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A B S T R A C T

S TAT I S T I C A L N O R M A L I S AT I O N O F N E T W O R K
P R O PA G AT I O N M E T H O D S F O R C O M P U TAT I O N A L

B I O LO GY
sergio picart-armada

The advent of high-throughput technologies and their decreasing cost
have fostered the creation of a rich ecosystem of public database resources
with molecular annotations and experimental data. In an era of afford-
able data acquisition and abundant pre-processing tools, the core challenge
has shifted to improve data interpretation through algorithms and computa-
tional tools. The understanding of normal and disease states is a fundamen-
tal piece for generating novel and valuable biological insights. To that end,
leveraging the current contextual knowledge in the form of annotations and
biological networks can result in a powerful data amplifier and elucidate
novel patterns and hypotheses.

Label propagation and diffusion are the cornerstone of the state of the
art in network mining. They are driven by the guilt by association principle,
which states that two interacting biological entities are prone to share func-
tions and properties. In its simplest form, propagation algorithms predict
the labels of a given node (for instance a gene, protein or metabolite) us-
ing those of its interactors. More elaborated approaches propagate beyond
direct interactors, with robust performance in many areas within computa-
tional biology.

It has been pointed out that the topological structure of biological net-
works can bias propagation algorithms in such a way that best described en-
tities experience a systemmatic advantage. Poorly known entities are there-
fore overlooked and harder to link to experimental findings, which in turn
keeps them barely annotated. Some efforts try to break this circularity by
statistically normalising the topological bias, albeit the properties of the bias
and the real benefit of its removal are yet to be carefully examined.

The present thesis covers two general blocks. First of all, it seeks a proper
characterisation of the bias in diffusion-based algorithms. Statistical nor-
malisations are suggested, implemented and distributed within a scientific
software package. The second block covers the application of such normali-
sation in classical computational biology problems that can be tackled from
the network propagation standpoint. In particular, in biological pathway
analysis for metabolomics data and in target gene prediction for drug devel-
opment.

In the first block, the presence of the bias is confirmed and linked to the
network topology, albeit dependent on which nodes have labels. Some equiv-
alences are proven between diffusion processes with variations on their def-
initions, therefore easing its choice. Closed forms on the first and second
statistical moments of the null distribution of the diffusion scores are pro-
vided, with resemblance to the spectral features of the network. Another
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finding is that the normalisation can be detrimental in certain scenarios, e.g.
if the bias favours nodes with positive labels. An ad-hoc study of the data
and the expected properties of the findings is recommended for an optimal
choice. To that end, this thesis contributes the diffuStats software package
to a public repository. diffuStats eases the computation and benchmark of
several diffusion scores, including normalised and unnormalised ones.

The second block starts with pathway analysis for metabolomics data.
This choice is driven by the relative lack of computational solutions for me-
tabolomics for being a younger discipline. The classical over representation
analysis starts from a list of metabolites of interest, typically derived from
an experimental study, and highlights a list of relevant biological pathways.
Newer tools also use metabolic network data in their layout, but the inter-
pretation still entails a demanding manual ad-hoc effort.

This block focuses on an enhanced interpretability by building and mining
a richer knowledge network. The network connects the metabolites to the bi-
ological pathways through intermediate entities, like reactions and enzymes.
Given the metabolites of interest, a propagation process is run to prioritise a
relevant sub-network, suitable for manual inspection. The statistical normal-
isation is required due to the network design and properties. The usefulness
of this approach is proven not only regarding pathway findings, but also
examining the metabolites and reactions within the suggested sub-networks.
The knowledge network construction and the propagation algorithm are dis-
tributed in the FELLA software package, with six case studies on human and
animal datasets.

The second practical application is the prediction of plausible gene tar-
gets in disease by leveraging biological networks. Besides benchmarking the
effect of the statistical normalisation on label propagation, particular care
is put into obtaining meaningful performance estimates for practical drug
development. Target data is usually known at the protein complex -or even
family- level. Studies that overlook the structure of the protein complex data
report overly optimistic performance estimates. In this thesis, this effect is
corrected in an exhaustive comparison of prioritisation algorithms, networks,
performance metrics and diseases. The results support that the statistical
normalisation has a small but negative impact. In broad terms, even after
correcting for the protein complex bias, network-based algorithms are still
deemed useful and encouraged for drug discovery.



N O R M A L I Z A C I Ó N E S TA D Í S T I C A S O B R E LO S
A LG O R I T M O S D E P R O PA G A C I Ó N E N R E D E S PA R A

B I O LO G Í A C O M P U TA C I O N A L
sergio picart-armada

La aparición de tecnologías experimentales de alto rendimiento ha propi-
ciado la creación de un rico entorno de bases de datos que aglomeran todo
tipo de anotaciones moleculares. Dada la creciente facilidad para la adquisi-
ción de datos en varios niveles moleculares, el reto central de la biología
computacional ha virado hacia la interpretación de dicho volumen de datos.
La comprensión de los procesos de normalidad y enfermedad involucrados
en los cambios observados en los estudios experimentales es el motor que
expande la frontera del conocimiento humano. Para ello, es fundamental
aprovechar la herencia de conocimiento previo, recogido en las bases de
datos en forma de anotaciones y redes biológicas, y minarlo en busca de
nuevos patrones e hipótesis.

Los algoritmos más extendidos para extraer conocimiento de las redes
biológicas son los denominados métodos de propagación y difusión. Su
trasfondo es el principio de culpa por asociación, que postula que las enti-
dades biológicas que mantienen relación o interacción son más propensas a
compartir funciones y propiedades. Dichos algoritmos aprovechan las inter-
acciones conocidas, en formato de red, para predecir propiedades de nodos
(por ejemplo genes, proteínas o metabolitos) usando las propiedades de sus
interactores.

Existe evidencia de que la estructura topológica de las redes sesga los al-
goritmos de propagación, de forma que los nodos mejor descritos gozan de
una ventaja sistemática. Los nodos menos conocidos quedan en desventaja,
se entorpece el descubrimiento de su implicación en los experimentos, a su
vez perpetuando nuestro pobre conocimiento sobre ellos. La literatura ofrece
algunos estudios donde se normaliza dicho efecto, pero las propiedades in-
trínsecas del sesgo y el beneficio real de dicha normalización requiere un
estudio más detallado.

El objeto de esta tesis tiene dos vertientes. Primero, la caracterización
de la estadística del sesgo en los algoritmos de propagación, la concepción
de normalizaciones estadísticas y su distribución como software científico.
Segundo, la aplicación de dicha normalización en problemas clásicos de bi-
ología computacional. Concretamente, en el análisis de vías biológicas para
datos de metabolómica y en la predicción de genes como dianas terapéuticas
en el desarrollo de fármacos. Ambos problemas son abordables mediante
técnicas de propagación y, por lo tanto, potencialmente sensibles al efecto
del sesgo topológico.

En el primer bloque, se corrobora la existencia del sesgo y su dependencia
no sólo de la estructura de la red, sino de los nodos en los que se define la
propagación. Se demuestran equivalencias matemáticas entre ciertas varia-
ciones en la definición de la propagación, facilitando así su elección. Se
proporcionan expresiones cerradas sobre los momentos estadísticos de la
difusión y se halla una conexión con las propiedades espectrales de las re-
des. Un punto importante es que la normalización no siempre ayuda, y su
aplicabilidad dependerá de cada caso particular y de las hipótesis sobre la
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topología de los nodos que deben ser descubiertos. Para ello, esta tesis deja
como resultado diffuStats, un software disponible en un repositorio púlico,
que permite calcular y comparar la propagación con ciertas variantes, y con
presencia o ausencia de normalización.

En el segundo bloque, se escoge el análisis de vías en metabolómica dada
la relativa juventud de los estudios metabolómicos y, por ende, su falta de
herramientas informáticas dedicadas. El análisis de vías clásico parte de una
lista de metabolitos de interés, normalmente procedentes de un estudio, y
reporta una lista de vías o procesos metabólicos estadísticamente relaciona-
dos con ellos. Algunas variantes usan redes de metabolitos para dar más
contexto biológico, pero la interpretación de los datos sigue requiriendo un
extenso esfuerzo manual.

La aportación de esta tesis es la creación de una red de conocimiento que
relaciona los metabolitos con las vías a través de las entidades intermedias
anotadas, como reacciones y enzimas. Sobre dicha red se aplican algorit-
mos de propagación para identificar las entidades más relacionadas con los
metabolitos de interés. La normalización estadística es necesaria, dada la es-
tructura y las características de la red. Se demuestra no sólo la coherencia de
las vías metabólicas propuestas, sino la de los metabolitos y las reacciones
priorizadas. La publicación del software FELLA proporciona la construcción
de la red de conocimiento y el algoritmo de difusión a la comunidad cientí-
fica. FELLA va acompañado de seis casos de aplicación en estudios humanos
y animales.

Por otro lado, se aborda el problema de predicción de genes para dianas
terapéuticas a través de redes biológicas. Además de probar el efecto de
la normalización estadística, se pone énfasis en estimar el desempeño real
esperado en un escenario de desarrollo de fármacos. Los datos de dianas
terapéuticas no se suelen conocer al nivel de proteína sino al de complejo
o familia de proteínas. La mayoría de estudios no lo tiene en cuenta, lle-
gando a estimaciones optimistas sobre el desempeño esperado. En esta tesis
se propone un estudio exhaustivo que corrige el efecto de los complejos
de proteínas, compara algoritmos de propagación con distintas métricas de
rendimiento por su informatividad y explora el rol de la red biológica y de
la enfermedad en cuestión. Se demuestra que la normalización estadística
tiene poco efecto en el desempeño y que, en general, los métodos de propa-
gación siguen siendo útiles en el desarrollo de fármacos después de corregir
las estimaciones optimistas de su rendimiento.
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1 I N T R O D U C T I O N

1.1 omics sciences

1.1.1 Introduction

The Human Genome Project (HGP) (Venter et al., 2001) marked the be-
ginning of large scale biomedical data collection for public research. HGP
was based on an automated protocol for Sanger sequencing (Sanger et al.,
1977), a first generation method based on electrophoretic separation of chain-
termination products. The paradigm of sequencing shifted with the advent
of the second generation methods, or Next-Generation Sequencing (NGS),
a massively parallel sequencing of shorter reads (Voelkerding et al., 2009).
NGS diversified into technologies like Illumina CRT for whole genome se-
quencing, RNA-seq for transcriptome profiling, ChIP-seq for protein-DNA
interaction, ATAC-seq for chromatin accessibility and methyl-seq for methy-
lated DNA regions (Goodwin et al., 2016). The decreasing costs and the
growing amount of measurable genomic features has been a key factor for
the thorough annotation of thousands of organisms.

The high-throughput revolution is not restricted to the study of genomic
data, but also available to other genome-scale data. The term omics sciences
has been coined to refer to such technologies, which study the totality (suf-
fix “-ome”) of their subject (Joyce and Palsson, 2006). Omics technologies
enabled a paradigm shift over traditional studies, typically reductionist and
hypothesis-driven, by acquiring all the data in an agnostic way and gener-
ating hypotheses from its analysis (Horgan and Kenny, 2011). Omics stud-
ies promoted systems biology, the study of complex biological systems as a
whole. Figure 1 illustrates the subject of the main omics sciences, explained
hereafter, within the cell.

The leverage of omics data has promoted the population of specialised
and comprehensive annotation databases, whose ultimate goal is to achieve
a better understanding of biology. Such databases bring the opportunity to
contextualise ongoing experimental studies using known molecular interac-
tions – a key step that serves as a quality control and helps formulating new
testable hypotheses (Gomez-Cabrero et al., 2014).

1.1.2 Genomics

Genomics is a mature discipline that studies genome sequences and the
information encoded within them (Joyce and Palsson, 2006). The genome
is defined as the total DNA of a cell or organism. Genotyping technologies
enabled Genome Wide Association Studies (GWAS), a mainstream genomics
analysis that seeks polymorphisms (variations in specific sites in the DNA)
associated with the phenotype of interest. GWAS have contributed in our
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2 introduction
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Figure 1: Overview of omics sciences. Genomics, trancriptomics, proteomics and
metabolomics are the main omics sciences, whose measurements range
from genotypic to phenotypic data. Figure adapted from ‘Figure 1’ in
(Joyce and Palsson, 2006).

understanding of numerous complex traits through their findings (McCarthy
et al., 2008). Currently, whole genome and whole exome (protein-coding
regions) sequencing are improving our ability to discover genetic variants in
human populations (Petersen et al., 2017).

1.1.3 Transcriptomics

Transcriptomics measures the presence and abundance of RNA transcripts
(Joyce and Palsson, 2006). The total amount of messenger RNA in a cell or
organism is called transcriptome. The assessment of differential gene expres-
sion was pioneering in the study of disease in the late 1990s and has gener-
ated a remarkable amount of biological knowledge. RNA-seq is a standard
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technology to measure gene expression (Wang et al., 2009) and disposes of
a rich array of tools to analyse its data. Despite being a valuable source of
information, differences in transcript abundances do not necessarily imply
the same changes at the protein level (Joyce and Palsson, 2006), meaning that
transcriptomics alone is unable to explain the whole cellular state.

1.1.4 Proteomics

Proteomics focuses in identifing and quantifying the proteins within cells
and tissues (Joyce and Palsson, 2006). The proteome is the set of all the ex-
pressed proteins in a cell or organism. Proteins orchestrate the metabolism,
albeit their activity is in turn affected by the metabolic state of the cells. The
proteome is a dynamic reflection of the combination of genetic and environ-
mental factors and is considered an excellent source of disease biomarkers
(Horgan and Kenny, 2011). Likewise, interaction events between proteins
have been thoroughly studied and proven to be useful for applying network-
based algorithms (Cowen et al., 2017).

1.1.5 Metabolomics

Metabolomics is the study of metabolites, the lightweight molecules that
can be found within living organisms. The collection of metabolites found
within cells or organisms is called the metabolome, also including those com-
ing from the environment. Metabolite measurements are, in fact, quantita-
tive phenotypes that give a snapshot of the functional readout of the cells
(Joyce and Palsson, 2006). This is particularly appealing since it displays
the actual effect of genomic or transcriptomic events. Compared with tran-
scriptomics and proteomics, metabolomics data poses further statistical chal-
lenges due to its technical limitations (Joyce and Palsson, 2006), its physical
and chemical complexity (Horgan and Kenny, 2011) and the unknown ex-
tent of the human metabolome (Wishart et al., 2012).

1.1.6 Other omics

Besides genomics, transcriptomics, proteomics and metabolomics, other
omics sciences are emerging in terms of experimental techniques, public
data and computational tools (Joyce and Palsson, 2006). Metagenomics is the
analysis of genetic material from environmental samples, typically involving
microbial communities. Epigenomics measures epigenetic events on the ge-
netic material of cells, such as histone modification, DNA methylation and
chromatin accessibility assays. The study of microRNA data is sometimes
referred to as miRNomics. Lipidomics denotes the study of lipids, whereas
glycomics revolves around carbohydrates and glycans. This list is not exhaus-
tive but illustrative on the richness of current data acquisition and generation
capabilities.
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1.2 data interpretation

Leveraging omics data has provided key biological insights about normal
and disease states, novel drug targets, drug response, biomarkers and pre-
dictive models for diagnosis and prognosis (Horgan and Kenny, 2011). The
volume of high-throughput data generated in omics sciences has yielded
high dimensional data that requires careful statistical treatment (Horgan
and Kenny, 2011) and is challenging to interpret and understand (Joyce and
Palsson, 2006). This issue first appeared with the advent of microarrays: a
formal approach was needed to contextualise experimental results, usually
extensive lists of differentially expressed genes.

The solution was named functional analysis and relied on classical statis-
tical tests to assess if any known molecular function appeared more than
expected within the gene list. Grouping genes that functioned in the same
biological processes and finding dysregulated processes reduced the com-
plexity of the data while providing richer mechanistical insights (Khatri et
al., 2012). This is still a simple yet powerful approach, usually referred as
over representation analysis, allowing the test of virtually any known annota-
tion type. It plays a prominent role in translating differentially abundant
genes, proteins or other molecular entities stemming from high-throughput
technologies into biological knowledge (Mitrea et al., 2013), as illustrated in
figure 2.

(B) Data interpretation

(A) Experimental data

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

WT1

KO1

WT2

WT3

KO2

KO3

Technical platform Preprocessed data Differential abundance

F1: G1, G2, G3, G4, G10

F2: G4, G5, G6

F3: G1, G7, G8, G9, G10
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G3***
G4**
G5

G6
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G3
G4
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Figure 2: Examplary omics data analysis. This small example illustrates a hypo-
thetical transcriptomics workflow in a case-control experiment. (A) Mea-
surement of gene expression and discovery of differentially expressed
genes between wild type (WT) and knockout (KO) experimental groups.
(B) Discovery of highly occurring functions among the differentially ex-
pressed genes.
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Data interpretation approaches have been extended to work on quanti-
tative data and leverage biological network databases (Khatri et al., 2012),
but the interpretability of their outputs is still an area of active research.
The integration of different omics, which provide complementary views of
a common reality, is a promising approach to attain a holistic picture of the
molecular processes underlying disease (Ge et al., 2003).
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2 S TAT E O F T H E A R T

This chapter covers the concept of annotation databases, biological net-
works and propagation algorithms on them. Figure 3 pictures how contex-
tual data, in network format, enriches experimental data by enabling pre-
dictions on a variety of domains. It also points out the logical order of the
sections, whose topics are biological networks (data origin, definition and
construction), propagation algorithms (graph theory definitions, the guilt-
by-association principle, algorithm formulations) and two case studies (path-
way analysis and disease gene prediction).

Experimental dataNetwork propagation

Novel predictions

1. Network representation

Network data

2. Network-based algorithms

3. Applications

Figure 3: Overview of network propagation. Conceptual map of how network
propagation takes advantage of network data to bring new insights from
experimental data. The sections cover (1) the construction of biological
networks from public data, (2) the definition and uses of network prop-
agation algorithms and (3) two domains for the application of network
propagation.

2.1 network representations in biology

Network data is a central concept in computational biology, both as a way
to represent current knowledge and a corpus that enables new predictions.
A proper knowledge representation is essential to provide sensible predic-
tions through network propagation algorithms. Figure 4 displays these ideas,
covered in this section. The logical order of the sections is as follows: sec-
tion 2.1.1 introduces large projects that contribute abundant data to the pub-
lic domain, section 2.1.2 covers specialised databases that annotate specific
molecular levels, and both typically act as building blocks for network and

9
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pathway databases (sections 2.1.3 and 2.1.4). Network-based algorithms can
be applied to network data and to pathway annotations, provided that the
latter are represented as networks.

Growing public data

Network DBs

Biological networks

Specialised DBs Comprehensive DBs

Novel predictions

Figure 4: Overview of network representations. Conceptual map of public data is
shaped into different types of database (DB), which in turn can be used
to build biological networks. Network-based algorithms can be applied
to biological networks to generate new knowledge.

2.1.1 Database resources

National and international consortia regularly foster large scale studies,
which aim to translate large sample sizes into meaningful knowledge. This
section contains a list of varied initiatives, to highlight the outstanding value
of large scale data recollection.

One prominent example is the Encode project (ENCODE Project Consor-
tium and others, 2012), aimed at annotating all the regions of the human
genome throught the intregration of thousands of datasets. Likewise, the
1000 Genomes project (1000 Genomes Project Consortium and others, 2015)
reconstructed 2, 504 genomes from 26 populations in order to generate a
high-quality reference panel of human genetic variation, annotating over 88
million variants. Another reference panel is provided by the UK10K project
(UK10K consortium and others, 2015). Owing to the recording of several
phenotypes, they further assess the contribution of genomic variation to a
set of traits and causal mutations for disease. In the topic of mental disor-
ders, the iPSYCH cohort (C. B. Pedersen et al., 2018) aims at finding novel
genetic and environmental factors of conditions like schizophrenia, autism,
attention-deficit/hyperactivity disorder or bipolar disorder. iPSYCH dis-
poses of a Danish population-wide registry, granting an important statistical
advantage.

The Genotype-Tissue Expression (GTEx) project (Lonsdale et al., 2013) is
a systematic study on the effect of genetic variations on gene expression in
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human tissues. Post-mortem samples were collected and analysed using ge-
nomics (whole genome sequencing) and transcriptomics (RNA sequencing).
Scanned images and clinical data are also available. The incipient Human
Cell Atlas (Regev et al., 2017) will explore cell types exhaustively with sin-
gle cell technologies. Regarding oncology, The Cancer Genome Atlas (Tom-
czak et al., 2015) is a landmark cancer genomics program that characterised
primary cancer and matched normal samples from 11, 000 patients and 33
cancer types1. Genomic, epigenomic, transcriptomic, proteomic and clini-
cal data was leveraged to publish marker manuscripts for each cancer type2

and to elucidate key commonalities and differences across cancer types and
tissues (Hoadley et al., 2014). The Connectivity Map, or CMap (Subrama-
nian, Narayan, et al., 2017), aims at understanding cellular function by a
large scale experiment on human cell lines with an array of perturbagens.
Gene expression was quantified through L1000, a novel cost-effective pro-
filing method that directly measures 978 landmark genes and accurately
imputes 9, 196 genes out of the 11, 350 remaining transcripts. A total of
1, 319, 138 L1000 profiles are available and consolidated into 473, 647 signa-
tures that involve up to 77 cell lines.

Along with data from large initiatives, the number of scientific articles
grows steadily too. Open science policies and protocols are gaining traction
and encouraging data deposition on public online repositories with common
protocols, such as Gene Expression Omnibus, or GEO (Clough and Barrett,
2016) and MetaboLights (Kale et al., 2016). Likewise, platforms like GitHub3,
Zenodo4 and figshare5 facilitate the storage of computer code and data.

Combining the increasing data and knowledge availability, there has been
a need of annotation resources that centralise, format and curate data from
the public domain. Two examples are the GWAS catalog (MacArthur et al.,
2016) for genetic associations and the Expression Atlas (Papatheodorou et al.,
2017) for transcriptomics studies. These efforts ease large-scale analyses and
meta-studies, which leverage large sample sizes to unravel novel biological
insights.

2.1.2 Specialised databases

A plethora of databases are publicly available, essentially at any molecular
level ranging from genomic to phenotypic data. Table 1 displays a selection
of such resources, some of which were already mentioned in section 2.1.1.
Those cover, in order: genes, proteins, metabolites, compounds and pheno-
types.

The Gene Ontology, or GO (G. O. Consortium, 2016) terms are a common
choice to annotate gene function in three aspects: molecular function, cellu-
lar component and biological process. GO terms conform a hierarchy with

1 https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/

tcga/history. Accessed on 31/12/2019.
2 https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/

tcga/publications. Accessed on 31/12/2019.
3 https://github.com/. Accessed on 26/1/2020.
4 https://zenodo.org/. Accessed on 26/1/2020.
5 https://figshare.com/. Accessed on 26/1/2020.

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/history
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/history
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/publications
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/publications
https://github.com/
https://zenodo.org/
https://figshare.com/
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Table 1: Selection of public databases covering a variety of biological data types.
Their order ranges from genome-centered to phenotypic resources.

Resource name Main subject Reference
Ensembl Genomes (Zerbino et al., 2017)
GWAS catalog Polymorphisms (MacArthur et al., 2016)
Open Targets Genetics and drugs (Koscielny et al., 2016)
Gene Ontology Gene products (G. O. Consortium, 2016)
miRBase MicroRNA (Kozomara et al., 2018)
Expression Atlas Gene expression studies (Papatheodorou et al., 2017)
UniProt Proteins (U. Consortium, 2018)
Pfam Protein families (El-Gebali et al., 2018)
Brenda Enzymes (Jeske et al., 2018)
Human Metabolome Database Metabolites (Wishart, Feunang, Marcu, et al., 2017)
MetaboLights Metabolomics studies (Kale et al., 2016)
ChEMBL Compounds (Mendez et al., 2019)
DrugBank Compounds (Wishart, Feunang, An C Guo, et al., 2017)
Human Phenotype Ontology Phenotypes (Köhler et al., 2018)
Online Mendelian Inheritance in Man Genetic phenotypes (Amberger et al., 2018)

varying degrees of granularity (see figure 5). GO annotations involve a gene
and a GO term. By the end of 2016, around 600, 000 annotations derived
from experimental evidence in 140, 000 published articles, whereas 6 million
stemmed from phylogenetic or computational inference (G. O. Consortium,
2016). Anontations for microRNA sequences are distributed in miRBase (Ko-
zomara et al., 2018) and mapped to GO terms. miRBase v22 documents 271
organisms with 38, 589 hairpin precursors and 48, 860 mature microRNAs
(from which 500 link to 5, 000 GO terms).

Genetic associations can also be found at the genomic and transcriptomic
level. For these purposes, the GWAS catalog (MacArthur et al., 2016) and
the Expression Atlas (Papatheodorou et al., 2017) aggregate and curate pub-
lic studies. The GWAS catalog encompassed 24, 218 associations from 2, 518
publications as for September 1st, 2016. The Expression Atlas contained
3, 126 studies across 33 organisms by August 2017. The Open Targets plat-
form (Koscielny et al., 2016), on the other hand, commits to the association
between drug targets and diseases. The association strength is determined
by combining several data sources, including GWAS catalog and Expression
Atlas.

Protein data is annotated in resources like Uniprot (U. Consortium, 2018),
with over 120million proteins by 2018, and Pfam (El-Gebali et al., 2018), with
data on 17, 929 protein families in its release 32.0. More specifically, enzymes
have dedicated databases, like the Brenda database (Jeske et al., 2018).

Metabolic signatures and reactions can be found in the Human Metab-
olome Database (Wishart, Feunang, Marcu, et al., 2017). Its metabolites
are divided in four categories in release 4.0, in decreasing confidence: de-
tected and quantified (18, 557), detected but not quantified (3, 271), expected
metabolites (82, 274) that have a known role and structure but await a formal
identification, and predicted in silico (9, 548).

For drug development, resources like ChEMBL (Mendez et al., 2019) and
DrugBank (Wishart, Feunang, An C Guo, et al., 2017) gather activity data
for small molecules. ChEMBL nourishes from Medicinal Chemistry jour-
nals and from clinical development and drug approval data. More than 15
million bioactivity measures for 1.8 million compounds on 3, 600 organisms
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Figure 5: Gene ontology hierarchy. The GO term nucleic acid metabolic process
(GO:0090304), inside a shaded frame, and all its parent terms. Terms
deeper within the hierarchy refer to more specific annotations. The root
term indicates that our GO term belongs to the biological process ontol-
ogy (GO:0008150). Modified from a vector graphic file downloaded from
http://amigo.geneontology.org by 7/3/2019.

have been extracted from over 67, 000 publications and patents in ChEMBL
release 24. Records feature 5, 354 compounds that reached at least phase
I clinical trials and 2, 715 approved drugs. DrugBank 5.0 contains 2, 358
approved drugs, 4, 501 investigational drugs in phases I-II-III and 365, 984
drug-drug interactions from 27, 572 publications. Annotations include 4, 563
drug targets (proteins, RNA, DNA and other molecules) and how their levels
are modified by hundreds of drugs.

Phenotypic data is readily available as well. The Human Phenotype On-
tology (Köhler et al., 2018) has created a standardised vocabulary to build
computable definitions of over 7, 000 diseases as September 2018. The On-
line Mendelian Inheritance in Man (Amberger et al., 2018) is an alternative in
the field of medical genetics gathering over 24, 600 entries, with a morbidity
map linking 6, 259 molecular phenotypes to 3, 961 genes as September 2018.

http://amigo.geneontology.org
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2.1.3 Network databases

Annotations can often be regarded as connections between molecular en-
tities. A natural way to understand them is as parts of a biological network,
with the advantage of enabling automatic data mining through network-
based algorithms (Carter et al., 2013). Network data is available for the
majority of omics; table 2 provides a brief overview on several resources and
their network type. The logical order of the networks in this section ranges
from genotype to phenotype (genetics, gene regulatory events, gene expres-
sion, protein interactions, drugs and metabolism), although some integrative
resources would fit in several categories. This classification is orientative and
flexible, as many databases in table 1 can be understood from the network
standpoint.

Table 2: Main network resources covering genetic, protein and metabolic data.

Resource name Network connections Main source Reference
GIANT Gene-gene regulation and interaction Integrative (Greene et al., 2015)
GTEx Gene-gene co-expression GTEx data (Pierson et al., 2015)
HumanNet Gene-gene relationships Integrative (Hwang et al., 2018)
DisGeNET Gene/variant-disease associations Integrative (Piñero et al., 2016)
HMDD MicroRNA-disease associations Literature (Z. Huang et al., 2018)
TRRUST Transcription factor-target regulation Literature (H. Han et al., 2017)
BioGRID Protein/drug-protein interactions Literature (Chatr-Aryamontri et al., 2017)
STRING Protein-protein interaction Integrative (Szklarczyk, Gable, et al., 2018)
HIPPIE Protein-protein interactions Integrative (Alanis-Lobato et al., 2016)
OmniPath Protein-protein interactions Integrative (Türei et al., 2016)
STITCH Protein-chemical interaction Integrative (Szklarczyk, Santos, et al., 2015)
CMap Gene-drug-disease associations L1000 data (Subramanian, Narayan, et al., 2017)
Recon Metabolite-reaction models Integrative (Swainston et al., 2016)

On the genetic scope, the GIANT project (Greene et al., 2015) provides a
genome-scale integration of more than 61, 400 experiments in 24, 930 publi-
cations in its 2.0 release. Data from 283 tissues and cell types is acccessible
for queries, visualisation and complementing quantitative genetics data. The
added value of abundant tissue granularity is the potential of revealing finer,
tissue-specific mechanisms though data mining algorithms.

As for transcriptomics, the RNA sequencing data collected in the GTEx
project (Lonsdale et al., 2013) has enabled the inference of tissue-specific
gene co-expression networks (Pierson et al., 2015) from the pilot data. Using
a hierarchical algorithm for sharing data between related tissues, a total of
35 tissues have been released and analysed with regard to the topological
properties of transcription factors and tissue-specific functional genes.

HumanNet (Hwang et al., 2018) provides a hierarchy of human disease
networks with functional associations between human genes. Those are ob-
tained through a Bayesian integration of varied omics data and resources:
protein-protein interactions, co-citation, co-occurrence of protein domains,
co-expression of genes, genomic context associations and interactions of
evolutionary conserved proteins in model organisms. The fully extended
HumanNet v2 hierarchy, HumanNet-XN, encompasses 17, 929 genes and
525, 537 links between them.

DisGeNET (Piñero et al., 2016), on the other hand, specialises on genotype-
phenotype annotation. Several human, animal and chemical resources are
fused in order to link genes to a controlled disease vocabulary and ontol-



2.1 network representations in biology 15

ogy. Specifically, DisGeNET 4.0 connects 17, 381 genes to 15, 093 diseases
in the form of 429, 036 gene-disease associations, stemming from more than
289, 000 scientific publications.

Driven by the growing evidence that microRNA elements carry regulatory
roles in disease states, the HMDD database (Z. Huang et al., 2018) manually
curates and incorporates microRNA-disease associations from the literature.
HMDD v3.0 contains 32, 281 microRNA-disease annotations supported by
experimental evidence in 17, 412 articles, involving 1, 102 microRNAs and
850 diseases.

A complementary transcriptional regulation data source derives from the
study of transcription factors. The TRRUST reference database (H. Han et
al., 2017) aggregates connections of the form transcription factor-target, man-
ually curated after an initial filtering by sentence-based text mining on the
MEDLINEr database6 abstracts. TRRUST v2 includes 8, 444 regulatory in-
teractions from 800 transcription factors in humans; respectively, 6, 552 and
828 in mouse.

Several resources annotate protein interactions, either directly curating
the literature or integrating primary sources offering all sorts of protein and
gene-level annotations. BioGRID (Chatr-Aryamontri et al., 2017) is an ex-
ample of the former: after a text mining step, expert curators extract ge-
netic and protein interactions from peer-reviewed journals. BioGRID 3.4.140
(September 2016) gathers 470, 810 protein interactions and 373, 762 genetic
interactions, both non-redundant, from 47, 223 publications on 66 organisms.
BioGRID is also populated with 38, 559 connections from proteins to post-
translational modification sites, and with 27, 034 protein-chemical interac-
tions from DrugBank (Wishart, Feunang, An C Guo, et al., 2017).

In contrast, STRING (Szklarczyk, Gable, et al., 2018) is a widely adopted
protein-protein interaction resource that aggregates other resources, in the
form of evidence codes, to provide a confidence about the veracity of the
interactions. Figure 6 contains 10 interactors of the exonuclease EXD2 and
illustrates some data channels: co-expression, text-mining, biochemical/ge-
netic experimental data, previously curated pathway and protein-complex
knowledge. Consequently, STRING attains a high coverage, currently of
about 24.6 million proteins from 5, 090 organisms in its version 11.0, and has
held a robust performance in a recent benchmark (J. K. Huang et al., 2018).

HIPPIE (Alanis-Lobato et al., 2016), an integrated protein-protein inter-
action resource, focuses on building a thorough, context-rich and reliable
representation of the human interactome. Gene Ontology terms (G. O. Con-
sortium, 2016) are used to provide biological process and cellular component
annotations. Tissue-specific networks are obtained by leveraing gene expres-
sion data from the GTEx project (Lonsdale et al., 2013), by dropping the
genes that lack expression in the tissue of interest. HIPPIE v2.0 (June 2016)
includes approximately 273, 900 experimental interactions -42, 600 of high
confidence- among 17, 000 proteins.

Similarly, OmniPath (Türei et al., 2016) is an integrated network database
for human protein interactions, nourishing from 27 sources. OmniPath is
stringent, seeking causal mechanisms by only including high-confidence sig-

6 See MEDLINE/PubMed data in https://www.nlm.nih.gov/databases/download/pubmed_

medline.html. Accessed 17/11/2019.

https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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Figure 6: Small interactome from the STRING database. Each node represents
a protein, with a thumbnail of its three-dimensional structure. Edges
indicate associations through text mining (yellow), co-expression (black),
curated databases (cyan) and experiments (magenta), with a confidence
of at least 0.4 out of 1. Modified from a vector graphic file downloaded
from https://string-db.org by 21/2/2019.

nalling interactions. OmniPath encompassed 7, 984 proteins and 36, 557 in-
teractions from 41, 237 references by November 2016

7.
The interactions between proteins and small chemicals is of outstanding

interest for drug development. STITCH (Szklarczyk, Santos, et al., 2015)
is a vast integrative resource for protein-chemical interactions. STITCH 5

involves around 9, 600, 000 proteins from 2, 031 eukaryotic and prokaryotic
organisms (shares the protein space with STRING v10) and 430, 000 chemi-
cals. More specifically, there are 4, 740 high-confidence interactions between
human proteins and chemicals.

The role of small molecules is also investigated at the gene expression level
in CMap (Subramanian, Narayan, et al., 2017), already mentioned in section
2.1.1. Human cell lines are challenged with 19, 811 compounds, 18, 493 short
hairpin RNAs, 3, 462 complementary DNAs and 314 biologics. Novel mech-
anisms of action for small molecules can be elucidated by seeking similar or
opposing gene expression signatures from perturbagens with known mech-
anisms. The CMap infrastructure can therefore be used to connect genes,
drugs and diseases within or across cell lines throught their gene expression
patterns.

Closing this list, the metabolome has also been the subject of network
databases. Recon (Swainston et al., 2016) is a consensus global reconstruc-

7 http://archive.omnipathdb.org/README.txt. Accessed 17/11/2019.

https://string-db.org
http://archive.omnipathdb.org/README.txt
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tion of the human metabolism, intended to improve its computational mod-
eling. Four metabolic resources are combined, obtaining 7, 440 reactions that
involve 5, 063 metabolites. Furthermore, 65 cell type-specific models are pro-
vided through the intregration of protein expression data.

The vast number of resources, with varying scopes, data sources, cura-
tion and contextual information, poses a fundamental question of choice
before applying the network-based algorithms described in section 2.2. A
systematic benchmark of biological networks for the discovery of disease
genes concludes that integrated networks such as GIANT and STRING are
the best performers, and that the effects of broading the coverage outweight
the extra false positive interactions (J. K. Huang et al., 2018). Another effort
to address the resource heterogeneity is NDEx (Pratt et al., 2015), an online
commons to centralise and publicly distribute molecular networks under a
common programmatic interface.

Despite their successful application in computational biology, molecular
networks come with limitations. Ascertainment bias is a major issue: the
best studied genes and proteins are best represented in current networks,
affecting any downstream network-based algorithm (Carter et al., 2013; W.
Zhang et al., 2017). Molecular networks are generally incomplete (W. Zhang
et al., 2017), in part due to biases in the experimental technologies (Carter
et al., 2013). Contextual data -like protein isoforms, protein structural varia-
tions and cell populations- is still scarce, but necessary to understand disease
mechanisms (W. Zhang et al., 2017).

2.1.4 Comprehensive databases

Comprehensive databases aim to annotate biological mechanisms in an
exhaustive manner and understand biology at the systems level. Their linch-
pin is the concept of biological pathway, a delimited biological process typ-
ically involving proteins, reactions, metabolites, enzymes or genes (Bader
et al., 2006). Biological pathways are human abstractions to describe and
understand biological phenomena and stand as a central resource in compu-
tational biology (Wishart, Carin Li, et al., 2019). Linking experimental data to
affected pathways is an essential part of the genomics, transcriptomics, pro-
teomics (Khatri et al., 2012) and metabolomics (Chagoyen and Pazos, 2012)
workflows.

Pathways can be understood as:

• Gene sets, i.e. lists of genes with a common function or association.
Also applies to entities like proteins or metabolites.

• Network data, if the interactions between the molecular entities are
available, possibly with directionality and metadata.

Conversely, not every biological network can be understood as a pathway.

• Pathways describe our mechanistic understanding of interaction and
regulatory events.

• Certain networks contain observational data without any knowledge
of the underlying biology. Gene co-expression networks are an ex-
ample where connections (pairs of genes whose expression is highly
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correlated) do not necessarily imply physical interaction or genetic reg-
ulation.

Table 3 displays a selection of pathway databases, further elaborated in
this section and arranged according to their principal subject: genetic events,
metabolism, signalling, disease and integrative.

Table 3: Selection of public pathway resources, sorted by their main focus: genetic,
metabolic, general or integrative.

Resource name Main subject Reference
PANTHER Genetics (Mi et al., 2018)
SMPDB Metabolic (Jewison et al., 2013)
LIPID MAPS Metabolic, lipids (V. B. O’Donnell et al., 2019)
SwissLipids Metabolic, lipids (Aimo et al., 2015)
MetaCyc signalling, metabolic (Caspi et al., 2019)
KEGG signalling, metabolic, disease (Kanehisa et al., 2016)
Reactome signalling, metabolic, disease (Fabregat et al., 2017)
WikiPathways signalling, metabolic, disease (Slenter et al., 2017)
PathBank signalling, metabolic, disease (Wishart, Carin Li, et al., 2019)
Pathway Commons Integrative: pathways, interactions (Rodchenkov et al., 2019)
ConsensusPathDB Integrative: pathways, interactions (Herwig et al., 2016)
BioModels Integrative: models (Malik-Sheriff et al., 2019)

The PANTHER database (Protein ANalysis THrough Evolutionary Rela-
tionships) (Mi et al., 2018) provides evolutionary and functional annotations
for genes in over 900 genomes. Besides nourishing from Gene Ontology
(G. O. Consortium, 2016), PANTHER contains a collection of 177 pathways
with 3, 092 pathway components, 53, 548 associated sequences and capturing
6, 000 references (PANTHER™ Pathway 3.6.3, released December 2019).

Conversely, the SMPDB (Small Molecule Pathway Database) (Jewison et
al., 2013) focuses in human pathways, for which small molecules play a
central role. Its 2.0 version includes the following pathway types: metabolic
(92), disease (221), drug action (232), drug metabolism (53), physiological
action (5) and small molecule signalling (15). In most of them, the cellular
location, tissue or organ where reactions take place are available.

Lipids encompass a fundamental part of the metabolism and contribute to
its understanding, but the technical limitations hinder their characterisation
(V. B. O’Donnell et al., 2019). The LIPID MAPS (Lipid Metabolites and Path-
ways Strategy) initiative (V. B. O’Donnell et al., 2019) categorised over 30, 000
lipids from several organisms (Hartler, 2015) and contributed with 10 path-
ways, including the metabolism of cholesterol, eicosanoids, glycerolipids,
omega fatty acids and sphingolipids8. Alternatively, SwissLipids (Aimo et
al., 2015) features an in silico library of 244, 155 feasible lipid structures, more
than 2, 000 curated enzymatic reactions linking to over 800 proteins and
involving glycerophospholipids, glycerolipids, sphingolipids, sterols, fatty
acids, fatty alcohols and wax esters (Aimo et al., 2015).

Certain pathway databases aim at a broader understanding of biological
pathways, usually within multiple organisms, in the context of metabolism,
signalling events, genetic regulation and disease states. They also rely on

8 http://www.lipidmaps.org/resources/pathways/index.php. Accessed 18/12/2019.

http://www.lipidmaps.org/resources/pathways/index.php
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and link to multiple specialised databases for entities like sequences, pro-
teins, enzymes, metabolites, lipids, drugs and diseases. MetaCyc (Caspi et
al., 2019), the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kane-
hisa et al., 2016), Reactome (Fabregat et al., 2017) and WikiPathways (Slenter
et al., 2017) are widespread public resources for this purpose. Commercial
options include Ingenuity Pathway Analysis9 and MetaCore10 but are out of
the scope of this thesis.

MetaCyc offers over 2, 570 pathways based on experimental evidence from
more than 54, 000 publications, and involving 14, 003 compounds and 15, 691
reactions in version 21.1 (Caspi et al., 2019). Although MetaCyc mainly
covers small molecule metabolism, the amount of data on macromolecu-
lar mecanism is increasing. Specifically, 35 species are annotated with 20
or more pathways (294 in Homo sapiens). By August 2017, almost 11, 000
organism-specific semi-automatic metabolic networks were described in path-
way/genome databases.

KEGG also offers curated organismal pathways, ranging from metabolic
to signalling processes. KEGG contains the following database categories:
systems information for pathway data, genomic information, chemical infor-
mation for metabolites, KEGG LIGAND for reactions and enzymes, health
information for diseases and KEGG MEDICUS for drugs (Kanehisa et al.,
2016). As of October 2016, KEGG encompassed 496 manually drawn path-
way reference maps. One example can be found in figure 7: the photosynthesis
KEGG pathway, depicting its enzymatic reactions, metabolites and related
pathways.

Reactome is a knowledge representation that describes human signal trans-
duction, transport, DNA replication, metabolism in a single, consistent data
structure (Fabregat et al., 2017). Reactome version 62 covers 10, 719 genes,
24, 704 protein forms (including post-translational modifications and cellular
localisations), 1, 768 metabolites and 11, 302 reactions drawn from 27, 526 sci-
entific articles. 2, 012 human pathways are divided into 26 superpathways
that represent broad biological domains. Disease annotations are present
in the form of 906 disease-specific reactions, annotated from 1, 334 mutated
variants in 285 gene products.

Wikipathways, on the other hand, is based on a crowdsourcing paradigm
to annotate biological pathway data (Slenter et al., 2017). WikiPathways
focuses on 25 reference species, annotating 2, 614 pathways that were con-
tributed by 634 individuals by September 2017. These involve 11, 532 genes
(7, 982 related to metabolic processes) and 3, 133metabolites, with an increas-
ing effort to improve the coverage of the latter.

PathBank (Wishart, Carin Li, et al., 2019) is a recent effort on 10 model
organisms to provide a pathway for every protein and a map for every
metabolite. Over 110, 000 pathways containing 78, 488 compounds (includ-
ing metabolites and drugs), 8, 993 proteins and 176, 535 reactions/interac-
tions are available for metabolism, signalling, disease, drugs and physiol-
ogy. Their metadata provide subcellular locations, cofactors and protein
quaternary structures. PathBank aims at improving the coverage of lipid syn-

9 https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/.
Accessed 26/01/2020.

10 https://portal.genego.com/. Accessed 26/01/2020.

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
https://portal.genego.com/
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thesis, metabolite signalling, small molecule hormone signalling and small
molecule drug action in KEGG and MetaCyc, while keeping the coverage of
protein and cellular signalling from Reactome and Wikipathways.

Integrative efforts have emerged to ease searching, downloading, query-
ing, browsing and analysing a collection of varied pathway databases. Path-
way Commons (Rodchenkov et al., 2019) aggregates 22 public databases (in-
cluding PANTHER, KEGG, Reactome and WikiPathways) into 4, 794 human
pathways (18, 490 genes and 11, 437 metabolites) and 2.3 milion interactions
by February 2019. Likewise, ConsensusPathDB (Herwig et al., 2016) inte-
grates 32 databases for human, 15 for mouse and 14 for yeast. In humans,
158, 523 physical entities are annotated with 458, 570 interactions and con-
form 4, 593 pathway gene sets. ConsensusPathDB further allows tasks such
as pathway analysis, heterogeneous network inference and module analy-
sis, starting from genome-wide data or priority lists of genes, proteins or
metabolites. BioModels (Malik-Sheriff et al., 2019) is based on a systems
biology approach, storing about 2, 000 mathematical models from the liter-
ature. Such models can predict the states of biological systems, ease the
elaboration of novel hypotheses and improve our mechanistic understand-
ing. Models on cell signalling, metabolic pathways and gene regulation are
also contextualised with cross-references to standard data resources using
machine-friendly controlled vocabularies.

Figure 7: The photosynthesis KEGG pathway (identifier: map00195). Metabo-
lites are represented by circles, reactions by arrows and their enzymes
by superposed rectangles. Other neighbouring pathways are visible,
like Carbon fixation in photosynthetic organisms. Note how also gene/pro-
tein names for ortholog groups are provided. Image downloaded from
https://www.genome.jp by 9/1/2019.

Despite is usefulness, leveraging biological pathway data suffers from lim-
itations. Pathways are under continuous construction and considered to

https://www.genome.jp
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be highly incomplete (Ogris et al., 2016), limiting the statistical power of
pathway-based approaches. Maintaining pathway databases is demanding,
leading to an inability to keep up with the growing liteature or even to
discontinuation (Rodchenkov et al., 2019). Another common critique arises
from the fact that manual curation results in artificial borders between bi-
ological pathways. Consequently, notable differences exist between major
pathway databases, in terms of focus, coverage, granularity and pathway def-
inition (Domingo-Fernández et al., 2018), implying that the database choice
has a considerable impact in any downstream analysis. In this context, the
emergence of integrative resources provide a proxy to alleviate database-
related biases in data mining. However, the degree of overlap, complemen-
tarity, pathway cross-talk and even disagreement needs careful investiga-
tion (Domingo-Fernandez et al., 2019). The PathMe platform (Domingo-
Fernandez et al., 2019) is a pioneering effort to harmonise and understand
the merging of the human data in KEGG, Reactome and WikiPathways un-
der a common controlled vocabuary. Considering the wide spectrum of
databases and organisms, there is still room to scale up pathway database
harmonisation.

2.2 network propagation algorithms

Once network data is available, network propagation allows the integra-
tion of experimental (or annotated) data with contextual knowledge. This
section, conceptualised in figure 8, covers the mathematical definition of
the networks, the algorithms applied on them (through specific examples in
computational biology) and the examination of their statistical properties.

2.2.1 Introduction to network propagation

High-throughput techniques are contributing in the prediction and iden-
tification of a vast collection of molecular interactions. This has led to a
rich variety of biological network resources (section 2.1.3), such as protein-
protein interaction, gene regulatory, co-expression and metabolic networks
(J. K. Huang et al., 2018). Such networks are usually defined as a set of
nodes and a set of edges that connect pairs of nodes. For example, nodes
can be proteins and edges can be experimentally proven interactions. Both
nodes and edges can have additional attributes, like edge directionality and
weight.

On the other hand, the guilt by association principle states that interacting
entities are more prone to share molecular functions. This basic concept has
found ubiquitous application to problems like protein function prediction,
disease gene prioritisation (figure 2B), module inference, cancer patients
stratification, drug discovery and causal variants identification (Cowen et
al., 2017).

The paradigm behind network propagation is to infer the labels of molec-
ular entities using the neighbouring connections from a biological network
and a set of known, labelled entities. The simplest approach, neighbour vot-
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Figure 8: Overview of network propagation algorithms. Conceptual map of the
section layout. Relying on basic network definitions, the guilt by associa-
tion principle justifies the concept of network propagation, which accepts a
variety of formulations based on random walks, heat (or another abstract
entity) diffusion or graph kernels. The statistical description of the predic-
tions of such methods raised concerns about the presence of a topological
bias, i.e. related to the intrinsic properties of the networks.

ing, infers the label of an entity from the known labels of its neighbours. A
use case could be as follows: to infer whether a protein is related to the
obesity phenotype, one counts the proportion of obesity-related interacting
proteins. Proteins with the highest proportions are suggested as potential
associations.

More sophisticated network propagation or diffusion approaches allow the
propagation to reach beyond direct neighbours and attain competitive per-
formances in many computational biology applications (Cowen et al., 2017).
Following the case study of obesity, one can conceive an abstract substance
(heat, fluid, current) that flows from the obesity-related proteins to the rest
of the network through the edges. The degree of association of each protein
is then measured by the substance received at every protein.

In this regard, the diversity of problem formulations and computational
biology applications is notable, sometimes causing the re-discovery of equiv-
alent methods under different names and domains. The term “network prop-
agation” therefore stands for a general purpose, heterogeneous but unifying
formalism for network analysis.

2.2.2 Introduction to graph theory

This section covers basic notions on graph theory prior to the introduction
of propagation methods in section 2.2.3. These definitions will be referenced
throughout this thesis.
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Defining a graph

The mathematical definition of a network or graphG, adapted from (Smola
and Kondor, 2003), consists of two sets:

G = (V ,E) (1)

V is the set of vertices, or nodes, typically numbered from 1 to n. The
number n of nodes in the graph is called the graph order. E is the set of edges,
consisting of pairs of nodes (i, j) that indicate that there is a connection from
i to j, meaning that they are neighbours. Here, only finite graphs without
multiple edges (i.e. ‘repeated’) or loops (edges of the kind (i, i)) are considered.
G ′ = (V ′,E ′) is a subgraph of G if G ′ is a graph with V ′ ⊆ V and E ′ ⊆ E.

If G is weighted, each edge (i, j) comes with a weight Wij ∈ R. The meth-
ods hereby discussed assume Wij > 0: the greater the weight, the easier it
is to traverse the edge. If G is unweighted, Wij = 1 if (i, j) ∈ E and Wij = 0

otherwise.
IfG is undirected, the edges (i, j) and (j, i) are identical and usually denoted

as unordered pairs {i, j}, and Wij =Wji. Conversely, in a directed graph, the
edge (i, j) can only be traversed from i to j and does not imply the existence
of the edge (j, i).

A simple graph is an unweighted, undirected graph without multiple edges
or loops (Diestel, 2000).

The n×n real matrix W is called the adjacency matrix of G. The degree ma-
trix of an undirected graph G is the diagonal matrix D with Dii =

∑n
j=1Wij.

Dii is called the degree of vertex i. Note that if G is directed, one can either
use the in-degree Dii =

∑n
j=1Wji or the out-degree Dii =

∑n
j=1Wij (Bang-

Jensen and Gutin, 2008). If G is simple, Dii is the number of neighbours
of the i-th node. Nodes with a high amount of neighbours are called hubs
(Cowen et al., 2017), whereas nodes with no connections are isolated. Exam-
ples can be found in figure 9.

Walks, paths and connectivity

This section is based on the definitions in (Diestel, 2000) for simple graphs.
A walk in a graph G = (V ,E) is a sequence of alternating nodes vi ∈ V and
edges ej ∈ E, represented as v1, e1, v2, e2, . . . , ek−1, vk, starting and ending
on nodes, with el = (vl, vl+1), i.e. every edge connects the nodes before
and after it. A path is a walk without repeating nodes and its length is the
number of edges in it.

A shortest path between two nodes vi and vj is a path whose length is
minimum among those that start at vi and end at vj. If such a path exists, its
length is called the shortest path distance dG(vi, vj) between vi and vj, which
are denoted as connected. Otherwise, if no path exists between vi and vj,
then dG(vi, vj) =∞ by convention and they are disconnected.

A simple graph G is connected if every possible pair of its nodes is con-
nected. A connected component of a graph G is a maximal connected subgraph
of G.
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Figure 9: Examples on network definitions. Each sub-figure represents one stage
in the network definition and analysis. (A) A network can be built using
different types of edges. (B) Definition of the vertex and edge sets. (C)
Plot of the network. (D) Unnormalised graph Laplacian matrix. The di-
agonal contains the node degree. Node F would be the equivalent of a
biological hub, given its high degree. (E) Kernel matrix for label propaga-
tion, derived from the Laplacian matrix. Darker colours reflect a higher
node similarity. Equation 14 details its formal definition, with σ2 = 1

and using L instead of L̃. (F) Random walk matrix P from equation 4.
The darker the colour, the higher the probability of transitioning from the
row-indexed to the column-indexed vertex. Note how P is asymmetric.

The graph Laplacian matrix

The starting point of many network-based propagation methods is the
graph Laplacian matrix, which comes in two flavours: the unnormalised graph
Laplacian L and its normalised version L̃. These are defined for simple graphs
but naturally work on weighted graphs (Smola and Kondor, 2003):
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L := D−W (2)

L̃ := D− 1
2LD− 1

2 = In −D− 1
2WD− 1

2 , (3)

where In is the n × n identity matrix, being n the order of the graph.
Isolated nodes typically require a special treatment in L̃ because their degree
is 0. Figure 9D contains a small example on how to compute L. Because
G is undirected, L and L̃ are symmetric and therefore diagonalisable. The
spectral properties of L and L̃ have been extensively studied and are tightly
connected to the topological properties of G.

Random walks

A notable branch of graph theory is the study of random walks, which are
markov chains on graphs (Lovász, 1993). In each step of a random walk, a
fictional walker sits on a node i and randomly chooses an edge to resume her
random walk, or decides to start another walk. The stationary probability
distributions of such processes exist and have been extensively studied.

The matrices in equations 4 and 5 are normalised versions of the adja-
cency matrix, commonly used to compute random walk-based scores on
undirected graphs (Cowen et al., 2017). Again, isolated nodes require spe-
cial treatment. An example of the former can be found in figure 9F.

P :=WD−1 (4)

P̃ := D− 1
2WD− 1

2 (5)

2.2.3 Network propagation in computational biology

The starting point of network-based algorithms has its roots in the Guilt By
Association (GBA) principle (Oliver, 2000). In a succint formulation, it states
that molecular entities that interact are prone to share biological properties.
An exemplary instance can be found in (Lavi et al., 2012): genes that appear
co-expressed tend to be closer in a network of interactions.

The straightforward approach for GBA is neighbour voting, where the la-
bel of a given node is predicted by letting its neighbours vote with their own
labels (Ballouz et al., 2016). Neighbour voting has been improved into the
so-called label propagation and network diffusion approaches, which gen-
erally allow further propagation into higher-order neighbourhoods (Cowen
et al., 2017).

Resorting to propagation beyond neighbour nodes is endorsed by the
network parsimony principle, that supports that the underlying perturba-
tions propagate through the shortest paths within the complex molecular
networks (Massucci et al., 2016). However, purely shortest paths-based ap-
proaches suffer from the “small world” property of biological networks:
most nodes can be reached from every other node in a small number of
steps due to the presence of hubs, i.e. highly connected nodes (Cowen et
al., 2017). The use of label propagation techniques has been extensively
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reviewed for finding social communities (Zoidi et al., 2015) and genetic as-
sociations (Cowen et al., 2017).

(A) (B) 

Figure 10: Network diffusion example. (A) Three seed nodes are labelled as posi-
tive before applying the network diffusion. (B) After the propagation, all
the nodes earn a diffusion score. Its magnitude is represented by a heat
colour scale: red scores are the highest whereas white are the lowest.
The closer to the seed nodes, the higher the score.

The following sections provide several angles to tackle with the network
diffusion and the random walks paradigms. A recurrent topic is how differ-
ent approaches and physical models lead to equivalent formulations.

Physical models

An intuitive way to define diffusion-based approaches is through physical
models, illustrated in figure 10. Equation 6 contains the equation of a fluid
propagation model:

∂fs(t)

∂t
= −Lγf

s(t) + bsu(t) (6)

fs(t) is the column vector containing the amount of fluid in every node
at time t. Lγ = L+ γI, being L the graph Laplacian from equation 2, I the
identity matrix and γ ∈ R a parameter to control the rate of fluid leaking in
every node. bs is the vector indicating the rate at which the fluid is pumped
on the source nodes, and u(t) is the unit step function. The fluid densities
fs in the stationary state (t→∞) are given by equation 7.

fs = L−1γ bs (7)

HotNet (Vandin et al., 2011) uses the model in equation 6, placing sources
on one gene at a time and regarding fs in equation 7 as the influence of that
gene to all the genes in the network. Influence values are used to build an
influence graph, in order to find subnetworks with mutations in a statisti-
cally significant number of patients. In HotNet, the source node diffuses 1
positive unit and the rest of nodes diffuse 0 units of flow; therefore, bs is a
binary vector.

HotNet2 is a second iteration with the same purpose, based on insulated
diffusion processes, which can also be formulated in terms of random walks
with restarts (Mark DM Leiserson et al., 2015) as in equation 17.
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Likewise, TieDIE (Paull et al., 2013) defines two diffusion processes to find
‘linker genes’ between two sets of genes: the source set (mutated genes) and
the target set (transcription factors). The authors try three scoring schemes:
the HotNet formulation (equation 7), PageRank (equation 17) and the path-
way impact score from SPIA (Adi Laurentiu Tarca et al., 2008).

eQED is a modified version of an electrical model to accomodate for direc-
tionality (Suthram et al., 2008), based on the random walk matrix in equation
4 (Cowen et al., 2017). eQED prioritises causal genes, among those close to
a genetic marker, for downstream gene expression changes.

GeneMANIA (Mostafavi et al., 2008) predicts gene functions through dif-
fusion processes on multiple networks that represent complementary data
sources. The networks are combined using weights that maximise a kind
of kernel-target alignment (Cristianini et al., 2002). The diffusion process is
solved as in equation 8, equivalent to equation 7 with y = bs , f = fs ,γ = 1.

f = (I+ L)−1y (8)

The input y is defined differently; nodes are divided into positives (genes
with the property of interest), negatives (genes with other properties) and
unlabelled (nodes to be prioritised). The positives diffuse 1 positive unit,
like HotNet. However, negative nodes diffuse −1 units, whereas unlabelled
nodes diffuse a bias term k = n+−n−

n that accounts for the balance between
the number of positive n+ and negative n− instances over the number of
nodes n.

On the other hand, the diffusion problem in equation 6 can be posed as the
convex optimisation instance in equation 9 with y = bs and f = fs (Tsuda
et al., 2005); the parameter c is a tradeoff between loss and smoothness.

min
f

(f− y)T (f− y) + cfTLf (9)

Its solution is again similar to the classical diffusion problem (equation 7):

f = (I+ cL)−1y (10)

The authors in (Tsuda et al., 2005) reformulated it to:

min
f,γ

(f− y)T (f− y) + cγ fTLf 6 γ (11)

The convex problem was further generalised to accomodate k networks
(equation 12), with an application to protein function prediction. Analo-
gously to GeneMANIA, the negatives are forced to diffuse −1 units in this
approach, whereas unlabelled nodes diffuse 0 units.

min
f,γ

(f− y)T (f− y) + cγ fTLkf 6 γ; k = 1, . . . ,m (12)

Similar formulations have been used to derive supervised and unsuper-
vised classification algorithms that favour smooth predictors on the network.
This idea has found its application in microarray data, in order to leverage a
priori network data (Rapaport et al., 2007).
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Graph kernels

A vast amount of diffusion instances can be formulated in terms of graph
kernels, which define a similarity measure between nodes (Smola and Kon-
dor, 2003). Specifically, one can define a kernel starting from the eigensystem
{(λi, vi)} of the graph Laplacian L (equation 2) or L̃ (equation 3) by applying
a regularisation function r(λ) to its spectrum:

K =

m∑
i=1

1

r(λi)
viv

T
i , defining

1

0
≡ 0 (13)

This formulation leads to commonly used propagation processes – their
kernels are described in equations 14, 15 and 16. Note that equations 14

and 15 also apply to L. The parameter σ2 controls the reach of the diffusion
spreading.

