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Abstract

Nucleation is a very common process by which phase separation takes place in multicomponent liquid mix-
tures. Phase field models are usually applied to study phase separation, but they are insufficient to study
nucleation events, since these transitions are thermally activated and require overcoming an energy barrier.
To overcome this difficulty, we combined phase field models with the string method, a numerical scheme
capable of finding transition pathways and critical states, to study nucleation in binary and ternary systems.
Our model is able to capture homogeneous and heterogeneous nucleation both in binary and ternary systems.
We validate our approach by comparing it with classical nucleation theory, valid in a sharp interface limit,
and further examine and discuss the discrepancies between these two approaches. In the future this model
can be applied to study more complex configurations, some of which are interesting from a biological point
of view because they simulate protein separation in the intracellular fluid.

Resum

La nucleació és un procés molt comú pel qual la separació de fases es dóna en sistemes líquids multicompo-
nents. Els models de camps de fase són habitualment emprats per estudiar la separació de fases, però són
insuficients per estudiar els processos de nucleació, degut a què aquestes transicions són activades tèrmica-
ment i requereixen superar una barrera d’energia. Per superar aquesta dificultat, hem combinat els models
de camps de fase amb el “string method” (mètode de la corda), un esquema numèric capaç de trobar camins
de transició i estats crítics, per estudiar la nucleació en sistemes binaris i ternaris. El nostre model és capaç
de capturar la nucleació homogènia i heterogènia tant en sistemes binaris com ternaris. Validem la nostra
aproximació comparant-la amb la teoria de nucleació clàssica, vàlida en el límit de interfases abruptes, i
examinen i discutim les discrepàncies entre aquestes dues aproximacions. En el futur aquest model pot ser
emprat per estudiar configuracions més complexes, algunes de les quals són interessants des d’un punt de
vista de la biologia perquè simulen la separació de proteïnes en el fluid intracel·lular.

Resumen

La nucleación es un proceso muy común por el cual la separación de fases se da en sistemas líquidos mul-
ticomponentes. Los modelos de campos de fase son habitualmente empleados para estudiar la separación
de fases, pero son insuficientes para estudiar los procesos de nucleación, debido a que estas transiciones
son activadas térmicamente y requieren superar una barrera de energía. Para superar esta dificultad, hemos
combinado los modelos de campos de fase con el “string method” (método de la cuerda), un esquema
numérico capaz de hallar caminos de transición y estados críticos, para estudiar la nucleación en sistemas
binarios y ternarios. Nuestro modelo es capaz de capturar la nucleación homogénea y heterogénea tanto
en sistemas binarios como ternarios. Validamos nuestra aproximación comparándola con la teoría de nu-
cleación clásica, válida en el límite de interfases abruptas, y examinamos y discutimos las discrepancias entre
estas dos aproximaciones. En el futuro este modelo puede ser empleado para estudiar configuraciones más
complejas, algunas de las cuales son interesantes desde un punto de vista de la biología porque simulan la
separación de proteínas en el fluido intracelular.
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1. Introduction

Multicomponent systems are a fundamental part of biology and industry. While systems with two and three
components (binary and ternary mixtures) have been widely studied and are well-understood, there is a lot
of exploration to be made for systems with more than three components. These systems are very common
in biology. For example, the intracellular fluid, which is formed by many droplets containing proteins,
constitutes a system with a high number of components where phase separation plays a key role [1–5].
Phase separation is a phenomenon that has been studied for a very long time, from the second half of the
XIXth century, back in the days of J. W. Gibbs [6].

The number of coexisting phases for systems with Nc components was studied by Mao et. al. in the
article in [7]. They developed a new model consisting on taking the convex hull of the free energy landscape
and dividing the convex hull in several regions, each of which presents a different number of coexisting
phases. This algorithm can be easily checked for binary and ternary systems, but it applies to systems
with an arbitrary number of components. In particular, this method was used to determine the number of
coexisting phases for systems with 4 and 5 components under different conditions.

Although this treatment can predict the number of coexisting phases, it cannot take into account the
equilibrium microstructure of each of them. The topology of the coexisting phases can be determined from
the surface energies using a graph algorithm developed by Mao et. al. in [8]. Another way to determine
the morphology of the coexisting phases is via the phase filed methodology. The phase field method is an
approach used to reproduce the evolution of material systems. It has been successfully used to reproduce
many phenomena, such as solidification, spinodal decomposition and many others [9]. If combined with
the treatment by Cahn and Hilliard to study conservative systems, this method can be used to study phase
separation [10].

Material systems with several phases are idealized as containing bulk regions (phases) separated by sharp
interfaces. From a mathematical point of view this is quite complex to model because of the abrupt change
in concentration at sharp interfaces. In contrast, the phase field methodology considers diffuse interfaces,
where order parameters vary smoothly from one phase to the other across interfaces. Interfaces can be
considered arbitrarily small, and when the sharp interface limit applies (the width of the interface is small
enough compared to the size of the bulk regions) interfaces can be approximated as being sharp.

When studying phase separation, the results obtained by phase field theory and the ones from the
energy density convexification algorithm developed by Mao et. al. [7] present a very good agreement in
most of the cases. However, for some specific conditions, phase field theory does not reproduce correctly
the number of coexisting phases predicted by the convexification algorithm. In such cases phase separation
does not take place via spinodal decomposition. Instead, nucleation is the process by which the final
equilibrium configuration is achieved. The problem comes from the phase field theory, which, in the way it
was implemented by Mao et. al. in [7], only reproduces spinodal decomposition. To reproduce nucleation
events stochastic thermal effects should be taken into account into the phase field methodology. However,
this approximation is insufficient to study nucleation because the dynamics of these methods proceeds by
waiting very long periods of time until the system experiences a transition. Hence, these cases must be
studied apart using some other techniques which can simulate this mechanism in a reasonable time.

From a numerical point of view, the problem of computing energy barriers and transition pathways can
be very difficult, especially for high-dimensional systems. Many numerical schemes have been developed to
do so [11], like the Nudge Elastic Band method (NEB) or the string method. In this thesis we try to apply
the string method to reproduce nucleation in multicomponent systems. This algorithm has been proven to
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be very useful when computing transition pathways and energy barriers for a variety of complex dynamical
systems [12–14].

The goal of this thesis is to determine whether the string method can be applied to study nucleation
events, and apply it to binary and ternary systems to compare the results to classical nucleation theory. To
do so we apply the string method to study configurations where spinodal decomposition does not happen,
and phase separation takes place via nucleation. Once we find the transition paths, we compute the energy
barriers and some other relevant parameters and compare these results to classical nucleation theory. To
compare numerical results to the classical ones, only binary and ternary mixtures are studied in the thesis.
Homogeneous nucleation is the only possible type of nucleation in binary mixtures, apart from nucleation
at mould walls. For homogeneous nucleation, we compute energy barriers and critical radii under several
conditions and compare them to the values predicted by classical nucleation theory. For ternary mixtures
heterogeneous nucleation at interfaces can also take place. Hence, we determine energy barriers both for
homogeneous and heterogeneous nucleation and determine whether they relate as in classical nucleation
theory.

1.1 Related work

Much research has been done related to nucleation and the string method. Our work is partially based on
this research, although we take a deeper look at the comparison between the string method and classical
nucleation theory, and we try to expand it to more complex systems.

In the first place, phase field methods and classical nucleation theory were compared by Wu et. al.
in [15]. In this article, phase separation in binary mixtures was studied in many configurations, some of
which considered nucleation of several droplets at a time. However, the string method was not applied
in that case. Results were found to be consistent with classical nucleation theory in some circumstances
(in particular close to the binodal line, but close to the spinodal line results did not agree with classical
nucleation theory).

The string method has been used to study many phase transition events, including nucleation. It was
used by Li et. al. in [16] to study nucleation in diblock copolymers, although they focused on computing
nucleation rates, which is a more complicated problem than what we consider in this thesis. It was also
used to study nucleation in binary mixtures by Philippe et. al. in [14], although they did not focus on the
comparison with classical nucleation theory. Zhang used the string method in [13] to study the nucleation
of one-dimensional stochastic Cahn-Hilliard dynamics, using a very similar formalism to the one we used in
this thesis, although in our thesis we expanded it to ternary systems. Philippe also studied homogeneous
nucleation in ternary mixtures in [17], although restricted to the one dimensional case. Backofen used the
string method in [12] to study nucleation of crystals on rigid substrates, and Zhang used the string method
in [11] to study nucleation of solids.

In most of the previous articles the string method was only applied to binary mixtures, but applying
the string method to ternary mixtures has not been studied in detail. Moreover, much research has yet to
be done in heterogeneous nucleation events, which are the leading process in many real situations where
phase separation takes place via nucleation. In most of the articles, classical nucleation was compared to
simulations only qualitatively. However, in this thesis, we perform a quantitative comparison between the
string method and classical nucleation theory.

Finally, one of the challenges in this thesis consists of relating physical properties of the system, like
interface energies, to parameters from our model. This issue has attracted considerable interest recently,
and many investigations has been done in that line [18–20]. Davis found some interesting results in his
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thesis [10], where he used the phase field model to study microstructural evolution in fuel cell technology.
In this thesis, he was able to develop a methodology to determine the model parameters from some physical
properties of the systems he was modelling. Part of his derivation, along with the numerical scheme proposed
by Zhang et. al. in [11], serves as the basis for our model.

1.2 Structure of the thesis

To determine the validity of the string method for the study of nucleation events the thesis is divided in
four sections. The general structure of the thesis is:

• First of all, we make a detailed explanation of the string method and its numerical implementation.
A classical example is also provided to discuss the behaviour of this method.

• In the next section, classical nucleation theory concepts which are used in the rest of the thesis are
explained. Some derivations are performed as well, related to the comparison between energy barriers
in different configurations. In particular, a concept called shape factor is defined and computed in two
different configurations: nucleation on a mould wall and nucleation at an interface. The main three
concepts commented on in this section are homogeneous nucleation, heterogeneous nucleation
and spinodal decomposition.

• Next, we proceed to study nucleation in binary mixtures. First of all, we make a detailed explanation
of how phase field models work and how to implement the string method. We also comment which
is the relation between model parameters and physical constants. We then proceed to apply this
methodology to study homogeneous nucleation under several conditions. First of all, we study phase
separation in one dimension, to study the general behaviour of the method, as well as possible problems
which may arise in more dimensions. Secondly, nucleation in two dimensions is studied both for
cartesian coordinates on a square domain and polar coordinates in a circular domain. There are
two goals in this section. The first one is to determine whether reduced dynamics in the radial
component are effective to determine relevant magnitudes in nucleation, which are energy barriers
and critical radii. The second one is to determine the validity of the results from simulations in
cartesian coordinates, since this is the case we consider for ternary mixtures. Finally, nucleation in
three dimensions is studied and compared to classical nucleation theory.

• Finally, nucleation for ternary mixtures is studied. In the first place, the phase field method is adapted
to systems with three components. Then, the method is applied to study phase separation in one
dimension, to determine possible problems which may arise in two dimensions. Then a discussion on
the contact angles at triple junctions is performed, and finally, heterogeneous nucleation is compared
to homogeneous nucleation in several configurations, via some magnitudes like the shape factor.

All the programs in this thesis have been developed using the programming language Python, alongside
some usual libraries (NumPy, SciPy and Matplotlib). All codes are available under reasonable request.
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2. The string method
A very common problem in complex dynamical systems is computing transition pathways, transition rates
and free energy barriers for rare events. Although these events take place very sporadically they are of crucial
importance in most of these systems. These systems usually have very large time scales associated with
these transitions, due to the fact that thermal fluctuations are very small compared to the energy barriers.
Hence, the dynamics consist of waiting very long periods until a fluctuation is big enough to bring one state
above these barriers, and then the system switches to another state abruptly. In practice, these transitions
cannot be studied by waiting such long periods of time, and alternative methods must be developed to
determine transition pathways.

From a numerical point of view, the problem of computing energy barriers and transition pathways can
be very difficult, especially for high-dimensional systems. Several numerical schemes exist to study these
transition pathways [11]. These methods can be classified as surface walking methods, which focus on
finding the saddle point of the energy landscape along the transition pathway, and methods that focus on
finding the whole minimum free energy path. In the first case we have the gentlest ascent method or the
dimer method, among others [21–24]. In the second case, some numerical schemes are the Nudged Elastic
Band Method (NEB) and the string method [25–27].

In this thesis, we will focus on one of these methods, the (zero-temperature) string method, which was
first proposed by Weinan E, Weiqing Ren, and Eric Vanden-Eijnden [27]. This method consists of evolving
a string following an algorithm that guarantees that it evolves to the most probable transition path, as well
as maintaining a particular parametrization for the string.

This method has been proven to be very useful when studying transition pathways in many systems
[12–14]. It can also be generalized to the finite temperature string method, which is useful to study
conformational changes arising in activated processes. In this modified method the potential forces are
replaced by some constrained thermodynamic averaged forces, although the numerical scheme is practically
the same [28]. The aim of the thesis is to determine whether the zero-temperature string method can give
us information about the energy barriers, critical nucleus size and shapes, etc. when studying nucleation
events.

2.1 Numerical implementation

The string method allows us to compute the most probable transition pathway between two metastable
states, which we will name A and B. An initial string is considered connecting two states A and B. A string
is a chain of states, which are usually referred to as images, which follow a certain parametrization. The
initial string is parametrized using some intrinsic parametrization, such as arc length or energy-weighted arc
length. We will use parametrization by arc length in this explanation, as this is the one we have used in the
rest of the thesis. The main advantage of the energy-weighted arc length parametrization over a simple arc
length parametrization is the fact that the first one concentrates more images near the saddle point of the
free energy landscape, which is usually the state we are more interested in in computing. This allows us to
determine this state with higher precision. However, for our purposes, the simple arc length parametrization
will be enough.

Consider now that our system is modelled by the following equation:

γq̇ = −∇V (q) + ξ(t) (1)
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where γ is the friction coefficient, ξ(t) is a white noise with zero mean, 〈ξj(t)ξk(0)〉 = 2γkBT δjkδ(t). γ
is a factor related to the dynamics of the system, but it does not affect the transition pathway we want to
compute. We assume that V (q) has at least two local minima, which are the metastable states A and B
mentioned before. It can be proven that this system will also have at least one saddle point. Our goal is to
find the Minimum Free Energy Pathway (MFEP) connecting these two states. By definition, a MFEP is
a smooth curve, ϕ∗(q), connecting two metastable states. This curve satisfies the following condition:

(∇V (q))⊥(ϕ∗) = 0 (2)

In this equation, (∇V (q))⊥(ϕ∗) is the component of ∇V (q) orthogonal to ϕ∗(q). That is, all along
the string the tangent vector to the curve is parallel to ∇V (q) at each image. These pathways happen to
be the most likely transition pathways connecting two metastable states, since the probability of deviating
from them decreases exponentially. They are usually referred to as the most probable transition pathways
connecting the two states for this reason.

One way to obtain the desired path is to evolve the string using the following scheme:

• First, the string is evolved using gradient descent dynamics. Hence, the string is evolved via the
following equation: ϕ̇ = −[∇V (q)]⊥. For convenience, we have normalized the time over gamma
(t → t/γ). Observe that, if ϕ is a MFEP, it is an equilibrium state of this ODE. Alternatively we
can also evolve the string using ϕ̇ = −[∇V (q)], since the reparametrization step already takes into
consideration that the final string satisfies Eq. 2. This expression is even simpler than the first one,
and more accurate from a numerical point of view [29].

• Secondly, we impose that the string is parametrized by arc length, something which is lost in the
previous step. To do so, we reparametrize the string by linearly interpolating the images so that they
are equally spaced along the string.

This method has some advantages to other similar methods. The first one is that we do not need to know
a priori the metastable states at the ends of the string to which we want to converge, but instead they are
computed on the fly. It is enough to initialize the ends of the string in the basin of attraction of each state
(which is usually quite simple if we know roughly the state to which we want to converge). The first step
guarantees that these images evolve to a metastable state of the system, and the reparametrization does
not affect the ending images of the string. Another advantage is that we can easily change the number
of images along the string, even in the middle of the process, by simply linearly interpolating the current
string. Moreover, the number of images in the string does not affect the convergence of the method (the
convergence of the method, and hence the possible values for the time step and mesh size, are determined
by the ODE to be solved, but the number of images along the string is independent of the ODE solver).
Finally, we can impose different parametrizations in the string method, something which other methods,
like the NEB method, lack. Moreover, it is quite straightforward to impose parametrization by arc length,
which is the most simple case, and in may cases it is sufficient.

Finally, some more modifications can be considered to make the method more efficient. One of them is
that the string does not need to be reparametrized at each iteration. Instead, it can be reparametrized every
ns iteration. The main advantage is that the method becomes faster if a large value of ns is considered,
something we are concerned about. However, taking very large values of ns may pose a problem in precision,
so an intermediate value must be considered.
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2.2 Example: The Mueller potential

To illustrate the method we consider an example in which we have a system under a Mueller potential. The
Mueller potential is a two dimensional potential given by the following expression:

V (x , y) =
4∑

k=1

Ake
ak (x−x0

k )2+bk (x−x0
k )(y−y0

k )+ck (y−y0
k )2

(3)

with:

A = (−200,−100,−170, 15)

a = (−1,−1,−6.5, 0.7)

b = (0, 0, 11, 0.6)

c = (−10,−10,−6.5, 0.7)

x0 = (1, 0,−0.5,−1)

y0 = (0, 0.5, 1.5, 1)

This potential has three minima and two saddle points. Our goal is to find the minimum free energy
path connecting two of these minima, as well as finding (at least) one of the saddle points. The Mueller
potential is a classical example in literature to find transition paths in these kind of systems [30].

To find the MFEP, we consider the domain [−1.5, 1.2]x [−0.2, 2] (all the minima and saddle points lie in
this region). The time step of the method is usually determined by the ODE solver we use. In our case we
use an explicit algorithm (forward Euler method), and the time step we take is h = 10−4 (usually explicit
methods are not good enough for stiff equations, in which case very small time steps have to be considered
for the method to converge. As an alternative implicit or Runge-Kutta methods must be used and larger
time steps can be taken).

Figure 1: String evolution using the string method under the Mueller potential.

The fist step is to define the initial string. This step can be quite tricky for complicated systems, since
the two ends have to be within the basin of attraction of the minima of the potential. If we plot graphically
the contour plot of the potential we can qualitatively determine the two minima which we want to connect
(see Fig. 1) and initialize the string so that the ending images are near the metastable states. In particular,
we choose as our initial string a straight line connecting the states A0 = (−0.5, 1.5) and B0 = (0.7, 0), and
we take m = 50 images along the string.
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Figure 2: Comparison between exact energy along the string and energy computed by thermodynamic
integration.

Secondly, we iterate the method. Since we can compute the gradient of the potential energy analytically
and we use an explicit scheme the method is straightforward (otherwise some implicit equation would have
to be solved an additional numerical errors would appear). We define the error as the `2 norm of the
difference between consecutive iterations (divided by the number of images in the string for normalization),
and consider a tolerance of tol = 10−7. The method converges after 277 iterations to the final string
plotted in Fig. 1,

To verify that we have converged to the MFEP connecting the two minima we can compute the potential
energy along the string in two different ways.

The first one is simply computing the energy at each image of the string using the exact expression for
the potential energy (Eq. 3), which gives us the exact value of the energy along the string. This system
has no numerical error, since we have the analytical expression for the potential energy at each point.

The second way to compute the potential energy by thermodynamic integration along the string. It
consists of integrating the component of ∇V tangent to the string at each image. This second expression
should also give the value of the energy at each image because the string after convergence is a MFEP.
Hence, the orthogonal component of ∇V along the string is 0, so all the contribution is in the tangent
direction. This second way has some numerical error because the string is not exactly the MFEP, but instead
it is an approximation. Moreover, since we are computing the integration numerically there is another source
of error, coming from taking a finite number of images along the string. However, this second way should
approximate the exact value of the energy along the string.

Both energy curves are plotted in Fig. 2. We can see that both curves are very close to each other.
We can measure the relative error as the `2 norm of the difference between the integrated energy in the
tangential direction and the exact one, divided by the `2 norm of the exact energy along the string. At the
end of the method the error is e = 0.019206.

A more detailed analysis on the variations and improvements of this method is provided during the thesis.
Some of them are changing the number of images on the fly and reparametrizing the string every certain
number of iterations.
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3. Classical nucleation theory
In material science, nucleation is a very common phenomenon which does not only take place in multicompo-
nent liquid mixtures, but also metals and alloys. For instance, in these two last cases it is the responsible of
solidification and melting. These phenomena take place between crystallographic and non-crystallographic
states. These transformations are crucial in many applications in industry and engineering, and there are
still many aspects which are not fully understood, due to the complexity of the process. It also takes place
when a liquid is cooled bellow its melting point. One may expect that in this case the liquid starts to solidify
spontaneously. However, a more detailed view into the process shows that this is not the case. From a
thermodynamical point of view, the solid phase starts to form in small droplets, and these droplets begin
to grow until they occupy all the volume, giving rise to the solid phase. These droplets (which are usually
called nuclei) are unstable until they reach a certain critical nucleus size. They can form inside the liquid
phase, a process called homogeneous nucleation, or in the interfaces or near the walls or impurities of
the material, a process called heterogeneous nucleation. All along the thesis we will refer to droplets and
nuclei indistinctly, since they refer to the same concept.

In this chapter, we discuss both types of nucleation from a thermodynamical point of view. This
treatment is usually referred to as Classical Nucleation Theory (CNT) [31], and we will refer to it all along
the thesis, since our goal is to compare the results from the string method with the expressions given by
CNT. Moreover, a third process by which phase separation can take place is briefly commented, which is
spinodal decomposition.

3.1 Homogeneous nucleation

When a liquid is cooled bellow its melting point, TM , a driving force for solidification appears, ∆G = GL−GS .
This is caused by a balance between enthalpy and entropy of each phase, such that bellow the melting point
the solid phase has a lower free energy and hence it is the most stable phase. However, the solid phase
does not form homogeneously all over the liquid phase immediately. Instead, small droplets of solid particles
start to form inside the liquid phase, and then they grow until they occupy the whole volume of the material
system.

Figure 3: Homogeneous nucleation of a spherical droplet of radius r.

Let’s consider a region in space which contains a liquid with volume V , and free energy G1. If this liquid
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is at temperature ∆T bellow TM , some particles may cluster together to form a small sphere of solid, which
we call a nucleus. In this case the free energy of the system will be:

G2 = VSG
S
V + VLG

L
V + ASLγSL (4)

where VS is the volume of the solid sphere, VL the volume of the liquid, ASL is the solid/liquid interface area,
GS and GL are the free energies per unit volume of solid and liquid, respectively, and γSL is the solid/liquid
interface free energy. The free energy at the initial state is G1 = (VS + VL)GL

V . The difference in free
energy is then:

∆Ghom = G2 − G1 = −VS∆GV + ASLγSL (5)

where ∆GV = GS
V − GL

V . That is, there is a negative term because the solid phase has a lower free energy
than the liquid phase, but there is also a positive term due to the creation of an interface between both
phases. It can be shown that, for a given volume, the shape which minimizes the surface, and hence the
interface free energy, is a sphere. Hence, if we assume that the nucleus has spherical shape with radius r ,
then the previous expression can also be written as:

∆Ghom = −4

3
πr3∆GV + 4πr2γSL (6)

From the previous expression one can deduce that ∆Ghom is negative for large values of r and positive
for r close to zero. More precisely, the previous expression has a minimum at r = 0 and a maximum, which
is the critical radius that we are looking for, at:

r∗ =
2γSL
∆GV

(7)

∆G ∗hom = ∆Ghom(r∗) =
16π(γSL)3

3(∆GV )2
(8)

This maximum acts as an energy barrier which does not allow the nucleus to grow. When the nucleus
forms it has to grow up to a size which is greater than r∗, otherwise thermodynamical forces coming from
the derivatives of the free energy will make it dilute again inside the liquid phase. The previous relations
(Eqs. 6, 7 and 8) will be used to compare heterogeneous nucleation to homogeneous nucleation.

