. In order to do that, it is recommended to read Annex C, which
specifies the developer’s guide of the software implementation [55], giving details
on how the flow is explicitly implemented and how it could be modified for different
setups. Anyways, the current implementation is the one used for the model
presented during this section.

6.5.1 System requirements

All endpoints that take part in the environment are required to have the following:

1. Ubuntu 20.04 [56] or any distribution that uses a Linux kernel 5.0 or
newer.

a. Older distributions from Ubuntu can be used, but a manual
kernel and iptables update is required.

2. Intel i210 Network Interface Card.

a. Time synchronization running in all endpoints and the SoC-e
MTSN switch, as described in Section 6.2.

Apart, all systems that take part on the architecture need to:

1. Install Node [57], which includes the npm packet manager, in order to
install all applications on the devices.

2. Be in the same LAN (see Section 6.1).

With all these conditions satisfied, the software implementation can be set up in
the components. It is important to state that the scenario may work even though
the time synchronization is not set in the network. However, results would be
totally unpredictable, since the time offsets between elements is unknown and,
therefore, deterministic performance cannot be guaranteed.

6.5.2 Set up of the components

Even though the prototype considers the CUC and the Talker in the same

computer, the setting up of the components is treated separately, because both

software implementations are independent and it can be easily separated by

modifying the configuration files.

In order to install all the required external libraries of the Node projects for any of

the components (Talker, Listener and CUC), call command “npm i” in the

following directories:

CHAPTER 6. IMPLEMENTATION 71

1. /TSN-CNC-CUC-UPC/CUC

2. /TSN-CNC-CUC-UPC/ENDPOINTS/Talker

3. /TSN-CNC-CUC-UPC/CUC/Listener

Then, this prototype will install the Talker/CUC solutions to the same PC and the
Listener software solution will be set up in the other machine.

6.5.2.1 Endpoints

The “config.json” file provides different parameters regarding the endpoint
properties and stream identifier to publish or subscribe. The Listener
configuration file is shown in Figure 6.7.

Fig. 6.7 Listener’s config.json.

If we test TSN flow that is used is the OPC-UA Publish/Subscribe, the Listener
needs to specify the URL of the Talker that will publish the TSN stream. For the
Talker case, Figure 6.8 shows the configuration properties.

Fig. 6.8 Talker’s config.json.

In order to easily modify the traffic specifications (only for the OPC-UA
Publish/Subscribe case), the property “interval” sets the amount of time in

72 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

seconds in which a variable is updated periodically, triggering the Publish of the
“publishObjectData (ns=1i=1027)” node. The length of this Address Space node
is set by the field “dataLength” in the configuration file, in Mbytes.

After setting the configuration files for both endpoints, they can be run by the
command “node ./index.js” in their respective root folders. The Talker, after
waking up, will set the values of its Address Space and start modifying the
“publishObjectData”. The Listener, instead, sets its Address Space properties
and waits for an action from the CUC.

If the action of the CUC is not triggered in the Listener, the OPC-UA Subscription
does not occur, thus the TSN flow generated by the Node application is never
sent through the network. This is a valid use case to test the TSN features with
other tools, such as iperf.

Once the CUC sends the configuration back to the devices, the Talker configures
the interface based from its own information and the one received by the CUC,
confirming it with the logs, as shown in Figure 6.9.

Fig. 6.9 Configuration values for the Talker’s interface configuration.

The Listener, when it receives the action from the CUC, will perform a Subscribe
to the Talker’s variable in its Address Space, as follows in Figure 6.10.

Fig. 6.10 Subscription triggered and received in Listener.

CHAPTER 6. IMPLEMENTATION 73

Note that the implemented prototype can be tested with OPC-UA traffic, but also
with any kind of traffic the Talker would want to give guarantees. We only need
to reset the TSN requirements in the Talker to use a different traffic.

6.5.2.2 Centralized User Control

After installing all the npm packages, we set the OPC-UA Client URLs in the file

“config.json”, shown in Figure 6.11.

Fig. 6.11 config.json for the CUC.

In this example the URL of the Talker is in the localhost, the same machine as
the CUC. Both CUC and Talker can run separately if this variable points to the
Talker OPC-UA Server in a different machine.

Apart from the OPC-UA Servers addresses, there is also the URL to the CNC,
the RESTCONF server, mocked. However, for development purposes, it can be
changed to use the RESTCONF Client module (see Annex C).

After setting correctly all the Endpoints’ URLs, the project can be started by
calling the command “node ./index.js” in the root directory of the CUC project. If
the OPC-UA Servers are awake, we can see how the connection is established
by checking the logs, as shown in Figure 6.12.

Fig. 6.12 CUC waking up process logs.

Once the Servers’ Address Systems has been accessed, the CUC generates a
YANG instance group and sends it to the CNC, as shown in Figure 6.13.

74 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 6.13 CUC logs regarding the instantiation of the UNI groups.

After receiving the network configuration from the CNC, the CUC computes the
Talker’s GCL and sends it to the Talker, including the timeOffset and variables to
help the Endpoint support several flows and interfaces, such as interface, vlanId,
streamId and macAddress. It also has the latency to the listener (mocked
property, which is supposed to be obtained from the CNC response), as shown
in Figure 6.13.

Fig. 6.14 CUC generated GCL for the Talker.

After the configuration is successfully sent by the CUC, it triggers the methods to
the endpoints, starting the TSN flow.

Fig. 6.15 CUC sending TSN and Subscription config.

Figure 6.16 shows the testbed scenario running at EETAC’s laboratory C4-325.

CHAPTER 6. IMPLEMENTATION 75

Fig. 6.16 Equipment used in the testbed. From left to right: Linux PC running
the Talker, TSN switch, Linux PC running the Listener.

76 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

CHAPTER 7. TESTS AND RESULTS

This chapter describes the tests performed on the prototype and the results
obtained. All test reports are provided with the following information:

1. Test objective

2. Set up and configuration properties

3. Results

4. Test conclusions

The two main tests reported here are:

1. Basic scheduling test and evaluation with OPC-UA Pub/Sub
implementation

2. Scheduling performance test with TSN traffic generated by iperf

All tests performed and its results can be found in the project repository [58]. This
resource contains more tests than the ones reported. This is because this
document aims to give the most remarkable results.

In the following figures and charts, the TSN flow is always colored green, the
best-effort traffic is orange and gPTP traffic (which is very light and it cannot be
seen in most of the figures) is dark.

7.1 Basic scheduling test and evaluation with OPC-UA
Pub/Sub implementation

The goal of this test is to evaluate the scheduling that is being performed by the
Talker. The test is performed using the OPC-UA traffic generated in the
Javascript program. To achieve this, different traffics and different congestion
status are used. An analysis of the transmission and system delays is provided
to bound the performance of the implementation. In addition, the use of a Node
application to generate high-sensitive traffic is tested.

7.1.1 Set up and configuration properties

The prototype is tested with several traffic scenarios:

1. First, only TSN traffics are sent by the device. This helps to determine
the behavior of the scheduling mechanism and the traffic generation

CHAPTER 7. TESTS AND RESULTS 77

implementation (handled by a Node application). In order to put the
system under stress, transmission times are reduced and the traffic is
analyzed. Figure 7.1 provides more details of the scenario:

Fig. 7.1 First scenario, with the TSN flow.

2. In a second step, similar TSN traffics are used combined with a best-

effort flooding. This is to determine how the time slots of the scheduler
are used by the different priorities, proving the correct performance of
the configuration received by the CUC. In addition, the behavior of the
generated TSN traffic is analyzed. Figure 7.2 illustrates the scenario:

Fig. 7.2 Second scenario: similar to the first one, with an additional best-effort
traffic.

3. Finally, the second case is repeated without any TSN configuration on

the Talker. Because of this, both performances can be compared and
extract conclusions from them. Figure 7.3 presents this scenario.

78 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig 7.3 TSN configuration is disabled for the third test case.

7.1.2 Results

When a traffic composed of a 1 MByte file sent every one second cycle, we obtain
Figure 7.4, where we see the received packets at the Listener in a time graph.

Fig. 7.4 Wireshark capture showing TSN flow and gPTP protocol.

We can see two different traffics in the capture. The green one is the OPC-UA
TSN flow, where the Listener receives 1 MByte in every cycle (1 second). The
dark traffic is gPTP and, since it is configured as the highest priority, it can be
transmitted at any time, during any TAS defined interval. Thanks to this, the clock
synchronization in the network is maintained. If the gPTP traffic was considered
only in a time window, there would be a time offset between the sending from the
application level and the forwarding from the NIC, causing failures when trying to
maintain synchronization.

CHAPTER 7. TESTS AND RESULTS 79

In addition, this traffic can also provide details on the delay of the Node
application traffic. It is based on the logs that both Talker and Listener report for
every TSN packet sent or received in the OPC-UA server and client, respectively.
By considering the sending/receiving timestamps, delay and jitter figures can be
built. The delay and jitter of every received Subscribe message is plotted in
Figure 7.5. This traffic is transmitted from Talker to Listener every one second
after being configured by the CUC. The time slot for the TSN traffic is set to
80.028 ms.

Fig. 7.5 OPC-UA Pub/Sub traffic delay in milliseconds (Y axis), versus
Subscribe message sequence number (X axis).

At first, the most remarkable result is that the delay reaches very high values, just
below a second. The reason may be the traffic scheduling and its synchronization
with the Node application. When the transmitted packed is generated in the
application level, it is transmitted to the Linux kernel and stays in the queuing
disciplines until the scheduler choses it. Then, since our TAS has chosen a time
interval of one second, it may be possible that the packet arrives to the queue
right after it has been its time to transmit. In addition to this, the time slot set for
the TSN flow is adjusted to the “maxFrameSize” and “maxFrameNumber” set in
the Talker. This means that the slot set is not big enough to dequeue more than
one Subscribe frame. Consequently, the following Subscribe messages will be
shifted one entire cycle of the scheduler, providing delays close to the cycle
duration, one second.

The Application jitter (the variation of the delay for every packet compared to the
average delay) is shown in Figure 7.6 and most of the results are between ±6ms.
Since we are checking from server application to client application, this variance
may come from the Talker’s application or from the network.

930

935

940

945

950

955

960

965

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Application Delay (ms)

80 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 7.6 OPC-UA Pub/Sub traffic jitter in milliseconds (Y axis), versus Subscribe

message sequence number (X axis).

From the same Wireshark capture used in Figure 7.4, the timestamps performed
by the Intel i210 cards at the sending and receiving instants can be checked and
compared. By checking every first packet timestamp of every interval, the end-
to-end delay and jitter of the network can also be determined, as shown in Figure
7.7.

Fig. 7.7 Network delay for the case of 1MByte every 1s TSN traffic, in
microseconds (Y axis), versus Subscribe message sequence number (X axis).

At first look, the network delay is much smaller than the Application delay and it
is very reasonable, since the network is not congested. Once a packet is

-15

-10

-5

0

5

10

15

20

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Application Jitter from 941.777ms

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Network Delay (µs)

CHAPTER 7. TESTS AND RESULTS 81

transmitted, it will not find any full buffers during the path, so its delay will be the
minimum. Regarding the jitter, it is expected that the delay of different frames
does not differ too much, as we can see in Figure 7.8.

Fig. 7.8 Network jitter for the case of 1MB every 1s TSN traffic in microseconds
(Y axis), versus Subscribe message sequence number (X axis).

Since the transmission delay and jitter are much lower than the Node App latency,
it seems that the traffic generation is not performed optimally. To optimize it, the
Talker prototype has been modified. It determines the moment in which the
Publish will happen, and it places the frame generation before the start of the
appropriate TAS slot. The result of this change is shown in Figure 7.9.

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Network Jitter (µs)

82 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 7.9 OPC-UA Pub/Sub traffic delay (after the modification) in milliseconds (Y
axis), versus Subscribe message sequence number (X axis).

The delay has decreased importantly. Nevertheless, there is still a lack of strict
synchronization in the implementation of the OPC-UA Publish traffic. It always
leads to high values of latency. The jitter that can be observed in Figure 7.10 is
also higher than before. Since the TAS is the same, this behavior must come
from a lack of synchronization in the Node App.

Fig. 7.10 OPC-UA Pub/Sub traffic jitter (after modification) in milliseconds (Y
axis), versus Subscribe message sequence number (X axis).

From this traffic, we can conclude that our prototype cannot provide with time
synchronization to services that are not attached to the system clock. If the Node

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Application delay (ms)

-80

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Application jitter from 151,237ms

CHAPTER 7. TESTS AND RESULTS 83

application was fully synchronized and transmitted at the same time the TAS slot
began, the delays would look more similar to the network ones. Thus, the TSN
behavior would be real.

The latency analysis on the first traffic has determined that the temporal
requirements cannot be satisfied with the Javascript generated traffic, and
therefore a different application has to be used. However, there is still a need to
check the behavior of the scheduler when best-effort traffic is generated. Figure
7.11 shows the results of adding a best-effort traffic. We can see the 1s interval
set up in the initial configuration and it respects the slots set for every priority,
whether TSN flow or best-effort traffic.