K = (I+ σ2L̃)−1 Regularised Laplacian (14)

K = e−σ
2/2L̃ Diffusion equation (15)

K = (aI− σ2L̃)p, a > 2 p-step random walk (16)

Note the equivalence between the regularised Laplacian kernel and several
literature approaches (equations 7, 8 and 10).

The advantage of defining network propagation in terms of graph ker-
nels is that it enables its usage on a broad range of kernel-based machine
learning algorithms. Kernelised scores have been used to predict disease-
gene associations, also allowing the integration of biological networks from
various data sources (Valentini, Paccanaro, et al., 2014). Under this formal-
ism, positive-unlabelled learning is a branch of machine learning that assumes
the negative class is rather unlabelled than negative, becoming a one-class
learning instance (Valentini, Armano, et al., 2016). This scenario is common
among network biology, for example in the prediction of drug targets (Fer-
rero et al., 2017) and disease genes (Mordelet and Vert, 2011).

Random walks

Alternatively, random walks methods are based on a different formulation
but share a considerable part of mathematical background with diffusion
and kernel algorithms (Cowen et al., 2017). For instance, the p-step kernel
in equation 16 is governed by random walks.

The PageRank web ranking algorithm (Page et al., 1999) is an early use of
random walks with restart to model a web surfer. The surfer walks a graph
whose nodes represent websites and edges are hyperlinks between them. In
each step, she starts from a node and follows a random web link with a
probability d (called the damping factor), or restarts her random walk with
probability 1− d in a random node. The PageRank scores are defined as the
stationary probabilities of this process for each node (website). A website
earns a high score if pointed to by many other websites, and if those also
have high scores.

Its most common variant is called personalised PageRank due to the cus-
tom prior distribution p0, which controls the frequency of the restarts in
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each node. The classical PageRank just sets a uniform prior for p0. The
stationary state p can be computed using P (equation 4), a normalised ver-
sion of the adjacency matrix, where α controls the damping, i.e. the tradeoff
between the prior distribution and the network data (Cowen et al., 2017):

p = α(I− (1−α)P)−1p0 (17)

A key difference exists between personalised PageRank and other ker-
nelised or fluid/heat propagation approaches. PageRank only normalises
outgoing flow, whereas diffusion normalises both incoming and outgoing
flow (Erten, Bebek, et al., 2011). As a consequence, PageRank is asymmetric
and cannot be regarded as a kernel matrix (Cowen et al., 2017).

PageRank has since fostered numerous uses: finding relevant pathways
while accounting for a protein-protein interaction network (Glaab et al.,
2012), prioritising candidate disease genes (Erten, Bebek, et al., 2011; I. Lee
et al., 2011), discovering protein targets using metabolic networks (Bánky
et al., 2013), improving cancer classification by identifying risk-active path-
ways (W. Liu et al., 2013) and creating low-dimensional representations of
multiple networks (H. Cho et al., 2016). TieDIE (Paull et al., 2013) and Hot-
Net2 (Mark DM Leiserson et al., 2015), already mentioned in section 2.2.3,
also use scoring functions based on random walks.

2.2.4 Statistical properties of network propagation

The question ‘how high a diffusion score must be to be considered high?’
logically arises from the biostatistics standpoint. Some authors have in-
cluded various flavours of statistical adjustments into the diffusion scores, as
an attempt to equalise nodes with systematically low or high scores. Figure
11 illustrates the concept of statistical adjustment or normalisation, typically
involving the definition of a null or background distribution of scores.

Normalised scores

An early study pointed out the effect of node degree in diffusion pro-
cesses (Erten and Koyutürk, 2010) and was later publised as a software called
DADA (Erten, Bebek, et al., 2011). The authors claim that, although diffu-
sion approaches gain power from considering indirect connections and path
multiplicity, such methods systematically favour highly connected proteins.
Association scores from random walks with restarts are proven to favour
high-degree nodes – diffusion scores too, but to a lesser extent.

Several sampling schemes are suggested, accounting for the degree dis-
tribution of the input genes, to provide uniform (normalised) prioritisa-
tion schemes. The unnormalised prioritisation uses personalised PageRank
(equation 17) to compute α(v,D), the association score between the node v
and the disease D, determined by a set of seed nodes S. The normalised as-
sociation αSD(v,D) in equation 18 adjusts α(v,D) by the means of a z-score,
whose mean µS and standard deviation σS come from the null distribu-
tion of α(v,D), i.e. when computed from random inputs. µS and σS are
estimated with 1, 000 random samples matching the size and degree distri-
bution of S.
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Figure 11: Statistical normalisation of diffusion scores. This small example illus-
trates the core idea of statistical normalisation. The heat colours repre-
sent the magnitude of diffusion scores after the network propagation,
using any of the kernel, physical or random walk-based models. Nor-
malised scores shuffle or resample the input to the diffusion process to
obtain a null distribution and quantify how extreme each observed score
is. The drive behind the normalisation is the presence of unwanted topo-
logical behaviours that favour certain nodes, in turn biasing the results
and overshadowing novel findings.

αSD(v,D) =
α(v,D) − µS

σS
(18)

The authors show that the uniform prioritisation is beneficial for the no-
table amount of low-degree disease nodes, albeit disease genes tend to have
a higher degree than non-disease genes. Uniform ranking schemes better dis-
cover loosely connected disease genes missed by unnormalised scores, at the
expenses of more false negatives within highly connected genes. Normalised
and unnormalised prioritisations are finally combined in the so-called hy-
brid ranking strategies, in an attempt to keep the best of each.

In the study by (Cun and Fröhlich, 2013), the authors obtain t-statistics
from gene expression data and smooth their absolute value with network
diffusion. Equation 19 shows how to obtain the smoothed t-statistic t̃ from
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t, the column vector with the absolute value of the original t-statistics, and
a p-step random walk kernel K (equation 16).

t̃ = tTK (19)

They further seek significant biomarkers within the top 10% genes, priori-
tised using t̃, by permuting t 1, 000 times and computing empirical p-values
for the top genes. Finally, the genes that remain significant after multiple
test correction are used as features to train a support vector machine that
predicts disease. This approach has been distributed within the netClass
software package (Cun and Fröhlich, 2014).

A posterior study (Bersanelli et al., 2016) highlights differentially enriched
modules from the analysis of high-throughput data. Special emphasis is put
on exploring the impact of permutations and resampling. Input statistics
x0, analogously to t from equation 19, are smoothed into x∗ using the regu-
larised normalised Laplacian kernel (equation 14):

x∗ = γ(L̃+ γI)−1x0 =

(
1

γ
L̃+ I

)−1

x0, γ > 0 (20)

They introduce the so-called network smoothing index in equation 21, a
quantitative measure of the relative change in the j-th gene before (x0j) and
after (x∗j ) the diffusion. The parameter ε balances the relative importance of
initial and final diffusion states.

Sj(x0) =
x∗j

x0j + ε
(21)

To compare experimental groups control u1 and case u2, the smoothing
indices are subtracted:

∆Sj = Sj(u2) − Sj(u1) (22)

This formulation pursues the mitigation of topological-only effects, like
systematically low or high Sj, expected to cancel out. Likewise, if the infer-
ential statistics (u) are already a contrast between experimental groups, the
authors define the Sp value as a combination between the original network
smoothing index Sj and its empirical p-value pj (equation 23). pj is obtained
by comparing Sj(u) to its null distribution by drawing random permutations
of u and computing Sj on the null trials.

Spj(u) = − log10(pj)Sj(u) (23)

Both ∆Sj and Spj(u) are explicit ways to addres the so-called hub effect,
and later used as a proxy to identify differentially enriched modules.

Another possibility to normalise the scores is by randomising the network
connections instead of the seed genes in the null model (Biran et al., 2019).
Rewired networks preserve the degree distribution of the original network
but randomly swap the endpoints of edge pairs. The personalised PageRank
(equation 17) was used to score the network nodes for several gene prioriti-
sation tasks. Empirical p-values were obtained for each node by comparing
the actual score to that of rewired networks. A distinctive property of the
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network rewiring null model is that it inherently controls for the degree
distribution of the input nodes.

Scoring sets of nodes

Nework propagation has also been proven useful within the pathway anal-
ysis scope. Pathways, understood as sets of nodes (see section 2.1.4) from the
network, are summarised into a single number that reflects their association
to the input data. The inherently statistical nature of pathway analysis (see
section 2.3.1 on pathway analysis for metabolomics) makes network propa-
gation and statistical measures concur.

The EnrichNet algorithm (Glaab et al., 2012), mentioned in section 2.2.3,
defines pathway-level statistics derived from random walks and adjusts for
a reference histogram. The latter can be regarded as an attempt to account
for topology-related biases. First, the personalised PageRank is computed
using the input genes as a prior, and converted to a dissimilarity measure by
subtracting it from 1. The scores of genes within every pathway, understood
as a gene set, are binned into a histogram. A reference histogram is com-
puted by the averaging of all the pathways. The Xd-distance of a pathway
(equation 24) is defined as a weighted difference between the pathway and
the reference histograms, and used to prioritise pathways.

Xd =

n∑
i=1

Pic − Pia
in

(24)

Specifically, Pic is the percentage of dissimilarity scores for the target gene
set and the pathway c within bin i, in relation to the total amount of genes
in pathway c. Pia is analogous defined, but using the background model. n
is the number of bins, whereas i is the current bin – note how the first bins
are upweighted, i.e. the ones with genes the most similar to the target gene
set in terms of random walks. Xd-scores should display high (and positive)
values for relevant pathways, because their genes are expected to be similar
to those in the target gene set.

The authors from (L. Liu and Ruan, 2013) suggest a parametric approach
to identify enriched biological pathways starting from a gene list. Analo-
gously to EnrichNet, the random walk with restart is solved. For each path-
way, regarded as a gene set, the observed mean similarity score D is com-
puted and normalised as a z-score Z. The expected value µR and standard
deviation σR of each pathway are estimated from 1, 000 input permutations.
Pathways are finally prioritised by the z-scores.

Z =
D− µR
σR

(25)

An analogous z-score approach was applied to gene set proximity (Aguirre-
Plans et al., 2018), based on shortest paths between two gene sets S and T ,
defining the proximity from S to T as:

d(S, T) =
1

|S|

∑
u∈S

min
v∈T

d(u, v) , (26)
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where d(u, v) is the shortest path length between nodes u and v. The mean
value and standard deviation in the z-score were estimated from random
resamplings of S and T matching the original degree distributions and set
sizes.

2.3 applications of network propagation

This section contains specific problems in computational biology that have
been addressed from a network analysis perspective.

2.3.1 Metabolomics data enrichment

The understanding and interpretation of experimental data is considered
an essential challenge to generate biological knowledge from metabolomics
data (Chagoyen and Pazos, 2012). This is the purpose of the so-called path-
way analysis and enrichment techniques, conceived to contextualise experi-
mental findings within known biological annotations. Following the review
in (Khatri et al., 2012), pathway enrichment techniques can be classified in
over representation analysis, set enrichment analysis and topology-based ap-
proaches.

Over representation analysis (ORA) is generally based on a statistical test
to identify pathways with a high occurrence in a list of metabolites. Early
methods for tackling the same problem in gene expression, such as GOstat
(Beißbarth and Speed, 2004), made use of Fisher’s exact test or a χ2 test
to obtain a measure of statistical significance (Everitt, 1992). Such simple
approaches are still used up to date, available in tools like the web servers
MetaboAnalyst (Chong et al., 2018) or IMPaLA (Kamburov et al., 2011). Lim-
itations of ORA include its low discriminative power among certain sets and
the sensitivity with respect to the threshold that generates the metabolite
list (Glaab et al., 2012), although consistence among ORA methods has been
reported in a recent comparison (Marco-Ramell et al., 2018). Other caveats
include the generally assumed independence between pathways, and equiv-
alence and independence between genes, in the analogous case of gene ex-
pression data (Khatri et al., 2012).

Set Enrichment Analysis (SEA) generalises ORA by dropping the require-
ment of a threshold to obtain a list of metabolites. Metabolite Set Enrich-
ment Analysis (MSEA), adapted from a similar method for gene expression
(Subramanian, Tamayo, et al., 2005), introduced the SEA paradigm in metab-
olomics. Metabolites can be sorted using a statistic (e.g. fold change) and
metabolite sets are tested using Kolmogorov-Smirnov-like statistic. MSEA
can be found in MetaboAnalyst. An altenative approach named PAPi (Ag-
gio et al., 2010) defines pathway activity scores using relative metabolite
abundance and the number of known and measured metabolites within each
pathway. Despite SEA drops the cutoff parameter, it is unclear whether it
outperforms ORA in real settings (Mitrea et al., 2013).

A complementary approach is provided by Topology-based analysis (TP).
Metabolic pathways are sought by leveraging network data, accounting for
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the distinct roles and properties of the metabolites within biological pro-
cesses. MetPA (Xia and Wishart, 2010), part of MetaboAnalyst, computes
centrality measures on a metabolite level and reports a topological impact
of the metabolites in the user-provided list. mummichog predicts functional
metabolic activity through module analysis within metabolic networks fol-
lowed by pathway analysis (S. Li et al., 2013). Other tools revolve around
curating and visualising network data. For instance, Metscape 2 (Karnovsky
et al., 2011) buils and displays the so-called CREG networks, connecting
compounds, reactions, enzymes and genes. TP methods are bounded by
the network data limitations, such as biases and incompleteness (Bayerlová
et al., 2015). Current challenges include accounting for pathway cross-talk
(Donato et al., 2013), the consideration of organism-specific data and the
interpretability of the results (Booth et al., 2013).

In a real scenario, however, TP analysis does not necessarily outpeform
simpler tests in gene expression data (Bayerlová et al., 2015). The differen-
tial traits of certain enrichment methods are not an automatic guarantee of
their optimality, which should be assessed by their ability to recover truly
affected pathways (Mitrea et al., 2013). This is further hindered by the lack
of standard datasets for the evaluation of such methods (Mitrea et al., 2013)
and the statistical challenges of metabolomics, such as the unknown size
of the metabolome and the sparsity of annotations compared to other omics
sciences (Chagoyen and Pazos, 2012). In addition, current evidence supports
the inexistence of a universally optimal pathway enrichment technique (Adi
L Tarca et al., 2013), adding an extra layer of complexity when defining the
direction of future efforts.

2.3.2 Disease gene identification

The identification of novel therapeutic targets is an area of active research.
A wide spectrum of network-based approaches have been developed for this
purpose or similar problems. Efforts include neighbour voting (Ballouz et
al., 2016), semi-supervised learning (Valentini, Armano, et al., 2016), prop-
agation and random walks (Vanunu et al., 2010), artificial neural networks
(Muslu et al., 2019), supervised learning on diffusion-based features (H. Cho
et al., 2016) or on diffusion-based distances (M. Cao et al., 2013).

Methods make use of a variety of networks, ranging from a single interac-
tome (Vanunu et al., 2010) to supervised weighted combinations of networks
from various data sources (Mostafavi et al., 2008; Tsuda et al., 2005; Valen-
tini, Paccanaro, et al., 2014). The assessment of the real benefit of integrating
multiple sources is endorsed by some authors (Valentini, Paccanaro, et al.,
2014), whereas others have found only a marginal improvement, if any, over
a plain averaging of the networks (Mordelet and Vert, 2011; Tsuda et al.,
2005).

The impact of the network coverage has also been examined. In line with
the robustness to noise in diffusion-based methods, which are able to down-
weigh spurious predictions (Cowen et al., 2017), it has been reported that
the usage of a larger network outweighs the higher proportion of noisy and
low-confidence edges (J. K. Huang et al., 2018).
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Drug target data suffers from the true negative issue: reliable data about
truly unsuccessful targets is extremely rare, so the negative class becomes
fuzzier (Ferrero et al., 2017). Another limitation derives from the fact that
targeting is usually known at the protein complex level (or even for a pro-
tein family) instead of the protein sub-unit level (Bento et al., 2014). The
label is therefore shared by all the genes that code the proteins within that
protein complex, implying that the data is structured. Usual cross validation
techniques yield misleading performance estimates on structured data if un-
corrected (D. R. Roberts et al., 2017). Similar problems with cross validation
on structured data have been identified and corrected in other fields, namely
ligand-target binding models (Lopez-del Rio et al., 2018) and ecology (D. R.
Roberts et al., 2017).

2.4 open issues

Several limitations and challenges in the application of network-based
and pathway analysis approaches in computational biology were mentioned
throughout this chapter. The following sections highlight specific issues of
special interest within the scope of this thesis.

2.4.1 Heterogeneity and biases in network propagation

One of the first steps when applying network propagation to a new prob-
lem is the decision of how to propagate the data on the network. The choice
of the graph kernel, the treatment of positive, negative and unlabelled nodes
and the need of a statistical normalisation are open questions. An implemen-
tation that allows a systematic benchmark of these options is still missing.

Besides, both the networks –for instance, protein-protein interaction net-
works (Edwards et al., 2002)– and the data that is propagated on them suffer
from incompleteness and spurious associations. Despite their robutsness,
diffusion-based approaches are still affected to a certain extent that has not
been thoroughly characterised.

On the other hand, network topology has been proven to affect diffusion
scores (Erten, Bebek, et al., 2011). A plethora of network data resources is
publicly available, with differences in data sources, coverage, topology and
confidence (J. K. Huang et al., 2018). The network choice greatly affects
downstream analysis (J. K. Huang et al., 2018), including diffusion-based
approaches, which were used in their original study.

In addition, the coexistence of well-studied and barely known genes or
proteins, respectively turning into high and low-degree nodes, poses a chal-
lenge. In (Erten, Bebek, et al., 2011), propagation methods are shown to
better predict highly connected proteins, but known disease genes are also
biased towards highly connected genes. This circularity hampers the discov-
ery of novel disease genes among the less studied ones.

Few publications have explored how sensitive diffusion scores are. The
authors in (Bersanelli et al., 2016) quantify an empiric p-value by permut-
ing the input labels, in order to account for nodes with systematically low
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or high scores. A similar concept has been applied to gene expression t-
statistics (Cun and Fröhlich, 2013) and to disease gene prioritisation (Erten,
Bebek, et al., 2011), whereas (Biran et al., 2019) rewire network connections
instead of permuting. There is enough evidence supporting the existence
of topology-related biases and a noticeable impact upon their removal. The
node degree seems to have a clear biasing role, but is unable to explain
the whole casuistic of score behaviour (Hill et al., 2019). This further en-
courages its characterisation and quantification, including factors like the
non-observability of certain nodes (i.e. due to experimental limitations).

2.4.2 Results interpretability in pathway analysis

Even though pathway analysis was conceived to improve the biological
interpretation of experimental data, understanding a list of affected path-
ways still remains as an outstanding challenge due to pathway overlap and
cross-talk effects (Donato et al., 2013). Active research lines include the ad-
dition of richer organism-specific contextual representations (Booth et al.,
2013), the modelling of pathway cross-talk (Donato et al., 2013) and the cre-
ation of aggregated pathway databases that better reflect current knowledge
(Domingo-Fernandez et al., 2019).

2.4.3 Performance overestimation in target gene prediction

Drug target data is often known for protein complexes instead of their
individual protein sub-units (Bento et al., 2014). The presence of data struc-
ture can artificially inflate the peformance estimates from classical cross-
validation (Lopez-del Rio et al., 2018; D. R. Roberts et al., 2017). In addition,
the performance metrics require a careful consideration. Classical metrics
like the Area Under the Receiver Operating Characteristic can be misleading
in early-retrieval (Saito and Rehmsmeier, 2015), like the practical scenario in
which only few targets can be tested. A comprehensive study controlling
both factors is needed to obtain a realistic snapshot of the expected benefit,
if any, of applying network propagation methods for drug discovery.

2.4.4 Free and open source software

Competitive algorithms can be found in the literature for most of the areas
in computational biology. However, the availability of their software, source
code and the interaction with the user is variable across their spectrum.

It is essential to provide the source code and the data that generates the
conclusions of any manuscript to achieve reproducible science (Peng, 2011).
The lack of the data or source code that support the findings hinders their
replication and a wider method adoption.

Certain algorithms are available through a web server, preventing the user
from customising its settings, modifying the algoritm or its application to
other salient problems in computational biology. For instance, (Kamburov
et al., 2011) offers a user-friendly web server for pathway enrichment that,
on the other hand, does not contemplate changing the pathway libraries. En-
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richNet (Glaab et al., 2012) is available on a web server that also offers an API
using RESTful calls, enabling the user some programmatic options and net-
work customisation. The web server MetaboAnalyst (Chong et al., 2018) has
deployed a companion R package to provide batch analysis, reproducibility
and transparency.

Another common practice is to provide the raw data and the scripts that
were used in the publication, like in MashUp (H. Cho et al., 2016). This pol-
icy is commendable, albeit still limited by the lack of maintenance over time
and the non-standard distribution of the software, sometimes depending on
a private or institutional server.

Public repositories, either general purpose like CRAN11 (R Core Team,
2018) or specialised like Bioconductor12 (Huber et al., 2015), are a robust so-
lution to endorse good coding practices, sofware maintenance and support,
reproducibility, data availability and standard distribution channels for the
R computing language. This is the case of RANKS (Valentini, Armano, et
al., 2016), available in CRAN, and EGAD (Ballouz et al., 2016), published in
Bioconductor. There is an analogous initiative for the python programming
language community, called Biopython (Cock et al., 2009).

An effort is needed not only in software publication in public repositories,
but also in proper maintenance and long term support. The netClass R
package (Cun and Fröhlich, 2014) serves as an example: it was published
in CRAN in 2013, but archived by July 29th, 2017 due to uncorrected check
problems. This becomes an obstacle for its adoption and for reproducible
science, since the package might need bug fixes to work on latest R versions.

11 https://cran.r-project.org. Accessed on 31/12/2019.
12 https://www.bioconductor.org. Accessed on 31/12/2019.

https://cran.r-project.org
https://www.bioconductor.org
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3 G OA L S

3.1 main objective

Diffusion scores are used in every discipline of computational biology that
involves biological networks. On the other hand, concerns have arisen about
the existence of a bias within the scores, potentially reaching numerous ar-
eas of active research. The main objective of this thesis is to develop, char-
acterise and implement a statistical normalisation of diffusion scores. The
potential benefits (or the absence thereof) will be assessed for salient prob-
lems in computational biology: pathway enrichment for metabolomics data
and novel gene target discovery.

3.2 detailed objectives

The main objective of this thesis can be achieved through three conceptual
steps. First, a generic formulation of the normalisation used to address the
bias. Then, its application to two computational biology domains: metabo-
lomics data enrichment and prediction of sensible disease gene targets.

3.2.1 Conception of the statistical normalisation

• Characterise and understand the bias in diffusion scores.

• Define statistical models to normalise diffusion scores, focusing on pro-
viding a deterministic formulation.

• Give a general guideline about when and how should diffusion scores
be normalised.

3.2.2 Application to metabolomics data enrichment

• Build a contextual representation linking metabolites to pathways as a
knowledge graph.

• Define a diffusion-based enrichment method, examine the need of a
statistical normalisation.

• Validate the method on in-house and public datasets.

3.2.3 Application to gene target discovery

• Define a validation framework suitable for structured data and a per-
formance metric oriented to drug development.
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• Benchmark diffusion-based methods on a protein interaction network,
including unnormalised and normalised scores.

• Quantify the impact of the network choice and the disease under study.

3.3 expected contributions

The main contribution will revolve around quantifying the presence of
bias within the diffusion algorithms and providing ways to address it. On
the other hand, the knowledge graph for metabolomics data enrichment has
its interest per se, as it delivers a new paradigm for data interpretation.

Every detailed objective is expected to lead to one or more publications
in indexed scientific journals. To encourage open and reproducible science,
all the algorithms and models will be released as free, open source tools.
They will be encapsulated in R packages with extensive documentation and
published in the Bioconductor repository.



4 S TAT I S T I C A L P R O P E R T I E S

the effect of statistical normalisation on
diffusion scores in computational biology

Network diffusion and label propagation are fundamental tools in com-
putational biology, with applications like gene-disease association, protein
function prediction and module discovery. More recently, several publica-
tions have introduced a permutation analysis after the propagation process,
due to concerns that network topology can bias diffusion scores. This opens
the question of the statistical properties and the presence of bias of such dif-
fusion processes in each of its applications. In this work, we characterised
some common null models behind the permutation analysis and the statis-
tical properties of the diffusion scores. We benchmarked seven diffusion
scores on three case studies: synthetic signals on a yeast interactome, sim-
ulated differential gene expression on a protein-protein interaction network
and prospective gene set prediction on another interaction network. For
clarity, all the datasets were based on binary labels, but we also present
theoretical results for quantitative labels.

Diffusion scores starting from binary labels were affected by the label cod-
ification, and exhibited a problem-dependent topological bias that could be
removed by the statistical normalisation. Parametric and non-parametric
normalisation addressed both points by being codification-independent and
by equalising the bias. We identified and quantified two sources of bias
-mean value and variance- that yielded performance differences when nor-
malising the scores. We provided closed formulae for both and showed how
the null covariance is related to the spectral properties of the graph. Despite
none of the proposed scores systematically outperformed the others, nor-
malisation was preferred when the sought positive labels were not aligned
with the bias. We conclude that the decision on bias removal should be
problem and data-driven, i.e. based on a quantitative analysis of the bias
and its relation to the positive entities. The code is publicly available at
https://github.com/b2slab/diffuBench

4.1 introduction

The guilt by association principle states that two proteins that interact
with one another are prone to participate in the same, or related, cellular
functions (Oliver, 2000). This cornerstone fact has motivated the exploration

This chapter is a reproduction of the following preprint, with minor section title changes:
Picart-Armada, Sergio, Wesley K. Thompson, Alfonso Buil, and Alexandre Perera-Lluna.
“The effect of statistical normalisation on network propagation scores”. BioRxiv (2020).
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of network algorithms on interaction networks for protein function predic-
tion (Sharan et al., 2007). Network analysis has further proven its usefulness
in other computational biology problems, such as prioritising candidate dis-
ease genes (Barabási et al., 2011), finding modular structures (Mitra et al.,
2013) and modelling organisms (Aderem, 2005).

Network propagation is a fundamental formalism to leverage network
data in computational biology. Its theoretical basis revolves around graph
spectral theory, graph kernels and random walks (Smola and Kondor, 2003).
The central concept is that nodes carry abstract labels that, following the
guilt by association principle, are propagated to the neighbouring nodes
(Zoidi et al., 2015). Unlabelled nodes can therefore be inferred a label based
on the available data of their neighbours. Label propagation can be defined
in several ways, such as the heat diffusion, the electrical model or random
walks with restarts (RWR), some of which lead to equivalent formulations
(Cowen et al., 2017).

One of the most common diffusion formulations relies on the regularised
Laplacian graph kernel (Smola and Kondor, 2003) - examples are provided
throughout this paragraph. HotNet (Vandin et al., 2010) is a tool for find-
ing modules with a statistically high number of mutated genes in cancer,
after propagating the labels of mutated genes. The authors in (Bersanelli et
al., 2016) have found relevant modules from gene expression and mutation
data, based on a diffusion process followed by an automatic subgraph min-
ing. GeneMANIA (Mostafavi et al., 2008) is a web server that predicts gene
function by optimising a combination of knowledge networks and running
a diffusion process on the resulting network. TieDIE (Paull et al., 2013) de-
fines two diffusion processes in order to connect two sets of genes, applied
to link perturbation in the genome with changes in the transcriptome. More
generally, the predictive power of label propagation using graph kernels
has been benchmarked in gene-disease association (Guala and Sonnhammer,
2017; Lee et al., 2011; Valentini et al., 2014).

Some studies have pointed out biases in diffusion scores and explored the
effect of their removal. The authors of DADA (Erten et al., 2011) have found
that prioritisation using RWR favours highly connected genes and suggest
several normalisation strategies. One of them computes a z-score that ad-
justs for the mean value and standard deviation estimated from propagation
scores from random degree-preserving inputs. Another possibility is to nor-
malise diffusion scores into empirical p-values, as used in the diffusion of
t-statistics derived from gene expression (Cun and Fröhlich, 2013). The aim
was to quantify robust biomarkers, whose diffusion score is unlikely to arise
from a permuted input. In the discovery of enriched modules (Bersanelli
et al., 2016), the effect of the topology has been mitigated by combining
diffusion scores with their empirical p-values. Similarly, exact z-scores and
empirical p-values have been used for pathway analysis of metabolomics
data (Sergio Picart-Armada, Fernández-Albert, et al., 2017). A recent study
(Biran et al., 2019) has normalised RWR into an empirical p-value, obtained
from edge rewiring. Specifically, random degree-preserving networks have
been built to re-run the propagation and draw values from the null distribu-
tions of scores. Another recent manuscript (Hill et al., 2019) highlights biases
in certain network propagation algorithms, related to the node degree.
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Overall, a variety of measures to address the bias have emerged, but a
systematic quantification and evaluation of the biases is missing. The nor-
malisation can potentially backfire, for instance by missing highly connected
nodes that are associated with the property under study (Erten et al., 2011).
The goal of this manuscript is to provide a quantitative way to assess the
presence of the bias and its alignment with the node labels, in order to un-
derstand the impact and adequateness of the normalisation.

4.2 approach

Here, we address basic statistical properties of the normalisation of single-
network diffusion scores to remove topology-related biases. We define and
quantify two sources of bias. Both are derived from a statistical standpoint,
based on the exact means and variances of the null distributions of the dif-
fusion scores under input permutation. Differences in mean values between
nodes should be the first indicator of systematic advantages: nodes with
highest means will often be prioritised over those with lowest means. In
their absence, differences in variances should be examined instead, as nodes
with highest spread can be more likely to reach extreme scores. We compare
classical and normalised propagation, as implemented in diffuStats (Sergio
Picart-Armada, Thompson, et al., 2017), in data with and without bias. The
main results are derived for the commonly used regularised Laplacian ker-
nel, although most of them apply to other graph kernels and, to a lesser
extent, to random walks with restarts. Special emphasis is placed on identi-
fying scenarios under which normalisation is beneficial or detrimental and
on understanding the underlying reasons why.

4.3 methods

We include seven diffusion scores that are part of the diffuStats package
(Sergio Picart-Armada, Thompson, et al., 2017): fraw, fml, fgm, fbers , fmc,
fz and fberp . These scores are variations of the original diffusion model with
a regularised unnormalised Laplacian kernel (Smola and Kondor, 2003). La-
belled nodes are referred to as positives if they have the property of interest,
and negatives otherwise.

4.3.1 Unnormalised scores

The starting point is the fraw score, which requires a graph kernel K
(Smola and Kondor, 2003) and input vector yraw and is computed as:

fraw = Kyraw (27)

This work focuses on the unnormalised, regularised Laplacian kernel for
K, for being a widespread choice in the computational biology literature
(electrical model, heat or fluid propagation). The values in yraw reflect
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the weights of each type of node: 1 for positives and 0 for negative and
unlabelled entities.
fml and fgm differ from fraw by setting a weight of −1 on negative nodes.

fgm also weighs unlabelled nodes with a bias term adapted from GeneMA-
NIA (not to be confused with the diffusion bias). On the other hand, fbers
measures the relative change between fraw and yraw, with a moderating
parameter ε:

fbers(i) =
fraw(i)

yraw(i) + ε
(28)

4.3.2 Normalised scores

Normalised scores attempt to equalise nodes that systematically show low
or high scores, regardless of the input and due to the specific topology of
the network. The lynchpin of normalisation is the null distribution of the
diffusion scores under a random permutation π of the labelled nodes. The
null scores arise from applying fraw to a randomised input Xy = π(yraw)

and comparing, for the i-th node, fraw(i) to its null distribution Xf(i), where
Xf = KXy. An empirical p-value can be computed throught Monte Carlo
trials for the i-th node on N trials:

p(i) =
ri + 1

N+ 1
, (29)

where ri is the number of randomised trials having an equal or higher
diffusion score in node i. In order to assign high scores to relevant nodes,
the score is defined as fmc(i) = 1 − p(i). We also include a parametric
alternative to fmc by computing z-scores for each node i:

fz(i) =
fraw(i) − E(Xf(i))√

Var(Xf(i))
(30)

The expected value and variance of the null distributions are analytically
determined (see Supplement 1). Thus, fz has a computational advantage
over Monte Carlo trials.

Finally, a hybrid combining an unnormalised and a normalised score is
provided, inspired by how (Bersanelli et al., 2016) moderated the effect of
hubs: fraw: fberp(i) = − log10(p(i))fraw(i).

4.3.3 Metrics and baselines

Two baseline methods were used. First pagerank, regarded as an input-
naïve centrality measure (default damping factor of 0.85), to measure the
predictive power of a basic network property. Second, a random predictor,
to set an absolute baseline. Performances were quantified with two metrics:
the area under the Receiver Operating Characteristic curve (AUROC) and
the area under the Precision-Recall curve (AUPRC), as implemented in the
precrec package (Saito and Rehmsmeier, 2017). For clarity, the ranking (or-
dering) of the nodes for any given score and instance was normalised to lie
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in [0, 1] by dividing it by the number of ranked nodes, so that top suggestions
corresponded to ranks close to 0.

4.3.4 Bias quantification

The reference expected value of the i-th node bKµ (i) (eq. 33) was defined
as proportional to the expected value of its null distribution Xf(i) (eq. 31).
Reference expected values that vary across nodes can indicate systematic
differences in the diffusion scores of such nodes.

In the absence of differences in the reference expected value, variance-
related bias was analysed instead. The reference variance of the i-th gene
bK
σ2
(i) (eq. 34) was defined as, up to an additive constant, the base 10 loga-

rithm of the variance of Xf(i), straightforward to obtain from the covariance
matrix (eq. 32). The rationale is that the scores of nodes with varying disper-
sion measures should not be compared directly.

4.3.5 Performance explanatory models

Explanatory models have found use in the formal description of differ-
ences in performance as a function of design factors (Lopez-del Rio et al.,
2019; S Picart-Armada et al., 2019). Following (S Picart-Armada et al., 2019),
the trends in AUROC and AUPRC were described through logistic-like qua-
sibinomial models with a logit link function, as a generalisation of logistic
models to prevent over and under-dispersion issues.

Table 4 presents the main model for each case study. The categorical re-
gressors were: method, metric (AUROC or AUPRC), biased (refers to the
signal, true or false), strat (labelled, unlabelled or overall), array (ALL
or Lym), and the parameters k, r and p_max for the second case study.
path_var_ref was quantitative, equal to the reference pathway variance
bpK
σ2

(eq. 35). The responses were either AUROC, AUPRC, or both mixed,
the latter denoted by Performance.

4.4 materials

The evaluation of the diffusion scores was performed on three datasets
of different nature, as described in Table 4: (1) synthetic signals on a yeast
interactome, (2) pathway-based synthetic signals on a human network and
(3) real signals on another human network.

Table 4: Case studies for characterising biases and benchmarking diffusion scores.
Interactions in explanatory models are denoted by a colon.

Case Network Positive nodes Signal Bias type Purpose Explanatory model for hypothesis testing

(1) Yeast Synthetic Synthetic, bias-based Mean value Proof of concept Performance ∼ method + method : biased + metric
(2) HPRD KEGG pathways Pathway sub-sampling Mean value Background influence in bias AUPRC ∼ method + method : strat + array + k+ r+ pmax
(3) BioGRID KEGG pathways Prospective pathway prediction Variance Bias in a common scenario AUROC ∼ method + method : path_var_ref
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4.4.1 Networks

Yeast network

A small yeast network was used to demonstrate the casuistic of diffusion
scores properties. Medium and high confidence interactions from several
sources were provided by the original study (Von Mering et al., 2002), as
found in the igraphdata R package (Csardi, 2015). It contains 2,617 proteins
and 11,855 unweighted edges, but we worked only with its largest connected
component (2,375 proteins, 11,693 edges).

HPRD network

The diffuse large B-cell lymphoma study, available in the R package DL-
BCL (Dittrich and Beisser, 2010), contains a differential expression dataset
accompanied by a human interactome network extracted from the Human
Protein Reference Database, HPRD (Mishra et al., 2006). The original net-
work encompasses 9,385 proteins with 36,504 interactions, whose largest
connected component (8,989 nodes, 34,325 interactions) was extracted to
compute the diffusion scores.

We derived two gene backgrounds based on expression arrays. The first
background (Lym) was taken from the expression data from 2,557 genes
(2,482 in the network) in the lymphoma study (Rosenwald et al., 2002). The
second background (ALL) was based on the acute lymphocytic leukemia
array (Chiaretti et al., 2004), available in the ALL R package (Li, 2009), en-
compassing 6,133 genes (5,921 in the network).

BioGRID network

The Biological General Repository for Interaction Datasets (BioGRID) (Chatr-
aryamontri et al., 2017) is a public database with curated genetic and pro-
tein interaction from Homo sapiens and other organisms. BioGRID was
retrieved in January 2017, but only keeping interactions dating from 2010

or older. The interactions were weighted according to (Cao et al., 2014),
under the assumptions that more publications about an interaction boost
its confidence and that low-throughput technologies are more reliable that
high-throughput ones. The network encompassed 11,394 nodes and 67,573

edges and was connected.

4.4.2 Datasets

Synthetic bias-based dataset

100 biased and 100 unbiased instances of positive, negative and unlabelled
nodes were generated in dataset (1) from table 4, by sampling positive nodes
with probabilities proportional to biased and unbiased scores. By construc-
tion, the frequencies of the positives drawn for biased signals were positively
correlated with the reference expected value, whereas those of the unbiased
signals were uncorrelated with it.
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Nodes were partitioned into three equally sized pools, from which pos-
itive nodes were drawn: (a) labelled nodes that were fed to the diffusion
methods, (b) target nodes, the ones to be ranked and whose ground truth
was known, and (c) filler nodes that were neither target nor labelled.

For each instance, a fixed fraction of labelled nodes xe were uniformly
sampled as positives, the rest of labelled nodes were deemed negatives and
the target and filler nodes were left unlabelled. This input served two pur-
poses: generate the ground truth in target nodes, and be the input for all the
diffusion scores.

To generate the ground truth in target nodes of biased signals, the raw

diffusion scores were computed from the input above. A fixed fraction of
target nodes xs was sampled with probabilities proportional to their raw
scores, i.e. p(i) ∝ fraw(i), to become positives. The remaining target nodes
would remain negatives, completing the ground truth. The regularised un-
normalised Laplacian kernel is endorsed by physical models that ensure
fraw(i) > 0 provided that inputs have one or more positives and the graph
is connected. Analogously, unbiased signals were generated by sampling a
fraction of target nodes xs, but with probabilities roughly proportional to
the unbiased diffusion scores mc: p(i) ∝ fmc(i) +

1
N+1 . By definition, the

frequency of appearance of the target nodes was independent of the bias,
and the small offset ensured p(i) > 0.

In both cases, after sampling the ground truth, the same input was used
again for all the diffusion scores, in order to rank the target nodes and com-
pute the corresponding AUROC and AUPRC.

Pathway sub-sampling dataset

Synthetic gene expression statistics were generated, based on pathways
in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et
al., 2017), and on two array-based gene backgrounds described within the
HPRD network. Genes outside the background were hidden (unlabelled),
and genes inside were given p-values for differential expression.

Each signal derived from k random KEGG pathways. The pathways were
assumed to be affected as a whole, but only a sampled portion of r genes
showed differential expression patterns. The p-values of the differential ex-
pressed genes were uniformly sampled from [0,pmax], whereas the rest of
genes were uniform in [0, 1], following a previously study (Rajagopalan and
Agarwal, 2004).

For both expression arrays, genes with an FDR < 10% within their back-
ground were used as positives, the remaining background genes as negatives
and the hidden nodes were deemed unlabelled. Notice that, by definition,
this procedure generated false positives and false negatives among the input
genes.

The target genes were those belonging to the k affected pathways, includ-
ing those with no apparent differential expression and those among the un-
labelled nodes. Methods were compared using the AUROC and AUPRC,
computed separately on labelled, unlabelled genes, and overall, on a grid of
parameters: k ∈ {1, 3, 5}, r ∈ {0.3, 0.5, 0.7} and pmax ∈ {10−2, 10−3, 10−4}. For
each combination of parameters, N = 50 instances were simulated.



60 statistical properties

Prospective pathway dataset

The input lists consisted of the genes in 139 KEGG pathways from 14th
March, 2011. The target genes were the newly added genes in the same
KEGG pathways in 18th August, 2018 release. The 139 pathways had new
genes in the latter release after mapping to the network.

AUROC and AUPRC were computed on each pathway, always excluding
the input positive genes. The bias was examined at the pathway level, as-
sessing whether the properties of their new genes differed from those of the
rest of network genes. It was defined as the median reference variance of its
new genes minus the median reference variance of all the genes besides old
and new pathway genes (eq. 35).

4.5 results

4.5.1 Properties of diffusion scores

Some of the diffusion scores are equivalent in certain scenarios. In the
absence of unlabelled nodes and using kernels based on the unnormalised
graph Laplacian, fraw, fml and fgm lead to an identical node prioritisation.
More generally, the results using only two classes (and therefore two real
values y+ > y− as weights) always lead to the same ranking as fraw. An
analogous result holds for the weights of the positives and the unlabelled,
y+ > yu, in the absence of negative nodes.

The normalised scores fmc and fz are invariant to changes in the weights
of the positive and negative examples, regardless of the presence of unla-
belled nodes and the graph kernel. This property simplifies the diffusion
setup and leads to weight-independent results. Along with eqs. 31 and 32,
this holds even if the matrix K in eq. 27 is not a kernel, like the random walk
similarity matrices in (Cowen et al., 2017).

We also provide the closed form of the null expected value and covariance
matrix of the raw scores, governed by the identifiers of the nl labelled nodes
(out of n). If K contains only their corresponding columns from K, and Y is
the input vector yraw restricted to them, then:

E(Xf) = µYK1nl (31)

Σ(Xf) = σ
2
YKMnlK

T (32)

µY = 1
nl

∑nl
i=1 Yi and σ2Y = 1

nl−1

∑nl
i=1(Yi − µY)

2 are the mean and vari-
ance of the labels. Mk = Ik −

1
k1k1Tk , being Ik the k× k identity matrix and

1k the column vector with k ones.
If a graph kernel based on the unnormalised Laplacian is used, the co-

variance of the null distribution (eq. 32) is closely related to the spectral
properties of the labelled nodes. In particular, in the absence of unlabelled
nodes, the leading eigenvector of the null covariance is, up to a sign change,
the Fiedler-vector, commonly used for graph clustering (Smola and Kondor,
2003). The statistical normalisation is therefore endowed with a topological
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basis. This sheds light on prior empirical observations that, even when the
bias can relate to the node degree, there must be further topological factors
involved (Hill et al., 2019).

Because µY and σ2Y are multiplicative constants and inherent to the labels,
the topology-related mean value and variance references of the i-th node are
defined as follows. We assume nl > 2 because if nl ∈ {0, 1} there is nothing
to permute.

bKµ (i) := [K1nl ]i1 =

nl∑
j=1

Kij (33)

bKσ2(i) := log10
([
KMnlK

T
]
ii

)
= log10

 nl∑
j=1

(
Kij −

bKµ (i)

nl

)2 (34)

Eq. 31 implies that there are two scenarios free of the expected value
bias: µY = 0 (centered input), or nl = n and a kernel K based on the
unnormalised Laplacian, rendering bKµ constant (see Supplement 1). The i-
th null variance (eq. 32) can be exactly zero, either because σ2Y = 0 (constant
input), or because the topology forces [KMnlK

T ]ii = 0. In practice, the latter
is expected to happen in small connected components without any labelled
nodes. Both cases render the i-th score constant, therefore lacking interest,
and leave fz undefined.

In the retrospective dataset, the reference of a given pathway P, conceived
to summarise its properties into a single number, was defined by subtracting
the median reference of its new genes, new(P) to that of the genes that never
belonged to it, others(P):

bpKσ2(P) := median
i∈new(P)

{bKσ2(i)}− median
i∈other(P)

{bKσ2(i)} (35)

The mathematical proofs of the properties and illustrative examples can
be found in Supplement 1.

4.5.2 Synthetic signals in yeast

Bias in diffusion scores

Supported by eq. 31, the presence of unlabelled nodes originated different
expected values among the nodes. We hypothesised that fraw would be
biased to favour nodes with high bKµ , whereas fmc and fz would prioritise
in a more unbiased manner. Figure 12A confirms both trends. The data
imbalance (negatives outnumbered positives in the input) had the opposite
biasing effect on fml, favouring nodes with low bKµ .

Performance

In biased signals, target nodes with higher bKµ were sampled as positives
more often (see Supplement 2), which (i) benefited the unnormalised scores
raw over z, and (ii) endowed the pagerank baseline with predictive power.
Unbiased signals led to a uniform density of positives across bKµ , which (iii)
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Figure 12: Analysis of biased and unbiased synthetic signals on the yeast network.
Nodes showed a mean value-related bias, see Supplement 2. (A) Effects
of the mean value bias in on the average node ranking, under biased
and unbiased signals. Lines correspond to Generalised Additive Models
with y ∼ s(x,bs = "cs") and 0.95 confidence intervals. raw and ml tended
to find positives with high and low bKµ , respectively. z found positives
in a more uniform manner. (B) Performance in terms of AUROC and
AUPRC. raw was better suited for biased signals, for which the pagerank

baseline also outperformed a random predictor. Conversely, z worked
best on unbiased signals.

was better handled by z than by raw (figure 12B). Claims (i), (ii) and (iii) were
statistically significant for AUROC and AUPRC (Tukey’s method, FDR <

10−10 in all cases, see Supplement 2). Also, fberp was a good compromise
between raw and z.

Based on these results, we suggest a systematic criterion to choose whether
to normalise in the general case, by assessing (1) the presence of the expected
value-related bias by checking if bKµ is constant among the nodes to be pri-
oritised, and (2) the expected or hypothetical dependence between bKµ and
the labels to be predicted. In this proof of concept, differences in bKµ bias
were present and normalisation was discouraged when bKµ was aligned with
the positives. If bKµ is constant, bK

σ2
should be examined instead, see the ret-

rospective pathway dataset.

4.5.3 Simulated differential expression

Bias in diffusion scores

Analogously to the yeast dataset, the presence of unlabelled nodes led to
differences in bKµ among nodes, see figure 13A. We hypothesised that the
main source of bias would arise from such heterogeneity, i.e. that unnor-
malised scores would be prone to find positives among highest expected
values. In both arrays, the nodes belonging to one or more pathways had,
compared with nodes outside, (i) larger bKµ within the unlabelled genes, but
(ii) lower bKµ within the labelled nodes. Overall, (iii) labelled genes showed
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Figure 13: Performance in the DLBCL dataset. (A) Expected value-related bias.
Within the labelled genes of both arrays, those in pathways had lower
bKµ that those outside. Within the unlabelled genes, this tendency was
inverted. Overall, labelled genes had higher bKµ than unlabelled genes.
(B) Predicted AUPRC (0.95 confidence interval) using the explanatory
model in Table 4 and Supplement 3. Besides diffusion scores, three base-
lines were included: original (ranking by the p-values), pagerank and
random. In both arrays (ALL and Lym), raw outperformed z in unlabelled
nodes and overall, while z was preferable in the labelled genes.

larger bKµ than unlabelled genes. Figure 13A portrays the claims (i), (ii) and
(iii) in both arrays – the six statements were significant with p < 10−16,
two-sided Wilcoxon test (see Supplement 3).

Performance

The performance, as predicted by the explanatory models, was influenced
by the background used to compute the metrics, especially for AUPRC. Tak-
ing as reference fraw and fz, raw performed best in the unlabelled back-
ground and overall whereas z was preferable in the labelled background (fig-
ure 13B). The three claims were significant in both arrays (Tukey’s method,
p < 10−10, see Supplement 3).

Differences in performance were consistent with the expected value-related
bias: potential positives suffered from lower bKµ in the labelled genes and
benefited from greater bKµ in the unlabelled part. In views of this, the natu-
ral choices were z and raw, respectively.

To understand why raw outperformed z in overall performance, note how
by hypothesis the top candidates from raw should come from the labelled
genes due to their high bKµ against the unlabelled genes, whilst z should
equalise predictions from both backgrounds. Predictions from the labelled
part were more reliable owing to the presence of prior data on the genes
(figure 13B). z equalised both backgrounds, shuffling reliable and unreliable
predictions, and undermined overall performance.

Finally, an indirect assessment of the bias (PageRank centrality) fell short
to explain performance differences in (i) and suggested that biased scores
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were preferrable in the three cases, see Supplement 3. This highlights the
importance of using a precise quantification of the bias.

4.5.4 Prospective pathway prediction

Bias in diffusion scores

Here, bKµ was constant among all the nodes, as a consequence of using
the unnormalised Laplacian without unlabelled nodes (see Supplement 1).
Differences still existed in terms of bK

σ2
(figure 14A), implying that the nor-

malisation would make a difference.

However, the interpretation of the normalisation impact was not as straight-
forward as for the expected value bias. With the paradigm of the z-scores
z, deviations from the expected value exacerbate under small variances and
shrink under large variances. Notice how this does not imply the natural
hypothesis that nodes with larger variances (resp. smaller) must drop (resp.
rise) in the ranking, because ranking modifications take place around the
mean. Figure 14B reflects how z actually recovered more high-variance pos-
itive nodes than raw.

Similarly to prior observations from figure 12A, the normalised scores
tended to find the positives in a less biased manner. Positive nodes with a
high variance were rarely found by raw, whereas z distributed them more
evenly along the ranking (figure 14B). This improvement came at the cost of
missing positives with lower variances.

Performance

The properties of the diffusion scores helped simplify this case study, as
fml, fgm and fber_s were left out for being redundant with fraw. fml and
fgm for using the unnormalised Laplacian without unlabelled nodes, and
fbers because the genes to be prioritised were always labelled as negative in
the input (see corollary 1 and proposition 3 in Supplement 1).

The prospective prediction of pathway genes was a challenging task, given
the low predicted AUPRCs for all the methods (see Supplement 4). On the
other hand, AUROC conveyed a richer view of the differences between meth-
ods. The explanatory model (figures 14C, 14D) showed that unnormalised
scores were more affected by the presence of bias, reflected in the larger
magnitude of their interaction terms (−1.387 for raw against −0.484 for z,
p < 10−4, Tukey’s method). Overall, the casuistic among the bias of new
pathway genes favoured z over raw (FDR = 5.39 · 10−9, two-sided paired
Wilcoxon test). This conclusion did not apply to early retrieval, as it could
not be proven for AUPRC (FDR = 0.701).

The negative sign of the interaction terms was also insightful: all the
proper methods encountered more difficulties in finding loosely connected
genes. This was expected, since there is less network data involving such
genes, translating into unreliable predictions.
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Figure 14: Analysis of the prospective dataset. (A) Pathway-wise comparison of
new genes against the remaining genes outside the pathway, in terms
of bK

σ2
. Several pathways showed significant differences in both direc-

tions (two-sided Wilcoxon test). The x axis was jittered for clarity. (B)
Ranking of the positives using raw and z. Each data point is the relative
ranking of a positive gene in one of the pathways, i.e. before comput-
ing pathway-level metrics. Lines correspond to a quasi-logistic fit with a
0.95 confidence interval. raw scores were more sensitive at low standard
deviations, whereas z stood more uniform. (C) Coefficients of the model
AUROC ∼ method + method : path_var_ref with a 0.95 confidence inter-
val, where the interaction term involved the variance bias. The main ef-
fect of raw was not depicted because it was the reference level of method.
(D) Predicted AUROC across all the pathways, as a function of the bias.
z was less sensitive to the bias, due to its interaction term in (C) being
closer to 0. Lines correspond to a quasi-logistic fit with a 0.95 confidence
interval.
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4.6 conclusion

In this study, we ratified that diffusion scores are biased due to the graph
topology. We introduced two direct quantifications of the bias, in terms
of the expected value and variance of the null distribution of the diffusion
scores under input permutation. We analysed the benefits and pitfalls of
using unbiased, statistically normalised scores and discussed several choices
of the label weights when defining the diffusion process.

We proved equivalences between scores under certain conditions, helping
simplify the setup of the diffusion, and discovered that normalised alterna-
tives are invariant under label weights changes. We found an explicit link
between principal directions of the null covariance and the spectral features
of the network.

We applied the diffusion-based prioritisation on three scenarios: two with
a mean value-related bias and one with a variance-related bias. Class im-
balance and node topology had an impact in unnormalised scores, whereas
normalised scores were more robust to both phenomena given their weight-
independent definition. The parametric normalisation requires no permuta-
tions compared to Monte Carlo trials and performed equally or better, pro-
viding a convenient way to normalise. While mean value bias was straight-
forward to characterise, variance bias was less intuitive albeit of noticeable
impact. In general terms, the statistical normalisation is advised if the posi-
tives are not aligned with the bias, and discouraged otherwise. The statisti-
cal background, i.e. which nodes are permuted, is a key piece that should
be clearly stated in every application. Bias assessment should be carried
through its direct quantification instead of indirect indicators, which can be
misleading.

We conclude that the statistical normalisation can be beneficial or detri-
mental, and the decision should follow from the dependence between the
node bias and the hypothetical or desired properties of the new positives.
Topology-related bias can manifest in different ways (mean value- or variance-
related bias) and each instance should be properly characterised.
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5 T H E R PA C K A G E D I F F U S TAT S

diffustats: an r package to compute
diffusion-based scores on biological networks

Label propagation and diffusion over biological networks are a common
mathematical formalism in computational biology for giving context to molec-
ular entities and prioritising novel candidates in the area of study. There
are several choices in conceiving the diffusion process (involving the graph
kernel, the score definitions and the presence of a posterior statistical nor-
malisation) which have an impact on the results.

This manuscript describes diffuStats, an R package that provides a collec-
tion of graph kernels and diffusion scores, as well as a parallel permutation
analysis for the normalised scores, that eases the computation of the scores
and their benchmarking for an optimal choice. The R package diffuStats
is publicly available in Bioconductor, https://bioconductor.org, under the
GPL-3 license.

5.1 introduction

Network analysis can help finding therapeutic targets and understanding
biology in networks obtained from protein-protein interactions, gene regula-
tion and metabolic reactions. In this context, label propagation and diffusion
algorithms (Zoidi et al., 2015) address a general problem of molecular entity
ranking according to a seed node list. Examples include finding significantly
mutated subnetworks in cancer (Vandin et al., 2010), predicting gene func-
tion (Mostafavi et al., 2008), prioritising genome-wide association hits (Lee
et al., 2011) and classifying proteins (Tsuda et al., 2005).

In general, the mentioned methods involve diffusion processes with ad-
hoc parameter and network settings, making comparisons fundamentally
difficult. The RANKS R package (Valentini et al., 2016) is an effort to collect
a range of diffusion kernels and scores, but the effects of label codification
and a recently proposed statistical normalisation (Bersanelli et al., 2016) have
not been explored. To that end, we introduce the diffuStats R package gath-
ering diffusion kernels, input codifications and statistical normalisations to
benchmark single-network diffusion settings.

This chapter is a postprint of the following journal article: Picart-Armada, Sergio, Wesley K.
Thompson, Alfonso Buil, and Alexandre Perera-Lluna. “diffuStats: an R package to compute
diffusion-based scores on biological networks”. Bioinformatics 34, no. 3 (2018): 533-534.
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Table 5: Implemented diffusion scores. fraw, fml and fgm differ on the weights of
the positive, negative and unlabelled nodes. fbers quantifies the change of
the fraw scores relative to the input scores. fberp , fmc and fz are statis-
tically normalised by permuting the labelled examples, but not the unla-
belled*. fmc derives from an empirical p-value, whereas fberp combines
fmc and fraw. fz is a parametric alternative to fmc requiring no stochastic
permutations. Quantitative inputs are allowed in all the scores except fml
and fgm.

Score y+ y− yu Normalised Stochastic Quantitative Reference

raw 1 0 0 No No Yes (Vandin et al., 2010)
ml 1 -1 0 No No No (Tsuda et al., 2005)
gm 1 -1 k No No No (Mostafavi et al., 2008)
bers 1 0 0 No No Yes (Bersanelli et al., 2016)
berp 1 0 0* Yes Yes Yes (Bersanelli et al., 2016)
mc 1 0 0* Yes Yes Yes (Bersanelli et al., 2016)
z 1 0 0* Yes No Yes (Harchaoui et al., 2013)

5.2 methods

The diffuStats R package offers scoring schemes for diffusing a label vector
on a network, determined by (a) the graph kernel, (b) the translation of labels
into a numeric vector y to be smoothed, and (c) the statistical normalisation.
In general, diffusion scores f are based on modifications of the quantity
f = K ·y, where y are the input labels, f the diffusion scores and K is a graph
kernel.

Regarding (a), most of the cited applications use the regularised Laplacian
kernel, but our package also offers the diffusion kernel, the p-step random
walk kernel, the inverse cosine kernel (Smola and Kondor, 2003) and the
commute time kernel (Yen et al., 2007). In practice, they differ on the reach
and the behaviour of the spreading inside the network - further detail for its
choice can be found in the documentation. The decision can be data-driven,
based on prior studies on the subject or on desirable properties of the kernel.
For (b) and (c), the implemented scores are variations of the propagation of
a binary vector whose ones are the positive labels y+ and whose zeroes are
the negative y− and unlabelled yu entities (Table 5). The statistical normal-
isation (c) compares the diffusion scores with the distribution of scores that
arise from a permuted input, in order to spot nodes whose score is system-
atically high or low regardless of the input. However, not all normalised
scores require stochastic simulations.

The diffuStats R package contains proper documentation and unit test-
ing to facilitate its development. Its algorithms are written in R except the
permutations, which use C++; further details on the implementation can be
found in the supplementary materials. Manipulating networks with more
than 10,000 nodes might require extra RAM memory and computational
power due to the kernel matrix size.
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Figure 15: Performance comparison for diffusion scores in predicting 12 functions
on half of the proteins using the area under the Receiver Operating Char-
acteristic curve.

5.3 results

The example data is a yeast interactome with 12 annotated protein func-
tions (Von Mering et al., 2002). The functionalities of our package are demon-
strated by (i) obtaining a prioritised list of annotations given a set of labels,
and (ii) benchmarking all the available diffusion scores in a dataset contain-
ing validation data. For both analyses, half of the proteins in the interactome
will be treated as unlabelled and will receive a score from the propagation of
the other half using the default regularised Laplacian kernel. Regarding (i),
the function “diffuse” allows to compute the desired diffusion scores with a
starting set of scores (labels) and a network:

scores_diff <- diffuse(graph = yeast,

scores = scores, method = "raw")

When assessing the performance of different diffusion scores in a given
dataset (ii), the desired metrics involving the diffusion scores and the valida-
tion can be computed on a grid of parameters:

performance <- perf(graph = yeast, scores = scores,

validation = validation, grid_param = grid_param)

The results are returned as a table that can be directly plotted (Fig. 15).
In this case study, statistically normalised scores fmc, fz and fberp seem
preferable than their unnormalised counterparts comparing the area under
the ROC curves. For instance, fz outperforms fraw, fml, fgm and fbers (FDR
< 25%, Wilcoxon test), thus highlighting the usefulness of a prior screening
in score performance and its potential impact.