If we also use the expression ∆GV = LV
∆T
TM

, where LV is the latent heat of fusion per unit volume,
and ∆T = TM −T is the difference between the temperature of the droplet and the melting temperature,
then we can rewrite the previous expressions as: r∗ = 2γSLTM

LV
1

∆T and ∆G ∗hom =
16π(γSL)3T 2

M
3(LV )2

1
(∆T )2 . Hence,

if we increase the undercooling, the energy barrier decreases and it shifts to smaller r values. That is, if
we decrease the temperature far bellow the melting temperature this phenomenon of growing nuclei will
not be noticeable, since almost all nuclei will end up reaching the critical radius value and growing until
they occupy the whole volume. This is the reason why, if we decrease the temperature far bellow the
melting temperature, the liquid will solidify spontaneously, so that we can only have a liquid bellow its
melting temperature for relatively small undercoolings. This maximum variations can vary depending on
the material, and in some cases we can have very large deviations (for example, under suitable conditions,
liquid nickel can be undercooled 250K bellow its melting temperature, which is 1728K, without solidifying).
In practice, however, we would never be able to undercool a liquid that far beyond the melting temperature
because heterogeneous nucleation would take place.
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The same results can be derived in two dimensions following the same procedure. In that case the
increase in free energy is given by:

∆Ghom = −4πr2∆GV + 2πrγSL (9)

The values for the critical nucleus and the energy barrier, which are the values which maximize the
previous expression, are:

r∗ =
γSL

2∆GV
(10)

∆G ∗hom =
πγ2

SL

2∆GV
(11)

3.2 Heterogeneous nucleation

Heterogeneous nucleation is a very common phenomenon and it is usually the one responsible for liquids to
solidify because it takes place at smaller undercoolings than homogeneous nucleation. Unlike homogeneous
nucleation, heterogeneous nucleation only takes place at crevices in mould walls, near impurities in the
material or at interfaces between two phases.

From the expressions for the critical radius and energy barrier in homogeneous nucleation we can deduce
that one way to reduce these values for small undercoolings (∆T ) would be reducing the value of the
interface energy, γSL. This can be achieved if the embryo forms in contact with a mould wall or at an
interface.

The derivation of the increase in free energy can be reproduced both in two dimensions and in three
dimensions. In our simulations we will study nucleation in two dimensional domains, so we are mostly
interested in computing this quantity in these configurations. However, the results in all cases are provided.

It can be checked that, both for nuclei forming in contact with a mould wall and at interfaces, the increase
in free energy has the same expression as the homogeneous case (Eqs. 6 and 9) multiplied by a factor which
only depends on the contact angles at triple junctions. This factor is called the shape factor, and it
measures the quantity by which heterogeneous nucleation is more favorable than homogeneous nucleation.
The complete derivation of the expressions of the shape factors can be found in appendix A.

We call ∆G 2d
hom(r) the expression for the increase in free energy in two dimensions for a droplet of radius

r (see Eq. 9). Then, the increase in free energy in two dimensions is given, for nucleation at a mould wall
(see Fig. 4) by:

∆G 2d
het(r , θ) = ∆G 2d

hom(r)S1(θ) (12)

S1(θ) =
θ − sin θ cos θ

π
(13)

For nucleation at an interface the forming droplet consists on two circular caps, with radii r1 and r2 and
contact angles θ and φ (see Fig. 4 for the definition of the parameters). The expression for the shape factor
is:

∆G 2d
het(r1, θ,φ) = ∆G 2d

hom(r1)S2(θ,φ) (14)
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Figure 4: Heterogeneous nucleation in two different configurations. Upper figure: droplet in contact with a
mould wall. Lower figure: droplet forming at an interface between two phases.

S2(θ,φ) =
θ + φ sin2 θ

sin2 φ
− sin θ

sinφ sin (θ + φ)

π
(15)

In three dimensions we have very similar expressions, but the relation for the shape factors change. The
two configurations are the same as in two dimensions, and we can use the same notation (see Fig. 4 thinking
of spherical caps on planar interfaces. If we call ∆G 3d

hom(r) the expression for the increase in free energy in
three dimensions for a droplet of radius r (see Eq. 6), for nucleation at a mould wall we have the following
expressions:

∆G 3d
het(r , θ) = ∆G 3d

hom(r)S1(θ) (16)

S1(θ) =
(2 + cosθ)(1− cosθ)2

4
(17)

For nucleation at an interface we have:

∆G 3d
het(r1, θ,φ) = ∆G 3d

hom(r1)S2(θ,φ) (18)

S2(θ,φ) =
(2 + cos θ)(1− cos θ)2

4
+

(2 + cosφ)(1− cosφ) sin3 θ

4(1 + cosφ) sinφ
(19)

Observe that, with these expressions, we can also express the value of the critical radius and the energy
barrier in terms of the corresponding values in homogeneous nucleation. If we name S(θ,φ) the shape factor
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in each case (that is, S(θ,φ) = S1(θ) for nucleation at a mould wall and S(θ,φ) = S2(θ,φ) for nucleation
at an interface), these relations are:

r∗het = r∗hom (20)

∆G ∗het = ∆G ∗homS(θ,φ) (21)

The factor S(θ,φ) is always smaller than one, so the energy barrier for heterogeneous nucleation is always
smaller than for homogeneous nucleation. For instance, if we look at S1(θ) for the two dimensional case
(see Fig. 5), for a value of the contact angle of θ = 10◦, S1(θ) ≈ 10−4, so that the barrier to heterogeneous
nucleation is ten thousand times smaller than in the homogeneous case. This is the reason why, in practice,
heterogeneous nucleation is the leading process for solidification to start, and homogeneous nucleation is
usually not present. Significantly small values of S1(θ) are obtained for several angles, including θ = 30◦

(S1(θ) = 0.02), and even for θ = 90◦ we get S1(θ) = 0.5.
It is interesting to notice that we can also recover the mould wall case from nucleation at interfaces if

we consider φ close to 0 (this model fails to reproduce the values θ = 0 and φ = 0, but we can consider
one of them to be very small). In that case, if the expression of S2(θ,φ) is rewritten in the limit φ = 0,
we get: S2(θ,φ) → S1(θ), both in two dimensions and in three dimensions. When one of the angles is 0◦

(corresponding to the total wetting case), the nucleus should be modeled in a different way.

Figure 5: S1(θ) in the two dimensional case, θ in degrees.

In this thesis, we will study homogeneous nucleation and heterogeneous nucleation at interfaces, but we
will not consider nucleation on mould walls. However, we have seen that nucleation on the mould wall case
is recovered from nucleation at interfaces in the limit where one of the interface energies is very small.

3.3 Spinodal decomposition

There are some phase transformations which do not present energy barriers to nucleation, and therefore
they are spontaneous processes. One of them is spinodal decomposition [31].

Consider the phase diagram of an alloy which has a miscibility gap (see Fig. 6). The alloy, which
initially is at temperature T1 and has a volume fraction X0 (state α in Fig. 6, outside the miscibility gap),
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Figure 6: Upper figure: phase diagram of an alloy which presents a miscibility gap. Lower figure: free energy
density of the same alloy at temperature T2. Image taken from [31] (page 309).

is quenched to a temperature T2, so that it enters the miscibility gap. At this temperature the alloy has a
free energy G0. However, since the free energy curve at that point has negative curvature, this new state is
unstable because small fluctuations in composition produce a decrease in the free energy. The alloy splits
into two distinct phases which end up having specific concentrations which minimize the free energy of the
system. We say that the alloy experiences spinodal decomposition. In particular, this happens whenever the
free energy curve (or surface if we have a compound with more than two phases) has negative curvature.

At temperature T2, the alloy lies between the two points in the free energy curve S1 and S2, which
correspond to the values of the concentration for which the curvature of the free energy is 0. The locus of
these two points is known as the chemical spinodal, or to abbreviate the spinodal, if there is no confusion.
Outside the chemical spinodal small fluctuations in concentration lead to an increase in the free energy, so
the states there are metastable. The only way to decrease the free energy in these cases is by a process of
nucleation and growth, which has associated an energy barrier. This region is also limited by another curve,
the binodal. Outside the binodal the two phases cannot coexist, so phase separation cannot take place
under any circumstances outside the binodal.

There are some concepts which have not been taken into account in this discussion, which are coherency
strain effects and interface energy effects. Although during the initial states of spinodal decomposition the
interfaces are very diffuse, there is still an interface energy increase. This interface energy is directly linked
to the gradient of the concentration at the interface. That’s why it is also called gradient energy. There
is a contribution due to coherency strain energy, if the sizes of the atoms making up the solid solution are
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different. These two terms add up to the total free energy of the alloy. This defines a new concept, which is
known as the coherent spinodal. The coherent spinodal is the region where spinodal decomposition takes
place taking into account these two effects. It always lies within the chemical spinodal, so its global effect
is slightly reducing the spinodal region.

Spinodal decomposition is a very common process which does not only take place in alloys with a stable
miscibility gap in their phase diagram. It can also happen in systems in which GP zones form, among others.

In this thesis, we are interested in these regions, since they are the regions were phase separation takes
place spontaneously and no energy barriers are present. Determining whether we are inside the spinodal
region is slightly more complex for ternary mixtures, since determining the curvature of the free energy
landscape is not direct. This issue will be addressed in Section 5.
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4. Nucleation in binary mixtures

The most simple case of nucleation takes place in binary mixtures, since the only process that takes place
in that case, if we do not consider nucleation at mould walls, is homogeneous nucleation. In that case, the
two components are initially mixed together, but they split into two separate phases of space. This process
can be led by spinodal decomposition or by nucleation, depending on the value of the concentration of the
components. These two components evolve following the Cahn-Hilliard equation (also known as model B),
which can reproduce phase separation. Moreover, Cahn-Hilliard equation preserves the total concentration
of the components. Together with the Cahn-Hilliard equation we use the string method to calculate the
critical states of nucleation and some related magnitudes, like the energy barrier or the radius of the critical
droplets. In terms of solving the PDE, we iterate the Cahn-Hilliard equation following a finite differences
approximation, together with an IMEX method for time integration.

4.1 Phase evolution

4.1.1 Phase field models

Modeling material systems with several phases can be a quite challenging problem. From a mathematical
perspective, these systems are ideally divided in bulk regions, each of which represents a certain phase,
separated by sharp interfaces. The evolution of these phases and the separating interfaces is not an easy
problem, since the geometry of each region changes with time. This situation is of special interest in
mathematical physics (one example of this is the well-known Stefan’s problem [32]). Many models have
been presented to study these systems, and their classification is out of the scope of this thesis [10].

In general, there are two types of models, which distinguish in the way they treat interfaces. The
first ones are front-tracking approaches to interface motion [33, 34]. In these models, the interface is
represented explicitly using a Lagrangian mesh. These methods have the advantage that they can describe
sharp interfaces and have a very high resolution and excellent accuracy. However, they are quite complex,
especially when one is interested in remeshing the interface. That’s the reason why we do not use these
methods in this thesis.

The second type of models are the phase field models [10, 35]. These models treat interfaces as being
diffuse, and they are described using order parameters. The main advantage of these methods is their
robustness, compared to front-tracking methods. The loss of sharp interfaces translates to significant
boosts in the simplicity and robustness of the models. However, they have one disadvantage, and it is that
the mesh has to be fine enough to resolve the interface (this issue is discussed more in detail along this
section).

When studying phase separation using phase field models, order parameters are defined. An order
parameter is a measure of the structural order that distinguishes between phases. In a system with several
components there is usually one order parameter for each of them. An order parameter is a variable, φi for
component i, which takes values from 0 to 1 (or from -1 to 1), being 1 inside phase i and 0 outside. The
interfaces vary smoothly between 0 and 1, and they are usually the most complex part to model.

Consider a system with Nc components. We define one order parameter for each of them. Each order
parameter is equal to 1 inside the region where the corresponding phase lies, and 0 outside. Hence, order
parameters are a measure of the concentration of each component at each point in space. If we think of
these order parameters as the percentage of component i at a given point, then the following condition
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holds:
Nc∑
i

φi = 1 (22)

If we use this condition we can eliminate one order parameter and express it as a function of the other
Nc − 1 order parameters. This is especially useful for binary mixtures, since this is the simplest case and in
that way we can just study one order parameter, φ (the other order parameter is 1− φ).

Classically, two equations were presented to model phase separation [35]. The first one is the Allen-Cahn
equation, also known as model A, which has the following expression:

∂φi
∂t

= −Li
δF

δφi
(23)

In the above equation, φi are the order parameters for each phase and Li are related to the atomic
mobilities. The derivative at the right hand side is the functional derivative of the total free energy with
respect to φi , which is also the definition of the chemical potential for phase i, µi . This equation is
non-conservative, that is, the average value of each order parameter is not conserved.

The second equation is the Cahn-Hilliard equation, also known as model B, which has the following
expression:

∂φi
∂t

= ∇ ·
(
Mi∇

δF

δφi

)
(24)

In the above equation, Mi is related to the atomic mobility and the derivative at the right hand side
is the functional derivative of the total free energy with respect to the i’th order parameter. In that case
the equation is conservative, so that the total concentration is preserved for each component. This is the
evolution equation considered in this thesis.

4.1.2 The Cahn-Hilliard equation

One of the advantages of the Cahn-Hilliard equation is that it preserves the total concentration of each of
the species. To maintain the conservative property of the equation, it is usually combined with periodic
boundary conditions or Neumann boundary conditions. All along the thesis these two boundary conditions
are considered. Neumann boundary conditions are considered in one dimension and when polar or spherical
coordinates are considered. Periodic boundary conditions are considered in cartesian coordinates in two
dimensions, since in that way we can solve the Cahn-Hilliard equation in the Fourier space. Although we
consider different boundary conditions, we expect to get similar results in both cases.

For binary mixtures we assume that each of our order parameters takes values in (−1, 1). In that case,
Eq. 22 is rewritten as:

2∑
i

φi = 0 (25)

However, although the Cahn-Hilliard equation is conservative, the sum of the values of the order pa-
rameters at each point is not kept to 0. That is, the Cahn-Hilliard equation does not assure that Eq. 25 is
satisfied at each point in the general case. To fulfill this condition an appropriate choice of the mobilities
must be made. Otherwise, one of the order parameters must be computed from the other one. Since we
are in a binary mixture, this means that we just need to evolve one order parameter, φ, which represents the
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concentration of one of the components (the other one is simply −φ). Hence, we only have one equation
for one of the components.

The term at the right of the Cahn-Hilliard equation (Eq. 24) is the functional derivative of the total free
energy with respect to the order parameter. The free energy is a Ginzburg-Landau type energy functional [13],
which has the following expression:

F (φ) =

∫
Ω

(
f0(φ) +

W 2

2
|∇φ|2

)
dΩ (26)

where Ω is our domain. The gradient term takes into account the energy due to the interface (sharper
interfaces have a greater energy), and the first term is the bulk free energy, which is related to the potential
energy. The bulk free energy is often simplified to a double well potential.

We consider that our order parameter takes values in (−1, 1), and it represents the surrounding phase
(so the nucleating phase is represented by −φ). Hence, φ = 1 outside the nucleus and φ = −1 inside
it. We consider a bulk free energy with the following expression: f0(φ) = A (φ2−1)2

4 , for some constant A
which is determined by prescribing the value of the interface energy (see section 4.1.3). The division by 4
is left in the expression to simplify some expressions which appear later. Finally, the constant W takes into
account the interaction strength between the two phases, and it is related to the interface width. We could
also consider the bulk free energy for a regular solution, but for numerical purposes this simpler double well
potential is enough.

If the functional derivative is computed, assumin the mobility coefficient M = 1, we obtain the Cahn-
Hilliard equation for this free energy functional:

∂φ

∂t
= ∆

(
−W 2∆φ+ A(φ3 − φ)

)
(27)

Observe that this is a fourth order PDE which also contains nonlinear terms. Hence, the equation will
be very stiff and some appropriate numerical method will have to be considered to treat these issues.

4.1.3 Model parameters and physical constants

An important goal in the study of binary mixtures is being able to reproduce the value of physical constants
from the simulations. To do so, the model parameters cannot take arbitrary values, but they have to fulfill
certain relations with respect to physical constants. Two magnitudes are of special interest: the interface
energy and the interface width. To find the relation between model parameters and physical parameters we
will use the derivation performed by Ryan Davis in his thesis [10], and we will apply it to our case.

From a physical point of view, the interface energy between two phases, a and b, is the difference in
free energy per unit area between the phase at one side of an interface (phase a) and the phase at the
other side (phase b), assuming no other phase is present. In our model, the interface energy is obtained
by considering two semi-infinite phases separated by an interface, and integrating the free energy of this
configuration along an axis orthogonal to the surface. That is, if γ is the interface energy (in the binary
case there is only one interface energy, which corresponds to an interface separating the two phases), then:

γ =

∫ +∞

−∞

(
f0(φ(x)) +

W 2

2
|∇φ(x)|2

)
dx (28)

Observe that the previous expression only works when the bulk free energy is null at the bulk regions
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Figure 7: Geometric description of the interface width. In this example the interface width is 0.8.

(when φ = ±1, then f0(φ) = 0), like in the cases we consider in this thesis. Otherwise the term coming from
the bulk phases should be subtracted from the computation. The other physical parameter we consider is
the interface width, which is a distance related to the width of the interface. It has the following geometric
construction (see Fig. 7):

1. We determine the x coordinate where the value of the order parameter is the midpoint of the range of
the order parameter. In our case, since φ goes from −1 to 1, this point corresponds to φ = 0, which
in Fig. 7 corresponds to x = 0.

2. The tangent line to the order parameter at the point is drawn.

3. This line takes the maximum and minimum values of φ (1 and -1) at A and B , respectively. The
interface is then defined as the distance between these two points.

After performing the calculations described above, we get the following analytical expression for the
interface width, which is represented by δ:

δ =
2

|∇φ|φ=0
(29)

The two expressions given by Eqs. 28 and 29 are very complicated to calculate given an arbitrary profile
for the order parameter. However, for a stationary state of the Cahn-Hilliard equation, there is a change of
variables that allows us to compute these integrals analytically.

A state which is metastable in the free energy landscape (and thus it is stationary for the Cahn-Hilliard
equation) minimizes the free energy functional, δF

δφeq
= 0. On the other hand, the Euler-Lagrange equation

determines the profile of the order parameter which minimizes the total free energy of the system (Eq. 26).
However, if this integral does not depend explicitly on time (which is the case), then the Euler-Lagrange
equation reduces to the Beltrami identity [36]:

F − (∇φ)
∂F

∂(∇φ)
= 0 (30)
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In our case, since F = f0(φ) + W 2

2 |∇φ|
2, the Beltrami identity translates to:

f0(φ)− W 2

2
|∇φ|2 = 0 (31)

This relation, only valid for the equilibrium states of the Cahn-Hilliard equation, allows us to compute
the values of the interface energy and interface width analytically, and express it in terms of the model
parameters, A and W.

Going back to Eq. 28, using Beltrami’s identity and performing a change of variables:

γ =

∫ +∞

−∞
2f0(φ)dx = 2

∫ 1

−1
f0(φ)

1

∇φ
dφ

γ = 2

∫ 1

−1
f0(φ)

√
W 2

2

1

f0(φ)
dφ =

√
2W

∫ 1

−1

√
f0(φ)dφ =

√
2AW

2

∫ 1

−1
(1− φ2)dφ

γ =
2
√

2AW

3

Applying Beltrami’s identity to Eq. 29 we get:

δ =
2√

2
W 2 f0(φ)φ=0

=
2W√

A
2

δ =
2
√

2W√
A

A change of variables is convenient to simplify a bit these expressions. We define λ = W√
A
, so that

W = λ
√
A. Then, the previous expressions result in:

γ =
2
√

2

3
Aλ (32)

δ = 2
√

2λ (33)

These expressions can be easily inverted, and in that way we can express the model parameters in terms
of physical constants. This is an important advantage, because Eqs. 32 and 33 allow us to use physical
constants as input parameters in the program. If we do so the expressions which relate the model parameters
to physical constants are:

λ =

√
2δ

4
(34)

A =
3γ

δ
(35)
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A final observation is that if we write the free energy in Eq. 26 with this change of variables we get the
following:

F (φ) =

∫
Ω
A

(
(1− φ2)2

4
+
λ2

2
|∇φ|2

)
dΩ (36)

We see that A is a scale factor in the free energy. This implies that the stationary solutions of the Cahn-
Hilliard equation do not depend on the value of A. Instead, A is just a factor which multiplies the total
energy. We can, thus, choose whatever value of A we want without changing the final string in the string
method. Changing A, however, can change the speed to which we arrive at this solution, since changing A
is equivalent to changing the time step. This comes from the Cahn-Hilliard equation: the time derivative
is equal to the gradient of the chemical potential (which in turn is equal to the functional derivative of
the free energy density). Hence, multiplying the free energy density by a constant factor is equivalent to
multiplying the time derivative by a constant factor. However, since the equilibrium concentration profiles
are the ones which have a null time derivative, multiplying the time derivative by a constant factor does not
alter the equilibrium states. The effect of changing A is changing the speed at which the system reaches
the equilibrium state, which in simulations is equivalent to changing the time step, as we will see in future
sections. Since changing A keeping λ fixed is equivalent to changing γ keeping δ fixed, we can give the
value we want to γ. In particular, for simplicity, we will consider, unless the opposite is said, γ = δ

3 , so
that A = 1. The important thing to take into account is to always consider similar values of the interface
energy, especially when comparing different simulations with classical nucleation theory.

4.2 One dimensional case

First of all, we study the most simple case, which is nucleation in one dimension for a binary mixture [13].
This case does not have any interest from the physical point of view because nucleation does not occur in
one dimension (if the argument explained in Section 3 is reproduced in one dimension, we find that the free
energy curve does not present any maximum, so there is no energy barrier to phase separation). However, it
is interesting to start with this case because it allows us to study the implementation of the string method
and the phase field model and analyze possible difficulties that may appear.

4.2.1 Numerical implementation

First of all, we define some concepts we will refer to all along the thesis related to how the string method
works for the Cahn-Hilliard equation. The string consists of a chain of states, which we refer to as images,
which is parametrized by arclength under the `2 norm. For a PDE, like the Cahn-Hilliard equation, each of
the states is a profile of the order parameter. That is, we have m profiles along the string, the first of which
is the mixed state (a constant concentration profile), and the last of which is the separated state (two bulk
regions separated by an interface). We only need to consider an initial string where the initial and final
images are within the basin of attraction of these metastable states. For the initial state it is very easy, since
the constant concentration profile is already metastable. The final state can be initialized as two separated
phases separated by a sharp interface, and the string method will evolve this state to the smooth interface,
which is the real metastable state. The intermediate images can be initialized in many ways, although some
of them are better than others. This issue is discussed later.

Observe that on the one hand we talk about the initial and final states or images of the string, which
are the metastable states. These states correspond to the mixed and separated phases. Hence, they have
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a physical meaning, which corresponds to the beginning and the ending of the nucleation process. On the
other hand we have the initial string. This initial string is the initial condition we consider for the string
method, which is evolved until it converges to the MFEP between the two metastable states. This initial
condition does not have any physical meaning, it is only defined in the string method. We can combine
both concepts and have an initial state in the initial string, for example. Special care must be taken so as
not to confuse these two terms.

In our simulations there are several parameters which we can control. Some of them are related to
physical parameters, while some others are related to the numerical implementation.

The physical parameters we can modify act as inputs for our model. They are the interface energy γ,
the interface width δ and the mean concentration φ̄, defined as the integral of the concentration profile
on the whole domain. We expect this value not to change during time evolution, since the Cahn-Hilliard
equation is conservative. Moreover, we define all the images on the string so that they have the same value
of the mean concentration (otherwise the transition path found after convergence would have no physical
meaning).

The numerical parameters are the number of images along the string m, the number of discretization
nodes in the x coordinate N, the time step h and the tolerance for the method to stop tol . The error is
defined throughout all the thesis as the `2 norm of the difference between the current string and the previous
one divided by m ·N, unless we say the opposite. The tolerance is a parameter which serves us as a stopping
criterion: if the error becomes smaller than the tolerance, we consider that the method has converged and
the string at that iteration is the transition path between the two metastable states.