Fig. 7.11 Scheduling performed with simultaneous OPC-UA Pub/Sub and best-

effort traffics.

From the figure, we can conclude that the time-aware scheduler is definitely
working in our Talker endpoint. The performance of the system seems correct,
although the performance of the traffic generator is not good.

If we analyze again the delay and jitter for the OPC-UA Pub/Sub traffic, the results
are similar to the first round of tests (these results are not shown). Also, lowering
the scheduler cycle used to 100ms (instead of one second), the delay and jitter
results are still bad. And we can see that delays behave erratically, with
somewhat stable regions followed by sudden decreases or increases, as shown
in Figure 7.12.

84 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 7.12 Delay for the TSN flow (100ms interval) when there is best-effort
traffic, in milliseconds (Y axis), versus Subscribe message sequence number (X

axis).

These gaps, such as the one that happens around packet 86, could be caused
by the fact that the Node application cannot synchronize, and therefore one of
the Publish packets has been created in a moment in which the TAS slot was
about to trigger, minimizing the time this message waits in buffer. After it, the
subsequent packets keep drifting in time, increasing again the delay. This event
can be seen in Figure 7.13.

Fig. 7.13 Desynchronization coming from the Node application.

0

20

40

60

80

100

120

140

160

180

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

Application delay(ms)

CHAPTER 7. TESTS AND RESULTS 85

The arrows in Figure 7.13 point to undefined behavior of the traffic generation.
Note that one of these frames (the one pointed by the first arrow) is sent in the
same interval than the previous one. This leads to a delay gap between the
consecutive frames. In addition, the second misplaced frame leaves a slot without
any transmission. If the Node App generated synchronously the frames, this
would not happen. The scheduling is working properly, but TSN traffic is not being
correctly generated.

Now that we seem to have isolated the problems to the traffic generator, it may
be possible that the lack of synchronization in the Talker endpoint Node
application generates a worse behavior with the TSN configuration applied.
Because of that, we will compare now delay and jitter with some of the previous
used traffics without any TSN configuration.

Going back to the traffic used in the first test (1 s interval), Figure 7.14 shows
that the scheduling is not being performed.

Fig. 7.14 Listener receiving nonscheduled traffic.

A best-effort traffic is being constantly transmitted with a bitrate of 1 Gbps. Iperf
is the tool used to generate this traffic. When the OPC-UA traffic appears, just
after t = 41 s and t = 42 s, the bandwidth is shared – we can see how the increase
in the green traffic (OPC-UA) is compensated by the decrease in yellow traffic
(best-effort).

Regarding delay and jitter, even though the interface is full of best-effort traffic, it
may still have some degree of determinism, since no other elements are flooding
the network. Because of that (and the fact that the Talker is not able to fully
synchronize with TSN configuration), the delay is similar or even lower, as seen
in Figure 7.15 and Figure 7.16.

86 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 7.15 Delay for the non-TSN configuration case and 1MB every 1s, in
milliseconds (Y axis), versus Subscribe message sequence number (X axis).

Fig. 7.16 Jitter for the non-TSN configuration case and 1MB every 1s, in
milliseconds (Y axis), versus Subscribe message sequence number (X axis).

The shape of the delay and jitter graphs cannot be described, because there is
not any known configuration in the NIC and all traffics are treated as best-effort.
Because of that, the scheduling performed is FIFO, meaning that the frames are
sent as they arrive to the buffers. This is not a deterministic behavior that can be
described. As mentioned, the average value of the delay is similar to the one
tested with time-scheduling. This confirms that the Node application generated
traffic is not deterministic at all.

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Application delay (ms)

-80

-60

-40

-20

0

20

40

60

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Application jitter (ms)

CHAPTER 7. TESTS AND RESULTS 87

7.1.3 Test conclusions

After testing the system limits with this set up, the main conclusions are:

1. The traffic scheduling is performed successfully by the Talker, allowing
gPTP to transmit at any time slot of the TAS and slotting the different traffic
priorities, as shown in Figure 7.4 and Figure 7.11.

2. The OPC-UA Publish/Subscribe traffic generated by the Node application

Publish does not generate traffic synchronously. Strict TSN requirements
will never be achieved with it.

3. This scenario does not permit the testing of shorter time intervals, since
the traffic generation already brings dozens of milliseconds of jitter. With
this condition, it is not possible to test schedulers in the order of the
microseconds.

4. If the generated traffic is not scheduled correctly, the applied TSN
configuration does not guarantee determinism to the system. In fact, the
system gets worse in terms of latency and jitter.

5. The computation of the TSN configuration for the endpoints (as described
in Section 6.5) works properly. This means that the architecture designed
achieves to establish a TSN domain. Even though, it still needs to be
tested at smaller time scales.

Therefore, we must change the data source for the TSN flow and evaluate the
TSN performance of the Talker endpoint. In the following test, the traffic generator
is switched from a Node application to iperf.

7.2 Scheduling performance test with TSN traffic generated by
iperf

The goal of this test is to bring the system to its limits regarding time scale. To
achieve this, two TCP/UDP traffics (with constant bitrate) are generated with iperf.
One is considered the best-effort and the other the TSN flow. By lowering the
time scale, the minimum supported TAS interval and priority slot can be identified
for the current system.

7.2.1 Set up and configuration properties

Similarly to the previous test, different traffics and congestion conditions are
applied. The scenarios include:

88 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

1. A basic scheduling with an interval of one second, to check that the
incoming TSN configuration is still valid when the generator is changed
to iperf. Figure 7.17 shows the scenario of the test:

Fig 7.17 First scenario with iperf traffic. Basic scheduling in a large TAS cycle.

2. In the same time interval, the time slot is reduced until a reasonable
minimum is found. Figure 7.18 provides more details of the traffics
used:

Figure 7.18. Second scenario, with the shortest time slot for a given gate state.

3. The TAS interval is reduced to 200µs (two slots of 100µs), the

hypothetical shortest period obtained in the previous case. Figure 7.19
shows the traffics used and how the scheduler’s cycle is reduced.

CHAPTER 7. TESTS AND RESULTS 89

Fig. 7.19 Third scenario, for testing the shortest possible scheduler cycle in the

prototype endpoints.

The TCP/UDP traffics used are both generated with the iperf tool between Talker
and Listener. Due to the constant bitrate generation, set to 1 Gbps in both cases,
the evaluation of the scheduling performed by the endpoint is optimal. This means
that the TSN traffic does not depend on a synchronized frame generation, since
frames are constantly generated in the maximum network bandwidth and frames
will be available from the beginning until the end of the time slot. By this, it is
possible to keep reducing the time slots and intervals of the scheduler and
evaluate the use of these slots by the talker endpoint.

7.2.2 Results

The first thing to check is if the incoming configuration from the CUC is still
correctly set for the iperf traffics. Figure 7.20 shows how the interface starts
transmitting both traffics without any kind of scheduling. Between time instants
12:35:41 and 12:35:42, the TAS it is set and starts performing the time slots.

90 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 7.20 Basic scheduling performance with iperf traffic.

During the scheduling, the TSN configuration defines that the scheduling starts
exactly when the system clock ticks a new second. Figure 7.20 does not provide
enough detail of the scheduling starting time. Since the Wireshark plotting system
time sensitivity is in the order of milliseconds, it is better to check directly the
reception timestamps from Figure 7.21.

Fig. 7.21 Some Ethernet frames captured with Wireshark.

The theoretical time when the scheduler starts is 12:35:42,000000000. However,
the first frame of the TSN flow is received by the Listener 113.044 µs later. By
checking the network delay calculated in Figure 7.7, its average value is
110.728µs. If both values are subtracted, 2.316 µs are obtained. This value is not
exact, because the taken delay in the network is the average value. The 2.316
µs that the Talker has delayed its ideal transmission can perfectly come from the
phc2sys synchronization offset, observable in Figure 6.3. This synchronization
may be higher and worse results may happen in other tests, because phc2sys
suffers offset peaks in the order of 100 µs.

CHAPTER 7. TESTS AND RESULTS 91

The TSN flow slot duration given by the CUC is 80,028 ms. Between instants
12:35:42,080349037 and 12:35:42,083012244 there is a transitory state during
2,663 ms. Here, the TAS is switching from one time slot to the next one, but it
transmits both traffic classes during this small period of time. In addition, in the
following transition (back to the TSN time slot) there is a transitory state during
1,327 ms. Considering the network delay, the first TSN frame has been
transmitted 221,500 µs late. This high value may come from the overall
desynchronization between clocks, that includes:

1. Desynchronization between Talker’s system clock and Talker’s NIC
clock (microseconds).

2. Offset between Talker’s NIC and Listener’s NIC clocks (nanoseconds).

3. Desynchronization between Listener’s NIC clock and Listener’s system

clock (microseconds).

It is possible to test that the current performance fulfills the TSN requirements in
terms of scheduling and time precision. By shortening the used time slots and
intervals, a good analysis can now be performed (as opposed to the NodeJS App
generated traffic case). Note that for shorter intervals, the TSN flow is switched
to use UDP, with the same port 4333. TCP is only used with the longer time slots.
This is because the acknowledge timers and sliding windows of the protocol may
the sending of the data during short intervals.

First, to find the minimum usable time slot inside any TAS cycle, the transmission
time slot for the TSN flow has been shortened until it is 100 µs long, as shown in
Figure 7.22. Again, the precision of Wireshark plotting is not enough to manage
the microsecond scale, forcing to check the packets with Wireshark.

Fig. 7.22 Wireshark capture with a transmission time slot of 100 µs for the TSN
flow.

92 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

The transmission time window is set during 135.409 µs, a reasonable value given
the synchronization precision of the network and system clocks. Shorter time slot
durations are not transmitting any frame, 100 µs is the minimum configurable time
slot duration. We can conclude that the TSN prototype can work properly with
100 µs time slots at the jitter level measured from the gPTP and the phc2sys
processes.

To finish with this testbench, the TSN flow and the best-effort traffic will be set
both in 100 µs time slots inside a 200 µs cycle of the scheduler. By this, the
performance of the endpoint is tested using its smallest time slots in a TAS cycle.
Figure 7.23 shows the output of the Wireshark graph. Due to the fact that the
slots are 100 µs long, the sensitivity of the Wireshark’s plotting system cannot
distinguish any scheduling.

Fig. 7.23 Incorrect plotting of the 100µs time slot scheduling.

Again, it is better to check the capture directly, as shown in Figure 7.24:

CHAPTER 7. TESTS AND RESULTS 93

Fig. 7.24 Scheduling performed in 100µs time slots for the TSN filter.

Thick lines separate cycles, approximately every 200 µs. The TSN flow is
perfectly placed in its assigned transmission slot. In addition, the receiving
timestamp from Figure 7.24 marks the duration of the intervals.

1. First cycle (frames from 14:22:40,000074332 to 14:22:40,000086436):
191.045 µs, in which only 12.104 µs (first group of eight frames) there
is a transmission of the TSN flow (it should be during 100 µs).

2. Second cycle (frames from 14:22:40,000265377 to
14:22:40,000276572): 192.752 µs. Only 11.195 µs (second group of
eight frames) are used to send TSN flow.

3. Third cycle (frames from 14:22:40,000458129 to

14:22:40,000469003): 174.429 µs of time interval, emitting the TSN
flow during 10.874µs (last group of eight frames).

If we compare these values with the measured desynchronization (in the order of
tens or hundreds of microseconds), the TAS cycle durations make sense.
Nevertheless, the time during which the TSN flow is being sent is too short. The
difference with the results shown in Figure 7.22 is that since the best-effort traffic
has been added and the TAS interval lowered to 200 µs, we may have surpassed
the system limits.

Regarding the bandwidth, it is expected that the value obtained for the TSN flow
is equivalent to the transmit rate multiplied by the transmit time. iperf computes

94 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

and present this value in the console output, as shown in Figure 7.25: 469 Mbps.
The theoretical value is 940Mbps (for Gigabit Ethernet links [59]). This means
that the bandwidth reservation performed is accurate, because the TSN flow
takes the 50% of the scheduled interval.

Fig. 7.25 Bandwidth obtained by the iperf flow when TSN is active.

7.2.3 Test conclusions

The use of iperf traffic in order to determine the prototype characteristics has
been useful. It has allowed to lower the time interval to the queuing disciplines
limit. We have also seen that the desynchronization of gPTP and phc2sys is a
source of the inaccuracy that has been measured. The main conclusions are:

1. Iperf traffic generation has permitted to find the system limits, since it
is a much better traffic generator than the OPC-UA Publish/Subscribe
traffic in the NodeJS App.

2. Our scheduler is able to support 100 µs time slots. This means that the
minimum cycle for a whole TAS cycle is 200 µs for the current
implementation in Linux Systems.