In summary, the R package diffuStats gathers diffusion kernels and scores
with statistical normalisation that are object of active research in bioinfor-
matics, like functional prediction or module identification. In addition, it
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facilitates benchmarking diffusion scoring methods to find the optimal con-
figuration for the application of interest.
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6 M E TA B O LO M I C S E N R I C H M E N T

null diffusion-based enrichment for
metabolomics data

Metabolomics experiments identify metabolites whose abundance varies
as the conditions under study change. Pathway enrichment tools help in the
identification of key metabolic processes and in building a plausible biologi-
cal explanation for these variations. Although several methods are available
for pathway enrichment using experimental evidence, metabolomics does
not yet have a comprehensive overview in a network layout at multiple
molecular levels. We propose a novel pathway enrichment procedure for
analysing summary metabolomics data based on sub-network analysis in a
graph representation of a reference database. Relevant entries are extracted
from the database according to statistical measures over a null diffusive pro-
cess that accounts for network topology and pathway crosstalk. Entries are
reported as a sub-pathway network, including not only pathways, but also
modules, enzymes, reactions and possibly other compound candidates for
further analyses. This provides a richer biological context, suitable for gen-
erating new study hypotheses and potential enzymatic targets. Using this
method, we report results from cells depleted for an uncharacterised mito-
chondrial gene using GC and LC-MS data and employing KEGG as a knowl-
edge base. Partial validation is provided with NMR-based tracking of 13C
glucose labelling of these cells.

6.1 introduction

Metabolomics is the science that studies the chemical reactions taking
place in a living organism by measuring their lightweight reactants and
products, also called metabolites. Metabolomics is used in the study of hu-
man disease, biomarker identification, drug evaluation and treatment prog-
nosis (Nicholson et al., 2002). Metabolomics datasets are generated from the
identification and quantification of the metabolites in a sample. Afterwards,
statistical analysis of the datasets enables researchers to devise a plausible
explanation for the changes identified and to understand the underlying
biological processes involved (Chagoyen and Pazos, 2013).

Current methods to measure metabolites mainly rely on Nuclear Magnetic
Resonance (NMR) and Mass Spectrometry (MS) technologies (Weckwerth,

This chapter is a postprint of the following journal article: Picart-Armada, Sergio, Francesc
Fernández-Albert, Maria Vinaixa, Miguel A. Rodríguez, Suvi Aivio, Travis H. Stracker, Oscar
Yanes, and Alexandre Perera-Lluna. “Null diffusion-based enrichment for metabolomics
data”. PloS one 12, no. 12 (2017).
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2003), the latter consisting of two broad categories: Liquid Chromatography
and Gas Chromatography coupled to MS (LC/MS and GC/MS). Raw data
processing, also known as primary analysis, can be achieved using tools
including MeltDB(Kessler et al., 2013), MetaboAnalyst (Xia, Sinelnikov, et al.,
2015), MAIT (Fernández-Albert et al., 2014), along with spectral databases
(Vinaixa et al., 2015) like the Human Metabolome Database (Wishart et al.,
2013), resulting in a table of relative metabolite abundances.

Data interpretation, known as secondary analysis, benefits from the iden-
tification of metabolic pathways to draw conclusions, encouraging the use
of so-called pathway enrichment techniques. Their purpose is to provide
the metabolites with their biological context, drawing from comprehensive
databases like Kyoto Encyclopedia of Genes and Genomes, KEGG (Kane-
hisa et al., 2008), Reactome (Croft et al., 2014), WikiPathways (Kelder et
al., 2012) and the Small Molecule Pathway Database (Kelder et al., 2012).
Enrichment outputs can be further analysed by manual network manipu-
lation through tools such as Cytoscape (Smoot et al., 2011), whose plug-in
MetScape (Karnovsky et al., 2012) builds networks containing compounds,
reactions, enzymes and genes. In this work, pathway enrichment techniques
will be divided into three generations, following the review in (Khatri et al.,
2012).

The first generation of enrichment techniques is based on Over Represen-
tation Analysis (ORA), a statistical test that assesses whether the occurrence
of a label within a subset is greater than expected by chance in the back-
ground population. Applied to metabolomics, it takes as input the iden-
tifiers of affected metabolites (previously determined through a statistical
test involving conditions) and assesses a p-value for each pathway. ORA is
available through the web tools IMPaLA (Kamburov et al., 2011), Metabo-
Analyst, MBRole and MPEA (Chagoyen and Pazos, 2011; Kankainen et al.,
2011). Limitations of ORA include an oversimplification of the biology, a
thresholding decision issue when generating the input metabolite list and a
lower power for capturing subtle and coordinated changes within a pathway
(Subramanian et al., 2005).

A second generation of enrichment methods, Functional Class Scoring
(FCS), avoids the cutoff choice in generating the affected metabolite list and
claims the capability of capturing subtle but consistent changes in concen-
tration (Alonso et al., 2015; Chagoyen and Pazos, 2013). This concept was
imported from Gene Set Enrichment Analysis (Subramanian et al., 2005) and
is available through MSEA (Xia and Wishart, 2010) in MetaboAnalyst and
IMPaLA. A shortcoming of FCS methods is that they ignore the network
nature of biological pathways (Khatri et al., 2012). As biological datasets are
heterogeneous, and as no method is always best, the researcher’s expertise
and prior knowledge remain key factors when choosing between ORA and
FCS (Huang et al., 2009).

The third generation of enrichment techniques attempts to incorporate
topological data on the underlying biological networks. This concept was
applied early to genetic data through ScorePAGE (Rahnenführer et al., 2004)
and is available in current tools like Pathway-Express (Draghici et al., 2007).
For metabolomics data, MetaboAnalyst assigns each metabolic pathway a
topological score accounting for the centrality of measured metabolites.
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Pathway enrichment techniques face challenges, such as dealing with path-
way crosstalk and overlap (Khatri et al., 2012) or generating comprehensive
outputs rather than pathway p-value lists (Huang et al., 2009). Statistical
tests that account for pathway crosstalk and overlap have been proposed for
gene data (Donato et al., 2013; Tarca et al., 2012). Although pathway analysis
techniques constitute essential resources for metabolomics secondary analy-
sis, the abstract and artificial borders between pathways may not faithfully
reflect biological mechanisms (Chagoyen and Pazos, 2013). This issue can
be bypassed using sub-network analysis, a secondary analysis procedure to
infer relevant biological modules under the condition of study (Mitra et al.,
2013) without being limited by pathway definitions. Sub-network analysis
has also been applied to the canonical pathways to obtain enrichment in a
sub-pathway scale for gene and protein data (Haynes et al., 2013; Li et al.,
2015). Some methods, such as jActiveModules (Ideker et al., 2002), define
scores and attempt to find optimally scoring sub-networks. Likewise, diffu-
sion kernels and random walk algorithms that score the nodes of a network,
such as PageRank (Page et al., 1999), have been applied to genetic data (Paull
et al., 2013; Vandin et al., 2011) and metabolic networks (Faust et al., 2010).

The HotNet algorithm (Vandin et al., 2011), applied to gene networks,
computes pairwise influence measures from node gs to node gi, by introduc-
ing a flow on gs and allowing it to leave through all the nodes. The diffusion
score of node gi, fsi , is interpreted as the influence i(gs,gi). A new undi-
rected graph is built using the weights w(gj,gk) = min[i(gj,gk), i(gk,gj)],
in which sub-networks encompassing a large number of gene mutations are
sought. TieDIE (Paull et al., 2013) applies a similar concept, aiming to con-
nect a source and a target gene set. Flow is introduced between the source
and the target sets, giving rise to two diffusion processes that score all the
nodes. The linking score of each node, defined as the minimum of its two
diffusion scores, serves as a ranking to apply a global threshold and report
the resulting sub-network.

Here we describe the development of an innovative methodology that
combines the usefulness of pathway enrichment with the flexibility of sub-
network analysis. Starting from summary metabolomics data, we apply
a null diffusive process over a network-based representation of the KEGG
database and derive a relevant sub-network. Besides offering an overview in
the form of a list of affected pathways, we propose a novel sub-pathway rep-
resentation at several molecular levels that justifies the reported pathways
through additional biological entities (reactions, enzymes and KEGG mod-
ules) to identify candidates for further study. All of the reported entries,
along with their annotations, are drawn in a heterogeneous network layout.

6.2 materials and methods

6.2.1 Overview

An overall scheme of the proposed methodology is presented (Fig 16):
on the one hand, we retrieve knowledge from KEGG as a graph object; on
the other hand, the input to our algorithm is a list of significantly affected
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metabolites from an experimental study, obtained for example by applying
a non-parametric Wilcoxon test to each metabolite’s abundance. Afterwards,
the graph is regarded as a meshed object in which the nodes representing
the affected metabolites introduce unitary flow. The resulting node scores
are normalised using a null diffusive model, and the top scores define an
interpretable relevant subgraph. All this work has been implemented in the
R language (R Core Team, 2015) and the network algorithms rely on the
igraph R package (Csardi and Nepusz, 2006). Our R code is under active
development and available at https://github.com/b2slab/FELLA.
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Figure 16: Workflow summary. Contextual knowledge is extracted from KEGG as
a graph object while experimental data is introduced as a list of affected
metabolites. A null diffusive model assesses, and reports in a subgraph,
which part of the KEGG graph is relevant for the input metabolites.

Contextual knowledge is depicted according to the KEGG database (Fig
16), through the following categories: compounds, reactions, enzymes, mod-
ules and pathways. This network is specific for Homo sapiens and its con-
struction is detailed in S1 Appendix.

6.2.2 Scoring algorithms

We derived scores for all the nodes through random walks on the KEGG
graph, in order to assess their importance relative to the metabolites in the in-
put. Performing random walks on the undirected graph is equivalent to run-
ning a diffusion process; specifically, we model heat diffusion. Conversely,
if the graph is directed, the problem matches the PageRank algorithm for
website ranking. Both the undirected and the directed versions are applied
and referred to as diffusive processes (Fig 16).

In the undirected graph case, using a heat diffusion model, we model
the biological perturbation in the KEGG graph as heat flow that traverses
our KEGG graph. It is important to emphasise that this heat diffusion ap-
proach is purely a knowledge propagation abstraction, in no way simulating
heat diffusion on the actual biological entities. Heat is forced to flow from
nodes corresponding to affected metabolites and through database annota-
tions, leading to a score for each node in the KEGG graph: its stationary
temperature (Eq. 36). The rationale behind this approach is that nodes ly-
ing close to the affected metabolites, which are heat sources, will hold a
higher stationary temperature. This can happen due to great proximity to
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Figure 17: Nodes arrangement for (a) heat diffusion and (b) PageRank. The af-
fected metabolites are highlighted with a black ring. For heat diffusion
(a), affected metabolites are forced to generate unitary flow. Every path-
way is highlighted with a blue ring, representing its connection to a cool
boundary node. In equilibrium, the highest temperature pathways (and
nodes) will have the greatest heat flow, suggesting a relevant role in the
experiment. For PageRank (b), affected metabolites are the start of ran-
dom walks. PageRank scores, represented by the intensity of the blue
colour, will attain higher values in the frequently reached random walk
nodes.

a particular heat source or to overall closeness to multiple ones. In order
to determine the temperatures, we apply the finite difference formulation
(Reddy and Gartling, 2010) of the heat equation, using the explicit method,
applied to a meshed object (Fig 17a) (Bonals, 2005).

T = −KI−1 ·G = RHD ·G (36)

On the one hand, KI is the conductance matrix, where KI = L+B, L being
the unnormalised graph Laplacian and B the diagonal adjacency matrix with
Bii = 1 if node i is a pathway and Bii = 0 otherwise. The matrix B ensures
that flow can leave the graph through pathways nodes. The matrix RHD is
defined as −KI−1, the linear mapping to compute the temperatures. On the
other hand, G is the heat generation vector, whose entries Gi are unitary if i
is an affected metabolite and 0 otherwise.

In our node arrangement (Fig 17a), the affected metabolites constantly
introduce heat flow into the structure and only the nodes in the top level
(metabolic pathways) are allowed to disperse it. Further details are available
in S2 Appendix.

In the directed graph case, the PageRank scoring algorithm is a web model
that assigns each website a score reflecting the number of incoming hyper-
links as well as the quality of their respective websites. The web surfer per-
forms random walks on a directed graph, with an initial probability distribu-
tion over the nodes. In each step, the surfer resumes his random walk with
probability d and restarts it with probability 1− d, where d is the damping
factor. If the surfer continues, he or she will choose an edge with a probabil-
ity proportional to its weight. The default computation of PageRank scores
is iterative for efficiency reasons, although a formula similar to (Eq. 36) can
be derived and will be used in the proposed methods. The damping factor
is set to d = 0.85 as in the original publication.
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The arrangement of nodes for the PageRank calculation is identical to
the one for diffusion (Fig 17b), being edges directed towards the upper lev-
els. Random walks start only at the affected metabolites and explore all the
reachable nodes. Further details are available in S3 Appendix.

6.2.3 Null models

The ranking of the network nodes is not achieved through raw scores, due
to potential biases related to topological features. This is also the case in clas-
sical over-representation analysis, as it can be rephrased as a particular case
of heat diffusion (Fig 18) where the observed statistic is the node tempera-
ture and its null distribution is the hypergeometric distribution. In view of
this, our approach also includes a permutation analysis in the input, leading
to a null distribution of scores for each node. Node scores are normalised
using their null distributions and ranked, allowing a subgraph (Fig 16) to be
extracted. Further details can be found in S4 Appendix.

Compounds

Pathway

Pathway A Rest of nodes

Figure 18: Toy example of an over-representation analysis of a hypothetical "path-
way A" containing 3 metabolites out of a total of 10. The list to be
enriched contains 4 metabolites, showing 2 hits in the pathway. The cor-
responding (Fisher’s exact test) over-representation can be understood
as a diffusion process on the depicted network followed by a null model.
The temperature of pathway A is always coincident with the number of
hits in the pathway, implying that its null distribution is the hyperge-
ometric distribution, to which a one-tailed temperature comparison is
made.

The null model will be introduced in the heat diffusion scenario (the
PageRank case is analogous). Let nin be the number of compounds in the
input. Then, exactly nin different KEGG compounds are chosen at random
following dependent Bernoulli distributions, so that Xi = 1 if i is chosen and
Xi = 0 otherwise. Normalisation can be performed using (i) the theoretical
mean and variance of the scores, which can be obtained from Eq. 36, using
the fact that, for the null model, G is a random vector X with known mean
and covariance matrix:

E(Tnull) = RHD ·E(X) (37)

Σ(Tnull) = RHD · Σ(X) · RTHD (38)

The normalised score (z-score) of node i is defined in terms of the expected
value µi = E(Tnull)i and standard deviation σi =

√
Σ(Tnull)i,i

zi =
Ti − µi
σi

(39)
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Then, nodes with the top k scores are kept and reported. Alternatively,
scores can be normalised through (ii) Monte Carlo simulations with nperm
permutations, which provide an estimate of the probability pi that the null
distribution attains a score greater than or equal to the observed one. Esti-
mation of pi involves the empirical cumulative distribution function with a
small correction (North et al., 2002), ri being the number of permutations in
which the null score of node i is greater or equal than Ti:

pi =
ri + 1

nperm + 1
(40)

A consensus solution is derived from nvote independent sets of Monte
Carlo trials, each trial reporting the top k nodes. The consensus solution
may therefore report a node count not exactly equal to k.

6.2.4 NMR validation

The reported subgraphs contain entities other than pathways and com-
pounds that can be useful for the researchers. Among these, the highlighted
reactions have been partially validated by quantifying their distance to an
independent second set of affected metabolites.

In order to analyse the reactions in the scope of a metabolic network, dis-
tances are computed on the unweighted, maximal connected subgraph con-
taining all the compounds and reactions from the KEGG graph, referred to
as the reaction-compound graph. The validation metric is the resistance dis-
tance, previously used in the chemical literature (Bapat, 2004). Under these
settings, the reported reactions are compared to all the reactions that involve
the input metabolites (their nearest neighbours) in terms of their resistance
distance to the second set of metabolites.

6.2.5 Evaluation with synthetic signals

In order to deploy an analysis of true and false positive pathway iden-
tifications, we opted to statistically characterize the pathway prioritisation
induced by the diffusion scores. Artificial pathway signals have been gener-
ated to (a) find biases in the absence of a signal that might cause false posi-
tives, and to (b) quantify the ability to recover true positive pathways. The
proposed methods are not directly compared to IMPaLA and MetaboAna-
lyst due to the lack of a batch analysis mode, but instead to their underlying
distribution using Fisher’s exact test. Our Monte Carlo approaches have not
been aggregated into consensus solutions. The performance metric is the
pathway rank in the list ordered by a method, where 1

np
is the best rank and

1 is the worst one, np being the number of pathways in the KEGG graph.
Ranks in Fisher’s exact test are computed using the raw p-values, so that top
ranked pathways correspond to lowest p-values. To compute the p-values, a
metabolite is considered to belong to a pathway if it can be reached via the
pathway in our directed KEGG graph (Fig 17).

In (a), noisy signals are generated and the ranks of all the pathways are
calculated within signals. Then, the mean rank of a specific pathway i is
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computed across all the signals. This measure can reveal pathways that tend
to have an extreme rank irrespective of the input.

In (b), a target pathway generates the signal and its rank is used as the
metric of interest. Methods able to recover the signal will show low ranks in
general terms.

6.2.6 Description of the experimental data

Our method has been tested using data from a case-control experiment
aimed at determining the function of an uncharacterised mitochondrial pro-
tein by silencing the gene using short hairpin RNAs (shRNA). Metabolites
abundances were determined from five replicates of cell cultures expressing
either control or experimental shRNA.

Metabolite measurements were performed by Metabolon platform (www.
metabolon.com) using GC/MS (Thermo-Finnigan Trace DSQ single quadru-
pole) and LC/MS (Waters ACQUITY UPLC and a Thermo-Finnigan LTQ-
FT). The proprietary Metabolon analysis reported 168 quantified metabolites
annotated in the KEGG database.

In addition, we have used NMR following the labelling of the same cells
with [U-13C] glucose (DeBerardinis et al., 2007) to trace carbon atoms, in
order to further validate the conclusions of our new method. The reported
reactions are evaluated in terms of their resistance distance to the affected
metabolites found by NMR.

6.2.7 Description of the synthetic data

All the signals generate a list with fixed length nin = 35 for each one of
the np pathway nodes in the KEGG graph. Three sampling types have been
defined – differences arise in the specification of how much more probable
compounds in the target pathway are.

The first signal is a uniform sampling of nin compounds that imitates
noise: the probability of drawing a compound j within pathway i, pi,j, is
ki = 1 times more likely to be drawn than compounds outside the pathway,
and thus does not depend on the pathway.

In the second signal, compounds belonging to pathway i are ki = 10

times more likely to be drawn. Therefore, there are two different probability
values: inside pathway and outside pathway. This sampling is affine to the
assumptions in Fisher’s exact test from ORA.

As for the third signal, pi,j is proportional to the quantity RHDij, which
is greater in compounds close to the pathway. This takes into account the
whole KEGG graph, thus being influenced by indirect connections and com-
pound specificity.

www.metabolon.com
www.metabolon.com
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6.3 results

6.3.1 Input for the algorithms

After the curation step, our knowledge base graph contains 10,183 nodes
and 31,539 edges. The nodes are stratified in 288 pathways, 178 modules,
1,149 enzymes, 4,699 reactions and 3,869 compounds. The degree distribu-
tion of its vertices follow a scale-free network model, where P(k) ∼ k−γ,
with γ = 2.084 ∈ [2, 3], see S1 Appendix.

On the other hand, MS led to 168 quantified metabolites from KEGG. Two
identifiers that each appeared twice have been dropped, as well as a KEGG
drug, excluded from the KEGG compound category. The remaining 163

metabolites have been tested between both conditions, leading to 38 signifi-
cant metabolites (two-tailed non-parametric Wilcoxon, FDR < 0.05), of which
33 have been mapped to our KEGG graph.

The 33 MS-derived compounds served as input for each of the proposed
enrichment algorithms. Heat Diffusion (HD) and PageRank (PR) are fol-
lowed by norm (z-score normalisation) or sim (Monte Carlo permutations).
Normalised scores have been computed through the null models with nin =

33, followed with subgraph selection with a desired number of nodes k =

250. For simulated methods, a consensus subgraph using nvote = 9 runs
of nperm = 10, 000 permutations each has been derived by majority vote on
each node.

Regardless of the specific details, high diffusion scores are an indicator of
overall closeness to the MS-derived metabolites and potential relevance in
the condition being studied. This intuition, known as guilt-by-association,
can be phrased in the context of heat diffusion: high temperatures are found
close to the heat sources. Therefore, warm nodes are candidates for fur-
ther study as they are easily reached through database annotations from the
input metabolites.

6.3.2 Null model impact

The impact of using the null model in HD and an overview of the random
temperatures behaviour is described in Fig 19. The null model is closely
related to the graph structure and node topology, quantified through the
vertex degree. In Fig 19a, the mean temperatures show different trends
for the five levels in the graph; in particular, there is an increase in the
mean pathway temperature as the pathway becomes larger. This implies
that, regardless of the input, larger pathways will generally show warmer
temperatures and the results will be biased towards them. Likewise, the
standard deviations of the null temperatures show level-specific changes (Fig
19b), with the compounds being the most affected entities – the higher the
degree of the compound, the lower its standard deviation.

The usage of z-scores instead of raw temperatures has consequences in the
highlighted nodes. Reporting the nodes with the top 250 raw temperatures
does not reveal any pathway (Fig 19c), whereas five pathways lay among the
top 250 z-scores (Fig 19d). Likewise, if only pathway nodes are considered,
their ranking using raw temperatures is closely related to the ranking using
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(c) (d)

Legend ● Pathway ● Module ● Enzyme ● Reaction ● Compound (input: )

(a) (b)

Top 250 raw temperatures Top 250 normalised temperatures

Figure 19: Expected value (a) and standard deviation (b) of the null temperatures,
stratified by level – jitter applied for visual purposes and 0.95 confidence
intervals computed by the default GAM models in ggplot2 R library
(Wickham, 2009). Clear biases arise due to the node degree, a topological
property of the nodes: the larger the pathway, the higher its mean value,
and the more connected a compound is, the smaller its variance. If
pathways are ranked by raw temperatures, a large pathway will have an
undesired, consistent advantage over small ones and will be reported
too often. The usage of z-scores (d) instead of raw temperatures (c) to
select the top 250 nodes addresses these biases and highlights pathway
and module nodes that were eclipsed by other compounds and reactions
with higher mean null temperatures.

the mean temperatures from the null model (Fig 20a), which is a property of
the graph but not of the experimental data; using z-scores instead corrects
this bias (Fig 20b). If the top 20 pathways are selected through their raw
temperature, some of them are even below their mean null temperature (Fig
20c), whereas keeping the top 20 z-scores removes the bias towards larger
pathways and suggests otherwise overlooked pathways (Fig 20d).



6.3 results 87

Figure 20: Ranking the 288 KEGG pathways – lower is best– using raw tempera-
tures (a) biases the ranks towards pathways with higher mean null tem-
perature, which in turn tend to be large pathways. Using the z-scores
instead (b) breaks this clear dependence and avoids reporting pathways
just because of their size. The top 20 pathways through raw tempera-
tures (c), depicted as black dots, include pathways that are even below
their mean value, while the top 20 z-scores (d) suggest smaller pathways
that were penalised by the aforementioned bias.

6.3.3 Subgraph extraction

Four subgraphs have been extracted using the MS-derived compounds.
The desired number of nodes k for each approach, together with the actual
number of reported nodes and the number of KEGG pathways, are shown in
Table 6. A connected component (CC) of an undirected graph is a maximal
connected subgraph so that any two nodes in the subgraph are connected
by a path. For the directed graphs, the weak CC definition is used, in which
directed edges are considered as undirected when computing the CC. The
number of nodes belonging to each solution subgraph, along with its largest
CC and the number of CCs, are also reported. Additional details regarding
the largest CC and number of CCs for other values of k can be found in S5

Appendix.
Defining the overlap coefficient between two solutions G1 and G2 as
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Table 6: Summary of the outputs

Name k Pathways Nodes #CC Largest CC
HD norm 250 hsa00250, hsa00270, hsa00480, hsa05230, hsa05231 250 8 206

HD sim 250 hsa00250, hsa00270, hsa00330, hsa00480, hsa05230, hsa05231 261 8 221

PR norm 250 hsa00250, hsa00270, hsa00480, hsa05231 250 9 187

PR sim 250 hsa00250, hsa00270, hsa00480, hsa05231 279 10 152

Summary of the outputs, using diffusion (HD) as well as PageRank (PR), and normalising the scores
with Monte Carlo simulations (sim) or z-scores (norm). Monte Carlo simulations have been run 10,000

times per solution, and 9 solutions have been computed to build a consensus solution. Note that the
desired number of nodes k is slightly different to the number of nodes actually reported in the Monte
Carlo simulations. The last two columns contain the number of connected components (CC) and the
number of nodes in the largest CC.

overlap(G1,G2) =
|G1 ∩G2|

min(|G1|, |G2|)
, (41)

solutions tend to overlap despite their differences (Table 7). Regarding the
stratification of the subgraphs in terms of KEGG categories, they follow a
trend similar to the KEGG graph (S5 Appendix).

Table 7: Solutions overlap

HD norm HD sim PR norm PR sim
HD norm 1.00 0.82 0.88 0.82

HD sim 0.82 1.00 0.77 0.83

PR norm 0.88 0.77 1.00 0.84

PR sim 0.82 0.83 0.84 1.00

Overlap coefficient statistics for HD and PR. The overlapping nature of solutions is a sign of consistency
among approaches.

6.3.4 Pathway analysis

Our methods are compared to IMPaLA and MetaboAnalyst to verify the
concordance in terms of metabolic pathways. All the approaches have been
compared using the example data from IMPaLA (S2 Table) and MetaboAna-
lyst (S3 Table), and they show consistent and compatible reports.

The results for our dataset are summarised in Table 8 and described in
S1 Table, together with further details about the reports of the alternative
tools. The metabolic pathways Alanine, aspartate and glutamate metabo-
lism (hsa00250), Cysteine and methionine metabolism (hsa00270) and espe-
cially the Glutathione metabolism (hsa00480) recur in all of the approaches.
Some of our solutions are more specific, suggesting the module Glutathione
Biosynthesis (M00118) as well. Our null model takes pathway overlap and
crosstalk into account and allows a visualisation of the pathway structure
through the null diffusion correlation matrix (S4 Appendix).

The subgraph resulting from applying HD sim (Fig 21) inherits the scale-
free structure from the whole graph and enrols the three recurrently re-
ported pathways in the same connected component: hsa00250, hsa00270 and
hsa00480. The biological perturbation stemming from the MS-derived com-
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Table 8: Reported pathways
KEGG id Pathway name HD norm HD sim PR norm PR sim MA FCS MA ORA IMPaLA ORA
hsa00250 Alanine, aspartate and glutamate metabolism + + + + + + -
hsa00270 Cysteine and methionine metabolism + + + + + + +
hsa00480 Glutathione metabolism + + + + + + +
hsa05230 (hsa00970) Central carbon metabolism in cancer + + - - * - +
hsa05231 (hsa00564) Choline metabolism in cancer + + + + * - -
hsa00260 (M00020) Glycine, serine and threonine metabolism * * - - + - -
hsa00330 (M00133) Arginine and proline metabolism * + - - + - +
hsa00510 (M00073) N-Glycan biosynthesis - - * * - - -

Pathways reported by our methods. ’+’ means a hit for the term reported in the KEGG id column,
’*’ stands for a hit of the closely related term in parenthesis in the same column and ’-’ states no hit.
Our 4 solutions are compared to MetaboAnalyst (MA), using ORA and FCS, and IMPaLA using ORA.
Pathways hsa00250, hsa00270 and hsa00480 are repeatedly reported by all the methodologies. Pathways
hsa05230 and hsa05231 are reported by some of our methods, while alternative approaches find some
close (*) and exact (+) matches. In some cases, instead of reporting a whole pathway, only specific
modules within it are reported as relevant; this is the case of M00133 and M00073. Furthermore, module
M00073 does not contain any compounds, being out of the scope of MetaboAnalyst and IMPaLA, but is
reported by one of our methods due to the presence of other indirect relationships through enzymes in
the graph.

pounds can be tracked in terms of reactions, enzymes and modules, up to
the relevant pathways.

On the other hand, results on the recovery of synthetic signals can be
found in Fig 22. In (a) absence of signal, HD ranks pathways with a mean
rank close to 0.5, and only a few are biased to the top or the bottom of the
list. Mean ranks in Fisher’s exact test and PR are also centered around 0.5,
but have more dispersion. In (b) the presence of a target pathway, three sam-
pling schemes have been explored. In (1) the signal is actually noise and the
target pathway is a decoy. The rank of the target pathway for HD and PR
is uniformly spread in [0, 1], whereas Fisher’s exact test shows some asym-
metry in the rank distribution. In (2), the sampling probability depends on
the presence or absence of the metabolite in the pathway. Fisher’s exact test
outperforms HD and PR as the median rank of the target pathway is closer
to 0, as expected by its optimality. However, in (3), the sampling probabil-
ity is network-based and HD outperforms PR, which in turn outperforms
Fisher’s exact test. Differences between sim (Monte Carlo trials) and norm
(parametric approach) are subtle.

6.3.5 NMR analysis

NMR carbon tracking revealed 13 isotopically enriched metabolites from
13C-glucose, showing differential fractional enrichment between case-control,
of which 5 had already been found through MS; some of these metabo-
lites can be seen in Fig 23 in the context of the Glutathione metabolism.
Our solutions are assessed in terms of the resistance distance from the re-
ported reactions to the remaining 8 metabolites. The smaller the overall
distance of a solution, the more related its nodes are to the 8 metabolites
proven affected by NMR. The resistance distances have been computed on
the reaction-compound graph, which is the largest CC of the subgraph that
contains all the reactions and compounds in the KEGG graph.

The reactions suggested in our subgraphs show lower resistance distances
to the 8 NMR-derived metabolites than the totality of reactions in the reaction-
compound graph (Table 9). Furthermore, they are also lower than the resis-
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Figure 21: Subgraph reported through HD norm, the names of reactions and en-
zymes have been omitted for clarity. Compounds are green, reactions
are blue, enzymes are orange, modules are purple and pathways are
red. The compounds in the input are highlighted as green squares to
ease the tracing of the biological perturbation up to the pathways. The
presence of reactions and enzymes that link pathways in this subgraph
might suggest relevant entities by which affected pathways crosstalk. All
the reported pathways and modules lie in a large CC, as well as a newly
proposed metabolite (L-Glutamate).

tance distances from the neighbouring reactions of the MS-derived metabo-
lites to the 8 NMR metabolites (FDR < 0.01).

6.4 discussion

Our approach for enriching summary metabolomics data, Fig 16, is based
on diffusion processes over a graph drawn from several KEGG categories
(Fig 17). KEGG is the database of choice due to its level of curation and
structure, which eases the graph representation. Specifically, the definition
of KEGG categories naturally allows a hierarchical arrangement of levels.
Our graph design is enhanced by the compound-reaction-enzyme-gene net-
works built by MetScape (S1 Appendix), and the inclusion of modules and
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Figure 22: Synthetic signals evaluation using the pathway rank as a metric to assess
orderings. Lowest ranks correspond to best ranked pathways. The pro-
posed methodology is compared to ORA, represented by Fisher’s exact
test. (a) 288 noisy signals have been generated, and every pathway has
been ranked in each of the 288 runs. Data points for a given method-
ology are the mean rank of each pathway, giving 288 data points per
box. (b) 288 signals with a target pathway have been generated, in three
scenarios: pure noise, proportion-based sampling and network-based
sampling. Each box contains the rank of the target pathway, leading to
288 data points per box.

Table 9: Distance to NMR metabolites

Method Graph order C00299 C00122 C00116 C00105 C00020 C00581 C00300 C00025

Reaction-compound graph 4539[8008] 0.56(0.62) 0.56(0.62) 0.57(0.62) 0.54(0.62) 0.47(0.62) 0.93(0.62) 0.82(0.62) 0.47(0.62)
First neighbours 414[447] 0.42(0.12) 0.43(0.12) 0.44(0.12) 0.40(0.12) 0.33(0.12) 0.79(0.12) 0.68(0.12) 0.33(0.12)
HD norm 147[250] 0.39(0.10) 0.39(0.10) 0.40(0.10) 0.37(0.10) 0.30(0.10) 0.76(0.10) 0.65(0.10) 0.30(0.10)
HD sim 148[261] 0.39(0.09) 0.39(0.09) 0.40(0.10) 0.37(0.09) 0.30(0.09) 0.76(0.09) 0.65(0.09) 0.30(0.09)
PR norm 143[250] 0.39(0.10) 0.39(0.10) 0.40(0.10) 0.37(0.10) 0.30(0.10) 0.75(0.10) 0.65(0.10) 0.30(0.10)
PR sim 172[279] 0.40(0.12) 0.41(0.12) 0.42(0.12) 0.38(0.12) 0.31(0.12) 0.77(0.12) 0.66(0.12) 0.31(0.12)

Mean resistance distance between the reactions reported in our solutions and each compound reported
using NMR, with their standard deviations in parentheses. For each subgraph of KEGG graph, the
number of reactions and the total number of nodes (in square brackets) are displayed. The reaction-
compound subgraph contains the largest connected component having all the reactions and compounds
in the KEGG graph. The first neighbours subgraph contains the MS-derived metabolites and all the reac-
tions in which they participate. Resistance distances are computed on the reaction-compound graph. For
every NMR-derived metabolite, there is a significant difference in resistance distances between the reac-
tions proposed in our solutions and the reactions involving any of the MS-derived metabolite (one-sided
Wilcoxon test, FDR < 0.01 for the 32 possible comparisons: 8 NMR metabolites, tests of 4 solutions
against the first neighbours reactions). This implies that the reported reactions are closer to the NMR-
derived compounds than the bulk of neighbouring reactions.

pathways in our arrangement allows a comprehensive picture of the affected
biology.

The graph contains all the KEGG compounds and the subset of affected
metabolites forced to diffuse inside it (Fig 17). The closer a node is to the
affected compounds, the higher its score becomes. Likewise, the top scoring
candidates naturally involve higher flow and become relevant in the flow
discharge from the graph. Because our KEGG graph is conceived and cu-
rated in a bottom-up manner, diffusion is expected to follow that trend too:
the perturbation in the lowest level will diffuse to the upper levels to exit
the graph. Ideally, a relevant subgraph found through this diffusion (Fig
21) would inherit the stratification of the KEGG graph, thus allowing the
extrapolation of knowledge in terms of compounds to the rest of categories.
This allows holistic picturing of pathways of interest, such as Glutathione
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Figure 23: KEGG representation of the Glutathione metabolism (hsa00480). KEGG
compounds found affected through MS (orange) and NMR (blue) are
pinpointed in the figure. Additionally, enzymes and compounds re-
ported by HD norm are depicted in red. Our approach provides a crite-
rion for highlighting a pathway together with the entities it contains, for
example its reported enzymes, to build a sub-pathway representation
richer than the classical methods that rely solely on pathways and com-
pounds. Reprinted from www.genome.jp under a CC BY license, with
permission from Kanehisha Laboratories, original copyright 2014.

metabolism (Fig 23) and importantly, it relates affected pathways through
reactions, enzymes and compounds.

The mathematical formulation of the heat diffusion stationary tempera-
tures is equivalent to the scores in HotNet and TieDIE, with ad-hoc bound-
ary conditions (Fig 17). Conversely, our settings for PageRank force upwards
diffusion and allow exit from every node through the damping factor. Node
selection for HotNet follows a combinatorial model, whereas TieDIE applies
a unique threshold for all the scores, which in turn come from two diffusive
processes. In our case, selection is achieved through a unique diffusion fol-
lowed by a null model that normalises the scores. Comparing raw scores
between nodes can lead to biases related to the node level and topology (Fig
19ab), pathway nodes clearly being affected by their degree and, in addition,
overshadowed by other compounds and reactions with higher mean null
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temperatures. Without further action, the temperatures of larger pathways
are systematically warmer regardless of the input, thus biasing all the results
and any biological interpretation. Instead, our concept of a high score for
a given node relies on comparing its score to its null distribution, treating
each node according to its own topological features (Fig 16).

This is consistent with the pathway over-representation analysis, as the
latter can be posed as a very simple diffusion problem that needs the null
model to translate the observed statistics into p-values that are comparable
across pathways (Fig 18). Ranking pathways by the number of hits and
ignoring the null model would bias the results towards larger pathways,
which is also what happens in our diffusion approach if raw temperatures
are used (Fig 20ab).

Finally, we extract four subgraphs by considering the top k scores for
HD norm, HD sim, PR norm and PR sim. Spurious highlighted nodes are
expected to appear as isolated or having very small CCs, similar to random
selection of nodes in a sparse graph, whereas strong biological perturbations
yield larger CCs. Therefore, the large CCs reported in the four subgraphs
(Table 6) are natural goodness-of-solution indicators.

Analysing the two statistical approaches, we suggest both deterministic
parametric techniques and stochastic non-parametric ones. Computing a z-
score is simple and fast, giving insights into how high a score is in terms
of standard deviations from the mean value. On the other hand, Monte
Carlo trials can show some variability between solutions, so an ensemble
approach can address this, while providing confidence measures for each
reported node. Conversely, several quantiles can be estimated and stored if
the graph is unchanged for further analyses, which is reasonable for a given
KEGG database release.

Regarding time and memory complexity, the complete analysis of the
database requires a one-off computation the inverse of the conductance ma-
trix of the graph, which is feasible in our scenario and already pre-computed
for our public package. The cost of the Monte Carlo trials is benchmarked
in S5 Appendix. Comparing both random walk approaches, we observe a
tendency to report larger CCs through heat diffusion (Table 6), because it
can propose new compounds in the solution that connect otherwise disjoint
CCs. This is not the case for PageRank, as forcing the diffusion upwards
excludes other compounds from being visited by the random walks. As ex-
pected, all the approaches tend to report the metabolites that were specified
in the input, although the z-scores can be more restrictive when suggest-
ing new compounds in heat diffusion, possibly due to their high variance.
Despite the differences between scoring methods and statistical approxima-
tions, solutions show a consistency because of their high overlap (Table 7).
Furthermore, reporting subgraphs with a stratification similar to the KEGG
graph (S5 Appendix) indicates perturbation traceability and allows inference
on various KEGG categories by measuring only compounds.

As a pathway enrichment method, our procedure shows results consistent
with the state of the art. Artificial signals have been generated to discover
biases in particular pathways and assess the goodness of the rankings pro-
duced by the methods. In (a) the absence of signal, the mean rank of a
pathway is expected to be uniform on [0, 1] and have a mean value of 0.5. If
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the mean value is closer to 0, the pathway might be systematically favoured
in any analysis and could become a recurrent false positive. HD shows small
deviations from 0.5 in the mean rank of the 288 pathways in the KEGG graph
while PR and Fisher’s exact test show more dispersion. This may be due to
the discrete nature of Fisher’s exact test, which is partly inherited by PR
as it only allows upwards propagation. In (b) the presence of signal, a tar-
get pathway generates the signal and is ranked in the prioritisation of each
method. In the first sampling scheme, the target pathway is actually a decoy
and is expected to be ranked uniformly on [0, 1]. This is the case for HD and
PR, but Fisher’s exact test shows an asymmetrical distribution, probably a
consequence of pathways tied at 0 hits. If the sampling strategy is affine to
Fisher’s exact test alternative hypothesis, this test has an edge over HD and
PR in terms of discovering the true positive. Conversely, if the sampling is
network-based, HD and PR perform better, as the binary nature of Fisher’s
exact test cannot account for metabolites close to, but not inside of, a target
pathway. This sampling generates signals that are harder to recover because
of the network topology: crosstalk effects are present and unspecific metabo-
lites divide their contribution over all the pathways to which they belong.
This implies that, focusing on the pathway ranking problem, the optimal
choice between Fisher’s exact test and HR or PR depends on the network
influence in the generative model of the data.

An added value of our approach is in providing further details about the
reported pathways, together with more specificity due to the presence of
KEGG modules. Our results offer sub-pathway resolution and, unlike other
sub-pathway focused tools, details at several molecular levels between the
metabolites and the pathways. Entities like enzymes or metabolites that
appear relevant and shared among pathways can give insights of pathway
overlap and crosstalk that is specific to the condition under study. Our path-
way hits are consistent with the current techniques, both using list format
and abundance data (Table 8). The same tendency is observed when bench-
marking with IMPaLA and MetaboAnalyst example data, details in Tables
S2 and S3. However, the nature of our scores takes into account pathway
overlap, which is not the case for IMPaLA (ORA) and MetaboAnalyst (ORA
and MSEA).

Our prior studies (Aivio and Stracker, 2014) suggest that the Glutathione
metabolism (Fig 23) is of particular interest and it is consistently pinpointed
by the enrichment methods. Its study is illustrative of the workings of our
methodology: nodes surrounding the input metabolites support warmer
temperatures and hence the proposed enzymes within the pathway are close
to the MS-derived metabolites. The suggestion of these enzymes gives a
richer view within the pathway and can help generate new biological hy-
potheses. This context also depicts L-glutamate, an extra metabolite sug-
gested by the method, which is surrounded by MS-derived metabolites and
also found through NMR.

The lack of a gold standard procedure and a reference benchmark dataset
with known biology for pathway enrichment (Huang et al., 2009; Khatri et al.,
2012) encouraged the analysis of metabolic changes using isotopic labelling
and NMR. The novelty of our tool includes the generation of a comprehen-
sive subgraph that contains more than pathways and compounds – conse-
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quently we also partially validate the reactions that appear in the subgraph.
The definition of performance is not straightforward, given the lack of means
to prove that a node (compound, reaction) is not affected, so the usual qual-
ity measures (false positives, true negatives) are not applicable. Results show
that our reported reactions have lower resistance distances to the 8 metabo-
lites found by NMR than all the reactions involving any of the MS-derived
metabolites (Table 9). The choice of resistance distance as a validation met-
ric is motivated by the presence of hubs in the metabolic network that affect
the usual shortest paths metrics, meaning that connections through very
specific metabolic reactions are masked by very general reactions involving
hubs like adenosine triphosphate (ATP). As resistance distance takes into
account the whole graph structure, and specifically the presence of multiple
shortest paths, it is more informative than shortest paths distance.

6.5 conclusions

We propose a secondary analysis methodology for summary metabolo-
mics data that combines pathway enrichment and sub-network analysis.
Instead of reporting a list of pathways, we build meaningful sub-pathway
representations of the biology at several molecular levels, derived through
a null diffusive process on a curated graph object built from the KEGG
database. This approach accounts for pathway over-representation, topology
and crosstalk. Nodes reported as relevant are drawn in a comprehensive het-
erogeneous network that contains not only pathways and compounds, but
also enzymes, reactions and KEGG modules. This richer biological context
adds value to the top pathway hits by suggesting possible paths through
which affected compounds translate into dysregulated pathways.

The proposed methodology has been tested and assessed in a case-control
study, where the suggested pathways are consistent with alternative path-
way enrichment techniques and the reported reactions have been partially
validated through NMR-based tracking of glucose carbon. Our analysis sug-
gests that the Glutathione metabolism is one of the most affected pathways.
Glutathione is critical for the suppression of reactive oxygen species and this
result is consistent with our preliminary observations that these cells exhibit
higher levels of mitochondrial reactive oxygen species. Tests on simulated
data suggest that our methodology can benefit from pathway signals whose
generative model is network-based. These results support the potential of
our novel methods for aiding in the interpretation of complex metabolomics
datasets.
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7 T H E R PA C K A G E F E L L A

fella: an r package to enrich metabolomics data
Pathway enrichment techniques are useful for understanding experimen-

tal metabolomics data. Their purpose is to give context to the affected
metabolites in terms of the prior knowledge contained in metabolic path-
ways. However, the interpretation of a prioritized pathway list is still chal-
lenging, as pathways show overlap and cross talk effects.

We introduce FELLA, an R package to perform a network-based enrich-
ment of a list of affected metabolites. FELLA builds a hierarchical represen-
tation of an organism biochemistry from the Kyoto Encyclopedia of Genes
and Genomes (KEGG), containing pathways, modules, enzymes, reactions
and metabolites. In addition to providing a list of pathways, FELLA re-
ports intermediate entities (modules, enzymes, reactions) that link the input
metabolites to them. This sheds light on pathway cross talk and potential
enzymes or metabolites as targets for the condition under study. FELLA
has been applied to six public datasets –three from Homo sapiens, two from
Danio rerio and one from Mus musculus– and has reproduced findings from
the original studies and from independent literature.

The R package FELLA offers an innovative enrichment concept starting
from a list of metabolites, based on a knowledge graph representation of
the KEGG database that focuses on interpretability. Besides reporting a list
of pathways, FELLA suggests intermediate entities that are of interest per
se. Its usefulness has been shown at several molecular levels on six pub-
lic datasets, including human and animal models. The user can run the
enrichment analysis through a simple interactive graphical interface or pro-
grammatically. FELLA is publicly available in Bioconductor under the GPL-3
license.

7.1 background

Metabolomics is the science that measures lightweight molecules in liv-
ing organisms and stands as a valuable source of biomarkers and biologi-
cal knowledge (Madsen et al., 2010). The preprocessing of such data can
be achieved through pipelines like MeltDB (Kessler et al., 2013) or MAIT
(Fernández-Albert et al., 2014). Once metabolite abundances are available,
pathway analysis tools ease data interpretation (Khatri et al., 2012) by fram-
ing the affected metabolites in terms of contextual knowledge. Databases

This chapter is a postprint of the following journal article: Picart-Armada, Sergio, Francesc
Fernández-Albert, Maria Vinaixa, Oscar Yanes, and Alexandre Perera-Lluna. “FELLA: an R
package to enrich metabolomics data”. BMC bioinformatics 19, no. 1 (2018): 538.
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like the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2011) are sources of curated pathway data. The classification of enrichment
techniques used here follows the review in (Khatri et al., 2012).

Over representation analysis (ORA) approaches are based on testing the
proportion of a list of affected metabolites inside a pathway. ORA is available
in tools like the web server MetaboAnalyst (Xia et al., 2015) and the R pack-
age clusterProfiler (Yu et al., 2012). Functional class scoring (FCS) approaches
use quantitative data instead and seek subtle but coordinated changes in the
metabolites belonging to a pathway. MSEA in MetaboAnalyst and IMPaLA
(Kamburov et al., 2011) contain implementations of FCS for metabolomics.
Pathway topology-based (PT) approaches further include topological mea-
sures of the metabolites in the statistic, accounting for their inequivalence
within the pathway. PT analyses can be performed using MetaboAnalyst.

Here, we introduce the R package FELLA, available in Bioconductor (Hu-
ber et al., 2015), for metabolomics data interpretation that combines pathway
enrichment with network analysis. The list of affected metabolites and the
reported pathways are connected through intermediate entities -reactions,
enzymes, modules- in a heterogeneous network layout. This suggests how
the perturbation spreads at the pathway level and how pathways cross talk,
enhancing the interpretability of the output.

7.2 implementation

FELLA is an R package that performs metabolomics data enrichment start-
ing from (I) a network derived from KEGG and (II) a list of KEGG com-
pounds (Fig. 25). A sub-network relevant to the input is extracted from (I)
using network propagation algorithms that start from the labels in (II), pro-
viding a data enrichment that goes beyond a pathway list. The purpose of
FELLA is to elaborate a biological explanation that justifies how the input
metabolites can reach the reported pathways, as well as perspective on path-
way cross talk. Two user guides illustrate the principles and the usage of
FELLA: a quickstart (additional file 3) and an in-depth vignette with imple-
mentations details and three real examples (additional file 1). Two additional
vignettes (additional files 4 and 6) serve as case studies for non-human or-
ganisms.

7.2.1 Methodology

The cornerstone of FELLA is its knowledge graph representation of the bio-
chemistry in KEGG at several molecular levels. The network is hierarchical
and connects KEGG compounds (metabolites) to KEGG pathways through
intermediate entities, namely reactions, enzymes and KEGG modules, see
figure 24. Such connections (edges) are obtained directly from KEGG anno-
tations. The presence of intermediate levels allows inference at their level,
meaning that relevant reactions, enzymes and KEGG modules can be sug-
gested just by starting from a list of affected metabolites. This feature is
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evaluated in several case studies, by linking the suggested enzymatic fami-
lies and reactions to literature and to original findings within the studies.

Compounds

Reactions

Enzymes

Modules

Pathways

(a) (b)

Figure 24: Node arrangement for the knowledge model used by FELLA. Entities
are organised in a hierarchical manner, from bottom to top: KEGG com-
pounds or metabolites, reactions, enzymes, KEGG modules and path-
ways. Binary labels at the level of metabolites are propagated to the
rest of the network and a relevant, small sub-network is automatically
reported. Nodes are ranked using the network propagation algorithms
(a) heat diffusion and (b) PageRank. The affected metabolites are high-
lighted with a black ring. For heat diffusion (a), affected metabolites
are forced to generate unitary flow. Every pathway is highlighted with
a blue ring, representing its connection to a cool boundary node. In
equilibrium, the highest temperature pathways (and nodes) will have
the greatest heat flow, suggesting a relevant role in the experiment. For
PageRank (b), affected metabolites are the start of random walks. PageR-
ank scores, represented by the intensity of the blue colour, will attain
higher values in the frequently reached random walk nodes. Figure ex-
tracted from (Picart-Armada et al., 2017).

In order to report a sub-network, nodes are ranked according to a scoring
function –based on network propagation– and only the top scoring nodes are
returned. Two algorithms are supported for propagating the labels from the
affected metabolites: a classical heat diffusion approach (Vandin et al., 2011)
and the PageRank web ranking algorithm (Page et al., 1999). Further details
on the network propagation settings can be found in (Picart-Armada et al.,
2017) and in additional file 1. The main difference between both algorithms
is that heat diffusion is undirected whereas PageRank is directed upwards.
In practice, contrary to PageRank, heat diffusion will frequently report new
metabolites because heat is allowed to propagate back to compounds from
the upper levels (Picart-Armada et al., 2017). This behaviour can ease the
discovery of intermediate metabolites that lay close to the input metabolites
and tend to connect them. An example of its usefulness can be found in the
gilt-head bream study.

As exposed in (Picart-Armada et al., 2017), ranking nodes according to
their raw diffusion scores suffers from a strong bias, related to the node
level and topological features. This is addressed by normalising the dif-
fusion score of every node using its background distribution under input
permutations. Permutations can be simulated through Monte Carlo trials to
obtain an empirical p-value, labelled as p-score. Alternatively, a parametric
z-score can be obtained without requiring Monte Carlo trials. The p-score

is obtained by transforming the z-score to lie in the [0, 1] interval through the
cumulative distribution function of a standard normal distribution. Under
both statistical approximations, nodes with the lowest p-scores are reported
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as the suggested sub-network. Note that p-scores are used as a ranker rather
than for testing hypotheses.

An optional filter allows the removal of small connected components from
the reported sub-network. When building the database, a number of ran-
dom sub-networks are sampled to characterise how infrequent a connected
component of order at least r is when k nodes are uniformly sampled. The
assumption behind this filter is that meaningful inputs encompass metabo-
lites relatively close to each other within the knowledge graph, prone to be
reported in large connected components involving most of them.

7.2.2 Classes

FELLA relies on two classes: FELLA.DATA for the internal knowledge
representation, based on the igraph R package (Csardi and Nepusz, 2006),
and FELLA.USER for the user analysis, see figure 25. These classes contain
subclasses, invisible to the user and described in the additional file 1. The
functions to manipulate both classes are described below, following the three
blocks from figure 25.

buildGraphFromKEGGREST()

buildDataFromGraph()

loadKEGGdata()

defineCompounds()

runHypergeom()
runDiffusion()
runPagerank()

generateResultsTable()

generateEnzymesTable()generateResultsGraph()

addGOtoGraph()
plotGraph()

Organism
e.g. Homo sapiens

Input compounds
e.g. C1, C3, C8, C9, C24

C1
C3
C8

FELLA.USER

C1
C3
C8

FELLA.USER

0.5
0.1
1.2
 .
 .
 .

FELLA.DATA

III

III

Figure 25: Design of the R package FELLA. (I) creation of a graph object from an
organism code and its database, (II) ID mapping and propagation algo-
rithms (diffusion, PageRank) to score all the nodes, (III) node prioritisa-
tion and results exporting.
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Block I: local database

The function buildGraphFromKEGGREST() retrieves the tabular KEGG data
for the desired organism and builds the knowledge graph as described
in (Picart-Armada et al., 2017). Then, a database can be built from the
graph and stored in a local folder using buildDataFromGraph(). Databases
are needed for the enrichment and should be loaded through the function
loadKEGGdata().

Block II: enrichment analysis

Once the database is loaded, i.e. the FELLA.DATA object is in mem-
ory, defineCompounds() maps the list of input metabolites, in the form of
KEGG identifiers, to the internal representation, providing a FELLA.USER
object. Then, the propagation algorithms in (Picart-Armada et al., 2017) are
run to score the graph nodes. runDiffusion() uses the undirected heat
diffusion model (Vandin et al., 2011) whereas runPagerank() runs the di-
rected PageRank algorithm (Page et al., 1999). Both approaches are automat-
ically followed by the statistical normalisation, either as a parametric z-score
(approx = "normality") or as a simulated permutation analysis (approx =

"simulation"), see table 10. The wrapper enrich() performs the metabo-
lite mapping and the desired propagation algorithm (argument method) and
statistical normalisation with a single call.

Table 10: Scoring methods offered in FELLA, chosen by the enrich function ar-
guments method and approx. Each row corresponds to a method men-
tioned in the original publication (Picart-Armada et al., 2017). The
method hypergeom is Fisher’s exact test, included for reference. Method
diffusion scores the nodes using the heat diffusion model to score the
nodes. Method pagerank uses the PageRank algorithm on an upwards-
directed version of the network. Both scores undergo a statistical nor-
malisation to remove structural biases, controlled through the approx ar-
gument. The user can choose the fast, parametric z-scores (normality)
or the slower, non-parametric permutation analysis (simulation). N/A:
non-applicable.

Method Approx Notation in (Picart-Armada et al., 2017) Comment
hypergeom N/A hypergeometric test Included for reference

diffusion normality HD norm Heat diffusion scores followed by z-scores
diffusion simulation HD sim Heat diffusion scores followed by permutations
pagerank normality PR norm PageRank scores followed by z-scores
pagerank simulation PR sim PageRank scores followed by permutations

Block III: exporting results

Finally, the best scoring KEGG entries can be visualised through plot(),
exported as a sub-network with generateResultsGraph(), or in tabular for-
mat with generateResultsTable(). A dedicated table with the reported en-
zymes and its associated genes can be obtained with generateEnzymesTable().
Alternatively, exportResults() allows writing such objects directly to files.
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7.2.3 User interface

FELLA includes an interactive graphical interface, based on the R package
shiny (Chang et al., 2018) and deployable through launchApp(). The interface
is divided with four tabs that encompass most options from FELLA (figure
26). Currently, the database needs to be built outside the graphical interface
and prior to its usage.

(A)

(C)

(B)

(D)

Figure 26: Perspective of the interactive app within FELLA. The app is composed
by four tabs: (A) compounds upload, (B) advanced options, (C) results
and (D) export. The lay user can rapidly explore his or her data without
knowing the details about the syntax in FELLA.

Compounds upload

This tab contains a general description of the interface and a handle to
submit the input metabolite list as a text file. Examples are provided as well.
The right panel shows the mapped and the mismatching compounds with
regard to the current database.

Advanced options

Widgets from this tab adjust the main function arguments for customis-
ing the enrichment procedure. They ease database choice from the inter-
nal package directory, method and approximation definition and parameter
tweaking. It also allows the semantic similarity analysis on the reported en-
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zymes, using the R package GOSemSim (Yu, F. Li, et al., 2010) with the Gene
Ontology annotations (Consortium, 2015).

Results and discussion

The results section mainly consists of an interactive network plot with the
top k KEGG entries. Nodes can be moved, selected, queried and hovered to
reveal the original KEGG entry. An interactive table lies below the plot and
expands the data on the nodes.

Export

The last tab offers several options to download the reported sub-network
(tabular format or R object) and enzymes (tabular format).

7.3 results

The algorithmic part of FELLA has already been discussed and validated
in (Picart-Armada et al., 2017). The usage of FELLA is hereby demonstrated
on three public human studies on epithelial cells (Chen et al., 2015), ovarian
cancer cells (Yu et al., 2014) and febrile illnesses (Decuypere et al., 2016).
The examples guide the user on how to build the database, format the input
data, complete the enrichment and export its results (see additional file 1).
FELLA reproduces findings from the original publications, not only in the
form of pathway hits but also as newly suggested enzymes and metabolites.
The additional file 2 shows further details on the metabolites in each input
and the reported sub-networks.

To demonstrate its usefulness outside human studies, FELLA is applied
to two datasets from a gilt-head bream study (Ziarrusta et al., 2018) and a
mouse model of non-alcoholic fatty liver disease (Gogiashvili et al., 2017).
The complete analyses can be respectively found in additional files 4 and 6,
whereas their respective R workspaces are saved in files 5 and 7. Table 11

summarises the knowledge graphs in the FELLA.DATA object for each or-
ganism.

Table 11: Summary of the FELLA.DATA objects used for the three human and the
three non-human datasets. Generalist and overview pathways are ex-
cluded from the models, see additional files 1, 4 and 6 for further details
on each organism.

Organism KEGG release Nodes Pathways Modules Enzymes Reactions Compounds
Homo sapiens 85.0+/02-16 9899 314 182 1110 4829 3464

Danio rerio 87.0+/09-14 9637 162 179 995 4843 3458

Mus musculus 87.0+/09-14 9909 316 185 1107 4843 3458

7.3.1 Epithelial cells dataset

The epithelial cancer cells study (Chen et al., 2015) runs an in vitro model
of dry eye in which the human epithelial cells IOBA-NHC are put under hy-
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perosmotic stress. The list of 9 metabolites hereby used reflects metabolic
changes in “Treatment 1” (24 hours in serum-free media at 380 mOsm)
against control (24 hours at 280 mOsm). The metabolites have been extracted
from “Table 1” in the original manuscript and mapped to 9 KEGG ids, from
which 8 map to the FELLA.DATA object. The enrichment (sub-network in
figure 27) is obtained by leaving the default parameters in FELLA: method
= "diffusion", approx = "normality" and threshold = 0.05. The amount
of nodes has been limited to nlimit = 150.

Categories for each node

Pathway
Module

Enzyme
Reaction

Compound
Input compound

Choline metabolism in cancer - Homo sapiens

Mucin type O-glycan biosynthesis - Homo sapiens (h...

Glycosphingolipid biosynthesis - lacto and neolact...

ABC transporters - Homo sapiens (human)

UDP-N-acetyl-alpha-D-glucosamine

L-Glutamine

L-Methionine

L-Glutamate

L-Tyrosine

Choline

Carnitine

Choline phosphate

sn-Glycero-3-phosphocholine

Figure 27: Results of the node prioritisation by FELLA in the epithelial cells dataset.
The user is given a list of positive entities, after a score threshold de-
scribed in (Picart-Armada et al., 2017), with information on how the
input metabolites reach the suggested pathways and on how these path-
ways cross talk. Plots of the ovarian and malaria datasets can be found
in the additional file 2.

The activation of the “glycerophosphocholine synthesis” rather than the
“carnitine” response is a main result in the original work (Chen et al., 2015).
FELLA highlights the related pathway “choline metabolism in cancer” and
the “choline” metabolite as well. Another key process is the “O-linked
glycosilation”, which is close to the KEGG module “O-glycan biosynthe-
sis, mucin type core” and to the KEGG pathway “Mucin type O-glycan
biosynthesis”. Finally, FELLA reproduces the finding of “UAP1” by report-
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ing the enzyme “2.7.7.23”, named “UDP-N-acetylglucosamine diphosphory-
lase”. “UAP1” is a key protein in the study, pinpointed by iTRAQ (Isobaric
Tags for Relative and Absolute Quantitation) and validated via western blot.

7.3.2 Ovarian cancer cells dataset

The second dataset has been extracted from the study on metabolic re-
sponses of ovarian cancer cells (Yu et al., 2014). OCSCs are isogenic ovarian
cancer stem cells derived from the OVCAR-3 ovarian cancer cells. The abun-
dances of 6 metabolites are affected by the exposure to several environmen-
tal conditions: glucose deprivation, hypoxia and ischemia. From those, 5

metabolites map to the FELLA.DATA object. The sub-network is obtained by
leaving the default parameters and setting a limit of nlimit = 150 nodes.