As for how to evolve the string method, the Cahn-Hilliard equation (Eq. 27) and the free energy take
the following form in one dimension:

∂φ

∂t
=

∂2

∂x2

(
−W 2∂

2φ

∂x2
+ A(φ3 − φ)

)
(37)

F (φ) =

∫ 1

0

(
f0(φ) +

W 2

2

∣∣∣∣∂φ∂x
∣∣∣∣2
)
dx (38)

Eq. 37 is discretized in the spatial coordinate using finite differences. We divide the interval into N
intervals of the same length, and we consider the nodes at the center of each interval, naming the node at
interval i as xi , where i = 0, ...,N−1. They are separated by a distance of dx = 1

N , and they are at positions
x0 = dx/2, x1 = 3dx/2, ..., xN−1 = 1 − dx/2. There is actually no need to consider centered nodes in
one dimension, but in that way we will avoid some problems in two and three dimensions. The expression
φ is used to refer to the vector with the following components: φ = (φ0 = φ(x0), ...,φN−1 = φ(xN−1)). To
calculate first and second order derivatives at node i ∈ (1....,N−2) we use the following discretizations [37],
which have second order convergence in space:

∂φi
∂x
≈ φi+1 − φi−1

2∆x
(39)

∂2φi
∂x2

≈ φi−1 + φi+1 − 2φi
∆x2

(40)

Two different boundary conditions are considered, periodic boundary conditions and Neumann boundary
conditions. In both cases two fictitious nodes are created, φ−1 and φN . The value of the function at these
nodes depends on the boundary conditions we consider.
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• Periodic boundary conditions: in this case, we impose: φ(0) = φ(1) and ∂φ
∂x (0) = ∂φ

∂x (1). Both
conditions are satisfied if we impose φ−1 = φN−1 and φ0 = φN . Using this notation we can express
the first and second derivatives of the function φ at nodes 0 and N − 1 using Eqs. 39 and 40.
Moreover, we can write both derivatives in matricial form:

∂φ

∂x
= Dφ (41)

∂2φ

∂x2
= Lφ (42)

where:

D =
N

2



0 1 0 0 ... 0 0 −1
−1 0 1 0 ... 0 0 0
0 −1 0 1 ... 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ... −1 0 1
1 0 0 0 ... 0 −1 0


(43)

L = N2



−2 1 0 0 ... 0 0 1
1 −2 1 0 ... 0 0 0
0 1 −2 1 ... 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ... 1 −2 1
1 0 0 0 ... 0 1 −2


(44)

• Neumann boundary conditions: in this case, we impose: ∂φ
∂x (0) = 0 and ∂φ

∂x (1) = 0. Both
conditions are satisfied if we impose φ−1 = φ0 and φN = φN−1. As in the periodic case, we can
express the first and second derivatives of the function φ at nodes 0 and N − 1 using Eq. 39 and
(40), and we can write them in matricial form:

∂φ

∂x
= Dφ (45)

∂2φ

∂x2
= Lφ (46)

where:

D =
N

2



−1 1 0 0 ... 0 0 0
−1 0 1 0 ... 0 0 0
0 −1 0 1 ... 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ... −1 0 1
0 0 0 0 ... 0 −1 1


(47)

L = N2



−1 1 0 0 ... 0 0 0
1 −2 1 0 ... 0 0 0
0 1 −2 1 ... 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ... 1 −2 1
0 0 0 0 ... 0 1 −1


(48)
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Going back to the discretized Cahn-Hilliard equation, in both cases we can write it with the following
notation:

∂φ

∂t
= L(−W 2Lφ+ A(φ3 − φ)) (49)

where φ3 = (φ3
0,φ3

1, ...,φ3
N−1).

There are many options to solve this ODE. The problem with the Cahn-Hilliard equation is that it is both
nonlinear and stiff, due to the fourth order derivative term. The second issue can be addressed considering
implicit methods, but since the equation is nonlinear they are quite complicated to implement. Two methods
are proposed to solve Eq. 49.

The first one is the forward Euler method, or Euler Method for simplicity (EM). This is the most simple
numerical method to solve ODEs, and there is no complication in terms of implementation. However, it has
the disadvantage that usually very small time steps have to be considered to achieve convergence. If the
time step is taken too large then the program diverges. Moreover, this method has linear convergence in
time.

The second option is to consider a so called implicit-explicit method (IMEX), or semi-implicit method
[37]. This method consists on splitting the equation in an implicit part, which contains the linear terms, and
an explicit part, which contains the nonlinear terms. The advantage of this method is that the stiff term,
which is the fourth order derivative, is precisely the one that is considered implicit. In that way stiffness
issues are much more easily handled. Moreover, the equation can be solved at each iteration explicitly, since
the fourth order derivative term is invertible, but the nonlinear term needs not be inverted because it is
considered explicit.

Other options to solve the ODE would include Runge-Kutta methods or ODE solvers already implemented
in libraries. However, as a first step we consider the two most simple cases, since we are mainly interested in
the program to be fast (this is not very important in the one dimensional case, but it will be crucial for two
and three dimensions). We will see that especially the IMEX method is already enough for our purposes.

First of all we consider the forward Euler method, which treats all the right hand side of the Cahn-Hilliard
equation explicitly. The equation we get after discretizing Eq. 49 in time, using a time step of h, is the
following (where φn is the value of the vector function φ at time nh, where n = 0, 1....):

φn+1 = φn + hL(−W 2Lφn + A((φn)3 − φn)) (50)

The second solution comes from considering the IMEX method. If the fourth order derivative terms is
treated implicitly and inverted, the final expression for φn+1 is:

φn+1 = (I + hW 2L2)−1(φn + hAL((φn)3 − φn)) (51)

where I is the N · N identity matrix.
These two methods are tested for both boundary conditions. A similar performance is expected in terms

of convergence, since both of them have linear convergence in time. However, a smaller time step is expected
to be necessary with the forward Euler method for numerical stability.

All the programs used in this thesis, unless we say the opposite, have been coded using Python language.
Some standard libraries used throughout the whole thesis are numerical python (NumPy), scientific python
(SciPy) and Matplotlib.
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4.2.2 Simulations and results

The main goal in these 1d simulations is to check that the method developed until now works well and
in accordance to what we expect from classical nucleation theory. Observe that, according to classical
nucleation theory, in one dimension there should be no energy barrier to phase separation for any value of
the concentration. However, in our model, the bulk free energy density has a negative second derivative
for concentrations under φ̄∗ =

√
3

3 ≈ 0.577, which is the condition for which we enter the spinodal region.
Hence, we expect the method to find that there is no barrier to nucleation for concentrations under this limit,
but we may find energy barriers for concentrations over the limit concentration. These energy barriers do
not have any physical meaning. They appear because classical nucleation theory assumes, in one dimension,
that the contribution of interfaces to the energy is a constant and does not depend on the radius of the
droplet (in two dimensions, for example, the interface term depends linearly on the radius because the
greater the radius of the droplet the greater the length of the interface). However, in simulations interfaces
are diffuse, so the contribution of the interface depends on the width of the interface and its position, so
it is not a constant term. That’s the reason why critical radii should be comparable to the interface width.
We want to check, then, that when we are in the spinodal region there is no barrier to nucleation, and that
the physical parameters, which will be the inputs, are the ones obtained numerically from the results of the
simulations.

An observation before analyzing the results is that, although the Cahn-Hilliard equation does not have
an analytical solution in the general case, we can find an analytical stationary solution in the one dimensional
case. This solution is obtained by solving the Beltrami identity. This solution extends from −∞ to +∞,
but it is also a good solution if we consider Neumann boundary conditions on a finite domain (in our case
(0, 1)), and we can use it to compare our results. For the details of this solution see appendix B. We use
this solution as a way to check that the string converged correctly.

First of all a comparison between the forward Euler method and the implicit-explicit method (which
from now on will be referred to as EM and IMEX for simplicity) is done. To do so, the same simulation is
performed using each of the methods and the results are compared, as well as the number of iterations the
program took to reach the stable string. The string is initialized by considering an initial constant profile
of value φ̄ and a final profile consisting of a two phase system, the first of which has a value φ = −1
and the second one φ = 1, separated by a sharp interface. The intermediate images are declared as two
phase regions as well, simulating the growth of the nucleus: the transition shifts to the right, and the value
of the order parameter is always equal to −1 inside the droplet. The concentration outside the droplet is
determined by imposing that the total concentration at each image is the same.

Table 1 shows the results obtained considering Neumann boundary conditions for different values of the
mean concentration both for the EM and the IMEX method. m = 50 images were considered along the
string, the spatial coordinate was discretized in N = 100 nodes, values of δ = 0.05 and γ = δ/3 were
considered and different values of h and tol were considered for each of the methods.

In all cases we get pretty similar results for the energy barriers (the largest difference happens for
φ̄ = 0.60, but it is because the energy barrier is very small, so more images on the string should be
considered to resolve it better). However, there is a crucial difference: the IMEX method is faster than the
EM by approximately one order of magnitude. If we check the total CPU time, we see that in all cases the
EM ran for approximately 20 times the total CPU time for the IMEX method. We can also observe that
the IMEX method can perform more iterations per second than the EM, although the results fluctuate a lot
and no definitive conclusions can be derived from it. In principle both methods are comparable in terms of
efficiency, since the matrix c in the IMEX method can be computed beforehand and is constant with time,
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Mean concentration Time integration method Energy barrier Number of iterations Total CPU time (seconds) Iterations per second

0.55
EM 0.00 432039 1649.77 261.88
IMEX 0.00 18604 57.88 278.01

0.60
EM 1.33 · 10−5 357021 1328.15 268.81
IMEX 1.09 · 10−5 18054 57.88 278.01

0.65
EM 1.59 · 10−4 277762 969.96 286.36
IMEX 1.55 · 10−4 11919 39.10 298.35

0.70
EM 5.86 · 10−4 224842 794.22 283.10
IMEX 5.80 · 10−4 17367 58.21 298.95

0.75
EM 1.40 · 10−3 166724 598.49 278.57
IMEX 1.40 · 10−3 8795 29.42 296.28

0.80
EM 2.76 · 10−3 126394 486.46 259.82
IMEX 2.75 · 10−3 17842 60.22 321.42

Table 1: Comparison between the Euler method and implicit-explicit method for Neumann boundary condi-
tions.

Figure 8: Final string concentration profiles and energy along the string for the two time integration methods
and a mean concentration of φ̄ = 0.70, for Neumann boundary conditions. Left: EM. Right: IMEX.

so we only compute it at the beginning of the method. Hence, in both cases each iteration consists basically
on performing a matrix multiplication.
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These results are not very precise due to two factors. The first one is that a time step of h = 10−5

was considered for the IMEX method, but for the EM a time step of h = 10−7 was taken for the method
to converge (as discussed before), since for larger time steps the method diverged. The second one is that
the tolerance considered in both cases is different. That is because, since the EM requires a smaller time
step, the error at each iteration is always smaller than in the IMEX method. Moreover, the error does not
scale linearly with h, so defining the error normalized by h does not solve this issue. Hence, a tolerance was
qualitatively chosen such that the final concentration profile was close to the theoretical one (the one coming
from solving the Beltrami identity, see appendix B). We chose tol = 10−9 for the EM and tol = 10−8 for
the IMEX method. The final concentration profiles and the energy along the string for a concentration of
φ̄ = 0.70 are plotted in Fig. 8. In both cases the final states are really similar to the analytical solution
of the Cahn-Hilliard equation, although the IMEX is apparently a bit better. We can also check that even
when we find a critical nucleus its radius is comparable to the interface width, as expected.

The conclusion is that, since the time step for the EM is smaller, the program needs to run for longer
periods of time, so the IMEX method is the best option for computational efficiency. Moreover, the IMEX
method is better to treat the stiffness of the problem.

With respect to the spinodal region, Table 1 shows a result which we wanted to check: the string
method only finds an energy barrier outside the spinodal region, which is the region with a value of the
mean concentration greater than φ̄∗ = 1√

3
≈ 0.577. This is consistent with the fact that for a concentration

of φ̄ = 0.55 there is no energy barrier. Moreover, the energy barrier is very small for values close to the
spinodal, something we already expected, since as we approach the spinodal the energy barrier tends to
disappear.

Another important aspect which has to be taken into account when studying convergence is the initial
string we choose. Depending on how far away from the final solution our initial string is the program
requires a different number of iterations to converge, and sometimes it may not converge at all, if the initial
string is poorly chosen. In particular, we are interested in reducing as much as possible the total number of
iterations, so the initial string is desired to be close to the final one. This issue will be especially important
in higher dimensions.

Figure 9: Two possible initial strings. Left: Linear interpolation. Right: The nucleus forms and grows.

In one dimension we already know the shape of the initial and final states at equilibrium, corresponding
to the mixed state and separated state, respectively. The problem comes when defining the intermediate
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images of the string. One way to do it is by simply linearly interpolating between the initial and the final
state (see Fig. 9, left plot). This initialization, although quite simple, is not very realistic from a physical
point of view. When a phase nucleates, first of all the nucleus is formed and then it grows. Hence, the
second option is to consider that the intermediate images have a sharp interface which shifts from left to
right, but in all of them the concentration near x = 0 is -1 (see Fig. 9, right plot). The concentration
outside the droplet in the second case is fixed imposing that the mean concentration of each profile has a
prescribed value (φ̄).

As an example of the problems which can take place for different initial strings consider a concentration
profile with φ̄ = 0.7, N = 100, m = 50, δ = 0.05 and a time step of h = 10−6 (with a tolerance of
tol = 10−8). We run the program with the two initial strings described above using the IMEX method
(see Fig. 9). In the second case (nucleus forms and grows), the program converges after 22484 iterations,
reaching the expected profile according to nucleation theory (formation of the nucleus and growth). However,
in the first case (linear interpolation), the program requires 77788 iterations. Moreover, the error starts
decreasing, but after over 10000 iterations it starts to oscillate until the string is close enough to the final
one. Only then the error starts to decrease monotonously. This is a very important issue to take into
account, especially in higher dimensions, because this bad behaviour of the error can imply that we consider
that we have reached a solution which actually is not.

Figure 10: Initial and final concentration profiles when some noise is added to the initial constant concen-
tration profile.

One more test can be performed related to the spinodal region. Since for concentrations bellow φ̄∗

there is no energy barrier, the constant concentration profile is an unstable equilibrium state. That is, if
a small perturbation is added to the initial constant profile of the string, the initial state should converge
to the separated state instead of the mixed state. This can be checked considering a concentration profile
with average concentration φ̄ = 0.5, with random gaussian noise with a variance of 10−3 added to the
initial state. This state was evolved using the Cahn-Hilliard equation (here we do not use the whole string
method, since we are only interested in analyzing the behaviour of the initial state). The convergence was
quite slow, but we observed that the initial state converged to the separated state. Both the initial and the
final states are plotted in Fig. 10. Observe that the final profile has a different shape than in Fig. 8, since
phase separation can occur in any part of the domain.

Consider now periodic boundary conditions at both ends. In that case phase separation can take part
anywhere in the domain, and we consider that it occurs at x = 0.5. Hence, the initial state of the string at
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equilibrium has the same shape as in the Neumann boundary case (constant profile), and the final one has
a well at x = 0.5 with value -1 inside the well and value 1 outside. The intermediate images on the string
are initially defined as in the Neumann case: the droplet forms and then it grows, all of them with sharp
interfaces which are smoothed by the string method.

With respect to the spinodal region, we expect to observe the same behaviour of the solution as in the
Neumann case. We simulate phase separation using both the EM and the IMEX method. Table 2 shows
the results we got for several values of the mean concentration. The rest of the parameters were: m = 50,
N = 100, δ = 0.05, γ = δ/3 and different values of h and tol for each of the methods.

Mean concentration Time integration method Energy barrier Number of iterations Total CPU time (seconds) Iterations per second

0.55
EM 0.00 300471 753.24 297.16
IMEX 0.00 9490 39.95 308.94

0.60
EM 4.39 · 10−5 223830 531.15 320.69
IMEX 3.77 · 10−5 12342 22.64 297.48

0.65
EM 4.53 · 10−4 170336 616.26 301.22
IMEX 4.40 · 10−4 6735 32.24 252.70

0.70
EM 1.51 · 10−3 185631 652.35 266.00
IMEX 1.50 · 10−3 8147 26.93 347.01

0.75
EM 3.53 · 10−3 173526 541.88 266.78
IMEX 3.53 · 10−3 9345 38.99 344.22

0.80
EM 6.93 · 10−3 144565 1130.9 265.69
IMEX 6.93 · 10−3 13421 36.17 262.37

Table 2: Comparison between EM and IMEX method for periodic boundary conditions.

Figure 11: Final string concentration profiles and energy along the string for the two time integration
methods and a mean concentration of φ̄ = 0.70, for periodic boundary conditions. Left: EM. Right: IMEX.

We get similar results to the Neumann boundary conditions in terms of convergence (same order of
magnitude in the number of iterations and the total CPU time). We also observe that the number of
iterations per second oscillates a lot, and in some cases the IMEX method performs more iterations per
second than the EM, while in some cases it is the opposite. This is not rare, since the CPU time can fluctuate
a lot when running the same program several times, but we cannot make any conclusion on whether the
IMEX method is less expensive (in terms of the time it requires to perform one iteration).

We also find that bellow the critical value of the concentration φ̄∗ = 1√
3
we enter the spinodal region

and there is no barrier to nucleation, as expected. The final concentration profiles along the string and the
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energy along the string for a value of φ̄ = 0.7 are plotted in Fig. 11. Hence, the IMEX method performs
better than the EM both for Neumann and periodic boundary conditions, as expected.

The conclusions are that the string method performs well when finding transition pathways, from a
qualitative point of view. Moreover, the IMEX method is quite efficient to solve the ODEs. Hence, from
now on we will only use the IMEX method, since it performs better to iterate the Cahn-Hilliard equation,
and it is quite faster than the EM.

4.3 Two dimensional case: Polar coordinates

The two dimensional case is of much more interest than the one dimensional, since classical nucleation
theory predicts that critical nuclei appear during phase separation. Hence, we can compare the results we
get from simulations with classical results to check with a greater accuracy the behaviour of the string
method. The main disadvantage is that in this case we do not have an analytical expression for the solution
to the Cahn-Hilliard equation.

Since in binary mixtures nuclei have roughly circular shape we can simplify the problem very much. In
particular, we can simply simulate the radial profile of the critical nucleus, working with polar coordinates,
since the angular component is expected to be constant. To check that this is true, two types of simulations
are performed: one in two dimensions in cartesian coordinates and another one in one dimension using polar
coordinates.

In this section, Neumann boundary conditions will be assumed in all the boundary. We have seen that
the method performs well in one dimension for both Neumann and periodic boundary conditions, so the first
case will be enough to compare to classical nucleation theory.

4.3.1 Numerical implementation

First of all we simulate phase separation in polar coordinates. Our coordinate is the radial component of the
nucleus (we assume cylindrical symmetry), and it takes the values r ∈ (0, 1) (we simulate a circular domain
of radius 1). We consider Neumann boundary conditions at both r = 0 and r = 1 (in the first case, this is
a common assumption to avoid problems when computing the Laplacian at r = 0).

The expression of the Laplacian of a two dimensional function φ(r , θ) in polar coordinates is the following:

∆φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
=

1

r

∂φ

∂r
+
∂2φ

∂r2
+

1

r2

∂2φ

∂θ2
(52)

Since in our case we are assuming we have cylindrical symmetry, the last term is zero because the second
derivative with respect to the angle is zero. With this definition of the Laplacian, the Cahn-Hilliard equation
in two dimensions (see Eq. 27) is:

∂φ

∂t
= ∆

(
−W 2∆φ+ A(φ3 − φ)

)
(53)

The equation is discretized in the same way as the one dimensional equation, using finite differences.
The first order derivative has the same expression as in one dimension and the Laplacian has the following
expression:

∆φi =
1

ri

∂φi
∂r

+
∂2φi
∂r2

≈ 1

ri

φi+1 − φi−1

2dr
+
φi+1 − 2φi + φi−1

dr2
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However, we must take special care for the r = 0 value. In the previous expression, if we take r = 0 we
have a division by zero, which leads to values tending to infinity near the origin unless Neumann boundary
conditions are considered at r = 0, in which case we have an indetermination. The simplest way to solve
this problem is considering the central node at each interval. That is, instead of considering the spatial
discretization nodes r ∈ {r0 = 0, r1 = dr , r2 = 2dr , ..., rN−2 = 1 − dr , rN−1 = 1}, where dr = 1/(N − 1),
considering r ∈ {r0 = dr/2, r1 = 3dr/2...., rN−1 = 1 − dr/2}. and dr = 1/N. In that way we avoid
computing the solution at r = 0, which is a source of problems.

To impose Neumann boundary conditions we create two artificial nodes, r−1 = −dr/2 and rN = 1+dr/2.
If we want to compute the derivative of a function φ at r = 0 we use:

∂φ

∂r
(r = 0) =

φ(r0)− φ(r−1)

dr
= 0

Hence, we must impose φ−1 = φ0, and similarly φN = φN−1. These are the same expressions we used
in one dimension, although in one dimension it is not necessary to consider centered nodes because the
Laplacian does not present any problem at x = 0. However, for cohesion in the notation, we use the same
discretization in both cases.

We can thus write the spatial first order derivative with respect to r and the Laplacian in matricial
forms in the same way we did it in one dimension. If we use the same notation, it can be showed that the
expressions are:

D =
N

2



−1 1 0 0 ... 0 0 0
−1 0 1 0 ... 0 0 0
0 −1 0 1 ... 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ... −1 0 1
0 0 0 0 ... 0 −1 1


(54)

L = N2



−2 2 0 0 ... 0 0 0
2/3 −2 4/3 0 ... 0 0 0

0 4/5 −2 6/5 ... 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ... 1−2dr

1−3dr/2 −2 1−dr
1−3dr/2

0 0 0 0 ... 0 1−dr
1−dr/2

−1+dr
1−dr/2


(55)

We can write the Cahn-Hilliard equation discretized in space. Considering φ = (φ0,φ1....,φN−1) the
vector solution, the equation has the following expression:

∂φ

∂t
= L

(
−W 2Lφ+ A(φ3 − φ)

)
(56)

To solve the time derivatives we use the IMEX method. As in one dimension the final expression for
φn+1 is:

φn+1 = (I + hW 2L2)−1(φn + hAL((φn)3 − φn)) (57)

This expression is the same as in the one dimensional case, but with a different expression for the
Laplacian. Moreover, the values of the constants A and W = λ2A are the same as in one dimension. This
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happens because the definition of the interface energy and interface width are the same, they only depend
on the energy functional, which is the same in both cases. Hence, the relation between model parameters
and physical magnitudes is the same, and we can use the same expressions discussed in Section 4.1.3.

4.3.2 Simulations and results

The first thing we are interested in testing is whether the energy barrier disappears inside the spinodal region
or not, as in one dimension. The limit value of the concentration under which we do not expect nucleation
to take place is φ̄∗ = 1√

3
≈ 0.577. Table 3 shows the results of simulating phase separation for several values

of the mean concentration. The values of the rest of the parameters are: N = 100, m = 50, δ = 0.05,
γ = δ/3, h = 10−5 and a tolerance of tol = 10−8.

Mean concentration Energy barrier

0.55 0.00

0.56 0.00

0.57 0.00

0.58 0.00

0.59 2.49 · 10−6

0.60 8.41 · 10−6

0.61 1.44 · 10−5

0.62 2.12 · 10−5

0.63 3.06 · 10−5

Table 3: Energy barrier for different values of the mean concentration

We see that the energy barrier appears for a value of the mean concentration φ̄ = 0.59. We expected
the energy barrier to appear at φ̄ = 0.58, but that’s not the case. The reason why this happens is that the
energy barrier for φ̄ = 0.58 is very small, since the energy barrier tends to zero as we approach the spinodal
region. Considering more images on the string or smaller tolerances are possible solutions to get the exact
results. However, neglecting this fact, the results are consistent with what we expected. Moreover, the
energy barrier increases with the mean concentration, a result also according to classical nucleation theory.