3. Desynchronization, mostly from phc2sys services, brings inaccuracy to

the length of the intervals and the time slots. Since the
desynchronization offset may reach hundreds of microseconds, the
endpoints used in the prototype should enhance in performance to
lower it. By increasing its computational resources and minimizing the
number of running processes and services, endpoints should get their
synchronization more precise.

4. Bandwidth reservation is possible for constant bitrate flows. The bitrate

obtained is always equivalent to the percentage that the transmission
time slot takes inside the interval, multiplied by the bitrate of the TSN
flow.

5. The transmission jitter is also limited. Its maximum value is the result

of subtracting the TAS cycle length from the length of the slot assigned
to the TSN flow. For example, in our prototype, we have measured a

CHAPTER 7. TESTS AND RESULTS 95

minimum interval of the TAS is 200 µs and a minimum time slot of 100
µs, so the maximum jitter that the TSN configuration offers is 100 µs.

96 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

CHAPTER 8. CONCLUSIONS AND FUTURE LINES

8.1 Conclusions

Our goal was to design a prototype of SDN-controlled TSN endpoints. This work
has applications in scenarios related to time-sensitive networking, such as
Industry 4.0, Smart Vehicles, Internet of Things, or 5G, among others).

Our prototype is able to integrate in an SDN-controlled network that unifies all
industrial systems to the same infrastructure, guaranteeing the requirements of
the systems that need strict temporal requirements. This means that all devices
in a factory will be able to communicate optimally, despite sharing communication
resources with other systems and avoiding network congestion. Our prototype is
based on standards. This is something important in this sector, since most of the
implementations are device-dependent and its interoperability is usually not
guaranteed.

The proposed solution uses OPC-UA to configure any device in an Ethernet
network to establish time-sensitive domains (TSN flows) and guarantee a given
QoS. The prototype designed in this project is able to dynamically configure TSN
domains across the network. Furthermore, the use of OPC-UA enhances the
solution’s adaptability, since it can be used in a wide variety of contexts. In short,
any device can easily run OPC-UA and communicate with the CUC to take part
in any TSN domain. To the best of our knowledge, this is the first open-source
implementation able to do that.

In relation with the performance of the prototype, the CUC is able to give
configuration to the endpoints. The CUC provides the endpoints configuration
regarding the scheduling they need to perform in order to satisfy the time
requirements. This proves that the architecture is valid and the CUC is able to
manage time-sensitive endpoints in a network. With the integration of a CNC,
overall network performance can be tested; however, for this project, we have
limited ourselves to use the current implementation without a network controller
to find the endpoints’ time-sensitive capacities.

The tested endpoints are able to perform traffic scheduling, ensuring bandwidth
reservation to the TSN flows that may require it. The endpoints are able to
perform scheduling in scales below the microsecond, using a minimum time slot
size of 100 µs and, consequently, a minimum TAS cycle of 200 µs (two 100 µs
time slots). We must emphasize that the endpoints’ clock synchronization is not
ideal, with inaccuracies close to 100 µs if the offsets from all components are
added. Therefore, if endpoint PCs with better clocks were used, with lower
phc2sys synchronization offsets, the overall performance of the prototype should
improve.

The performance of the traffic generator in the NodeJS App is not accurate.
Therefore, a different environment has to be used to generate time-sensitive

CHAPTER 8. CONCLUSIONS AND FUTURE LINES 97

OPC-UA traffic. In order to stress the system and find its performance
boundaries, we used iperf traffic, which worked quite well.

8.2 Future lines of development

The prototype, based on the fully centralized architecture, can be extended in
many ways. Once a CNC implementation is available and the communication
between CUC and CNC is fully specified, both can join to complete the model
specified in the IEEE 802.1Qcc standard. This complete model can be added in
an SDN controller. Figure 8.1 shows an overview of an industrial network
scenario and where our prototype would take part.

Fig. 8.1 Global industrial network scenario.

Aside from that, the tests performed for the NodeJS Application in the Talker
endpoint determine that the OPC-UA traffic generation is not performed optimally.
Even though different traffic sources have been used to get to know the TSN
performance of the Talker, the ideal scenario would be to have all devices
communicating by using OPC-UA.

The current problem in our solution is that Javascript does not offer strict time
management. It inherently introduces tens of milliseconds of jitter. As a solution,
a new module needs to be implemented to generate OPC-UA traffic with rigorous
time synchronization locked with the system clock. We would further modify
Figure 5.8, which would give us Figure 8.2.

98 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. 8.2 Modification on the Talker endpoint design.

8.3 Sustainability considerations

Nowadays, the majority of the industrial infrastructure is outdated. Old devices
and technologies tend to be inefficient in terms of power consumption and
performance. By replacing these devices, energy is saved and the power
efficiency is higher. Besides the devices’ qualities, these devices are commonly
used in independent systems inside the all-embracing industrial framework.
Joining all of them in the same network results in saving physical resources, such
as links and bridges. Also, the controllers of these systems can be unified in a
single physical device, because it is able to communicate directly with all
components participating in the network.

In addition, by using software-defined networks, all the network elements can be
managed by the controller. This means that power management can be
performed, so that unused devices can be turned off, only using the necessary
number of resources.

TSN alone does not provide quantifiable benefits to power consumption. In fact,
some of its features (e.g. path redundancy) may introduce extra processing and
load into the network. Nevertheless, TSN is the key solution, as it is capable of
joining all components in one network. Therefore, the benefits presented in the
current paradigm are all possible to the use of time-sensitive standards.

REFERENCES 99

REFERENCES

[1] Nelly Ayllon, “Profinet vs ethernet: definitions and a comparison” [Online].

Available: https://us.profinet.com/profinet-vs-ethernet-definitions-and-a-
comparison/ [Accessible 06 07 2021] [Published 06 26 2020]-

[2] CSS Electronics, “CAN Bus Explained – A Simple Intro (2021)” [Online].

Available: https://www.csselectronics.com/screen/page/simple-intro-to-
can-bus/language/en. [Accessible 06/07/2021] [Last update 2021].

[3] VMWare, “Software-Defined Networking” [Online]. Available:

https://www.vmware.com/topics/glossary/content/software-defined-
networking [Accessed 06 07 2021].

[4] Time Sensitive Networking Task Group, “Time-Sensitive Networking

(TSN) Task Group” [Online]. Available: https://1.ieee802.org/tsn/.
[Accessed 06 01 2021].

[5] IEEE Standards Association, “Bridges and Bridged Networks.

Amendment 31: Stream Reservation Protocol (SRP) Enhancements and
Performance Improvements”, Chapter 46 “Time-Sensitive Networking
(TSN) Configuration” [Online]. Available (private)
https://standards.ieee.org/standard/802_1Qcc-2018.html [Accessed 06
01 2021] [Published 06 14 2018].

[6] Cisco, “Cisco IE-4000 product family” [Online]. Available:

https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/tsn/b_t
sn_ios_support/b_tsn_ios_support_chapter_01.html#concept_hxr_gz3_1
1b [Accessed 06 01 2021] [Last update: 11 11 2018].

[7] OPC Foundation, “OPC Unified Architecture” [Online]. Available

https://opcfoundation.org/about/opc-technologies/opc-ua/ [Accessed 06
01 2021].

[8] Microchip Developer, “Data Link Layer (Layer 2)” [Online picture].

Available: https://microchipdeveloper.com/local--files/tcpip:tcp-ip-data-
link-layer-layer-2/ethernet_wifi_frames.JPG [Accessed 06 07 2021].

[9] mespresso, “Ethernet. Estandar IEEE 802, subcapas LLC y MAC”

[Online]. Available:
https://mespresso.wordpress.com/2017/02/08/ethernet-estandar-ieee-
802-subcapas-llc-y-mac/ [Accessed 06 01 2021] [Published 02 07 2018].

[10] IEEE Standards Association, “Bridges and Bridged Networks” [Online].

Available (private): https://standards.ieee.org/standard/802_1Q-
2018.html [Accessed 06 01 2021] [Published 05 07 2018].

[11] Sebastian Wiesinger, Network Engineering – Stack Exchange, “Why and

how are Ethernet Vlans tagged?” [Online]. Available:
https://networkengineering.stackexchange.com/questions/6483/why-and-

https://us.profinet.com/profinet-vs-ethernet-definitions-and-a-comparison/
https://us.profinet.com/profinet-vs-ethernet-definitions-and-a-comparison/
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en#:~:text=The%20Controller%20Area%20Network%20(CAN%20bus)%20is%20the%20nervous%20system,interconnected%20via%20the%20CAN%20bus
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en#:~:text=The%20Controller%20Area%20Network%20(CAN%20bus)%20is%20the%20nervous%20system,interconnected%20via%20the%20CAN%20bus
https://www.vmware.com/topics/glossary/content/software-defined-networking
https://www.vmware.com/topics/glossary/content/software-defined-networking
https://1.ieee802.org/tsn/
https://standards.ieee.org/standard/802_1Qcc-2018.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/tsn/b_tsn_ios_support/b_tsn_ios_support_chapter_01.html#concept_hxr_gz3_11b
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/tsn/b_tsn_ios_support/b_tsn_ios_support_chapter_01.html#concept_hxr_gz3_11b
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/tsn/b_tsn_ios_support/b_tsn_ios_support_chapter_01.html#concept_hxr_gz3_11b
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://microchipdeveloper.com/local--files/tcpip:tcp-ip-data-link-layer-layer-2/ethernet_wifi_frames.JPG
https://microchipdeveloper.com/local--files/tcpip:tcp-ip-data-link-layer-layer-2/ethernet_wifi_frames.JPG
https://mespresso.wordpress.com/2017/02/08/ethernet-estandar-ieee-802-subcapas-llc-y-mac/
https://mespresso.wordpress.com/2017/02/08/ethernet-estandar-ieee-802-subcapas-llc-y-mac/
https://standards.ieee.org/standard/802_1Q-2018.html
https://standards.ieee.org/standard/802_1Q-2018.html
https://networkengineering.stackexchange.com/questions/6483/why-and-how-are-ethernet-vlans-tagged

100 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

how-are-ethernet-vlans-tagged [Accessed 06 01 2021] [Published 02 25
2014].

[12] Hyung-Taek Lim, Daniel Herrscher, Martin Johannes Waltl and Firas

Chaari, “Performance Analysis of the IEEE 802.1 Ethernet Audio/Video
Bridging Standard”, figure 2 [Online]. Available:
https://www.researchgate.net/publication/262323002_Performance_Anal
ysis_of_the_IEEE_8021_Ethernet_AudioVideo_Bridging_Standard
[Accessed 06 07 2021] [Published 03 2012].

[13] Henning Puttnies, Peter Danielis, Enkhtuvshin Janchivnyambuu and Dirk

Timmermann, “A Simulation Model of IEEE 802.1AS gPTP for Clock
Synchronization in OMNeT++” [Online]. Available:
https://easychair.org/publications/open/Q4kL [Accessed 06 01 2021].

[14] Silicon Labs, “The IEEE 1588 Standard” [Online]. Available:

https://www.silabs.com/whitepapers/ieee-1588-standard [Accessed 06 01
2021].

[15] Wikipedia, “Time-Sensitive Networking” [Online]. Available:

https://en.wikipedia.org/wiki/Time-Sensitive_Networking, section 6
[Accessed 06 01 2021].

[16] IEEE Standards Association, “Bridges and Bridged Networks”, section

8.6.8.4 [Online]. Available (private)
https://standards.ieee.org/standard/802_1Q-2018.html [Accessed 06 01
2021] [Published 05 07 2018].

[17] Wikipedia, “Credit-based fair queuing” [Online]. Available:

https://en.wikipedia.org/wiki/Credit-based_fair_queuing [Accessible 06 07
2021].

[18] IEEE Standards Association, “Bridges and Bridged Networks”, section

8.6.8.2 [Online]. Available (private)
https://standards.ieee.org/standard/802_1Q-2018.html [Accessed 06 01
2021] [Published 05 07 2018].

[19] Time Sensitive Networking Task Group, “Time-Sensitive Networking

(TSN) Task Group” [Online]. Available: https://1.ieee802.org/tsn/,
“Ongoing TSN Projects” section. [Accessed 06 01 2021].

[20] Benoit Claise, Joe Clarke and Jan Lindblad, “Network Programmability

With YANG”, Chapter 1 “The Network Management World Must Change:
Why Should You Care?” and Chapter 2 “Data Model-Driven Management”,
pp. 2-95, Pearson Addison-Weasley, USA [Published in 01 18 2019].