Several “TCA cycle”-related entities are highlighted, also found by the au-
thors and by previous work (Pollard et al., 2003). It also mentions “sphingo-
sine degradation”, closely related to the reported “sphingosine metabolism”
in the original work. Enzymes that have been formerly related to cancer
are suggested within the TCA cycle, like “fumarate hydratase” (Lehtonen
et al., 2007; Pithukpakorn et al., 2006; Pollard et al., 2003), “succinate dehy-
drogenase” (Ni et al., 2008; Pollard et al., 2003) and “aconitase” (Singh et
al., 2006). Another suggestion is “lysosome”(s), known to suffer changes in
cancer cells and directly affect apoptosis (Kirkegaard and Jäättelä, 2009). Fi-
nally, the graph contains several “hexokinases”, potential targets to disrupt
glycolysis, a fundamental need in cancer cells (Kaelin and Thompson, 2010).

7.3.3 Malaria dataset

The metabolites in this example are related to the distinction between
malaria and other febrile illnesses (Decuypere et al., 2016). Specifically, the
list of 11 KEGG identifiers (9 in the FELLA.DATA object) has been extracted
from the original supplementary data spreadsheet, using all the possible
KEGG matches for the “non malaria” patient group. The sub-network is
obtained by leaving the default parameters and setting a limit of nlimit =

50 nodes.
In this case, the depicted subnetwork contains the modules “C21-Steroid

hormone biosynthesis, progesterone =>corticosterone/aldosterone” and “C21-
Steroid hormone biosynthesis, progesterone =>cortisol/cortisone”, related
to the “corticosteroids” as a main pathway reported in the original text.
This is part of the also reported “Aldosterone synthesis and secretion”; al-
dosterone is known to show changes related to fever as a metabolic re-
sponse to infection (Beisel, 1975). Another plausible hit in the sub-network
is “linoleic acid metabolism”, as erythrocytes infected by various malaria
parasytes can be enriched in linoleic acid (Fitch et al., 2000). In addition,
the pathway “sphingolipid metabolism” can play a role in the immune
response (Maceyka and Spiegel, 2014; Seo et al., 2011). As for the en-
zymes, “3alpha-hydroxysteroid 3-dehydrogenase (Si-specific)” and “Delta4-
3-oxosteroid 5beta-reductase” are related to three input metabolites each and
might be candidates for further examination.
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7.3.4 Oxybenzone exposition on gilt-head bream datasets

A study of the consequences of the oxybenzone contaminant on gilt-head
bream (Ziarrusta et al., 2018) found five dysregulated KEGG metabolites in
their liver and eleven in their plasma. The study justified its findings through
literature and complemented them with insights provided by FELLA. Here,
both metabolite lists are used to build suggested sub-networks with the de-
fault parameters and fixing nlimit = 250. The FELLA.DATA object is built
for the Danio Rerio organism, a common approximation when annotations
specific to gilt-head bream are not available. Further details can be found in
the vignette (additional file 4) and its workspace (additional file 5).

The enrichment on the liver-derived metabolites links all of them within a
connected component of roughly 100 nodes. It points to “Phenylalanine me-
tabolism” as one of the key metabolic pathways, in accordance with the main
results from the article. Among the suggested metabolites, “Tyrosine” is of
particular help to explain the connection between the affected metabolites
(see Fig. 2 from (Ziarrusta et al., 2018)).

Plasma metabolites involve a more complex scenario. FELLA reports ten
out of the eleven metabolites in a connected component involving around
120 nodes. Seven pathways are suggested, from which “Linoleic acid me-
tabolism”, “Biosynthesis of unsaturated fatty acids”, “alpha-Linolenic acid
metabolism”, “Glycerophospholipid metabolism” and “Glycine, serine and
threonine metabolism” were used to build a comprehensive picture of the
metabolic changes in the original manuscript (Fig. 3 from (Ziarrusta et al.,
2018)). Such figure brings a structured overview that narrows down the core
processes, also backed up by prior publications. Likewise, by drawing inter-
mediate metabolites found through FELLA, like “Linoleic acid” and “Phos-
phatidylcholine”, it achieves a cohesive representation of the input metabo-
lites.

7.3.5 Non-alcoholic fatty liver disease mouse model

This dataset exemplifies how FELLA can also be applied on an animal dis-
ease model. Metabolites in liver tissue from leptin-deficient ob/ob mice and
wild-type were compared using Nuclear Magnetic Resonance, whereas sev-
eral candidate genes were further investigated for differences in expression
(Gogiashvili et al., 2017). Six affected metabolites are introduced in FELLA,
leaving the default parameters and nlimit = 250. The FELLA.DATA object
is built for the Mus musculus organism. The vignette with the whole analy-
sis is provided provided as additional file 6, whereas its R workspace can be
found in additional file 7.

The sub-network found by FELLA involves “N,N-Dimethylglycine”, a mar-
ginally significant metabolite in the experimental data but with a relevant
role within the findings from the study. Regarding the genes, FELLA is
able to find the enzyme associated to Bhmt, validated and discussed in the
study. The enzyme associated to Cbs, another central hit, is not directly
found. However, its ranking (top 17% among enzymes) and especially that
of its reaction (top 3% among reactions) are highly suggestive. We also
show how other (1) related metabolites, found by leveraging the expression
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data, and (2) differentially expressed genes, taken from an external study
(Godoy et al., 2016), tend to have top p-scores in the prioritisation provided
by FELLA.

7.4 conclusions

We present FELLA, an R package for enriching metabolomics data, fo-
cused on interpretability. It can be used either programmatically or through
a simple user interface. FELLA offers a comprehensive enrichment by de-
picting the intermediate reactions, enzymes and modules that link the input
metabolites to the relevant pathways. This layout gives a biological picture
with information of the pathway overlap and the connections between the
entities of interest, while suggesting enzymes and possibly other metabolites
for further study. The utility of FELLA has been demonstrated on six public
datasets, both with human and non-human organisms, where reported enti-
ties include several original findings in addition to results from third studies.
FELLA is publicly available in the Bioconductor public repository under the
GPL-3 license.

availability and requirements

• Project name: FELLA

• Project home page: https://doi.org/doi:10.18129/B9.bioc.FELLA,
https://github.com/b2slab/FELLA

• Operating system(s): platform independent

• Programming language: R

• Other requirements: none

• License: GPL-3

• Restrictions to use by non-academics: those derived by the GPL-3
license

abbreviations

GPL-3: General Public License version 3; KEGG: Kyoto Encyclopedia
of Genes and Genomes; ORA: Over Representation Analysis; FCS: Func-
tional Class Scoring; PT: Pathway Topology-based; TCA: TriCarboxylic Acid;
iTRAQ: Isobaric Tags for Relative and Absolute Quantitation; UDP: Uridine
DiPhosphate; N/A: Non-Applicable

https://doi.org/doi:10.18129/B9.bioc.FELLA
https://github.com/b2slab/FELLA
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Case study with FELLA: two datasets on the effect of oxybenzone exposi-
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8 D I S E A S E G E N E I D E N T I F I C AT I O N

benchmarking network propagation methods for
disease gene identification

In-silico identification of potential target genes for disease is an essen-
tial aspect of drug target discovery. Recent studies suggest that successful
targets can be found through by leveraging genetic, genomic and protein
interaction information.

Here, we systematically tested the ability of 12 varied algorithms, based on
network propagation, to identify genes that have been targeted by any drug,
on gene-disease data from 22 common non-cancerous diseases in OpenTar-
gets. We considered two biological networks, six performance metrics and
compared two types of input gene-disease association scores. The impact of
the design factors in performance was quantified through additive explana-
tory models. Standard cross-validation led to over-optimistic performance
estimates due to the presence of protein complexes. In order to obtain
realistic estimates, we introduced two novel protein complex-aware cross-
validation schemes. When seeding biological networks with known drug
targets, machine learning and diffusion-based methods found around 2-4
true targets within the top 20 suggestions. Seeding the networks with genes
associated to disease by genetics decreased performance below 1 true hit on
average. The use of a larger network, although noisier, improved overall
performance.

We conclude that diffusion-based prioritisers and machine learning ap-
plied to diffusion-based features are suited for drug discovery in practice
and improve over simpler neighbour-voting methods. We also demonstrate
the large impact of choosing an adequate validation strategy and the defini-
tion of seed disease genes.

8.1 author summary

The use of biological network data has proven its effectiveness in many
areas from computational biology. Networks consist of nodes, usually genes
or proteins, and edges that connect pairs of nodes, representing information
such as physical interactions, regulatory roles or co-occurrence. In order to
find new candidate nodes for a given biological property, the so-called net-
work propagation algorithms start from the set of known nodes with that

This chapter is a postprint of the following journal article: Picart-Armada, Sergio, Steven J.
Barrett, David R. Willé, Alexandre Perera-Lluna, Alex Gutteridge, and Benoit H. Dessailly.
“Benchmarking network propagation methods for disease gene identification”. PLoS compu-
tational biology 15, no. 9 (2019): e1007276.

121



122 disease gene identification

property and leverage the connections from the biological network to make
predictions. Here, we assess the performance of several network propaga-
tion algorithms to find sensible gene targets for 22 common non-cancerous
diseases, i.e. those that have been found promising enough to start the clin-
ical trials with any compound. We focus on obtaining performance metrics
that reflect a practical scenario in drug development where only a small set
of genes can be essayed. We found that the presence of protein complexes bi-
ased the performance estimates, leading to over-optimistic conclusions, and
introduced two novel strategies to address it. Our results support that net-
work propagation is still a viable approach to find drug targets, but that
special care needs to be put on the validation strategy. Algorithms benefit-
ted from the use of a larger -although noisier- network and of direct evidence
data, rather than indirect genetic associations to disease.

8.2 introduction

The pharmaceutical industry faces considerable challenges in the efficiency
of commercial drug research and development (Scannell et al., 2012) and in
particular in improving its ability to identify future successful drug targets.

It has been suggested that using genetic association information is one of
the best ways to identify such drug targets (Nelson et al., 2015). In recent
years, a large number of highly powered GWAS studies have been published
for numerous common traits (for example, (Schizophrenia Working Group
of the Psychiatric Genomics Consortium, 2014; Verstockt et al., 2018)) and
have yielded many candidate genes. Further potential targets can be iden-
tified by adding contextual data to the genetic associations, such as genes
involved in similar biological processes (Boyle et al., 2017; Jia and Zhao,
2013). Biological networks and biological pathways can be used as a source
of contextual data.

Biological networks are widely used in bioinformatics and can be con-
structed from multiple data sources, ranging from macromolecular interac-
tion data collected from the literature (Orchard et al., 2012) to correlation of
expression in transcriptomics or proteomics samples of interest (Langfelder
and Horvath, 2008). A large number of interaction network resources have
been made available over the years, many of which are now in the public
domain, combining thousands of interactions in a single location (Razick et
al., 2008; Szklarczyk, Morris, et al., 2016). They are based on three different
fundamental types of data: (1) data-driven networks such as those built by
WGCNA (Langfelder and Horvath, 2008) for co-expression; (2) interactions
extracted from the literature using a human curation process as exempli-
fied by IntAct (Kerrien et al., 2011) or BioGRID (Chatr-Aryamontri et al.,
2017); and (3) interactions extracted from the literature using text mining
approaches (Al-Aamri et al., 2017).

On the other hand, a plethora of network analysis algorithms are avail-
able for extracting useful information from such large biological networks
in a variety of contexts. Algorithms range in complexity from simple first-
neighbour approaches, where the direct neighbours of a gene of interest are
assumed to be implicated in similar processes (Piovesan et al., 2015), to ma-
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chine learning (ML) algorithms designed to learn from the features of the
network to make more useful biological predictions (Re et al., 2012).

One broad family of network analysis algorithms are the so-called Net-
work Propagation approaches (Cowen et al., 2017), used in contexts such
as protein function prediction (Sharan et al., 2007), disease gene identifica-
tion (Cowen et al., 2017) and cancer gene mutation identification (Leiserson
et al., 2014). In this paper, we perform a systematic review of the usefulness
of network analysis methods for the purpose of identification of disease
genes. As further explained in Methods, we define our test set of disease
genes as genes for which the relationship with a disease was sufficiently
clear to justify the start of a drug development programme. Claims that
such methods are helpful in that context have been made on numerous occa-
sions but a comprehensive validation study is lacking. One major challenge
in doing such a study is to define a list of true disease genes for this purpose.

To address this, the Open Targets collaboration between pharmaceutical
companies and public institutions collects information on known drug tar-
gets to help identify new ones (Koscielny et al., 2016). A dedicated internet
platform provides a free-to-use accessible resource summarising known data
on gene-disease relationships from a number of data sources, like known re-
leased drugs and genetic associations from GWAS (Koscielny et al., 2016).

The purpose of this work is to quantify the performance of network propa-
gation methods to prioritise novel drug targets, using various networks and
validation schemes, and aiming at a faithful reflection of a realistic drug de-
velopment scenario. We are not predicting gene targets for specific drugs,
but rather sensible genes to target for a specific disease. Data on actual com-
pounds targeting a gene is ignored: as long as the gene has been targeted
by one or more compounds reaching the clinical trials, it is considered a sen-
sible drug target. We select a number of network propagation approaches
that are representative of several classes of algorithms, and test their ability
to recover known target genes for several non-cancerous diseases by cross-
validation.

We benchmark multiple definitions of disease genes as input for the pri-
oritisers, computational methods, biological networks, validation schemes
and performance metrics. We account for all possible combinations of such
factors and derive guidelines for future disease target identification stud-
ies. The code and data that support our conclusions can be found in https:

//github.com/b2slab/genedise.

8.3 results

8.3.1 Benchmark framework

Our general approach, summarised in Fig 28, consisted in using a bio-
logical network and a list of genes with prior disease-association scores as
input to a network propagation approach. We tested some variations of
classical network propagation -ppr, raw, gm, mc and z- which differ on the
directedness of the propagation, the input weights and the presence of a
statistical normalisation of the scores. Semi-supervised methods included,

https://github.com/b2slab/genedise
https://github.com/b2slab/genedise
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under the positive-unlabelled learning framework: knn and wsld. Both work
directly on a graph kernel, closely related to network propagation. Super-
vised methods were also considered: COSNet, which regards the network
as an artificial neural network, bagsvm, a bagging Support Vector Machine
on a graph kernel, and rf and svm, which apply either Random Forest or
a Support Vector Machine to network-based features that encode propaga-
tion states in a lower dimensionality. The EGAD method, based on neighbour
voting, served as a baseline prioritiser. Three input-naïve baselines were in-
cluded: pr and randomraw, both biased by the network topology, and random,
a purely random prioritiser.

We used three cross-validation schemes -two take into account protein
complexes- in which some of the prior disease-association scores are hidden.
The desired output was a new ranking of genes in terms of their association
scores to the disease. Such ranking was compared to the known target genes
in the validation fold using several performance metrics. Given the amount
of design factors and comparisons, the metrics were analysed through ex-
planatory additive models (see Methods). Specifically, regression models
explained the performance metrics (dependent variable) as a function of the
prediction method, the cross-validation scheme, the network and the disease
(regressors). This enabled a formal analysis of the impact of each factor on
overall performance while correcting for the others. Alternatively, we pro-
vide plots on the raw metrics in S1 Appendix, stratified by method in Figures
J and K or by disease in Figures L and M.

We considered 2 metrics (AUROC and top 20 hits) and 2 input types
(known drug target genes and genetically associated genes), resulting in
a total of 4 combinations, each described through an additive main effect
model. Another 4 metrics were explored and can be found in Figure Q and
Tables F and G in S1 Appendix.

Interaction terms within the explanatory models were explored, but they
did not provide any added value for the extra complexity, see Figure S in S1

Appendix.

8.3.2 Performance using known drug targets as input

Fig 29 describes the additive models for AUROC and top 20 hits, and
using known drug targets as input. Note that the disease was included as a
regressor in the explanatory models for further discussion. This was possible
given our definition of drug targets: methods had to predict whether a gene
has been targeted by any drug for a particular disease, implying that metrics
were available at the disease level.

Fig 30 contains their predictions for each method, network and cross-
validation scheme with 95% confidence intervals, averaged over diseases.
The models are complex and we therefore review each main effect sepa-
rately.

For interpretability within real scenarios, the top 20 hits is regarded as the
reference metric in the main body. The standard AUROC (quasi-binomial)
clearly led to different conclusions and is kept throughout the results section
for comparison. The remaining metrics (AUPRC, pAUROC 5%, pAUROC
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Disease

Metric

Network

Method

Input stream

Model fitting

Data k-folds

Validation ids

Drugs data

Gene ranking

Performance

Average
performance

Train ids

Explanatory
models

CV Repetition

CV strategy

Complex data

k iterations

CV repeated 25 times

Central steps

Secondary steps 

Model regressors

Model responses

Other parameters

Legend

Figure 28: Benchmark overview. This work describes six performance metrics us-
ing two input streams (genetic association and drug-based genes) to
predict drug target-based genes for 22 common diseases. 3-fold cross-
validation (CV), repeated 25 times, was run under three CV strategies.
The gene identifiers in each fold are determined using only the drugs
data, regardless of the input. Two validation strategies are complex-
aware and therefore needed this data to define the splits. 15 methods
based on network propagation (including 4 baselines) were evaluated,
using two networks with different properties, by modelling their perfor-
mance -averaged on every CV round- with explanatory models. After
obtaining the performance metrics, the explanatory models allowed hy-
pothesis testing and a direct performance comparison between diseases,
CV strategies, networks and methods, by setting them as the indepen-
dent variables of the models. The latter is depicted by pink (indepen-
dent variables) and yellow (dependent variable) blocks, and should not
be confused with the “model fitting” block, which refers to the network
propagation prioritisers.

10% and top 100 hits) result in similar method prioritisations as top 20 hits,
see Figure Q in S1 Appendix. Detailed models can be found in S1 Appendix,
indexed by Tables F and G.
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Figure 29: Additive explanatory models for AUROC and top 20 hits. Each col-
umn corresponds to a different model, whereas each row depicts the
95% confidence interval for each model coefficient. Rows are grouped
by the categorical variable they belong to: method, cv scheme, network
and disease. Each variable has a reference level, implicit in the inter-
cept and specified in brackets: pr method, classic validation scheme,
STRING network and allergy. Positive estimates improve performance
over the reference levels, whereas negative ones reduce it. For example,
the data suggest that method rf performs better than the baseline using
both metrics, and is the preferred method using the top 20 hits. Switch-
ing from STRING to the OmniPath network, or from classic to block
or representative cross-validation, has a negative effect on both perfor-
mance metrics. Specific model estimates and confidence intervals can be
found in Tables H and I in S1 Appendix.

Comparing cross-validation schemes

Whether protein complexes were properly taken into account when per-
forming the cross-validation (see Methods) stood out as a key influence on
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Figure 30: Performance predicted for AUROC and top 20 hits through the addi-
tive explanatory models. Each row corresponds to a different model
and error bars depicts the 95% confidence interval of the additive model
prediction, averaging over diseases. In bold, the main network (STRING)
and metrics (AUPRC, top 20 hits). The exact values can be found in Table
I in S1 Appendix.

the quality of predictions: there was a dramatic reduction in performance for
most methods when using a complex-aware cross-validation strategy. For in-
stance, method rf applied on the STRING network dropped from almost 12

correct hits in the top 20 predicted disease genes when using our classic cross-
validation scheme down to fewer than 4.5 when using either of our complex-
aware cross-validation schemes. Likewise, Table E in S1 Appendix ratifies
that only the classic cross-validation splits complexes. A recent study raised
analogous concerns on estimating the performance of supervised methods
when learning gene regulatory networks (Tabe-Bordbar et al., 2018). Ran-
dom cross-validation would lead to overly optimistic performances when
predicting new regulatory contexts, requiring to control for the distinctness
between the training and the testing data. This confirms that other areas in
computational biology may benefit from adjusted cross-validation strategies.

Our data suggests that the performance drop when choosing the appro-
priate validation strategy is comparable to the performance gap of competi-
tive methods versus a simple neighbour-voting baseline EGAD (see Fig 29).
This highlights the importance of carefully controlling for this bias when
estimating the performance of target gene prediction using network prop-
agation. Overall, the classic cross-validation scheme gave biased estimates
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in our dataset, whereas our block and representative cross-validation schemes
had similar effects on the prediction performance. Method ranking was in-
dependent of the cross-validation choice thanks to the use of an additive
model. Since both the block and representative schemes led to the same con-
clusions, we chose to focus on results from the block scheme in the rest of
this study.

Comparing networks

We found that using STRING as opposite to OmniPath improved overall
performance of disease gene prediction methods. Our models for top 20

hits quantified this effect as noticeable although less important than that
of the cross-validation strategy. For reference, method rf obtains about 3

true hits under both complex-aware strategies in OmniPath. It has been
previously shown that the positive effect on predictive power of having more
interactions and coverage in a network can outweigh the negative effect of
increased number of false positive interactions (Huang et al., 2018), which is
in line with our findings. The authors also report STRING among the best
resources to discover disease genes, which is analogous to our findings on
the drug targets.

We focus on the STRING results in the rest of the text.

Comparing methods

Having identified the optimal cross-validation scheme and network for
our benchmark in the previous sections, we quantitatively compared the
performance of the different methods.

First, network topology alone had a slight predictive power, as method pr

(PageRank approach that ignores the input gene scores) showed better per-
formance than the random baseline under all the metrics. The randomised
diffusion randomraw lied between random and pr in performance, depend-
ing on the metric. Both facts support the existence of an inherent network
topology-related bias among target genes that benefits diffusion-based meth-
ods. This finding is compatible with the existence of a reduced set of critical
edges that account for most of the predictive power in GBA methods (Gillis
and Pavlidis, 2012), as highly connected genes are more likely to be involved
in those.

Second, the basic GBA approach from EGAD had an advantage over the
input-naïve baselines pr, randomraw and random. It also outperformed pri-
oritising genes using other Open Targets data stream scores such as genes
associated to disease from pathways or from the literature (see Table S in S1

Appendix).
Most diffusion-based and ML-based methods outperformed EGAD. To for-

mally test the differences between methods, we carried a Tukey’s multiple
comparison test on the model coefficients (Fig 31) as implemented in the R
package multcomp (Hothorn et al., 2008). Although such differences were
in most cases statistically significant after multiplicity adjustment, their ac-
tual effect size or magnitude can be modest in practice, see Figs 30 and 32.
Results from top 20 hits suggest using rf for the best performance followed
by, in order: raw and bagsvm, z and svm (main models panel in Fig 32).
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Figure 31: Pairwise contrasts on top 20 hits predicted by the quasipoisson ex-
planatory model. Differences are expressed in the model space. Most
of the pairwise differences are significant (Tukey’s test, p <0.05) – non-
significant differences have been crossed out.

The ranking of methods was similar when using the metrics AUPRC, pAU-
ROC and top k hits (see Figure Q in S1 Appendix) and is only intended to
be a general reference, given the impact of the problem definition, cross-
validation scheme and the network choice.

With AUROC on the other hand, rf lost its edge whilst most diffusion-
based and ML-based methods appeared technically tied. Despite its theoret-
ical basis, interpretability and widespread use in similar benchmarks, these
results support the assertion that AUROC is a sub-optimal choice in drug
discovery practical scenarios.

Fig 33 further shows how the different methods compare with one another.
Distances between each pair of method in terms of their top 100 novel predic-
tions were represented graphically. We observe that the supervised bagged
Support Vector Machine approach (bagsvm) behaves similarly to the simple
diffusion approach (raw), reflecting the fact that they use the same kernel.
We also observe that diffusion approaches do not necessarily produce sim-
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Figure 32: Ranking of all the methods. Ranking according to the predictions of
the main explanatory models (left) and the reduced explanatory models
within the STRING network and block cross-validation (right), in both
cases on the drugs input and averaging over diseases. The main models
serve as a global description of the metrics, whereas the reduced models
are specific to the scenario of most interest. A column-wise z-score on
the predicted mean is depicted, in order to illustrate the magnitude of
the difference. Note how the top 20 hits and the AUPRC metrics lead to
similar conclusions, as opposed to AUROC.

ilar results; for instance, raw and z. Besides, methods EGAD (arguably one
of the simplest) and COSNet (arguably one of the most complex) seemed
to result in similar predictions. Fully supervised and semi-supervised ap-
proaches largely group in the top right hand quadrant of the STRING plot
away from diffusion methods, possibly showing better learning capability
with the larger network.

Figure 33: Multi-view MDS plot displaying the preserved Spearman’s footrule
distances between methods. The differential ranking of their top 100

novel predictions using known drug target inputs are taken into account
across all 22 diseases. Results are shown separately for the 2 networks
considered in this study. Seed genes are excluded from the distance
calculations.
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When comparing overall performances shown in Fig 32 with the predic-
tion differences from the MDS plot (Fig 33), the best methods owed their per-
formance to different reasons as they do not occur within the same region
of the plot (e.g. rf and raw). MDS plots on the eight possible combinations
of network, input type and inclusion of seed genes are displayed in Figures
O and P in S1 Appendix.

Focusing only on the STRING network and the block validation scheme,
we fitted six additive explanatory models, called the reduced models, to
model the six metrics for the drugs data input as a function of the method
and the disease (see Table G in S1 Appendix). Methods were prioritised ac-
cording to their main effects (Fig 32). The reduced models better described
this particular scenario, as they were not forced to fit the trends in all net-
works and validation schemes in an additive way. Considering the top 20

hits, rf and svm were the optimal choices, followed by wsld and knn.

Comparing diseases

The top 20 hits model in Fig 29 shows that allergy (the figure’s baseline ref-
erence), ulcerative colitis and rheumatoid arthritis (group I) are the diseases
for which prediction of target genes was worst, whereas cardiac arrhythmia,
Parkinson’s disease, stroke and multiple sclerosis (group II) are those for
which it was best. As shown in Fig 34, group I diseases had fewer known
target genes and lower modularity compared to group II diseases.

Prediction methods worked better when more known target genes were
available as input in the network, with two possible underlying reasons: the
greater data availability to train the methods, and the natural bias of top 20
hits towards datasets with more positives. Likewise, a stronger modularity
within target genes justifies the guilt-by-association principle and led to bet-
ter performances. In turn, the number of genes and the modularity were
positively correlated, see Figure N in S1 Appendix.

8.3.3 Performance using genetic associations as input

Using genetically associated genes as input to a prediction approach to
find known drug targets mimicked a realistic scenario where novel genetic
associations are screened as potential targets. However, inferring known
drug targets through the indirect genetic evidence posed problems to pre-
diction strategies, especially those based on machine learning. Learning is
done using one class of genes in order to predict genes that belong to an-
other class, and the learning space suffers from intrinsic uncertainties in the
genetic associations to disease. Both classes are inherently different: certain
genes can be difficult to target, and a gene does not require to have been
formally associated genetically to a disease to become a valid target.

Consequently, we observed a major performance drop on all the prioritisa-
tion methods: using any network and cross-validation scheme, the predicted
top 20 hits were practically bounded by 1. This was more pronounced on su-
pervised machine learning-focused strategies, as rf and svm lost their edge
on diffusion-based strategies. The fact that the genetic associations of the
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Figure 34: Disease performance in terms of input size and modularity. Disease
performance ranked by the number of known target genes and their
modularity (obtained using the igraph package, see Figure F in S1 Ap-
pendix). Modularity is a measure of the tendency of known target genes
to form modules or clusters in the network. Diseases have been ranked
using their explanatory model coefficient from the top 20 hits metric
with known drug targets as input (x axis) and their modularity (y axis).
As discussed in the text, best predicted diseases tend to have longer gene
lists and be highly modular.

validation fold were hidden further hindered the predictions and can be a
cause of our pessimistic performance estimates.

Comparing cross-validation schemes

For reference, we also ran all three cross-validation schemes on the ge-
netic data to quantify and account for complex-related bias. The models
confirm that, contrary to the drugs-related input, the differences between
the results for the different cross-validation schemes were rather modest. For
example, method raw with the STRING network attains 0.59-0.64, 0.50-0.54

and 0.37-0.40 hits in the top 20 under the classical, block and representative
cross-validation strategies. The slightly larger negative effect on top 20 hits
observed with the representative scheme is expected because the number
of positives that act as validation decreased and this metric is biased by the
class imbalance. The agreement between method ranking using AUPRC and
top 20 hits was less consistent, possibly due to the performance drop, whilst
AUROC yielded a noticeably different ranking again. Further data can be
found in Tables O and P in S1 Appendix.
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Comparing networks

The change in performance for using the OmniPath network instead of the
filtered STRING network was also limited. For AUROC the effect was nega-
tive, whereas for the top 20 hits metric the performance improved. Method
raw changed from 0.50-0.54 top 20 hits in STRING to 0.61-0.66 in OmniPath
under the block validation strategy.

Comparing methods

To be consistent with the drugs section, we take as reference the block
cross-validation strategy and the STRING network.

The baseline approach pr that effectively makes use of the network topol-
ogy alone proved difficult to improve upon, with 0.43-0.47 expected true hits
in the top 20. Methods raw and rf respectively achieved 0.50-0.54 and 0.23-
0.26 – although significant, the difference in practice would be minimal. The
best performing method was mc with 0.65-0.7 hits. All the performance esti-
mates can be found in Table P in S1 Appendix. To give an idea of the effort
that would be required in a realistic setting to find novel targets, the num-
ber of correct hits in the top 100 hits was 3.29-3.45 with the best performing
method (in this case, ppr), against 2.25-2.38 of pr.

Two main conclusions can be drawn from these results. First, the net-
work topology baseline retained some predictive power upon which most
diffusion-based methods, as well as machine-learning approaches COSNet

and bagsvm, only managed to add minor improvements, if any. Second, drug
targets could still be found by combining network analysis and genes with
genetic associations to disease, but with a substantially lower performance
and with a marginal gain compared to a baseline approach that would only
use the network topology to find targets (e.g. by screening the most con-
nected genes in the network).

It is worth noting that gene-disease genetic association scores themselves
have drawbacks and that better prediction accuracy could result as genetic
association data improves.

8.4 discussion

We performed an extensive analysis of the ability of several approaches
based on network propagation to identify novel non-cancerous disease tar-
get genes. We explored the effect of various choices in factors including
the biological network, the definition of disease genes acting as seeds, and
the statistical framework being used to evaluate methods performance. We
show that carefully choosing an appropriate cross-validation framework and
suitable performance metric has an important effect in evaluating the utility
of these methods.

Our main conclusion is that network propagation seems effective for drug
target discovery, reflecting the fact that drug targets tend to cluster within
the network. This may be due to the fact that the scientific community has so
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far been focusing on testing the same proven mechanisms, which can induce
some ascertainment bias

In a strict cross-validation setting, we found that even the most basic guilt-
by-association method was useful, with ∼2 correct hits in its top 20 predic-
tions, compared to ∼0.1 when using a random ranking. The best diffusion
based algorithm improved that figure to ∼3.75, and the best overall perform-
ing method was a random forest classifier on network-based features (∼4.4
hits). Leading approaches can be notably different in terms of their top
predictions, suggesting potential complementarity. We found a better per-
formance when using a network with more coverage at the expense of more
false positive interactions. In a more conservative network, random forest
performance dropped to ∼3.1 hits. Comparing performance on different dis-
eases shows that the more known target genes, and the more clustered these
are in the network, the better the performance of network propagation ap-
proaches for finding novel targets for it.

We also explored the prediction of known drug target genes by seeding the
network with an indirect data stream, in particular, genetic association data.
Here, the best performing methods were diffusion-based and presented a sta-
tistically significant, but marginal, improvement over approaches that only
look at network centrality.

We conclude that network propagation methods can help identify novel
targets for disease, but that the choice of the input network and the seed
scores on the genes needs careful consideration. Based on our approach
and endorsed benchmarks, we recommend the use of methods employing
representations of diffusion-based information (the MashUp network-based
features and the diffusion kernels), namely random forest, the support vector
machine variants, and raw diffusion algorithms for optimal results.

8.5 materials and methods

8.5.1 Selection of methods for investigation

Network propagation algorithms were selected for validation based on the
following criteria:

1. Published in a peer-reviewed journal, with evidence of improved per-
formance in gene disease prediction relative to contenders.

2. Implemented as a well documented open source package, that is effi-
cient, robust and usable within a batch testing framework.

3. Directly applicable for gene disease identification from a single gene or
protein interaction network, without requiring fundamental changes to
the approach or additional annotation information.

4. Capable of outputting a ranked list of individual genes (as opposed to
gene modules, for example).

In addition, we selected methods that were representative of a diverse
panel of algorithms, including diffusion variants, supervised learning on
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features derived from network propagation, and a number of baseline ap-
proaches (see Table 12).

8.5.2 Testing framework, algorithms and parameterisation

All tests and batch runs were set-up and conducted using the R statisti-
cal programming language (R Core Team, 2016). When no R package was
available, the methodology was re-implemented, building upon existing R
packages whenever possible. Standard R machine learning libraries were
used to train the support vector machine and random forest classifiers. Only
the MashUp algorithm (Cho et al., 2016) required feature generation outside
of the R environment, using the Matlab code from their publication. Fur-
ther details on the methods implementation can be found in S1 Appendix,
section “Method details”.

EGAD (Ballouz et al., 2017), a pure neighbour-voting approach, was used
here as a baseline comparator.

Diffusion (propagation) methods are central in this study. We used the ran-
dom walk-based personalised PageRank (Page et al., 1999), previously used
in similar tasks (Jiang et al., 2017), as implemented in igraph (Csardi and Ne-
pusz, 2006). The remaining diffusion-based methods were run on top of the
regularised Laplacian kernel (Smola and Kondor, 2003), computed through
diffuStats (Picart-Armada, Thompson, et al., 2017). We included the classical
diffusion raw, a weighted approach version gm that assigns a bias term to the
unlabelled nodes, and two statistically normalised scores (mc and z), as im-
plemented in diffuStats. The normalised scores adjust for systematic biases
in the diffusion scores that relate to the graph topology, in order to provide
a more uniform ranking. In the scope of positive-unlabelled learning (Elkan
and Noto, 2008; Yang et al., 2012), we included the kernelised scores knn and
the linear decayed wsld from RANKS (Valentini, Paccanaro, et al., 2014). knn
computes each gene score based on the k-nearest positive examples, using
the graph kernel to compute the distances. Conversely, wsld uses all the
kernel similarities to the positive examples, but applies a decaying factor to
downweight the furthest positives. Closing this category, we implemented
the bagging Support Vector Machine approach from ProDiGe1 (Mordelet
and Vert, 2011), here bagsvm, which trains directly on the graph kernel to
find the optimal hyperplane separating positive and negative genes.

Purer ML-based methods were also included. On one hand, network-
based features were generated using MashUp (Cho et al., 2016) and two
classical classifiers were fitted to them, based on caret (Kunn, 2008) and
mlr (Bischl et al., 2016). These are svm, the Support Vector Machine as im-
plemented in kernlab (Karatzoglou et al., 2004), and rf, the Random Forest
found in the randomForest package (Liaw and Wiener, 2002). On the other
hand, we tried the parametric Hopfield recurrent neural network classifier
in the COSNet R package (Bertoni et al., 2011; Frasca et al., 2013). COSNet

estimates network parameters on the sub-network containing the labelled
nodes, extends them to the sub-network containing the unlabelled ones and
then predicts the labels.
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Table 12: List of methods included in this benchmark. Method identifiers are
shortened method names used throughout the text. Other columns are
self-explanatory.
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Finally, we defined three naive baseline methods: (1) pr, a PageRank
with a uniform prior, where input scores on the genes are ignored; (2)
randomraw, which applies the raw diffusion approach to randomly permuted
input scores on the genes; and (3) random, a uniform re-ranking of input
genes without any network propagation. The inclusion of pr and randomraw

allowed us to quantify the predictive power of the network topology alone,
without any consideration for the input scores on the genes.

8.5.3 Biological networks

The biological network used in the validation is of critical importance
as current network resources contain both false positive and false negative
interactions, possibly affecting subsequent predictions (Huang et al., 2018).

Here, we used two human networks with different general properties,
one more likely to contain false positive interactions (STRING (Szklarczyk,
Franceschini, et al., 2014)), and another more conservative (OmniPath (Türei
et al., 2016)), to test the effect of the network itself on network propagation
performance. We further filtered STRING (Szklarczyk, Franceschini, et al.,
2014) to retain only a subset of interactions. Having tested several filters, we
settled upon high-confidence interactions (combined score > 700) with some
evidence from the “Experiments” or “Databases” data sources (see Table B in
S1 Appendix). Applying these filters and taking the largest connected com-
ponent resulted in a connected network of 11,748 nodes and 236,963 edges.
Edges were assigned weights between 0 and 1 by rescaling the STRING com-
bined score.

We did not filter the OmniPath network (Türei et al., 2016). After re-
moving duplicated edges and taking the largest connected component, the
OmniPath network contained 8,580 nodes and 42,145 unweighted edges.

8.5.4 Disease gene data

We used the Open Targets platform (Koscielny et al., 2016) to select known
disease-related genes. In this analysis we defined positive genes as those re-
ported in Open Targets as being the target of any known drug against the
disease of interest, from which all the metrics were computed. We decided
to use drug targets, including unsuccessful ones, as proxies for disease genes
on the basis that genes for which a drug programme has been started, gener-
ally with significant investment, are most likely to have strong evidence link-
ing them to the disease. We therefore regard them as a set of high-confidence
true positive disease genes. This choice means we potentially miss genes
that have strong genetic associations to the disease but are not druggable. In
other words, we focus on limiting false positives in our reference set of pos-
itives, at the expense of having more false negatives in our set of negatives.
Alternatively, genes with a genetic association of sufficient confidence with
the disease were also used as an input data stream, in order to assess the pre-
dictive power of an indirect source of evidence. Associations were binarised:
any non-zero drugs-related association was considered positive, implying
that the methods would predict genes on which a drug has been essayed,
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regardless of whether the drug was eventually approved. Likewise, only
genetic associations with an Open Targets score above 0.16 (see Figure A in
S1 Appendix) were considered positive. We considered exclusively common
diseases with at least 1,000 Open Targets associations, of which a minimum
of 50 could be based on known drugs and 50 on genetic associations, in or-
der to avoid empty folds in the nested cross-validations. By applying these
filters, we generated a list of phenotypes and diseases which we then manu-
ally curated to remove, non-disease phenotype terms (e.g. “body weight and
measures”) as well as vague or broad terms (e.g.“cerebrovascular disorder”
or “head disease”) and infectious diseases. We also decided to exclude can-
cers from this analysis. Cancer is a complex process starting from the driver
mutation(s) causing disruptive processes involving clonal expansions, which
are known to carry their own specific and resultant (non-causal) passenger
mutations. Also, the fundamental genetic and biological mechanisms un-
derlying cancers (Hanahan and Weinberg, 2011) are generally very distinct
from other diseases. We considered this might affect the reliability of the
seed genes and cancers would therefore deserve a separate benchmark. This
left 22 diseases considered in this study (Table 13). Further descriptive mate-
rial on the role of genes associated with disease within the STRING network
can be found in the section “Descriptive disease statistics in the STRING
network” from S1 Appendix.

Table 13: List of diseases included in this study.

Disease N(genetic) N(drugs) Overlap P-value FDR

allergy 112 57 1 4.22e-01 4.42e-01

Alzheimers disease 208 103 4 1.10e-01 1.42e-01

arthritis 174 188 6 6.08e-02 1.03e-01

asthma 105 80 6 7.77e-05 5.70e-04

bipolar disorder 117 148 3 1.83e-01 2.12e-01

cardiac arrhythmia 75 177 6 9.15e-04 3.36e-03

chronic obstructive pulmonary disease (COPD) 154 116 6 4.18e-03 1.31e-02

coronary heart disease 111 171 4 7.86e-02 1.24e-01

drug dependence 75 143 6 2.96e-04 1.30e-03

hypertension 66 188 2 2.85e-01 3.14e-01

multiple sclerosis 71 167 4 1.83e-02 4.03e-02

obesity 69 194 3 1.06e-01 1.42e-01

Parkinson’s disease 55 145 0 1 1

psoriasis 131 105 7 1.68e-04 9.23e-04

rheumatoid arthritis 138 95 5 5.18e-03 1.42e-02

schizophrenia 410 163 17 5.44e-05 5.70e-04

stroke 90 156 3 1.18e-01 1.44e-01

systemic lupus erythematosus (lupus) 126 109 5 6.30e-03 1.54e-02

type I diabetes mellitus 87 106 3 4.39e-02 8.04e-02

type II diabetes mellitus 130 154 4 9.14e-02 1.34e-01

ulcerative colitis 136 51 7 1.81e-06 3.98e-05

unipolar depression 123 121 4 3.81e-02 7.63e-02

Diseases included in this study, with a minimum of 50 associated genes
both in the known drug targets and the genetic categories (see text). The
overlap between these two lists of genes showed a degree of dependence
between these two Open Targets data streams for some of the diseases.
P-values were calculated using Fisher’s exact test and are reported without
and with correction for false discovery rate (Benjamini and Hochberg, 1995).
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8.5.5 Validation strategies

Input gene scores

We used the binarised drug association scores and genetic association
scores from Open Targets as input gene-level scores to seed the network
propagation analyses (Fig 35) and test their ability to recover known drug
targets. With the first approach (panel (A) in Fig 35), we tested the predic-
tive power of current network propagation methods for drug target identifi-
cation using a direct source of evidence (known drug targets). In the second
approach (panel (B) in Fig 35), we assessed the ability of a reasonable but
indirect source of evidence – genetic associations to disease – in combination
with network propagation to recover known drug targets.

Figure 35: Input gene scores. Two input types were used to feed the prioritisation
algorithms: the binary drug scores in panel (A) and the binary genetic
scores in panel (B). In both cases, the validation genes were deemed
unlabelled in the input to the prioritisers. Cross-validation folds were
always calculated taking into account the drugs input and reused on the
genetic input.

Metrics

Methods were systematically compared using standard performance met-
rics. The Area under the Receiver Operating Characteristic curve (AUROC)
is extensively used in the literature for binary classification of disease genes
(Lee et al., 2011), but can be misleading in this context given the extent of the
class imbalance between target and non-target genes (Saito and Rehmsmeier,
2015). We however included it in our benchmark for comparison with previ-
ous literature. More suitable measures of success in this case are Area under
the Precision-Recall curve (AUPRC) (Saito and Rehmsmeier, 2015) and par-
tial AUROC (pAUROC) (McClish, 1989).
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Based on the notation in (Boyd et al., 2013; Dodd and Pepe, 2003; McClish,
1989), let Z be a real-valued random variable corresponding to the output of
a given prioritiser, so that largest values correspond to top ranked genes. Let
X and Y be the outputs for negative and positive genes, i.e. Z is a mixture
of X and Y, representing by D the indicator variable (D = 0 for negatives
and D = 1 for positives). For an arbitrary threshold c, the following metrics
can be defined: true positive rate TPR(c) = P(Y > c) = P(Z > c |D = 1),
false positive rate FPR(c) = P(X > c) = P(Z > c |D = 0), precision Prec(c) =
P(D = 1 |Z > c) and recall Recall(c) = P(Y > c). Then:

AUROC =

∫−∞
c=∞ TPR(c)dFPR(c) (42)

pAUROC(p) =
1

p

∫cp
c=∞ TPR(c)dFPR(c) where FPR(cp) = p ∈ (0, 1)

(43)

AUPRC =

∫−∞
c=∞ Prec(c)dRecall(c) (44)

Note that pAUROC contains a normalising constant 1p because the partial
area is bounded between 0 and p; the constant allows the metric to lie in [0, 1]
again. AUROC, AUPRC and pAUROC were computed with the precrec R
package (Takaya Saito and Marc Rehmsmeier, 2017). We also included top
k hits, defined as the number of true positives in the top k predicted genes
(proportional to precision at k). Given the output of a prioritiser on n genes,
z1 > z2 > z3 > . . . > zn:

top(k) =
zk∑
i=z1

Di (45)

It is straightforward, intuitive and most likely to be useful in practice, such
as a screening experiment where only a small number of predicted hits can
be assayed.

The main body focuses on AUROC, AUPRC and top 20 hits. We consid-
ered another 3 metrics, reported only in S1 Appendix: partial AUROC up to
5% FPR, partial AUROC up to 10% FPR, and number of hits within the top
100 genes.

Cross-validation schemes and protein complexes

Standard (stratified) and modified k-fold cross-validation were used to
estimate the performance of the methods. Folds were based upon known
drugs-related genes, regardless of which type of input was used (see Fig 35).
Genes in the training fold were negatively or positively labelled according
to the input type, whereas genes in the validation fold were left unlabelled.

The direct application of cross-validation to this problem posed a chal-
lenge: known drug targets often consist of protein complexes, e.g. multi-
protein receptors. Drug-target associations typically have complex-level res-
olution. The drug target data from Open Targets comes from ChEmbl (Bento
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et al., 2014), in which all the proteins in the targeted complex are labelled as
targets.

If left uncorrected, this could bias cross-validation results: networks densely
connect proteins within a complex, random folds would frequently split
positively labelled complexes between train and validation, and therefore
network propagation methods would have an unfair advantage at finding
positives in the training folds. In view of this, we benchmarked the meth-
ods under three cross-validation strategies: a standard cross-validation (A)
in line with usual practice and two (B, C) complex-aware schemes (Fig 36)
addressing non-independence between folds when the known drug targets
act as input.

Figure 36: Cross-validation schemes. Three cross-validation schemes were tested.
(A): standard k-fold stratified cross-validation that ignored the complex
structure. (B): block k-fold cross-validation. Overlapping complexes
were merged and the resulting complexes were shuffled. The folds were
computed as evenly as possible without breaking any complex. (C): rep-
resentative k-fold cross-validation. Overlapping complexes were merged
and the resulting complexes from which unique representatives were
chosen uniformly at random. Then a standard k-fold cross-validation
was run on the representatives, but excluding the non-representatives
from train and validation.

Strategy (A), called classic, was a regular stratified k-fold repeated cross-
validation. We used k = 3 folds, averaging metrics over each set of folds,
repeated 25 times (see also Fig 28).

Strategy (B), named block, performed a repeated cross-validation while
explicitly preventing any complexes that contain disease genes to be split
across folds. The key point is that, where involved, shuffling was performed
at the complex level instead of the gene level – overlapping complexes that
shared at least one known drug target were merged into a larger pseudo-
complex before shuffling. Fold boundaries were chosen so that no complex
was divided into two folds, while keeping them as close as possible to those
that would give a balanced partition, see Fig 36. Nevertheless, a limitation
of this scheme is that it can fail to balance fold sizes in the presence of large
complexes (see Figure I in S1 Appendix). For example, chronic obstructive
pulmonary disease exhibited imbalanced folds, as 50 of the proteins involved
belong to the Mitochondrial Complex I
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Strategy (C), referred to as representative, selected only a single repre-
sentative or prototype gene for each complex to ensure that gene information
in a complex was not mixed between training and validation folds. In each
repetition of cross-validation, after merging the overlapping complexes, a
single gene from each complex was chosen uniformly at random and kept
as positive. The remaining genes from the complexes involved in the dis-
ease were set aside from the training and validation sets, in order (1) not
to mislead methods into assuming their labels were negative in the training
phase, and (2) not to overestimate (if set as positives) or penalise (if set as
negatives) methods that ranked them highly, as they were expected to do
so. This strategy kept the folds balanced, but at the expense of a possible
loss of information by summarising each complex by a single gene at a time,
reducing the number of positives for training and validation.

8.5.6 Additive performance models

For a systematic comparison between diseases, methods, cross-validation
schemes and input types, we fitted an additive, explanatory regression model
to the performance metrics of each (averaged) fold from the cross-validation.
The use of main effect models eased the evaluation of each individual fac-
tor while correcting for the other covariates. We modelled each metric f
separately for each input type, not to mix problems of different nature:

f ∼ cv_scheme + network + method + disease (46)

We fitted dispersion-adjusted logistic-like quasibinomial variance models
for the metrics AUROC, pAUROC and AUPRC and quasipoisson for top
k hits. The quasi-likelihood formalism protected against over and under-
dispersion issues, in which the observed variance is either higher or lower
than that of the theorical fitted distribution (Hardin et al., 2007), affecting
subsequent statistical tests. The effect of changing any of the four main effects is
discussed in separate sub-sections in Results, following the order from the formula
above. After a data-driven choice of cross-validation scheme and network,
we fitted reduced explanatory models within them for a more accurate de-
scription:

f ∼ method + disease (47)

8.5.7 Qualitative methods comparison

The rankings produced by the different algorithms were qualitatively com-
pared using Spearman’s footrule (Spearman, 1906). Distances were com-
puted between all method ranking pairs for each individual combination of
disease, input type, network and for the top N predicted genes, excluding
the original seed genes. This part does not involve cross-validation – all
known disease-associated genes were used for gene prioritisations. Pairs of
rankings could include genes uniquely ranked highly by a single algorithm
from the comparison, so mismatch counts (i.e. percentage mismatches) be-
tween these rankings were also taken into account. Mismatches occur when
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a gene features in the top N predictions of one algorithm and is missing
from the corresponding ranking by another algorithm. A compact visual-
isation of distance matrices was obtained using a multi-view extension of
MDS (Gower, 1966; Kanaan-Izquierdo, Ziyatdinov, and Perera-Lluna, 2018;
Mardia, 1978). For this we used the R package multiview (Kanaan-Izquierdo,
Ziyatdinov, Burgueño, et al., 2018) that generates a single, low-dimensional
projection of combined inputs (disease, input and network).
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9 P U B L I C AT I O N S A N D D I S C U S S I O N

The results were hereby summarised, by scientific publication. The last
section presents a conceptual breakdown of the contributions as a whole.

9.1 conception of the statistical normalisation

9.1.1 Characterisation of the statistical normalisation

Sergio Picart-Armada, Wesley K Thompson, Alfonso Buil, and Alexan-
dre Perera-Lluna (2020), “The effect of statistical normalisation on net-
work propagation scores”, BioRxiv

The bias of the diffusion scores was characterised by studying the two
first statistical moments of their null distribution. Two biases were examined,
depending on their main source: expected value and, in its absence, variance-
related bias. The so-called reference expected value and reference variance
were defined, in order to quantify their presence.

The usage of graph kernels derived from the unnormalised graph Lapla-
cian matrix would generally lead to expected value-related bias in the pres-
ence of unlabelled nodes. If all the nodes had a label, the expected value
bias would disappear, but the variance-related bias would persist.

Several propositions of the diffusion scores were proven, remarkably:

• Closed expressions of the mean value vector and covariance matrix of
the null distributions.

• Some diffusion scores lead to identical node prioritisations under cer-
tain conditions, simplifying their choice thereof.

• Parametric and non-parametric normalisations are invariant to changes
in the weights of each label.

• The null covariance is directly related to graph spectral properties.
In particular, the principal covariance direction is proportional to the
Fiedler vector.

A proof of concept, synthetic study was conceived to generate artificial sig-
nals with and without expected value-related bias, consisting of a list of true
nodes that had to be found starting from a list of seed nodes. Normalised
scores were preferrable on unbiased signals, whereas unnormalised scores
worked best on biased signals. This provided a first criterion to decide about
normalising: if the positives are expected to be unbiased, normalisation is
advised; otherwise it is discouraged.
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An artificial gene expression array dataset illustrated that the bias can be
counterintuitive. Normalisation helped when re-prioritising labelled nodes,
while it was detrimental when prioritising unlabelled nodes. This was ex-
plained through the expected value-related bias, which had opposite direc-
tions within labelled and unlabelled nodes.

A third dataset posed the problem of prospective pathay gene prediction,
affected by a variance-related bias. New genes in KEGG pathways from Au-
gust 2018 were sought by using the same pathways from March 2011 and the
BioGRID network from 2011. The topological properties of the new genes
were unknown beforehand, but were expected to differ from those of path-
way genes in 2011. We hypothesised that the network would not provide
a highly consistent knowledge representation on the novel genes from 2018.
Normalised scores outperformed their unnormalised counterparts, further
supporting this statement.

9.1.2 The diffuStats R package

Sergio Picart-Armada, Wesley K Thompson, Alfonso Buil, and Alexan-
dre Perera-Lluna (2017), “diffuStats: an R package to compute diffusion-
based scores on biological networks”, Bioinformatics, 34, 3, pp. 533-534

The characterisation of the diffusion scores highlighed the importance of
examining the presence of bias, and its alignment with the properties of the
positive nodes. These algorithms were implemented in an R package named
diffuStats to ease their benchmark and adoption by the scientific community.
diffuStats was also published in Bioconductor1 and downloaded 1,462 times
from 619 unique IP addresses during 2019

2.
diffuStats was based on the graph kernel formalism and implemented

seven diffusion scores: raw, ml, gm, mc, z, ber_s and ber_p. Difference be-
tween scores stemmed from how the positive and negative labels were cod-
ified, i.e. which quantities are diffused on positive and negative nodes, and
the presence of a statistical normalisation. The following scores were unnor-
malised:

• raw: classical diffusion scores. If the input contained binary classes,
the positive class would diffuse 1 positive unit in each node and the
negative class would not diffuse anything.

• ml: like raw, but the negative class would diffuse one negative unit in
each negative node.

• gm: like ml, but the unlabelled nodes would diffuse a quantity based
on the balance between positives and negatives.

• ber_s: hybrid option that quantifies the relative change of the score of
a node, before and after diffusion.

1 diffuStats can be found at https://doi.org/doi:10.18129/B9.bioc.diffuStats. Accessed
on 31/12/2019.

2 http://bioconductor.org/packages/stats/bioc/diffuStats/. Accessed on 09/02/2020.

https://doi.org/doi:10.18129/B9.bioc.diffuStats
http://bioconductor.org/packages/stats/bioc/diffuStats/
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On the other hand, the scores below involved a statistical normalisation:

• mc: non-parametric normalisation, computationally intensive as it re-
quires permutations

• z: parametric normalisation

• ber_p: hybrid option that combines raw with mc

diffuStats was equipped with a quickstart vignette and a main vignette
that elaborates on the scores, the kernels, and provides a sample case study.
The dataset contained 13 annotations of biological functions in a yeast in-
teractome. For each function, half of the proteins were used as positives
in the input, while the other half helped estimate the performance. Trying
the seven diffusion scores revealed that z was slightly preferrable over the
unnormalised alternatives.

9.2 application to metabolomics data enrichment

The diffusion formalism that was explored in the two articles above, espe-
cially the implications of the statistical normalisation, had a potential impact
on a wide array of computational biology areas. The first choice of applica-
tion was data interpretation in metabolomics through network-based algo-
rithms. The technical limitations of experimental devices in metabolomics
and the lack of a mature, comprehensive, well-established range of tools for
understanding this data further encouraged efforts in this direction.

9.2.1 Null diffusion-based enrichment for metabolomics data

Sergio Picart-Armada, Francesc Fernández-Albert, Maria Vinaixa,
Miguel A Rodríguez, Suvi Aivio, Travis H Stracker, Oscar Yanes, and
Alexandre Perera-Lluna (2017), “Null diffusion-based enrichment for
metabolomics data”, PloS one, 12, 12, e0189012

This article developed a novel pathway enrichment technique to overcome
the low interpretability of standard tools. For this purpose, a knowledge
graph was built from the KEGG database, with a hierarchical representation
of entities that connect metabolites to biological pathways: reactions, en-
zymes and KEGG modules. Mining this object enabled a rich interpretation
on how affected metabolites might translate into dysregulated pathways.

Given a list of input metabolites, this approach provided a relevant but
succint biological explanation, in the form of a subgraph from the knowl-
edge graph. Node prioritisation was achieved through the definition of a
diffusion process: the input metabolites would introduce one flow unit each,
whereas only nodes corresponding to biological pathways were allowed to
dispel it. The sub-network was prioritised according to the best diffusion
scores.
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The presence of topology-related biases in diffusion scores was examined.
Two factors had a noticeable impact: the molecular level of the node (i.e.
level within the hierarchy) and its degree. Specifically, prioritising pathways
by their unnormalised scores greatly correlated with the expected value of
their null distributions, in turn related to their degree. The statistical nor-
malisation alleviated these shortcomings and was therefore included.

This diffusion-based approach was validated on a case-control experiment
aimed at characterising a mitochondrial protein. Affected metabolites were
derived by two experimental platforms: LC/MS3 and NMR4. The algorithm
suggested several sub-networks (one for each unique combination of param-
eters) starting from the LC/MS metabolites. The reported pathways were
consistent with those obtained by state-of-the-art tools. Within the knowl-
edge graph, the reported reactions were closer to the NMR metabolites than
the bulk of reactions involving any of the LC/MS metabolites, which proved
that the suggestions of entities between metabolites and pathways was mean-
ingful.

9.2.2 The FELLA R package

Sergio Picart-Armada, Francesc Fernández-Albert, Maria Vinaixa, Os-
car Yanes, and Alexandre Perera-Lluna (2018), “FELLA: an R package to
enrich metabolomics data”, BMC bioinformatics, 19, 1, p. 538

After demonstrating that the novel diffusion-based approach could pro-
vide valuable biological insights within the knowledge graph, the algorithms
were disseminated as an R package: FELLA. FELLA is part of the Bioconduc-
tor repository5 for bioinformatics tools and was downloaded 2,078 times
from 905 unique IP addresses during 2019

6.
FELLA was organised in three blocks: database creation, data enrichment

and results exporting. FELLA provided an automated way to generate any
organism-specific knowledge graph from the latest KEGG release, also allow-
ing to filter out user-defined pathways. The user input, a list of metabolies as
KEGG identifiers, is mapped to the knowledge graph and the (raw) diffusion
scores are computed using the unnormalised regularised Laplacian kernel or
the PageRank algorithm. The statistical normalisation of choice (parametric
or non-parametric) is applied and mapped to lie in [0, 1], referred to as the
p-score. Once a threshold on the p-score or on the number of nodes is de-
fined, an optional filter discards small connected components whose order
could arise from random selection of graph nodes. Finally, several plotting
and exporting options were implemented for tabular and network data. A
graphical interface facilitates analytical and exporting routines.

FELLA’s usefulness was shown on six case studies from public datasets.
For each dataset, a subgraph was generated and connected to the findings

3 Liquid Chromatography followed by Mass Spectrometry
4 Nuclear Magnetic Resonance
5 FELLA can be downloaded from https://doi.org/doi:10.18129/B9.bioc.FELLA. Accessed

on 31/12/2019.
6 http://bioconductor.org/packages/stats/bioc/FELLA/. Accessed on 09/02/2020.

https://doi.org/doi:10.18129/B9.bioc.FELLA
http://bioconductor.org/packages/stats/bioc/FELLA/
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within the original article and in independent literature. The variety of or-
ganisms (human, mouse and zebrafish) and case studies (in silico essays,
disease studies, animal models) highlighted the potential utility of FELLA to
a broad metabolomics community.

FELLA promotes reproducible and accessible research with the inclusion
of reproducible and self-explanatory vignettes for every study. Any potential
user only needs to replace few lines of code to leverage the knowledge graph
on their data.

9.2.3 Gilt-head bream oxybenzone exposition study

Haizea Ziarrusta, Leire Mijangos, Sergio Picart-Armada, Mireia Ira-
zola, Alexandre Perera-Lluna, Aresatz Usobiaga, Ailette Prieto, Nestor
Etxebarria, Maitane Olivares, and Olatz Zuloaga (2018), “Non-targeted
metabolomics reveals alterations in liver and plasma of gilt-head bream
exposed to oxybenzone”, Chemosphere, 211, pp. 624-631

FELLA was applied to an ecotoxicological study that studied the effect
of oxybenzone on juvenile gilt-head bream7. 50 fish shared a water tank
and underwent exposures of 0, 2, 4, 7 or 14 days (10 fish were sampled in
each timepoint). Likewise, 50 fish were kept in a control tank with the same
sampling frequence. Differentially abundant metabolites in liver, brain and
plasma were sought through untargeted metabolomics. Liver and plasma
showed metabolic alterations, whereas changes in brain could not be proven.
After mapping the affected metabolites to the KEGG database, FELLA was
used to elucidate a biological explanation of the metabolic perturbations.