Our next goal is to compare the results from simulations to classical nucleation theory. The first thing
we need to consider is under which assumptions phase field dynamics are good approximations of classical
nucleation theory. The main problem comes from the diffuse interface approximation of the phase field
method. Classical nucleation theory considers interfaces to be sharp, so to get comparable results we must
be in this regime. We only get this when the critical nucleus size is much larger than the interface width
(a reasonable approximation is that the interface width is around ten times smaller than the critical nucleus
radius). However, this poses a problem in implementation, since the interface width is determined by the
mesh resolution. If we want to decrease its value to very small values we have to discretize using more
nodes, which in turn increases the complexity of the problem quadratically (since we compute matrices of
size N · N).

There is a second problem. In classical nucleation theory, the order parameter takes a value of -1 inside
the critical nucleus and 1 outside. However, experimentally we found that this only happens for very high
values of the mean concentration. If the concentration is not high enough the critical nucleus profile does
not reach the value -1 at r = 0, it only reaches some intermediate value. For example, for a range of
values of the mean concentration from φ̄ = 0.7 to φ̄ = 0.85 and δ = 0.05, γ = δ/3, N = 100, m = 50,
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h = 10−5 and tol = 10−7, we get the concentration profiles in Fig. 12. The minimum value of the critical
concentration profile (r = 0) is higher than −1 in all cases, so the profile is not the one predicted by classical
nucleation theory. Hence, we need to consider very large values of the concentration, to be closer to the
binodal. This is an additional problem because for high mean concentrations the final state has a small
radius, and so we will need to consider more nodes again to resolve properly the string.

Figure 12: Final string profile for several mean concentrations. Upper left: φ̄ = 0.7. Upper right: φ̄ = 0.75.
Lower left: φ̄ = 0.8. Lower right: φ̄ = 0.85.

To compute classical nucleation results we use the equations derived in Section 3.1 (Eqs. 7 and 8):

r∗ =
γSL

2∆GV

∆G ∗hom =
πγ2

SL

2∆GV

In these two expressions, the value of γSL is known (it is an input for our model), and we just have
to determine the relation between ∆GV and the model parameters. We calculate ∆GV as the difference
in chemical potential between the mixed phase and the separated phase. The definition of the chemical
potential is quite ambiguous and still under debate [38]. For our purposes, we define the chemical potential
as the functional derivative of the free energy with respect to the mean concentration. With this definition
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∆GV has the correct dependency on φ̄, as we will see in our results. However, numerical results may not
be comparable directly with theoretical results because they will differ by some factor. If we write f0 as the
bulk free energy and fI as the interface free energy, we get the following expression:

µ =
δf

δφ
= µ0 + µI =

∂f0
∂φ
−∇ ·

[
∂fI

∂(∇φ)

]
= A(φ3 − φ)− λ2A∇2φ (58)

The term ∆GV is then: ∆GV = µf − µ0, where µ0 is the chemical potential of the liquid phase (in
the mixed state) and µf is the chemical potential of the nucleated phase. Since we consider that both the
liquid and the nucleated phase are bulk regions with constant concentrations, the gradient term does not
contribute to the computation of the chemical potential. Moreover, in the nucleated phase the value of the
order parameter is φ = −1, so the chemical potential of this region is null. Hence, the chemical potential
difference for a system with mean concentration φ̄ is equal to: ∆GV = A(φ̄− φ̄3). Observe that this term
evolves linearly with the mean concentration when we are close to the binodal (φ̄ → 1), so we can predict
the theoretical dependence of the energy barrier and critical radius with respect to the concentration.

Experimentally we found that the critical nucleus only reaches the -1 value for concentrations above
φ̄ = 0.9 (although this quantity also depends on the value of the interface width). However, for this value
we are still not in the sharp interface approximation. To get to the sharp interface limit we must consider
concentrations above φ̄ = 0.985, and in these cases consider very small interface widths. We need to
decrease the interface width because the critical radius scales with δ. If we go too close to the binodal the
critical radius may become so large that it may be larger than the final droplet radius. The way to avoid that
is considering small interface widths. More precisely, an interface width of δ = 1.5·10−3 was considered, and
the mesh was discretized using N = 2000 nodes, to have enough resolution (the mesh size must be at least
3 times smaller than the interface width so as to resolve well the interfaces). There is a strong limitation in
the possible values of the mean concentration. On one hand, we cannot go bellow the limit φ̄ = 0.985, or
otherwise the sharp interface approximation is not satisfied. However, for concentrations too close to φ̄ = 1
the final droplet radius becomes smaller than the critical radius and the final state end up converging to
the mixed state. Table 4 shows the results obtained for a range of values of the mean concentration for
which the energy barrier was achieved. The rest of the values of the simulations are m = 50, h = 10−7

and a constant interface energy of γ = 10−2. To make the program more efficient, an improvement was
added and the string was reparametrized every ns = 10 steps. When the string is reparametrized every ns
steps the error is defined as the difference between the string after reparametrization and the string after
the previous reparametrization step. To make the error consistent with the one we had been computing up
to now the error is also normalized by ns (since ns iterations are performed between the previous string and
the current one).

Mean concentration Critical image Energy barrier Critical radius Theoretical energy barrier Theoretical critical radius

0.988 7 2.96 · 10−4 1.07 · 10−2 3.33 · 10−4 1.06 · 10−2

0.989 8 3.24 · 10−4 1.18 · 10−2 3.63 · 10−4 1.16 · 10−2

0.990 9 3.56 · 10−4 1.26 · 10−2 3.99 · 10−4 1.27 · 10−2

0.991 10 3.99 · 10−4 1.33 · 10−2 4.42 · 10−4 1.41 · 10−2

0.992 13 4.53 · 10−4 1.63 · 10−2 4.97 · 10−4 1.58 · 10−2

0.993 16 5.27 · 10−4 1.87 · 10−2 5.67 · 10−4 1.80 · 10−2

Table 4: Energy barrier and critical nucleus radius for different values of the mean concentration.

In Table 4 the critical radius was obtained by interpolating the critical nucleus profile to the radial value
for which the order parameter is 0. The value of the critical image is the image on the string corresponding
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Figure 13: Final string profile for a mean concentration of φ̄ = 0.99. The r axis is restricted to r ∈ (0, 0.2)
for a higher resolution.

to the critical state, where a value of 0 indicates the initial state and a value of m − 1 corresponds to the
final state. Fig. 13 shows the final string profile for a mean concentration of φ̄ = 0.9, restricted to the
interval r ∈ (0, 0.2) for a higher resolution.

Observe in the first place that both numerical and theoretical values increase when the mean concen-
tration does, as expected (both values would diverge for φ̄ → 1). Moreover, the numerical values are very
close to the theoretical ones, especially for the critical radius. Theoretical results are slightly larger than the
numerical ones for energy barriers, and a bit smaller for critical radii. This can be related to the definition
of the chemical potential, as we commented before. However, there are some factors which may contribute
to these discrepancies.

The first one is that the definition we took when relating the interface energy to the model parameters
(see Section 4.1.3) assumed that we had a planar interface separating two bulk regions. However, this is
not the situation we have here, since our interfaces are curved. Hence, the real value of the interface energy
is slightly different from the one we used as input in our model.

The second source of error is that we are computing the energy barrier as the difference in energy over
the whole domain, while classical nucleation theory only considers the energy variation caused by the creation
of the droplet. Hence, there is an extra energy term which is added to the energy barrier. Since the initial
state and the critical state have roughly the same value of the order parameter outside the nucleus, the
energy coming from the surrounding bulk phase should cancel in these two states. This is especially relevant
when the critical state is close to the initial one, so in these cases the energy barrier from simulations fits
better the theoretical one. This source of error, however, is probably irrelevant because of the high values
of φ̄ we are considering.

Related to the previous comment, we can also have problems because we are considering Neumann
boundary conditions. Classical nucleation theory assumes infinite domains, so the concentration outside the
droplet does not change. Moreover, in principle the droplet should be able to increase indefinitely, since the
growth of the nucleus (once reached the critical nucleus) reduces the free energy. However, in our system
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the maximum droplet size is fixed by the size of the domain and the total concentration of the nucleating
component, something which classical nucleation theory does not take into account.

Finally, discrepancies can also be caused by numerical issues. The most relevant one is that m is not
big enough to give the appropriate value of the critical radius and energy barrier (this is discussed in more
detail in section 4.4.2). It can also be caused by the fact that we considered too few spatial nodes.

We are also interested in measuring the dependence of the numerical energy barrier and the numerical
critical radius with respect to the mean concentration, and observe whether the relation is the same as in
classical nucleation theory. We assume that the relation in both cases is of the form ∆G ∗ = K1(1 − φ̄)a1

and r∗ = K2(1 − φ̄)a2 , where K1, K2, a1 and a2 are constants to be determined (we actually mostly care
for the values of a1 and a2, since K1 and K2 are simply two multiplicative factors). The way to determine
these constants is via a log-log plot. If we plot the logarithm of the energy barrier and critical radius with
respect to (1− φ̄) we obtain two straight lines, and the slope of these lines are the parameters a1 and a2.

Figure 14: Energy barrier and critical radius comparison between numerical results and theoretical results
for several values of the mean concentration.

Fig. 14 shows the comparison between numerical results (the ones obtained from simulations) and
theoretical results, computed using classical nucleation theory relations. The numerical energy barrier log-
log curve has a slope of a1 = −1.0678 ≈ −1, while the theoretical energy barrier goes roughly as (1− φ̄)−1,
as expected. The critical radius has a slope of a2 = −1.0239 ≈ −1, while the theoretical one goes roughly
as (1− φ̄)−1, as expected. Hence, the numerical results match the theoretical results perfectly. The small
mismatches in the slopes of the theoretical curves from the predicted ones (-1 in both cases) are due to the
fact that the exact dependence is not (1− φ̄)−1 in both cases, since there are higher order terms we have
neglected.

It is interesting to note that the same results are obtained even if we are not in the sharp interface limit.
A similar study can be performed for mean concentrations ranging from 0.92 to 0.96, for instance, and for
larger interface widths (δ = 0.02, around ten time larger). In this case critical nuclei still reach the value
-1 near r = 0, although the values obtained for the critical radii are in the same order of magnitude as
the interface width. Table 5 shows the results obtained with the following parameters: N = 200, m = 50,
δ = 0.02, γ = δ/3, h = 10−5 and tol = 10−8.

We plot these values on a log-log plot in Fig. 15 (in the right plot, the equation y = −0.9092x − 2.626
corresponds to the theoretical values, and the equation y = −1.0867x−2.8521 corresponds to the numerical
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Mean concentration Critical image Energy barrier Critical radius Theoretical energy barrier Theoretical critical radius

0.920 6 4.16 · 10−4 2.25 · 10−2 4.94 · 10−4 2.36 · 10−2

0.925 7 4.47 · 10−4 2.51 · 10−2 5.23 · 10−4 2.50 · 10−2

0.930 7 4.82 · 10−4 2.42 · 10−2 5.56 · 10−4 2.65 · 10−2

0.935 8 5.22 · 10−4 2.64 · 10−2 5.94 · 10−4 2.83 · 10−2

0.940 9 5.70 · 10−4 2.83 · 10−2 6.38 · 10−4 3.05 · 10−2

0.945 11 6.25 · 10−4 3.29 · 10−2 6.91 · 10−4 3.30 · 10−2

0.950 13 6.92 · 10−4 3.65 · 10−2 7.54 · 10−4 3.60 · 10−2

0.955 16 7.78 · 10−4 4.17 · 10−2 8.31 · 10−4 3.97 · 10−2

0.960 20 8.92 · 10−4 4.73 · 10−2 9.28 · 10−4 4.43 · 10−2

Table 5: Energy barrier and critical nucleus radius for different values of the mean concentration.

values). We obtain a very similar behaviour as in the sharp interface limit, although the values of the critical
radius have a lot of deviation from the desired behaviour (in Fig. 15, the points at the end of the line deviate
significantly from the trend line). However, this is not weird, since we are no longer in the sharp interface
limit. What’s more, the theoretical values only satisfy that they evolve linearly with respect to 1/(1 − φ̄)
when we are very close to the binodal, but this is no longer the case. That is why even the theoretical values
show a slope slightly smaller than -1.

This result is interesting because it states that there is no need to get to the sharp interface limit to get
the correct dependence with respect to the concentration. However, when checking the validity of the model
in three dimensions, we will still go to the sharp interface limit to assure that this behaviour is general.

Figure 15: Energy barrier and critical radius comparison between numerical results and theoretical results
for several values of the mean concentration.

Finally, simulations showed an interesting aspect of the final string. Fig. 16 shows the value of the order
parameter at the center of the nucleus (r = 0) for each image on the sting and the value of the nucleus
radius. The general behaviour of the nucleus consists on two steps: the nucleus enriches until it reaches
the minimum value (-1), keeping its size approximately constant, and then it grows. It is also interesting to
notice that the radius of the droplet increases linearly. However, a more accurate view on the concentration
profiles along the string shows two things: the final concentration at the center of the nucleus is slightly
lower than -1, and the intermediate images on the string reach a value near r = 0 lower than the final state,
and they end up slightly increasing. This is due to the Gibbs-Thomson effect. This phenomenon is present

40



when curved interfaces are present (that is why this did not happen in one dimension). It consists on a
variation in the chemical potential or vapor pressure when curved interfaces are considered. The positive
interface energy provokes that surfaces with high curvature are less favorable, and these droplets show an
increased vapor pressure [39]. In our model, this translates to a change in the equilibrium concentration
profile, making it reach a smaller value than it would have otherwise.

Figure 16: Concentration at the center of the nucleus and droplet radius for φ̄ = 0.93.

4.4 Two dimensional case: Cartesian coordinates

The following step is to simulate the two dimensional case in cartesian coordinates. The two spatial
directions have to be taken into account, so the problem becomes rather more complex. There are two
goals in this case. The first one is to check whether the radial approximation considered in the previous
section was correct or not, comparing the results obtained in each case. The second one is that when we
study ternary mixtures or mixtures with more than three phases the cylindrical symmetry is broken, so the
previous approximation can not be considered (this is discussed in detail in Section 5).

4.4.1 Numerical implementation

First of all we recover the Cahn-Hilliard equation in two dimensions:

∂φ

∂t
= ∆

(
−W 2∆φ+ A(φ3 − φ)

)
(59)

In this case, our domain will be the square [0, 1]× [0, 1], and we will consider circular droplets forming
at the center of the square. We discretize the domain in N × N nodes. This poses a great difficulty, since
we have a total of N2 nodes, so the program will be computationally much more exprensive.

The expression of the Laplacian will be different from the one in polar coordinates. In cartesian coordi-
nates, the general expression for the Laplacian of a function φ is ∆φ = ∂2f

∂x2 + ∂2φ
∂y2 , which after discretization

becomes:

∆φi ,j =
φi+1.j + φi−1.j + φi ,j+1 + φi ,j−1 − 4φi ,j

(dx)2
(60)
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We considered φi ,j to be the value of the function at node (i , j), where i , j ∈ {0, 1, ...,N − 1} and
dx = 1/N. The matrix notation in this case is more complicated, since we have the function discretized on
a rectangular grid, so the values are discretized using two indices instead of one (we have a matrix instead
of a vector). The way to solve it is to rewrite the discretized function φi ,j as a vector of N2 nodes, with
the following relation: φi ,j = φi ·N+j = φk , where k ∈ {0, ...,N2 − 1}. With the previous notation we can
write the Laplacian operator in matricial form. More precisely, the matrix of the Laplacian will have size
(N)2 × (N)2 = (N)4.

The previous notation poses a serious problem of implementation, since, to resolve a mesh of size
N = 100 we need to store a matrix of size N4 = 108, which is extremely large. Moreover, if we use the
IMEX method, we have to invert this matrix, something impossible in practice. Hence, an alternative must
be used.

The best way to avoid computing such matrices is working in the Fourier space [37]. All derivatives
and Laplacian operators turn into multiplications, so there is no need to store any matrix nor to solve any
linear system. Moreover, the Fast Fourier Transform (FFT) is a method which allows us to change from
real space to Fourier space efficiently (it has complexity O(NlogN)). The only problem comes from the
fact that Fourier space only allows to treat periodic boundary conditions, in contrast to Neumann boundary
conditions considered in the previous section. However, since the concentration takes a constant value of 1
near the edge in all cases, no important differences should arise.

Recall in the first place that the Fourier transform of a function f (x , y) in two dimensions is defined as:

F(f )(kx , ky ) =

∫ +∞

−∞

∫ +∞

−∞
f (x , y)e−2πi(kxx+kyy)dxdy (61)

where kx and ky are the spatial frequencies and i is the imaginary unit. One of the main properties of
the Fourier transform is that derivatives turn into multiplications: F(∂f∂x ) = −2πikxF(f ). The Laplacian
operator satisfies: F(∆f ) = −4π2k2F(f ), where k2 = k2

x + k2
y . For simplicity, from now on we will write:

f̂ = F(f ), k̂x = 2πkx , k̂y = 2πky and k̂ = 2πk .
The Cahn-Hilliard equation in the Fourier space is then:

∂φ̂

∂t
= −k̂2

(
W 2k̂2φ̂+ µ̂0

)
(62)

where µ̂0 = F(A(φ3−φ)) is the Fourier transform of the chemical potential. If we use an IMEX method
we can solve this equation in an equivalent way as in the previous section, but instead of inverting matrices
we divide by a constant term:

φ̂n+1 =
φ̂n − hµ̂n0

1 + hW 2k̂2
(63)

The general algorithm will be the following:

1. The chemical potential, µn, is computed in the real space.

2. The chemical potential is transformed to the Fourier space via the FFT, µ̂n. The order parameter is
computed in the Fourier space as well, φ̂n.

3. The time evolution is performed following Eq. 63 to obtain φ̂n+1.
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4. The value of the vector solution is computed in real space via the Inverse Fast Fourier Transform
(IFFT), to obtain φn+1.

5. Every ns iterations, the string is reparametrized.

Observe that we have to convert the string back and forth because the chemical potential has to
be computed in the real space from the real value of the string. Moreover, the string method has to
reparametrize the string in real space.

Since the total number of nodes is N2 we still have some computational limitations when choosing the
value of N, so we may not be able to take the same values for N as in the polar case. As for the rest, the
relation between model parameters and physical constants is the same in both cases.

Finally, the initial string considered in simulations corresponds again to the formation and growth of the
nucleus. The initial state is a constant concentration profile, while the final state corresponds to a droplet
at the center of the domain (φ = −1 inside the droplet and φ = 1 outside). The intermediate images along
the string are circular droplets with increasing radii, where φ = −1 inside the droplet, and the value of φ
outside is determined imposing that the mean concentration is conserved. All interfaces are initialized as
sharp, and the string method smooths them.

4.4.2 Simulations and results

Since our goal is to compare if we obtain the same results in the polar case and in the cartesian case, we
considered the same values for the interface energy and interface width as in the previous case. We are
especially interested in checking if the simplified polar coordinates give the same results as the cartesian
ones for large values of the mean concentration, since in these cases we know that simulations reproduce
correctly classical nucleation theory.

Another important issue is to check if the droplet formed has circular symmetry. We do not only
demand the final droplet to have circular symmetry, but all the intermediate images along the string as well.
In particular we are interested in checking that the critical state has circular symmetry. Observe that in the
way that we implement the method, since our domain is rectangular, the intermediate droplets along the
string needn’t be circular. The only thing we can say a priori is that they will be invariant under rotations
of 90◦ (there are four directions in the domain which are equivalent, so all intermediate states should show
this symmetry of rotation).

Table 6 shows the results of simulating the nucleation of a circular droplet in our square domain. The
spatial coordinates were discretized using N = 150 nodes (minimum number to resolve interface widths of
the order of δ = 0.02, as in the polar case). The rest of the parameters were: m = 50, γ = δ/3, h = 10−5

and a tolerance of tol = 10−8.
Fig. 17 shows the concentration for the initial, critical and final state for a mean concentration of

φ̄ = 0.93. We observe that the critical state has circular shape, an assumption that we did in the polar
case. A more thorough examination shows that all intermediate states are circular as well, as expected.

Observe that the values are quite close to the ones in the polar case, especially for the energy barriers.
A possible cause of the discrepancies is due to the Neumann boundary conditions and the effect they have
in the computation of the energy barrier. Moreover, in the cartesian case we considered periodic boundary
conditions, so this effect is different in the cartesian and the polar case.

Another source of error is the fact that m is possibly not large enough to resolve the critical radii with
precision. In fact, if we compute the radius of the droplet for the previous and following images of the critical
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Mean concentration Critical image Energy barrier Critical radius Energy barrier polar Critical radius polar

0.920 6 4.13 · 10−4 2.64 · 10−2 4.16 · 10−4 2.25 · 10−2

0.925 7 4.45 · 10−4 2.77 · 10−2 4.47 · 10−4 2.51 · 10−2

0.930 9 4.84 · 10−4 3.11 · 10−2 4.82 · 10−4 2.42 · 10−2

0.935 11 5.28 · 10−4 3.33 · 10−2 5.22 · 10−4 2.64 · 10−2

0.940 14 5.83 · 10−4 3.62 · 10−2 5.70 · 10−4 2.83 · 10−2

0.945 19 6.51 · 10−4 4.04 · 10−2 6.25 · 10−4 3.29 · 10−2

Table 6: Energy barrier and critical nucleus radius for different values of the mean concentration, compared
to the values obtained in the polar case.

state we see that the value of the radius changes considerably. For example, for φ̄ = 0.92, the droplet radius
at image 5 is r = 2.34 ·10−2 and the radius at image 7 is r = 2.91 ·10−2. Hence, the real critical radius lies
within the interval r ∈ (2.34 · 10−2, 2.91 · 10−2). If the same test is done in polar coordinates we get that
the droplet lies within the interval r ∈ (1.9 · 10−2, 2.63 · 10−2). Observe that both intervals are quite large
and they superpose, which means that the value of the critical radius does not have a lot of precision, and
that perhaps with more accuracy the values would actually match. One way to solve this issue would be
to increase the value of m, but this is quite complicated in the cartesian case, since the program is already
quite slow. Another way to determine the critical radius would be to interpolate its value (for instance using
splines). Fig. 18 shows the radial profiles both in cartesian coordinates and in polar coordinates. We see
that the profiles are very close to each other, although the cartesian case has a slightly larger radius.

Figure 17: Concentration profiles for a droplet in 2d cartesian coordinates. Left: Initial state. Center:
Critical state. Right: Final state.

In the cartesian case we could only increase the mean concentration up to a value of φ̄ = 0.945, in
contrast to the polar case, where we could consider mean concentrations of φ̄ = 0.96 for the same value
of the interface width. This happens because for larger concentrations the final droplet size is smaller than
the critical nucleus, so the final state at the begging of the string method tends to dilute again, returning
to the mixed state, instead of converging to the separated state. This can be analyzed in the following way:
for a given value of the mean concentration, the radius of the final droplet is fixed and has the following

expression: r =

√
1−φ̄
2π . For a value of the mean concentration of φ̄ = 0.95 we already have r = 8.92 ·10−2,

which is quite close to the critical radius. For a value of φ̄ = 0.96, r = 7.98 · 10−2, and the theoretical
critical radius is r∗ = 4.04 · 10−2. However, as we can see in Table 6, the critical radius end up being larger
in simulations, so most likely the final droplet has a smaller radius than the critical one.

Observe that the domain is different in polar coordinates than in cartesian coordinates. In polar co-
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Figure 18: Critical profiles for cartesian and polar coordinates, φ̄ = 0.93.

ordinates it is a circular domain of radius 1, while in cartesian coordinates it is a rectangular domain of
size 1 × 1. This does not affect the value of the critical radius, which only depends on the value of the
mean concentration and the interface width. The energy barrier is only slightly affected by this, since the
difference in the size of the domain affects the term of the free energy coming from the bulk surrounding
phase. However, as we commented before, this effect is very small when computing the energy barrier, since
the initial state and the critical state have roughly the same concentration outside the droplet.