[21] SNMP Center, “Why use NETCONF/YANG when you can use SNMP and

CLI?” [Online]. Available: https://snmpcenter.com/why-use-netconf/
[Accessed 06 01 2021].

https://networkengineering.stackexchange.com/questions/6483/why-and-how-are-ethernet-vlans-tagged
https://www.researchgate.net/publication/262323002_Performance_Analysis_of_the_IEEE_8021_Ethernet_AudioVideo_Bridging_Standard
https://www.researchgate.net/publication/262323002_Performance_Analysis_of_the_IEEE_8021_Ethernet_AudioVideo_Bridging_Standard
https://easychair.org/publications/open/Q4kL
https://www.silabs.com/whitepapers/ieee-1588-standard
https://en.wikipedia.org/wiki/Time-Sensitive_Networking
https://standards.ieee.org/standard/802_1Q-2018.html
https://en.wikipedia.org/wiki/Credit-based_fair_queuing
https://standards.ieee.org/standard/802_1Q-2018.html
https://1.ieee802.org/tsn/
https://snmpcenter.com/why-use-netconf/

REFERENCES 101

[22] Benoit Claise, Joe Clarke and Jan Lindblad, “Network Programmability

With YANG”, Chapter 3 “YANG Explained”, pp. 96-149, Pearson Addison-
Weasley, USA [Published in 01 18 2019].

[23] IETF, “RFC 3444 – Information Models and Data Models” [Online].

Available: https://datatracker.ietf.org/doc/html/rfc3444 [Accessed 06 01
2021] [Published 01 2003].

[24] Matt Albrecht, “Learn YANG. Full Tutorial For Beginners” [Online].

Available: https://ultraconfig.com.au/blog/learn-yang-full-tutorial-for-
beginners/ [Accessed 06 01 2021] [Published 01 03 2020].

[25] Benoit Claise, Joe Clarke and Jan Lindblad, “Network Programmability

With YANG”, Chapter 4 “NETCONF, RESTCONF, and gNMI Explained”,
pp. 158-189, Pearson Addison-Weasley, USA [Published in 01 18 2019].

[26] Benoit Claise, Joe Clarke and Jan Lindblad, “Network Programmability

With YANG”, Chapter 4 “NETCONF, RESTCONF, and gNMI Explained”,
pp. 190-213, Pearson Addison-Weasley, USA [Published in 01 18 2019].

[27] “AGM” – Laiarroz Elektronika, “OPC: Desde el clásico al nuevo OPC-UA”

[Online]. Available: https://larraioz.com/articulos/opc-desde-el-clasico-al-
nuevo-opc-ua [Accessed 06 01 2021] [Published 10 04 2016].

[28] B&R Automation, “OPC UA” [Online]. Available: https://www.br-

automation.com/es-es/tecnologias/opc-ua/ [Accessed 06 07 2021].

[29] B&R Automation, “OPC UA para el control de movimiento, seguridad y

aplicaciones en tiempo real” [Online]. Available: https://www.br-
automation.com/es-es/tecnologias/opc-ua/opc-ua-para-el-control-de-
movimiento-seguridad-y-aplicaciones-en-tiempo-real/ [Accessed 06 01
2021].

[30] TTTech Industrial, “Time Sensitive Networking and OPC UA (OPC UA

over TSN)” [Online]. Available: https://www.tttech-
industrial.com/technologies/opc-ua-over-tsn/ [Accessed 06 01 2021].

[31] John S Rinaldi, “OPC UA Client vs Server” [Online]. Available:

https://www.rtautomation.com/rtas-blog/opc-ua-client-vs-server/
[Accessed 06 01 2021] [Published 10 16 2018].

[32] Unified Automation, “UA Bundle SDK .NET”, section “Address Space

Concepts” [Online]. Available: https://documentation.unified-
automation.com/uasdkdotnet/2.5.2/html/L2UaAddressSpaceConcepts.ht
ml [Accessed 06 01 2021].

[33] Exorint, “The introduction of opc ua publish-subscribe and its importance

to manufacturers” [Online]. Available:
https://www.exorint.com/en/blog/the-introduction-of-opc-ua-pubsub-

https://datatracker.ietf.org/doc/html/rfc3444
https://ultraconfig.com.au/blog/learn-yang-full-tutorial-for-beginners/
https://ultraconfig.com.au/blog/learn-yang-full-tutorial-for-beginners/
https://larraioz.com/articulos/opc-desde-el-clasico-al-nuevo-opc-ua
https://larraioz.com/articulos/opc-desde-el-clasico-al-nuevo-opc-ua
https://www.br-automation.com/es-es/tecnologias/opc-ua/
https://www.br-automation.com/es-es/tecnologias/opc-ua/
https://www.br-automation.com/es-es/tecnologias/opc-ua/opc-ua-para-el-control-de-movimiento-seguridad-y-aplicaciones-en-tiempo-real/
https://www.br-automation.com/es-es/tecnologias/opc-ua/opc-ua-para-el-control-de-movimiento-seguridad-y-aplicaciones-en-tiempo-real/
https://www.br-automation.com/es-es/tecnologias/opc-ua/opc-ua-para-el-control-de-movimiento-seguridad-y-aplicaciones-en-tiempo-real/
https://www.tttech-industrial.com/technologies/opc-ua-over-tsn/
https://www.tttech-industrial.com/technologies/opc-ua-over-tsn/
https://www.rtautomation.com/rtas-blog/opc-ua-client-vs-server/
https://documentation.unified-automation.com/uasdkdotnet/2.5.2/html/L2UaAddressSpaceConcepts.html
https://documentation.unified-automation.com/uasdkdotnet/2.5.2/html/L2UaAddressSpaceConcepts.html
https://documentation.unified-automation.com/uasdkdotnet/2.5.2/html/L2UaAddressSpaceConcepts.html
https://www.exorint.com/en/blog/the-introduction-of-opc-ua-pubsub-publish-subscribe-and-its-importance-to-manufacturers

102 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

publish-subscribe-and-its-importance-to-manufacturers [Accessed 06 01
2021].

[34] IEEE Standards Association, “Bridges and Bridged Networks.

Amendment 31: Stream Reservation Protocol (SRP) Enhancements and
Performance Improvements”, Chapter 46 “Time-Sensitive Networking
(TSN) Configuration” [Online]. Available (private)
https://standards.ieee.org/standard/802_1Qcc-2018.html [Accessed 06
01 2021] [Published 06 14 2018].

[35] Intel Corporation, “Adopting Time-Sensitive Networking (TSN) for

Automation Systems”, section “TSN Products from Intel” [Online].
Available:
https://software.intel.com/content/www/us/en/develop/articles/adopting-
time-sensitive-networking-tsn-for-automation-systems-0.html [Accessed
06 01 2021] [Last updated 03 13 2020].

[36] Intel Corporation, “Controladora Ethernet Intel® I210” [Online]. Available:

https://www.intel.es/content/www/es/es/products/details/ethernet/gigabit-
controllers/i210-controllers.html [Accessible 06/07/2021].

[37] Gopiga S K, Keerthivasan A S, Nikhil Vannan K, Selva Suba Jenifer J,

Shriya Chaurasia, Suriya Narayanan P V and Thangavaila K T, “How to
run OPC UA PubSub on real-time Linux and TSN using open62541”
[Online]. Available: https://www.kalycito.com/how-to-run-opc-ua-pubsub-
tsn/ [Accessed 06 01 2021].

[38] ankita_saini, “Introduction to Linux Operating System” [Online]. Available:

https://www.geeksforgeeks.org/introduction-to-linux-operating-system/
[Accessed 06 01 2021] [Published 02 18 2021].

[39] Rubén Velasco, “Kernel Linux, descubre cómo es el corazón de este

sistema operativo” [Online]. Available:
https://www.softzone.es/programas/linux/kernel-nucleo-linux/ [Accessed
06 01 2021] [Last update 03 30 2021].

[40] Grégoire Monet, “From Sockets to NIC: A Big Picture” [Online]. Available:

https://medium.com/swlh/from-sockets-to-nic-a-big-picture-7494356cfcd4
[Accessed 06 01 2021] [Published 12 10 2020].

[41] Dan Siemon, “Queuing in the Linux Network Stack” [Online]. Available:

https://www.linuxjournal.com/content/queueing-linux-network-stack
[Accessed 06 01 2021] [Published 11 23 2013].

[42] Intel Corporation, “Intel® Ethernet Controller I210 Datasheet”, Cover of

the document [Online]. Available:
https://datasheet.octopart.com/WGI210IS-S-LJXX-Intel-datasheet-
138896048.pdf [Accessed 06 01 2021] [Published 06 2018].

https://www.exorint.com/en/blog/the-introduction-of-opc-ua-pubsub-publish-subscribe-and-its-importance-to-manufacturers
https://standards.ieee.org/standard/802_1Qcc-2018.html
https://software.intel.com/content/www/us/en/develop/articles/adopting-time-sensitive-networking-tsn-for-automation-systems-0.html
https://software.intel.com/content/www/us/en/develop/articles/adopting-time-sensitive-networking-tsn-for-automation-systems-0.html
https://www.intel.es/content/www/es/es/products/details/ethernet/gigabit-controllers/i210-controllers.html
https://www.intel.es/content/www/es/es/products/details/ethernet/gigabit-controllers/i210-controllers.html
https://www.kalycito.com/how-to-run-opc-ua-pubsub-tsn/
https://www.kalycito.com/how-to-run-opc-ua-pubsub-tsn/
https://www.geeksforgeeks.org/introduction-to-linux-operating-system/
https://www.softzone.es/programas/linux/kernel-nucleo-linux/
https://medium.com/swlh/from-sockets-to-nic-a-big-picture-7494356cfcd4
https://www.linuxjournal.com/content/queueing-linux-network-stack
https://datasheet.octopart.com/WGI210IS-S-LJXX-Intel-datasheet-138896048.pdf
https://datasheet.octopart.com/WGI210IS-S-LJXX-Intel-datasheet-138896048.pdf

REFERENCES 103

[43] IEEE Standards Association, “Bridges and Bridged Networks”, section

8.6.8, figure 8.6 [Online]. Available (private)
https://standards.ieee.org/standard/802_1Q-2018.html [Accessed 06 01
2021] [Published 05 07 2018].

[44] IEEE Standards Association, “Frame Replication and Elimination for

Redundancy”, section 9.1.1.6, table 9.1 [Online]. Available (private):
https://standards.ieee.org/standard/802_1CB-2017.html [Accessed 06 01
2021] [Published 09 28 2017].

[45] IEEE Standards Association, “Frame Replication and Elimination for

Redundancy”, section 10.5.1.6, table 10.2 [Online]. Available
(private): https://standards.ieee.org/standard/802_1CB-2017.html
[Accessed 06 01 2021] [Published 09 28 2017].

[46] IEEE Standards Association, “Bridges and Bridged Networks.

Amendment 31: Stream Reservation Protocol (SRP) Enhancements and
Performance Improvements”, section 46.2.5.1.3, table 46.15 [Online].
Available (private) https://standards.ieee.org/standard/802_1Qcc-
2018.html [Accessed 06 01 2021] [Published 06 14 2018].

[47] Ramon Serna Oliver, Silviu S. Craciunas, Wilfried Steiner, “IEEE

802.1Qbv Gate Control List Synthesis using Array Theory Encoding”
[Online]. Available:
https://www.researchgate.net/publication/324476736_IEEE_8021Qbv_G
ate_Control_List_Synthesis_using_Array_Theory_Encoding [Accessed
06 11 2021] [Published 04 2018].

[48] Ilya Grigorik and Surma, “Introduction to HTTP/2” [Online]. Available:

https://developers.google.com/web/fundamentals/performance/http2
[Accessed 06 01 2021] [Last update 12 02 2019].

[49] SoC-e, “1G MTSN-Multiport TSN Switch IP Core” [Online]. Available:

https://soc-e.com/mtsn-multiport-tsn-switch-ip-core/ [Accessed 06 01
2021].

[50] Josep Oriol Castaño Cid, “Proves amb equipament Time-Sensitive

Networking (TSN)” [Online]. Available:
https://upcommons.upc.edu/handle/2117/119626 [Accessed 06 20 2021]
[Published 07 27 2018].

[51] Joan Feliu Castaño Cid, “Design and proof of concept of a centralized

controller for time-sensitive networks” [Online]. Available:
https://upcommons.upc.edu/handle/2117/119626 [Accessed 06 20 2021]
[Published 07 13 2018].

[52] Vinicius Gomes, “TSN Documentation Project for Linux”, section

“Synchronizing Time with Linux* PTP” [Online]. Available:
https://tsn.readthedocs.io/timesync.html [Accessed 06 01 2021]

https://standards.ieee.org/standard/802_1Q-2018.html
https://standards.ieee.org/standard/802_1CB-2017.html
https://standards.ieee.org/standard/802_1CB-2017.html
https://standards.ieee.org/standard/802_1Qcc-2018.html
https://standards.ieee.org/standard/802_1Qcc-2018.html
https://www.researchgate.net/publication/324476736_IEEE_8021Qbv_Gate_Control_List_Synthesis_using_Array_Theory_Encoding
https://www.researchgate.net/publication/324476736_IEEE_8021Qbv_Gate_Control_List_Synthesis_using_Array_Theory_Encoding
https://developers.google.com/web/fundamentals/performance/http2
https://soc-e.com/mtsn-multiport-tsn-switch-ip-core/
https://upcommons.upc.edu/handle/2117/119626
https://upcommons.upc.edu/handle/2117/119626
https://tsn.readthedocs.io/timesync.html

104 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

[53] Ubuntu manuals, “ptp4l” [Online]. Available:
http://manpages.ubuntu.com/manpages/xenial/man8/ptp4l.8.html
[Accessed 06 01 2021].