In liver, 8 metabolic features were affected, from which 4 mapped to
KEGG. Pathway enrichment reported amino acid metabolism as a relevant
process, specifically phenylalanine metabolism, as well as tyrosine-related
metabolites. Oxidative stress was also highlighted as perturbed, found by
the alterations on lipidic metabolites, on hippurate levels and on precursors
of the carbohydrate metabolism.

An analogous statistical analysis yielded 10 metabolic features in plasma
(9 in KEGG). FELLA suggested that such metabolites were mainly involved
in the alteration of the lipid metabolism, concretely in fatty acid elongation,
alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids and
fatty acid metabolism. The alterations of 8 metabolites in lipid metabolism
was linked to oxidative stress since several authors had previously reported
that UV filters such as oxybenzone generate oxidative stress in fish. There
were also signs of glutathione metabolism perturbation since 5-oxo-L-proline
was altered.

In summary, the study showed that despite an absence of mortality or
alterations in general physiological parameters (i.e, fish weight and length)
and brain metabolome, oxybenzone produced significant metabolic pertur-
bations in both liver and plasma. The alterations on energy metabolism

7 This article was included as an appendix of this thesis
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and oxidative stress can lead to important health implications on fish, en-
couraging more metabolomics studies on non-lethal levels of xenobiotics for
environmental risk assessment.

9.3 application to gene target discovery

In silico gene target discovery is a classical problem in computational bi-
ology with notable implications in the drug discovery cycle. Network-based
approaches offer competitive performances, opening the question about the
adequateness of the statistical normalisation of diffusion scores.

9.3.1 Benchmark of gene target prioritisation

S Picart-Armada, SJ Barrett, DR Willé, A Perera-Lluna, A Gutteridge,
and BH Dessailly (2019), “Benchmarking network propagation methods
for disease gene identification”, PLoS Comput Biol, 15, 9, e1007276

This manuscript describes a benchmark of several network diffusion-based
approaches, including naive neighbour-voting, semi-supervised and super-
vised machine learning approaches. Special attention was payed to the vali-
dation scheme and the informativeness of performance metrics in the drug
development field.

The Open Targets platform was used to retrieve 22 common diseases
where at least 50 genes had been essayed in phase I or beyond. Two net-
works were considered: STRING with filters on edge types and weights,
which was larger but noisier, and OmniPath, more stringent and confident.
Provided that drug target data is usually known at the protein complex level,
known complexes were retrieved from ChEMBL.

The effect of changing the diffusion approach, the network, the disease
and the cross-validation strategy was quantified with explanatory models on
the performance estimates. The validation strategy was reported as the most
influential factor in the study. Ignoring the protein complex data would lead
to circularity in the cross-validation and to performance overestimation. Im-
posing that no protein complex shall be splitted, performances experienced
a pronounced drop, but were still encouraging the adoption of in silico drug
discovery. Competitive methods would typically find between 2.5 and 4 true
hits within the 20 highest prioritised genes.

Although the non-parametric normalisation mc performed poorly, the para-
metric z and the classical diffusion scores raw were competitive, raw with a
narrow lead. On the other hand, low-dimensional projections of the dif-
ferences between the top 100 predictions by normalised and unnormalised
diffusion scores unveiled distinct behaviours. Combining both observations,
the normalised and unnormalised counterparts might be successful because
of different underlying mechanisms.
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9.4 outcome

The scientific output has been so far divided into three main topics based
on their domain of application: general purpose, metabolomics and disease
gene data. However, such boundaries are not aligned with the conceptual
contributions of the articles. To that end, figure 37 draws an alternative
classification of the scientific articles.

• The preprint The effect of statistical normalisation on diffusion scores in com-
putational biology and the article Null diffusion-based enrichment for me-
tabolomics data address fundamental questions on the bias and justify
how and why should diffusion scores be normalised. The determin-
istic (parametric) normalisation provides the benefits of normalising
without the drawbacks of an explicit permutation analysis (computa-
tionally intensive, stochastic and approximate).

• The articles diffuStats: an R package to compute diffusion-based scores on
biological networks and FELLA: an R package to enrich metabolomics data
provide software implementations of the general purpose and metabo-
lomics applications.

• The articles Benchmarking network propagation methods for disease gene
identification and Non-targeted metabolomics reveals alterations in liver and
plasma of gilt-head bream exposed to oxybenzone are case studies, where the
main question does not involve the statistical normalisation. Instead,
the latter is a proxy to achieve another goal; respectively, choosing a
validation scheme for network propagation-based disease gene priori-
tisers and understanding metabolic changes in gilt-head bream when
exposed to environmental contamination.

Therefore, this thesis conveys and end-to-end perspective of the normali-
sation of diffusion scores, from conceptualisation to practical application.
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Biases in diffusion

Null diffusion model

Statistical properties of diffusion scores

diffuStats

Disease gene identification

FELLA

Null-diffusion enrichment for metabolomics data

Implementation

Application
Gilt-head bream oxybenzone study

Figure 37: Conceptual map of the thesis. This figure links the fundamental ideas
in this thesis to its scientific publications. The algorithmic part is covered
by the discovery, characterisation and removal of the bias through null
diffusion models. The implementation block distributes the algorithms
within open source software tools for the scientific community. The ap-
plication block involves studies focused on a specific biological question
rather than the algorithmic part.
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10.1 conclusion

The present doctoral thesis was motivated by the desire to explore the
statistical properties of diffusion scores.

• The first findings pointed to the presence of a bias that could, a priori,
be due to the network topology and to the user input. In parallel, para-
metric and non-parametric statistical normalisations were conceived.

• This work showed that the graph kernel, the network topology and
the statistical background played key roles in biasing diffusion scores.
The covariance of the null distributions was tightly connected with the
spectral properties of the graph. Guidelines were derived, suggesting
to normalise only if the bias was expected to hinder novel findings.

• The statistical normalisations were implemented and published within
the R package diffuStats to ease their adoption and benchmark by the
scientific community.

Besides, two areas of computational biology were revisited from the sta-
tistical normalisation perspective: metabolomics pathway enrichment and
target gene discovery. This choice allowed its application to two distinct net-
work types: a knowledge graph, whose purpose is to represent our under-
standing of biological mechanisms, and protein interaction networks, which
depict physical events between molecular entities.

• A knowlege graph was outlined specifically for metabolomics data.
Starting from a list of metabolites, not only biological pathways were
pointed out, but also other molecular entitites (reactions, enzymes and
modules).

• A method based on network diffusion was developed to prioritise en-
tities. The normalisation was found mandatory due to the hierarchical
nature of the network. This algorithm was validated on an in vitro
study, with measurements from two metabolomics experimental plat-
forms.

• The pathway enrichment algorithm was distributed within the R pack-
age FELLA. Users can create knowledge graphs for their organism of
choice, run the diffusion prioritiser and export the results as networks
or tables. Six case studies were bundled, with the code and the discus-
sion of the findings, to facilitate a starting point for new users.

On the other hand, the target gene prediction was benchmarked for an
array of network-based algorithms, ranging from simple neighbour voting
to supervised learning.
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• This work emphasised on the necessity of a proper protein complex-
aware validation scheme. Although pure diffusion-based methods
were competitive, the best method was a random forest classifier on
the top of network-based features.

• The parametric normalisation and the unnormalised scores performed
similarly but with diverging behaviours, suggesting some degree of
complementarity.

• Explanatory additive models allowed a systematic assessment of the
impact of several factors (method, disease, cross-validation strategy
and network) in the performance estimates.

To conclude, the statistical normalisation had an impact in all the areas
covered in the present thesis. The normalisation did not imply a system-
atic improvement everywhere, but rather provided a first step to control for
unwanted biases. Its adequateness depended on each particular instance
and should ideally undergo ad-hoc examination in future cases. This thesis
contributed with the basis and the means to that end.

10.2 future work

10.2.1 Statistical normalisation

The formulation of the parametric scores opens several reserach lines, de-
pending on the final purpose.

Binned version

Only one bin is permuted in the current normalisation, but some authors
have pointed out benefits of controlling for further confounding factors by
binning the input nodes. The parametric approach would be especially ben-
eficial due to its computational advantage in medium networks.

Multivariate version

The parametric normalisation is univariate, but it can be defined in a
multivariate sense. The assumptions and implications of the multivariate
approach would need careful understanding to identify challenges in com-
putational biology fitting these needs.

Accounting for uncertainty

The statistical model can be further modified to accomodate for unob-
served features. Quantifying the impact of uncertainty can bring robustness
and a measure of sensitivity to current network analyses.

Characterising other null models

Null models based on edge rewiring have found use in the literature.
Their statistical characterisation might shed light on their behaviour, along
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with similarities and differences with the input permutation-based null mod-
els.

Multilayer networks

Diffusion in multilayer networks is a pioneering approach regarding the
advent of omics data integration. Given that diffusion in classical networks
suffers from biases, the next logical step is to characterise multilayer diffu-
sion in the same terms.

10.2.2 Pathway analysis

The benefits of mining a knowledge graph for metabolomics data can be
translated to other omics data.

Using a harmonised resource

Resources that aggregate and put several comprehensive databases in a
common language, like PathMe, have demonstrated an improvement over
single databases. The single database approach in this thesis can benefit
from mining a richer, broader network.





A S TAT I S T I C A L P R O P E R T I E S

a.1 supplement 1: mathematical properties

a.1.1 Introduction

This document outlines and proves several properties of the diffusion
scores discussed in the main body. We mainly derive equivalences between
scores and properties of the statistical normalisations and their null distribu-
tions.

Notation

Tables 14 and 15 contain an overview of the notation used to formulate
and prove the properties.

Table 14: Notation of matrices, vectors and scalars.

Notation Data type Description
n Scalar Number of nodes in the graph
n+ Scalar Number of positive nodes
n− Scalar Number of negative nodes
nl Scalar Number of labelled nodes, nl = n+ +n−

nu Scalar Number of unlabelled nodes, nu = n−nl
L Matrix Unnormalised graph Laplacian n×n matrix
vi Column matrix i-th eigenvector of L
vTi Row matrix i-th eigenvector of L
λi Scalar i-th eigenvalue of L
K Matrix Graph kernel n×n matrix from (Smola and Kondor, 2003)
K Matrix n×nl sub-matrix from K (columns indexed by labelled nodes)
Kij Scalar Entry (i, j) from K

Ki∗ Row matrix i-th row of kernel matrix K
K∗j Column matrix j-th column of kernel matrix K
yraw Column matrix Vector in Rn with the input scores to raw diffusion scores
yraw(i) Scalar Input score of i-th node in the raw method
Yraw Column matrix Vector in Rnl , yraw restricted to labelled nodes only
y+raw Scalar Weight of the positive class for the raw scores
y−raw Scalar Weight of the negative class for the raw scores
yuraw Scalar Weight of the unlabelled class for the raw scores
fraw Column matrix Vector with the raw scores
fraw(i) Scalar raw score of i-th node

1k Column matrix Vector whose k entries are 1
Ik Matrix k× k identity matrix

The graph Laplacian L is a real n × n matrix defined as L := D −W,
where D = Dii is the (diagonal) degree matrix and W = Wij the adjacency
matrix. This definition assumes an undirected graph, either unweighted or
with weights Wij ∈ [0,∞) (Smola and Kondor, 2003).

This appendix reproduces the supplementary data (Supplements 1 to 4) of: Picart-Armada,
Sergio, Wesley K. Thompson, Alfonso Buil, and Alexandre Perera-Lluna. “The effect of
statistical normalisation on network propagation scores”. BioRxiv (2020).
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Table 15: Notation of functions and operators.

Notation Function/operator Notes
r(λ) Regularisation function (Smola and Kondor, 2003) λ > 0, r(λ) > 0 monotonically increasing
1
r(λ) Inverse of r(λ) By convention, 0−1 ≡ 0, see (Smola and Kondor, 2003)
E(X) Expected value X random vector in Rk, E(X) ∈ Rk, both column matrices
Σ(X) Covariance X as above, Σ(X) ∈ Rk×k symmetric square matrix

Importantly, some of the present proofs use a sub-matrix K of the whole
graph kernel K (Smola and Kondor, 2003) (we focus on the finite dimension
case). K contains the rows corresponding to all the graph nodes and the
columns corresponding to labelled nodes. In the absence of unlabelled
nodes, K = K will be a square matrix, i.e. the whole kernel matrix – see for
instance proposition 1. Otherwise K will be a rectangular sub-matrix of it,
containing all the original rows but only some of the columns; the latter is
not a kernel matrix properly speaking. This simplifies the notation because
(i) only one score in our study, gm, actually places non-null weights on the
unlabelled class, and (ii) the normalised scores permute only the labelled
nodes.

Likewise, the input vector Y represents y indexed by the labelled entries.
For instance, the vector of input labels for the raw scores Yraw contains only
the nodes under the positive (yraw(i) = y+raw = 1) and negative classes
(yraw(i) = y−raw = 0), but not the unlabelled nodes.

Therefore, the matrix-vector product fraw = KYraw is properly defined
in terms of dimensionality. If n is the number of nodes in the graph and
nu the number of unlabelled nodes, then fraw ∈ Rn, K ∈ Rn×(n−nu) and
Yraw ∈ Rn−nu . This is equivalent to including the unlabelled with a weight
of yuraw = 0; this is, fraw = Kyraw, with fraw ∈ Rn, K ∈ Rn×n and
yraw ∈ Rn.

Definition of the scores

While the input can be quantitative, we focus on the case where the entities
can only be positive, negative or unlabelled. The raw diffusion scores are
defined as fraw = Kyraw = KYraw, according to (Picart-Armada, Sergio
and Thompson, Wesley K and Buil, Alfonso and Perera-Lluna, Alexandre,
2017). yraw takes by default these weights: y+ = 1 for the positives, y− =

yu = 0 for the negatives and unlabelled nodes. In general, a diffusion score f
can be computed with other weights as f = Ky, where K is the graph kernel
and y the input coded by another choice of y+, y− and yu.

We use the diffuStats package (Picart-Armada, Sergio and Thompson,
Wesley K and Buil, Alfonso and Perera-Lluna, Alexandre, 2017), equipped
with the possibilities that are studied in the main body. One of the aims of
the following properties is to prove equivalences between label choices in
certain conditions are met.
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a.1.2 Equivalences between scores

Proposition 1. Consider fraw = Kyraw of finite dimension in a scenario with no
unlabelled nodes (K square matrix), i.e. the label of the i-th node yi = y+raw = 1

for the positives and yi = y−raw = 0 for the negatives, and nu = 0. Let f = Ky

be another score using y+ > y− as new real numbered weights for positives and
negatives. Then, if the kernel K is a spectral transformation of the unnormalised
graph Laplacian L, the result of ranking (prioritising) the nodes using fraw and
using f is identical.

Proof. Let fraw(i1) > fraw(i2) > . . . > fraw(in) be the ranking of the nodes
using the fraw scores, i.e. their prioritisation through decreasing fraw, being
the top suggestions the highest scores. If we prove that fraw(i) > fraw(j)⇔
f(i) > f(j), then the ranking using the scores f must be identical. Note that
ties in fraw must happen in f and vice versa, because fraw(i) = fraw(j) ⇔
fraw(i) > fraw(j)∧ fraw(i) 6 fraw(j) ⇔ f(i) > f(j)∧ f(i) 6 f(j) ⇔ f(i) =

f(j).
As K is a spectral transformation of the unnormalised Laplacian L, it can

be written in the following form, see (Smola and Kondor, 2003):

K =

n∑
j=1

1

r(λj)
vjv

T
j

Being vj the eigenvectors as column vectors and λj the eigenvalues of L.
The constant vector v1 = 1√

n
(1, . . . , 1)T is an eigenvector of L of eigenvalue

0. Therefore, it is also an eigenvector of K of eigenvalue 1
r(λ1)

= 1
r(0) ∈ R (by

convention, 10 ≡ 0). Therefore, the i-th row of K, denoted Ki∗, 1 6 i 6 n, has
a constant sum, as Kv1 = 1

r(0)v1, and because v1 = 1√
n
(1, . . . , 1)T :

n∑
j=1

Kij =
1

r(0)
, 1 6 i 6 n

On the other hand,

fraw(i) > fraw(j)⇔ Ki∗yraw > Kj∗yraw

⇔ (Ki∗ −Kj∗)yraw > 0

Note that if 1n is the column vector full of ones, then

yraw =
1

y+ − y−
(y− y−1n)

where y+ − y− > 0. Therefore,

(Ki∗ −Kj∗)yraw > 0⇔ (Ki∗ −Kj∗)
1

y+ − y−
(y− y−1n) > 0

⇔ (Ki∗ −Kj∗)(y− y
−1n) > 0

⇔ (Ki∗ −Kj∗)y− y
−(Ki∗ −Kj∗)1n > 0

⇔ (Ki∗ −Kj∗)y− y
−

(
1

r(0)
−

1

r(0)

)
> 0

⇔ (Ki∗ −Kj∗)y > 0

⇔ f(i) > f(j)
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Note how a more general version of this property can be proved in a
very similar way for quantitative yraw, so that transformations of the kind
y = αyraw + β1n, with α,β ∈ R,α > 0, lead to the same node ranking as
fraw.

Corollary 1. The scores fraw, fml and fgm lead to the same node ranking (prioriti-
sation) if there are no unlabelled nodes and the kernel K is a spectral transformation
of the unnormalised graph Laplacian L of finite dimension.

Note that this result does not hold in general if the kernel stems from
the normalised Laplacian, or with the presence of unlabelled nodes besides
positives and negatives (see counterexamples on figure 38). In both cases,
the row sums are no longer constant and their respective sums do not cancel
out.

The same property holds if instead of having only positives and negatives
there are only positive and unlabelled nodes:

Proposition 2. Consider fraw = Kyraw of finite dimension in a scenario with no
negative nodes, i.e. the label of the i-th node yi = y+raw = 1 for the positives and
yi = y

u
raw = 0 for the unlabelled nodes, and n− = 0. Let f be another score using

y+ > yu as new real numbered weights for positives and unlabelled nodes. Then, if
the kernel K is a spectral transformation of the unnormalised graph Laplacian L, the
result of ranking (prioritising) the nodes using fraw and using f is identical.

Proof. The proof is identical to proposition 1, but switching the roles of un-
labelled and negative nodes.

Corollary 2. The scores fraw, fml and fgm lead to the same node ranking if
there are no negative nodes and the kernel K is a spectral transformation of the
unnormalised graph Laplacian L of finite dimension.

Proposition 3. The ranking using fraw and fbers is identical within the positive,
the negative and the unlabelled nodes, provided that ε > 0

Proof. If the i-th node is a positive, then:

fbers(i) =
fraw(i)

yraw(i) + ε
=
fraw(i)

1+ ε

Therefore, there is only a positive, multiplicative constant between fraw
and fbers .

If the i-th node is a negative or unlabelled, then:

fbers(i) =
fraw(i)

yraw(i) + ε
=
fraw(i)

ε

Where fraw and fbers clearly lead to the same ranking (prioritisation)
again.
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a.1.3 Normalisations are invariant under label codification

Proposition 4. In fz, the choice of y+ and y− is irrelevant. More generally, com-
puting f̃z using Ỹ = αY+ β1nl instead of Y, with α,β ∈ R,α > 0, is equivalent
to computing fz.

Proof. Using the same notation as in the first property, we start from the
definition of the z-score from the main text, which normalises the fraw score
by the mean and standard deviation of its distribution when the labelled
nodes are permuted:

fz(i) =
fraw(i) −E(Xf(i))√

Var(Xf(i))
=

Ki∗Yraw −Ki∗E(XY)√
Ki∗Σ(XY)K

T
i∗

According to the main text, XY is a random permutation of the labelled
nodes in the input Yraw, and Xf = KXY is the random vector of null diffu-
sion scores.

We prove that computing fz with an input vector Y is identical to doing
the same with Ỹ = αY + β1nl . Let XY be a random permutation of the
input Y, treated as a random vector, and let XỸ be the same permutation
applied to Ỹ. The raw diffusion score of the i-th node is Ki∗Y, whereas its
null distribution is the random variable Ki∗XY. Analogously, using Ỹ, the
score is Ki∗Ỹ and the null distribution is Ki∗XỸ. The idea is that subtracting
the expected value cancels out the constant term β, whereas dividing by the
standard deviation cancels out the multiplicative constant α.

For any node i:

f̃z(i) =
Ki∗Ỹ−Ki∗E(XỸ)√

Ki∗Σ(XỸ)K
T
i∗

=
Ki∗(αY+β1nl) −Ki∗E(αXY +β1nl)√

Ki∗Σ(αXY +β1nl)K
T
i∗

=
αKi∗Y+βKi∗1nl −Ki∗(αE(XY) +β1nl)√

α2Ki∗Σ(XY)K
T
i∗

=
αKi∗Y−αKi∗E(XY)

|α|
√
Ki∗Σ(XY)K

T
i∗

=
Ki∗Y−Ki∗E(XY)√

Ki∗Σ(XY)K
T
i∗

= fz(i)

As a consequence, the score fz is independent from the choice of the label
weights: not just the final ranking is the same, but the values of the scores
are identical.

Proposition 5. In fmc, the choice of y+ and y− is irrelevant. More generally,
computing f̃mc using Ỹ = αY + β1nl instead of Y, with α,β ∈ R,α > 0, is
equivalent to computing fmc.
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Proof. Remember that fmc is defined, for the i-th node, as:

fmc(i) = 1−
ri + 1

N+ 1

This measures the amount of permutations (null trials) ri, out of a total of
N, in which fnullraw (i) > fraw(i), where fnullraw (i) is the fraw score of the i-th
node using the permuted input Ynullraw instead of Yraw.

We will focus on the outcome of a single random trial among the N null
trials, denoted by the superindex null. In other words, fnullraw (i) is the null
score of the i-th node on this random trial. Let f̃mc(i) be the scores computed
from Ỹ instead of Y. It suffices to prove that fnullraw (i) > fraw(i)⇔ f̃nullraw (i) >
f̃raw(i). If the former is true for any permutation, then r̃i = ri (the same N
random trials would lead to the same estimate), thus f̃mc(i) = fmc(i).

f̃nullraw (i) > f̃raw(i)⇔ Ki∗Ỹ
null
raw > Ki∗Ỹraw

⇔ Ki∗(Ỹ
null
raw − Ỹraw) > 0

⇔ Ki∗(αY
null
raw +β1nl −αYraw −β1nl) > 0

⇔ Ki∗α(Y
null
raw − Yraw) > 0

⇔ Ki∗(Y
null
raw − Yraw) > 0

⇔ fnullraw (i) > fraw(i)

As with fz, the definition of fmc conveniently avoids the choice of weights
for positives and negatives. Also note that propositions 4 and 5 hold for
kernels based on the normalised and the unnormalised graph Laplacian.
See figure 38 for examples on both properties.

a.1.4 Expected values and covariance matrix of null scores

The following property provides the closed expressions of the null ex-
pected vector and covariance matrix. For instance, these are useful for com-
puting fz without the need of permutations to estimate the expected values
and variances.

Proposition 6. Let fraw be the raw diffusion scores computed from a kernel K
and an input Yraw. Let Xf be the random vector of diffusion scores computed
from a permuted input, Xf = KXY, where XY is the random vector that results
from permuting (shuffling) Yraw, i.e. XY = π(Yraw) for a random permutation π.
Then, if Mk = Ik −

1
k1k1Tk and nl > 2:

(i) E(XY) = µY1nl

(ii) E(Xf) = µYK1nl

(iii) Σ(XY) = σ
2
YMnl

(iv) Σ(Xf) = σ2YKMnlK
T
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being µY = 1
nl

∑nl
i=1 Yi the mean of the labels and σ2Y = 1

nl−1

∑nl
i=1(Yi − µY)

2

their variance.

Proof. (i) E(XY) is, by symmetry, a constant nl-th dimensional vector, so
we can write E(XY) = µ1nl for some µ ∈ R. Under the permutations,
all the elements of the original vector have a uniform probability of
ending in a given position, therefore µ = 1

nl

∑nl
i=1 Yi = µY

(ii) Using property (i), E(Xf) = E(KXY) = KE(XY) = µYK1nl

(iii) By the symmetry of the permutations, the covariance matrix Σ(XY) can
only have two different elements: (1) the variances σ2 on the diagonal,
and (2) the covariances ρ on the off-diagonal. This can be written as:

Σ(XY) = (σ2 − ρ)Inl + ρ1nl1
T
nl

To find σ2, it suffices to see that σ2 is actually the (exact) variance of
each position in the permuted vector, i.e. σ2 = 1

nl

∑nl
i=1(Yi − µY)

2 =

σ2Y
nl−1
nl

.

To find the covariance between two positions ρ, it is useful to notice
that 1TnlY = nlµY = 1TnlXY is constant, because the elements of XY

must have a constant sum regardless of the permutation. Therefore, its
covariance is 0:

Σ(1TnlXY) = 0 = 1TnlΣ(XY)1nl

Using this, and knowing that 1Tnl1nl = nl,

1Tnl

[
(σ2 − ρ)Inl + ρ1nl1

T
nl

]
1nl = 0

(σ2 − ρ)nl + ρn
2
l = 0

ρ = σ2
−1

nl − 1

Therefore, the desired covariance matrix is

Σ(XY) = (σ2 − ρ)Inl + ρ1nl1
T
nl

= σ2
[
nl

nl − 1
Inl −

1

nl − 1
1nl1

T
nl

]
=

= σ2
nl

nl − 1
Mnl = σ

2
YMnl

(iv) Using property (iii), Σ(Xf) = Σ(KXY) = KΣ(XY)K
T = σ2YKMnlK

T

Note that these statistical moments are valid in the general case where
yraw is quantitative. Another remark is that the proofs for propositions
4, 5 and the statistical moments in proposition 6 do not actually use that K
comes from a kernel. Therefore, they stand valid in random-walk and other
approaches that can be defined as a matrix-vector product but fall outside
the kernel formalism.
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Corollary 3. In the absence of unlabelled nodes and using a kernel from a spectral
transformation of the unnormalised Laplacian, the expected values of all the nodes
is coincidental.

Proof. As shown in proposition 1, if the unnormalised Laplacian is used, the
kernel rows have the same sum because 1n is an eigenvector of K = K with
eigenvalue 1

r(0) . Using property (ii) from proposition 6 and the fact that
there are no unlabelled nodes, i.e. nl = n, the vector with expected values
becomes

E(Xf) = µyK1n = µy
1

r(0)
1n

Therefore, all the expected value are coincidental and equal to µy 1
r(0) .

This implies that fz, in fact, modifies the ranking of fraw only because of
different standard deviations under these conditions. This does not hold in
the general case with a nonempty set of unlabelled nodes.

On the other hand, property (iv) in proposition 6 has an implication in
understanding the covariance of the null distribution:

Proposition 7. The covariance of the null distribution of diffusion scores is directly
related to the covariance between the kernel vectors. Specifically, the covariance
between two nodes is, up to a multiplicative constant, their sample covariance using
as samples the labelled nodes and as features their kernel values to all the nodes.

Proof. Starting from point (iv) in proposition 6, Σ(Xf) = σ2YKMnlK
T , note

that MkMk = Ik− 2
1
k1k1Tk +

1
k2

1kk1Tk = Ik−
1
k1k1Tk =Mk. Also, by its own

definition, Mk is the matrix such that it centers the rows (resp. columns) of
a matrix A ∈ Rk×k when it is multiplied by the right (resp. left) of A.

Back to the expression of Σ(Xf), we can write:

Σ(Xf) = σ
2
YKMnlK

T = σ2YKMnlMnlK
T = σ2YK̂K̂T

Being K̂ = KMnl the row-centered matrix K. This implies that the prod-
uct K̂K̂T is just the sample covariance of KT , up to a multiplicative constant,
and therefore the whole covariance Σ(Xf) is proportional to the sample co-
variance of KT .

To illustrate this, a feature matrix can be built from the kernel matrix,
using as samples the labelled nodes in the network and as features their simi-
larity, using the kernel, to all the network nodes.

On one hand, the sample covariance of such a dataset (matrix whose (i, j)-
th entry is the covariance between features i and j) is proportional to the
covariance of the null distribution in the diffusion process.

On the other hand, the leading eigenvectors of the null covariance are
equivalent to the principal components (loadings) of such a dataset.

In turn, these eigenvectors are related to the spectral properties of the
graph, such as the Fiedler-vector in graph partitioning (Smola and Kondor,
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2003). The Fiedler-vector is defined as the eigenvector v2 of the graph Lapla-
cian with the second smallest eigenvalue λ2. v2 is also an eigenvector of any
graph kernel as defined in (Smola and Kondor, 2003) with eigenvalue 1

r(λ2)
.

To wrap up these properties, we prove a particular case in which the lead-
ing eigenvectors of the null covariance convey the same data as the Fiedler-
vector and its successive components.

Proposition 8. Let K be a kernel from a spectral transformation r(λ) > 0 on the
unnormalised graph Laplacian L, of finite dimension. In the absence of unlabelled
nodes, i.e. nu = 0 and nl = n, then the eigenvector vi+1 with the i+ 1-th smallest
eigenvalue of L, 1 6 i 6 n − 1, is equal to the eigenvector ui with i-th largest
eigenvalue from the null covariance Σ(Xf).

Proof. We use the definition of the kernel K =
∑n
j=1

1
r(λj)

vjv
T
j (Smola and

Kondor, 2003), the definition of K̂ = KMn from property 8 and that of
Σ(Xf) = σ

2
yK̂K̂

T from property 6. Note that the matrices L, K, Mn, K̂, Σ(Xf)
belong to Rn×n and, in particular, are square. To build the proof, we will
write the eigenspaces of such matrices in ascending eigenvalues.

We denote the eigenvectors of L as v1, v2, . . . , vn, with the following eigen-
values: 0 = λ1 6 λ2 6 . . . 6 λn Without loss of generality, we can take
v1 = 1√

n
1n = 1√

n
(1, . . . , 1)T – that does not apply to the normalised Lapla-

cian in general.
Because r(λ) > 0 and r(λ) is increasing, the eigenspace of K consists of

the eigenvectors in reversed order u1 = vn, . . . ,un = v1, with eigenvalues
1

r(λn)
6 . . . 6 1

r(λ2)
6 1
r(0)

Regarding Mn, we show that its eigenspace is w1 = v1, . . . ,wn = vn,
with eigenvalues 0, 1, . . . , 1. On one hand, Mnv1 = v1 −

1
n1n1

T
nv1 = v1 −

1
n1n1

T
n
1√
n
1n = v1 −

1
n1n
√
n = v1− v1 = 0. On the other hand, if 1 < i 6 n,

Mnvi = vi −
1
n1n1

T
nvi = vi − 0 = vi, because vi is orthogonal to v1, a

multiple of 1n. We conclude that vi has eigenvalue 1.
The eigensystem of K̂ = KMn can be characterised using that K and Mn

share all the eigenvectors. The eigenvalues of K̂ are the product of the re-
spective eigenvalues of K and Mn. The eigenvectors t1 = v1, t2 = vn, t3 =

vn−1, . . . , tn = v2 have as eigenvalues 0 6 1
r(λn)

6 1
r(λn−1)

6 . . . 6 1
r(λ2)

, i.e.
the leading eigenvalue of K, 1

r(0) , has now collapsed to 0, whereas the rest
are unchanged.

The proof is completed by pointing out that the eigenvectors of Σ(Xf) =

σ2yK̂K̂
T are those of K̂, and that their eigenvalues are 0 6 σ2y

1
r(λn)2

6 σ2y
1

r(λn−1)2
6

. . . 6 σ2y
1

r(λ2)2
. The order of the eigenvectors and the eigenvalues is pre-

served because σ2y > 0 and r(λ) > 0. From here, the vector with the largest
eigenvalue from Σ(Xf), tn, is equal to v2, the eigenvector with second small-
est eigenvalue from L; the second largest is tn−1 = v3, the eigenvector with
the third smallest eigenvalue from L, and so on.

Corollary 4. On a graph with the same premises as in proposition 8, provided that
λ2 < λ3, the leading eigenvector of the null covariance Σ(Xf) is the Fiedler-vector,
up to a change of sign.
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Proof. The only observation is that, given that λ2 < λ3, the Fiedler-vector is
unique and, by property 8, is the leading vector of the null covariance, up to
a sign change.

Proposition 8 is illustrated in toy graphs with the lattice (figure 39) and the
Barabási-Albert (figure 40) architectures. The presence of unlabelled nodes
leads to a leading covariance eigenvector analogous to the Fiedler-vector, but
taking into account the unobservable nature of part of the network.

In views of these results, the null covariance of a given instance can be of
interest per se, because it reflects the effect of measuring (and normalising)
a specific set of nodes in terms of spectral network properties.
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Figure 38: Effect of label encoding on fraw, fmc and fz, depending on (i) the kernel,
and (ii) presence of unlabelled nodes. A small graph of order 100 was
generated with igraph::barabasi.game(n = 100, m = 3, directed =

F). The 100 nodes were assigned to the positive and negative classes
once, with 1

2 probability each. Those labels were either all available or
half available (only the first 50), considering the other half as unlabelled.
Two encodings were used to rank the nodes: y+ = 1, y− = −1 (like
fml) and two random weights y+ > y−. Two kernels were compared,
one from the normalised Laplacian (p-step kernel, a = 2, p = 5) and
one from the unnormalised (RL: regularised Laplacian, σ2 = 1). fraw:
both encodings are equivalent only for the RL kernel without unlabelled
nodes, consistent with proposition 1. fz and fmc: as stated in propo-
sitions 4 and 5, both scores are weight-independent, regardless of the
kernel and the presence of unlabelled nodes.
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(A) 2nd eigenvector of unnormalised L
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(B) 3rd eigenvector of unnormalised L
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(C) 1st eigenvector of covariance (all labelled)
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(D) 2nd eigenvector of covariance (all labelled)
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(E) 1st eigenvector of covariance (~50% leftmost labelled)
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(F) 2nd eigenvector of covariance (~50% leftmost labelled)
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Figure 39: Comparison of the eigenvectors of the unnormalised Laplacian (pan-
els A-B) and the null covariance using the regularised Laplacian
kernel (panels C-F), on a toy lattice graph of 20 × 12 nodes,
igraph::graph.lattice(dimvector = c(20, 12)) in R. The null covari-
ance is computed in two scenarios: all the nodes are labelled, i.e. K = K

(panels C-D), or only half of them are, so K contains half of the columns
in K (panels E-F).
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(A) 2nd eigenvector of unnormalised L
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(B) 3rd eigenvector of unnormalised L
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(C) 1st eigenvector of covariance (all labelled)
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(D) 2nd eigenvector of covariance (all labelled)
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Figure 40: Comparison of the eigenvectors of the unnormalised Laplacian (panels
A-B) and the null covariance using the regularised Laplacian kernel (pan-
els C-F), on a toy synthetic Barabási graph, igraph::barabasi.game(n =

150, m = 4, directed = F) in R. The null covariance is computed in
two scenarios: all the nodes are labelled, i.e. K = K (panels C-D), or
only half of them are, so K contains half of the columns in K (panels
E-F).
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a.2 supplement 2: synthetic signals

a.2.1 Introduction

This additional file contains details on the synthetic signals generated on a
yeast interactome, both in biased and unbiased ways. Using a controlled en-
vironment, we characterised the behaviour of the diffusion scores to derive
guidelines in terms of two key factors: the presence of bias in the positives
and the class imbalance. This document can be re-built anytime by knitting
its corresponding .Rmd file.

The network

The yeast interactome was originally published in (Von Mering et al., 2002)
and downloaded using the igraphdata R package (Csardi, 2015). Only the
largest connected component was used, which consisted of 2375 nodes and
1.1693× 104 edges. A summary of the network is provided below:

## IGRAPH 3d30c0a UN-- 2375 11693 -- Yeast protein interactions, von Mering e

## + attr: name (g/c), Citation (g/c), Author (g/c), URL (g/c),

## | Classes (g/x), name (v/c), Class (v/c), Description (v/c),

## | Confidence (e/c)

Synthetic signal generation

Biased and unbiased signals were generated in order to compare nor-
malised and unnormalised diffusion scores. As shown in the diffusion scores
properties in Supplement 1, if all the nodes are labelled and the regularised
unnormalised Laplacian kernel is used, then the expected values of the null
distribution are constant for all the nodes in the network. In order to have
differences in expected values (and therefore noticeable biases), nodes were
randomly divided in three classes:

• Labelled nodes: the labelled nodes in the input
• Target nodes: the unlabelled nodes that had to be prioritised
• Filler nodes: the rest of unlabelled nodes

The presence of filler and target nodes, considered as unlabelled in the
diffusion inputs, promoted differences in the expected values of all nodes.
Each class contained around one third of the nodes:

##

## Filler Labelled Target

## 793 791 791

The purpose was to sample nlabelled nodes from the labelled nodes and
ntarget nodes from the target nodes in each instance. The sampled nodes
were deemed positives, whereas the rest were negatives. Diffusion scores
were fed with the labelled nodes in order to prioritise the target nodes, on
which the performance metrics were computed.
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Figure 41: Expected value, variance and node degree in every node category. Loess
fit in black, shaded with 0.95 confidence interval. Note how the effect
of node degree on its expected value had opposed directions in labelled
and unlabelled nodes. Differences were also present in the magnitude
of expected values, variances, and their trend.

biased sampling First, the nlabelled nodes were uniformly sampled
from the labelled nodes, giving a binary input vector y. Then, the raw
scores were computed: fraw = Ky. Exactly ntarget nodes were sampled,
where the probability of the i-th node was proportional to fraw(i). This
sampling scheme was biased because, by hypothesis, nodes with higher ex-
pected value would become positives more frequently.

unbiased sampling Like in the biased sampling, the nlabelled nodes
were uniformly sampled to obtain the binary input vector y. The ntarget
nodes were sampled with a probability proportional to fmc(i)+ 1

N+1 , where
N = 104 is the number of simulations. fmc(i) was (roughly) their empirical
cumulative distribution function applied to the scores fraw = Ky, which
removed the bias by its own definition.

a.2.2 Descriptive statistics

Expected value and covariance matrices

After defining the node classes and the basic input parameters, we com-
puted the theoretical mean vector and covariance matrix. The fact that the
number of positives in the input was constant in these simulations led to
fixed µy and σ2y values, allowing a single representation of the expected val-
ues and variances of the null distributions in figure 41. The figure confirms
that labelled nodes exhibited properties different that those of filler and target
nodes: labelled nodes had higher expected values, variances, and different
trends between expected value, variance, and degree. Likewise, filler and
target nodes were undistinguishable, expected by their definition.

Figure 42 offers a closer look at differences in reference mean values the
target nodes, which is a property of the network. The target nodes were of
special interest because predictions and performance metrics were computed
on them.
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Figure 42: Histogram of the reference expected value of the target nodes.

Input lists

A total of 100 biased and 100 unbiased instances were generated, each
with a proportion of 0.1 labelled nodes and a proportion of 0.1 target nodes
with positive labels. To generate the unbiased inputs, mc scores were com-
puted by permuting 104 times. The regularised (unnormalised) Laplacian
kernel was used.

The frequency of target nodes and the reference expected value were ex-
pected to be uncorrelated in the unbiased signals, whilst positively corre-
lated in the biased case. By definition, the input nodes should be indepen-
dent from the reference expected value as well. Figure 43 supports all the
claims above.

Diffusion scores

104 permutations were used to compute mc and ber_p scores. Figure 44

compares the rankings from each method, stratified by positives and neg-
atives, and shows their correlation. This suggests groups of methods with
similar behaviours: (i) ml and gm, or (ii) ber_p, mc and z. Also, top ranked
raw nodes were usually top ranked in z, but the converse was not true.

Figure 45 depicts the correlations between methods. First, this shows how
ber_s is equivalent to raw in terms of ranking, as proven in the properties
in Supplement 1. raw correlates with normalised scores mc and z, the hybrid
ber_p and pagerank. On the other hand, pagerank strongly anticorrelates
with ml and gm (raw does as well, but only slightly). The scores ml and gm dif-
fuse −1 on the negatives, which outnumber the positives 9 to 1 and dominate
them. The nodes are expected to be ranked roughly by the (negative) refer-
ence expected value, also correlated with pagerank. This is supported by the
strong anticorrelation between the node ranking (ml, gm) and pagerank.

Figure 46 depicts the concordance between the top 10 ranked nodes under
each diffusion score. This scenario is slightly different from that in figure 45
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Figure 43: Frequency of positive nodes among the targeted nodes, as a function
of the node reference expected value. Gray lines correspond to linear
models with a 0.95 confidence interval.
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Figure 44: Pairs plot between the rankings by each diffusion score (and baseline).
Top-ranked nodes are closer to 0. Positives and negatives are represented
in orange and gray. The color legend has an adjusted transparency that
corrects the fact that negatives greatly outnumbered positives.
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Figure 45: Spearman correlation between node rankings for all the diffusion scores
and baselines. Crossed correlations had false discovery rates larger than
0.05.
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Figure 46: Common hits within the top 10 suggestions of all methods.

and suggests that methods with highest similarity are (i) raw and ber_p, (ii)
ml and gm, (iii) mc and z.

Bias within prioritisations

Our main hypothesis on the fundamental impact of normalising the scores
(mc, z versus raw) was that normalisation attained a more uniform power
across the nodes of the network. In other words, unnormalised scores kept
a higher power on a certain kind of nodes, driven by the reference expected
value bKµ in the null distribution. Figure 47 illustrates this behaviour, present
in biased and unbiased signals: positives with high bKµ were top ranked
by raw, at the expenses of missing positives with low bKµ . However, the
overall impact on performance was not obviously derived from figure 47

alone, because we needed to account for the density of true positives across
the reference expected value (i.e. “are the positive nodes biased?”), as shown
in figure 43.

Other remarks from figure 47: ber_p behaves halfway between raw and mc;
and ml is biased in the other direction, that is, favouring nodes with a low
reference expected value. The latter relates with the prior observations on
how ml anticorrelates with pagerank because it diffuses −1 on the negatives,
which outnumber the positives. Figure 47 casts doubt on the peformance of
ml because the mean ranking of positives and negatives is qualitatively in-
distinguishable at the low reference expected value region, where ml should
excel.
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Figure 47: Ranking of the positives and negatives within the target nodes as a func-
tion of their reference expected value, divided by method and signal bias.
Best rankings are those close to 0. The smoothing was fitted using the
default gam method in ggplot2. For visual and computational purposes,
only a fraction of 0.1 of the negatives were represented.

a.2.3 Performance

Aditive model

The AUROC and AUPRC were computed for each diffusion score and
input, with its corresponding simulated ground truth (figure 48). Each box
contained 100 data points. Differences were described in terms of the follow-
ing additive quasibinomial (logit link) model, summarised in table 16:

performance ∼ method + method:biased + metric

Provided that AUROC and AUPRC showed similar trends (figure 48) and
that both range between 0 and 1, they were combined and modelled with
the metric categorical covariate. biased referred to the nature of the signal,
biased or unbiased.

Figure 48 suggests that the unnormalised scores raw were preferrable if
the signal was biased, whereas mc and z were best suited for unbiased sig-
nals. Likewise, the hybrid scores ber_p standed out as a good compromise
between both.

Table 17 contains confidence intervals on the predictions of the model for
each combination of factors.

We tested for differences between the predictions of raw and z in the four
cases using Tukey’s method, confirming that the differences discussed above
were statistically significant:

## metric contrast estimate SE df z.ratio

## 1 AUPRC Biased,raw - Biased,z 0.2657691 0.01824644 Inf 14.56553

## 2 AUPRC Unbiased,raw - Unbiased,z -0.2006233 0.01836834 Inf -10.92223

## 3 AUROC Biased,raw - Biased,z 0.2657691 0.01824644 Inf 14.56553

## 4 AUROC Unbiased,raw - Unbiased,z -0.2006233 0.01836834 Inf -10.92223

## p.value

## 1 0.000000e+00
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Figure 48: AUROC and AUPRC of diffusion scores for biased and unbiased signals.
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Table 16: Quasibinomial model for AUROC and AUPRC. Estimates with 0.95 con-
fidence intervals.

methodml −0.848
∗∗∗ (−0.884, −0.811)

methodgm −0.719
∗∗∗ (−0.755, −0.683)

methodber_p −0.086
∗∗∗ (−0.122, −0.051)

methodmc −0.304
∗∗∗ (−0.339, −0.268)

methodz −0.266
∗∗∗ (−0.302, −0.230)

methodrandom −0.895
∗∗∗ (−0.932, −0.859)

methodpagerank −0.653
∗∗∗ (−0.690, −0.617)

metricAUROC 2.131
∗∗∗ (2.118, 2.145)

methodraw:biasedUnbiased −0.455
∗∗∗ (−0.491, −0.419)

methodml:biasedUnbiased 0.155
∗∗∗ (0.118, 0.192)

methodgm:biasedUnbiased 0.092
∗∗∗ (0.056, 0.129)

methodber_p:biasedUnbiased −0.186
∗∗∗ (−0.221, −0.150)

methodmc:biasedUnbiased 0.075
∗∗∗ (0.039, 0.111)

methodz:biasedUnbiased 0.011 (−0.025, 0.047)
methodrandom:biasedUnbiased −0.031 (−0.069, 0.006)
methodpagerank:biasedUnbiased −0.271

∗∗∗ (−0.308, −0.234)
Constant −1.229

∗∗∗ (−1.255, −1.202)

Observations 3,200

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

## 2 2.137179e-13

## 3 0.000000e+00

## 4 2.137179e-13

Another interesting remark from figure 48: pagerank had predictive power
only in the biased setup. The predictive power of an input-naive centrality
measure like pagerank can be a reason to suspect that the signal is biased
towards high-degree nodes.

## metric contrast estimate SE df

## 1 AUPRC Biased,random - Biased,pagerank -0.241916366 0.01888432 Inf

## 2 AUPRC Unbiased,random - Unbiased,pagerank -0.002012079 0.01915065 Inf

## 3 AUROC Biased,random - Biased,pagerank -0.241916366 0.01888432 Inf

## 4 AUROC Unbiased,random - Unbiased,pagerank -0.002012079 0.01915065 Inf

## z.ratio p.value

## 1 -12.8104369 0

## 2 -0.1050659 1

## 3 -12.8104369 0

## 4 -0.1050659 1

Correlation between method performances

Finally, we examined the similarities between diffusion scores at the per-
formance level. Figure 49 shows the Spearman correlation between the per-
formance metrics of the diffusion scores. Small differences were observed
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Bias_signal Method AUPRC AUROC
Biased raw (0.222, 0.231) (0.706, 0.717)
Biased ml (0.109, 0.114) (0.507, 0.520)
Biased gm (0.122, 0.128) (0.539, 0.552)
Biased ber_p (0.207, 0.216) (0.688, 0.699)
Biased mc (0.174, 0.182) (0.639, 0.651)
Biased z (0.179, 0.187) (0.648, 0.660)
Biased random (0.104, 0.110) (0.495, 0.508)
Biased pagerank (0.129, 0.135) (0.555, 0.568)
Unbiased raw (0.153, 0.160) (0.604, 0.616)
Unbiased ml (0.125, 0.131) (0.546, 0.559)
Unbiased gm (0.132, 0.138) (0.562, 0.575)
Unbiased ber_p (0.178, 0.186) (0.647, 0.658)
Unbiased mc (0.185, 0.193) (0.657, 0.668)
Unbiased z (0.181, 0.189) (0.651, 0.662)
Unbiased random (0.101, 0.107) (0.487, 0.501)
Unbiased pagerank (0.101, 0.107) (0.488, 0.501)

Table 17: Confidence intervals (0.95) on predicted AUROC and AUPRC.

between AUROC and AUPRC: ml and gm correlated with raw with AUPRC
but not with AUROC. In general, all the proper diffusion scores tended to
correlate, even more than we observed in figure 45.
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Figure 49: Spearman correlation between performance metrics of diffusion scores
and baselines. Correlations not significant at p < 0.05 after multiple
testing were crossed out.
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a.2.4 Conclusions

The main findings from this proof of concept:

• Our definitions of biased and unbiased signals seemed consistent: un-
biased signals were uncorrelated with the reference expected value,
whereas biased ones showed a positive correlation.
• Changing the labels for diffusion (e.g. ml versus raw) and normalis-

ing the scores had a noticeable impact on the prioritisations and their
performance.
• mc and z had a similar behaviour. This was expected, as they are the

parametric and non-parametric alternatives for normalising.
• The adequateness of normalising lied on the distribution of positives

across the reference expected value bKµ . Biased signals favoured raw

by definition, whereas mc and z were preferrable on unbiased signals.
Even within a hypothetical case study without overall performance
differences, raw and z/mc would be expected to behave differently.
• Class imbalance backfired in ml and gm, as the properties of the nega-

tives overshadowed those of the positives. A hypothetical case where
positives outnumbered negatives might cause a similar effect raw as
well.
• The complementarity of raw and mc leaves ber_p as a good compromise

between both.



a.2 supplement 2: synthetic signals 189

a.2.5 Metadata

## [1] "Sun Feb 23 11:07:09 2020"

## R version 3.5.3 (2019-03-11)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 16.04.6 LTS

##

## Matrix products: default

## BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0

## LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] grid stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] bindrcpp_0.2.2 xtable_1.8-3 data.table_1.11.8

## [4] extrafont_0.17 gtable_0.2.0 GGally_1.4.0

## [7] ggsci_2.9 ggplot2_3.1.0 tidyr_0.8.2

## [10] dplyr_0.7.8 plyr_1.8.4 reshape2_1.4.3

## [13] magrittr_1.5 diffuStats_1.2.0 igraphdata_1.0.1

## [16] igraph_1.2.2 rmarkdown_1.10

##

## loaded via a namespace (and not attached):

## [1] Rcpp_1.0.0 mvtnorm_1.0-8

## [3] lattice_0.20-38 zoo_1.8-4

## [5] assertthat_0.2.0 rprojroot_1.3-2

## [7] digest_0.6.18 packrat_0.5.0

## [9] R6_2.3.0 backports_1.1.2

## [11] evaluate_0.12 pillar_1.3.0

## [13] rlang_0.3.0.1 lazyeval_0.2.1

## [15] multcomp_1.4-8 extrafontdb_1.0

## [17] Matrix_1.2-15 labeling_0.3

## [19] splines_3.5.3 stringr_1.3.1

## [21] munsell_0.5.0 compiler_3.5.3

## [23] pkgconfig_2.0.2 mgcv_1.8-27

## [25] htmltools_0.3.6 tidyselect_0.2.5

## [27] tibble_1.4.2 expm_0.999-3

## [29] codetools_0.2-16 reshape_0.8.8

## [31] crayon_1.3.4 withr_2.1.2

## [33] MASS_7.3-51.1 nlme_3.1-137
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## [35] Rttf2pt1_1.3.7 scales_1.0.0

## [37] RcppParallel_4.4.1 estimability_1.3

## [39] stringi_1.2.4 RcppArmadillo_0.9.200.4.0

## [41] sandwich_2.5-0 TH.data_1.0-9

## [43] stargazer_5.2.2 RColorBrewer_1.1-2

## [45] tools_3.5.3 glue_1.3.0

## [47] purrr_0.2.5 emmeans_1.3.0

## [49] survival_2.43-3 yaml_2.2.0

## [51] colorspace_1.3-2 corrplot_0.84

## [53] knitr_1.20 bindr_0.1.1

## [55] precrec_0.9.1
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a.3 supplement 3: dlbcl dataset

a.3.1 Introduction

This additional file contains details on the DLBCL dataset, the human
proteome and the synthetic signals generated on it. This document can be
re-built anytime by knitting its corresponding .Rmd file.

a.3.2 The network

We used the HPRD network (Mishra et al., 2006) as used in the DLBCL
package (M. Dittrich and Beisser, 2010), which provides a case study for
the BioNet R package (M. T. Dittrich et al., 2008). Below is a summary of
the network, obtained by taking the largest connected component from the
original network interactome:

## IGRAPH e764cea UNW- 8989 34325 --

## + attr: kegg_mapped (g/x), info (g/c), name (v/c), geneID (v/c),

## | geneSymbol (v/c), obs_lym (v/l), obs_all (v/l), weight (e/n)

The network contained 8989 nodes and 34325 edges and was connected by
construction. The edges were unweighted, as they had a constant, unitary
weight:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1 1 1 1 1 1

a.3.3 Descriptive statistics

Simulated signals

Signals to benchmark the diffusion scores were obtained by sub-sampling
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (Kanehisa
et al., 2017), using the release:

## [1] "T01001 Homo sapiens (human) KEGG Genes Database"

## [2] "hsa Release 83.0+/09-09, Sep 17"

## [3] " Kanehisa Laboratories"

## [4] " 39,524 entries"

Pathways were used like gene sets, without taking further network data
from the KEGG database. After mapping the pathways to the network, their
size followed the distribution in figure 50. Only pathways with a minimum
of Nmin = 30 genes were considered.

Likewise, figure 51 depicts the amount of pathways in which each gene
participates. Although some genes are ubiquitous, most of them belong to
less than 10 pathways.
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Figure 50: Histogram with number of pathways involving each gene
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Figure 52: Number of genes inside and outside pathways, stratified by observabil-
ity and array

Sub-sampling

The sub-sampling was governed by three key parameters: the number of
affected pathways k ∈ {1, 3, 5, 10}, the proportion of differentially expressed
genes r ∈ {0.3, 0.5, 0.7} and the maximum p-value for differential expression,
pmax ∈ {0.01, 0.001, 10−4, 10−5}. The extreme values k = 10 and pmax =

10−5 led to redundant results and were left out of the main analyses.
As described in the main body, in each run k pathways were uniformly

sampled and their genes were tagged as positives. A proportion of r posi-
tives was uniformly sampled to show differential expression, with their p-
values uniformly sampled in [0,pmax]. The remaining proportion of 1− r
genes were not differentially expressed, imposed by sampling their p-values
uniformly in [0, 1]. For each combination of parameters, a total of N = 50

repetitions were generated. Regardless of which nodes were considered as
unlabelled or labelled, the p-values were generated for all the nodes in the
network.

Array-based backgrounds

In order to evaluate the effect of the statistical background, genes from
the network were partitioned by observability into labelled and unlabelled.
Labelled nodes were defined as those belonging to an array, whereas unla-
belled nodes were those outside it. Two arrays were used: the ALL array
(Chiaretti et al., 2004), obtained from the ALL R package (Li, 2009), and the
Lym array (Rosenwald et al., 2002) from the DLBCL package (M. Dittrich and
Beisser, 2010). Gene identifiers in ALL were mapped to the network through
BioNet::mapByVar() from the BioNet package (M. T. Dittrich et al., 2008),
whereas those of Lym were already mapped in the data package. Each array
had its own labelled and unlabelled genes: figure 52 represents the amount of
genes within each background and their belonging to the KEGG pathways.

The exact numbers are found in the following snippet, which also includes
the proportion of KEGG pathways that could be observed in both arrays.
The size of ALL exceeded that of Lym by more than two-fold and was there-
fore expected to outperform it.
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Figure 53: Expected values inside and outside pathways, stratified by observability
and array

## array n_labelled n_unlabelled n_labelled_kegg n_unlabelled_kegg

## 1 Lym 2482 6507 1586 2953

## 2 ALL 5921 3068 3479 1060

## prop_labelled_kegg

## 1 0.3494162

## 2 0.7664684

Finally, we show the overlap between the KEGG pathways and the obs
and Lym arrays. The table below counts the number of genes lying in the
intersections. Most of the genes of the smaller array Lym are part of ALL as
well.

## kegg ALL Lym

## kegg 4539 3479 1586

## ALL 3479 5921 2006

## Lym 1586 2006 2482

Theoretical bias in diffusion scores

As exposed in the main body, the diffusion scores are expected to be bi-
ased in terms of their expected value for each node under input permuta-
tions. According to the definitions therein, the expected value of a node i
is proportional to its reference expected value bKµ (i). Figure 53 depicts this
magnitude, stratified by pathway membership, observability and array.

The following claims were statistically significant in both arrays (Wilcoxon
rank-sum test):
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1. In the labelled genes, pathway genes had a lower reference expected
value than non-pathway genes.

2. In the unlabelled genes, pathway genes had a higher reference expected
value than non-pathway genes.

3. Labelled genes had a higher reference expected value than unlabelled
genes.

Claims 1 and 2:

## obs_label array difference_medians pvalue_wilcox fdr

## 1 Labelled Lym -0.08107461 2.355835e-44 4.711670e-44

## 2 Labelled ALL -0.01861420 6.771854e-17 6.771854e-17

## 3 Unlabelled Lym 0.02852555 4.061263e-39 8.122525e-39

## 4 Unlabelled ALL 0.04525165 2.472910e-18 2.472910e-18

Claim 3:

## array difference_median_bias pvalue_wilcox fdr

## 1 Lym 0.2262074 0 0

## 2 ALL 0.3119931 0 0

As every pathway gene was a potential positive, in general terms raw

should benefit from the bias in (2) and z from that in (1). As for over-
all performance (3), z equalises labelled and unlabelled nodes, mixing high
and low-confidence predictions. Reliable predictions from the labelled part
should be masked by those in the unlabelled part and the overall performance
is expected to decrease.

An important difference exists between indirect bias measurements and
the direct quantification of bKµ . The claims above would be different if PageR-
ank was used as a measure of centrality, under the hypothesis that the bias
favours central genes. Figure 54 depicts the PageRank scores (damping =

0.85) of all the genes, organised into: both arrays, inside and outside KEGG
pathways, labelled and unlabelled nodes. Two PageRank flavours are in-
cluded: (i) uniform prior and (ii) personalised prior, starting at the labelled
genes of each array. In both alternatives, this point of view suggests that raw
should outperform z in the three scenarios, implying that claim (1) would
reverse and (2) and (3) would hold.

Genes inside pathways have significantly higher PageRank scores than
those outside, in each one of the eight combinations in figure 54:

## obs_label array Prior difference_medians pvalue_wilcox

## 1 Labelled Lym Personalized PageRank 6.906910e-05 2.969662e-76

## 2 Labelled Lym Uniform PageRank 5.949779e-05 3.422633e-70

## 3 Labelled ALL Personalized PageRank 3.437695e-05 3.309309e-90

## 4 Labelled ALL Uniform PageRank 3.122078e-05 4.584032e-82

## 5 Unlabelled Lym Personalized PageRank 1.903473e-05 1.399483e-56

## 6 Unlabelled Lym Uniform PageRank 2.034443e-05 8.219762e-58

## 7 Unlabelled ALL Personalized PageRank 1.174467e-05 8.556411e-19

## 8 Unlabelled ALL Uniform PageRank 1.271804e-05 2.362005e-18

## fdr
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Figure 54: PageRank centralities inside and outside pathways, stratified by observ-
ability and array

## 1 5.939324e-76

## 2 3.422633e-70

## 3 6.618618e-90

## 4 4.584032e-82

## 5 1.399483e-56

## 6 1.643952e-57

## 7 1.711282e-18

## 8 2.362005e-18

Diffusion inputs

In order to binarise the labels for the diffusion, the false discovery rate, or
FDR (Benjamini and Hochberg, 1995), of the labelled nodes was computed.
Labelled nodes were defined as positive if their FDR was below 0.1 and nega-
tive otherwise. Nodes from the unlabelled pool were naturally deemed unla-
belled for the diffusion process.

Note that the input could contain false positives due to false positives in
hypothesis testing. Likewise, false negatives were expected by the definition
of the signal, because only a portion of the genes of the affected pathways
will show changes. Occasionally, especially in weak signals (low r, k and
high pmax), none of the labelled genes would be significant at the specified
FDR. Along with other degenerate cases (i.e. no positives in the unlabelled
nodes), these instances were discarded.