A more exhaustive analysis leads us to the relation between the free energy in polar and cartesian
coordinates. For images close to the mixed state, the total energy in the cartesian case will be smaller than
the one in polar coordinates by a factor of π, which is the size of the domain. However, for states close
to the separated state, this factor will be of the order of

√
π, since the only term which contributes to the

energy is the interface, and the length of the interface evolves linearly with the radius of the droplet (and,
for a fixed mean concentration, the radius of the droplet in cartesian coordinates is smaller than the radius
of the droplet in polar coordinates by a factor of

√
π).

These relations can be checked in Fig. 19. The initial state in cartesian coordinates has an energy of
4.563 · 10−3, while the initial state in polar coordinates has an energy of 1.435 · 10−2. The ratio between
these two energies (the polar divided by the cartesian) is 3.145 ≈ π, as expected. For the final states,
the cartesian state has an energy of 3.97 · 10−3, while the polar final state has an energy of 7.341 · 10−3.
The ratio between these two energies is 1.849, while

√
π ≈ 1.772. Hence, in both cases the results are

consistent.
The final effect is that the energy curve in cartesian coordinates will look shifted form the one in polar

coordinates, and hence the maximum of the curve will shift to the right as well. This is why the critical
images along the string in the cartesian case are greater than the ones in the polar case.

The way to avoid having droplets with a size smaller than the critical size is to decrease the interface
width. In that way the critical radii are reduced, since they scale with δ (see Eq. 4.3.2), and one can
consider higher concentrations. However, in practice, this is very complicated to achieve, since the mesh
cannot be discretized using much more nodes, and we are already considering the smallest possible value
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Figure 19: Energy along the string for a concentration of φ̄ = 0.93. Left: cartesian coordinates. Right:
polar coordinates.

for the interface width for a fixed value of N.
The conclusion is that the approximation of evolving simply the radial profile is correct, despite the

differences in the energy barriers and critical nuclei obtained. It would also be interesting to consider more
images along the string if possible, to obtain more accurate values, especially for the critical radius.

4.5 Three dimensional case: Spherical coordinates

The last case we consider for binary mixtures is the three dimensional case assuming spherical symmetry.
This assumption is reasonable, since nuclei forming inside phases have roughly spherical shape. In this case,
we simply consider the radial profiles to simplify the simulations. The general cartesian case can also be
performed to compare results. However, due to the complexity of implementation, it is not considered in
this thesis.

4.5.1 Numerical implementation

The only difference of the three dimensional spherical case with respect to the two dimensional polar case
is the expression of the Laplacian. In spherical coordinates, the Laplacian of a function φ(r , θ,ϕ) has the
following expression (assuming that φ only depends on the radius, φ = φ(r)):

∆φ =
1

r2

∂

∂r

(
r2∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin2 θ

∂2φ

∂ϕ2
=

1

r2

∂

∂r

(
r2∂φ

∂r

)
(64)

Since we have the same problem for r = 0 as in polar coordinates, we consider our spatial nodes to
range from dr/2 to 1− dr/2, where dr = 1/N. In this case, the discretized Laplacian at an interior node i
is:

∆φi =
2

ri

φi+1 − φi−1

2dr
+
φi+1 − 2φi + φi−1

dr2
(65)

46



We get a very similar expression to the two dimensional case, except for a factor 2 in the first term. As
for the boundary conditions, we consider Neumann boundary conditions both at r = 0 and r = 1. This
translates into the creation of two fictitious nodes which satisfy: φ0 = φ−1 and φN = φN−1 (with these
two nodes Eq. 65 can be used for all the nodes). We can write the Laplacian in matricial form:

L = N2



−3 3 0 0 ... 0 0 0
1/3 −2 5/3 0 ... 0 0 0

0 3/5 −2 7/5 ... 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ... 3−2dr

1−2dr −2 1−2dr
1−2dr

0 0 0 0 ... 0 2−3dr
2−dr −2+3dr

2−dr


(66)

Finally, the rest of the parameters of the model are defined in the same way as in the polar case. Moreover,
the relation between model parameters and physical magnitudes is the same as in the one dimensional case
and two dimensional case.

4.5.2 Simulations and results

The goal of the simulations is to check whether the phase field method reproduces correctly classical
nucleation theory results or not. To do so, we have to get to the sharp interface limit and compare the
relation between energy barriers and critical radii with the values given by their classical expressions. The
expressions for the energy barrier and critical nucleus in spherical coordinates in classical nucleation theory
are given in Section 4 (Eqs. 7 and 8). These two expressions have a term, ∆GV , which has to be calculated
from our parameters. In the same way as in the polar case, we compute it as the difference in chemical
potential between the mixed state and the separated state (Eq. 58). From this expression, we can already
deduce that, since the chemical potential will evolve linearly with 1/(1− φ̄), the energy barrier will depend
quadratically on this quantity and the critical radius will depend linearly on it.

As in the polar case, we have to reach very high values of the concentration and very small values of the
interface width to reach the sharp interface limit. However, the values can be a bit smaller than in the polar
case. More precisely, we considered mean concentrations ranging from φ̄ = 0.98 to φ̄ = 0.99. We performed
the simulations using the IMEX method and reparametrizing the string every ns = 10 steps. Table 7 shows
the results for the energy barriers and the critical radii for the following parameters: N = 1000, m = 50,
δ = 4 · 10−3, γ = 0.01, h = 10−5 and tol = 2 · 10−8.

Mean concentration Critical image Energy barrier Critical radius Theoretical energy barrier Theoretical critical radius

0.980 8 4.54 · 10−5 3.44 · 10−2 1.98 · 10−4 6.87 · 10−2

0.981 8 5.27 · 10−5 3.38 · 10−2 2.18 · 10−4 7.22 · 10−2

0.982 9 5.63 · 10−5 3.73 · 10−2 2.43 · 10−4 7.61 · 10−2

0.983 9 6.32 · 10−5 3.68 · 10−2 2.71 · 10−4 8.05 · 10−2

0.984 10 6.94 · 10−5 4.00 · 10−2 3.05 · 10−4 8.54 · 10−2

0.985 11 7.86 · 10−5 4.29 · 10−2 3.46 · 10−4 9.09 · 10−2

0.986 13 9.17 · 10−5 4.97 · 10−2 3.96 · 10−4 9.73 · 10−2

0.987 14 1.05 · 10−4 5.21 · 10−2 4.58 · 10−4 1.05 · 10−1

0.988 16 1.25 · 10−4 5.81 · 10−2 5.36 · 10−4 1.13 · 10−1

0.989 17 1.53 · 10−4 5.97 · 10−2 6.36 · 10−4 1.23 · 10−1

Table 7: Energy barrier and critical nucleus radius for different values of the mean concentration.
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Figure 20: Concentration profiles and energy along the string

Fig. 20 shows the concentration profiles and energy along the string for a value of the mean concentration
of φ̄ = 0.985. Observe that the final state of the string has not converged to the correct solution, since that
state should be the one with the lowest energy (the metastable state). This happens because convergence
is very slow, and smaller tolerances should be considered for the final state to converge. Another option is
to take as the final state the image on the string with the minimum energy, instead of the last image of
the string. However, we do not care about the final state, since we only need to know the initial state and
the critical one. The results we obtained for the energy barrier are already good enough to be compared to
classical nucleation theory.

With respect to the comparison between numerical values, observe in the first place that both the energy
barriers and critical radii increase when we get closer to the binodal, as we expected. However, in that case
the numerical results do not directly match the theoretical ones. In particular, numerical energy barriers are
roughly 4 times smaller than theoretical ones, and numerical critical radii are roughly 2 times smaller than
the theoretical ones. The same reasons as in the two dimensional polar case can explain these mismatches
(see Section 4.4.2).

On the one hand, is that the formula we derived for the interface energy in relation to the model
parameters assumes that we have flat interfaces separating two phases. However, in that case we have
curved surfaces, so the actual value of the interface width is different. Another possible explanation are the
Neumann boundary conditions, which differ from the assumptions of classical nucleation theory, and the
contribution in the computation of the energy of the surrounding phase. Finally, differences can be caused
by numerical errors, or by considering too few images on the string.

Although all the previous comments can be responsible for the difference between theoretical values and
numerical ones, none of them seem to explain the large factors that relate numerical values to theoretical
ones. What is more surprising is that results in two dimensions match very well, but in three dimensions
they don’t. None of the previous arguments is restricted to the three dimensional case, all of them apply
both to two dimensions and three dimensions. Some of them may have a larger impact in three dimensions
than in two dimensions, but it is unlikely that they are responsible for this large deviation between theory
and simulations. A more exhaustive analysis should be performed to determine what is the source of these
errors.

To compare numerical results to theoretical results, in the same way that we did in the polar case, we
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assume that the relation both for the energy barrier and the critical radius is of the form: ∆G ∗ = K1(1−φ̄)a1

and r∗ = K2(1 − φ̄)a2 , where K1, K2, a1 and a2 are constants to be determined . The way to determine
these constants is via a log-log plot.

Figure 21: Energy barrier and critical radius comparison between numerical results and theoretical results
for several values of the mean concentration.

Fig. 21 shows the log-log plots for the energy barrier and critical radius. From these plots we can
calculate the slope of the trend line, obtained from the data using least squares approximation. We get the
following values for our parameters: a1 = −1.9685 ≈ −2 and a2 = −1.0523 ≈ −1, which are in agreement
with the theoretical values. Especially for the critical radius we see that there are some oscillations with
respect to the ideal linear behaviour. However, this happens for the lowest values of mean concentrations,
which may mean that the critical radius size is still comparable to the interface width, or that more images
on the string should be considered to determine the value of the critical radius with more precision.

In a similar way as in the polar case, we are able to reproduce the correct dependence even if we are
not in the sharp interface limit. We can consider smaller values of the mean concentration and still get the
linear dependence in the critical radius and quadratic dependence in the energy barrier. The following table
shows some the values obtained for these magnitudes when we consider mean concentrations ranging from
φ̄ = 0.85 to φ̄ = 0.93. The rest of the parameters are: N = 100, m = 50, δ = 0.05, γ = δ/3, h = 10−5

and different values for the tolerance (we found that we had to decrease the value of the tolerance for higher
values of φ̄ to achieve convergence).

Mean concentration Critical image Energy barrier Critical radius Theoretical energy barrier Theoretical critical radius

0.85 8 2.09 · 10−4 6.56 · 10−2 1.39 · 10−3 1.41 · 10−1

0.86 8 2.47 · 10−4 6.34 · 10−2 1.55 · 10−3 1.49 · 10−1

0.87 9 2.94 · 10−4 6.90 · 10−2 1.73 · 10−3 1.58 · 10−1

0.88 10 3.51 · 10−4 7.38 · 10−2 1.97 · 10−3 1.68 · 10−1

0.89 12 4.25 · 10−4 8.54 · 10−2 2.27 · 10−3 1.80 · 10−1

0.90 13 5.20 · 10−4 8.83 · 10−2 2.65 · 10−3 1.95 · 10−1

0.91 16 6.53 · 10−4 1.03 · 10−1 3.17 · 10−3 2.13 · 10−1

0.92 19 8.39 · 10−4 1.15 · 10−1 3.88 · 10−3 2.36 · 10−1

0.93 25 1.13 · 10−3 1.38 · 10−1 4.91 · 10−3 2.65 · 10−1

Table 8: Energy barrier and critical nucleus radius for different values of the mean concentration.
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Fig. 22 shows the values of the energy barriers and critical radii with respect to 1− φ̄ in a log-log plot.
We observe that the energy barrier evolves roughly as (1 − φ̄)−2 and the critical radius as (1 − φ̄)−1, as
expected. The values of the critical radii are quite disperse, especially for low concentrations. Besides not
being in the sharp interface limit, this happens because for low values of the mean concentration the critical
nucleus does not reach the value -1 near r = 0. In that case the phase field model is no longer useful to
study classical nucleation results because the assumptions in classical nucleation theory are no longer valid.
As in the two dimensional case, since we are not close to the binodal any more even the theoretical values
deviate from the desired behaviour (slope -2 for the energy barrier and slope -1 for the critical radius).

Figure 22: Energy barrier and critical radius comparison between numerical results and theoretical results
for several values of the mean concentration.

The values of the critical radii have been compared directly because the interface width was the same
in all simulations. However, if different interface widths are considered, the profiles of the critical nuclei
changes. The value of the critical radius should scale with δ. One way to check that this is true is running
the same simulation with different values of the interface width and scaling the critical profiles obtained with
respect to the interface width. We call reduced critical radius the critical radius divided by the interface
width. We should observe that the reduced critical radius does not depend on the value of the interface
width.

To check this, we run some simulations under the same conditions except for the value of δ. Table 9
shows the results obtained for the following parameters: N = 100, m = 50, γ = 10−2, h = 10−5 and
φ̄ = 0.85. For these conditions, the minimum possible value for the interface width was δ = 0.03 (it has to
be at least 3dx , where dx = 1/N = 0.01), and the maximum possible value is determined by convergence
issues. We considered δ ∈ (0.3.0.7).

The results agree with the predictions: the reduced critical radii have roughly a constant value. Not
only that, but Fig. 23 shows the critical nucleus profiles for the reduced radial component, that is, r/δ.
We only plot the values near the center of the critical nucleus (r=0). We see that all profiles match very
well. The worst case happens for δ = 0.03, which the smallest value. This is not rare, since the value of
the interface width in that case is the minimum possible value, so the program may not be able to resolve
properly this case.

There is one last test that can be performed for binary mixtures. The string method does not require
to reparametrize the string at each iteration, it can be reparametrized every ns iterations. The advantage
of reparametrizing at each step is that we get more precise results, and numerical noise has a less relevant
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Figure 23: Critical nucleus profiles for reduced radial component, for φ̄ = 0.85.

Interface width Critical image Critical radius Reduced critical radius

0.07 11 8.79 · 10−2 1.26
0.06 9 7.30 · 10−2 1.22
0.05 8 6.59 · 10−2 1.32
0.04 6 5.03 · 10−2 1.26
0.03 4 3.43 · 10−2 1.14

Table 9: Energy barrier and critical nucleus radius for different values of the mean concentration.

effect. However, taking a large value of ns makes the program faster, which is an issue we are concerned
about, especially for cartesian coordinates, where the program is much slower. To find the most efficient
value of ns we performed 10000 iterations of the string method for several values of ns and computed
the total CPU time the program takes to run. We computed the values for the energy barrier and critical
radius, as well as the error after the last iteration (the error is computed in the following way: the two
last reparametrized strings before convergence are considered, and the norm of the difference is computed,
divided by N, m and ns to get results which can be directly compared). Table 10 shows the results for the
following parameters: φ̄ = 0.85, N = 100, m = 50, δ = 0.05, γ = 0.01 and h = 10−5.

If we consider the total CPU time of execution, the only conclusion we can derive is that for small values
of ns (5 or less) the time is significantly larger than in the rest of the cases. Since there a lot of fluctuations
on the exact time of execution (many tests were performed for each case, since the time of execution under
the same conditions can change), we see that for a value of ns = 10 the fluctuations are already larger than
the actual difference in time between different values of ns , and hence there is no need to increase the value
of ns in terms of speed of the program. If we consider the values of the energy barriers and critical radii, we
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ns Final error Total CPU time (seconds) Critical image Energy barrier Critical radius

1 1.24 · 10−8 29.87 8 1.25 · 10−4 6.61 · 10−2

2 1.24 · 10−8 21.84 8 1.25 · 10−4 6.61 · 10−2

5 1.24 · 10−8 14.44 8 1.25 · 10−4 6.61 · 10−2

10 1.24 · 10−8 12.61 8 1.25 · 10−4 6.61 · 10−2

20 1.24 · 10−8 12.24 8 1.25 · 10−4 6.61 · 10−2

50 1.24 · 10−8 11.93 8 1.25 · 10−4 6.60 · 10−2

100 1.25 · 10−8 12.00 8 1.25 · 10−4 6.59 · 10−2

200 1.25 · 10−8 10.76 8 1.25 · 10−4 6.59 · 10−2

500 1.25 · 10−8 12.55 8 1.25 · 10−4 6.60 · 10−2

1000 1.26 · 10−8 16.69 8 1.25 · 10−4 6.63 · 10−2

2000 1.34 · 10−8 14.58 7 1.27 · 10−4 5.94 · 10−2

5000 1.04 · 10−7 12.39 6 1.27 · 10−4 6.10 · 10−2

10000 1.89 · 10−7 11.45 5 2.97 · 10−4 1.01 · 10−1

Table 10: Time of execution, energy barrier and critical nucleus for different values of ns .

see that there are no significant discrepancies until the value ns = 2000 is considered. For values larger than
this one the program does not converge properly and more iterations would be required. Hence in Section 5
a value of ns = 10 will be considered to reach an equilibrium between time efficiency and accurate results.
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5. Nucleation in ternary mixtures
Ternary mixtures are a situation of much more interest than binary mixtures. To start with, we have different
possibilities of how a droplet can nucleate. We can have homogeneous nucleation (droplets forming inside
one of the phases) or heterogeneous nucleation (droplets forming at the interface between two phases).
Moreover, especially in the second case, the spherical symmetry is broken and the only way to reproduce
these phenomena is using cartesian coordinates, which are by themselves a computational challenge.

The aim of this section is to compare numerical results with classical nucleation results related to
homogeneous and heterogeneous nucleation. More precisely, we study whether heterogeneous nucleation is
always more favorable than homogeneous nucleation (the energy barrier in the first case is smaller than in
the other one), and under which conditions this difference is more relevant. We also check that the values
of the contact angles at triple junctions satisfy the relations found in Section 3.

As in the binary case, we iterate the Cahn-Hilliard equation using an IMEX method for time integration.
In this case, since practically all configurations we will consider are on a square two dimensional domain, we
will work in the Fourier space to treat all spatial derivatives.

5.1 Free energy density

We focus our study on the two dimensional configuration. The three dimensional case is too computationally
expensive to be simulated in the way we have been doing it until now, since we have to reproduce it
in cartesian coordinates, and our vector of solutions would become extremely large. However, the two
dimensional case already allows us to verify most of the relations we discussed in Section 3.

To start with, we have to define a new free energy density, since now we have three components instead
of two. From now on, consider we have three components a, b and c, and their respective order parameters
φa, φb and φc . In this case, we consider that the order parameters take a range of values on φ ∈ (0, 1),
instead of φ ∈ (−1, 1) (this is because when we define the free energy density we will use some derivations
from Ryan’s Davis thesis [10]). We will study nucleation of phase c in several conditions. There is a
restriction on the values of φa, φb and φc , which is:

∑
i=a,b,c

φi = 1 (67)

This expression allows us to work with only two order parameters and compute the third one from these
two. Hence, when evolving each phase, we just need to consider the evolution of two of the phases, and
then calculate the third one using Eq. 67. However, the free energy is defined in terms of the three order
parameters for simplicity.

As in the binary case, we consider a free energy density which has two components: the bulk free energy
density and the interface free energy density. The expression for the interface free energy density is easy to
generalise from the binary case:

fI (φa,φb,φc) =
Wa

2
|∇φa|2 +

Wb

2
|∇φb|2 +

Wc

2
|∇φc |2

The values of Wa,Wb and Wc have to be determined from the definition of the interface width and
interface energies.
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The expression of the bulk free energy is not so direct to generalize from the binary case. A first attempt
would be to consider three double well potentials, one for each order parameter. In that way, we would have
the following bulk free energy:

f0(φa,φb,φc) = Aaφ
2
a(φa − 1)2 + Abφ

2
b(φb − 1)2 + Acφ

2
c(φc − 1)2

However, the previous expression has a problem, and it is that it presents five additional minima which
we are not interested in (corresponding to φa = φb = φc = 1, φa = φb = φc = 0 and one of the order
parameters equal to 0 and the other two equal to 1). These minima do not have physical meaning, since
the order parameters have to satisfy Eq. 67 everywhere in space, and if we impose that the third order
parameter is computed from the other two, we should not have problems with this issue. However, numerical
errors may arise, so we have to make some modifications to this expression.

To solve this issue we base on Ryan Davis’ derivation [10], where he considers a bulk free energy which
has the following expression:

f0(φa,φb,φc) = Aaφ
2
a(φa − 1)2 + Abφ

2
b(φb − 1)2 + Acφ

2
c(φc − 1)2+

C (φ2
aφ

2
b(1− φc)2 + φ2

aφ
2
c(1− φb)2 + φ2

cφ
2
b(1− φa)2

+φ2
aφ

2
bφ

2
c + (1− φa)2(1− φb)2(1− φc)2)

where C is a positive constant. The second term enforces that the only three minima are the ones cor-
responding to one of the order parameters equal to 1 and the rest equal to 0. A simplified form can be
considered if the terms that do not contribute to the interface energy calculation are removed. For example,
the φ2

aφ
2
bφ

2
c term can be removed, since it is very close to 0 everywhere except near triple junctions, but its

removal does not change significantly the results. The simplified expression is:

f0(φa,φb,φc) = Aaφ
2
a(φa − 1)2 + Abφ

2
b(φb − 1)2 + Acφ

2
c(φc − 1)2+

C (φ2
aφ

2
b + φ2

aφ
2
c + φ2

cφ
2
b + (1− φa)2(1− φb)2(1− φc)2)

The parameters of the free energy have to be determined, as in the binary case, using the definition of
interface width and interface energy. We consider that the interface width is the same for all phases (δ)
and we have three interface energies, which are γab,γac and γbc . The definition of these parameters relies
on the phase matching procedure.

We say that two order parameters are matched at an interface if one of them the takes values from 0
to 1 in the orthogonal direction to the surface, while the other takes values from 1 to 0. In that way, the
third order parameter is equal to zero in all the region. When defining the interface energy between two
phases we assume that their order parameters are matched and separated by a planar interface.

If φi and φj are matched, the definition of the interface width for these two phases is in this case (the
same derivation done in Section 4.1.3 can be reproduced to obtain this relation):

δ =
1

|∇φi |φ=1/2

The value of the interface width is the same for all order parameters, so this expression must be the
same for whatever order parameter φi we choose. The derivative is evaluated at the center of the interface
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(x = 0), where both order parameters equal to 1/2. To evaluate this derivative we can use the Beltrami
identity for this system. Given two matched order parameters, corresponding to phases i and j, the Beltrami
identity reads:

f0(φi ,φj)−
[
Wi

2
|∇φi |2 +

Wj

2
|∇φj |2

]
= 0 (68)

f0(φi ,φj) is defined considering φj = 1− φi and the third order parameter equal to 0 in the expression
for the bulk free energy. Hence, if we write it in terms of φi , it has the following expression: f0(φi ,φj) =
(Ai + Aj + 2C )φ2

i (φi − 1)2. What we end up with is the following expression for the interface width:

δ =

√
Wi + Wj

2f0(φi = 1/2,φj = 1/2)
=

√
8

Wi + Wj

Ai + Aj + 2C
(69)

The definition of the interface energy for the phases i and j is:

γij =

∫ +∞

−∞

(
f0(φi ,φj) +

Wi

2
|∇φi |2 +

Wj

2
|∇φj |2

)
dx

Similarly to the binary case, we can use the Beltrami identity for phases i and j and compute this
expression. In the end we get:

γij =

√
2

6

√
(Wi + Wj)(Ai + Aj + 2C ) (70)

So far we have four expressions with seven different parameters. We can obtain two more relations
imposing that phases match at interfaces [10]. These relations are:

Wa

Wb
=

Aa + C

Ab + C
Wa

Wc
=

Aa + C

Ac + C

These relations impose a relation between the parameters Wi and Ai . In particular, the previous relations
indicate that Wa

Aa+C = Wb
Ab+C = Wc

Ac+C , so we can define a new parameter, λ, in the following way: Wi =

λ2(Ai + C ). With this definition, the expressions are:

δ = 2
√

2λ

γij =

√
2

6
λ(Ai + Aj + 2C )

The first expression shows that λ is the interface width (multiplied by the factor 2
√

2 ≈ 3), as in the
binary case. However, to determine the values of the parameters with respect to the interface energies and
interface width we still need an extra condition. A common assumption is to assume that C satisfies the
following relation [10]:
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C =
1

6
max{Aa + Ab,Aa + Ac ,Ab + Ac}

This relation is usually taken to resolve a wide range of angles. The procedure to determine the constants,
then, starts by taking the largest value of the interface energies, which we will consider to be γij . In that
case, it can be shown that C = 1

6 (Ai + Aj). To find the values of the rest of the parameters, the system
formed by the expressions of the three interface energies has to be inverted. After doing so, we get the
following relations: 

Ai =
9γij+12(γik−γjk )

4
√

2λ

Aj =
9γij−12(γik−γjk )

4
√

2λ

Ak = 3
√

2
λ γik − 4

3Ai − 1
3Aj

(71)

With the previous expressions we can use the physical constants as the inputs of our model. We are
especially interested in comparing the different possible values of the interface energies, and considering
small interface widths to be as close as possible to the sharp interface limit.