[54] Ubuntu manuals, “phc2sys” [Online]. Available:

http://manpages.ubuntu.com/manpages/cosmic/man8/phc2sys.8.html
[Accessed 06 01 2021].

[55] Gabriel David Orozco Urrutia and Jordi Cros Mompart, “TSN-CNC-CUC-

UPC” [Online repository]. Available (private access):
https://github.com/gabriel-david-orozco/TSN-CNC-CUC-UPC.

[56] Ubuntu, “Ubuntu 20.04.2.0 LTS (Focal Fossa)” [Online downloadable OS

Image]. Available: https://releases.ubuntu.com/20.04/ [Accessed 06 01
2021] [Released 04 23 2020].

[57] Node JS, NodeJS Download for Windows” [Online downloadable

development software]. Available: https://nodejs.org/en/ [Accessed 06 01
2021] [Released 04 21 2020].

[58] Jordi Cros Mompart, “Development of an SDN control plane for Time-

Sensitive Networking (TSN) endpoints” Downloadable content [Online].
Available:
https://drive.google.com/file/d/1DPcwr7XWd9zfzqvXiy0uo7xjvsNd7YTX/v
iew?usp=sharing [Accessed 06 20 2021] [Published 06 20 2021]

[59] Gigabit Wireless, “What is the actual maximum throughput on Gigabit

Ethernet?” [Online]. Available: https://www.gigabit-wireless.com/gigabit-
wireless/actual-maximum-throughput-gigabit-ethernet/ [Accessed 06 13
2021].

http://manpages.ubuntu.com/manpages/xenial/man8/ptp4l.8.html
http://manpages.ubuntu.com/manpages/cosmic/man8/phc2sys.8.html
https://github.com/gabriel-david-orozco/TSN-CNC-CUC-UPC
https://releases.ubuntu.com/20.04/
https://nodejs.org/en/
https://drive.google.com/file/d/1DPcwr7XWd9zfzqvXiy0uo7xjvsNd7YTX/view?usp=sharing
https://drive.google.com/file/d/1DPcwr7XWd9zfzqvXiy0uo7xjvsNd7YTX/view?usp=sharing
https://www.gigabit-wireless.com/gigabit-wireless/actual-maximum-throughput-gigabit-ethernet/
https://www.gigabit-wireless.com/gigabit-wireless/actual-maximum-throughput-gigabit-ethernet/

GLOSSARY 105

GLOSSARY

ACID Atomicity, Consistency, Independence and Durability

API Application Programming Interface

BMCA Best Master Clock Algorithm

BS Base Station

CBS Credit Based Shaper

CDP Cisco Discovery Protocol

CID Caller Identifier

CLI Command Line Interface

CNC Centralized Network Configuration

CQF Cyclic Queuing and Forwarding

CSMA/CA Carrier Sense Multiple Access / Collision Avoidance

CSMA/CD Carrier Sense Multiple Access / Collision Detection

CUC Centralized User Configuration

DCOM Distributed Component Object Model

ERP Enterprise Resource Planning

EST Enhancements for Scheduled Traffic

ETF Earliest TxTime First

ETS Enhanced Transmission Selection

FDP Foundry Discovery Protocol

FIFO First In First Out

FRER Frame Replication and Elimination for Reliability

GCL Gate Control List

gPTP Generic Precision Time Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IS-IS Intermediate System to Intermediate System

ISIS-PCR IS-IS Path Control Reservation

ITU-T International Telecommunication Union - Telecommunication

JSON JavaScript Object Notation

LAG Link Aggregation Group

LAN Local Area Network

LLC Logical Link Control

LLDP Link Layer Discovery Protocol

LUC Logic Unit Center

MAC Medium Access Control

MB MegaByte

106 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

MIB Management Information Base

MMRP Multiple MAC Registration Protocol

MRP Multiple Registration Protocol

MSRP Multiple Stream Reservation Protocol

MVRP Multiple VLAN Registration Protocol

NAT Network Address Translation

NETCONF Network Configuration Protocol

NIC Network Interface Card

ODL OpenDaylight

ONOS Operating Network Operating System

OPC-UA OPC Unified Architecture

OS Operating System

OSI Open Systems Interconnection

OUI Organizational Unique Identifier

PCE Path Computation Element

PHY Physical Interface

PSFP Per Stream Filtering and Policing

Pub/Sub OPC-UA Publish / Subscribe communication

QDISC Queuing Disciplines

QoS Quality of Service

REST Representational State Transfer

RESTCONF Network Configuration Protocol over REST

RFC Request for Comments

RPC Remote Procedure Call

SDN Software Defined Networking

SNMP Simple Network Management Protocol

SPB Shortest Path Bridging

SPF Shortest Path First

SRP Stream Reservation Protocol

SSH Secure Shell

STF Stream Transfer Function

STP Spanning Tree Protocol

TAI International Atomic Time

TAPRIO Time Aware Priority

TAS Time Aware Scheduler

TCP Transmission Control Protocol

TLS Transport Layer Security

TLV Type Length Value

TSN Time Sensitive Networking

UDP User Datagram Protocol

UID Unique Identifier

UNI User to Network Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

GLOSSARY 107

UTC Universal Time Coordinated

VID VLAN Identifier

VLAN Virtual Local Area Network

WiFi Wireless Fidelity

XML Extensible Markup Language

YANG Yet Another Next Generation

108 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

ANNEX A. IEEE AND TSN STANDARDS

This annex contains all the protocols and standards that may be related to the
project, but do not have any impact in its development. Some of them belong to
the field of the Link Layer protocols, such as Spanning Tree Protocol, Shortest
Path Bridging / Shortest Path First and Link Layer Discovery Protocol. The
following ones are closer to Time Sensitive Networking, trying to provide new
features to the setting of a TSN domain and flows in a network. Others are
mentioned since they overlap in come aspects.

By introducing these standards, including all the ones mentioned in Chapter 1,
we want the reader with a general overview of the whole TSN-related content
described in this project. Most of them will take part in the future lines of this field
and others are mentioned in order to state a possible overlapping in
functionalities.

A.1 IEEE 802.1d – Spanning Tree Protocol

Spanning Tree Protocol (STP) [1] is a generic used protocol in LAN, aimed to
avoid loop forwarding issues at layer 2 networks.

1. From link cost, priority or MAC address, the root switch is determined
inside a LAN.

2. The rest of the switches set the root port, which is the one with minor cost
to the root switch.

3. For every link, we select as designed port the one with less cost to the root

switch.

4. If in a link there is a designed port and the other one is not the root port,
this last will be disabled from being used.

SPT is implemented in each different VLAN in the infrastructure. As VLANs are
being used to distinguish between different TSN streams, it is important not to
perform SPT [2] in them. By not using Spanning Tree Protocol, the virtual network
does not get its links disabled, permitting redundancy and other features needed
to comply with TSN standards.

A.2 IEEE 802.1aq – Shortest Path Bridging and Shortest Path
First

The reason to consider these protocols is that some TSN standards (specifically
802.1Qbv and 802.1Qca) mention them and there could be a need of an analysis
of them for future lines after this project.

ANNEX A. IEEE AND TSN STANDARDS 109

The Shortest Path Bridging (SPB) [3] standard aims to be a substitute of STP,
offering several advantages:

1. More scalability and convergence speed.
2. More robust meshed topologies (no loop avoidance)
3. Forwarding redundancies, easing the recovery process against failures

and load distribution.

Even though this protocol looks better than STP, it is recommended not to use it
either, since it still interferes with critical TSN functionalities.

Apart from SPB, there is also Shortest Path First (SPF) with all its variants, since
they value the different link features for future decisions.

A.3 IEEE 802.1ab – Link Layer Discovery Protocol

This protocol, also known as Station and Media Access Control Connectivity
Discovery is fundamental for the implementation of a TSN network. It lets devices
announce its identity, properties and adjacent connections in the network. It is the
standardization of several proprietary protocols, such as Cisco Discovery
Protocol (CDP) or Foundry Discovery Protocol (FDP).

Typically, information obtained thanks to Link Layer Discovery Protocol (LLDP)
[4] is stored in the Management Information Base (MIB). This information can be
queried using, typically, Simple Management Network Protocol (SNMP).
Information obtained contains the following:

1. System name and description.

2. Port name and description.

3. VLANs in the device.

4. Management IP.

5. System capabilities (including TSN features).

6. Low level information (LLC/PHY).

7. Link aggregations.

Within a certain interval, devices multicast their LLDP data in Type Length Value
(TLV) format and a given multicast address.

110 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. A.1 LLDP payload format [5].

Software Defined Networks (SDN) data plane is orchestrated by the controller,
so it needs to receive all LLDP packets from all network elements to perform a
good network mapping [6]. The current trend on network management is to use
LLDP information by NETCONF clients. This means that the CNC in the TSN
architecture is likely to use LLDP information to build the network topology.

A.4 IEEE 802.1Qat - Stream Reservation Protocol

Since 2011, this standard is included in 802.1Q. It defines the Stream
Reservation Protocol (SRP) [7]. Basically, it manages data flows from the emitter
to the receiver, including the network bridges. By this way, it is possible to perform
end-to-end reservations on the resources in order to guarantee bandwidth and
latency. Endpoints can declare themselves as talkers or listeners, propagating
the information to the network elements. These nodes will check if the bandwidth
and latency requirements can be satisfied with other current active flows and
forward the request if possible. If not possible, they communicate the failure
reason back to the announcer.

SRP is used over Multiple Mac Registration Protocol (MMRP), Multiple VLAN
Registration Protocol (MVRP) and Multiple Stream Registration Protocol (MSRP).
All of them rely on Multiple Reservation Protocol (MRP). MRP is used to
propagate all the information through the LAN, upper protocols are used to carry
the information related to reservations.

Fig. A.2 Stream Reservation Protocol stack.

ANNEX A. IEEE AND TSN STANDARDS 111

All the information shared with SRP is used by network elements in order to
implement the traffic scheduling and shaping correctly. Essentially, SRP operates
in the following manner:

1. Talker announces the flux of data being sent.

2. Every network element that takes part in the path registers the flow.

3. Worst latency case is computed (with the collaboration of 802.1AS to
synchronize all clocks).

4. The flow domain is created.

5. Resource reservation is performed.

6. Future announcements may not be performed, since the resources are

busy.

A.5 IEEE 802.1Qch – Cyclic Queuing and Forwarding

This substandard is on Annex T of the IEEE 802.1Q-2018 [8]. It specifies a traffic
scheduling method that may offer a deterministic latency on TSN networks. The
principle in which Cyclic Queuing and Forwarding (CQF) operates is that flows
are transmitted and loaded to the queues in a cyclic way. This means that time is
divided in equal parts and in each cycle the nodes in the network perform a
transmission and a reception. It is important that each network device is
synchronized, in order to apply the same time intervals. By this way, if we
consider that the maximum delay between nodes is the duration of the interval, it
is easy to get the total maximum delay on the flow, by the following expression,
where h is the number of hops and d interval duration.

 𝑑𝑒𝑙𝑎𝑦 = (ℎ + 1) · 𝑑 (A.1)

It is very important the correct decision of the interval duration, keeping in mind
all the congestion status the nodes may suffer, they must ensure a time
synchronized transmission. If not, the whole CQF system becomes invalid. A
correct implementation of this protocol needs to consider more parameters, such
as the non-homogeneity of links in the network, making the previous expression
more complex.

112 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

A.6 IEEE 802.1Qci – Per Stream Filtering and Policing

This substandard, also found in the IEEE 802.1Q-2018 [9], brings the capacity of
filtering frames at the ingress ports depending on the reception time, bandwidth
and other ratios [10]. Thanks to that filtering, there is a protection against bad use
of the bandwidth and excessive burst size from malicious endpoints. By this way,
these traffics are not retransmitted to the network, avoiding congestion or
collapse. Per Stream Filtering and Policing (PSFP) can be applied in three
different tables:

1. Stream Filter: ordered list of filters that determine the actions applied
to the frames of a same flux.

2. Stream Gate: has parameters for every different flux priority,
independently from the stream identifier.

3. Flow Meter: based on properties of fluxes, such as Committed

Information Rate, Committed Burst Size, among others.

A.7 IEEE 802.1Qbu / 802.3br – Frame Preemption

Included in the IEEE 802.1Q-2014 standard and describes the methodology in
which a frame transmission can be interrupted. For example, to avoid frames to
overlap with the guard interval, and resume it later in the next interval, when the
priority of the flow allows it to be sent again. It needs specific detail of the physical
channel it is working on, that is the reason why some part of it is described in the
Ethernet standard, IEEE 802.3.