A summary of the metrics table illustrates how the number of instances
increased with increasing r, k and decreasing pmax:
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## array strat method auroc

## Lym:61440 Labelled :40080 raw :12024 Min. :0.01272

## ALL:58800 Unlabelled:40080 ml :12024 1st Qu.:0.60475

## Overall :40080 gm :12024 Median :0.75456

## ber_s :12024 Mean :0.72590

## ber_p :12024 3rd Qu.:0.86399

## mc :12024 Max. :1.00000

## (Other):48096

## auprc Column k r

## Min. :0.0001651 Length:120240 1 :25920 0.3:38160

## 1st Qu.:0.0676635 Class :character 3 :29610 0.5:40650

## Median :0.1925403 Mode :character 5 :30900 0.7:41430

## Mean :0.2813699 10:33810

## 3rd Qu.:0.4753768

## Max. :1.0000000

##

## pmax

## 1e-02:15180

## 1e-03:33120

## 1e-04:35940

## 1e-05:36000

##

##

##

For methods requiring permutations, the number of permutations was
set to 1000 for computational reasons. In all cases, the regularised (unnor-
malised) Laplacian kernel was used.

a.3.4 Models

Model definition

The performance of the diffusion scores in the two arrays under the three
signal parameters was best described through explanatory models. Positives
in validation were defined as the union of the k pathways that generated
each signal. AUROC and AUPRC were computed in three ways: in all the
nodes (overall), only in the labelled part and only in the unlabelled part.

Three reference methods were kept. First, original ranked the nodes
according to their p-value before computing the FDR. In the labelled genes,
this quantifies the added value of the diffusion process beyond the original
signal, i.e. does the diffusion improve the findings obtained by prioritising
the genes by their p-value? Regarding the unlabelled genes, original serves
as a reference, as diffusion ignored such p-values by design was not expected
to outperform them, especially if r was high or pmax was small. Diffusion
performance was compared to a hypothetical case in which we knew the
original signal – although in general an imperfect one, with false positives
and false negatives.
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The remaining baselines were pagerank, a centrality measure that ignored
every input and suggested central genes as top candidates, and random, a
uniformly random re-ordering of the genes.

The metrics AUROC and AUPRC were modelled through dispersion-adjusted
quasibinomial logit models, see ?stats::quasibinomial in an R console:

metric ∼ method + method:strat + array + k+ r+ pmax

All the variables were treated as categorical. The interaction term method:strat

ensured that methods were allowed to have differential performance in the
labelled, unlabelled and overall node stratifications. The values pmax = 10−5

and k = 10 were left out due to their respective similarity to pmax = 10−4

and k = 5. Each model is described in its own section.

AUROC

In this instance, AUROC did not stand out as the ideal metric – details on
its model can be found in table 18.

One reason is that, although significant differences existed between meth-
ods among labelled, unlabelled and all nodes, such differences always hap-
pened in a narrow range.

More importantly, the performances of diffusion scores (except the ones
diffusing −1 on the negatives, ml and gm) were comparable to the original p-
values in the unlabelled genes. The fact that diffusion-based method had no
prior data on the unlabelled genes should hinder their performance within
them, compared to (i) the labelled fold, and especially (ii) to the original,
unobserved p-values, more notably if r was large. This was not the case, as
depicted in figure 55, with predictions by array and partition.

AUPRC

Contrary to AUROC, AUPRC (see table 19) was more informative for this
task.

The quasibinomial model confirmed expected phenomena regarding per-
formance, such as the positive influence of increasing k and r and decreas-
ing pmax and the superiority of the ALL array. Contrary to AUROC, perfor-
mance of diffusion scores suffered a pronounced drop in the unlabelled genes.
Therefore, there was a notable gap in terms of early retrieval between both,
something not that apparent from AUROC alone.

Figure 56 shows the expected behaviour of the diffusion scores (actual
values in Table 20), in terms of the aforementioned reference expected value
bKµ . As anticipated, raw outperformed z in the unlabelled nodes and overall,
whereas z outperformed raw in the labelled nodes.
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Table 18: Quasilogistic model for AUROC

methodml −0.393
∗∗∗ (−0.432, −0.355)

methodgm −0.274
∗∗∗ (−0.313, −0.235)

methodber_s −0.135
∗∗∗ (−0.175, −0.095)

methodber_p −0.044
∗ (−0.085, −0.004)

methodmc −0.199
∗∗∗ (−0.238, −0.159)

methodz −0.162
∗∗∗ (−0.201, −0.122)

methodoriginal −0.750
∗∗∗ (−0.787, −0.714)

methodpagerank −1.059
∗∗∗ (−1.095, −1.023)

methodrandom −1.953
∗∗∗ (−1.988, −1.918)

k3 0.044
∗∗∗ (0.034, 0.055)

k5 0.019
∗∗∗ (0.009, 0.030)

r0.5 0.237
∗∗∗ (0.227, 0.247)

r0.7 0.426
∗∗∗ (0.415, 0.436)

pmax1e-03 0.717
∗∗∗ (0.705, 0.729)

pmax1e-04 0.797
∗∗∗ (0.785, 0.809)

arrayALL 0.145
∗∗∗ (0.137, 0.153)

methodraw:stratUnlabelled −0.786
∗∗∗ (−0.822, −0.749)

methodml:stratUnlabelled −1.887
∗∗∗ (−1.919, −1.855)

methodgm:stratUnlabelled −1.818
∗∗∗ (−1.851, −1.785)

methodber_s:stratUnlabelled −0.650
∗∗∗ (−0.686, −0.615)

methodber_p:stratUnlabelled −0.700
∗∗∗ (−0.736, −0.663)

methodmc:stratUnlabelled −0.657
∗∗∗ (−0.692, −0.622)

methodz:stratUnlabelled −0.706
∗∗∗ (−0.741, −0.671)

methodoriginal:stratUnlabelled −0.051
∗∗ (−0.083, −0.019)

methodpagerank:stratUnlabelled −0.365
∗∗∗ (−0.395, −0.336)

methodrandom:stratUnlabelled 0.004 (−0.024, 0.031)
methodraw:stratOverall −0.309

∗∗∗ (−0.348, −0.270)
methodml:stratOverall −1.352

∗∗∗ (−1.384, −1.320)
methodgm:stratOverall −1.270

∗∗∗ (−1.303, −1.237)
methodber_s:stratOverall −0.234

∗∗∗ (−0.271, −0.196)
methodber_p:stratOverall −0.274

∗∗∗ (−0.313, −0.236)
methodmc:stratOverall −0.289

∗∗∗ (−0.325, −0.252)
methodz:stratOverall −0.349

∗∗∗ (−0.386, −0.313)
methodoriginal:stratOverall −0.017 (−0.050, 0.015)
methodpagerank:stratOverall −0.041

∗∗ (−0.071, −0.011)
methodrandom:stratOverall 0.001 (−0.027, 0.028)
Constant 0.974

∗∗∗ (0.942, 1.005)

Observations 59,430

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001



200 statistical properties

Labelled Unlabelled Overall

Lym

ALL

ra
w m

l
gm

be
r_

s

be
r_

p m
c z

or
igi

na
l

pa
ge

ra
nk

ra
nd

om ra
w m

l
gm

be
r_

s

be
r_

p m
c z

or
igi

na
l

pa
ge

ra
nk

ra
nd

om ra
w m

l
gm

be
r_

s

be
r_

p m
c z

or
igi

na
l

pa
ge

ra
nk

ra
nd

om

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

Method

P
re

di
ct

ed
 m

ea
n 

A
U

R
O

C

Figure 55: Predictions using the AUROC model (0.95 confidence intervals). Predic-
tions were averaged over the other categorical covariates.
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Figure 56: Predictions using the AUPRC model (0.95 confidence intervals). Predic-
tions were averaged over the other categorical covariates.
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Table 19: Quasilogistic model for AUPRC

methodml −0.355
∗∗∗ (−0.386, −0.324)

methodgm −0.128
∗∗∗ (−0.159, −0.097)

methodber_s −0.370
∗∗∗ (−0.401, −0.339)

methodber_p 0.125
∗∗∗ (0.094, 0.156)

methodmc 0.236
∗∗∗ (0.205, 0.267)

methodz 0.461
∗∗∗ (0.429, 0.492)

methodoriginal 0.261
∗∗∗ (0.230, 0.292)

methodpagerank −1.853
∗∗∗ (−1.890, −1.815)

methodrandom −3.082
∗∗∗ (−3.136, −3.028)

k3 0.447
∗∗∗ (0.434, 0.460)

k5 0.618
∗∗∗ (0.605, 0.631)

r0.5 0.512
∗∗∗ (0.499, 0.525)

r0.7 0.912
∗∗∗ (0.899, 0.924)

pmax1e-03 1.548
∗∗∗ (1.528, 1.568)

pmax1e-04 1.672
∗∗∗ (1.652, 1.692)

arrayALL 0.147
∗∗∗ (0.136, 0.157)

methodraw:stratUnlabelled −2.075
∗∗∗ (−2.114, −2.035)

methodml:stratUnlabelled −3.424
∗∗∗ (−3.496, −3.353)

methodgm:stratUnlabelled −3.001
∗∗∗ (−3.056, −2.946)

methodber_s:stratUnlabelled −1.705
∗∗∗ (−1.745, −1.665)

methodber_p:stratUnlabelled −2.230
∗∗∗ (−2.270, −2.190)

methodmc:stratUnlabelled −2.918
∗∗∗ (−2.965, −2.871)

methodz:stratUnlabelled −2.889
∗∗∗ (−2.933, −2.845)

methodoriginal:stratUnlabelled −0.338
∗∗∗ (−0.369, −0.307)

methodpagerank:stratUnlabelled −1.594
∗∗∗ (−1.660, −1.529)

methodrandom:stratUnlabelled −0.969
∗∗∗ (−1.061, −0.877)

methodraw:stratOverall −0.564
∗∗∗ (−0.595, −0.532)

methodml:stratOverall −2.121
∗∗∗ (−2.165, −2.077)

methodgm:stratOverall −1.568
∗∗∗ (−1.604, −1.531)

methodber_s:stratOverall −0.528
∗∗∗ (−0.561, −0.496)

methodber_p:stratOverall −0.636
∗∗∗ (−0.667, −0.604)

methodmc:stratOverall −1.430
∗∗∗ (−1.464, −1.397)

methodz:stratOverall −1.500
∗∗∗ (−1.533, −1.467)

methodoriginal:stratOverall −0.142
∗∗∗ (−0.173, −0.111)

methodpagerank:stratOverall −0.486
∗∗∗ (−0.533, −0.438)

methodrandom:stratOverall −0.462
∗∗∗ (−0.541, −0.384)

Constant −2.434
∗∗∗ (−2.465, −2.403)

Observations 59,430

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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array method Labelled Unlabelled Overall
Lym raw (0.365, 0.376) (0.067, 0.071) (0.246, 0.255)
Lym ml (0.287, 0.297) (0.012, 0.014) (0.045, 0.049)
Lym gm (0.336, 0.346) (0.024, 0.026) (0.095, 0.100)
Lym ber_s (0.284, 0.294) (0.067, 0.071) (0.189, 0.197)
Lym ber_p (0.394, 0.405) (0.065, 0.069) (0.256, 0.265)
Lym mc (0.421, 0.432) (0.037, 0.040) (0.148, 0.155)
Lym z (0.477, 0.488) (0.048, 0.051) (0.169, 0.176)
Lym original (0.427, 0.438) (0.347, 0.358) (0.393, 0.404)
Lym pagerank (0.082, 0.087) (0.017, 0.019) (0.052, 0.056)
Lym random (0.025, 0.028) (0.009, 0.011) (0.016, 0.018)
ALL raw (0.399, 0.411) (0.076, 0.081) (0.274, 0.284)
ALL ml (0.318, 0.328) (0.014, 0.016) (0.052, 0.056)
ALL gm (0.369, 0.380) (0.028, 0.030) (0.108, 0.114)
ALL ber_s (0.315, 0.325) (0.076, 0.081) (0.213, 0.221)
ALL ber_p (0.430, 0.441) (0.074, 0.079) (0.285, 0.295)
ALL mc (0.457, 0.469) (0.043, 0.046) (0.167, 0.175)
ALL z (0.513, 0.525) (0.055, 0.059) (0.190, 0.198)
ALL original (0.463, 0.475) (0.381, 0.392) (0.428, 0.440)
ALL pagerank (0.094, 0.099) (0.020, 0.022) (0.060, 0.064)
ALL random (0.029, 0.032) (0.011, 0.013) (0.018, 0.020)

Table 20: Confidence intervals (0.95) on predicted AUPRC, averaged over covari-
ates.
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Below are the results of the statistical test between raw and z that back up
the claims in this section.

## contrast odds.ratio p.value

## 1 raw,Labelled,Lym / z,Labelled,Lym 0.6308394 0

## 2 raw,Unlabelled,Lym / z,Unlabelled,Lym 1.4240117 0

## 3 raw,Overall,Lym / z,Overall,Lym 1.6090716 0

## 4 raw,Labelled,ALL / z,Labelled,ALL 0.6308394 0

## 5 raw,Unlabelled,ALL / z,Unlabelled,ALL 1.4240117 0

## 6 raw,Overall,ALL / z,Overall,ALL 1.6090716 0

Other remarks

• Using an indirect measure of bias might be misleading. Here, by using
PageRank as a centrality measure and assuming that raw scores will
favour highly connected nodes, we would expect that raw outperforms
z in the labelled nodes. However, this is inded the opposite to what
bKµ (a direct quantification of the expected value-related bias) suggests
and to what we observe in terms of performance.
• The original baseline was difficult to improve upon, even in the la-

belled genes, in terms of AUPRC. This was not the case for AUROC,
implying that although diffusion had a positive and noticeable impact
in the overall ranking, early retrieval was a challenging task.
• ber_p had the best overall performance, suggesting that a consensus

between normalised and unnormalised scores can be beneficial.
• ml and gm suffered from this imbalanced datasets, where positives were

vastly outnumbered by negatives.
• Within normalised scores, z outperformed mc, possibly due to the pres-

ence of ties and the stochastic nature of the latter.
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a.3.5 Reproducibility

## [1] "R version 3.5.3 (2019-03-11)"

## [2] "Platform: x86_64-pc-linux-gnu (64-bit)"

## [3] "Running under: Ubuntu 16.04.6 LTS"

## [4] ""

## [5] "Matrix products: default"

## [6] "BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0"

## [7] "LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0"

## [8] ""

## [9] "locale:"

## [10] " [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C "

## [11] " [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 "

## [12] " [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 "

## [13] " [7] LC_PAPER=en_US.UTF-8 LC_NAME=C "

## [14] " [9] LC_ADDRESS=C LC_TELEPHONE=C "

## [15] "[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C "

## [16] ""

## [17] "attached base packages:"

## [18] "[1] grid stats graphics grDevices utils datasets methods "

## [19] "[8] base "

## [20] ""

## [21] "other attached packages:"

## [22] " [1] stargazer_5.2.2 emmeans_1.3.0 bindrcpp_0.2.2 "

## [23] " [4] xtable_1.8-3 data.table_1.11.8 extrafont_0.17 "

## [24] " [7] gtable_0.2.0 GGally_1.4.0 ggsci_2.9 "

## [25] "[10] ggplot2_3.1.0 tidyr_0.8.2 dplyr_0.7.8 "

## [26] "[13] plyr_1.8.4 reshape2_1.4.3 magrittr_1.5 "

## [27] "[16] diffuStats_1.2.0 igraphdata_1.0.1 igraph_1.2.2 "

## [28] "[19] rmarkdown_1.10 "

## [29] ""

## [30] "loaded via a namespace (and not attached):"

## [31] " [1] Rcpp_1.0.0 mvtnorm_1.0-8 "

## [32] " [3] lattice_0.20-38 zoo_1.8-4 "

## [33] " [5] assertthat_0.2.0 rprojroot_1.3-2 "

## [34] " [7] digest_0.6.18 packrat_0.5.0 "

## [35] " [9] R6_2.3.0 backports_1.1.2 "

## [36] "[11] evaluate_0.12 pillar_1.3.0 "

## [37] "[13] rlang_0.3.0.1 lazyeval_0.2.1 "

## [38] "[15] multcomp_1.4-8 extrafontdb_1.0 "

## [39] "[17] Matrix_1.2-15 labeling_0.3 "

## [40] "[19] splines_3.5.3 stringr_1.3.1 "

## [41] "[21] munsell_0.5.0 compiler_3.5.3 "

## [42] "[23] pkgconfig_2.0.2 mgcv_1.8-27 "

## [43] "[25] htmltools_0.3.6 tidyselect_0.2.5 "

## [44] "[27] tibble_1.4.2 expm_0.999-3 "

## [45] "[29] codetools_0.2-16 reshape_0.8.8 "

## [46] "[31] crayon_1.3.4 withr_2.1.2 "

## [47] "[33] MASS_7.3-51.1 nlme_3.1-137 "
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## [48] "[35] Rttf2pt1_1.3.7 scales_1.0.0 "

## [49] "[37] RcppParallel_4.4.1 estimability_1.3 "

## [50] "[39] stringi_1.2.4 RcppArmadillo_0.9.200.4.0"

## [51] "[41] sandwich_2.5-0 TH.data_1.0-9 "

## [52] "[43] RColorBrewer_1.1-2 tools_3.5.3 "

## [53] "[45] glue_1.3.0 purrr_0.2.5 "

## [54] "[47] survival_2.43-3 yaml_2.2.0 "

## [55] "[49] colorspace_1.3-2 corrplot_0.84 "

## [56] "[51] knitr_1.20 bindr_0.1.1 "

## [57] "[53] precrec_0.9.1 "
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a.4 supplement 4: pathway prediction

a.4.1 Introduction

This additional file contains details on the prospective pathway prediction
case study. A protein-protein interaction network and biological pathways,
both from year 2011, were used to predict new genes in the same pathways
from 2018.
This document can be re-built anytime by knitting its corresponding .Rmd

file.

The network

We used the BioGRID network (Chatr-aryamontri et al., 2017), weight-
ing its interactions according to (Cao et al., 2014). Weights depend on
the amount of experiments reporting an interaction and their throughput,
favouring low-throughput methodologies.
In addition, in order to avoid circularity between the new pathway genes
and the network construction, the network was restricted to interactions
from publications in 2010 or older. This posed a realistic prospective sce-
nario, in which the network might not consistently reflect the novel biology
behing the newly added genes.

Below is a summary of the network:

## IGRAPH 5fd82d3 UNW- 11394 67573 --

## + attr: name (v/c), weight (e/n)

The network contained 11394 nodes and 67573 edges and was connected
by construction (only the largest connected component was kept). The edges
weights are displayed in figure 57, revealing two broad categories: low-
confidence ones, with a weight of 0.25, and high-confidence ones, with a
weight of 0.8 or higher.
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Figure 57: Distribution of the edge weights in the BioGRID network.
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Figure 58: Number of genes per pathway in the older KEGG release

a.4.2 Descriptive statistics

KEGG pathways

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (Kane-
hisa et al., 2017) was used as input and validation for the diffusion scores.
Pathways were treated as gene sets, only relying on the network data from
BioGRID.

An older version of the pathways, dating from 2011, was used to predict
new pathway genes in 2018. The last public version of KEGG, dated from
March 14th 2011, was obtained from the KEGG.db package (Carlson, 2016).
Likewise, a more recent KEGG release was downloaded in August 18th, 2018

from https://www.kegg.jp/kegg/rest/keggapi.html.
A total of 139 KEGG pathways had at least one additional gene in the latest

version, after mapping the genes to the BioGRID network. Figure 58 shows
that most pathways contained up to 200 genes, while figure 59 depicts how
they typically involved less than 20 new genes. Likewise, figure 60 describes
how ubiquitous new genes were: most of the new genes belonged to a single
pathway.

Theoretical bias in diffusion scores

In this occasion, the inherent bias of the diffusion scores was not related
to the expected value of each node under input permutations. Given the
present setup, where all the nodes were considered as labelled, bKµ is con-
stant and thus the raw scores must have a constant expected value on all
the nodes (see proofs on properties of diffusion scores from Supplement 1).
However, differences existed in terms of variance. We hypothesised that
this led to a variance-related bias, where some nodes would exhibit more
stable diffusion scores whereas others could greatly vary under input per-
mutations. Specifically, we hypothesised that z would improve the power on
low-variance nodes. Variance-related bias was quantified through ther refer-
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Figure 59: Number of new genes per pathway in the latest KEGG release
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Figure 60: Number of pathways involving each new gene
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Figure 61: Variance-related bias across all the genes in terms of degree. The gray
line shows the best linear fit.

ence variance bK
σ2

, defined in the main text as proportional to the logarithm
of the node variance.

Before framing the genes into pathways, figure 61 suggests that the vari-
ance was mainly driven by the node degree. The diffusion scores of highly
connected nodes were therefore expected to be less sensitive to perturbations
in the input.

Figure 62 depicts the reference variance bK
σ2

, dividing genes into four cat-
egories: old for the genes in the old and new pathway, new for the genes
only in the new pathway, old_fp for the genes only in the old pathway and
other for the rest of genes. Note that a gene can belong to several categories,
i.e. new for one pathway and other for another. Figure 62 suggests that the
properties of old, new and other genes are essentially different and linked to
their topological properties.

The same magnitude was depicted in terms of pathways, representing the
median value of bK

σ2
(i) for its new genes, see figure 63. The plot suggest that

the new genes can have two sorts of biases, specifically a standard deviation
either (i) lower or (ii) higher than that of the other network genes in general.

Differences in bK
σ2
(i) between new and other genes were tested using wilcox.test

and correcting for False Discovery Rate (FDR) (Benjamini and Hochberg,
1995), see figure 64. Differences at FDR < 0.1 could be proven for pathways
some pathways, almost always with more than 5 new genes. Significant dif-
ferences were usually negative (i.e. other genes having a greater median, in
line with figure 63), but positive differences existed too.
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Figure 62: Variance-related bias across all the genes. Each unique gene appears
exactly once for every pathway.
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Figure 63: Variance-related bias across all the pathways. The median reference vari-
ance of the new and the other genes for each pathway is represented,
leading to two data points per pathway. Pathways were divided in two
groups according to their number of new genes.
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ences were stratified by the amount of new genes, which affects the
statistical power to spot differences.
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Diffusion inputs

As the pathways were treated as gene sets, inputs were naturally defined
as binary labels without further modification. Note that pathways could
contain genes that were present in the old release but dropped in the last
one, acting as a false positive. In total, 139 instances (one per pathway) were
defined and genes outside the original pathway were ranked. Afterwards,
the AUROC and AUPRC metrics were computed and compared through
explanatory models.

Diffusion scores and bias

Before diving into pathway-wise performance metrics, diffusion scores
raw and z were compared in views of the variance-related bias. Figure
65 sheds light on the expected behaviour of the statistical normalisation
and supports the hypothesis that normalising the scores helps decorrelate
power from the reference variance values. The actual impact on overall per-
formance still depends on other factors, such as the density of positives
throughout the reference variances.

As for method parameters, the regularised (unnormalised) Laplacian ker-
nel was used and permutation-based scores used 104 random trials. Meth-
ods ml, gm and ber_s were excluded from this comparison because their
ranking is identical to that of raw in the current settings, see the diffusion
scores equivalence properties 1 (ml, gm) and 3 (ber_s) in Supplement 1. Two
baselines were considered: pagerank (with damping = 0.85), which tends to
suggest central genes regardless of the input, and random (random prioriti-
sation).

a.4.3 Models

Model definition

The metrics AUROC and AUPRC were modelled through dispersion-adjusted
quasibinomial logit models, see ?stats::quasibinomial in an R console:

metric ∼ method + method:path_var_ref

The categorical variable method could be raw, ber_p, mc, z or the baselines
pagerank and random. The term path_var_ref was a pathway property, com-
puted as the difference between the median of the reference variance bK

σ2
(i)

for the new genes in the pathway, and the median of bK
σ2
(i) for the other genes,

as depicted in figure 64. path_var_ref intended to summarise the bias of a
whole pathway in a single number: positive (negative) values indicated that
the new genes had more (less) variance than the average gene in the network.
In order to test our hypothesis, the interaction term method:path_var_ref

allowed methods to be affected in different ways by the pathway-wise bias.



a.4 supplement 4: pathway prediction 213

0.00

0.25

0.50

0.75

1.00

−4 −3 −2 −1 0

bσ2
κ  (proportional to log of variance)

R
an

ki
ng

 o
f t

ru
e 

po
si

tiv
e 

(lo
w

er
 is

 b
et

te
r)

Method

raw

z

Figure 65: Ranking of true positives as a function of the variance-related bias; lines
correspond to a logistic fit with 0.95 confidence intervals. This plot repre-
sents the union of the positives of each pathway and their relative rank-
ing in their prioritisation. Nodes closer to 0 were top ranked for that
specific pathway, and therefore well prioritised, whereas worst ranked
nodes were close to 1. The unnormalised scores raw had more power
on nodes with lower standard deviation, at the cost of being less sensi-
tive among larger standard deviations. The normalised scores z showed
a more bias-independent power, at the cost of missing positives with
smaller standard deviations.
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AUROC

Table 21 summarises the AUROC model. As this case study was not sim-
ulated, the number of data points was limited due to the prospective design,
being notably lower than that of the other datasets.

Table 21: Quasibinomial model for AUROC

methodber_p 0.271
∗∗ (0.057, 0.486)

methodmc 0.291
∗∗∗ (0.079, 0.503)

methodz 0.560
∗∗∗ (0.342, 0.779)

methodpagerank −0.891
∗∗∗ (−1.100, −0.681)

methodrandom −0.558
∗∗∗ (−0.758, −0.358)

methodraw:path_var_ref −1.387
∗∗∗ (−1.648, −1.127)

methodber_p:path_var_ref −1.030
∗∗∗ (−1.279, −0.782)

methodmc:path_var_ref −0.635
∗∗∗ (−0.854, −0.417)

methodz:path_var_ref −0.484
∗∗∗ (−0.710, −0.258)

methodpagerank:path_var_ref −1.473
∗∗∗ (−1.695, −1.251)

methodrandom:path_var_ref 0.035 (−0.129, 0.199)
Constant 0.710

∗∗∗ (0.559, 0.861)

Observations 834

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The model in table 21 supported the claim that raw was more affected than
z by the reference variance. Figure 66 reflects this fact along the values of
path_var_ref, whereas the contrast between the interaction terms (i.e. of the
form method:path_var_ref) of raw and z was significant:

## contrast estimate SE df z.ratio p.value

## raw - ber_p -0.35722993 0.1837676 Inf -1.944 0.3752

## raw - mc -0.75203314 0.1735438 Inf -4.333 0.0002

## raw - z -0.90326861 0.1761406 Inf -5.128 <.0001

## raw - pagerank 0.08536864 0.1747622 Inf 0.488 0.9966

## raw - random -1.42200492 0.1570979 Inf -9.052 <.0001

## ber_p - mc -0.39480321 0.1688678 Inf -2.338 0.1789

## ber_p - z -0.54603868 0.1715353 Inf -3.183 0.0182

## ber_p - pagerank 0.44259857 0.1701197 Inf 2.602 0.0968

## ber_p - random -1.06477498 0.1519165 Inf -7.009 <.0001

## mc - z -0.15123547 0.1605344 Inf -0.942 0.9356

## mc - pagerank 0.83740178 0.1590209 Inf 5.266 <.0001

## mc - random -0.66997178 0.1393756 Inf -4.807 <.0001

## z - pagerank 0.98863725 0.1618508 Inf 6.108 <.0001

## z - random -0.51873631 0.1425959 Inf -3.638 0.0037

## pagerank - random -1.50737356 0.1408898 Inf -10.699 <.0001

##

## P value adjustment: tukey method for comparing a family of 6 estimates

Predictions with confidence intervals in the mean value of path_var_ref
are shown in figure 67, whereas their raw values can be found in figure 68 –
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raw ber_p mc z pagerank random
raw -0.038(-0.06,-0.02) -0.043(-0.077,-0.016) -0.084(-0.13,-0.045) 0.16(0.13,0.19) 0.16(0.1,0.21)

ber_p 3.49e-07 -0.0011(-0.01,0.0058) -0.026(-0.046,-0.011) 0.22(0.18,0.26) 0.22(0.17,0.26)
mc 4.74e-04 7.73e-01 -0.035(-0.053,-0.02) 0.23(0.19,0.28) 0.22(0.18,0.26)

z 5.39e-09 5.16e-04 1.01e-05 0.29(0.24,0.33) 0.26(0.22,0.3)
pagerank 1.72e-17 7.14e-19 3.91e-17 7.14e-19 -0.026(-0.083,0.034)

random 6.66e-07 1.96e-11 8.36e-13 1.71e-17 4.40e-01

Table 22: Paired two-sided Wilcoxon test between AUROCs, corrected by FDR.
Above diagonal: differences with 0.95 confidence interval. Below diag-
onal: FDR.

both figures depict similar trends. Testing overall differences (averaging over
path_var_ref and using Tukey’s test), z significantly outperformed raw:

## contrast odds.ratio SE df z.ratio p.value

## raw / ber_p 0.8158250 0.09847996 Inf -1.686 0.5409

## raw / mc 0.8623415 0.10037696 Inf -1.272 0.8002

## raw / z 0.6781553 0.08086040 Inf -3.257 0.0143

## raw / pagerank 2.3974532 0.27356640 Inf 7.663 <.0001

## raw / random 2.2891461 0.24679547 Inf 7.682 <.0001

## ber_p / mc 1.0570178 0.12225956 Inf 0.479 0.9969

## ber_p / z 0.8312510 0.09851785 Inf -1.559 0.6254

## ber_p / pagerank 2.9386857 0.33311868 Inf 9.510 <.0001

## ber_p / random 2.8059279 0.30027989 Inf 9.641 <.0001

## mc / z 0.7864116 0.08974768 Inf -2.105 0.2843

## mc / pagerank 2.7801668 0.30235276 Inf 9.402 <.0001

## mc / random 2.6545702 0.27110599 Inf 9.559 <.0001

## z / pagerank 3.5352568 0.39518139 Inf 11.297 <.0001

## z / random 3.3755483 0.35560792 Inf 11.548 <.0001

## pagerank / random 0.9548241 0.09501094 Inf -0.465 0.9973

##

## P value adjustment: tukey method for comparing a family of 6 estimates

## Tests are performed on the log odds ratio scale

A paired non-parametric test outside the model yielded stronger evidence
of such differences, see table 22.

Note how by its own definition, the pagerank centrality baseline was no-
ticeably affected by the bias, in a similar way to the raw scores (figure 66).
This was expected because node degree, the most basic measure of central-
ity, showed collinearity with the reference variance (figure 61). Provided that
pathway biases were found in both directions, i.e. genes with either more or
less variance than most genes (figure 64), pagerank had a close-to-random
AUROC (figure 68). On the other hand, the random baseline behaved as
expected, with an AUROC close to 0.5 and independent of the reference
pathway variance (figure 66).
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Figure 66: Prediction of the AUROC model by method along the reference pathway
variance, represented by path_var_ref. Shaded are the 0.95 confidence
intervals for the predicted mean AUROC.
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Figure 67: Predictions using the AUROC model (0.95 confidence intervals). Predic-
tions were averaged over the path_var_ref covariate.
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Figure 68: AUROC for all the pathways, by method.



218 statistical properties

AUPRC

The model on AUPRC pointed out that early retrieval was challenging
in this prospective study. Even though proper methods did outperform the
baselines, performances were low, also due to the heavy class imbalance.

Table 23 describes the quasilogistic model – differences were minimal
between methods, lacking statistical support. Furthermore, figure 70 proves
how the 0.95 confidence intervals on the mean value of path_var_ref are
overlapping.

Besides, AUPRC is affected by the class imbalance, meaning that pathways
with few new genes were expected to yield low values of AUPRC.

Due to the two reasons above, AUPRC was not useful to describe differ-
ences between methods, but to highlight the difficult nature of this prospec-
tive analysis. The fact that an old network was used rules out possible cir-
cularities, i.e. the new genes being included in the pathways and in new
interactions, based on the same data source.

Table 23: Quasibinomial model for AUPRC

methodber_p 0.021 (−0.488, 0.531)
methodmc −1.054

∗∗∗ (−1.783, −0.326)
methodz −0.554

∗ (−1.169, 0.062)
methodpagerank −3.246

∗∗∗ (−5.171, −1.320)
methodrandom −3.656

∗∗∗ (−5.917, −1.395)
methodraw:path_var_ref 0.002 (−0.450, 0.454)
methodber_p:path_var_ref 0.008 (−0.441, 0.456)
methodmc:path_var_ref −0.651

∗∗ (−1.239, −0.063)
methodz:path_var_ref −0.673

∗∗∗ (−1.137, −0.209)
methodpagerank:path_var_ref −1.062 (−2.507, 0.383)
methodrandom:path_var_ref −0.332 (−2.709, 2.045)
Constant −3.239

∗∗∗ (−3.601, −2.877)

Observations 834

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Performing a paired Wilcoxon test yielded no evidence that raw and z

had different AUPRCs (Table 24). The fact that mc was actually performing
slighly worse than the rest of methods was deemed uninformative, given the
actual magnitude of the effect and the overall low AUPRCs.

For completeness, we checked for significant differences between raw and
z in the interaction term, because table 23 may suggest that z could be more

raw ber_p mc z pagerank random
raw -8e-05(-0.00025,1.1e-05) 0.0011(4e-04,0.0029) 8.2e-05(-0.00023,0.00072) 0.0066(0.0035,0.012) 0.008(0.0047,0.017)

ber_p 4.65e-02 0.0013(0.00052,0.0028) 0.00017(-0.00011,0.00075) 0.0067(0.0035,0.013) 0.0083(0.0048,0.018)
mc 1.59e-03 1.45e-05 -8e-04(-0.0026,-0.00014) 0.0046(0.0021,0.0065) 0.0055(0.0032,0.0089)

z 7.01e-01 3.06e-01 3.21e-03 0.0064(0.0035,0.01) 0.0069(0.0039,0.012)
pagerank 2.50e-17 8.34e-18 3.79e-15 2.56e-19 5.3e-05(-4.1e-05,4e-04)

random 1.08e-17 8.82e-19 2.81e-18 7.87e-19 2.34e-01

Table 24: Paired two-sided Wilcoxon test between AUPRCs, corrected by FDR.
Above diagonal: differences with 0.95 confidence interval. Below diag-
onal: FDR.
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Figure 69: Prediction of the AUPRC model by method along the reference pathway
variance, represented by path_var_ref. Shaded are the 0.95 confidence
intervals for the predicted mean AUPRC.

affected than raw by the reference variances. In line with the other results,
this counterintuitive claim could not be proven after a contrast on the inter-
action term method:path_var_ref:

## contrast estimate SE df z.ratio p.value

## raw - ber_p -0.005667778 0.3248737 Inf -0.017 1.0000

## raw - mc 0.652724459 0.3784352 Inf 1.725 0.5152

## raw - z 0.674948860 0.3303838 Inf 2.043 0.3179

## raw - pagerank 1.064137045 0.7723649 Inf 1.378 0.7405

## raw - random 0.333723339 1.2343521 Inf 0.270 0.9998

## ber_p - mc 0.658392237 0.3773436 Inf 1.745 0.5019

## ber_p - z 0.680616638 0.3291329 Inf 2.068 0.3042

## ber_p - pagerank 1.069804823 0.7718306 Inf 1.386 0.7355

## ber_p - random 0.339391117 1.2340179 Inf 0.275 0.9998

## mc - z 0.022224401 0.3820977 Inf 0.058 1.0000

## mc - pagerank 0.411412586 0.7958597 Inf 0.517 0.9955

## mc - random -0.319001120 1.2491879 Inf -0.255 0.9999

## z - pagerank 0.389188185 0.7741660 Inf 0.503 0.9961

## z - random -0.341225521 1.2354800 Inf -0.276 0.9998

## pagerank - random -0.730413706 1.4190859 Inf -0.515 0.9956

##

## P value adjustment: tukey method for comparing a family of 6 estimates
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Figure 70: Predictions using the AUPRC model (0.95 confidence intervals). Predic-
tions were averaged over the path_var_ref covariate.
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Other remarks

The present case study served as an illustrative example of variance-related
bias in diffusion scores.

• The effect of the bias correction was not as straightforward as the mean
value-related bias. We hypothesised that z would have more power
on low-variance nodes compared to raw, but our findings support the
opposite. The counterintuitive nature of this bias encourages an addi-
tional layer of caution.
• Normalising the diffusion scores led to a more bias-independent power

for AUROC, in line with our hypothesis.
• AUROC was more informative than AUPRC and helped identify bias-

related trends in predictive power.
• Again, the overall performance, and therefore the decision on normal-

ising, relied on the distribution of the positives with respect to the
reference variance. In this particular instance, z outperformed raw.

• For all the methods, new positives with higher variances were harder
to recover, although this was less pronounced in z. High variance
nodes tended to have a low degree, so we speculate that the network
was incomplete when describing their biology, thus limiting the perfor-
mance in their respective pathways.
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a.4.4 Reproducibility

## [1] "R version 3.5.3 (2019-03-11)"

## [2] "Platform: x86_64-pc-linux-gnu (64-bit)"

## [3] "Running under: Ubuntu 16.04.6 LTS"

## [4] ""

## [5] "Matrix products: default"

## [6] "BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0"

## [7] "LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0"

## [8] ""

## [9] "locale:"

## [10] " [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C "

## [11] " [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 "

## [12] " [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 "

## [13] " [7] LC_PAPER=en_US.UTF-8 LC_NAME=C "

## [14] " [9] LC_ADDRESS=C LC_TELEPHONE=C "

## [15] "[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C "

## [16] ""

## [17] "attached base packages:"

## [18] "[1] grid stats graphics grDevices utils datasets methods "

## [19] "[8] base "

## [20] ""

## [21] "other attached packages:"

## [22] " [1] stargazer_5.2.2 emmeans_1.3.0 bindrcpp_0.2.2 "

## [23] " [4] xtable_1.8-3 data.table_1.11.8 extrafont_0.17 "

## [24] " [7] gtable_0.2.0 GGally_1.4.0 ggsci_2.9 "

## [25] "[10] ggplot2_3.1.0 tidyr_0.8.2 dplyr_0.7.8 "

## [26] "[13] plyr_1.8.4 reshape2_1.4.3 magrittr_1.5 "

## [27] "[16] diffuStats_1.2.0 igraphdata_1.0.1 igraph_1.2.2 "

## [28] "[19] rmarkdown_1.10 "

## [29] ""

## [30] "loaded via a namespace (and not attached):"

## [31] " [1] Rcpp_1.0.0 mvtnorm_1.0-8 "

## [32] " [3] lattice_0.20-38 zoo_1.8-4 "

## [33] " [5] assertthat_0.2.0 rprojroot_1.3-2 "

## [34] " [7] digest_0.6.18 packrat_0.5.0 "

## [35] " [9] R6_2.3.0 backports_1.1.2 "

## [36] "[11] evaluate_0.12 pillar_1.3.0 "

## [37] "[13] rlang_0.3.0.1 lazyeval_0.2.1 "

## [38] "[15] multcomp_1.4-8 extrafontdb_1.0 "

## [39] "[17] Matrix_1.2-15 labeling_0.3 "

## [40] "[19] splines_3.5.3 stringr_1.3.1 "

## [41] "[21] munsell_0.5.0 compiler_3.5.3 "

## [42] "[23] pkgconfig_2.0.2 mgcv_1.8-27 "

## [43] "[25] htmltools_0.3.6 tidyselect_0.2.5 "

## [44] "[27] tibble_1.4.2 expm_0.999-3 "

## [45] "[29] codetools_0.2-16 reshape_0.8.8 "

## [46] "[31] crayon_1.3.4 withr_2.1.2 "

## [47] "[33] MASS_7.3-51.1 nlme_3.1-137 "
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## [48] "[35] Rttf2pt1_1.3.7 scales_1.0.0 "

## [49] "[37] RcppParallel_4.4.1 estimability_1.3 "

## [50] "[39] stringi_1.2.4 RcppArmadillo_0.9.200.4.0"

## [51] "[41] sandwich_2.5-0 TH.data_1.0-9 "

## [52] "[43] RColorBrewer_1.1-2 tools_3.5.3 "

## [53] "[45] glue_1.3.0 purrr_0.2.5 "

## [54] "[47] survival_2.43-3 yaml_2.2.0 "

## [55] "[49] colorspace_1.3-2 corrplot_0.84 "

## [56] "[51] knitr_1.20 bindr_0.1.1 "

## [57] "[53] precrec_0.9.1 "



224 statistical properties

references

Benjamini, Yoav and Yosef Hochberg
1995 “Controlling the false discovery rate: a practical and powerful ap-

proach to multiple testing”, Journal of the royal statistical society. Series
B (Methodological), pp. 289-300.

Cao, Mengfei, Christopher M Pietras, Xian Feng, Kathryn J Doroschak, Thomas
Schaffner, Jisoo Park, Hao Zhang, Lenore J Cowen, and Benjamin J
Hescott

2014 “New directions for diffusion-based network prediction of protein
function: incorporating pathways with confidence”, Bioinformatics,
30, 12, pp. i219-i227.

Carlson, Marc
2016 KEGG.db: A set of annotation maps for KEGG, R package version 3.2.3.

Chatr-aryamontri, Andrew, Rose Oughtred, Lorrie Boucher, Jennifer Rust,
Christie Chang, Nadine K Kolas, Lara O’Donnell, Sara Oster, Chan-
dra Theesfeld, Adnane Sellam, et al.

2017 “The BioGRID interaction database: 2017 update”, Nucleic acids re-
search, 45, D1, pp. D369-D379.

Chiaretti, Sabina, Xiaochun Li, Robert Gentleman, Antonella Vitale, Marco
Vignetti, Franco Mandelli, Jerome Ritz, and Robin Foa

2004 “Gene expression profile of adult T-cell acute lymphocytic leukemia
identifies distinct subsets of patients with different response to ther-
apy and survival”, Blood, 103, 7, pp. 2771-2778.

Csardi, Gabor
2015 igraphdata: A Collection of Network Data Sets for the ’igraph’ Package,

R package version 1.0.1, https://CRAN.R-project.org/package=
igraphdata.

Dittrich, Marcus T, Gunnar W Klau, Andreas Rosenwald, Thomas Dandekar,
and Tobias Müller

2008 “Identifying functional modules in protein–protein interaction net-
works: an integrated exact approach”, Bioinformatics, 24, 13, pp. i223-
i231.

Dittrich, Marcus and Daniela Beisser
2010 DLBCL: Diffuse large B-cell lymphoma expression data, R package ver-

sion 1.16.0, http://bionet.bioapps.biozentrum.uni-wuerzburg.
de/.

Kanehisa, Minoru, Miho Furumichi, Mao Tanabe, Yoko Sato, and Kanae Mor-
ishima

2017 “KEGG: new perspectives on genomes, pathways, diseases and drugs”,
Nucleic acids research, 45, D1, pp. D353-D361.

Li, Xiaochun
2009 ALL: A data package, R package version 1.20.0.

https://CRAN.R-project.org/package=igraphdata
https://CRAN.R-project.org/package=igraphdata
http://bionet.bioapps.biozentrum.uni-wuerzburg.de/
http://bionet.bioapps.biozentrum.uni-wuerzburg.de/


References 225

Mishra, Gopa R, M Suresh, K Kumaran, N Kannabiran, Shubha Suresh, P
Bala, K Shivakumar, N Anuradha, Raghunath Reddy, T Madhan
Raghavan, et al.

2006 “Human protein reference database—2006 update”, Nucleic acids
research, 34, suppl_1, pp. D411-D414.

Picart-Armada, Sergio and Thompson, Wesley K and Buil, Alfonso and Perera-
Lluna, Alexandre

2017 “diffuStats: an R package to compute diffusion-based scores on bi-
ological networks”, Bioinformatics, 34, 3, pp. 533-534.

Rosenwald, Andreas, George Wright, Wing C Chan, Joseph M Connors, Elias
Campo, Richard I Fisher, Randy D Gascoyne, H Konrad Muller-
Hermelink, Erlend B Smeland, Jena M Giltnane, et al.

2002 “The use of molecular profiling to predict survival after chemother-
apy for diffuse large-B-cell lymphoma”, New England Journal of Medicine,
346, 25, pp. 1937-1947.

Smola, Alexander J and Risi Kondor
2003 “Kernels and regularization on graphs”, in Learning theory and kernel

machines, Springer, pp. 144-158.

Von Mering, Christian, Roland Krause, Berend Snel, Michael Cornell, Stephen
G Oliver, Stanley Fields, and Peer Bork

2002 “Comparative assessment of large-scale data sets of protein–protein
interactions”, Nature, 417, 6887, p. 399.





B T H E R PA C K A G E D I F F U S TAT S

diffustats: an r package to compute
diffusion-based scores on biological networks

b.1 abstract

Label propagation approaches are a standard and ubiquitous procedure in
computational biology for giving context to molecular entities. Node labels,
which can derive from gene expression, genome-wide association studies,
protein domains or metabolomics profiling, are propagated to their neigh-
bours, effectively smoothing the scores through prior annotated knowledge
and prioritising novel candidates. However, there are several settings to tune
when defining the diffusion process, including the diffusion kernel, the nu-
meric codification of the labels and a choice of statistical normalisation of
the scores. These settings can have a large impact on results, and there is
currently no software implementing many of them in one place to screen
their performance in the application of interest. This vignette presents dif-
fuStats, an R package with a collection of diffusion kernels and scores, as
well as a parallel permutation analysis for the normalised scores, that eases
the analysis of several sets of molecular entities at once.

b.2 introduction

The application of label propagation algorithms (Zoidi et al., 2015) is based
on the guilt by association principle (Oliver, 2000), which can be rephrased
in the protein-protein interaction context as “proteins that interact are more
likely to share biological functions”. However, this principle is extremely
general and has experienced success in numerous applications in bioinfor-
matics.

HotNet (Vandin et al., 2010) uses a diffusion process with mutated genes
as seed nodes to find modules with a statistically high number of mutated
genes in cancer. Another attempt to find relevant modules from gene ex-
pression and mutation data can be found in (Bersanelli et al., 2016), where

This appendix is based on the main vignette of the diffuStats package (https://doi.org/
doi:10.18129/B9.bioc.diffuStats, accessed 31/12/2019), supplementary data of: Picart-
Armada, Sergio, Wesley K. Thompson, Alfonso Buil, and Alexandre Perera-Lluna. “diffuS-
tats: an R package to compute diffusion-based scores on biological networks”. Bioinformatics
34, no. 3 (2018): 533-534.

227

https://doi.org/doi:10.18129/B9.bioc.diffuStats
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the authors propose a diffusion process followed by a statistical normalisa-
tion and an automatic process to extract a subnetwork. TieDIE (Paull et al.,
2013) runs two diffusion processes to link perturbation in the genome with
changes in the transcriptome, effectively linking two sets of genes. Gene-
MANIA (Mostafavi et al., 2008) is a web server that predicts gene function
using label propagation with a bias on the unlabelled nodes. Network-based
learning sharing a background with diffusion has been also applied to pro-
tein classification using multiple networks (Tsuda et al., 2005). Label propa-
gation using graph kernels has been proven successful in gene-disease asso-
ciation (Lee et al., 2011; Valentini et al., 2014). Equivalent formulations can
be found under different terminology, like the electrical model applied to
prioritise candidate genes in eQTL in (Suthram et al., 2008).

The heterogeneity of applications hinders comparisons among approaches,
therefore tools gathering the state of the art are highly needed. An existing
solution is RANKS, an R package that contains a variety of diffusion ker-
nels and kernelised scores for label propagation using a binary input vector.
RANKS eases kernelised scores benchmarking and models it as a “one-class”
classification semi-supervised learning problem, in which only some mem-
bers of the class (positives) are known. Another possibility is to divide nodes
into labelled positive, negative and unlabelled, like in (Mostafavi et al., 2008),
which poses questions like the effect of unlabelled nodes and possible nu-
meric codifications of the labels, or the option to include quantitative data in
the labels. In addition, statistical normalisations such as in (Bersanelli et al.,
2016) remove the effect of network structures like hubs and should be taken
into account when choosing a diffusion scoring method. This motivates
the introduction of our diffuStats R package, which collects widely adopted
input codifications and explicitly accounts for unlabelled nodes. It also in-
cludes three statistically normalised scores, which can be obtained through
Monte Carlo trials or a parametric alternative. The diffuStats package uses
existent classes and provides high-level functions to screen the performance
of several diffusion scores, in order to facilitate their integration in any com-
putational biology study.

b.3 methodology

One of the main purposes of diffuStats is to offer a battery of approaches
to compute and compare diffusion scores. The diffusion scores f using an
input vector y and a diffusion kernel K are generally computed as

f = K · y

possibly followed by further adjustments or a statistical normalisation.
The decisions taken in the definition of K, y and the posterior normalisa-

tion generally give rise to different priorisations due to a different treatment
of the balance between positive and negative examples, the unlabelled data
and the network structure. The following sections cover the implemented
choices for the kernel K and the initial labels y.
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Kernel Function

Regularised Laplacian r(λ) = 1+ σ2λ

Diffusion process r(λ) = exp(σ
2

2 λ)

p-Step random walk r(λ) = (a− λ)−p with a > 2, p > 1
Inverse cosine r(λ) = (cos(λπ4 ))

−1

Table 25: Implemented diffusion kernels from (Smola and Kondor, 2003)

b.3.1 Diffusion kernels and regularisation

The representation of any kind of data in a network model allows the defi-
nition of notions like distance or similarity based on the links in the network.
This section will follow the notation in (Smola and Kondor, 2003) and sum-
marise the kernels proposed by the authors. In general, an undirected graph
G = (V ,E) consists of a set of n nodes V and a set of edges E of unordered
pairs of nodes. This can be extended to weighted, undirected graphs, where
each edge i ∼ j has a weight attribute Wij ∈ [0,∞). The degree matrix of G
is defined as the n×n diagonal matrix so that Dii =

∑n
j=1Wij. The (unnor-

malised) Laplacian of G is defined as the n×n matrix L = D−W, whereas
its normalised version is L̃ = D− 1

2 · L ·D− 1
2 .

The graph Laplacian is diagonalisable and can be written in terms of its
eigenvalues vj and eigenvectors λj, as L =

∑n
j=1 λjvjv

T
j . The proposed ker-

nels stem from a family of regularisation functions r(λ) on the spectrum of
the graph Laplacian:

K =

n∑
j=1

r−1(λj)vjv
T
j

Well known graph kernels belong to this family because they can be writ-
ten as transformations on the Laplacian spectrum. Table 25 summarises
them, assuming the usage of the normalised Laplacian - the unnormalised
Laplacian can also be used as long as the resulting kernel is still positive
semidefinite. Further details about this family of kernels, all available in
our package diffuStats, can be found in the original manuscript (Smola and
Kondor, 2003).

Additionally, the diffuStats package includes the commute time kernel, in-
troduced in (Yen et al., 2007). This kernel, also writable in terms of a regulari-
sation function, is simply the pseudoinverse of the graph Laplacian, K = L+.

The default option in the diffuStats package is the regularised Laplacian
kernel, as it is widely adopted and describes many physical models, for
instance in (Paull et al., 2013; Suthram et al., 2008; Vandin et al., 2010).

b.3.2 Diffusion scores

Besides choosing a graph kernel, the codification of the input and the
presence of a statistical normalisation can lead to important differences in
the results. Table 26 gives an overview of the implemented scores, which
will be detailed in the following sections. The argument method in the
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Score y+ y− yu Normalised Stochastic Quantitative Reference

raw 1 0 0 No No Yes (Vandin et al., 2010)
ml 1 -1 0 No No No (Tsuda et al., 2005; Zoidi et al., 2015)
gm 1 -1 k No No No (Mostafavi et al., 2008)
bers 1 0 0 No No Yes (Bersanelli et al., 2016)
berp 1 0 0* Yes Yes Yes (Bersanelli et al., 2016)
mc 1 0 0* Yes Yes Yes (Bersanelli et al., 2016)
z 1 0 0* Yes No Yes (Harchaoui et al., 2013)

Table 26: Implemented diffusion scores

function diffuse can be set to the desired scores in table 26, which are
described in the following sections. The numeric values of the positive, neg-
ative and unlabelled examples are respectively y+, y− and yu. Column
“normalised” refers to the application of a statistical model involving per-
mutations, whereas “stochastic” enumerates the normalised scores that need
actual Monte Carlo permutations. The scores that also accept quantitative
inputs instead of binary labels are listed in the “quantitative” column.

Scores without statistical normalisation

The base diffusion score raw, which has been used in algorithms like Hot-
Net (Vandin et al., 2010) and TieDIE (Paull et al., 2013), solves a diffusion
problem in terms of the regularised Laplacian kernel (Smola and Kondor,
2003).

fraw = K · yraw
K is the kernel matrix and yraw the vector of codified inputs. In gen-

eral, the i-th component of y equals y+ if node i is a positive, y− if i is a
negative and yu if i is unlabelled. In the particular case of yraw, the pos-
itively labelled nodes introduce one flow unit in the network (y+raw = 1),
whereas the negative and unlabelled nodes are treated equivalently and do
not introduce anything (y−raw = yuraw = 0). In the physical model using the
regularised Laplacian kernel, the flow can be evacuated from the graph due
to the presence of first-order leaking in every node, see (Vandin et al., 2010)
for further details on this. This formulation is proportional up to a scaling
factor to the average score in RANKS.

On the other hand, the classical label propagation (Zoidi et al., 2015) treats
positives as y+ml = 1 and negatives as y−ml = −1, while unlabelled nodes
remain as yuml = 0, thus making a distinction between the last two. A
biological example can be found in protein classification (Tsuda et al., 2005).
This option is available as ml, and intuitively scores a node by counting if
the majority of its neighbours vote positive or negative:

fml = K · yml

The authors of GeneMANIA (Mostafavi et al., 2008) propose a modifica-
tion on the ml input - they adhere to y+gm = 1 and y−gm = −1, but introduce
a bias term in the unlabelled nodes

yugm =
n+ −n−

n+ +n− +nu



b.3 methodology 231

being n+, n− and nu the number of positives, negatives and unlabelled
entities. The gm score is then computed through

fgm = K · ygm

The last option in this part, named ber_s (Bersanelli et al., 2016), is a
quantification of the relative change in the node score before and after the
network smoothing. The score for a particular node i can be written as

fbers,i =
fraw,i

yraw,i + ε

where ε > 0 is a parameter that regulates the importance of the relative
change.

Scores with statistical normalisation

Recently, the combination of a permutation analysis with diffusion pro-
cesses has been suggested (Bersanelli et al., 2016). This is a way to quantify
how the diffusion score of a certain node compares to its score if the input
was randomised - nodes that might have systematically high or low scores
regardless of the input are normalised accordingly.

The cornerstone of normalised scores is the empirical p-value (North et al.,
2002) that indicates, for a node i, the proportion of input permutations that
led to a diffusion score as high or higher than the original diffusion score.
Specifically, fraw is compared to scores from random trials j, fnull,jraw = K ·
πj(yraw), where πj(yraw) is a permutation of yraw on the labelled entities.
The empirical p-value for node i is therefore defined as in (North et al., 2002):

pi =
ri + 1

n+ 1

being ri the number of trials j in which fnull,jraw,i > fraw,i, and n the total
number of trials.

To be consistent with the increasing direction of the scores, the mc scores
are defined as

fmc,i = 1− pi

Importantly, the permutation has been applied only to the observed nodes.
Therefore, any node outside the labelled background cannot receive a differ-
ent input score in a permuted input. This implies that even if both negatives
and unlabelled nodes are assigned the same input value (y− = yu = 0), the
negatives are actually permuted and eventually exchanged for a 1 in some
permutations provided that the number of runs is large enough. For this
reason, negatives and unlabelled nodes are not equivalent in these scores.

A parametric alternative to fmc, are z scores, where each node i is scored
as:

fz,i =
fraw,i − E(f

null,j
raw,i )√

V(fnull,jraw,i )
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The expectation and variance are computed in a closed form and these
scores do not require running actual permutations, therefore saving on com-
putational time and avoiding stochastic models. The analytical expression
proven below also works for the general case when the input has quantita-
tive labels.

First of all, note that all the unlabelled nodes will cancel out when sub-
stracting the expected value, so they can be excluded without loss of gener-
ality. Thus, let the row vector k̃i be the i-th row of the submatrix from K

including the columns indexed by the labelled nodes only, and let nlab be
the number of labelled nodes. Analogously, let ỹ be the (quantitative or bi-
nary) inputs for the observed nodes, with the same indexing as k̃i. Consider
the following scalar quantities:

SkIi =

nlab∑
j=1

(k̃i)j

SkIIi =

nlab∑
j=1

(k̃i)
2
j

SyI =

nlab∑
j=1

ỹj

SyII =

nlab∑
j=1

ỹ2j

Using these definitions and notation, the raw score for node i is

fi = k̃i · ỹ

Its null score using a permuted input score is the random variable

fnulli = k̃i ·X

where X is the random variable that arises from permuting ỹ. In order to
compute the z-scores, the expected value and variance of fnulli are needed.
Starting with its expected value,

EX(f
null
i ) = EX(k̃i ·X) = k̃i · EX(X) = k̃i ·

∑nlab
j=1 ỹj

nlab
· 1 =

SkIi · SyI

nlab

where 1 is the nlab-th dimensional column vector full of ones. Regarding
its variance,

VX(f
null
i ) = VX(k̃i ·X) = k̃i · VX(X) · k̃Ti

The covariance of X can be written as

VX(X) =

∑nlabj=1 ỹ
2
j

nlab
−

(∑nlab
j=1 ỹj

nlab

)2[ nlab
nlab − 1

Id−
1

nlab − 1
11T

]
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being Id the nlab×nlab identity matrix. Operating, the variance of fnulli

can be finally computed as

VX(f
null
i ) =

1

(nlab − 1)n
2
lab

[
nlabSy

II − (SyI)2
] [
nlabSk

II
i − (SkIi)

2
]

The z-score for node i is, in terms of the new notation:

fz,i =
fi − EX(f

null
i )√

VX(f
null
i )

This closes the z scoring option, which clearly does not require any ac-
tual permutations but normalises through the theoretical first and second
statistical moments of the null distribution of the diffusion scores.

Finally, the authors in (Bersanelli et al., 2016) also suggest a combination
of a classical score with an statistically normalised one. Available as ber_p,
the score of node i is defined as

fberp,i = − log10(pi) · fraw,i

This approach corrects the original diffusion scores by the effect of the net-
work, in order to mitigate the effect of structures like hubs.

Quantitative inputs

In its current release, diffuStats also accepts quantitative labels as input
in the following scores: raw, ber_s, z, ber_p and mc. The scores ml and
gm are naturally excluded from non-binary inputs due to their definitions.
Currently mc scores (and therefore ber_p scores as well) accept quantitative
inputs that are treated as sparse. Dense continuous inputs might take more
time to compute, but this will be extended in future versions. Beware that
quantitative inputs should be meaningful and one-tailed (monotonic) - the
nature of diffusion processes involves averaging and strong effects with op-
posing signs cancel out instead of adding up.

b.3.3 Implementation, functions and classes

The package diffuStats is mainly implemented in R (R Core Team, 2017),
but takes advantage of existing classes in igraph (Csardi and Nepusz, 2006)
and basic data types, thus not introducing any new data structure - this min-
imises the learning effort by the final user. Inputs and outputs are conceived
to require minimal formatting effort in the whole analysis. The computation-
ally intense stochastic part of the permutation analysis is implemented in
C++ through the packages Rcpp (Eddelbuettel, 2013), RcppArmadillo (Eddel-
buettel and Sanderson, 2014) and parallelised through RcppParallel (Allaire
et al., 2016). Package diffuStats also contains documented functions and unit
testing with small cases to spot potential bugs. Two vignettes facilitate the
user experience: an introductory vignette showing the basic usage of the
functions on a synthetic example and this vignette, which further describes
the contents of the package and shows an application to real data.
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Figure 71: Overview of the main package functions.

A diagram containing the main functions in the R package diffuStats can
be found in (Fig. 71). The main funcion is diffuse, a wrapper for comput-
ing diffusion scores from several categories at once, stemming from possibly
different observed backgrounds. Function diffuse makes use of the de-
terministic diffuse_raw or the stochastic diffuse_mc implementations and
combines them to give the desired scores for all the nodes in each of the
observed backgrounds. The second wrapper perf compares the result of the
diffusion scores to target validation scores. Validation scores might include
only part of the nodes of the network and these nodes can be background-
specific.