The values of the interface energies are not relevant by themselves. What we are interested in is their
relation (that is, the ratios between each pair of interface energies). If we multiply all interface energies by
a factor A, then all the values of Ai and C will rescale by this factor, and hence the free energy density will
be multiplied by this factor. As in the binary case, this is equivalent to changing the time step, but the
final configuration after convergence does not change. Hence, we will consider all values of the interface
energies around a value of 10−2, to follow the same procedure as in the binary case.

Finally, the contact angles are related to the interface energies via Eq. 81, derived in Section 3.2. If we
compute the angles (see Fig. 4) as a function of the interface energies we get:cos θ =

γ2
bc−γ

2
ab−γ

2
ac

2γabγac

cosφ =
γ2
ac−γ2

ab−γ
2
bc

2γabγbc

(72)

We are also interested in checking whether our model is able to reproduce correctly this contact angles
or not.

5.2 Model implementation

In a ternary system each of the order parameters evolves via the Cahn-Hilliard equation. Its general expres-
sion, assuming that the mobility coefficients Mi are all equal to 1. is:

∂φi
∂t

= ∆
δF

δφi
(73)

The functional derivative of the free energy with respect to component i (which is the chemical potential
for component i) has the following expression:

δF

δφi
= µi = 2Aiφi (1− φi )(1− 2φi ) + 2C

φi
 ∑

j=a,b,c

φ2
j

− φ2
i

− ∏j=a,b,c(1− φj)2

1− φi

−Wi∇2φi
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When computing these expressions, there are two terms which do not depend on the component we are
working with. Hence, we can compute them beforehand and use them for each of the components. These
two terms are S =

∑
j=a,b,c φ

2
j and P =

∏
j=a,b,c(1 − φj)2. The term P

1−φi may cause numerical errors,
since normally one of the order parameters is very close to 1. and hence P ≈ 0 and 1 − φi ≈ 0. The way
to avoid these errors is to introduce a numerical tolerance, ε = 10−12, and compute:

P

1− φi
≈ (1− φi )(P + ε)

(1− φi )2 + ε

Since our simulation will be in cartesian coordinates in two dimensions, to be able to run the program
in a reasonable time we cannot solve this equation in the real space. The way to do it will be the same as
in binary mixtures, in the Fourier space [37]. In that case, the derivatives turn into multiplications and the
program is much faster. The general algorithm will be the following:

1. The chemical potential for each phase, µni , is computed in the real space.

2. The chemical potential is transformed to the Fourier space via the FFT, µ̂i n. The order parameter is
computed in the Fourier space as well, φ̂i

n
.

3. The time evolution is performed following an IMEX method to obtain φ̂i
n+1

.

4. The value of the vector solution is computed in real space via the Inverse Fast Fourier Transform
(IFFT), to obtain φn+1

i .

5. Every ns iterations, the string is reparametrized.

The general expression for φ̂n+1
i ,j with respect to φ̂ni ,j , where φ̂

n
i ,j is the value of the order parameter of

component i (i ∈ {a, b, c}) at node j (j = (jx , jy ) and jx ∈ {0, 2π/dx , ..., 2π}, jy ∈ {0, 2π/dx , ..., 2π}) and
iteration n, and k̂ = 2πk , is:

φ̂n+1
i ,j =

φ̂ni ,j + h · µ̂ni ,j
1 + hλ2(Ai + C )k̂4

(74)

5.2.1 Spinodal region

As in the binary case, we have to make sure we are not in the spinodal region when phase c nucleates.
Otherwise no energy barrier will be observed. In the binary case this is very simple, since the initial mean
concentration has to be greater than a given limit concentration. However, for ternary mixtures the spinodal
region is much more complex because it depends on two order parameters (the third one is fixed by Eq.
67), instead of one. When computing the spinodal region we will assume that φc = 1− φa − φb, and only
work with two order parameters.

Given the free energy of our system, which depends on two order parameters, the system is in the
spinodal region if the hessian of the free energy density is negative-definite or non-definite (the free energy
curve is not convex at that point, so that there is at least one direction of descent at that point). Hence,
each point of the domain must have a set of concentrations which satisfy that the hessian of the free energy
is positive-definite for those values. The easiest way to check if the hessian is positive-definite or not is by
examining its eigenvalues. We want that both eigenvalues are positive (if both of them are negative the
hessian is negative-definite and the free energy surface is convex at that point, and if there are one positive
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and one negative eigenvalues the hessian is not definite at that point and the surface is not convex nor
concave).

To find the values of the eigenvalues we used a Mathematica code. We first defined the free energy
density with respect to two parameters (φa and φb), result of substituting φc = 1 − φa − φb in the free
energy density expression. We then compute its hessian matrix and compute its eigenvalues for certain
values of the model parameters and mean concentrations.

In our simulations phases a and b are only in contact with each other at interfaces. Hence, in most of the
domain one of the order parameters is 0. This allows us to determine which is the maximum value that φc
can take without entering the spinodal in the bulk regions, in the special case where all the interface energies
are equal. A detailed analysis shows that, in this case, the limit concentration is φ̄∗c = 1

2 −
√

3
6 ≈ 0.21. That

is, φ̄∗c is the maximum concentration we can consider for component c in the bulk regions without entering
the spinodal.

There is one complication even when the concentration of phase c in the bulk regions, φ̄c , satisfies
φ̄c < φ̄∗c . Although we are not in the spinodal region inside phase a and phase b, we are in the spinodal region
at the interface. Although this is not enough to provoke phase separation in general, since the interfacial
energy tends to stabilize it, it provokes that phase c tends to accumulate at the interfaces, something which
may cause problems when we want to study nucleation. A detailed analysis of this situation is performed in
the following section.

For more complex situations (different values of the interface energies or more complex geometries) a
detailed analysis has to be performed. Due to the instabilities mentioned before, caused by the presence of
interfaces, the best way to determine the behaviour of the system is by evolving the Cahn-Hilliard equation
of the initial and final states and determine whether they converge to the desired equilibrium states or not.

5.3 One dimensional case

Simulations in one dimension are not of special interest for studying nucleation, as we discussed for binary
mixtures. However, they are interesting to study how the presence of an interface alters the initial state,
when phase c is diluted over all the domain. We do not apply the string method for this case, since we
are just interested in evolving the Cahn-Hilliard equation to determine whether our initial states converge
to the mixed state or to the separated state (in that case phase c accumulates at the interface and phase
separation takes place).

We consider phase a and b separated by an interface which divides the domain in two regions. In the
first region φa = 1 − φ̄c and φc = φ̄c , while in the second region φb = 1 − φ̄c and φc = φ̄c . Actually,
φc = φ̄c in all the domain, including the interface, and phase a and b are initialized with a sharp transition
at the interface.

Table 11 indicates whether the initial state converged to a mixed state or whether phase c separated
from phase a and b at the interface. Different values for the mean concentration of component c were
considered. The values for φ̄c were computed from the radius of a hypothetical droplet which would form
if we were in two dimensions, so that we can compare these results to simulations in two dimensions (for
example, if we wanted to nucleate a circular droplet in two dimensions with radius r = 0.1 the mean
concentration of component c would be φ̄c = πr2 = 3.14 · 10−2). In all cases the interface was placed at
x = 0.5, so the mean concentrations of components a and b are the same. The rest of the parameters used
in the simulations are N = 256, h = 5 · 10−6, γab = γac = γbc = 10−2, δ = 0.012 and a tolerance of
tol = 5 · 10−8. The concentration profiles after convergence for φ̄c = 3.14 · 10−2 and φ̄c = 6.16 · 10−2 are
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plotted in Fig. 24.

Mean concentration of phase c State after convergence

3.14 · 10−2 Mixed state
4.52 · 10−2 Mixed state
6.16 · 10−2 Separated state
8.04 · 10−2 Separated state
1.02 · 10−1 Separated state

Table 11: State to which the mixed state converges after running the Cahn-Hilliard evolution equation.
The two possibilities are the mixed state or the separated state, in which phase c nucleates at the interface
between phases a and b.

Figure 24: Final concentration profiles for initial mixed phase c. Left: φ̄c = 3.14 · 10−2. Right: φ̄c =
6.16 · 10−2.

If we compute the hessian of the matrix for each value of the mean concentration of component c we
see that phase separation should not take place in any of the cases. However, what we observe in the table
is that in some cases component c spontaneously separates and accumulates at the interface, giving rise
to three distinct phases (see Fig. 24, right plot). Hence, it is not enough to check that we are outside
the spinodal region to assure that the initial state will converge to the mixed state. Moreover, even when
the initial state converges to the mixed state, the concentration profile is not exactly the one expected,
since there is a sight increase in the value of component c at the interface. This result had already been
observed in simulations when studying phase separation in ternary systems [17]. However, this effect is not
really relevant, but it is interesting because it means that interfaces alter the equilibrium states in all cases,
something which classical nucleation theory does not consider.

Even for the same value of the mean concentration of phase c we can have problems if we change the
values of the interface energies. For example, we can consider changing γab. The results in that case (where
the rest of the parameters are the same as in the previous case, except for the time step, which had to be
taken smaller (h = 2 · 10−6) for the program to converge), for a mean concentration of φ̄c = 3.14 · 10−2,
are showed in Table 12. Fig. 25 shows the final profiles obtained for the values of γab = 1.2e − 2 (left) and
γab = 1.8e − 2 (right). We see that phase separation takes place in the case where γab = 1.8e − 2, which
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is also the case in which we are closer to the total wetting condition (one of the interface energies is larger
than the sum of the other two).

Interface energy γab State after convergence

1.00 · 10−2 Mixed state
1.20 · 10−2 Mixed state
1.40 · 10−2 Mixed state
1.60 · 10−2 Mixed state
1.80 · 10−2 Separated state

Table 12: State to which the mixed state converges after running the Cahn-Hilliard evolution equation.
The two possibilities are the mixed state or the separated state, in which phase c nucleates at the interface
between phases a and b.

Figure 25: Final concentration profiles for initial mixed phase c. Left: γab = 1.2e−2. Right: γab = 1.8e−2.

One interesting observation is derived from these results. When computing the interface energy we
assumed that the interface separated two phases and that the third component had a null concentration in
all the region. However, in our initial states component c has a constant concentration, although not null,
and we have seen that as long as we have a bit of component c it tends to accumulate at interfaces. This
may be a source of error in future results, since the actual interface energy is slightly different from the
theoretical one due to this fact.

The conclusion is that we have to be very careful when studying nucleation with the string method,
since the initial state may spontaneously separate and then our results will not be coherent. The way to
avoid that consists on checking that the initial profile after convergence has the shape it should, evolving
the initial state with the Cahn-Hilliard equation before applying the string method.
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5.4 Two dimensions

Our goal in this section is to compare classical nucleation theory results to numerical results. In particular
we want to compare heterogeneous nucleation with homogeneous nucleation. We expect to observe that
energy barriers are lower in heterogeneous nucleation, and in many cases we can predict that this relation is
given by the shape factor, defined in Section 3.2.

For this reason we consider phase c nucleating inside phase a and b. Three different cases are considered:
a circular droplet of phase c nucleating inside phase a, a circular droplet of phase c nucleating inside phase
b and a droplet (which will not be circular due to the interface energy balance at triple junctions) of phase
c nucleating at the interface between phases a and b. In all cases the initial state will be the same: we
assume phase a and b are separated by two interfaces (since the domain has periodic boundary conditions),
and phase c is diluted over all the domain. In the final state all three phases are separated, with phase c
forming a droplet in each of the three situations.

5.4.1 Contact angles

Before studying nucleation events in two dimensions we are interested in checking whether the contact
angles at triple junctions are the ones obtained from imposing force balance (see Section 3.2). To do so,
we study some geometries which present triple junctions and determine the contact angles obtained from
simulations. We expect to get good results when the interface energies have similar values, but discrepancies
between simulations and classical results may appear for more extreme cases (very small angles or very big
angles).

We consider a matrix of phase a and a circular droplet of phase b and c, with radius r = 1/3. The
upper part of the droplet is phase c and the lower part phase b (see Fig. 26). This configuration presents
two triple junctions, which are symmetric with respect to the y axis. Since we will consider symmetric cases
both contact angles at triple junctions will be the same. We compute the contact angle at one of the
triple junctions (the left one, for example). These angles are defined as the angle formed by the ac and the
bc interface and the angles formed by the ab and bc interface (see Fig. 27). This definition gives us the
suplementary anlge to the one we derived in Section 5.1, but we define it in that way for convinience.

The difficulty of measuring the angle lies in the fact that the contact angle is not very well defined in
our simulations, since our interfaces are diffuse. To determine it we need two tangent directions at the triple
junction, which translates in computing two tangent vectors. We compute an approximate value for the
contact angle using the following algorithm (see Fig. 27):

1. The triple junction (which we call P1) is defined as the node which maximizes the product φa ·φb ·φc
(it can be shown that the values of the concentration which maximize this product satisfying Eq. 67
are all of them equal to 1/3, condition which only happens at triple junctions).

2. Once we have P1, we need to compute the direction of the interfaces at this node. Since the interfaces
are diffuse, there is some uncertainty in the tangent direction which is proportional to the interface
width. The first direction is simply the horizontal one (bc interface), so the second node, P2 has
the same x coordinate as P1 and an arbitrary y coordinate (for example 10 nodes to the left of P1,
according to the definition of the angle we are considering).

3. There are several techniques to find the direction of the ac interface. One of them consists on finding
an auxiliary node which maximizes the product xa · xc in the x direction slightly above the triple
junction, which is the third node, P3, we were looking for. This "slightly above" is chosen arbitrarily.
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Figure 26: Final concentration profiles for three coexisting phases. The value of the contact angle at triple
junctions varies with the value of γbc . Left: γbc = 4 · 10−3. Right: γbc = 1.8 · 10−2.

We call nr the number of rows in the mesh between P1 and P3. If nr is very large, since the interfaces
are curved, we will measure a contact angle which is larger than the actual one. However, if we
consider small values of nr there is very few resolution to determine angles. Moreover, in that case
the uncertainty in the interface width plays a very important role and the angle has a very large margin
of error. Hence, an intermediate value for nr must be chosen arbitrarily.

4. Once we have these three nodes, we can determine the angle they form using some simple geometry
(angle formed by two vectors).

We consider symmetric cases in which γab = γac = 10−2 (non-symmetric cases will be considered in
further sections). We expect both angles to be the same, and their value should be given by Eq. 81. We
chose a range of values for γbc from 4 · 10−3 to 1.8 · 10−2, to study angles close to 90◦ and close to 0◦.
When computing the angle a confidence interval is provided, where the limits of the interval are computed
assuming P3 is δ/2 to the right or to the left of the computed value. Table 13 shows the measurements of
the angles between the ac interface and the horizontal direction at the left triple junction. The following
parameters were used in simulations: N = 256, h = 10−5 and a tolerance of tol = 10−8. A value of
nr = 5 was determined experimentally to be the most appropriate, by studying the results obtained for
several values of nr .

We observe in the first place that there is a lot of uncertainty in the measurement of the angles, since
the confidence intervals are very large. For the first cases the agreement between theoretical and numerical
contact angles is very good. However, for angles close to 65◦ results start to deviate quite a bit, since
the theoretical angle is not even inside the confidence interval. This value of 65◦ for which results start to
deviate is larger than expected, since phase field models are generally capable of resolving smaller angles.

We observe that the measured angle is always greater than the theoretical one for small angles. There
are some reasons that explain this mismatch. One of them is that it is difficult to resolve small angles in a
finite mesh, so we should increase the number of nodes in the domain to resolve angles with more precision,
something which ends up being impossible for very small angles. Another difficulty is that for large values
for γbc the interface energies are close to the total wetting condition, and Ryan’s model [10] does not work
in the total wetting case. Hence, the program does not converge to the correct solution in these cases.
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Figure 27: Contact angle calculation in a discrete mesh, in the general case where the two contact angles are
different. The shaded regions around the interfaces represent diffuse interfaces. In this case the computed
angles are θ = 75.96◦ and φ = 71.57◦, which are larger than the real ones due to the high value of nr in
terms of the radius of curvature of the interface.

Interface energy γbc Theoretical contact angle Experimental contact angle Lower limit Upper limit

4.00 · 10−3 78.46 76.10 70,34 79.28
6.00 · 10−3 72.54 72.31 65.28 76.29
8.00 · 10−3 66.42 70,18 62.52 74.59
9.00 · 10−3 63.26 74.76 68.53 78.23
1.00 · 10−2 60,00 69.12 61.16 73.73
1.10 · 10−2 56.63 64.47 55.42 69.93
1.20 · 10−2 53.13 68.22 60,02 73.00
1.40 · 10−2 45.57 61.97 52.46 67.82
1.60 · 10−2 36.87 51.94 41.50 59.08
1.80 · 10−2 25.84 38.82 27.41 44.38

Table 13: Contact angles comparison for different values of γbc .

Despite these discrepancies, the results follow the same tendency as the theoretical ones (the angles
decrease with increasing γbc). Hence, our model does not properly reproduce angles bellow 65◦, and
converges to configurations where the contact angle is always a bit larger than the theoretical one, although
it is complicated to determine the angles with precision.
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Figure 28: Numerical contact angles vs theoretical contact angles at triple junctions for several values of
γbc . The orange curve are the theoretical values, the blue one are the numerical values and the blue region
is the confidence interval for the numerical values.

5.4.2 Nucleation events

We now focus on comparing results from simulations to classical nucleation theory. More precisely, the
procedure is the following: under the same conditions (interface energies, interface width, number of spatial
nodes...) we nucleate phase c inside phase a or at the interface between phase a and b. We can compute the
shape factor S2(θ,φ) for these conditions (see Section 3.2) and compute the energy barrier for heterogeneous
nucleation with respect to homogeneous nucleation. Ideally, we expect this ratio to be S2(θ,φ). However,
a thorough study is made to see under which conditions this agreement is satisfied.

We define our initial string as the string connecting two metastable states. The first state consists of
phase a and phase b separated by two interfaces (since we consider periodic boundary conditions we always
have at least two planar interfaces). Component c is initially constant in the whole region, mixed inside
both phases. The mean concentration of c is computed from the final radius of the droplet of phase c
(for homogeneous nucleation), since we are using a conservative method (the total concentration of each
component at each time step and image on the string must be equal). In that way, if we nucleate a droplet
of radius rc inside phase a, the mean concentration of component c will be πr2

c . This poses a limitation in
the value of rc , since if it is too large we enter the spinodal region. The intermediate images on the string
are defined in such a way that first a droplet is formed and then its radius grows linearly until the final state.

As a first test we can study the range of values for which rc is small enough so that we do not enter
the spinodal region and such that the final droplet does not dilute in phases a and b (if rc is smaller than
the critical radius the droplet dilutes inside phase a and b, giving rise to the mixed state). We consider
phase b to be [0, 1]x [0, 0.5] and phase a to be [0, 1]x [0.5, 1]. Since we iterate the Cahn-Hilliard equation in
the Fourier space we consider the space discretized into N2 = 2562 nodes, to optimize the FFT (the FFT
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Figure 29: Final concentration profiles for homogeneous nucleation with rc = 0.1. Left: Initial state. Center:
Critical state. Right: Final state.

Figure 30: Final concentration profiles for heterogeneous nucleation with rc = 0.1. Left: Initial state.
Center: Critical state. Right: Final state.

is more efficient when we discretize the space into 2n nodes with n ∈ N, although we can also consider
N not to be a power of two). Table 14 shows the energy barriers measures both for homogeneous and
heterogeneous nucleation for several values of rc , and whether the final state converged to the mixed state
(two phases) or to the separated state (three phases). The rest of the parameters are m = 50, h = 10−5,
γab = γac = γbc = 10−2, δ = 0.012 and a tolerance of tol = 5 · 10−8 (defined in the usual way).

If we consider too small droplets the final state ends up diluting (for rc < 0.1) because the final droplet
size is smaller than the critical radius. We also observe that for rc = 0.08 the final state in homogeneous
nucleation does not converge to the final droplet, but it does in heterogeneous nucleation. This can indicate
that the critical radius for heterogeneous nucleation is smaller, something which is consistent with the fact
that heterogeneous nucleation is more favorable than homogeneous nucleation.

The way to solve the diluting final droplet for rc = 0.08 would be considering more nodes on the mesh
and thinner interface widths. However, we can consider rc = 0.1 for the rest of the simulations, since the
method converges both for homogeneous and heterogeneous nucleation, which is what we wanted. The
final concentration profiles for rc = 0.1 are shown in Figs. 29 and 30.
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Radius rc Type of nucleation Energy barrier Convergence of the final state

0.12
Homogeneous 6.41 · 10−4 Separated state
Heterogeneous 1.68 · 10−4 Separated state

0.10
Homogeneous 8.38 · 10−4 Separated state
Heterogeneous 3.06 · 10−4 Separated state

0.08
Homogeneous 0.00 Mixed state
Heterogeneous 4.76 · 10−4 Separated state

0.06
Homogeneous 0.00 Mixed state
Heterogeneous 0.00 Mixed state

0.04
Homogeneous 0.00 Mixed state
Heterogeneous 0.00 Mixed state

Table 14: Energy barrier and convergence for several final droplet radii.

For the first two cases we can even compute the shape factor S2(θ,φ) (see Section 3.2) as the ratio
between heterogeneous and homogeneous nucleation and compare it to the theoretical one. The theoretical
one has a value of 3.91 · 10−2 in both cases (it only depends on the interface energies). For rc = 0.12,
S2 = 2.61 · 10−1, and for rc = 0.1 S2 = 3.65 · 10−1. This is what we expected, since for a smaller value of
the final droplet radius we approach the binodal and, as in the binary case, we become closer to the sharp
interface limit. Only then our results can be compared to classical nucleation theory. However, there is a
limit in the final size of the droplet, given by the condition that the final radius has to be larger than the
critical radius. For rc = 0.1 the relative error is bellow 10% (we compute the relative error as the absolute
value of the difference between the theoretical and the numerical value of the shape factor divided by the
theoretical value), so from now on we will consider rc = 0.1 unless the opposite is said. A more thorough
analysis on the shape factor for several conditions will be performed later.

An interesting observation is that, in the way we have defined our domain, divided in two identical
regions, there is no difference between phase a and phase b (unless interface energies are different). This
leads us to a second test: checking whether we get the same results when we study nucleation inside phase
a or inside phase b. We do not expect great discrepancies to appear, only the ones due to numerical errors.

We consider a circular droplet nucleating inside phase a and the same droplet nucleating inside phase b.
For the same parameters as in the previous case, we obtained, when nucleating phase c inside phase a, an
energy barrier of E = 8.38 · 10−4, while, when nucleating phase c inside phase phase b, we got an energy
barrier of E = 8.34 · 10−4. The relative error between these two quantities is 0.55%, which means that our
implementation of the method is consistent with the symmetry of the problem. The difference is mostly
due to numerical errors.

In the same line we can check what happens if we consider heterogeneous nucleation and switch the
values of γac and γbc . That is, in one case we consider γac = 8 · 10−3 and γbc = 10−2 and in the other
γac = 10−2 and γbc = 8 ·10−3. The energy should be the same, since again the configuration of the system
is symmetric. We nucleate a droplet of phase c at the interface between phases a and b. All the parameters
are the same than in the previous case, except for γac and γbc . If we set γac = 8 · 10−3 and γbc = 10−2 we
get an energy barrier of E = 2.37 · 10−4, while setting γac = 10−2 and γbc = 8 · 10−3 gives us an energy
barrier of E = 2.34 · 10−4. The relative error in that case is 1.24%, which is again very small, and caused
by numerical errors. Moreover, both in the homogeneous nucleation case and heterogeneous nucleation, the
program did slightly more iterations in one case than in the other. That is another reason why the results
in one case are slightly different than in the other.
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Now that we have checked some symmetry issues we can investigate under which circumstances the
string method and classical nucleation theory are in agreement. To do so we compute the energy barriers
for homogeneous nucleation and heterogeneous nucleation, and from them we compute the shape factor
and compare it to the classical one.