In summary, the partial frame is ended with a CRC and the receiving switch stores
all the content in a buffer, waiting for the arrival of the rest of the frame.
Furthermore, it permits the reduction of the guard interval, optimizing the use of
the bandwidth when traffic scheduling is applied [11].

A.8 IEEE 802.1Qcr – Asynchronous Traffic Shaping

This standard provides the processes for network elements in order to perform
traffic shaping between links. The goal is to satisfy the needs of the flow, which
may require deterministic latency or zero congestion loss. The difference
between this standard and other TSN standards is that this one holds the traffic
shaping in a non-deterministic network, meaning that there is no clock
synchronization between devices [12].

Thus, this standard may look for similar goals than this project, but not in the
same network scenario.

ANNEX A. IEEE AND TSN STANDARDS 113

A.9 IEEE 802.1Qca – Path Control and Reservation

Included in the IEEE 802.1Q-2014 document [13]. It provides an extension of the
forwarding protocol Intermediate System to Intermediate System (IS-IS) and
contains the following functionalities:

1. Tree establishment to forward frames.

2. Use of IS-IS to communicate the bandwidth computed by the Path
Computation Element (PCE).

3. Redundancy in the tree establishment.

Each VLAN ID (VID) is associable to one or more trees and other logic included
in IS-IS, specifically the Path Reservation Control. This independence can be
maintained between different VIDs. PCE is external to IS-IS protocol and aims to
determine and describe explicitly the forwarding tree. There can be more than
one PCE in a network and each one manages a traffic in a route, avoiding the
overloading of links. This can entail not using the shortest paths.

In general terms, the ISIS-PCR announces in the network the bandwidth
assignations. If MSRP does not assign these assignations, ISIS-PCR can do it.
Then, it performs the following functionalities [14]:

1. Route control to not use always the shortest path.

2. Communicate to other network elements the bandwidth reservations
for every flow.

3. Control over failures and overloading thanks to path redundancy, the

standard introduced next.

4. Sending of control information thanks to ISIS-PCR extension.

A.10 IEEE 802.1CB – Frame Replication and Elimination for
Reliability

This specification [15] contains a description of the processes needed in order to
avoid loss of frames in a network either by congestion, link failure or other issues.
In general terms, identification and replication mechanisms for frames are
provided to perform redundancy in the network and elimination of duplicated
frames. With all these handlings, it is easy to realize that a failure in the network
would not bring any issue on the flow transmission, since it would be forwarded
through two disjoint paths. Thus, the loss probability is highly reduced.

Frame Replication and Elimination for Reliability (FRER) performs the following
functions:

114 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

1. Packet replication: duplicates frames and forwards them in two disjoint

paths. This increments the resiliency of the whole network against the
flow. If both duplicated frames reach the destination, it also performs
the deletion of one of them.

2. Unicast and Multicast: possibility of one or more listeners in the
configuration.

3. Flexible positioning: FRER can be applied in any of the nodes of the

path for a flow.

4. Error detection: provides mechanisms to the receivers to detect the

failure of one of the redundant flows. Apparently, it can be difficult when
the correct flow is being received, even from another interface.

5. Interoperability and backwards compatibility: with similar previous

protocols and devices that does not support FRER.

Some of these features are shown in the Figure A.3, in where there are nodes
that generate a replication and some others perform the deletion of duplications.

Fig. A.3 FRER sample schema [15].

This standard does not include the procedures to find disjoint paths in the
network. Instead, it relies on the IEEE 802.1QCa, already commented in this
document (see Section A.9).

ANNEX A. IEEE AND TSN STANDARDS 115

A.11 IEEE 802.1CM – Time Sensitive Networking for Fronthaul

This standard [16] aims to define different profiles that select features,
configurations and default protocols for the network elements used in the
fronthaul of mobile networks (4G, 5G and beyond). This kind of streams need
important time-sensitive requirements. Options from Layers 1 and 2 from OSI are
specified, both for network elements and endpoints, referring to the following
aspects:

1. VLAN 802.1Q

2. MAC service specification found at IEEE 802.1AC.

3. MAC/PHY specifications from IEEE 802.3.

4. Traffic interleaving, found in 802.3br.

5. Frame preemption (see section A.7).

6. Temporal synchronization with 802.1AS (see section 1.1.2).

7. Telecom profile specification, from ITU-T G.8275.1.

8. Synchronous Ethernet, specified in the ITU-T G.8261, G.8262 and

G.8264.

In addition, fronthaul requirements are specified. Specifically, two classes of
requirements, depending on the functionality of the base stations (BS). In
addition, it describes how the network elements affect the quality of service of the
fronthaul and the impact that the flow control supposes.

A.12 IEEE 802.1AX – Link Aggregation

Even though Link Aggregation may not be directly related to TSN, this standard
[17] brings the possibility to aggregate two point-to-point links to form a Link
Aggregation Group (LAG). Thanks to this, the MAC client considers it as a single
link. By this way, the bandwidth is enhanced for those traffics that may need it
and the resiliency against failures is higher on the virtual link. Since the LAG is
considered as an only link, all route reservation protocols, such as IEEE
802.1Qca and others about deterministic latency, such as IEEE 802.1Qch will
consider it as so.

116 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

ANNEX B. UNI YANG MODULE

The following tree is a representation of all the fields in the designed YANG
module, found in the project’s repository [18]:

“Module: ieee802-dot1q-tsn-types-upc-version
 +--rw tsn-uni
 +--rw stream-list* [stream-id]
 | +--rw stream-id stream-id-type
 | +--rw request
 | | +--rw talker
 | | | +--rw stream-rank
 | | | | +--rw rank? uint8
 | | | +--rw end-station-interfaces* [mac-address interface-name]
 | | | | +--rw mac-address string
 | | | | +--rw interface-name string
 | | | +--rw data-frame-specification* [index]
 | | | | +--rw index uint8
 | | | | +--rw (field)?
 | | | | +--:(ieee802-mac-addresses)
 | | | | | +--rw ieee802-mac-addresses
 | | | | | +--rw destination-mac-address? string
 | | | | | +--rw source-mac-address? string
 | | | | +--:(ieee802-vlan-tag)
 | | | | | +--rw ieee802-vlan-tag
 | | | | | +--rw priority-code-point? uint8
 | | | | | +--rw vlan-id? uint16
 | | | | +--:(ipv4-tuple)
 | | | | | +--rw ipv4-tuple
 | | | | | +--rw source-ip-address? inet:ipv4-address
 | | | | | +--rw destination-ip-address? inet:ipv4-address
 | | | | | +--rw dscp? uint8
 | | | | | +--rw protocol? uint16
 | | | | | +--rw source-port? uint16
 | | | | | +--rw destination-port? uint16
 | | | | +--:(ipv6-tuple)
 | | | | +--rw ipv6-tuple
 | | | | +--rw source-ip-address? inet:ipv6-address
 | | | | +--rw destination-ip-address? inet:ipv6-address
 | | | | +--rw dscp? uint8
 | | | | +--rw protocol? uint16
 | | | | +--rw source-port? uint16
 | | | | +--rw destination-port? uint16
 | | | +--rw traffic-specification
 | | | | +--rw interval
 | | | | | +--rw numerator? uint32
 | | | | | +--rw denominator? uint32
 | | | | +--rw max-frames-per-interval? uint16
 | | | | +--rw max-frame-size? uint16

ANNEX B. UNI YANG MODULE 117

 | | | | +--rw transmission-selection? uint8
 | | | | +--rw time-aware!
 | | | | +--rw earliest-transmit-offset? uint32
 | | | | +--rw latest-transmit-offset? uint32
 | | | | +--rw jitter? uint32
 | | | +--rw user-to-network-requirements
 | | | | +--rw num-seamless-trees? uint8
 | | | | +--rw max-latency? uint32
 | | | +--rw interface-capabilities
 | | | +--rw vlan-tag-capable? boolean
 | | | +--rw cb-stream-iden-type-list* uint32
 | | | +--rw cb-sequence-type-list* uint32
 | | +--rw listeners-list* [index]
 | | | +--rw index uint16
 | | | +--rw end-station-interfaces* [mac-address interface-name]
 | | | | +--rw mac-address string
 | | | | +--rw interface-name string
 | | | +--rw user-to-network-requirements
 | | | | +--rw num-seamless-trees? uint8
 | | | | +--rw max-latency? uint32
 | | | +--rw interface-capabilities
 | | | +--rw vlan-tag-capable? boolean
 | | | +--rw cb-stream-iden-type-list* uint32
 | | | +--rw cb-sequence-type-list* uint32
 | | +---x compute-request
 | +--ro configuration
 | +--ro status-info
 | | +--ro talker-status? enumeration
 | | +--ro listener-status? enumeration
 | | +--ro failure-code? uint8
 | +--ro failed-interfaces* [mac-address interface-name]
 | | +--ro mac-address string
 | | +--ro interface-name string
 | +--ro talker
 | | +--ro accumulated-latency? uint32
 | | +--ro interface-configuration
 | | +--ro interface-list* [mac-address interface-name]
 | | +--ro mac-address string
 | | +--ro interface-name string
 | | +--ro config-list* [index]
 | | +--ro index uint8
 | | +--ro (config-value)?
 | | +--:(ieee802-mac-addresses)
 | | | +--ro ieee802-mac-addresses
 | | | +--ro destination-mac-address? string
 | | | +--ro source-mac-address? string
 | | +--:(ieee802-vlan-tag)
 | | | +--ro ieee802-vlan-tag
 | | | +--ro priority-code-point? uint8
 | | | +--ro vlan-id? uint16

118 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

 | | +--:(ipv4-tuple)
 | | | +--ro ipv4-tuple
 | | | +--ro source-ip-address? inet:ipv4-address
 | | | +--ro destination-ip-address? inet:ipv4-address
 | | | +--ro dscp? uint8
 | | | +--ro protocol? uint16
 | | | +--ro source-port? uint16
 | | | +--ro destination-port? uint16
 | | +--:(ipv6-tuple)
 | | | +--ro ipv6-tuple
 | | | +--ro source-ip-address? inet:ipv6-address
 | | | +--ro destination-ip-address? inet:ipv6-address
 | | | +--ro dscp? uint8
 | | | +--ro protocol? uint16
 | | | +--ro source-port? uint16
 | | | +--ro destination-port? uint16
 | | +--:(time-aware-offset)
 | | +--ro time-aware-offset? uint32
 | +--ro listener-list* [index]
 | | +--ro index uint16
 | | +--ro accumulated-latency? uint32
 | | +--ro interface-configuration
 | | +--ro interface-list* [mac-address interface-name]
 | | +--ro mac-address string
 | | +--ro interface-name string
 | | +--ro config-list* [index]
 | | +--ro index uint8
 | | +--ro (config-value)?
 | | +--:(ieee802-mac-addresses)
 | | | +--ro ieee802-mac-addresses
 | | | +--ro destination-mac-address? string
 | | | +--ro source-mac-address? string
 | | +--:(ieee802-vlan-tag)
 | | | +--ro ieee802-vlan-tag
 | | | +--ro priority-code-point? uint8
 | | | +--ro vlan-id? uint16
 | | +--:(ipv4-tuple)
 | | | +--ro ipv4-tuple
 | | | +--ro source-ip-address? inet:ipv4-address
 | | | +--ro destination-ip-address? inet:ipv4-address
 | | | +--ro dscp? uint8
 | | | +--ro protocol? uint16
 | | | +--ro source-port? uint16
 | | | +--ro destination-port? uint16
 | | +--:(ipv6-tuple)
 | | | +--ro ipv6-tuple
 | | | +--ro source-ip-address? inet:ipv6-address
 | | | +--ro destination-ip-address? inet:ipv6-address
 | | | +--ro dscp? uint8
 | | | +--ro protocol? uint16

ANNEX B. UNI YANG MODULE 119

 | | | +--ro source-port? uint16
 | | | +--ro destination-port? uint16
 | | +--:(time-aware-offset)
 | | +--ro time-aware-offset? uint32
 | +---x deploy-configuration
 | +---x undeploy-configuration
 | +---x delete-configuration
 +---x compute-all-configuration
 +---x deploy-all-configuration
 +---x undeploy-all-configuration
 +---x delete-all-configuration”

120 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

ANNEX C. Project developer’s guide

This annex provides details to developers and any reader that is interested on
knowing details about the implementation. It covers the project structure and the
explicit implementation, mentioning every function.

C.1 Project Structure

Currently, the project is held in a private repository found in [18]. In the following
lines, the project structure is shown as a tree.