Regarding memory and processing power requirements, the analysis of
networks with more than 10,000 nodes might need additional RAM memory
and processing power. The main reason is the manipulation of dense graph
kernel matrices that scale quadratically with the network order. To give
a reference, a dense matrix of double-precision real numbers with 10,000

rows and columns uses roughly 800MB of memory. Computing a graph
kernel on a large network can require -depending on the kernel- matrix
diagonalisation, matrix products and matrix inversion operations that are
likely to use a considerable amount of memory and time.

b.3.4 Limitations

The kernel framework is known to scale poorly with the number of nodes
of the network when the kernel is explicitly computed and dense. Therefore,
diffuStats is best suited for manipulating biological networks of a medium
size - few tenths of thousands of nodes. Protein-protein interaction networks
can have around 20,000 nodes, which is also the limit of the capabilities
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Figure 72: Profiling of the computation of the regularised Laplacian kernel on a syn-
thetic n-th order network. Undirected networks are generated through
barabasi.game in igraph using default parameters and m = 6 (each node
adds 6 edges).

diffuStats, as it is now, in a standard workstation with 16GB of physical
memory.

In particular, the explicit kernel computation is a demanding step, al-
though it only has to be performed once with a given network. Figure 72

contains a profiling on the kernel computation using a Compaq q8100 work-
station (intel core i5 650 @3.20GHz, 16GB physical memory). This should
give an approximation of what to expect in terms of time and memory con-
sumption. The same figure contains the memory usage of the kernel matrix
per se.

On the other hand, the parallel implementation of the stochastic permu-
tation analysis is another demanding task. It has been optimised assuming
that the number of positives is usually low. Lists of scores with a very high
amount of positives might slow down the permutation analysis, but not the
parametric z.

b.4 getting started

This vignette contains a classical example of label propagation on a bi-
ological network. The core tools for this analysis are the igraph R package
(Csardi and Nepusz, 2006) and the diffuStats package, whereas ggplot2 (Wick-
ham, 2009) is a convenient tool to plot the results.

The data for this example is the yeast interactome with functional anno-
tations, as found in the data package igraphdata (Csardi, 2015).

# Core

library(igraph)

library(diffuStats)

# Plotting

library(ggplot2)

library(ggsci)

# Data

library(igraphdata)

https://CRAN.R-project.org/package=igraph
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data(yeast)

set.seed(1)

b.4.1 Data description

A summary of the network object can be obtained by just showing the
object:

summary(yeast)

## IGRAPH 65c41bb UN-- 2617 11855 -- Yeast protein interactions, von Mering et

## + attr: name (g/c), Citation (g/c), Author (g/c), URL (g/c), Classes

## | (g/x), name (v/c), Class (v/c), Description (v/c), Confidence

## | (e/c)

For this analysis, only the largest connected component of this graph will
be used, although the algorithms can handle graphs with several connected
components.

yeast <- diffuStats::largest_cc(yeast)

This yields to a graph with 2375 nodes and 11693 edges. There are several
attributes that can be of interest. First of all, the name of the protein nodes:

head(V(yeast)$name)

## [1] "YLR197W" "YOR039W" "YDR473C" "YOR332W" "YER090W" "YDR394W"

Furthermore, the corresponding aliases and complete names can be found
in Description

head(V(yeast)$Description)

## [1] "SIK1 involved in pre-rRNA processing"

## [2] "CKB2 casein kinase II beta’ chain"

## [3] "PRP3 essential splicing factor"

## [4] "VMA4 H+-ATPase V1 domain 27 KD subunit, vacuolar"

## [5] "TRP2 anthranilate synthase component I"

## [6] "RPT3 26S proteasome regulatory subunit"

The labels to perform network propagation are MIPS categories (Mewes et
al., 2000), which provide means to classify proteins regarding their function.
These functions are coded as characters in the yeast object, in the node
attribute Class

table_classes <- table(V(yeast)$Class, useNA = "always")

table_classes

##

## A B C D E F G M O P R T U <NA>

## 51 98 122 238 95 171 96 278 171 248 45 240 483 39
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The graph attribute Classes maps these abbreviations to the actual cate-
gory:

head(yeast$Classes)

## Category Description

## 1 E energy production

## 2 G aminoacid metabolism

## 3 M other metabolism

## 4 P translation

## 5 T transcription

## 6 B transcriptional control

## Original.MIPS.category

## 1 energy

## 2 aminoacid metabolism

## 3 all remaining metabolism categories

## 4 protein synthesis

## 5 transcription, but without subcategory ’transcriptional control’

## 6 subcategory ’transcriptional control’

Finally, the graph edges have a Confidence attribute that assesses the
amount of evidence supporting the interaction. All the edges will be kept in
this analysis, but different confidences can be weighted to favour diffusion
in high confidence edges.

table(E(yeast)$Confidence)

##

## high medium

## 2395 9298

More on the yeast object can be found through ?yeast.

b.4.2 First analysis: protein ranking

In this first case, the diffusion scores will be applied to the prediction of a
single protein function. Let’s assume that 50% of the labelled proteins in the
graph as transport and sensing (category A) are actually unlabelled. Now,
using the labels of the known positive and negative examples for transport
and sensing, can we correctly label the remaining 50%? First of all, the list
of known and unknown positives is generated. The function diffuse uses
(row)names in the input scores so that unlabelled nodes are accounted as so.

perc <- .5

# Transport and sensing is class A

nodes_A <- V(yeast)[Class %in% "A"]$name

nodes_unlabelled <- V(yeast)[Class %in% c(NA, "U")]$name

nodes_notA <- setdiff(V(yeast)$name, c(nodes_A, nodes_unlabelled))
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# Known labels

known_A <- sample(nodes_A, perc*length(nodes_A))

known_notA <- sample(nodes_notA, perc*length(nodes_notA))

known <- c(known_A, known_notA)

# Unknown target nodes

target_A <- setdiff(nodes_A, known_A)

target_notA <- setdiff(nodes_notA, known_notA)

target <- c(target_A, target_notA)

target_id <- V(yeast)$name %in% target

# True scores

scores_true <- V(yeast)$Class %in% "A"

Now that the input is ready, the diffusion algorithm can be applied to
rank all the proteins. As a first approach, the vanilla diffusion scores will
be computed through the raw method and the default regularised Laplacian
kernel, which is calculated on the fly.

# Vector of scores

scores_A <- setNames((known %in% known_A)*1, known)

# Diffusion

diff <- diffuStats::diffuse(

yeast,

scores = scores_A,

method = "raw"

)

## Kernel not supplied. Computing regularised Laplacian kernel ...

## Done

## All done

Diffusion scores are ready and in the same format they were introduced:

head(diff)

## YLR197W YOR039W YDR473C YOR332W YER090W YDR394W

## 0.004622066 0.003721601 0.003274780 0.085080780 0.009089522 0.006101765

Now, the scores obtained by the proteins actually belonging to transport

and sensing can be compared to proteins with other labels.

# Compare scores

df_plot <- data.frame(

Protein = V(yeast)$name,

Class = ifelse(scores_true, "Transport and sensing", "Other"),

DiffusionScore = diff,

Target = target_id,

Method = "raw",
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stringsAsFactors = FALSE

)

ggplot(subset(df_plot, Target), aes(x = Class, y = DiffusionScore)) +

geom_boxplot(aes(fill = Method)) +

theme_bw() +

scale_y_log10() +

xlab("Protein class") +

ylab("Diffusion score") +

ggtitle("Target proteins in ’transport and sensing’")
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The last plot justifies the usefulness of label propagation, as proteins in
transport and sensing obtain higher diffusion scores than the rest. The
network analysis can be deepened by examining, for instance, the subnet-
work containing the proteins with the top 30 diffusion scores, highlighting
with squares the ones that were positive labels in the input. Notice the small
clusters of proteins:

# Top scores subnetwork

vertex_ids <- head(order(df_plot$DiffusionScore, decreasing = TRUE), 30)

yeast_top <- igraph::induced.subgraph(yeast, vertex_ids)

# Overlay desired properties

# use tkplot for interactive plotting

igraph::plot.igraph(

yeast_top,
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vertex.color = diffuStats::scores2colours(

df_plot$DiffusionScore[vertex_ids]),

vertex.shape = diffuStats::scores2shapes(

df_plot$Protein[vertex_ids] %in% known_A),

vertex.label.color = "gray10",

main = "Top 30 proteins from diffusion scores"

)

Top 30 proteins from diffusion scores

YDR091C

YLR447C

YBR143C

YJR049C
YHR026W

YMR054W

YDR270W
YNL259C

YBR295W

YDR264C

YLR362W

YGL186C

YLR092W

YPL189W

YER060W−A

YJR137C

YMR177W

YCR059C

YKR050W
YDL177C

YER145C

YHL007C

YEL031W

YLR192C
YEL051W

YCL032W

YMR038C

YGL084C

YJL129C

YJL198W

b.4.3 Comparing scores with single protein ranking

The proposed diffusion scores can be easily applied and compared. The
regularised Laplacian kernel will be used to compute all the implemented
scores for the target nodes in transport and sensing.

K_rl <- diffuStats::regularisedLaplacianKernel(yeast)

Functions diffuse and perf do accept, however, an igraph object as well,
and compute the kernel automatically. For medium networks (10,000 nodes
or more) the kernel computation can be computationally expensive in mem-
ory and time, so precomputing it avoids unnecessary recalculations.

The diffusion scores can be computed over a list of methods or sets of
parameters. This can be achieved with instructions like lapply, but diffuStats
contains a wrapper to facilitate this task. The function diffuse_grid takes
the specified combinations of parameters -which can include the scoring
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method as well- and computes the diffusion scores for each one. The results
are concatenated in a data frame that can be easily plotted:

list_methods <- c("raw", "ml", "gm", "ber_s", "ber_p", "mc", "z")

df_diff <- diffuse_grid(

K = K_rl,

scores = scores_A,

grid_param = expand.grid(method = list_methods),

n.perm = 1000

)

## Using supplied kernel matrix...

## All done

## Using supplied kernel matrix...

## All done

## Using supplied kernel matrix...

## All done

## Using supplied kernel matrix...

## All done

## Using supplied kernel matrix...

## Using supplied kernel matrix...

## X1: permuting scores...

## Permuting...

## X1: computing heatRank...

## All done

## Using supplied kernel matrix...

## X1: permuting scores...

## Permuting...

## X1: computing heatRank...

## All done

## Using supplied kernel matrix...

## All done

df_diff$transport <- ifelse(

df_diff$node_id %in% nodes_A,

"Transport and sensing",

"Other"

)

The results can be directly plotted:

df_plot <- subset(df_diff, node_id %in% target)

ggplot(df_plot, aes(x = transport, y = node_score)) +

geom_boxplot(aes(fill = method)) +

scale_fill_npg() +

theme_bw() +

theme(axis.text.x = element_text(

angle = 45, vjust = 1, hjust = 1)) +

facet_wrap( ~ method, nrow = 1, scales = "free") +
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xlab("Protein class") +

ylab("Diffusion score") +

ggtitle("Target proteins scores in ’transport and sensing’")
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As expected, all the diffusion scores qualitatively show differences be-
tween positive and negative labels, but the quality of class separation will
generally depend on the dataset and scoring method.

b.4.4 Benchmarking scores with multiple protein functions

The package diffuStats is able to perform several screenings at once. To
show its usefulness, we will generalise the procedure in the last section but
screening all the categories in the yeast graph.

First of all, the input data must meet an adequate format - a straightfor-
ward approach is to populate a matrix with the input labels (one category
per column).

# All classes except NA and unlabelled

names_classes <- setdiff(names(table_classes), c("U", NA))

# matrix format

mat_classes <- sapply(

names_classes,

function(class) {

V(yeast)$Class %in% class
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}

)*1

rownames(mat_classes) <- V(yeast)$name

colnames(mat_classes) <- names_classes

The former 50% known / 50% unknown approach will be kept with the
same split, although not all the 12 categories will be totally balanced in the
splits now. All the methods will be compared using the area under the ROC
curve (AUROC) as a performance index.

Please note that diffuStats is equipped with basic performance measures
for rankers: the AUROC, the area under the Precision-Recall curve, or AUPRC,
and their partial versions. These are available through the helper function
metric_fun and can be passed in list format to perf. These measures are
based on the precrec R package - further detail can be found in the original
manuscript (Saito and Rehmsmeier, 2017).

list_methods <- c("raw", "ml", "gm", "ber_s", "ber_p", "mc", "z")

df_methods <- perf(

K = K_rl,

scores = mat_classes[known, ],

validation = mat_classes[target, ],

grid_param = expand.grid(

method = list_methods,

stringsAsFactors = FALSE),

n.perm = 1000

)

## Using supplied kernel matrix...

## All done

## Using supplied kernel matrix...

## All done

## Using supplied kernel matrix...

## All done

## Using supplied kernel matrix...

## All done

## Using supplied kernel matrix...

## Using supplied kernel matrix...

## X1: permuting scores...

## Permuting...

## X1: computing heatRank...

## All done

## Using supplied kernel matrix...

## X1: permuting scores...

## Permuting...

## X1: computing heatRank...

## All done

## Using supplied kernel matrix...

## All done

https://CRAN.R-project.org/package=precrec
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This allows plotting of the AUCs over the categories for each method in
one step:

ggplot(df_methods, aes(x = method, y = auc)) +

geom_boxplot(aes(fill = method)) +

scale_fill_npg() +

theme_bw() +

xlab("Method") +

ylab("Area under the curve") +

ggtitle("Methods performance in all categories")
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Scaling up the analysis can be useful for assessing how adequate a diffu-
sion score is in the dataset of interest. These results suggest that, for the
current yeast interactome and protein functions, the best priorisations are
those obtained through a statistical normalisation, which might motivate its
usage in other biological networks.

The user can also statistically compare the performance metrics through
the function perf_wilcox. This generates a table with (i) the estimates on
the differences on performance between the methods in rows and columns,
with their confidence intervals and (ii) their associated p-value (Wilcoxon
test). Positive and negative estimates respectively favour the method in the
row and the column.

# Format the data

df_perf <- reshape2::acast(df_methods, Column~method, value.var = "auc")

# Compute the comparison matrix



b.5 conclusions 245

df_test <- perf_wilcox(

df_perf,

digits_p = 1,

adjust = function(p) p.adjust(p, method = "fdr"),

scientific = FALSE)

## Warning in wilcox.test.default(x = perf_mat[, met1], y = perf_mat[,

met2], : cannot compute exact p-value with zeroes

## Warning in wilcox.test.default(x = perf_mat[, met1], y = perf_mat[,

met2], : cannot compute exact confidence interval with zeroes

knitr::kable(df_test, format = "latex")

raw ml gm ber_s ber_p mc z
raw NA 0.018(-0.075,0.068) -0.0084(-0.082,0.025) NA -0.023(-0.036,-0.0097) -0.022(-0.044,-0.0001) -0.027(-0.051,-0.0068)
ml 0.55 NA -0.025(-0.047,-0.013) -0.018(-0.068,0.075) -0.042(-0.095,0.047) -0.047(-0.098,0.043) -0.044(-0.1,0.026)
gm 0.71 0.01 NA 0.0084(-0.025,0.082) -0.02(-0.049,0.054) -0.02(-0.051,0.057) -0.017(-0.054,0.038)
ber_s NA 0.55 0.71 NA -0.023(-0.036,-0.0097) -0.022(-0.044,-0.0001) -0.027(-0.051,-0.0068)
ber_p 0.03 0.46 0.54 0.03 NA 0.0015(-0.0076,0.0071) -0.0055(-0.018,0.0079)
mc 0.12 0.35 0.55 0.12 0.73 NA -0.0047(-0.014,0.0025)
z 0.03 0.32 0.46 0.03 0.46 0.34 NA

b.5 conclusions

The diffuStats package is a new computational tool to compute and com-
pare single-network diffusion scores that are object of active research in sev-
eral bioinformatics areas. It is an effort to gather a collection of settings in
the diffusion process like the graph kernel, the label codification and the
choice of a statistical normalisation. The diffuStats package will help the end
user in choosing and computing the best performing diffusion scores in the
application of interest.
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b.7 session info

Here is the output of sessionInfo() on the system that compiled this
vignette:

• R version 3.6.2 (2019-12-12), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=es_ES.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=es_ES.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=es_ES.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=es_ES.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 16.04.6 LTS

• Matrix products: default

• BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0

• LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0

• Base packages: base, datasets, graphics, grDevices, methods, stats,
utils

• Other packages: diffuStats 1.4.0, ggplot2 3.1.1, ggsci 2.9, igraph 1.2.4.1,
igraphdata 1.0.1, knitr 1.22

• Loaded via a namespace (and not attached): assertthat 0.2.1,
backports 1.1.4, BiocManager 1.30.4, BiocStyle 2.12.0, colorspace 1.4-1,
compiler 3.6.2, crayon 1.3.4, data.table 1.12.2, digest 0.6.18, dplyr 0.8.3,
evaluate 0.13, expm 0.999-4, glue 1.3.1, grid 3.6.2, gtable 0.3.0,
highr 0.8, htmltools 0.3.6, labeling 0.3, lattice 0.20-38, lazyeval 0.2.2,
magrittr 1.5, MASS 7.3-51.5, Matrix 1.2-18, munsell 0.5.0, pillar 1.4.0,
pkgconfig 2.0.2, plyr 1.8.4, precrec 0.10.1, purrr 0.3.2, R6 2.4.0,
Rcpp 1.0.1, RcppArmadillo 0.9.800.3.0, RcppParallel 4.4.4,
reshape2 1.4.3, rlang 0.4.0, rmarkdown 1.12, scales 1.0.0, stringi 1.4.3,
stringr 1.4.0, tcltk 3.6.2, tibble 2.1.1, tidyselect 0.2.5, tools 3.6.2,
vctrs 0.2.0, withr 2.1.2, xfun 0.6, yaml 2.2.0, zeallot 0.1.0
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C M E TA B O LO M I C S E N R I C H M E N T

c.1 appendix s1 - graph structure and curation

KEGG database Raw KEGG graphKEGG in
list format

Raw KEGG graph 
(largest CC)

Raw KEGG 
weighted graph 

(largest CC)

1 1 1 1

1 1
2 2

2
2 2

KEGG graph 
(curated, inverted

weights)

1 1 1 1

1 12
1/

Figure 73: Procedure to obtain the KEGG graph. The KEGG database is read as
a collection of lists that contain the annotations. The raw KEGG graph
is built through these annotations, where the vertices are KEGG entries
from categories in Fig. 74a. We only work with the largest CC of the raw
KEGG graph, to which weights are assigned, enabling the curation step
that gives place to the KEGG graph. Note that the weights in the defini-
tive KEGG graph are the inverse of the former dissimilarity weights, to
be consistent with the diffusive methods.

Compounds

Reactions

Enzymes

Modules

Pathways

Genes

(a) (b)

Figure 74: (a) Structure of our KEGG graph. Each entry belongs to a level, rang-
ing from 1 (pathways) to 5 (compounds). (b) MetScape concept of
compound-reaction-enzyme-gene network. Their construction is similar
in the three lowest levels, while in the upper level they include KEGG
genes.

The first step to depict current knowledge is to build a graph object from
KEGG that enables data enrichment (Fig. 73). The KEGG graph contains
various categories (Fig. 74a) and keeps similarities with the networks built
through MetScape (Karnovsky et al., 2012), see (Fig. 74b), although our
structure is conceived to include biological pathways and modules to obtain

This appendix reproduces the supplementary data (Appendices S1 to S5) of: Picart-Armada,
Sergio, Francesc Fernández-Albert, Maria Vinaixa, Miguel A. Rodríguez, Suvi Aivio, Travis
H. Stracker, Oscar Yanes, and Alexandre Perera-Lluna. “Null diffusion-based enrichment for
metabolomics data”. PloS one 12, no. 12 (2017).
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a pathway enrichment procedure. The lists relating these categories can be
retrieved through the KEGGREST package (Tenenbaum, 2016).

In order to restrict our KEGG graph to nodes related to Homo sapiens,
only human pathways and modules were considered. Pathway hsa01100

(Metabolic pathways) was discarded for being too general. Enzymes were
included only if at least one human gene was related to them, as enzyme-
module and enzyme-pathway connections were inferred through genes. Re-
actions and compounds were drawn only if they belonged to a human path-
way or module. Finally, for completeness purposes, any reactant or product
of the already kept reactions was added. These steps resulted in the raw
KEGG graph (Fig. 73).

We have conceived a curation algorithm that assigns edge weights and re-
moves redundant edges from the graph. The requirements for the graph that
enable the curation and the diffusion processes are: (i) the chosen categories
allow a hierarchical arrangement, (ii) none of the links relates nodes belong-
ing to the same category and (iii) affected nodes lie only on the bottom level
(lowest category).

In the first place, our five KEGG categories conform a hierarchy, from top
to bottom: biological pathway, module, enzyme, reaction and compound.
This choice mimics the transition from the smaller parts (compounds) to
the larger units (pathways) and facilitates the tracking of the biological per-
turbation, suggesting paths and entities by which the affected compounds
translate into altered pathways. In the second place, KEGG does not contain
any link between entries within the same category.

After building the unweighted graph from KEGG annotations and work-
ing with its largest CC, we begin the curation by proposing edge weights
(Fig. 73) that reflect the specificity of the link between the two entries i and
j within the hierarchy, as described in equation (48):

wij = wji =

{
|li − lj| if i and j are linked through an edge∞ otherwise (equivalently, not adjacent vertices)

(48)

In equation (48), li stands for the level of node i; note that the specified
requirements ensure that li is defined for each node (hierarchical structure)
and that wij 6= 0 (no edges between nodes within the same level). For
instance, an edge between a compound and a reaction weights 1, meaning
that it describes a close relationship in metabolic terms. Instead, if the link
involves a compound and a pathway this weight becomes 4, meaning the
lack of known intermediate implications involving reactions, enzymes and
modules.

The next step in the curation process discards any edge that can be ex-
plained using more informative edges (Fig. 73), therefore avoiding any data
loss. Specifically, any triangle in the graph is removed by dropping the edge
with the largest weight. For example, a link between a compound and a
pathway will drop if there are known intermediate levels that explain this
connection.

The algorithm to achieve this from the original weighted graph G = (V ,E)
of order n and size m is the following. Note that the algorithm is still valid
in the presence of multi-edges (edges that are incident to the same pair of
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vertices), but as a proof of concept we assume that the graph does not contain
them.

1. Sort the edges in E with increasing wij: L = (e(1), . . . , e(m)). The
criterion to break ties is irrelevant.

2. Initialise a graph Gnew = (Vnew,Enew) = (V ,∅) with the same node
set as the original graph, but with no edges

3. For each edge eij in L, which links vertices i and j in G, add eij to
Gnew only if dGnew(i, j) > wij.

4. Return Gnew

In other words, only edges that contribute with new data in the biological
graph are added. Distances must use the weights provided by wij. If an
edge eij is discarded, that means that there is already a connection between
i and jwith the same level of detail, and because of the construction of Gnew
this connection is through two or more edges, all of them having strictly less
weight than eij. Hence, eij is redundant in that situation. A small example
is shown (Fig. 75) to justify the curation process.

C02868C01839C00001 C02868C01839C00001

R00054

EC:3.1.1.40 EC:3.1.1.40

R00054

Figure 75: Example of the curation process applied to a small subgraph from KEGG
graph. The graph in the left contains all the original edges. Likewise,
the graph in the right contains a neater explanation of the biology: three
compounds that participate in a reaction, catalysed by one enzyme. We
capture the essence of the data through 4 edges instead of 7, while easing
the posterior visual interpretation.

After the curation process, we obtain the KEGG graph (Fig. 73). The final
weights are inverted to be consistent with the graph Laplacian matrix and
the diffusive methods. KEGG graph contains a total of 10,183 nodes and
31,539 edges. The nodes are stratified in 288 pathways, 178 modules, 1,149

enzymes, 4,699 reactions and 3,869 compounds. The degree distribution (Fig.
76) follows a scale-free model.

The third requisite about the graph (the measured nodes should lie on
the lower level) ensures that the boundary setup is meaningful and it eases
the traceability of the biological perturbation, which follows a bottom-up
tendency. Introducing flow on intermediate levels can nullify the structure
inheritance from the whole graph when selecting the subnetwork, thus un-
dermining the quality of the resulting biological interpretation.
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Figure 76: Our KEGG graph degree distribution follows the scale-free network pat-
tern P(k) ∼ k−γ, with γ = 2.084 ∈ [2, 3]. The heavy tail of this distribu-
tion confirms the existence of hubs, which are nodes with an extremely
high degree and a major role in the biology.

The application of our diffusion processes with their null models is aimed
at reporting a relevant subgraph of our KEGG graph. This subgraph can be
examined through the order (amount of nodes) and amount of connected
components (CC), an indicator of its structure and quality. A large CC is
likely to give a global explanation in terms of all the levels in the graph while
several small CCs will only highlight very specific relationships between
small sets of nodes.

c.2 appendix s2 - heat diffusion process

The heat diffusion process is a model to quantify the propagation of flow
in a network; this flow represents a biological perturbation when the ex-
perimental conditions change. However, note that this design is neither a
functional model of biology nor a simulation of heat diffusion on biological
molecules.

Using the explicit method for the finite difference formulation of the heat
diffusion problem (Eq. 49), we can relate the temperatures between contigu-
ous time instants in a meshed object containing n nodes. A graph can be
naturally regarded as a meshed object, thus allowing the heat diffusion on
our KEGG graph. The formulation (Bonals, 2005) is:

Tk+1 = Tk +DTC · [KI · Tk +KC · TC+G] (49)
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where

Tk =


Tk1
Tk2
...
Tkn

 ◦C (50a)

are the temperatures of the n nodes in the graph at the k-th instant, Tki .
Also,

DTC =


∆t
Ck1

0 . . . 0

0 ∆t
Ck2

. . . 0

...
...

. . .
...

0 0 . . . ∆t
Ckn


◦C

W
(50b)

is the diagonal matrix containing the quotient between the time step ∆t,
in seconds, and the heat capacity of node n at the k-th instant, Ckn, in J

◦C .
Following,

KI =



−
∑
j

Kk1j Kk12 . . . Kk1n

Kk21 −
∑
j

Kk2j . . . Kk2n

...
...

. . .
...

Kkn1 Kkn2 . . . −
∑
j

Kknj


W
◦C

(50c)

contains the heat conductance between nodes vi and vj in the k-th instant,
Kkij. The sums in the diagonal also account for the conductance to the bound-
ary nodes if present. Next,

KC =


Kk1,n+1 Kk1,n+2 . . . Kk1,n+c
Kk2,n+1 Kk2,n+2 . . . Kk2,n+c

...
...

. . .
...

Kkn,n+1 Kkn,n+2 . . . Kkn,n+c

 W◦C (50d)

is the matrix containing the conductances from the node vi to the l-th
boundary node (which does not belong to the graph) in the k-th instant,
Kki,n+l. As for these boundary nodes,

TC =


Tkn+1
Tkn+2

...
Tkn+c

 ◦C (50e)

is the vector that contains temperatures of the boundary node l in the k-th
instant, Tkn+l (note that there are c boundary nodes in total and that they are
not in V). Finally,

G =


Gk1
Gk2

...
Gkn

W (50f)
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contains the inner heat generation for node vi in the k-th instant, Gki .

Compounds

Reactions

Enzymes

Modules

Pathways

Figure 77: Nodes arrangement for heat diffusion. In this tiny example, the lev-
els represent the hierarchy from pathways (top) to compounds (bottom).
The affected compounds are highlighted with a black ring. Affected
compounds are forced to generate unitary flow. To reach a stationary
state, these two flow units must evacuate through pathways, located at
the top level. Every pathway is highlighted with a blue ring, represent-
ing its connection to a cool boundary node at 0◦C. In the stationary state,
depicted through heat colours proportional to the final temperature, the
warmest pathways will hold greatest heat flow, suggesting a relevant
role in the experiment.

The finite difference expression (Eq. 49) takes a substantially simpler form
when applied to our node arrangement (Fig. 77). First, imposing the station-
ary state Tn = Tn+1 = T and constant parameters for every time step:

T = −KI−1 · [KC · TC+G] (51)

As shown in the proposed configuration (Fig. 77), the boundary nodes are
at 0◦C, therefore the equation simplifies into Eq. (52).

T = −KI−1 ·G = RHD ·G (52)

where RHD = −KI−1 is the linear mapping of the heat diffusion process.
This is the expression shown in the main body; an equivalent formulation
can be found at HotNet (Vandin et al., 2011). The terms in the conductance
matrix KI are given by the inverse of the weights in the curation process
presented in Appendix S1, whereas conductances to boundary nodes are
unitary. Besides allowing the calculation of temperatures, Eq. 52 also de-
scribes the diffusion process. For example, the null diffusion correlation
matrix between biological entities in KEGG, described in Appendix S4, can
give insights about the nature of the network.

Further analyses can be achieved through the conductance matrix of the
graph (Bapat, 2004). This perspective is usually regarded as the electrical
problem of finding the equivalent resistance between any couple of nodes.
The resistance distance is a metric that takes into account all the possible
paths from one vertex to the other, and not only its shortest path, thus effec-
tively including the graph topology.



c.3 appendix s3 - pagerank 257

c.3 appendix s3 - pagerank

The PageRank algorithm (Page et al., 1999) scores every node in a graph
using a web surfer model. The graph is typically directed because so are the
hyperlinks between websites. Applying PageRank to an undirected graph is
even more similar to the heat diffusion described in Appendix S3.

The web surfer model mimics the behaviour of real internet users. The
surfer starts a random walk at a randomly chosen website, according to a
prior probabilities vector p. In each step of the random walk, he or she
decides whether to continue with the current random walk (probability d)
or start a new one (probability 1− d). If the random walk is resumed, the
probability of choosing an edge is proportional to its weight. Finally, the
PageRank scores are the stationary probability distribution over the graph
nodes for this surfer.

Despite the different formulation of the PageRank problem, the final cal-
culation of the PageRank scores is similar to the stationary state of our heat
diffusion process. The arrangement of the nodes is identical (Fig. 78), but
the PageRank graph is directed upwards.

Compounds

Reactions

Enzymes

Modules

Pathways

Figure 78: Nodes arrangement for PageRank. Affected compounds are the start
of random walks, uniformly distributed among them. PageRank scores,
represented by the intensity of the blue colour, will attain larger values
in the nodes that are frequently reached through the random walks in
a stationary state. Random walks resumed in dead ends start in a uni-
formly chosen node from the graph.

The mathematical expression to obtain the scores (Equation 54) can be
derived by imposing a stationary probability in the random walk process,
whose website transitions are governed by the matrix M:

PR = d ·M · PR+ (1− d) · p (53)

obtaining

PR = RPR · p (54)

p is the probability distribution for the source of new random walks and
RPR is the matrix:

RPR = (1− d) · (Id− d ·M)−1 (55)
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where Id is the identity matrix, d is the damping factor and M is a matrix
obtained from the weighted adjacency n × n matrix A from the directed
KEGG graph (edges pointing upwards):

M = f(t(A)) (56)

In this expression, t is the matrix transpose operator and f is the function
that normalises each column to sum 1, except when it contains n zeroes; in
the latter case it returns a column with n elements equal to 1

n . We apply the
function f with that particularity to be coherent with the R package igraph
(Csardi and Nepusz, 2006), which considers that terminal nodes resume the
random walk uniformly distributed in all the vertices.

In Equation 54, the calculation of the PageRank scores uses the binary vec-
tor of affected compounds normalised by the amount of affected compounds
(Fig. 78):

p =
G∑
Gi

(57)

The similarity between the final expression for heat diffusion (see Ap-
pendix S2) and PageRank (Equation 54) is remarkable, given the common
random walk background for these two methods. The differences between
them include the forced upwards directionality of PageRank and the damp-
ing factor concept, which allows leaps in the diffusion. The rescaling of the p
vector does not affect the null model, as the rescaling factor remains constant
in the random trials.

All the PageRank scores in our approach have been computed using the
standard d = 0.85 established in the original publication (Page et al., 1999),
a range of damping factors has been swept, going from 0.1 (very frequent
restarts) to 0.95 (almost no restarts), but results are consistent as a result of
the application of our null model, described in Appendix S4.

c.4 appendix s4 - null models

We retrieve the formulation from Appendix S2 to compute the final tem-
peratures in heat diffusion. The same procedure applies to the PageRank
approach in Appendix S3, given the similarity between them, but as a proof
of concept it will be developed for heat diffusion only.

T = RHD ·G

By abuse of notation, RHD will contain the columns of the original RHD
corresponding only to compounds, thus being a rectangular matrix from
now on. Likewise, to have a well-defined matrix-vector product, G will only
refer to compounds, as they are the only entities that can introduce heat.
The vector G contains exactly nin ones, corresponding to the affected com-
pounds, and ncomp−nin zeroes, where ncomp is the amount of compounds
in the graph.

When focusing on a node i, we want to assess whether its temperature
Ti would be expected from a random selection of affected compounds or,
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on the contrary, the affected compounds are more related to node i than
expected. To that end, we define the null distribution of temperatures:

Tnull = RHD ·X (58)

where X is the random variable obtained by permuting G. If we define
p = nin

ncomp
, then every Xi is a Bernoulli trial with success probability p. Xi

and Xj, for i 6= j, are slightly anticorrelated due to the permutation approach.
Exact statistical moments of Tnull can be computed:

E(Tnull) = RHD ·E(X) (59)

being

E(X) = p ·


1

1
...
1

 (60)

and the same for the covariance matrix

Σ(Tnull) = RHD · Σ(X) · RTHD (61)

where

Σ(X) = p(1− p) ·


1 ρ . . . ρ

ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

 (62)

being ρ = − 1
ncomp−1

. In terms of the elements rij in matrix RHD, we can
write

µi =
nin
ncomp

ncomp∑
j=1

rij

 (63)

σ2i =
nin(ncomp −nin)

ncomp(ncomp − 1)


ncomp∑

j=1

r2ij

−
1

ncomp

ncomp∑
j=1

rij

2
 (64)

In fact, the correlation matrix of the null temperatures gives insights about
the combination of the network structure and the null model. Focusing on
pathways: if two pathways are strongly correlated, it suggests that both
attain high or low temperatures with similar inputs. Thus, this couple of
pathways are prone to overlap or to be nearby in the metabolism. Con-
versely, a strong anticorrelation suggests that warming up a pathway condi-
tions the second pathway to become colder, suggesting that these pathways
are dissimilar. (Fig. 79) depicts the correlations matrix for the pathways,
where rows and columns have been reordered to illustrate clusters of KEGG
pathways. Furthermore, the structure seems to be somehow related to the
underlying biology: one of the clusters corresponds to the bulk of human
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metabolic pathways, whereas the genetic information processing pathways
also appear highly correlated. Besides these examples, pathway types do not
appear totally shuffled, but as small blocks of pathways sharing a biological
role.

Cellular Processes

Environmental Information Processing

Genetic Information Processing

Human Diseases

Metabolism

Organismal Systems

+10-1

Correlation

Pathway type

Figure 79: Correlation matrix between pathways for the heat diffusion process in
the KEGG graph (identifiers omitted for clarity). Blue correlations are
closer to 1, while red tend to −1. For the calculation of these correlations,
a count of 33 compounds was assumed to perform the null model, like
in the experimental data. In addition, the biological role of the pathways
annotated in KEGG BRITE (Kanehisa et al., 2008) has been drawn in the
rightmost bar.

(Eqs. 63, 64) provide a first approximation (1) to evaluate how high a
temperature is. If Ti is remarkably greater than µi = E(Tnull)i in terms of
its standard deviation, σi =

√
Σ(Tnull)ii, then node i should be reported.

The normalised score is

zi =
Ti − µi
σi

(65)

Another approach (2) to evaluate the relevance of node i is to perform the
permutation analysis through Monte Carlo trials. In that case, the random
vector X is drawn nperm times and, for node i, the p-value is approximated
as pi = ri+1

nperm+1 , where ri is the number of trials where Tnulli > Ti, see
(North et al., 2002) for further details on this estimator. An ensemble solu-
tion can be obtained by repeating the procedure nvote times and evaluating
each node by majority vote, specifically including it only if it is reported at
least bnvote2 c+ 1 times, also allowing a fuzzy representation of the consensus
solution. This ensemble approach reduces the variability in the reported so-
lution and also provides confidence measures for each included node. The
input can also be subsampled in this approach, although this option has not
been explored yet.
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c.5 appendix s5 - details on reported solutions

The solutions reported in the main body encompass two different scor-
ing functions (heat diffusion and PageRank) and two statistical approaches
(z-scores and simulation). Monte Carlo permutations involve consensus so-
lutions among the simulated runs to reduce the variability and enhance ro-
bustness and consistency between runs.

c.5.1 Solution stratification

(Fig. 80) depicts the stratification of all the reported graphs. Solutions
tend to keep the same proportions as the original graph, allowing the dis-
covery of relevant nodes in all the categories. This is not only a sign of
agreement across the different solutions, but also a necessary behaviour to
discover putative nodes in all the categories. The proportion of reported
compounds seems lower than the one in the KEGG graph, probably due to
the application of the null model, which tends to favour the metabolites in
the input and penalise the rest.
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Figure 80: Subgraph stratification by method. Notice the tendency to keep the same
distribution as the whole KEGG graph. Compared to the KEGG graph,
the proportion of compounds decreases in all the solutions due to the
inclination to recover the ones in the input and exclude the rest.
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c.5.2 Connected component evolution

The choice of the number of desired nodes k affects the number and size
of the reported connected components (CC). In general terms, the number
of reported CCs seems to lower as the number of reported nodes grows (Fig.
81), as different CCs that contain seed nodes tend to merge. The number of
nodes in the largest CC grows monotonically as k increases and it captures
the majority of the nodes in the subgraphs (Fig. 82).
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Figure 81: Number of reported CCs for varying k. The discrete nature of the major-
ity vote approach in simulation trials leads to ties, which can be spotted
as horizontal lines in the figure - more than a hundred nodes are tied
with the best rank in both cases. In general, the number of CCs decreases
as the reported subgraphs grow.



c.5 appendix s5 - details on reported solutions 263

0

50

100

150

200

250

0 100 200 300

Top k nodes

N
od

es
 in

 la
rg

es
t C

C

diffusion

pagerank

normality

simulation

Figure 82: Number of nodes in the largest CC reported. If more nodes are reported,
the largest CC grows accordingly. For k = 300 around 225-250 nodes are
in the largest CC in every approach, meaning that approximately 75-83%
nodes lie in it. As more than a hundred nodes are tied with maximum
rank in the simulated version, lines start at these respective points.
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c.5.3 Computational cost

In sight of further applications of these methodologies, we have performed
a benchmark of several implementations of the Monte Carlo approach. For
heat diffusion, the temperature calculation (Appendix S2) is achieved through

T = −KI−1 ·G = RHD ·G (66)

where G has nin ones and ncomp −nin zeroes.
We define two strategies to permute the input G: (a) draw nin elements

without replacement from the set [1,ncomp], and (b) shuffle the whole vector
G. Furthermore, two possible calculations for T are: (1) explicitly compute
RHD and sum the columns indexed by the nin ones, or (2) solve the linear
system T = −KI−1 ·G

These strategies have been essayed with growing graph order, from 1,000

to 10,000 nodes. Graphs are randomly generated using the default Barabási-
Albert model in igraph (Csardi and Nepusz, 2006). Then, 10% of the nodes
are randomly selected to be pathways, so the heat flow can be dispelled.

We also consider two scenarios, depending on if (I) the input list has a
fixed size of 30 compounds, or (II) it scales as 10% of the graph nodes. For
each combination of parameters, a benchmark of 30 permutations is run 10

times and the trends are depicted in (Fig. 83). The differences between sam-
pling strategies seem irrelevant compared to the solving method. Solving the
linear system seems a good option for small inputs that do not scale with the
graph order, but computing the inverse seems to scale better as the vector G
becomes less sparse. However, the latter requires a vast amount of memory
to store the matrix, so the best implementation will depend on the graph
order and memory availability. All the benchmarks have been executed in a
desktop workstation (Intel i5 650 at 3.2GHz, 16Gb RAM memory).



c.5 appendix s5 - details on reported solutions 265

Fixed input size Variable input size

●●●●●●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●
●
●●

●
●●
●
●
●

●

●
●●
●

●

●

●
●
●

●●●●●●●●●●

●●●●●●●●●

●

●

●

●

●
●●●●●●

●

●
●
●●

●

●●●●

●
●●
●
●●
●
●

●

●
●●●●●●●●●●

●●●●●●●●
●
●

●●●●●
●
●●●●

●●●●●●●
●●●

●●●●●●●●●●

●●●●●●●●●●

●

●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●

●●●
●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●
●
●●
●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●

●●●

●●●●●●●●●●

●●●●●

●
●●
●
●

●●
●
●●●
●
●

●
●

10−1.5

10−1

10−0.5

100

100.5

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Number of nodes

E
la

ps
ed

 ti
m

e 
(s

) Method
● Inverse

Solve

Sampling
●

●

All

Partial

Figure 83: Computational cost of several strategies for computing 30 permutations,
that is, 30 null temperatures for all the nodes. These simulations have
been performed 10 times with each combination of parameters. In the
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c.5.4 Damping factor influence

The damping factor in the PageRank setup (see Appendix S3) is a model
parameter that could affect the results if set differently. Although the stan-
dard value d = 0.85 was used, we analysed the parameter sensibility by
sweeping several values of d, computing the z-scores and reporting the top
250 nodes (Figs. 84, 85). The normalised scores seem stable in a wide range
of choices of d, therefore its choice does not seem a critical issue.
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Figure 84: Damping factor impact. The normalised z-scores show consistent solu-
tions for a range of damping factors.
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Figure 85: Damping factor impact (continued). The normalised z-scores show con-
sistent solutions for a range of damping factors.
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d.1 additional file 1: quickstart

d.1.1 Introduction

FELLA is an R package that brings a new concept for metabolomics data
interpretation. The starting point of this data enrichment is a list of affected
metabolites, which can stem from a contrast between experimental groups.
This list, that may vary in size, encompasses key role players from different
biological pathways that generate a biological perturbation.

The classical way to analyse this list is the over representation analysis.
Each metabolic pathway has a statistic, the number of affected metabolites in
it, that yields a p-value. After correcting for multiple testing, a list of priori-
tised pathways helps performing a quality check on the data and suggesting
novel biological mechanisms related to the data. Subsequent generations of
pathway analysis methods attempt to include quantitative and/or topologi-
cal data in the statistics in order to improve power for subtle signals, but the
interpretation of a prioritised pathway list remains a challenge.

Package FELLA, on the other hand, introduces a comprehensive output that
encompasses other biological entities that coherently relate the top ranked
pathways. The priorisation of the pathways and other entiteis stems from a
diffusion process on a holistic graph representation of the KEGG database.
FELLA needs:

1. The KEGG graph and other complementary data files. This is stored
in a unique FELLA.DATA S4 object.

2. A list of affected metabolites (KEGG compounds). This is stored in a
unique FELLA.USER S4 object, along with user analyses.

d.1.2 Loading the KEGG data

This vignette makes use of sample data that contains small subgraph of
FELLA’s KEGG graph (mid 2017 KEGG release). All the necessary contextual
data is stored in an S4 data structure with class FELLA.DATA. Several func-
tions need access to the contextual data, passed as an argument called data,
being the enrichment itself among them.

This appendix is based on the four vignettes of the FELLA package (https://doi.org/doi:
10.18129/B9.bioc.FELLA, accessed 31/12/2019), supplementary data (Additional files 1-4)
of: Picart-Armada, Sergio, Francesc Fernández-Albert, Maria Vinaixa, Oscar Yanes, and
Alexandre Perera-Lluna. “FELLA: an R package to enrich metabolomics data”. BMC bioinfor-
matics 19, no. 1 (2018): 538.
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library(FELLA)

data("FELLA.sample")

class(FELLA.sample)

## [1] "FELLA.DATA"

## attr(,"package")

## [1] "FELLA"

show(FELLA.sample)

## General data:

## - KEGG graph:

## * Nodes: 670

## * Edges: 1677

## * Density: 0.003741383

## * Categories:

## + pathway [2]

## + module [6]

## + enzyme [58]

## + reaction [279]

## + compound [325]

## * Size: 366.9 Kb

## - KEGG names are ready.

## -----------------------------

## Hypergeometric test:

## - Matrix is ready

## * Dim: 325 x 2

## * Size: 25 Kb

## -----------------------------

## Heat diffusion:

## - Matrix not loaded.

## - RowSums are ready.

## -----------------------------

## PageRank:

## - Matrix not loaded.

## - RowSums are ready.

Keep in mind that FELLA.DATA objects need to be constructed only once
by using buildGraphFromKEGGREST and buildDataFromGraph, in that precise
order. This will store them in a local path and they should be loaded
through loadKEGGdata. The user is disadvised from manually modifying
the database internal files and the FELLA.DATA object slots not to corrupt the
database.

d.1.3 Loading the metabolomics summary data

The second block of necessary data is a list of affected metabolites, which
shoud be specified as KEGG compound IDs. Provided is a list of hypotheti-
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cal affected metabolites belonging to the graph, to which some decoys that
do not map to the graph are added.

data("input.sample")

input.full <- c(input.sample, paste0("intruder", 1:10))

show(input.full)

## [1] "C00143" "C00546" "C04225" "C16328" "C00091"

## [6] "C15979" "C16333" "C05264" "C05258" "C00011"

## [11] "C00083" "C00044" "C05266" "C00479" "C05280"

## [16] "C01352" "C05268" "C16329" "C00334" "C05275"

## [21] "C14145" "C00081" "C04253" "C00027" "C00111"

## [26] "C00332" "C00003" "C00288" "C05467" "C00164"

## [31] "intruder1" "intruder2" "intruder3" "intruder4" "intruder5"

## [36] "intruder6" "intruder7" "intruder8" "intruder9" "intruder10"

Compounds are introduced through the defineCompounds function and
provide the first FELLA.USER user data object containing the mapped com-
pounds and empty analyses slots. The user should always build FELLA.USER

objects through defineCompounds instead of manipulating the slots of the
object manually - this might skip quality checks.

myAnalysis <- defineCompounds(

compounds = input.full,

data = FELLA.sample)

## No background compounds specified. Default background will be used.

## Warning in defineCompounds(compounds = input.full, data = FELLA.sample):

## Some compounds were introduced as affected but they do not belong to

## the background. These compounds will be excluded from the analysis. Use

## ’getExcluded’ to see them.

Note that a warning message informs the user that some compounds did
not map to the KEGG compound collection. Compounds that successfully
mapped can be obtained through getInput,

getInput(myAnalysis)

## [1] "C00003" "C00011" "C00027" "C00044" "C00081" "C00083" "C00091"

## [8] "C00111" "C00143" "C00164" "C00288" "C00332" "C00334" "C00479"

## [15] "C00546" "C01352" "C04225" "C04253" "C05258" "C05264" "C05266"

## [22] "C05268" "C05275" "C05280" "C05467" "C14145" "C15979" "C16328"

## [29] "C16329" "C16333"

while compounds that were excluded because of mismatch can be ac-
cessed through getExcluded:
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getExcluded(myAnalysis)

## [1] "intruder1" "intruder2" "intruder3" "intruder4" "intruder5"

## [6] "intruder6" "intruder7" "intruder8" "intruder9" "intruder10"

Keep in mind that exact matching is sought, so be extremely careful with
whitespaces, tabs or similar characters that might create mismatches. For
example:

input.fail <- paste0(" ", input.full)

defineCompounds(

compounds = input.fail,

data = FELLA.sample)

## Error in defineCompounds(compounds = input.fail, data = FELLA.sample): None of the specified compounds appear in the available KEGG data.

d.1.4 Enriching the data

Once the FELLA.DATA and the FELLA.USER with the affected metabolites are
ready, the data can be easily enriched.

Enrichment methods

There are three methods to enrich:

1. Hypergeometric test (method = "hypergeom"): it performs the metabolite-
sampling hypergeometric test using the connections in FELLA’s KEGG
graph. This is included for completeness and does not include the
contextual novelty of the diffusive methods.

2. Diffusion (method = "diffusion"): it performs sub-network analysis
on the KEGG graph to extract a meaningful subgraph. This subgraph
can be plotted an interpreted

3. PageRank (method = "pagerank"): analogous to "diffusion" but us-
ing the directed diffusion, which matches the PageRank algorithm for
web ranking.

Statistical approximations

For methods "diffusion" and "pagerank", two statistical approximations
are proposed:

1. Normal approximation (approx = "normality"): scores are computed
through z-scores based on analytical expected value and covariance
matrix of the null model for diffusion. This approximation is deter-
ministic and fast.

2. Monte Carlo trials (approx = "simulation"): scores are computed
through Monte Carlo trials of the random variables. This approxima-
tion requires computing the random trials, governed by the ntrials

argument.
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Enrichment: methods, approximations and wrapper function

The function enrich wraps the functions defineCompounds, runHypergeom,
runDiffusion and runPagerank in an easily usable manner, returning a FELLA.USER

object with complete analyses.

myAnalysis <- enrich(

compounds = input.full,

method = "diffusion",

approx = "normality",

data = FELLA.sample)

## No background compounds specified. Default background will be used.

## Warning in defineCompounds(compounds = compounds, compoundsBackground =

## compoundsBackground, : Some compounds were introduced as affected but they

## do not belong to the background. These compounds will be excluded from the

## analysis. Use ’getExcluded’ to see them.

## Running diffusion...

## Computing p-scores through the specified distribution.

## Done.

The output is quite informative and aggregates all the warnings. Let’s
compare an empty FELLA.USER object

show(new("FELLA.USER"))

## Compounds in the input: empty

## Background compounds: all available compounds (default)

## -----------------------------

## Hypergeometric test: not performed

## -----------------------------

## Heat diffusion: not performed

## -----------------------------

## PageRank: not performed

to the output of a processed one:

show(myAnalysis)

## Compounds in the input: 30

## [1] "C00003" "C00011" "C00027" "C00044" "C00081" "C00083" "C00091"

## [8] "C00111" "C00143" "C00164" "C00288" "C00332" "C00334" "C00479"

## [15] "C00546" "C01352" "C04225" "C04253" "C05258" "C05264" "C05266"

## [22] "C05268" "C05275" "C05280" "C05467" "C14145" "C15979" "C16328"

## [29] "C16329" "C16333"

## Background compounds: all available compounds (default)

## -----------------------------
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## Hypergeometric test: not performed

## -----------------------------

## Heat diffusion: ready.

## P-scores under 0.05: 86

## -----------------------------

## PageRank: not performed

The wrapper function enrich can run the three analysis at once with the
option method = listMethods(), or only the desired ones providing them
as a character vector:

myAnalysis <- enrich(

compounds = input.full,

method = listMethods(),

approx = "normality",

data = FELLA.sample)

show(myAnalysis)

## Compounds in the input: 30

## [1] "C00003" "C00011" "C00027" "C00044" "C00081" "C00083" "C00091"

## [8] "C00111" "C00143" "C00164" "C00288" "C00332" "C00334" "C00479"

## [15] "C00546" "C01352" "C04225" "C04253" "C05258" "C05264" "C05266"

## [22] "C05268" "C05275" "C05280" "C05467" "C14145" "C15979" "C16328"

## [29] "C16329" "C16333"

## Background compounds: all available compounds (default)

## -----------------------------

## Hypergeometric test: ready.

## Top 2 p-values:

## hsa00640 hsa00010

## 8.540386e-09 9.999888e-01

##

## -----------------------------

## Heat diffusion: ready.

## P-scores under 0.05: 86

## -----------------------------

## PageRank: ready.

## P-scores under 0.05: 70

The wrapped functions work in a similar way, here is an example with
runDiffusion:

myAnalysis_bis <- runDiffusion(

object = myAnalysis,

approx = "normality",

data = FELLA.sample)

## Running diffusion...

## Computing p-scores through the specified distribution.
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## Done.

show(myAnalysis_bis)

## Compounds in the input: 30

## [1] "C00003" "C00011" "C00027" "C00044" "C00081" "C00083" "C00091"

## [8] "C00111" "C00143" "C00164" "C00288" "C00332" "C00334" "C00479"

## [15] "C00546" "C01352" "C04225" "C04253" "C05258" "C05264" "C05266"

## [22] "C05268" "C05275" "C05280" "C05467" "C14145" "C15979" "C16328"

## [29] "C16329" "C16333"

## Background compounds: all available compounds (default)

## -----------------------------

## Hypergeometric test: ready.

## Top 2 p-values:

## hsa00640 hsa00010

## 8.540386e-09 9.999888e-01

##

## -----------------------------

## Heat diffusion: ready.

## P-scores under 0.05: 86

## -----------------------------

## PageRank: ready.

## P-scores under 0.05: 70

d.1.5 Visualising the results

The method plot for data from the package FELLA allows a friendly visu-
alisation of the relevant part of the KEGG graph.

Hypergeom

In the case method = "hypergeom" the plot encompasses a bipartite graph
that contains top pathways and affected compounds. In that case, threshold
= 1 allows the visualisation of both pathways; otherwise a plot with only one
pathway would be quite uninformative.

plot(

x = myAnalysis,

method = "hypergeom",

main = "My first enrichment using the hypergeometric test in FELLA",

threshold = 1,

data = FELLA.sample)
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My first enrichment using the hypergeometric test in FELLA

C00003

C00011

C00027

C00044

C00081

C00083

C00091
C00111
C00143

C00164
C00288
C00332

C00334

C00479
C00546
C01352
C04225
C04253
C05258
C05264
C05266
C05268
C05275
C05280
C05467
C14145

C15979
C16328
C16329
C16333

hsa00640

hsa00010

Diffusion

For method = "diffusion" the graph contains a richer representations in-
volving modules, enzymes and reactions that link affected pathways and
compounds.

plot(

x = myAnalysis,

method = "diffusion",

main = "My first enrichment using the diffusion analysis in FELLA",

threshold = 0.1,

data = FELLA.sample)
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My first enrichment using the diffusion analysis in FELLA
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glycine synthase

acetoacetyl−CoA:acetat...

Acetoacetate carboxy−l...

propanoyl−CoA:carbon−d...

(S)−3−Hydroxybutanoyl−...

(S)−lactaldehyde:NADP+...

propane−1,2−diol hydro...

Methylglyoxal + NADPH ...
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(2S,3R)−3−Hydroxybutan...
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CoA
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Acetoacetate
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Categories for each node

Pathway
Module

Enzyme
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Compound
Input compound

PageRank

For method = "pagerank" the concept is analogous to diffusion:

plot(

x = myAnalysis,

method = "pagerank",

main = "My first enrichment using the PageRank analysis in FELLA",

threshold = 0.1,

data = FELLA.sample)
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My first enrichment using the PageRank analysis in FELLA
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3−oxopropanoate:NADP+ ...

acetyl−CoA:carbon−diox...

(R)−Methylmalonyl−CoA ...

2−oxobutanoate:oxygen ...

D−glyceraldehyde−3−pho...

glycerone−phosphate ph...

beta−D−fructose−1,6−bi...

glycine synthase

acetoacetyl−CoA:acetat...

Acetoacetate carboxy−l...

propanoyl−CoA:carbon−d...
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4−aminobutanal:NAD+ 1−...

(S)−2−methylbutanoyl−C...

(S)−3−Methyl−2−oxopent...

(2S,3S)−2−hydroxybutan...(2S,3R)−3−Hydroxybutan...

(S)−3−Hydroxyhexadecan...(S)−Hydroxydecanoyl−Co...

(S)−Hydroxyoctanoyl−Co...

(S)−hydroxyhexanoyl−Co...

(S)−Hydroxyhexanoyl−Co...

decanoyl−CoA:electron−...

cis,cis−3,6−Dodecadien...

3alpha,7alpha,12alpha,...

2−Methyl−1−hydroxybuty...

3−Hydroxy−OPC8−CoA <=>...

2−Oxoglutarate dehydro...

propanal:NAD+ oxidored...

(S)−Lactaldehyde + NAD...hydroxyacetone:NAD+ 1−...2−Methyl−trans−aconita...
NAD+

CO2

Hydrogen peroxide
GTPITP

Malonyl−CoA

Succinyl−CoA

Glycerone phosphate

5,10−Methylenetetrahyd...

Acetoacetate

HCO3−

Acetoacetyl−CoA

4−AminobutanoatePropanal

Methylglyoxal

FADH2

(Z)−But−2−ene−1,2,3−tr...

(S)−3−Hydroxyhexadecan...(S)−Hydroxydecanoyl−Co...

(S)−3−Hydroxyoctanoyl−...
(S)−Hydroxyhexanoyl−Co...

trans−Dec−2−enoyl−CoA

cis,cis−3,6−Dodecadien...

3alpha,7alpha,12alpha−...

[Dihydrolipoyllysine−r...

trans−2−Enoyl−OPC8−CoA
3−Hydroxy−OPC8−CoA

Categories for each node

Pathway
Module

Enzyme
Reaction

Compound
Input compound

d.1.6 Exporting the results

FELLA offers several exporting alternatives, both for the R environment
and for external software.