In the first place we consider the cases where θ = φ, that is, when γac = γbc . In that case the shape
factor can be simplified and its expression as a function of θ is:

S2(θ) = (2θ − sin 2θ) /π (75)

This expression is twice the shape factor for heterogeneous nucleation on a mould wall, since in this case
two circular caps are formed instead of one. We consider γac = γbc = 10−2 and vary γab from 2 · 10−3 to
1.8 · 10−2. These are close to the extreme cases, γab = 0 and γab = 2 · 10−2, in which we would have total
wetting. The phase field model is not able to reproduce total wetting, so our free energies have to satisfy
the triangular inequality (each of them is smaller than the sum of the other two).

Table 15 shows the results obtained for the energy barriers in both cases (homogeneous and hetero-
geneous nucleation), as well as the theoretical and the numerical shape factor, which is computed as the
ratio between the homogeneous and the heterogeneous energy barriers. The following parameters were
considered: m = 50, N = 256, δ = 0.012, h = 10−5 and a tolerance of tol = 5 · 10−8.

Interface energy γab Type of nucleation Energy barrier Critical image Numerical shape factor Theoretical shape factor

2 · 10−3 Homogeneous 6.73 · 10−4 3
8.64 · 10−1 8.73 · 10−1

Heterogeneous 5.82 · 10−4 3

4 · 10−3 Homogeneous 7.10 · 10−4 3
7.45 · 10−1 7.47 · 10−1

Heterogeneous 5.28 · 10−4 3

6 · 10−3 Homogeneous 7.43 · 10−4 4
6.32 · 10−1 6.24 · 10−1

Heterogeneous 4.69 · 10−4 3

8 · 10−3 Homogeneous 7.83 · 10−4 6
5.11 · 10−1 5.05 · 10−1

Heterogeneous 4.00 · 10−4 3

10−2 Homogeneous 8.38 · 10−4 7
3.83 · 10−1 3.91 · 10−1

Heterogeneous 3.21 · 10−4 3

1.2 · 10−2 Homogeneous 9.10 · 10−4 9
2.59 · 10−1 2.85 · 10−1

Heterogeneous 2.36 · 10−4 3

1.4 · 10−2 Homogeneous 1.01 · 10−3 11
1.50 · 10−1 1.88 · 10−1

Heterogeneous 1.51 · 10−4 2

1.6 · 10−2 Homogeneous 1.16 · 10−3 14
5.76 · 10−2 1.04 · 10−1

Heterogeneous 6.67 · 10−5 2

1.8 · 10−2 Homogeneous 1.95 · 10−3 49
0.00 3.74 · 10−2

Heterogeneous 0.00 0

Table 15: Energy barriers and shape factor for several values of γab.

We see that the numerical shape factor is very close to its theoretical value in most cases, especially for
low values of γab. In fact, in the first four cases the relative error is bellow 2%, which is a very good result.
Fig. 31 shows the numerical values obtained for the shape factor versus its theoretical value.

It is interesting to discuss the origin of the mismatches between theoretical values and numerical ones.
In the first place, as we discussed in the previous section, the method is not able to reproduce correctly
small angles (smaller than 65◦). Hence, the most extreme cases fail to reproduce correctly the equilibrium
concentrations. Moreover, as we increase the interface energy between phases a and b, the energy barrier
for heterogeneous nucleation decreases, until it would reach a value of 0 for the total wetting case (this case
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Figure 31: Shape factor comparison. The blue curve is the theoretical shape factor, and the orange samples
are the values obtained from simulations.

fails also in classical nucleation theory, so it is not of much interest). This is also spotted in the value of the
critical image on the string, which decreases until for γab = 1.8 · 10−2 it reaches the end of the string and
the energy barrier vanishes. This could be solved considering more images on the string, since our value of
m = 50 does not allow us to determine energy barriers with a high precision if the energy barrier is very
small.

There is another source of error when computing the shape factor. In most of the cases, the shape factor
obtained from simulations is smaller than the theoretical one (this is especially appreciable for high values
of the interface energy). This is due to the way we compute the energy barrier. Classical nucleation theory
only takes into account the variation in energy due to the creation of the droplet. However, in our case
there is also a contribution from the rest of the domain. In particular, there are two interfaces which also
contribute to the energy we measure. In principle, especially if the critical image is close to the initial image
of the string, these contributions should cancel each other and the only relevant contribution would be the
one given by the droplet. However, in practice, since we are considering periodic boundary conditions, there
is a small change in the interfaces and the value of the order parameters inside phase a and phase b, to
keep the total concentration constant. This variation adds some error to the energy barriers computed. In
particular, we expect the interfaces at the critical state to contribute more to the energy than in the initial
state, so the energy barrier is always a bit bigger than we would expect.

Finally, we find that the values of the critical radii (which we did not compute explicitly, but could
observe from the concentration profiles) are very small. In particular, they are comparable to the interface
width. Hence, we are not in the sharp interface limit, which is the most relevant source of error.

We are now interested in checking whether the string method reproduces correctly all cases, even when
both contact angles are different. In the following simulations phases a and b are not equal. Instead, phase
a occupies two thirds of the domain and phase b the resting third. We compare nucleation inside phase a
with nucleation at the interface between phases a and b.
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Table 16 shows some results obtained for several values of the interface energies γac and γbc . In all
cases γab = 10−2. The rest of the parameters are m = 50, N = 256, δ = 0.012, h = 10−5 and a tolerance
of tol = 5 · 10−8.

Interface energy γac Interface energy γbc Type of nucleation Energy barrier Critical image Numerical shape factor Theoretical shape factor

8 · 10−3 1 · 10−2 Homogeneous 6.31 · 10−4 6
3.94 · 10−1 4.14 · 10−1

Heterogeneous 2.49 · 10−4 3

1 · 10−2 8 · 10−3 Homogeneous 9.95 · 10−4 10
2.31 · 10−1 2.65 · 10−1

Heterogeneous 2.30 · 10−4 3

6 · 10−3 8 · 10−3 Homogeneous 5.28 · 10−4 8
1.98 · 10−1 2.35 · 10−1

Heterogeneous 1.05 · 10−4 2

8 · 10−3 6 · 10−3 Homogeneous 1.13 · 10−3 49
8.07 · 10−2 1.32 · 10−1

Heterogeneous 9.07 · 10−5 2

8 · 10−3 1.2 · 10−2 Homogeneous 5.80 · 10−4 3
5.21 · 10−1 5.83 · 10−1

Heterogeneous 3.02 · 10−4 3

1.2 · 10−2 8 · 10−3 Homogeneous 1.29 · 10−3 12
2.32 · 10−1 2.59 · 10−1

Heterogeneous 2.99 · 10−4 3

Table 16: Energy barriers and shape factor for several values of γac and γbc .

For the non symmetric cases the results are not as good as in the symmetric case. However, all the
numerical shape factors are rather close to the theoretical ones (relative error smaller than 20%) except for
the fourth case (γac = 8 · 10−3 and γbc = 6 · 10−3), in which case the relative error in the shape factor
is almost 40%. Moreover, for that configuration, the critical state was the ending state, something which
should not happen. This may mean that the program did not converge to the right solution. Besides from
that, we get some similar results as in the symmetric case. For example, the numerical shape factor is always
greater than the theoretical one. As in the previous case this is partially caused by the way we compute the
energy (we are computing the contribution of all interfaces, so all energy barriers are a bit greater than they
should), and also because we do not resolve properly all contact angles, as discussed in Section 5.4.1. Figs.
32 and 33 show the concentration profiles obtained both for homogeneous and heterogeneous nucleation
for the values γac = 1.2 · 10−2 and γbc = 8 · 10−3.

An interesting situation is trying to reach an extreme case, corresponding to the semicircular cap. This
is achieved by considering one of the interface free energies very small (for example, γac). If we make γac
tend to zero (keeping the other two interface energies equal to maintain force balance) it can be checked
that φ→ 0◦ and θ → 90◦. Hence, we get a semicircular cap, which also corresponds to the heterogeneous
nucleation on a mould wall.

We can try to consider a very extreme case, like γac = 10−3, in which case the contact angles should
be 87.13◦ and 5.73◦. The program diverges for these conditions, both for homogeneous and heterogeneous
nucleation, since we are too close to the total wetting condition. Hence, we have to gradually approach the
semicircular cap and study the shape factor obtained in each case.

Table 17 shows the results obtained for different values of γab, both for homogeneous and heterogeneous
nucleation. In that case we considered both phases a and b to be equal (50% of the domain each). The rest
of the parameters are m = 50, N = 256, δ = 0.012, γac = 10−2, γbc = 10−2, h = 10−5 and a tolerance of
tol = 5 · 10−8.

We can see that the results do not match very well to classical nucleation theory, since in all cases the
shape factor is quite smaller than its theoretical value (the relative error is in all cases around 20%). This
is not a very surprising result, since even for γac = 6 · 10−2 φ = 34.92◦, which is too small to be resolved
properly. Moreover, in all cases the critical image on the string was the third one. Hence, the energy
barrier may not be determined properly and may have some numerical error. One way to solve this would
be increasing the number of images on the string. Figs. 34 and 35 show the concentration profiles with
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Figure 32: Final concentration profiles for homogeneous nucleation with γac = 1.2 ·10−2 and γbc = 8 ·10−3.
Left: Initial state. Center: Critical state. Right: Final state.

Figure 33: Final concentration profiles for heterogeneous nucleation with γac = 1.2·10−2 and γbc = 8·10−3.
Left: Initial state. Center: Critical state. Right: Final state.

Interface energy γab Type of nucleation Energy barrier Critical image Numerical shape factor Theoretical shape factor

6 · 10−3 Homogeneous 4.83 · 10−4 3
3.58 · 10−1 4.36 · 10−1

Heterogeneous 1.73 · 10−4 3

5 · 10−3 Homogeneous 4.03 · 10−4 3
3.55 · 10−1 4.47 · 10−1

Heterogeneous 1.43 · 10−4 3

4 · 10−3 Homogeneous 3.22 · 10−4 3
3.55 · 10−1 4.57 · 10−1

Heterogeneous 1.14 · 10−4 3

3 · 10−3 Homogeneous 2.42 · 10−4 3
3.63 · 10−1 4.68 · 10−1

Heterogeneous 8.79 · 10−5 3

2 · 10−3 Homogeneous 1.62 · 10−4 3
3.99 · 10−1 4.79 · 10−1

Heterogeneous 6.48 · 10−5 3

Table 17: Energy barriers and shape factor for several values of γac .

γac = 2 · 10−3 for homogeneous and heterogeneous nucleation, respectively.
By examining Fig. 35 we can see something else which we did not take into account, which are curved
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Figure 34: Final concentration profiles for homogeneous nucleation with γac = 2 · 10−3. Left: Initial state.
Center: Critical state. Right: Final state.

Figure 35: Final concentration profiles for heterogeneous nucleation with γac = 2 · 10−3. Left: Initial state.
Center: Critical state. Right: Final state.

interfaces between phases a and b. When considering heterogeneous nucleation at an interface we assumed
that the interface was flat and a droplet formed keeping the interface flat in the process. However, this
figure shows that the final ab interface is curved near the triple junctions. In fact, it can be shown that
in equilibrium all interfaces have constant curvature (they are flat or circular caps), something which does
not happen in this simulation. This means that the program would need to run for a longer period of
time (consider a much smaller tolerance) until the ab interface was completely curved, something which
is very difficult to obtain in practice due to the speed of the program. Moreover, the energy barrier for
heterogeneous nucleation should be recalculated assuming curved interfaces, and the expression for the
shape factor would change as well.

The curvature of the interfaces can be determined imposing an additional restriction to the computation
of the shape factor. There is a concept we did not take into account when nucleating a phase at an
interface, which is the Laplace pressure. The Laplace pressure is the difference in the pressure across a
curved interface [40]. Since we have three interfaces, we have to impose that all Laplace pressures between
different phases are balanced. This condition can only be achieved if the interfaces have a specific curvature.
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These terms should be taken into account when computing the contact angles at triple junctions and shape
factors. However, this discussion is out of the scope of this thesis.

One last observation is that the problem of curved interfaces only happens for non symmetric cases.
That is, if γac = γbc , then the ab interface is flat and all the theoretical results are correct. However, for
the non symmetric case theoretical results should be adjustedto take into consideration the curvature of the
ab interface.

5.4.3 Improvements

There is an important issue which has appeared in many simulations. In most cases the critical state along
the string was very close to the initial state, and the energy barrier was very small. This was especially
relevant for heterogeneous nucleation, where the energy barriers are always smaller than in homogeneous
nucleation. This has two main implications. The first one is that the energy barrier presents some error due
to the coarse discretization along the string. The second one is that the critical radius is usually very small,
and hence comparable to the interface width. This problems are mostly caused by numerical limitations: in
many cases our programs take some hours to run, or even days, so pushing them forward by considering more
images on the string or considering finer meshes are very complicated solutions. However, two solutions are
proposed in that line.

The first one is simply considering increasing the value of N = 512 in some selected cases where the
critical nucleus already is slightly resolved (although it does not reach the sharp interface limit). This is the
maximum value we can consider to have a program which can run in a reasonable time (some days).

The second solution is a bit more complex, and it consists on changing the number of images on the
string on the fly [11]. The procedure consists on choosing an initially low number of images on the string.
When a certain tolerance is reached, the number of images on the string is duplicated. The new images
on the string are computed by linearly interpolating the new string with the old one. This process can be
repeated as many times as desired (in our case we do it twice, so the final number of images on the string
is four times the initial one).

To try both solution some of the cases where the critical nucleus was resolved better are considered.
The most resolved critical nuclei were the symmetric cases with γac = γbc = 10−2 and varying γab. In the
first place we perform the same test but initializing the string with m = 30 images, so that in the end it
has 120 images. The rest of the parameters are the same as in the original test, except for the tolerance on
the error. In that case three tolerances must be considered, each of them determining at which point we
duplicate the number of images on the string. Experimentally we found that a good choice of the tolerances
is tol1 = 10−7, tol2 = 10−8 and tol3 = 10−9. Table 18 shows the results obtained in these tests.

Interface energy γab Type of nucleation Energy barrier Critical image Numerical shape factor Theoretical shape factor

8 · 10−3 Homogeneous 7.81 · 10−4 17
4.82 · 10−1 5.05 · 10−1

Heterogeneous 3.77 · 10−4 9

10−2 Homogeneous 8.41 · 10−4 21
3.57 · 10−1 3.91 · 10−1

Heterogeneous 3.00 · 10−4 8

1.2 · 10−2 Homogeneous 9.17 · 10−4 26
2.39 · 10−1 2.85 · 10−1

Heterogeneous 2.19 · 10−4 8

Table 18: Energy barriers and shape factor for several values of γab.

Surprisingly we get worse results than in the original case, when less images on the string were considered.
However, Fig. 36 shows that this second case was more accurate than the original one for reproducing the
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critical state, especially for the heterogeneous case, since the curves are smoother near the maximum. In
any case, we get a shape factor which is close enough to the theoretical value, so we can still argue that
the method behaves correctly when reproducing classical nucleation results.

Figure 36: Energy along the string for homogeneous nucleation (upper row) and heterogeneous nucleation
(lower row), with γab = 8 · 10−3. Left: fixed m = 50. Right: variable m.

The second test is a combination of the two proposals. We consider the same cases, with N = 512 and
δ = 0.006. The initial number of images on the string is m = 15, so that in the end we have 60 images
on the string. The goal in this case is not to resolve with more precision the critical state, but to reach (if
possible) the sharp interface limit. Table 19 shows the results obtained for γab ranging from 8 · 10−3 to
1.4 · 10−2 (the rest of the parameters are the same as in the previous case).

We observe that the results are not very good, due to the fact that the energy barriers are very small
in all cases (the critical state is in all cases the second image on the string). The critical radii are not well
resolved, so there is a lot of error in the measurement of the energy barriers. Something similar happened
in the binary case: when reducing the interface width the critical image becomes closer to the initial state.
The way to solve it was to go closer to the binodal (in the binary case increasing the mean concentration).
We can try something similar here by decreasing the radius of the droplet.

We consider now a value of rc = 0.08. Since we are closer to the binodal we expect the energy barriers
and critical radii to increase. Table 20 shows the values for the energy barriers and shape factors obtained
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Interface energy γab Type of nucleation Energy barrier Critical image Numerical shape factor Theoretical shape factor

8 · 10−3 Homogeneous 4.93 · 10−4 1
4.08 · 10−1 5.05 · 10−1

Heterogeneous 2.01 · 10−4 1

10−2 Homogeneous 4.89 · 10−4 1
3.20 · 10−1 3.91 · 10−1

Heterogeneous 1.56 · 10−4 1

1.2 · 10−2 Homogeneous 4.70 · 10−4 1
2.35 · 10−1 2.85 · 10−1

Heterogeneous 1.11 · 10−4 1

1.4 · 10−2 Homogeneous 4.96 · 10−4 2
1.27 · 10−1 1.88 · 10−1

Heterogeneous 6.32 · 10−5 1

Table 19: Energy barriers and shape factor for several values of γab.

by repeating the previous simulations (same parameters) but with rc = 0.08.

Interface energy γab Type of nucleation Energy barrier Critical image Numerical shape factor Theoretical shape factor

8 · 10−3 Homogeneous 5.98 · 10−4 5
4.78 · 10−1 5.05 · 10−1

Heterogeneous 2.86 · 10−4 2

10−2 Homogeneous 6.27 · 10−4 6
3.74 · 10−1 3.91 · 10−1

Heterogeneous 2.34 · 10−4 2

1.2 · 10−2 Homogeneous 6.71 · 10−4 8
2.68 · 10−1 2.85 · 10−1

Heterogeneous 1.80 · 10−4 2

1.4 · 10−2 Homogeneous 7.34 · 10−4 10
1.68 · 10−1 1.88 · 10−1

Heterogeneous 1.23 · 10−4 2

Table 20: Energy barriers and shape factor for several values of γab.

Figure 37: Critical states for rc = 0.08 and γab = 10−2. Left: Homogeneous nucleation. Right: Heteroge-
neous nucleation.

In that case the shape factor adjusts better to the theoretical value than for rc = 0.1. In the first three
cases the relative error is close to 5%, and in the last one it is close to 10%, which is still is a reasonable
result. The problem with this configuration is that some of the simulations already lasted several to run, so
it is quite difficult to improve them beyond this limit. Moreover, for heterogeneous nucleation the critical
image is still very close to the initial one (second image in all cases). Hence, and because the energy barriers
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are quite small, they are not determined with very high precision. Fig. 37 shows the critical nuclei with
rc = 0.08 and γab = 10−2 for homogeneous and heterogeneous nucleation.

On the other hand, we did not achieve our goal with these simulations, which was reaching the sharp
interface limit. In the homogeneous case we did get a critical state which was well resolved (we should check
whether we are actually in the sharp interface limit). However, for the heterogeneous case we are quite far
from this situation, since the critical state is very poorly resolved, and the only thing that can be observed
is a small fluctuation at the center of the droplet.

All in all, the conclusion is that there is a strong limitation in the resolution we can reach due to
numerical issues and efficiency of the programs. We cannot both increase very much the number of images
on the string and the number of spatial nodes, so we have to reach a compromise. However, even without
reaching the sharp interface limit, as in the binary case, results are comparable to theoretical ones, which
proves that the string method is an efficient way to study nucleation events for ternary mixtures.
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6. Conclusions

The string method has proven to be very efficient to study nucleation events in binary and ternary systems.
It reproduced correctly classical nucleation results, although some limitations were found, especially for
ternary systems.

The algorithm performed very well for binary mixtures. On the first place, from a qualitative point of
view, droplets were observed to form via a quick increase in concentration followed by the growth of the
droplet. We were able to obtain results in agreement with classical nucleation theory both for systems
in two and three dimensions. Moreover, classical nucleation results were obtained even when the sharp
interface limit was not obtained. However, the string method is especially appropriate to study nucleation
when we are close to the binodal region. In the three dimensional case energy barriers and critical radii
evolved following the same relation as theoretical results, but there was a factor of proportionality between
numerical and theoretical results. We ere not able to fully determine the origin of this mismatch, and a
more exhaustive investigation should be performed to determine the cause of these errors.

Limitations appear when we approach the spinodal region. In these cases the critical state in phase sepa-
ration does not present the shape given by classical nucleation theory. Instead, the critical state corresponds
to a state where the droplet has not reached its maximum concentration yet. In these cases the results can-
not be compared to classical nucleation theory. However, nucleation theory does some approximations which
are not realistic, like that the nucleus forms instantaneously with the maximum concentration, growing until
it reaches the critical radius. Numerical results indicate that for configurations close to the spinodal this is
not the case. Instead, the droplet formation consists of a process of enrichment, in which the concentration
inside the droplet increases keeping a fixed size until it reaches the maximum concentration, followed by a
process of growth, in which the size of the nucleus increases, keeping the concentration constant inside
the nucleus. We also observed that the critical nucleus presented a value of the concentration at the center
of the droplet slightly smaller than expected. This is due to the Gibbs-Thomson effect, which introduces a
change in chemical potential across interfaces which translates into a deviation from the theoretical profiles.

Another important achievement was checking that in the two dimensional case the simplified radial
dynamics in polar coordinates correctly reproduced the same results as in the cartesian case, where both
space components are considered. This allows us to consider the simplified dynamics in any symmetric case,
which is always the case for homogeneous nucleation, if restricted to a neighbourhood of the droplet. We
could also observe from these cases that we can resolve with high accuracy the energy barriers and critical
radii from the string method, but only when we are close to the binodal.

For ternary mixtures results were also quite good, although some more issues appeared. The number of
possibilities increases exponentially, and some cases fail to reproduce classical nucleation results.

For the symmetric cases very good results were obtained. The shape factor was found to agree with the
classical one for intermediate values of the interface energies. For more extreme cases, close to the total
wetting condition, results started to separate from classical ones. However, in most cases it was mostly
due to numerical issues, since energy barriers become very small, especially for heterogeneous nucleation.
Moreover, the phase field method fails to reproduce very large or very small contact angles, so the method
is especially efficient for intermediate values of the interface energies.

The non-symmetric cases did not perform as well as the symmetric one. The shape factors did not adjust
with a very high precision the classical ones. However, they follow the correct trends in terms of dependency
with the values of the interface energies, and they are still close enough to the theoretical values to claim
that the results are satisfactory. However, a deeper look at the results makes us consider that classical
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results should be reviewed, since curved interfaces appeared for high values of the interface energies, and
the classical nucleation results we proposed did not exhibit that behaviour. The balance between Laplace
pressures should be considered and new theoretical shape factors for the non-symmetric cases should be
computed.

The part where results deviated more to the classical ones was the contact angles at triple junctions.
We were only able to get coherent results for a very limited interval of contact angles, smaller than the
expected one, according to [10], and in all cases there was a lot of uncertainty. The method was already
expected to fail for small angles, but it also failed for intermediate angles. However, this did not affect the
calculation of the energy barriers and shape factors, which matched quite well with classical results.

From a numerical point of view, we were able to take a lot of advantage of the string method. It is a
very simple method which allows to make some efficient enhancements, like changing the number of images
along the string on the fly. We found that for such complex systems it is very sensitive to initial conditions,
so a first approximation of the final string had to be known beforehand.

In terms of computational efficiency the programs turned out to be computationally quite expensive. In
cartesian coordinates for two dimensions this poses a very strong limitation on the accuracy that can be
achieved, since there is a maximum number of spatial nodes that can be considered. This in turn limited the
resolution of the critical state and made it impossible to reach the sharp interface limit for ternary mixtures.
Moreover, since the only efficient way to iterate the method was in the Fourier space, this also imposed
periodic boundary conditions, something which can be quite limiting in some situations as well. With this
formalism it would be impossible to perform simulations in three dimensions using cartesian coordinates,
and alternative ways to make the program faster should be considered.