“
TSN-CNC-CUC-UPC
│
│─ CNC
│ │─ **Not on the scope of this project**
│─ CUC
│ │─ index.js
│ │─ logic
│ │ │─ core.js
│ │─ opc-ua-client
│ │ │─ opcua-client.js
│ │─ package-lock.json
│ │─ package.json
│ │─ resources
│ │ │─ ca.pem
│ │ │─ client-certificate.pem
│ │ │─ client-key.pem
│ │ │─ clientCertificate.pem
│ │─ restconf-client
│ │ └─ restconf-client.js
│ │─ utils
│ │─ arrayUtils.js
│ │─ gate-control-list
│ │ └─ gateControlListUtils.js
│ │─ yang
│ │─ ieee802-dot1q-tsn-types-upc-version@2018-02-15.js
│ │─ ieee802-dot1q-tsn-types.js
│ │─ json-samples
│ │ │─ cncResponse.json
│ │ │─ fieldsNotUsed.json
│ │ │─ sampleData.json
│ │ │─ talker.json
│ │─ yangUtils.js
│─ ENDPOINTS
│ │─ Listener
│ │ │─ config.json

ANNEX C. Project developer’s guide 121

│ │ │─ index.js
│ │ │─ opc-ua-server
│ │ │ │─ opcua-server.js
│ │ │─ package-lock.json
│ │ │─ package.json
│ │─ package-lock.json
│ │─ Talker
│ │─ config.json
│ │─ index.js
│ │─ opc-ua-server
│ │ │─ opcua-server.js
│ │─ package-lock.json
│ │─ package.json
│─ README.md
│─ Yang_models
 │─ example-jukebox@2016-08-15.yang
 │─ieee802-dot1q-tsn-types-upc-version@2018-02-
15(COMPLETE_VERSION).yang
 │─ ieee802-dot1q-tsn-types-upc-version@2018-02-15.yang
 │─ ieee802-dot1q-tsn-types.json
 │─ ieee802-dot1q-tsn-types.yang
 │─ ieee802-dot1q-tsn-types@2018-02-15.yang
 │─ ietf-inet-types.yang
 │─ ietf-yang-types.yang
 │─ README.md
”

Note that there are two main folders that correspond to our projects: CUC and
ENDPOINTS. The first one is a project itself, but the ENDPOINTS one contains
two projects: TALKER and LISTENER.

C.2 CUC

The Centralized User Configuration project logic is based on the three following
components: the OPC-UA Client, the Logic Unit Center and the RESTCONF
Client.

1. CUC needs to know the OPC-UA Server addresses it will manage.

2. After polling their identity and configurations, the information is handled
at the LUC.

3. It sends the generated information through the RESTCONF Client.

4. Finally, it generates the TSN Endpoint’s configuration, sent through the

OPC-UA Client. This process already described is shown in Figure
C.1, which is the index.js, the entry file of the CUC Node project.

122 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

Fig. C.1 Workflow of the CUC project.

After reviewing the general flow that the CUC is set into, we can check the details
of every step.

C.2.1 OPC-UA Client

opcua-client.js file.

C.2.1.1 connectOpcUaServer(endpointUrl)

This function connects to the specified endpointUrl and, after creating a session
against it, reads all known Address Space variables. After obtaining all of these
variables, it places them in a single object instance.

*Note that if your own implementation has different node IDs, you would need to
change them in this function.

C.2.1.1 sendConfigToEndpoint(endpointUrl, config, isTalker)

This method writes the computed TSN configuration to the specified endpointUrl.
Since Talkers and Listeners need different configuration values, the boolean
value isTalker is specified as a parameter. After writing all the necessary
configuration to the Endpoints, a method is triggered on them to apply it. This
triggering is the one that starts the performance of the TSN flow.

ANNEX C. Project developer’s guide 123

C.2.2 Logic Unit Center

core.js file.

C.2.2.1 receiveDataFromOpcUaServer(receivedData)

This function checks the presence of every needed field from a Talker or a
Listener, reporting any possible error. If information is complete, all the data is
pushed to dynamic arrays called talkerInformation and listenerInformation. The
streamId obtained from the OPC-UA Server is returned.

C.2.2.2 checkStreamInformationReadyAndSend(idStream)

This function is called when there is a certainty that a stream is ready to be
configured. The idStream is the identification used to locate the configurations
that will be sent. If configurations for a Talker and a Listener are found, the
generateUniGroups function is called to generate the instance of the YANG
module (presented in the Annex B). Once the YANG instance is created a
validated through the submodule yangUtils.js, it is sent through the RESTCONF
client.

*Since the current status of the CNC implementation does not provide the
interface yet, the requests and the configuration results are mocked. More
information will be provided in the following RESTCONF Client section.

C.2.2.3 generateUniGroups(ctrTalker, ctrListener)

This method generates a JSON encoded variable that maps and instance of our
designed YANG module.

C.2.2.4 parseConfigurationData()

Used in order to decode the response JSON containing the Status groups (see
3.1.1) from the CNC. It fetches the incoming configuration and adds it to the
correct entry of the talkerInformation and listenerInformation variables and
returns true if the operation is successful. However, if the incoming configuration
data contains an error code, it returns false.

C.2.2.5 generateGclAndSendConfig(gclType)

This function computes the Gate Control List for a given Talker. It looks for all of
its Streams and performs a time-scheduling design. Currently, it generates a
simple TAS between a TSN traffic and best-effort classes.

124 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

After its computation, the GCL is returned.

C.2.3 RESTCONF Client

In the current implementation, the RESTCONF Client implements only one
method to post a configuration to the CNC. RESTCONF requires mutual
authentication, this means that our client needs a certificate that can be verified
by the CNC, the server. The certificate used comes with the project, but needs to
be changed when it is connected to a different CNC.

*Note that having a certificate trusted by the CNC is essential, since all HTTP/2
communications are forced to establish a secure session based on Mutual
Authentication. If a certificate is not provided, the communication will never work.

C.2.3.1 restconfRequest(body)

This method posts the instance data generated by the LUC method
generateUniGroups. It establishes a session with the CNC and checks that the
response is successful. This function is currently commented, because despite
of being able to send the configuration to the CNC successfully, there was no
configuration returned. All kinds of request can be coded from this function
changing the desired parameters.

Also, if another CNC or YANG module is used, remind to check the path used in
the current implementation: /restconf/data/ieee802-dot1q-tsn-types-upc-
version:tsn-uni

C.3 Endpoints

Both Talker and Listener follow the same project structure, where the main file is
the opcua-server.js. When it starts running, it initializes an OPC-UA server.
During the initialization, all the Address Space variables are set, reading values
from config.json when the method post_initialize is triggered.

After the initialization, the only interface these projects are providing are through
the Address Space calls. By this. The CUC reads/writes data or triggers some
function in the Endpoints. Since the Talker and Listener projects are not the
same, it is better to check them separately to give better details.

C.3.1 Talker

Apart from the base OPC-UA sever, the Talker has a process that updates an
Address Space node. This node data is the one that is sent through the Pub/Sub
communication between Talker and Listener. It also needs to perform
autoconfiguration thanks to the method triggering from the CUC.

ANNEX C. Project developer’s guide 125

C.3.1.1 post_initialize() Talker peculiarities

As mentioned, apart from having extra nodes indicating the traffic specification, it
performs a periodical update in one of their variables. The following figure shows
how this value rawData is being updated following an interval obtained from the
config.json. It also registers the variable to the Address Space, to make it
available for Subscriptions. Note that the updated variable is printed with a
timestamp, for debugging purposes.

Fig. C.2 Set up of the node that will be published.

Notice that the rawData variable is assigned with the expression ctr +
generatePayload().

C.3.1.2 generatePayload()

This function generates a fixed length payload by getting the dataLength from the
config.json file. After generating the payload, it is returned as a String. This
function is used to generate the fixed length payload.

C.3.1.3 configureInterface(interfaceName, gclGates, gclGatesTimeDuration,
interval, latency, vlanIdValue)

This is the method triggered by the OPC-UA Client requests. It reads all the
values previously set by the CUC, such as interfaceName, gclGates,
gclGatesTimeDuration, interval, latency and vlanIdValue. With all this values, this
function sets the configuration using iptables and tc qdisc tools. For more
information regarding these tools, see Annex D.

126 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

This function is only valid for Ubuntu devices with a kernel version +5.0 (to have
taprio, etf and cbs tools available) and the Intel i210 as the NIC. If you are using
any other kind of operating system or distribution, it is important to check how the
network management and traffic scheduling is performed, since this is specific
for this combination of OS and NIC and would not work with different Endpoints.

Even though this configuration is configuring the OPC-UA Pub/Sub flow by
default, it can be modified to consider any other traffic source by simple
modifications on the scheduling commands performed.

C.3.2 Listener

The Listener also prepares all its variables for the CUC. Apart from that, it
manages an OPC-UA client in the opcua_client.js that performs a subscription to
the Talker’s rawData node. Thanks to this client, OPC-UA Pub/Sub
communication is possible between Talker and Listener.

C.3.2.1 post_initialize() Listener peculiarities

The following figure shows how the Listener sets a node to trigger an OPC-UA
Subscription:

Fig. C.3 Binding of the subscription method on the Listener’s Address Space.

By this, when the CUC triggers it, the Listener subscribes to the Talker data,
starting the TSN flow.

C.3.2.2 connectOpcUaServer(endpointUrl, interval)

It creates an OPC-UA subscription based on the interval specified as a
parameter. On a successful subscribe, the data is printed with an application
timestamp for debugging goals. This method can be commented if any different
traffic source its used, such as iperf.

ANNEX C. Project developer’s guide 127

All the code provided in [18] is provided with in-code comments and logs for
proper understanding.

128 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

ANNEX D. ENDPOINT CONFIGURATION EXAMPLE

This annex gives the most specific details regarding how an endpoint is
configured by using the iptables and tc qdisc tools. It provides the necessary
information in order to comprehend how the commands are built. It is intended to
be consulted during the reading of the Chapters 4 and 5 (see Sections 4.3 and
6.4), since they contain the necessary information to understand the following
content.

D.1 iptables

This tool [19] can be used as a Network Address Translator (NAT), a firewall and
many other IP packet-related functionalities. Nevertheless, this project only uses
a socket priority mapping.

As default, the Linux kernel assigns as ‘0’ the priority to every socket that is being
handled. As a consequence, flow treatment tools will not be able to distinguish
between the different communications that are being served. This means that no
scheduling would be possible. The objective of the use of iptables is to map the
desired traffics into socket priorities. As a result, for example, the desired TSN
flow will be mapped in a given socket priority, a different one than the best-effort
traffic. To map a given traffic to a given socket priority, a command like the
following has to be called:

“Sudo iptables -t mangle -A POSTROUTING -p udp --dport 7788 -j CLASSIFY -
-set-class 0:3”

1. The -t mangle flag means that the rule that is going to be applied will
be placed in the mangle table. The mangle table is the one aimed to
modify IP headers or other parameters of the socket.

2. -A POSTROUTING flag adds the following rule to the POSTROUTING
stream. This means that the rule will be applied right after the routing
of the packet has been performed.

3. -p udp and -dport 7788 are the conditions to apply the rule. This specific

one specifies that if the transport protocol is UDP and the port used is
7788, the following rule will apply. A lot of different conditions may be
requested, such as destination IP filtering, egress port filtering, among
many others.

4. -j CLASSIFY flag is aimed to modify the socket priority of the traffic and

it always requires the parameter –set-class, which in this case is 0:3.
This means that the priority of the selected sockets will be changed to
3.

ANNEX D. ENDPOINT CONFIGURATION EXAMPLE 129

It is important to remark that iptables follow a sequential assignment. This means
that the first established rule that meets with the traffic’s specifications (such as
destination port) will be applied. Then, it is important to set first the most specific
rules, followed by the best-effort assignations.

By several commands filtering and modifying the socket priorities on the system
traffics, the qdisc tool will be able to distinguish between them on the scheduling,
explained in continuation.

D.2 tc qdisc

This subsection of the Annex describes the different use of the qdisc tools named
taprio, etf, and cbs. Taprio is used to perform traffic scheduling, etf for
deterministic transmit time and cbs for traffic shaping. The use of these three
commands is described in the following lines, based on sample configuration
commands to describe how each parameter is set.

D.2.1 taprio

This tool [20], as mentioned, performs traffic scheduling based on the standard
IEEE 802.1Qbv (see section 1.2.1). A common command that may give a new
scheduling mechanism is:

“Sudo tc qdisc replace dev enp3s0 parent root handle 100 taprio
num_tc 3
map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2
queues 1@0 1@1 2@2
base-time 1000000000
sched-entry S 01 300000000
sched-entry S 02 700000000
flags 0x1
txtime-delay 1000000
clockid CLOCK_TAI”

1. The first line initiates the command that adds (replaces the default one)
a new qdisc to the interface enp3s0. This qdisc will be considered as
the root discipline and it will be identified by the number 100. It is stated
that taprio is the tool that will be used to specify the qdisc performance.

2. num_tc 3 refers to the number of traffic classes that are considered in
the traffic scheduling. It is common to use as many as the amount of
different transmit queues that a NIC has. In this example, considering
we have an Intel i210 that has four transmit queues, the decision is to
take three different traffic classes. This is because the third and fourth
queue of the network interface are best-effort queues and there is no
logical distinguishment between them.