6.1 Future work

Many interesting results were found during the research which can lead to future investigation. We comment
some of them.

To start with, the string method can be used to study nucleation events in multicomponent liquid
mixtures for more than three components. In that way some interesting situations can be studied, since
the possible phase morphologies for systems with more than three phases are very diverse. In that line,
heterogeneous nucleation plays a much more interesting role in those systems. Nucleation can take place
inside bulk regions (homogeneous nucleation), at interfaces or even at triple junctions. Depending on the
value of the interface energies some processes may be more favorable than others.

Some other cases which can be studied are nucleation of more than one droplet at the same time.
When nucleation takes place on a material system, several nuclei form at the same time. Some of these
end up reaching the critical state and growing until complete phase separation is achieved, while others do
not grow enough and end up collapsing. Nucleating several droplets at the same time can be numerically
very complex due to the limitations of the program, so another option would be to study how to make the
program accurate enough to be able to resolve several nuclei at the same time.

We could also consider some situations which are relevant in their applications. For example, considering
a spherical system with three components where one of them acts as a catalyst (situation which can model
protein diffusion in cells). In particular, there are two phases: one of them contains one of the components,
which acts as the catalyst, while the other two are mixed in the surrounding phase. It would be interesting
to study phase separation in this situation in different conditions, where the catalyst has different interaction
parameters with the other two components.
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Another important issue which can be handled are curved interfaces in non-symmetric heterogeneous
nucleation. A new derivation of the shape factors should be performed, taking into consideration the Laplace
pressure, and it could be compared to numerical results.

We can also consider improving the method by considering irregular meshes. Since our main limitation
was the computational efficiency, it is desirable to reduce the complexity of the program. One way to do it
consists on changing the mesh we used, which was regular in all cases, for a non-regular one which has more
resolution near the interfaces. This would imply changing the finite difference scheme we have used for a
finite element method, which can support irregular meshes. This would make the mathematical treatment of
the problem much more complicated, but probably much more efficient from a numerical point of view. This
approximation would be especially useful if we considered a droplet forming near an interface, for ternary
systems, since most of the domain in that configuration consists of a bulk region where we do not need a
great resolution.

Finally, due to the high computational cost of the string method for systems modeled using the phase
field dynamics, some ways to improve the string method could be studied. In particular the improvement of
changing the number of images along the string on the fly was particularly useful, since it allows to resolve
quite well energy barriers in a reasonable time. Another option would be to parametrize the string using an
energy-weighted arc length parametrization, since in that way we could resolve better the energy barriers
with the same number of images on the string. This would be especially useful for the cases where the
critical image was very close to the initial one. The same method could be optimized from a computational
point of view, perhaps taking advantage of preexisting libraries or using other programming languages which
are more efficient for these kind of problems.
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A. The shape factor in heterogeneous nucleation
As discussed in section 3.2, heterogeneous nucleation can take place in contact with a mould wall or at
interfaces between two phases, for ternary systems. The expression for the free energy density has the same
aspect for homogeneous nucleation and for heterogeneous nucleation except for a factor which only depends
on the geometry of the configuration. This factor is usually referred to as the shape factor, and it can
be computed using some simple geometry in each of the configurations. In this appendix we present the
derivation for the expression of the shape factor in each of these configurations.

Let us consider in the first place the two dimensional case. Assume that we have a nucleus forming
in contact with the mould wall (see Fig. 38). In this configuration, assuming γSL is isotropic, for a fixed
volume, the shape that minimizes the interface energy of the nucleus is a circular cap. This cap forms
an angle θ with the mould wall that satisfies the balance relation between the interface energies at triple
junctions [41]. That is:

γSM + γSLcos(θ) = γML (76)

where γSM , γSL and γML are the solid/mould wall, solid/liquid and liquid/mould wall interface free energies,
respectively. This equation comes from imposing that the interface tensions are balanced in the x direction
at the triple junction (we do not impose balance in the y direction in that case, since we assume that the
mould wall is fixed and cannot deform). We can thus derive the expression for the contact angle if we are
given the interface free energies, something which will be useful when comparing our results from simulations
with classical nucleation theory.

Figure 38: Nucleus forming in contact with a mould wall.

As in homogeneous nucleation, the formation of the embryo is associated with an increase in free energy,
given by the expression:

∆Ghet = −AV ∆GV + lSLγSL + lSMγSM − lSMγML (77)

where AV is the area of the circular cap and lSL and lSM are the solid/liquid and solid/mould wall interface
lengths. Using some simple geometry and combining it with Eq. 76, we can write all these terms as a
function of the contact angle. If we call r the radius of the circular cap (see Fig. 38), then we have the
following expressions for the areas and lengths:
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AV = θr2 − sin θ cos θr2

lSL = 2θr

lSM = 2 sin θr

Hence, the expression for the increase of free energy is given by:

∆Ghet = −(θr2 − sin θ cos θr2)∆GV + 2θrγSL + 2 sin θrγSM − 2 sin θrγML

Using Eq. 76 we can rewrite this as:

∆Ghet = −(θr2 − sin θ cos θr2)∆GV + 2θrγSL − 2 sin θr cos θγSL = (θ − sin θ cos θ) · (−r2∆GV + 2rγSL)

Finally, this expression can be written in the following way:

∆Ghet = (−πr2∆GV + 2πrγSL)S1(θ) (78)

where:

S1(θ) = (θ − sin θ cos θ)/π (79)

Observe that we get an expression which is almost identical to the homogeneous nucleation case (see
Eq. 9 in Section 3.1), except for the factor S1(θ), which only depends on the contact angle. This factor is
called the shape factor [31].

The second case we can consider is the formation of a droplet at an interface between two other phases.
This case can take place when two phases are present and a third phase is formed (a situation studied in
ternary mixtures). In that case, the nucleus will have a shape consisting on two circular caps, so that the
nucleus will have kind of almond shape (see Fig. 39). Consider that we have phase c nucleating at the
interface between phases a and b. In that case, the increase in free energy is computed as:

∆Ghet = −AV ∆GV + lacγac + lbcγbc − labγab (80)

Figure 39: Nucleus forming at an interface between two phases.

80



We can define two contact angles, θ and φ, defined as the angles formed by the ac and bc interfaces
with the ab interface, respectively (see Fig. 39). The interface tensions balance at the triple junctions, in
that case both in the x and the y direction, since all interfaces are deformable [41]. We have the following
relations: {

γab = γac cos θ + γbc cosφ

γac sin θ = γbc sinφ
(81)

The previous equations allow us to express γab and γbc as a function of γac and the two contact angles
(we use γac as our independent variable to keep a similar formalism as in the mould wall case). After some
algebra the expressions we get are: {

γbc = sin θ
sinφγac

γab = sin (θ+φ)
sinφ γac

(82)

If we name r1 and r2 the two radii of the circular caps, we can relate all areas and lengths with r1, r2, θ
and φ. In particular, there is a relation between the values of r1 and r2, which is derived by imposing that
both circular caps match exactly at the interface (lab has the same value if computed via the upper circular
cap or the lower one). This relation is the following:

r1
r2

=
sinφ

sin θ
(83)

Hence, we can write all the expressions as a function of just one of the radii (for example r1) and the
two contact angles. The expressions for these magnitudes in that case are (naming AI and AII the areas of
the upper and lower circular caps, respectively):

AV = AI + AII = (θ − sin θ cos θ) r2
1 +

(
φ

sin2 θ

sin2 φ
− sin2 θ

tanφ

)
r2
1

lac = 2θr1

lbc = 22 = 2φ
sin θ

sinφ
r1

lab = 2 sin θr1

With these relations we can rewrite Eq. 80 as:

∆Ghet = −
(
θ + φ

sin2 θ

sin2 φ
− sin θ

sinφ
sin (θ + φ)

)
r2
1 ∆GV + 2θr1γac + 2φ

sin θ

sinφ
r1γbc − 2 sin θrγab

From Eq. 82 we can rewrite this expression as:

∆Ghet = −
(
θ + φ

sin2 θ

sin2 φ
− sin θ

sinφ
sin (θ + φ)

)
r2
1 ∆GV + 2

(
θ + φ

sin2 θ

sin2 φ
− sin θ

sinφ
sin (θ + φ)

)
r1γac
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Finally, we can write this expression in the following way:

∆Ghet = (−πr2
1 ∆GV + 2πr1γac)S2(θ,φ) (84)

where:

S2(θ,φ) =

(
θ + φ

sin2 θ

sin2 φ
− sin θ

sinφ
sin (θ + φ)

)
/π (85)

Hence, the expression of the shape factor for nucleation at an interface in two dimensions is given by
S2(θ,φ). Observe that, in this case, it depends on two contact angles instead of one.

Consider now nucleation in the three dimensional case. First of all we consider nucleation at a mould
wall. It can be checked that the forming nucleus will have the shape of a spherical cap. We call θ the
contact angle between the wall and the spherical cap (we can use Fig. 38 again, where now we think of the
droplet as being spherical), and r the radius of the sphere. In that case, the variation in free energy after
the formation of this nucleus is:

∆Ghet = −VS∆GV + ASLγSL + ASMγSM − ASMγML (86)

Similarly to the two dimensional case, the interface energies satisfy a balance equation at triple junctions
in the x direction, which is:

γSM + γSLcos(θ) = γML (87)

We can express all volumes and areas in Eq. 86 in terms of r and θ in the following way:

VS =
2π

3
(1− cos θ)r3 − π

3
sin2 θ cos θr3

ASL = 2π(1− cos θ)r2

ASM = π sin2 θr2

For computing the volume of the spherical cap first of all we integrated a surface differential for a
constant value of the radius equal to r, and where the azimutal angle varies from π/2 to π/2− θ. Then we
subtracted the volume of the cone formed by the surface ASM and the center of the sphere.

If we put these expressions together in Eq. 86 we get:

∆Ghet = −(
2π

3
(1− cos θ)− π

3
sin2 θ cos θ)r3∆GV + 2π(1− cos θ)r2γSL + π sin2 θr2γSM − π sin2 θr2γML

∆Ghet = −π
3

((2 + cos θ)(1− cos θ)2)r3∆GV + 2π(1− cos θ)r2γSL + π sin2 θr2(γSM − γML)

If we use the interface energy balance (Eq. 87) we can express all interface energies in term of γSL, and
we finally get:

∆Ghet = −π
3

((2 + cos θ)(1− cos θ)2)r3∆GV + πr2γSL(2(1− cos θ)− sin2 θ cos θ)
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∆Ghet = −π
3

((2 + cos θ)(1− cos θ)2)r3∆GV + πr2γSL((2 + cos θ)(1− cos θ)2)

Hence, we obtain the expression for the shape factor, S1(θ), for heterogeneous nucleation on a mould
wall in three dimensions:

∆Ghet =

(
−4π

3
r3∆GV + 4πr2γSL

)
S1(θ)

S1(θ) =
(2 + cos θ)(1− cos θ)2

4
(88)

The same procedure can be made for heterogeneous nucleation at an interface, where three phases are
present. We consider we have a nucleus of phase c forming at the interface between phases a and b. In this
case, we have two spherical caps matched at the interface, with radii r1 and r2, and contact angles θ and
φ (again, we can use Fig. 39 thinking that the droplet is three dimensional, and it consists of two spherical
caps forming at a planar interface). These four quantities cannot take arbitrary values, since the matching
of the two spherical caps at the interface poses a restriction in the values these quantities can take. As in
the two dimensional case, this restriction has the expression:

r1
r2

=
sinφ

sin θ
(89)

Hence, we can write all expressions in term of only one radius, for instance r1. Similarly to the mould
wall case, the free energy increase has the following expression:

∆Ghet = −VS∆GV + Aacγac + Abcγbc − Aabγab (90)

The interface energies satisfy the same balance equations at triple junctions as in the two dimensional
case: {

γab = γac cos θ + γbc cosφ

γac sin θ = γbc sinφ
(91)

This allows us to determine all interface energies in terms of one of them, for example γab. Then:{
γbc = sin θ

sinφγac

γab = sin (θ+φ)
sinφ γac

(92)

As for the volumes and areas in Eq. 90, we can compute them in the exact same way as in the mould
wall case, taking into consideration that r2 = r1

sin θ
sinφ :

VS = VS,I +VS ,II =

(
2π

3
(1− cos θ)r3

1 −
π

3
sin2 θ cos θr3

1

)
+

(
2π

3
(1− cosφ)r3

1 −
π

3
sin2 φ cosφr3

1

)
sin3 θ

sin3 φ

Aab = π sin2 θr2
1

Aac = 2π(1− cos θ)r2
1
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Abc = 2π(1− cosφ)r2
1

sin2 θ

sin2 φ

The volume of the droplet has two contributions, VS ,I + VS,II , which are the two semispherical caps,
the upper one and the lower one, respectively. The total free energy increase is hence computed as:

∆Ghet = −
(

2π

3
(1− cos θ)r3

1 −
π

3
sin2 θ cos θr3

1 +

(
2π

3
(1− cosφ)

sin3 θ

sin3 φ
r3
1 −

π

3

cosφ

sinφ
sin3 θr3

1

))
∆GV

+2π(1− cos θ)r2
1γac + 2π(1− cosφ)r2

1

sin2 θ

sin2 φ
γbc − π sin2 θr2

1γab

With the same procedure as in the mould wall case we can write this expression only in terms of one
interface energy, γab, and, after grouping terms, in the end we get the final expression for the shape factor,
S2(θ,φ):

∆Ghet =

(
−4π

3
r3
1 ∆GV + 4πr2

1γab

)
S2(θ,φ)

S2(θ,φ) =
(2 + cos θ)(1− cos θ)2

4
+

(2 + cosφ)(1− cosφ) sin3 θ

4(1 + cosφ) sinφ
(93)
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B. Analytical solution to the Cahn-Hilliard equa-
tion

The Cahn-Hilliard equation is PDE which has been widely studied from a mathematical point of view, since
it is a very important equation in physics. Its study is interesting by itself from a mathematical point of
view, and many results have been found regarding the existence and regularity of its solutions [42]. As most
PDEs, it has no analytical solution in the general case. However, in the one dimensional case for binary
mixtures, there is an analytical solution in some cases. In particular, the solution of the equation when
Neumann boundary conditions are considered at both ends has an analytical expression [43]. However, the
derivation of this solution is quite complex, and out of the scope of this thesis. However, we can compute
the solution of the Cahn-Hilliard equation in an infinite domain, which is much easier, and use it as an
approximation of the solution in the finite domain. The validity of this approximation depends on the value
of some parameters.

When considered the spatial coordinate to range from −∞ to +∞, the boundary conditions we must
impose are:

lim
x→−∞

φ(x) = −1 lim
x→+∞

φ(x) = 1 lim
x→±∞

∂φ

∂x
= 0

To obtain the analytical solution, we have to go back to the Beltrami identity (Eq. 31), which states:

A

4
(1− φ2)2 − λ2A

2

∣∣∣∣∂φ∂x
∣∣∣∣2 = 0 (94)

This is actually an ODE (φ only depends on the spatial coordinate, we are considering stationary
solutions) which can be solved analytically. Since we already expect the solution to increase from -1 to 1,
the derivative will always be positive, so the absolute value can be omitted. Also, since φ ∈ (−1, 1), φ2 < 1

and therefore
√

(1− φ2)2 = 1− φ2. If we name α =
√

2
λ , the ODE is:

dφ

dx
=
α

2
(1− φ2)

dφ

1− φ2
=
α

2
dx∫

dφ

1− φ2
= −1

2

∫
dφ

1− φ
+

1

2

∫
dφ

1 + φ
= −1

2
ln |φ− 1|+ 1

2
ln |φ+ 1| =

α

2
x + K

ln
1 + φ

1− φ
= αx + C

1 + φ

1− φ
= e2(α

2
x+C) = Meαx

φ(x) =
Meαx − 1

Meαx + 1

Using Beltrami’s identity, the derivative of the order parameter is:
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dφ

dx
= α

(
1−

(
Meαx − 1

Meαx + 1

)2
)

= α
(1 + Meαx)2 − (1−Meαx)2

(Meαx + 1)2

dφ

dx
(x) =

2αMeαx

1 + 2Meαx + M2e2αx

Observe that we get a family of solutions which satisfy the differential equation. What’s more, all of
them satisfy all the boundary conditions. They only differ in the value of M, which has an effect of shifting
the solution to the right or to the left. That means that the value of M allows us to determine at which
point we want the transition to take place (see Fig. 40). Hence, we can impose an additional condition to
determine the value of M.

Figure 40: Theoretical solution to the Cahn-Hilliard equation on an infinite domain for δ = 0.03 and φ̄ = 0.7.

A remark must be made at this point. We solved the original equation on an infinite domain, imposing
conditions on the function at infinity. Since the differential equation does not have any term in x, given a
solution of the equation, φ(x), φ(x + x0) is also a solution for any x0 ∈ R. That’s why we get a family of
solutions which depend on a parameter, and it can be checked that changing the value of M is equivalent
to a translation along the x axis.

With this said, we are actually not interested in the solution on all R, but only in a finite domain (in
our case it’s (0, 1)). Hence, the solution we found is not the one we were looking for. However, for the
values of δ we use in simulations (bellow 0.05) the solution in the infinite domain satisfies that the value
of the function at both ends of the interval is approximately constant and equal to -1 at x = 0 and 1 at
x = 1. In fact, errors are exponentially small when the interface width is much smaller than the domain
length and the interface is far away from the boundaries. Hence, it is a good approximation of the solution
of the Cahn-Hilliard solution with Neumann boundary conditions.

One of the parameters we fix in simulation is the mean concentration of the component, which is defined
as the integral of φ in x ∈ (0, 1). Hence, if the mean concentration of φ is φ̄, the condition to determine
where the transition takes place, which is equivalent to determining M, is:
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∫ 1

0
φ(x)dx =

[
2 ln (Meαx + 1)

α
− x

]1

0

=
2 ln (Meα + 1)

α
− 1− 2 ln (M + 1)

α
= φ̄

1 + φ̄

2
α = ln

(
Meα + 1

M + 1

)

M =
e

1+φ̄
2
α − 1

eα − e
1+φ̄

2
α

In that way we get the expression of the analytical solution to the Cahn-Hilliard equation in one dimension
in an infinite region, which can be used to compare the validity of the results we get.

87



Nucleation in multicomponent liquid mixtures

References
[1] A. Molliex, J. Temirov, J. Lee, M. Coughlin, A. P. Kanagaraj, H. J. Kim, T. Mittag, J. P. Taylor,

Phase separation by low complexity domains promotes stress granule assembly and drives pathological
fibrillization, Cell 163 (1) (2015) 123–133.

[2] A. A. Hyman, C. A. Weber, F. Jülicher, Liquid-liquid phase separation in biology, Annual review of cell
and developmental biology 30 (2014) 39–58.

[3] J. Berry, C. P. Brangwynne, M. Haataja, Physical principles of intracellular organization via active and
passive phase transitions, Reports on Progress in Physics 81 (4) (2018) 046601.

[4] D. Bracha, M. T. Walls, C. P. Brangwynne, Probing and engineering liquid-phase organelles, Nature
biotechnology 37 (12) (2019) 1435–1445.

[5] J.-M. Choi, A. S. Holehouse, R. V. Pappu, Physical principles underlying the complex biology of
intracellular phase transitions, Annual Review of Biophysics 49 (2020) 107–133.

[6] J. W. Gibbs, Scientific Papers: Thermodynamics, Vol. 1, Dover Publications, 1961.

[7] S. Mao, D. Kuldinow, M. P. Haataja, A. Košmrlj, Phase behavior and morphology of multicomponent
liquid mixtures, Soft Matter 15 (6) (2019) 1297–1311.

[8] S. Mao, M. S. Chakraverti-Wuerthwein, H. Gaudio, A. Košmrlj, Designing the morphology of separated
phases in multicomponent liquid mixtures, Physical Review Letters 125 (21) (2020) 218003.

[9] L. Ratke, P. W. Voorhees, Growth and coarsening: Ostwald ripening in material processing, Springer
Science & Business Media, 2013.

[10] R. S. Davis, Multi-phase field models and microstructural evolution with applications in fuel cell tech-
nology, Ph. D. Thesis (2018).

[11] L. Zhang, W. Ren, A. Samanta, Q. Du, Recent developments in computational modelling of nucleation
in phase transformations, NPJ Computational Materials 2 (1) (2016) 1–9.

[12] R. Backofen, A. Voigt, A phase field crystal study of heterogeneous nucleation–application of the string
method, The European Physical Journal Special Topics 223 (3) (2014) 497–509.

[13] T. Li, P. Zhang, W. Zhang, Numerical study for the nucleation of one-dimensional stochastic cahn-
hilliard dynamics, Communications in Mathematical Sciences 10 (4) (2012) 1105–1132.

[14] T. Philippe, D. Blavette, Minimum free-energy pathway of nucleation, The Journal of chemical physics
135 (13) (2011) 134508.

[15] W. Wu, D. Montiel, J. Guyer, P. Voorhees, J. Warren, D. Wheeler, L. Gránásy, T. Pusztai, O. Heinonen,
Phase field benchmark problems for nucleation, Computational Materials Science 193 (2021) 110371.

[16] T. Li, P. Zhang, W. Zhang, Nucleation rate calculation for the phase transition of diblock copolymers
under stochastic cahn–hilliard dynamics, Multiscale Modeling & Simulation 11 (1) (2013) 385–409.

[17] T. Philippe, Nucleation and interfacial adsorption in ternary systems, The Journal of chemical physics
142 (9) (2015) 094501.

88



[18] N. Moelans, B. Blanpain, P. Wollants, Quantitative analysis of grain boundary properties in a gen-
eralized phase field model for grain growth in anisotropic systems, Physical Review B 78 (2) (2008)
024113.

[19] S. O. Poulsen, P. Voorhees, E. M. Lauridsen, Three-dimensional simulations of microstructural evolution
in polycrystalline dual-phase materials with constant volume fractions, Acta materialia 61 (4) (2013)
1220–1228.

[20] J. R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J. M. Hiller, D. J. Miller, K. Thornton, P. W.
Voorhees, S. B. Adler, S. A. Barnett, Three-dimensional reconstruction of a solid-oxide fuel-cell anode,
Nature materials 5 (7) (2006) 541–544.

[21] G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional potential
surfaces using only first derivatives, The Journal of chemical physics 111 (15) (1999) 7010–7022.

[22] R. Olsen, G. Kroes, G. Henkelman, A. Arnaldsson, H. Jónsson, Comparison of methods for finding
saddle points without knowledge of the final states, The Journal of chemical physics 121 (20) (2004)
9776–9792.

[23] G. Crippen, H. Scheraga, Minimization of polypeptide energy: Xi. the method of gentlest ascent,
Archives of biochemistry and biophysics 144 (2) (1971) 462–466.

[24] W. Gao, J. Leng, X. Zhou, An iterative minimization formulation for saddle point search, SIAM Journal
on Numerical Analysis 53 (4) (2015) 1786–1805.

[25] G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding
minimum energy paths and saddle points, The Journal of chemical physics 113 (22) (2000) 9978–9985.

[26] G. Henkelman, B. P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding
saddle points and minimum energy paths, The Journal of chemical physics 113 (22) (2000) 9901–9904.

[27] E. Weinan, W. Ren, E. Vanden-Eijnden, String method for the study of rare events, Physical Review
B 66 (5) (2002) 052301.

[28] E. Weinan, W. Ren, E. Vanden-Eijnden, et al., Finite temperature string method for the study of rare
events, J. Phys. Chem. B 109 (14) (2005) 6688–6693.

[29] E. Weinan, W. Ren, E. Vanden-Eijnden, Simplified and improved string method for computing the
minimum energy paths in barrier-crossing events, Journal of Chemical Physics 126 (16) (2007) 164103.

[30] S. Bonfanti, W. Kob, Methods to locate saddle points in complex landscapes, The Journal of chemical
physics 147 (20) (2017) 204104.

[31] D. A. Porter, K. E. Easterling, Phase transformations in metals and alloys (revised reprint), CRC press,
2009.
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