130 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

3. map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 is a mapping from Linux socket

priorities to the considered traffic classes. Thanks to the second line,
the taprio mechanism is considering three traffic classes, 0, 1 and 2.
This specific line maps the incoming socket priorities to the given
number. Socket priorities can take values from 0 to 15. The actual
mapping is the following:

a. Socket priorities 0 and 1 → Traffic class 2

b. Socket priority 2 → Traffic class 1

c. Socket priority 3 → Traffic class 0

d. Socket priorities from 4 to 15 → Traffic class 2

4. queues 1@0 1@1 2@2 is the mapping of the traffic classes to the

driver queues. For every traffic class a rule must be specified based on
the queueAmount@queueOffset.

a. Traffic class 0 → sent to one queue, the first one (offset 0).

b. Traffic class 1 → sent to one queue, the second one (offset 1).

c. Traffic class 2 → best effort traffic, sent to two queues, the third

and the fourth (amount 2, offset 2).

5. sched-entry S 01 300000000 and sched-entry S 02 700000000 are the
definition of the traffic scheduler. Each line specifies an entry to the
Gate Control List, S stands for setting the door state. 01 is a priority
mask explained below and the 300000000 is the number of
nanoseconds maintaining the state. To comprehend how the traffic
classes are selected in each sched-entry, you should check how the
byte is represented in binary to see which bytes are set to one. For
example:

A byte set to 5 → 0 0 0 0 0 1 0 1 → Traffic classes 0 and 2

Then, all the time aware scheduler can be determined:

a. For the first 300 milliseconds the only gate open is for the traffic
class 0

b. For the next 700 milliseconds, the only gate open is for the traffic

class 1.

 As a result, the interval of the scheduler can be determined by adding
the duration of each state. In this case, the interval is 1 second.

ANNEX D. ENDPOINT CONFIGURATION EXAMPLE 131

6. The flags 0x1 is a flag used to perform offload to the network interface.
This means that part of this processing may be performed by the same
hardware of the NIC, a feature compatible with Intel i210 that optimizes
the performance.

7. txtime-delay 1000000 is the approximate amount of time that the
packets take from the queuing disciplines to the network interface’s
queues. Set by default to 1µs.

8. clockID CLOCK_TAI is to specify which is the clock that the scheduling

will rely on. The CLOCK_TAI is equivalent to the system clock, so if it
is synchronized via gPTP (see section 1.1.2 and 6.2), the scheduler will
use the network time.

By analyzing this configuration, it is possible to realize that any kind of scheduling
may be performed. If the previous command were used for testing purposes, note
that there is no gate control list entry that specifies some space for the best-effort
traffic (priority 2).

D.2.2 etf

As a quick reminder, this tool [21] configures the initial transmit time for a given
traffic class, as follows:

“Sudo tc qdisc replace dev enp3s0 parent 100:1 etf
clockid CLOCK_TAI
delta 500000
offload”

1. The dev selected must be the same that the one selected for taprio.

2. parent 100:1 specifies that the following qdisc will be applied to the
qdisc 100:1, which is the traffic class 0 defined in taprio (this means
that 100:2 is the traffic class 1 and 100:3 would be the traffic class 3).

3. clockid CLOCK_TAI is, again, the clock of reference for the following

delta parameter.

4. delta 500000 is the delay amount. This means that when a window is

open for traffic class 0, it will hold 500 microseconds the start of the
sending.

5. offload means that this will be performed by the same network

interface.

132 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

D.2.3 cbs

This tool [22] is aimed to shape the output of a given traffic priority and limit its
bandwidth. The command looks as below:

“Sudo tc qdisc replace dev eth0 parent 100:2 cbs
idleslope 98688
sendslope -901312
hicredit 153
locredit -1389
offload 1”

1. As etf, it is placed under a given traffic class from taprio. In this
example, the second traffic class is set to have a credit-based shaper
in its output.

2. idleslope and sendslope are parameters than can be check previously
in this document (see section 1.2.2).

3. hicredit and locredit is the maximum and minimum number of credits

that the shaper can accumulate in excess or in debt.

By checking taprio, cbs and etf, all of them can be used according to the incoming
TSN configuration, so that a TAS, a CBS and a controlled transmit time can be
mapped to a working endpoint. With the help of iptables and the socket priorities,
it is possible to distinguish all the traffic to be treated by these three tools.

ANNEX REFERENCES 133

ANNEX REFERENCES

[1] Área de Ingenieria Telemática – Universidad de Navarra, “Spanning Tree

Protocol” [Online]. Available:
https://www.tlm.unavarra.es/~daniel/docencia/rba/rba11_12/slides/07-
STP.pdf [Accessed 06 01 2021].

[2] Cisco, “About Time-Sensitive Networking”, section “CNC to Bridge

Control Plane” [Online]. Available:
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/tsn/b_t
sn_ios_support/b_tsn_ios_support_chapter_01.pdf [Accessed 06 01
2021].

[3] Wikipedia, “IEEE 802.1aq” [Online]. Available:

https://es.wikipedia.org/wiki/IEEE_802.1aq [Accessed 06 01 2021].

[4] Wikipedia, “Link Layer Discovery Protocol” [Online]. Available:

https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol [Accessed
06 01 2021].

[5] Frederik Hauser, Mark Schmidt, Marco Häberle and Michael Menth, “P4-

MACsec: Dynamic Topology Monitoring and Data Layer Protection with
MACsec in P4-Based SDN”, figure 3 [Online]. Available:
https://www.researchgate.net/publication/340112340_P4-
MACsec_Dynamic_Topology_Monitoring_and_Data_Layer_Protection_w
ith_MACsec_in_P4-Based_SDN [Accessed 06 07 2021].

[6] Leonardo Ochoa-Aday, Cristina Cervello-Pastor, ´ Member, IEEE, and

Adriana Fernandez-Fernández, “Current Trends of Topology Discovery in
OpenFlow-based Software Defined Networks” [Online]. Available:
https://upcommons.upc.edu/bitstream/handle/2117/77672/Current%20Tr
ends%20of%20Discovery%20Topology%20in%20SDN.pdf [Accessed 06
01 2021].

[7] Levi Person, “Stream Reservation Protocol” [Online]. Available:

https://avnu.org/wp-content/uploads/2014/05/AVnu_Stream-Reservation-
Protocol-v1.pdf [Accessed 06 01 2021] [Published 11 03 2014].

[8] IEEE Standards Association, “Bridges and Bridged Networks”, annex T

[Online]. Available (private) https://standards.ieee.org/standard/802_1Q-
2018.html [Accessed 06 01 2021] [Published 05 07 2018].

[9] IEEE Standards Association, “Bridges and Bridged Networks”, section

8.6.5.1 [Online]. Available (private)
https://standards.ieee.org/standard/802_1Q-2018.html [Accessed 06 01
2021] [Published 05 07 2018].

[10] Erich Brockard, “Everything You Need To Know About TSN Sub-

Standards & How To Combine Them” [Online]. Available:

https://www.tlm.unavarra.es/~daniel/docencia/rba/rba11_12/slides/07-STP.pdf
https://www.tlm.unavarra.es/~daniel/docencia/rba/rba11_12/slides/07-STP.pdf
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/tsn/b_tsn_ios_support/b_tsn_ios_support_chapter_01.pdf
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/tsn/b_tsn_ios_support/b_tsn_ios_support_chapter_01.pdf
https://es.wikipedia.org/wiki/IEEE_802.1aq
https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol
https://www.researchgate.net/publication/340112340_P4-MACsec_Dynamic_Topology_Monitoring_and_Data_Layer_Protection_with_MACsec_in_P4-Based_SDN
https://www.researchgate.net/publication/340112340_P4-MACsec_Dynamic_Topology_Monitoring_and_Data_Layer_Protection_with_MACsec_in_P4-Based_SDN
https://www.researchgate.net/publication/340112340_P4-MACsec_Dynamic_Topology_Monitoring_and_Data_Layer_Protection_with_MACsec_in_P4-Based_SDN
https://upcommons.upc.edu/bitstream/handle/2117/77672/Current%20Trends%20of%20Discovery%20Topology%20in%20SDN.pdf
https://upcommons.upc.edu/bitstream/handle/2117/77672/Current%20Trends%20of%20Discovery%20Topology%20in%20SDN.pdf
https://avnu.org/wp-content/uploads/2014/05/AVnu_Stream-Reservation-Protocol-v1.pdf
https://avnu.org/wp-content/uploads/2014/05/AVnu_Stream-Reservation-Protocol-v1.pdf
https://standards.ieee.org/standard/802_1Q-2018.html
https://standards.ieee.org/standard/802_1Q-2018.html
https://standards.ieee.org/standard/802_1Q-2018.html

134 Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

https://blog.ebv.com/combining-tsn-sub-standards-knowhow/ [Accessed
06 01 2021] [Published 07 27 2016].

[11] Josep Oriol Castaño Cid, “Proves amb equipament Time-Sensitive

Networking (TSN)”, section 1.1.2.3, Bachelor Degree Thesis, UPC
[Online]. Available:
https://upcommons.upc.edu/bitstream/handle/2117/121567/memoria.pdf
[Accessed 06 01 2021] [Published 07 06 2018].

[12] Time Sensitive Networking Task Group, “P802.1Qcr – Bridges and

Bridged Networks Amendment: Asynchronous Traffic Shaping” [Online].
Available: https://1.ieee802.org/tsn/802-1qcr/ [Accessed 06 01 2021]
[Last update 07 09 2020].

[13] IEEE Standards Association, “Bridges and Bridged Networks”, Chapter

45 “Path Control and Reservation” [Online]. Available (private)
https://standards.ieee.org/standard/802_1Q-2018.html [Accessed 06 01
2021] [Published 05 07 2018].

[14] Josep Oriol Castaño Cid, “Proves amb equipament Time-Sensitive

Networking (TSN)”, section 1.1.3.3, Bachelor Degree Thesis, UPC
[Online]. Available:
https://upcommons.upc.edu/bitstream/handle/2117/121567/memoria.pdf
[Accessed 06 01 2021] [Published 07 06 2018].

[15] IEEE Standards Association, “Frame Replication and Elimination for

Redundancy” [Online]. Available (private):
https://standards.ieee.org/standard/802_1CB-2017.html [Accessed 06 01
2021] [Published 09 28 2017].

[16] IEEE Standards Association, “Time-Sensitive Networking for Fronthaul”

[Online]. Available (private):
https://standards.ieee.org/standard/802_1CM-2018.html [Accessed 06
01 2021] [Published 05 07 2018].

[17] Time Sensitive Networking Task Group, “802.1AX-2020 – Link

Aggregation” [Online]. Available: https://1.ieee802.org/tsn/802-1ax-rev/
[Accessed 06 01 2021] [Last update 01 16 2019].

[18] Gabriel David Orozco Urrutia and Jordi Cros Mompart, “TSN-CNC-CUC-

UPC” [Online repository]. Available (private access):
https://github.com/gabriel-david-orozco/TSN-CNC-CUC-UPC.

[19] Herve Eychenne, “iptables (8) – Linux man page” [Online]. Available:

https://linux.die.net/man/8/iptables [Accessed 06 01 2021].

[20] Vinicius Costa Gomes, “tc-taprio (8) – Linux man page” [Online].

Available: https://man7.org/linux/man-pages/man8/tc-taprio.8.html
[Accessed 06 01 2021] [Published 09 25 2018].

https://blog.ebv.com/combining-tsn-sub-standards-knowhow/
https://upcommons.upc.edu/bitstream/handle/2117/121567/memoria.pdf
https://1.ieee802.org/tsn/802-1qcr/
https://standards.ieee.org/standard/802_1Q-2018.html
https://upcommons.upc.edu/bitstream/handle/2117/121567/memoria.pdf
https://standards.ieee.org/standard/802_1CB-2017.html
https://1.ieee802.org/tsn/802-1ax-rev/
https://github.com/gabriel-david-orozco/TSN-CNC-CUC-UPC
https://linux.die.net/man/8/iptables
https://man7.org/linux/man-pages/man8/tc-taprio.8.html

ANNEX REFERENCES 135

[21] Jesus Sanchez-Palencia and Vinicius Costa Gomes, “tc-etf (8) – Linux

man page” [Online]. Available: https://man7.org/linux/man-
pages/man8/tc-etf.8.html [Accessed 06 01 2021] [Published 07 05 2018].

[22] Vinicius Costa Gomes, “tc-cbs (8) – Linux man page” [Online]. Available:

https://www.man7.org/linux/man-pages/man8/CBS.8.html [Accessed 06
01 2021] [Published 09 17 2017].

https://man7.org/linux/man-pages/man8/tc-etf.8.html
https://man7.org/linux/man-pages/man8/tc-etf.8.html
https://www.man7.org/linux/man-pages/man8/CBS.8.html