Exporting inside R

The appropriate functions to export the results inside R are generateResultsTable
for a data.frame object:

myTable <- generateResultsTable(

object = myAnalysis,

method = "diffusion",

threshold = 0.1,

data = FELLA.sample)

## Writing diffusion results...

## Done.

knitr::kable(head(myTable, 20))

. . . and generateResultsGraph for a graph in igraph format:

http://igraph.org/r/
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KEGG.id Entry.type KEGG.name p.score

hsa00640 pathway Propanoate metabolism - Homo sapiens (human) 0.0036894

M00013 module Malonate semialdehyde pathway, propanoyl-CoA . . . 0.0044683

1.1.1.211 enzyme long-chain-3-hydroxyacyl-CoA dehydrogenase 0.0371099

1.1.1.35 enzyme 3-hydroxyacyl-CoA dehydrogenase 0.0392511

1.2.1.18 enzyme malonate-semialdehyde dehydrogenase (acetylat. . . 0.0069255

1.2.1.27 enzyme methylmalonate-semialdehyde dehydrogenase (Co. . . 0.0165439

2.3.1.9 enzyme acetyl-CoA C-acetyltransferase 0.0085923

3.1.2.4 enzyme 3-hydroxyisobutyryl-CoA hydrolase 0.0786804

4.1.1.32 enzyme phosphoenolpyruvate carboxykinase (GTP) 0.0700429

4.1.1.41 enzyme (S)-methylmalonyl-CoA decarboxylase 0.0223899

4.1.1.9 enzyme malonyl-CoA decarboxylase 0.0002538

4.2.1.17 enzyme enoyl-CoA hydratase 0.0015731

5.3.3.8 enzyme dodecenoyl-CoA isomerase 0.0164255

6.2.1.4 enzyme succinate—CoA ligase (GDP-forming) 0.0019142

6.2.1.5 enzyme succinate—CoA ligase (ADP-forming) 0.0125330

R00209 reaction pyruvate:NAD+ 2-oxidoreductase (CoA-acetylati. . . 0.0885938

R00233 reaction malonyl-CoA carboxy-lyase (acetyl-CoA-forming. . . 0.0000698

R00238 reaction Acetyl-CoA:acetyl-CoA C-acetyltransferase 0.0001037

R00353 reaction malonyl-CoA:pyruvate carboxytransferase 0.0065794

R00405 reaction Succinate:CoA ligase (ADP-forming) 0.0468613

myGraph <- generateResultsGraph(

object = myAnalysis,

method = "diffusion",

threshold = 0.1,

data = FELLA.sample)

show(myGraph)

## IGRAPH 6bf1c19 UNW- 102 166 --

## + attr: name (v/c), com (v/n), NAME (v/x), entrez (v/x), label

## | (v/c), input (v/l), weight (e/n)

## + edges from 6bf1c19 (vertex names):

## [1] hsa00640--M00013 M00013 --1.1.1.211 M00013 --1.1.1.35

## [4] M00013 --1.2.1.18 M00013 --1.2.1.27 hsa00640--2.3.1.9

## [7] M00013 --3.1.2.4 hsa00640--4.1.1.41 hsa00640--4.1.1.9

## [10] M00013 --4.2.1.17 M00013 --5.3.3.8 hsa00640--6.2.1.4

## [13] hsa00640--6.2.1.5 4.1.1.9 --R00233 2.3.1.9 --R00238

## [16] hsa00640--R00353 6.2.1.5 --R00405 4.1.1.32--R00431

## [19] 6.2.1.4 --R00432 1.2.1.18--R00705 1.2.1.27--R00705

## + ... omitted several edges

Exporting outside R

Results can be saved as permanent files. The data.frame data format can
be saved as a .csv file:

myTempDir <- tempdir()

myExp_csv <- paste0(myTempDir, "/table.csv")

exportResults(
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format = "csv",

file = myExp_csv,

method = "pagerank",

threshold = 0.1,

object = myAnalysis,

data = FELLA.sample)

## Exporting to a csv file...

## Writing pagerank results...

## Done.

## Done

test <- read.csv(file = myExp_csv)

knitr::kable(head(test))

KEGG.id Entry.type KEGG.name p.score

hsa00640 pathway Propanoate metabolism - Homo sapiens (human) 0.0000085

M00013 module Malonate semialdehyde pathway, propanoyl-CoA . . . 0.0010330

1.1.1.35 enzyme 3-hydroxyacyl-CoA dehydrogenase 0.0422528

4.1.1.32 enzyme phosphoenolpyruvate carboxykinase (GTP) 0.0088747

4.1.1.9 enzyme malonyl-CoA decarboxylase 0.0005280

4.2.1.17 enzyme enoyl-CoA hydratase 0.0003343

In the same line, the graph can be saved in RData:

myExp_graph <- paste0(myTempDir, "/graph.RData")

exportResults(

format = "igraph",

file = myExp_graph,

method = "pagerank",

threshold = 0.1,

object = myAnalysis,

data = FELLA.sample)

## Exporting to a RData file using ’igraph’ object...

## Done

stopifnot("graph.RData" %in% list.files(myTempDir))

Other formats exported by igraph are also available, internally using their
function igraph::write.graph. Check the format argument of ?igraph::write.graph
for a list of the supported formats. For example, using "pajek" format:

http://igraph.org/r/
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myExp_pajek <- paste0(myTempDir, "/graph.pajek")

exportResults(

format = "pajek",

file = myExp_pajek,

method = "diffusion",

threshold = 0.1,

object = myAnalysis,

data = FELLA.sample)

## Exporting to the format pajek using igraph...

## Done

stopifnot("graph.pajek" %in% list.files(myTempDir))

This option is toggled if the format does not match any other predefined
export option.

d.1.7 Session info

For reproducibility purposes, below is the sessionInfo() output:

sessionInfo()

## R version 3.6.2 (2019-12-12)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 16.04.6 LTS

##

## Matrix products: default

## BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0

## LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=es_ES.UTF-8 LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=es_ES.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] parallel stats4 stats graphics grDevices utils datasets

## [8] methods base

##

## other attached packages:

## [1] magrittr_1.5 igraph_1.2.4.1 KEGGREST_1.24.1

## [4] org.Mm.eg.db_3.8.2 org.Hs.eg.db_3.8.2 AnnotationDbi_1.46.0

## [7] IRanges_2.17.5 S4Vectors_0.21.24 Biobase_2.44.0

## [10] BiocGenerics_0.29.2 FELLA_1.5.3 knitr_1.22
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##

## loaded via a namespace (and not attached):

## [1] progress_1.2.2 xfun_0.6 lattice_0.20-38

## [4] tcltk_3.6.2 vctrs_0.2.0 htmltools_0.3.6

## [7] yaml_2.2.0 blob_1.2.0 XML_3.98-1.20

## [10] rlang_0.4.0 pillar_1.4.0 DBI_1.0.0

## [13] bit64_0.9-7 plyr_1.8.4 stringr_1.4.0

## [16] zlibbioc_1.29.0 Biostrings_2.51.5 GOSemSim_2.10.0

## [19] evaluate_0.13 memoise_1.1.0 biomaRt_2.40.1

## [22] curl_3.3 highr_0.8 Rcpp_1.0.1

## [25] backports_1.1.4 BiocManager_1.30.4 XVector_0.23.2

## [28] bit_1.1-14 BiocStyle_2.12.0 hms_0.5.0

## [31] png_0.1-7 digest_0.6.18 stringi_1.4.3

## [34] grid_3.6.2 tools_3.6.2 bitops_1.0-6

## [37] RCurl_1.95-4.12 RSQLite_2.1.1 tibble_2.1.1

## [40] GO.db_3.8.2 crayon_1.3.4 pkgconfig_2.0.2

## [43] zeallot_0.1.0 Matrix_1.2-18 prettyunits_1.0.2

## [46] assertthat_0.2.1 rmarkdown_1.12 httr_1.4.0

## [49] R6_2.4.0 compiler_3.6.2
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d.2 additional file 2: main vignette

d.2.1 Abstract

Pathway enrichment techniques are useful for giving context to exper-
imental metabolomics data. The primary analysis of the raw metabolo-
mics data leads to annotated metabolites with abundance measures. These
metabolites are compared between experimental conditions, in order to find
discriminative molecular signatures. The secondary analysis of the dataset
aims at giving context to the affected metabolites in terms of the prior bi-
ological knowledge gathered in metabolic pathways. Several statistical ap-
proaches are available to derive a list of prioritised metabolic pathways that
relate to the underlying changes in metabolite abundances. However, the
interpretation of a prioritised pathway list remains challenging, as pathways
are not disjoint and show overlap and cross talk effects. Furthermore, it is
not straightforward to automatically propose novel enzymatic targets given
a pathway enrichment.

We introduce FELLA, an R package to perform a network-based enrich-
ment of a list of affected metabolites. FELLA builds a hierarchical network
representation of the organism of choice using the Kyoto Encyclopedia of
Genes and Genomes, which contains pathways, modules, enzymes, reac-
tions and metabolites. The enrichment is accomplished by applying dif-
fusion algorithms in the knowledge network. Flow is introduced in the
metabolites from the input list and propagates to the rest of nodes, resulting
in diffusion scores for all the nodes in the network. The top scoring nodes
contain not only relevant pathways, but also the intermediate entities that
build a plausible explanation on how the input metabolites translate into
reported pathways. The highlighted sub-network can shed light on pathway
cross talk under the experimental condition and potential enzymatic targets
for further study.

The implementation and the programmatic use of FELLA is hereby de-
scribed, along with a graphical user interface that wraps the package func-
tionality. The algorithmic part in FELLA was previously validated on the
study of an uncharacterised mitochondrial protein. The functionality of
FELLA has been demonstrated on three public human metabolomics stud-
ies, respectively on (a) ovarian cancer cells, (b) dry eye and (c) malaria and
other febrile illnesses. FELLA has been able to reproduce findings from the
original publications and to report sub-network representations that can be
manually handled.

d.2.2 Introduction

Metabolomics is the science that studies the chemical reactions in living or-
ganisms by quantifying their lightweight molecules, called metabolites. The
utilities of metabolomics range from disease diagnosis through biomarkers
and personalised medicine to the generation of biological knowledge (Mad-
sen et al., 2010).

Metabolomics data is mainly acquired through technologies such as, but
not limited to, Nuclear Magnetic Resonance (NMR) and Mass Spectrome-
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try (MS). MS is usually preceded by Liquid Chromatography (LC) or Gas
Chromatography (GC) (Weckwerth, 2003). The primary analysis of the raw
metabolomics data can be achieved through publicly available tools: the
R packages xmcs (Smith et al., 2006) for peak identification and CAMERA
(Kuhl et al., 2011) for peak annotation. There are pipelines that cover the
whole process, for example the online tool MeltDB (Kessler et al., 2013) or
the R package MAIT (Fernández-Albert et al., 2014). Metabolites found in
samples are mapped to specral databases such as the Human Metabolome
Database (Wishart et al., 2012).

The secondary analysis, or data interpretation, starts when the metabolites
are mapped to a database and their abundances are available (Chagoyen and
Pazos, 2012). The existence of experimental conditions enables a statistical
differential analysis that yields a set of metabolites that exhibit changes in
the intervention. It is, however, increasingly important to understand the
underlying biological perturbation by giving context to the affected metabo-
lites rather than focusing on the ability to classify samples through them
(Madsen et al., 2010). Pathway analysis is a fundamental methodology for
data interpretation (Khatri et al., 2012) that enriches the affected metabo-
lites with current knowledge on biology, available in pathway databases
including the Kyoto Encyclopedia of Genes and Genomes or KEGG (Kane-
hisa, Goto, et al., 2011), Reactome (Fabregat et al., 2015) and WikiPathways
(Kutmon et al., 2015). Enrichment techniques will be discussed in three
categories or generations, according to the classification proposed in the
review (Khatri et al., 2012). Commercial pathway analysis products such
as IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/
ingenuitypathway-analysis) are out of the scope of this work.

The first generation of methods, named over representation analysis (ORA),
are based on testing if the proportion of affected metabolites within a path-
way is statistically meaningful. ORA is based in statistical tests on proba-
bility distribution like the hypergeometric, binomial or chi-squared (Khatri
et al., 2012). ORA is available in tools like the web servers MetaboAna-
lyst (Xia, Sinelnikov, et al., 2015) and IMPaLA (Kamburov et al., 2011) and
the R package clusterProfiler (Yu, L.-G. Wang, et al., 2012). The online re-
source SubPathwayMiner identifies sub-pathways from KEGG pathways by
mining k-cliques in each metabolic pathway prior to ORA. With this strat-
egy, significant sub-regions can be spotted even if the whole pathway is not
significant (C. Li et al., 2009).

The second generation of methods, functional class scoring (FCS), uses
quantitative data instead and seeks subtle but coordinated changes in the
metabolites belonging to a pathway. MSEA (Xia and Wishart, 2010) in Me-
taboAnalyst (Xia, Sinelnikov, et al., 2015) and IMPaLA (Kamburov et al.,
2011) contain implementations of FCS for metabolomics. The R package
PAPi calculates pathways activity scores per sample, based on the number
of metabolites identified from each pathway and their relative abundances.
Significantly affected pathways are found by applying an ANOVA or a t-test
on those scores (Aggio et al., 2010). On the other hand, there is an ensemble
approach relying on several pathway-based statistical tests (Alhamdoosh et
al., 2017) and is available in the R pacakge EGSEA.

http://bioconductor.org/packages/xmcs
http://bioconductor.org/packages/CAMERA
https://meltdb.cebitec.uni-bielefeld.de
http://bioconductor.org/packages/MAIT
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
www.metaboanalyst.ca
www.metaboanalyst.ca
http://impala.molgen.mpg.de
http://bioconductor.org/packages/clusterProfiler
http://www.bio-bigdata.com/SubpathwayMiner/
www.metaboanalyst.ca
www.metaboanalyst.ca
http://impala.molgen.mpg.de
http://bioconductor.org/packages/PAPi
http://bioconductor.org/packages/EGSEA
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The third generation, known as pathway topology-based (PT) methods,
further includes topological measures of the metabolites in the statistic, ac-
counting for their inequivalence in the metabolic network. PT analyses can
be performed using MetaboAnalyst (Xia, Sinelnikov, et al., 2015), where
metabolites are weighted by their centrality within the pathway. The R
package MPINet builds a pathway-level statistic that accounts for metabo-
lite inequivalence in the global metabolic network and for bias in technical
equipment (Feng Li et al., 2014).

Another perspective for understanding metabolomics data is through the
construction and inquiry of metabolic networks. The MetScape plugin (Karnovsky
et al., 2011) within the Cytoscape environment (Smoot et al., 2010) is useful
for representing metabolite-reaction-enzyme-gene networks. KEGGGraph is
an R package for constructing metabolic networks from the KEGG pathways
(J. D. Zhang and Wiemann, 2009). MetaboSignal is an R package for build-
ing and examining the topology of gene-metabolite networks (Rodriguez-
Martinez et al., 2017). The R package MetaMapR helps reduce sparsity in
metabolic networks by integrating biochemical transformations, structural
similarity, mass spectral similarity and empirical correlation information
(Grapov et al., 2015).

Here, we introduce the R package FELLA for metabolomics data interpre-
tation that combines concepts from pathway enrichment and network anal-
ysis. The main objective of FELLA is providing the user with a biological
explanation involving biological pathways. FELLA starts from a single, com-
prehensive network consisting of metabolites, reactions, enzymes, modules
and pathways as nodes. The list of affected metabolites and the pathways
highlighted by FELLA are connected through intermediate entities -reactions,
enzymes and KEGG modules- and returned as a sub-network. The inter-
mediate entities suggest how the perturbation spreads from metabolites to
pathways and how pathways cross talk. The provided enzymes are candi-
dates for further examination, whereas new metabolites might be reported
as well. FELLA is publicly available in https://github.com/b2slab/FELLA

under the GPL-3 license.

d.2.3 Methodology

Implementation details

FELLA is written entirely in R (R Core Team, 2017) and relies on the KEG-
GREST R package (Tenenbaum, 2017) for retreiving KEGG, the igraph R pack-
age (Csardi and Nepusz, 2006) for network analysis and the shiny R package
(Chang et al., 2017) for providing a graphical user interface.

FELLA defines two S4 classes for handling its main purposes: a FELLA.DATA
object that encompasses the knowledge model from KEGG and a FELLA.USER
object that contains the current analysis by the user. Table 27 contains fur-
ther details about the slots and sub-slots in each one of these classes, whereas
figure 86 depicts the package workflow and main functions.

FELLA contains two vignettes that illustrate its capabilities: (1) a quick-
start example with the main functions applied to a toy dataset, and (2) this
document, an in-depth demonstration on three real studies. This vignette

www.metaboanalyst.ca
https://CRAN.R-project.org/package=MPINet
http://bioconductor.org/packages/KEGGGraph
http://bioconductor.org/packages/MetaboSignal
https://github.com/dgrapov/MetaMapR
https://github.com/b2slab/FELLA
http://bioconductor.org/packages/KEGGREST
http://bioconductor.org/packages/KEGGREST
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=shiny
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Figure 86: Design of the R package FELLA. Block I covers the creation of a graph
object from an organism code and its database, which can be loaded into
a FELLA.DATA object. This object is needed in all the following blocks.
Block II requires block I and shows how to map the KEGG identifiers
to the database in a FELLA.USER object and run the propagation algo-
rithms (diffusion, PageRank) to score all the entities in the graph. Block
III requires blocks I and II and exports the results as a sub-network or
as a table.
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Custom class Slot Sub-slot Class Description

FELLA.DATA

@keggdata

@graph igraph Knowledge graph object
@id2name list Dictionary from KEGG ID to common name
@pvalues.size matrix Matrix with largest CC size probabilities
@id list Correspondence between IDs and category
@status character Status indicator of the object

@hypergeom @matrix Matrix Metabolite-pathway binary relationship

@diffusion

@matrix matrix Matrix to compute diffusion as a matrix-vector product
@rowSums vector Internal data to compute the z-scores
@squaredRowSums vector Internal data to compute the z-scores

@pagerank

@matrix matrix Matrix to compute PageRank as a matrix-vector product
@rowSums vector Internal data to compute the z-scores
@squaredRowSums vector Internal data to compute the z-scores

FELLA.USER

@userinput

@metabolites vector KEGG IDs that map to the knowledge graph
@metabolitesbackground vector Background KEGG IDs
@excluded vector Input IDs not mapping to the knowledge graph

@hypergeom

@valid logical Indicator of analysis validity
@pvalues vector Pathway p-values
@pathhits vector Number of hits in each pathway
@pathbackground vector Number of metabolites in each pathway
@nbackground numeric Number of compounds in the background
@ninput numeric Number of compounds in the input

@diffusion

@valid logical Indicator of analysis validity
@pscores vector P-scores for each node in the network
@approx character Chosen approximation
@niter numeric Chosen iterations

@parerank

@valid logical Indicator of analysis validity
@pscores vector P-scores for each node in the network
@approx character Chosen approximation
@niter numeric Chosen iterations

Table 27: Summary of the S4 classes defined in FELLA.

requires an internet connection and can take up some time and memory to
build, as it builds the internal KEGG representation for Homo sapiens on
the fly.

Database and knowledge model

A distinctive feature of FELLA is its unique knowledge model. Instead
of using individual pathway representations, either as a list of metabolites
(ORA) or as a metabolic network (TP), FELLA builds a unique network that
encompasses all the pathways at once: the KEGG graph. Figure 87 shows the
hierarchical representation of the KEGG database, ranging from the small,
specific molecular level (metabolite) to the large, complex unit (pathway). In-
termediate levels contain, from bottom to top: reactions relating the metabo-
lites, enzymes catalising the reactions and KEGG modules containing the
enzymes. More details on the construction and curation of this structure,
resemblant to the one used by MetScape (Karnovsky et al., 2011), can be
found in (Picart-Armada et al., 2017). The enrichment is therefore achieved
by finding a sub-network from the whole KEGG graph that is statistically
relevant for a list of input metabolites.

As shown in the block (I) of figure 86, the first step is to build a KEGG
graph from an organism in KEGG -Homo sapiens by default- using the
buildGraphFromKEGGREST command. Afterwards, a local database can be
built from the KEGG graph through the buildDataFromGraph command. The
main purposes of buildDataFromGraph are to save (1) the matrices that allow
computing diffusion and PageRank as a matrix-vector product, and (2) the
null distribution of the largest connected component of a k-th order sub-
graph, with uniformly chosen nodes. Point (1) is required to compute the
diffusion scores, whereas (2) is useful for filtering small connected compo-
nents in the reported subgraphs.
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Figure 87: Internal knowledge representation from KEGG. The scheme outlines
the KEGG graph, a heterogeneous network whose nodes belong to a
category in KEGG: compound, reaction, enzyme, module or pathway.
Lower levels are expected to be more specific entities, while top lev-
els are broader concepts. The enrichment procedure starts from input
metabolites and extracts a relevant sub-network from the KEGG graph.
Figure extractred from (Picart-Armada et al., 2017)

The user should be aware that KEGG is frequently updated and therefore
the derived KEGG graph can change between KEGG releases. The metadata
from the KEGG version used to build a FELLA.DATA object can be retrieved
through getInfo.

Enrichment analysis

Once the database is ready as a FELLA.DATA object and the input is for-
matted as a list of KEGG compounds, the enrichment can be performed. The
results of the enrichment are stored in a FELLA.USER object, possibly using
three methodologies described below.

Hypergeometric test
For completeness purposes, the hypergeometric test is included in FELLA in

the function runHypergeom. As in several ORA implementations, the hyper-
geometric distribution is used to assess whether a biological pathway con-
tains more hits within the input list than expected from chance given its
size. Pathways are ranked according to their p-value after multiple testing
correction.

Note that the results from this test will differ from a hypergeometric test
using the original KEGG pathways, because metabolite-pathway connections
are inferred from the KEGG graph. A metabolite is included in a pathway
if the pathway can be reached from the metabolite in the upwards-directed
KEGG graph, depicted in figure 89. In consequence, metabolites related to
the enzymes within a pathway will belong to the pathway, even if they were
not in the original definition of the KEGG pathway.
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Compounds

Reactions

Enzymes

Modules

Pathways

Figure 88: Network setup for the diffusion process. nput metabolites (in black
rings) introduce a unitary flow in the network and only the pathway
nodes (blue rings) can leak the flow. The final score of the nodes reflects
the “temperature” of a stationary state. Figure extractred from (Picart-
Armada et al., 2017).

diffusion Diffusion algorithms have been extensively used in computa-
tional biology. For instance, HotNet is an algorithm for finding sub-networks
with a large amount of mutated genes (Vandin et al., 2011), whereas TieDIE
attemps to link a source set and a target set of molecular entities through
two diffusion processes (Paull et al., 2013). Other applications include the
prioritisation of disease genes (Lee et al., 2011) and the prediction of gene
function (Mostafavi et al., 2008).

In FELLA, diffusion is a natural way to score all the nodes in the KEGG
graph given an input list of metabolites, available using method = "diffusion"

in the function runDiffusion. The input metabolites introduce unitary flow
in the network. Flow can only leave the network through pathway nodes,
forcing it to propagate through the intermediate entities as well (reactions,
enzymes and modules), see figure 88. Further details can found in (Picart-
Armada et al., 2017).

However, the diffusion scores are biased due to the network topology
(Picart-Armada et al., 2017) and therefore a normalisation step is required.
FELLA offers a normalisation through a z-score (approx = "normality") or
through an empirical p-value (approx = "simulation"), both assessing whether
the diffusion score of a node is likely to be reached in a permutation analysis,
i.e. if the input is random.

The normalisation through the z-scores leads to p-scores, defined as:

psi = 1−Φ(zi)

Where psi is the p-score of node i, zi is its z-score (Picart-Armada et al.,
2017) and Φ is the cumulative distribution function of the standard gaussian
distribution. Under this definition, nodes are ranked using increasing p-
scores.

For completeness, two alternative parametric scores have been added. The
heavier-tailed t-distribution can be used instead of the gaussian by choosing
approx = "t" and supplying the desired degrees of freedom ν.
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Modules
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Figure 89: Network setup for PageRank. Input metabolites (in black rings) are the
source of random walks that must climb through the graph levels, up to
the pathway nodes. Figure extractred from (Picart-Armada et al., 2017).

Similarly, the gamma distribution can be used through approx = "gamma".
The p-score is obtained with

psi = 1− Fi(Ti)

Being Ti the raw temperature of node i and Fi the cumulative distribution

function of a gamma distribution, adjusted by its shape (µ
2
i

σ2i
) and scale (σ

2
i

µi
)

parameters. The quantities µi and σ2i are the mean and variance of the null
temperatures and are analytically known from the null model formulation
(Picart-Armada et al., 2017).

pagerank PageRank (Page et al., 1999) offers a scoring method for the
nodes in the KEGG graph, based on a random walks approach. The random
walks start at the input metabolites and are forced to explore their reachable
nodes, see figure 89. As random walks take into account the direction of the
edges, PageRank is applied to the upwards-directed KEGG graph (figure
87) in order to force the walks to reach pathway nodes. Nodes that are fre-
quently visited by the random walks earn a higher PageRank, analogously
to the diffusion scores. More details about this particular formulation, im-
plemented in runPagerank, can be found in (Picart-Armada et al., 2017).

The PageRank scores are statistically normalised, providing the same op-
tions as in the diffusion scores in section D.2.3. Therefore, the argument
approx can be set to "simulation" for the permutation analysis, or to "normality",
"t" or "gamma" for the parametric alternatives.

Enrichment wrapper

FELLA contains the wrapper enrich that maps the KEGG ids and runs the
desired enrichment procedure with a single call. This can be convenient for
producing compact scripts and running quick analyses.
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Limitations

FELLA currently starts the statistical analysis from a list of affected metabo-
lites. Therefore, it inherits a limitation from ORA methods: the need of
choosing a cutoff to derive the list of affected metabolites, assuming that the
metabolites stem from a differential abundance analysis.

Another limitation, shared among network-based models, is the incom-
plete biological knowledge from which the network is built. The knowledge
model in FELLA might also constraint the complexity of the mechanisms that
can be found through it. Processes such as genetic and epigenetic events, or
the type and directionality of regulatory events, are not considered at the
moment.

The user should be aware that FELLA neither builds a dynamic model
of the biochemical reactions in the metabolism, nor relies on flux balance
analysis. Conversely, FELLA is built on a knowledge representation from
the biology in KEGG that focuses on offering interpretability to the final
user.

d.2.4 Case studies

The functionalities of FELLA are demonstrated by (1) building a Homo
sapiens database and (2) enriching summary metabolomics data from three
public datasets.

Building the database

FELLA requires a database built from KEGG to perform any data enrich-
ment. FELLA contains a small example database as a FELLA.DATA object,
accessible via data("FELLA.sample"), but this is a toy example for demon-
stration purposes, not suited for regular analyses.

Therefore, the database for the corresponding organism has to be built
before any analysis is run. The first step is to build the KEGG graph from
the current KEGG release with the function buildGraphFromKEGGREST. Note
that the user can force specific KEGG pathways to be excluded from the
graph - the following code removes “overview” metabolic pathways based
on KEGG brite.

library(FELLA)

set.seed(1)

# Filter overview pathways

graph <- buildGraphFromKEGGREST(

organism = "hsa",

filter.path = c("01100", "01200", "01210", "01212", "01230"))

## Building through KEGGREST...

## Available gene annotations: ncbi-geneid, ncbi-proteinid. Using

ncbi-geneid

## Done.

## Building graph...

http://www.genome.jp/kegg/brite.html
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## Filtering 5 pathways.

## Done.

## Pruning graph...

## Current weight: 1 out of 4...

## Current weight: 2 out of 4...

## Current weight: 3 out of 4...

## Current weight: 4 out of 4...

## Done.

Once the KEGG graph is ready, the database will be saved locally using
buildDataFromGraph. The user can choose which matrices shall be stored
using the matrices argument - saving both "diffusion" and "pagerank"

might take up to 1GB of disk space.
If the user plans on using the z-score approximation, it is advisable to set

the normality argument to c("diffusion", "pagerank") in order to speed
up future computations. Using the z-scores with a custom metabolite back-
ground will require the matrices to be saved as well.

Finally, the argument niter controls how many random trials are per-
formed in the estimation of the null distribution of the largest connected
component of a k-th order random subgraph. As this is a property of the
KEGG graph, it is performed once and reused in each analysis. This finds
application when filtering small connected components from the reported
sub-network, see section D.2.4.

tmpdir <- paste0(tempdir(), "/my_database")

# Mke sure the database does not exist from a former vignette build

# Otherwise the vignette will rise an error

# because FELLA will not overwrite an existing database

unlink(tmpdir, recursive = TRUE)

buildDataFromGraph(

keggdata.graph = graph,

databaseDir = tmpdir,

internalDir = FALSE,

matrices = "diffusion",

normality = "diffusion",

niter = 50)

## Computing probabilities for random subgraphs... (this may take a

while)

## Directory /tmp/RtmpAOhDlw/my_database does not exist. Creating it...

## Done.

## Done.

## Computing diffusion.matrix... (this may take a while and use some

memory)

## Done

## Computing diffusion.rowSums...

## Done.

When the database is available in local, it can be loaded in an R session
and assigned to a FELLA.DATA object using the function loadKEGGdata. This
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should be the only procedure for creating any FELLA.DATA object. The user
is given the choice of loading the diffusion and pagerank matrices to ease
memory saving.

fella.data <- loadKEGGdata(

databaseDir = tmpdir,

internalDir = FALSE,

loadMatrix = "diffusion"

)

## Loading KEGG graph data...

## Done.

## Loading hypergeom data...

## Loading matrix...

## ’hypergeom.matrix.RData’ not present in:/tmp/RtmpAOhDlw/my_database/hypergeom.matrix.RData.

Hypergeometric test won’t execute.

## Done.

## Loading diffusion data...

## Loading matrix...

## Done.

## Loading rowSums...

## Done.

## Loading pagerank data...

## Loading matrix...

## ’pagerank.matrix.RData’ not loaded. Simulated permutations may execute

slower for pagerank.

## Done.

## Loading rowSums...

## ’pagerank.rowSums.RData’ not present in:/tmp/RtmpAOhDlw/my_database/pagerank.rowSums.RData.

Z-scores won’t be available for pagerank.

## Done.

## Data successfully loaded.

The contents of the FELLA.DATA object can be summarised as well:

fella.data

## General data:

## - KEGG graph:

## * Nodes: 11115

## * Edges: 34787

## * Density: 0.0002816029

## * Categories:

## + pathway [327]

## + module [173]

## + enzyme [1149]

## + reaction [5467]

## + compound [3999]

## * Size: 6.2 Mb

## - KEGG names are ready.
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## -----------------------------

## Hypergeometric test:

## - Matrix not loaded.

## -----------------------------

## Heat diffusion:

## - Matrix is ready

## * Dim: 11115 x 3999

## * Size: 340.1 Mb

## - RowSums are ready.

## -----------------------------

## PageRank:

## - Matrix not loaded.

## - RowSums not loaded.

The function getInfo provides the KEGG release and organism that gen-
erated a FELLA.DATA object:

cat(getInfo(fella.data))

## T01001 Homo sapiens (human) KEGG Genes Database

## hsa Release 93.0+/02-22, Feb 20

## Kanehisa Laboratories

## 22,498 entries

##

## linked db pathway

## brite

## module

## ko

## genome

## enzyme

## network

## disease

## drug

## ncbi-geneid

## ncbi-proteinid

## uniprot

Please note that the database built for this vignette is stored in a tempo-
rary folder and will not be persistent. The user should build his or her own
database and save it in a persistent location, either in the package installa-
tion directory (internalDir = TRUE) or in a custom folder (internalDir =

FALSE). Internal databases can be listed using listInternalDatabases.

A cautionary note if the user is relying on the internal directory: rein-
stalling FELLA will wipe existent databases because its internal directory is
overwritten. Also, if the database name already exists when saving a new
database, the existing database will be renamed by appending _old in order
to avoid overwriting.
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Epithelial cells dataset

This example data is extracted from the epithelial cancer cells dataset
(Chen et al., 2015), an in vitro model of dry eye in which the human epithe-
lial cells IOBA-NHC are put under hyperosmotic stress. The original study
files are deposited in the Metabolights repository (Haug et al., 2012) under
the identifier MTBLS214: https://www.ebi.ac.uk/metabolights/MTBLS214.
The list of metabolites hereby used reflects metabolic changes in “Treatment
1” (24 hours in serum-free media at 380 mOsm) against control (24 hours
at 280 mOsm). The metabolites have been extracted from “Table 1” in the
original manuscript and mapped to KEGG ids.

mapping the input metabolites The input metabolites should be pro-
vided as KEGG compound identifiers. If the user starts from another source
(common names, HMDB identifiers), tools like the “compound ID conver-
sor” from MetaboAnalyst can be useful for the ID conversion.

compounds.epithelial <- c(

"C02862", "C00487", "C00025", "C00064",

"C00670", "C00073", "C00588", "C00082", "C00043")

The first step is to map the input metabolites to the KEGG graph with
defineCompounds. This step requires the FELLA.DATA object, loaded in sec-
tion D.2.4. The user can impose a custom metabolite background with the
compoundsBackground argument. By default, all the KEGG compounds in
the graph are used.

analysis.epithelial <- defineCompounds(

compounds = compounds.epithelial,

data = fella.data)

## No background compounds specified. Default background will be used.

## Warning in defineCompounds(compounds = compounds.epithelial, data

= fella.data): Some compounds were introduced as affected but they

do not belong to the background. These compounds will be excluded from

the analysis. Use ’getExcluded’ to see them.

Notice that defineCompounds throws a warning if any of the input metabo-
lites does not map to the graph. The user can retrieve the mapped and
unmapped identifiers through getInput and getExcluded, respectively.

getInput(analysis.epithelial)

## [1] "C00025" "C00043" "C00064" "C00073" "C00082" "C00487" "C00588" "C00670"

getExcluded(analysis.epithelial)

## [1] "C02862"

The status of a FELLA.USER object can be checked by printing the object.

https://www.ebi.ac.uk/metabolights/MTBLS214
http://www.genome.jp/kegg/compound/
http://www.hmdb.ca/
www.metaboanalyst.ca


298 the r package fella

analysis.epithelial

## Compounds in the input: 8

## [1] "C00025" "C00043" "C00064" "C00073" "C00082" "C00487" "C00588" "C00670"

## Background compounds: all available compounds (default)

## -----------------------------

## Hypergeometric test: not performed

## -----------------------------

## Heat diffusion: not performed

## -----------------------------

## PageRank: not performed

enriching using diffusion Having mapped the compounds, the en-
richment can be performed. In this vignette, only the diffusion method in
runDiffusion will be applied, although PageRank has an almost identical
usage in runPagerank.

If the user prefers an explicit permutation analysis, the option approx =

"simulation" performs the amount of iterations specified in the niter argu-
ment.

Conversely, if the desired approximation is the z-score (approx = "normality"),
the process does not require permutations. The z-scores are converted to
p.scores using the pnorm routine. Likewise, approx = "t" and approx =

"gamma" respectively rely on pt and pgamma. Section D.2.3 contains further
details on the scores.

This example applies approx = "normality", a fast option. For a com-
parison between prioritisations using Monte Carlo trials or the parametric
z-score, the user can is referred to (Picart-Armada et al., 2017).

analysis.epithelial <- runDiffusion(

object = analysis.epithelial,

data = fella.data,

approx = "normality")

## Running diffusion...

## Computing p-scores through the specified distribution.

## Done.

The FELLA.USER object has been updated with the p.scores from the
diffusion results:

analysis.epithelial

## Compounds in the input: 8

## [1] "C00025" "C00043" "C00064" "C00073" "C00082" "C00487" "C00588" "C00670"

## Background compounds: all available compounds (default)

## -----------------------------

## Hypergeometric test: not performed

## -----------------------------

## Heat diffusion: ready.
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## P-scores under 0.05: 282

## -----------------------------

## PageRank: not performed

At this point, the subgraph consisting of top scoring nodes can be plotted
in a heterogeneous network layout. In the presence of signal, this subgraph
will exhibit large connected components and contain nodes from all the lev-
els in the KEGG graph. It is also expected that the algorithm gives a high
priority to the metabolites specified in the input, although not all of them
must necessarily be top ranked.

Therefore, the user should expect to find the presence of intermediate
entities (reactions, enzymes and modules) that connect the input to relevant
KEGG pathways. Note that FELLA can also pinpoint new KEGG compounds
as potentially relevant.

In this example, the plot is limited to 150 nodes using the nlimit argument
from plot.

nlimit <- 150

vertex.label.cex <- .5

plot(

analysis.epithelial,

method = "diffusion",

data = fella.data,

nlimit = nlimit,

vertex.label.cex = vertex.label.cex)

## 282 nodes below the threshold have been limited to 150 nodes.
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In the original work (Chen et al., 2015), the activation of the glycerophos-
phocholine synthesis rather than the carnitine response is a main result.
FELLA highlights1 the related pathway choline metabolism in cancer and the
choline metabolite as well. Another key process is the O-linked glycosila-
tion, which is close to the KEGG module O-glycan biosynthesis, mucin type
core and to the KEGG pathway Mucin type O-glycan biosynthesis. Finally,
FELLA reproduces the finding of UAP1 by reporting the enzyme 2.7.7.23,
named UDP-N-acetylglucosamine diphosphorylase. UAP1 is a key protein in
the study, pinpointed by iTRAQ and validated via western blot.

exporting the results After an initial exploration of the results, these
can be exported using three functions that lead to network and tabular for-
mats.

The top scoring nodes can be exported as a network in igraph with the
function generateResultsGraph. The number k of nodes in the subgraph is
controlled by the most stringent filter between nlimit (limit on the number
of nodes) and threshold (limit on the p.score).

Once k is determined, the argument thresholdConnectedComponent fur-
ther filters small connected components from the subgraph, implying that
the resulting subgraph can have less than k nodes. A connected component

1 This analysis is subject to KEGG release 83.0, from August 17th, 2017. Posterior KEGG
releases might alter the reported sub-network

https://CRAN.R-project.org/package=igraph
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of order r will be kept only if the probability that a random subgraph of or-
der k contains a connected component of order at least r is smaller than the
specified threshold. In other words, small connected components can arise
from random sampling of the subgraph, whereas larger connected compo-
nents are highly unlikely under a uniform sampling. The user can filter
connected components that are too small to be meaningful in that sense.

Lastly, the argument LabelLengthAtPlot allows to truncate the KEGG
names at the given number of characters for visualisation purposes.

g <- generateResultsGraph(

object = analysis.epithelial,

method = "diffusion",

nlimit = nlimit,

data = fella.data)

## 282 nodes below the threshold have been limited to 150 nodes.

g

## IGRAPH 54dfa2d UNW- 138 166 --

## + attr: organism (g/c), name (v/c), com (v/n), NAME (v/x), entrez

## | (v/x), label (v/c), input (v/l), weight (e/n)

## + edges from 54dfa2d (vertex names):

## [1] hsa00512--M00056 hsa00601--M00070 hsa00601--M00071

## [4] M00056 --2.4.1.102 M00075 --2.4.1.143 M00075 --2.4.1.144

## [7] M00075 --2.4.1.145 hsa00601--2.4.1.146 M00056 --2.4.1.147

## [10] hsa00601--2.4.1.149 hsa00601--2.4.1.150 M00075 --2.4.1.155

## [13] M00065 --2.4.1.198 M00075 --2.4.1.201 M00070 --2.4.1.206

## [16] M00071 --2.4.1.206 M00059 --2.4.1.223 M00059 --2.4.1.224

## [19] M00075 --2.4.1.68 hsa00512--2.4.99.3 hsa05231--2.7.1.32

## + ... omitted several edges

The exported (sub)graph can be further complemented with data from
GO, the Gene Ontology (Consortium, 2015). Specifically, the enzymes can
be equipped with annotations from their underlying genes in any ontol-
ogy from GO. Note that this requires additional packages: biomaRt and
org.Hs.eg.db. The latter should be changed in case the analysis and the
database are not from Homo sapiens.

The function addGOToGraph achieves this by accepting a query GO term
and computing the semantic similarity of all the genes within each enzyme
to the query GO term. The semantic similarity is detailed and implemented
in the package GOSemSim (Yu, Fei Li, et al., 2010).

In the current example, enzymes are going to be compared to the GO
cellular component term mitochondrion. Enzymes that contain genes whose
cellular component is closer or coincident with the mitochondrion will be
highlighted.

# GO:0005739 is the term for mitochondrion

g.go <- addGOToGraph(

graph = g,

www.geneontology.org
http://bioconductor.org/packages/biomaRt
http://bioconductor.org/packages/org.Hs.eg.db
http://bioconductor.org/packages/GOSemSim
http://amigo.geneontology.org/amigo/term/GO:0005739
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GOterm = "GO:0005739",

godata.options = list(

OrgDb = "org.Hs.eg.db", ont = "CC"),

mart.options = list(

biomart = "ensembl", dataset = "hsapiens_gene_ensembl"))

##

## Loading required package: org.Hs.eg.db

## Loading required package: AnnotationDbi

## Loading required package: stats4

## Loading required package: BiocGenerics

## Loading required package: parallel

##

## Attaching package: ’BiocGenerics’

## The following objects are masked from ’package:parallel’:

##

## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

## clusterExport, clusterMap, parApply, parCapply, parLapply,

## parLapplyLB, parRapply, parSapply, parSapplyLB

## The following objects are masked from ’package:stats’:

##

## IQR, mad, sd, var, xtabs

## The following objects are masked from ’package:base’:

##

## anyDuplicated, append, as.data.frame, basename, cbind, colnames,

## dirname, do.call, duplicated, eval, evalq, Filter, Find, get,

## grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match,

## mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position,

## rank, rbind, Reduce, rownames, sapply, setdiff, sort, table,

## tapply, union, unique, unsplit, which, which.max, which.min

## Loading required package: Biobase

## Welcome to Bioconductor

##

## Vignettes contain introductory material; view with

## ’browseVignettes()’. To cite Bioconductor, see

## ’citation("Biobase")’, and for packages ’citation("pkgname")’.

## Loading required package: IRanges

## Loading required package: S4Vectors

##

## Attaching package: ’S4Vectors’

## The following object is masked from ’package:base’:

##

## expand.grid

##

## preparing gene to GO mapping data...

## preparing IC data...

g.go
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## IGRAPH 54dfa2d UNW- 138 166 --

## + attr: organism (g/c), name (v/c), com (v/n), NAME (v/x), entrez

## | (v/x), label (v/c), input (v/l), GO (v/x), GO.simil (v/x), weight

## | (e/n)

## + edges from 54dfa2d (vertex names):

## [1] hsa00512--M00056 hsa00601--M00070 hsa00601--M00071

## [4] M00056 --2.4.1.102 M00075 --2.4.1.143 M00075 --2.4.1.144

## [7] M00075 --2.4.1.145 hsa00601--2.4.1.146 M00056 --2.4.1.147

## [10] hsa00601--2.4.1.149 hsa00601--2.4.1.150 M00075 --2.4.1.155

## [13] M00065 --2.4.1.198 M00075 --2.4.1.201 M00070 --2.4.1.206

## [16] M00071 --2.4.1.206 M00059 --2.4.1.223 M00059 --2.4.1.224

## + ... omitted several edges

Plotting the graph with the function plotGraph reveals the addition of the
GO term due to a slight change in the plotting legend. Enzyme nodes have
a different shape and their colour scale reflects their degree of similarity to
the queried GO term.

plotGraph(

g.go,

vertex.label.cex = vertex.label.cex)
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The second way to export the enrichment results is to write the data from
the KEGG entries in the top k p.scores using generateResultsTable. This
function accepts arguments similar to those in generateResultsTable.

tab.all <- generateResultsTable(

method = "diffusion",

nlimit = 100,

object = analysis.epithelial,

data = fella.data)

## Writing diffusion results...

## Done.

# Show head of the table

knitr::kable(head(tab.all), format = "latex")
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KEGG.id Entry.type KEGG.name p.score
hsa00512 pathway Mucin type O-glycan biosynthesis - Homo sapie... 3.7e-06

hsa05231 pathway Choline metabolism in cancer - Homo sapiens (... 1.0e-06

M00056 module O-glycan biosynthesis, mucin type core 1.0e-06

M00059 module Glycosaminoglycan biosynthesis, heparan sulfa... 1.0e-06

M00075 module N-glycan biosynthesis, complex type 1.0e-06

1.14.11.1 enzyme gamma-butyrobetaine dioxygenase 1.0e-06

The last exporting option, generateEnzymesTable, is to a tabular format
with details from the enzymes reported among the top k KEGG entries. In
particular, the table contains the genes that belong to each enzyme family,
separated by semicolons.

tab.enzyme <- generateEnzymesTable(

method = "diffusion",

nlimit = 100,

object = analysis.epithelial,

data = fella.data)

## Writing diffusion enzymes...

## Batch submitting query [=======>-------------] 29% eta: 21s Batch

submitting query [===========>-----------] 43% eta: 20s Batch submitting

query [===============>--------] 57% eta: 15s Batch submitting query

[===================>-----] 71% eta: 10s Batch submitting query [=======================>---]

86% eta: 5s Batch submitting query [============================] 100%

eta: 0s Null

GOterm provided to addGOToGraph. Only the GO labels will be added.

To include similarity values as well, please specify a GOterm

## Done.

# Show head of the table

knitr::kable(head(tab.enzyme, 10), format = "latex")

EC_number p.score EC_name Genes GO_id
2.3.1.7 1e-06 carnitine O-acetyltransferase 1384 GO:0016746;GO:0016020;GO:0016740;GO:0005783;GO:0005743;GO:0005739;GO:0006629;GO:0006631;GO:0005777;GO:0005829;GO:0006625;GO:0005782;GO:0033540;GO:0019254;GO:0004092

1.14.11.1 1e-06 gamma-butyrobetaine dioxygenase 8424 GO:0055114;GO:0016491;GO:0005506;GO:0008336;GO:0045329;GO:0005737;GO:0046872;GO:0008270;GO:0005515;GO:0051213;GO:0042802;GO:0005739;GO:0005829;GO:0070062

3.1.4.2 1e-06 glycerophosphocholine phosphodiesterase 56261 GO:0030246;GO:2001070;GO:0006629;GO:0008081;GO:0047389;GO:0046475;GO:0005737;GO:0016787;GO:0005829;GO:0007519

3.1.3.75 1e-06 phosphoethanolamine/phosphocholine phosphatas... 162466 GO:0016791;GO:0046872;GO:0016787;GO:0016311;GO:0005829;GO:0030500;GO:0016462;GO:0006656;GO:0006646;GO:0052731;GO:0052732;GO:0035630;GO:0001958;GO:0031012;GO:0065010

3.6.1.53 1e-06 Mn2+-dependent ADP-ribose/CDP-alcohol diphosp... 56985 GO:0016787;GO:0046872;GO:0005829;GO:0034656;GO:0047631;GO:0047734;GO:0016020;GO:0016021

3.1.4.12 1e-06 sphingomyelin phosphodiesterase 339221;55512;55627;6609;6610 GO:0003824;GO:0004767;GO:0006685;GO:0016020;GO:0016021;GO:0046872;GO:0016787;GO:0008270;GO:0005794;GO:0006629;GO:0005886;GO:0005887;GO:0006687;GO:0008285;GO:0005902;GO:0008156;GO:0006684;GO:0005515;GO:0007049;GO:0000139;GO:0007275;GO:0006665;GO:0005737;GO:2000304;GO:0004620;GO:0042802;GO:0061751;GO:0001501;GO:0001503;GO:0001932;GO:0001958;GO:0002063;GO:0002244;GO:0002685;GO:0003433;GO:0006672;GO:0007165;GO:0015774;GO:0030072;GO:0030282;GO:0030324;GO:0030509;GO:0032963;GO:0034614;GO:0035264;GO:0043491;GO:0045840;GO:0048008;GO:0048286;GO:0048661;GO:0051216;GO:0060348;GO:0060541;GO:0061035;GO:0070301;GO:0070314;GO:0071286;GO:0071356;GO:0071461;GO:0071897;GO:0085029;GO:0090520;GO:0097187;GO:0098868;GO:0140014;GO:0140052;GO:1900125;GO:1900126;GO:1901653;GO:1903543;GO:0000137;GO:0050290;GO:0005634;GO:0005783;GO:0005789;GO:0005635;GO:0046513;GO:0046475;GO:0005802;GO:0001701;GO:0043407;GO:0005768;GO:0005615;GO:0008152;GO:0005576;GO:0016798;GO:0005764;GO:0070062;GO:0007399;GO:0043202;GO:0023021;GO:0035307;GO:0008081;GO:0061750;GO:0008203;GO:0042220;GO:0042493;GO:0043065;GO:0042599;GO:0009612;GO:0035556;GO:0005901

2.7.1.32 1e-06 choline kinase 1119;1120 GO:0005737;GO:0000166;GO:0005524;GO:0016301;GO:0016740;GO:0016310;GO:0006629;GO:0006646;GO:0008654;GO:0006657;GO:0005829;GO:0006656;GO:0008144;GO:0006869;GO:0004103;GO:0004104;GO:0004305;GO:0033265;GO:0042802;GO:0006580;GO:0009636;GO:0019695;GO:1904681;GO:0046474

2.4.1.146 1e-06 beta-1,3-galactosyl-O-glycosyl-glycoprotein b... 10331 GO:0016020;GO:0006486;GO:0008378;GO:0016021;GO:0016740;GO:0016757;GO:0005794;GO:0000139;GO:0005783;GO:0008375;GO:0008376;GO:0008532;GO:0016758;GO:0006493;GO:0030311;GO:0005887;GO:0016266;GO:0018146;GO:0047223;GO:0008457

2.4.1.150 1e-06 N-acetyllactosaminide beta-1,6-N-acetylglucos... 2651 GO:0016020;GO:0008375;GO:0016021;GO:0005794;GO:0016740;GO:0016757;GO:0000139;GO:0006486;GO:0030335;GO:0070374;GO:0008284;GO:0007275;GO:0007179;GO:0010718;GO:0051897;GO:0010608;GO:0034116;GO:0008109;GO:0010812;GO:0036438;GO:0006024

3.1.1.5 1e-06 lysophospholipase 10434;10908;11313;1178;151056;23659;374569;375775 GO:0016787;GO:0005737;GO:0006629;GO:0006631;GO:0005515;GO:0005829;GO:0070062;GO:0050999;GO:0052689;GO:0004622;GO:0008474;GO:0016298;GO:0002084;GO:0042997;GO:0016020;GO:0016021;GO:0046470;GO:0005783;GO:0005789;GO:0016042;GO:0046475;GO:0005795;GO:0045296;GO:0007411;GO:0030246;GO:0042802;GO:0062023;GO:0007275;GO:0002724;GO:0097153;GO:0070231;GO:0002667;GO:0046006;GO:0004620;GO:0016788;GO:0005886;GO:0042572;GO:0004623;GO:0102567;GO:0102568;GO:0006644;GO:0016324;GO:0001523;GO:0036151;GO:0050253;GO:0031526;GO:2000344;GO:0008374;GO:0043231;GO:0016740;GO:0005654;GO:0016746;GO:0005615;GO:0005576;GO:0005764;GO:0006650;GO:0005543;GO:0006672;GO:0034638;GO:0047499;GO:0009062;GO:0046338;GO:0006520;GO:0004067;GO:0008652;GO:0003847;GO:0016747;GO:0006530;GO:0005634;GO:0031090;GO:0005739;GO:0005765;GO:0031966;GO:0031965

The three exporting options shown above are included in the wrapper
function exportResults, using format = "csv" for the general tabular data,
format = "enzyme" for the enzyme tabular data and format = "igraph" for
saving an .RData object with the igraph sub-network object.

For instance, the general tabular data:
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tmpfile <- tempfile()

exportResults(

format = "csv",

file = tmpfile,

method = "diffusion",

object = analysis.epithelial,

data = fella.data)

## Exporting to a csv file...

## Writing diffusion results...

## Done.

## Done

If the argument format is none of the former, FELLA saves the sub-network
using write.graph from the igraph package with the desired format.

tmpfile <- tempfile()

exportResults(

format = "pajek",

file = tmpfile,

method = "diffusion",

object = analysis.epithelial,

data = fella.data)

## 282 nodes below the threshold have been limited to 250 nodes.

## Exporting to the format pajek using igraph...

## Done

deploying the graphical user interface FELLA is equipped with a
graphical user interface that eases data analysis without learning the pack-
age syntax. The app is divided in the following tabs:

• Compounds upload (figure 90): contains a general description of the
tabs and a handle to submit the input metabolite list as a text file.
Examples are provided as well. The right panel shows the mapped
and the mismatching compounds with regard to the default database.

• Advanced options (figure 91): widgets that contain the main func-
tion arguments for customising the enrichment procedure. Allows
database choice from the internal package directory, method and ap-
proximation choice and parameter tweaking. It also allows defining a
GO label for the semantic similarity analysis on the reported enzymes.

• Results (figure 92): interactive plot with the sub-graph with the top k
KEGG entries. Nodes can be selected, queried and link to the KEGG
entries when hovered. Below the network lies an interactive table with
the graph nodes, allowing the user to look into particular entries.

• Export (figure 93): several tabular and network exporting options.

The app is based on shiny (Chang et al., 2017) and can be launched through
launchApp.

https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=shiny
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Figure 90: Graphical interface: compounds upload

Figure 91: Graphical interface: advanced options

helper functions FELLA is equipped with helper functions that ease
the user experience and avoid direct manipulation of the S4 classes. Some
of them have been already introduced - a complete enumeration of the ex-
ported functions is hereby provided.

Functions of the type get- ease object and slot retrieval, with the follow-
ing possibilities: getBackground, getExcluded, getInfo, getInput, getName,
getPscores.
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Figure 92: Graphical interface: results

Figure 93: Graphical interface: export

On the other hand, functions starting by list- provide general purpose
data about the package (listMethods, listApprox, listCategories) and a
listing of the available internal databases (listInternalDatabases).

Finally, functions starting by is- check if an object belongs to a certain
class: is.FELLA.DATA and is.FELLA.USER.

Ovarian cancer cells dataset

The next example has been extracted from the study on metabolic re-
sponses of ovarian cancer cells (Vermeersch et al., 2014). The original files
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can be found in the MTBLS150 study in the Metabolights respository: https:
//www.ebi.ac.uk/metabolights/MTBLS150. OCSCs are isogenic ovarian can-
cer stem cells derived from the OVCAR-3 ovarian cancer cells. The abun-
dances of six metabolites are affected by the exposure to several environmen-
tal conditions: glucose deprivation, hypoxia and ischemia (column “All” in
“Figure 3” from their main manuscript).

The common names have been converted to KEGG ids prior to applying
FELLA. The analysis is performed using the wrapper enrich that maps the
compounds to the internal representation and runs the desired methods.

compounds.ovarian <- c(

"C00275", "C00158", "C00042",

"C00346", "C00122", "C06468")

analysis.ovarian <- enrich(

compounds = compounds.ovarian,

data = fella.data,

methods = "diffusion")

## No background compounds specified. Default background will be used.

## Warning in defineCompounds(compounds = compounds, compoundsBackground

= compoundsBackground, : Some compounds were introduced as affected

but they do not belong to the background. These compounds will be excluded

from the analysis. Use ’getExcluded’ to see them.

## Running diffusion...

## Computing p-scores through the specified distribution.

## Done.

plot(

analysis.ovarian,

method = "diffusion",

data = fella.data,

nlimit = 150,

vertex.label.cex = vertex.label.cex,

plotLegend = FALSE)

## 176 nodes below the threshold have been limited to 150 nodes.

https://www.ebi.ac.uk/metabolights/MTBLS150
https://www.ebi.ac.uk/metabolights/MTBLS150
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citrate:N6−acetyl−N6−h...

succinyl−CoA:acetate C...

fumarate CoM:CoB oxido...citrate:L−glutamate li...

propionyl−CoA:succinat...
L−2,3−diaminopropanoat...

D−Ornithine + Citrate ...N5−Citryl−D−ornithine ...

G10694 + 3 H2O <=> G00...

Succinate

Fumarate

Citrate

D−Mannose
D−Mannose 6−phosphate

Ethanolamine phosphate

D−Mannose 1−phosphate

beta−D−Fructose 6−phos...

The resulting subnetwork2 reports several TCA cycle-related entities, also
reported by the authors and by previous work (Pollard et al., 2003). It also
mentions sphingosine degradation, closely related to the reported sphingosine
metabolism in the original work. Enzymes that have been formerly related
to cancer are suggested within the TCA cycle, like fumarate hydratase (Lehto-
nen et al., 2007; Pithukpakorn et al., 2006; Pollard et al., 2003) succinate
dehydrogenase (Ni et al., 2008; Pollard et al., 2003) and aconitase (Singh et al.,
2006). Another suggestion is lysosome - lysosomes suffer changes in cancer
cells and directly affect apoptosis (Kirkegaard and Jäättelä, 2009). Finally,
the graph contains several hexokinases, potential targets to disrupt glycolysis,
a fundamental need in cancer cells (Kaelin and Thompson, 2010).

Malaria dataset

The metabolites in the last example are related to the distinction between
malaria and other febrile ilnesses in (Decuypere et al., 2016). The study files
can be found under the MTBLS315 identifier in Metabolights: https://www.
ebi.ac.uk/metabolights/MTBLS315. Specifically, the list of KEGG identifiers
has been extracted from the supplementary data spreadsheet, using all the
possible KEGG matches for the “non malaria” patient group.

compounds.malaria <- c(

"C05471", "C14831", "C02686", "C06462", "C00735", "C14833",

"C18175", "C00550", "C01124", "C05474", "C05469")

analysis.malaria <- enrich(

compounds = compounds.malaria,

data = fella.data,

2 This analysis is subject to KEGG release 83.0, from August 17th, 2017. Posterior KEGG
releases might alter the reported sub-network

https://www.ebi.ac.uk/metabolights/MTBLS315
https://www.ebi.ac.uk/metabolights/MTBLS315
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methods = "diffusion")

## No background compounds specified. Default background will be used.

## Warning in defineCompounds(compounds = compounds, compoundsBackground

= compoundsBackground, : Some compounds were introduced as affected

but they do not belong to the background. These compounds will be excluded

from the analysis. Use ’getExcluded’ to see them.

## Running diffusion...

## Computing p-scores through the specified distribution.

## Done.

plot(

analysis.malaria,

method = "diffusion",

data = fella.data,

nlimit = 50,

vertex.label.cex = vertex.label.cex,

plotLegend = FALSE)

## 171 nodes below the threshold have been limited to 50 nodes.
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C21−Steroid hormone bi...

C21−Steroid hormone bi...

3alpha−hydroxysteroid ...

steroid 11beta−monooxy...

corticosterone 18−mono...

Delta4−3−oxosteroid 5b...

sphingomyelin synthase

sphingomyelin phosphod...

galactosylceramidase

glycosylceramidase

UDP−alpha−D−galactose:...

CDP−choline:N−acylsphi...

Sphingomyelin cholinep...
Sphingomyelin ceramide...

Acyl−CoA:sphingosine N...

Cortisol:NAD+ 11−oxido...

Cortisol:NADP+ 11−oxid...

11beta,17alpha,21−Trih...

steroid,reduced ferred...

17alpha,21−dihydroxy−5...

Corticosterone,reduced...

18−Hydroxycorticostero...

D−galactosyl−N−acylsph...

Galactosylceramide + U...

Digalactosylceramide g...

Urocortisone:NAD+ oxid...
Urocortisone:NADP+ oxi...

Urocortisol:NAD+ oxido...

Urocortisol:NADP+ oxid...
3alpha,11beta,21−Trihy...

3alpha,11beta,21−Trihy...

linoleate:oxygen (8R)−...(8R,9Z,12Z)−8−hydroper...

ceramide:phosphatidylc...

Cortisol <=> 11beta−Hy...

(8R,9Z,12Z)−8−hydroper...

Sphingomyelin

Cortisol

18−Hydroxycorticostero...

Galactosylceramide

17alpha,21−Dihydroxy−5...

11beta,17alpha,21−Trih...

3alpha,11beta,21−Trihy...

8(R)−HPODE

In this case, the depicted subnetwork3 contains the modules C21-Steroid
hormone biosynthesis, progesterone => corticosterone/aldosterone and C21-Steroid
hormone biosynthesis, progesterone => cortisol/cortisone, related to the corticos-
teroids as a main pathway reported in the original text. This is part of the
also reported Aldosterone synthesis and secretion; aldosterone is known to show
changes related to fever as a metabolic response to infection (Beisel, 1975).
Another plausible hit in the sub-network is linoleic acid metabolism, as ery-
throcytes infected by various malaria parasytes can be enriched in linoleic

3 This analysis is subject to KEGG release 83.0, from August 17th, 2017. Posterior KEGG
releases might alter the reported sub-network
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acid (Fitch et al., 2000). In addition, the pathway sphingolipid metabolism can
play a role in the immune response (Maceyka and Spiegel, 2014; Seo et al.,
2011). As for the enzymes, 3alpha-hydroxysteroid 3-dehydrogenase (Si-specific)
and Delta4-3-oxosteroid 5beta-reductase are related to three input metabolites
each and might be candidates for further examination.

d.2.5 Conclusions

The FELLA R package provides a simple, programmatic and intuitive
enrichment tool for metabolomics summary data. Starting from a list of
metabolites, FELLA not only pinpoints relevant pathways but also interme-
diate reactions, enzymes and modules that links the input metabolites to
the pathways. The reported entries have a network structure focused on
interpretability and new hypotheses generation, giving a richer perspective
than classical pathway enrichment tools. This comprehensive layout can also
suggest potential enzymes and new metabolites for further study. Finally,
FELLA comes equipped with a graphical user interface that promotes its
usage to a wider audience and offers interactive sub-network examination.
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d.2.6 Session info

Here is the output of sessionInfo() on the system that compiled this
vignette:

• R version 3.6.2 (2019-12-12), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=es_ES.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=es_ES.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=es_ES.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=es_ES.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 16.04.6 LTS

• Matrix products: default

• BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0

• LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0

• Base packages: base, datasets, graphics, grDevices, methods, parallel,
stats, stats4, utils

• Other packages: AnnotationDbi 1.46.0, Biobase 2.44.0,
BiocGenerics 0.29.2, FELLA 1.5.3, IRanges 2.17.5, knitr 1.22,
org.Hs.eg.db 3.8.2, S4Vectors 0.21.24

• Loaded via a namespace (and not attached): assertthat 0.2.1,
backports 1.1.4, BiocManager 1.30.4, BiocStyle 2.12.0, biomaRt 2.40.1,
Biostrings 2.51.5, bit 1.1-14, bit64 0.9-7, bitops 1.0-6, blob 1.2.0,
compiler 3.6.2, crayon 1.3.4, curl 3.3, DBI 1.0.0, digest 0.6.18,
evaluate 0.13, GO.db 3.8.2, GOSemSim 2.10.0, grid 3.6.2, highr 0.8,
hms 0.5.0, htmltools 0.3.6, httr 1.4.0, igraph 1.2.4.1, KEGGREST 1.24.1,
lattice 0.20-38, magrittr 1.5, Matrix 1.2-18, memoise 1.1.0, pillar 1.4.0,
pkgconfig 2.0.2, plyr 1.8.4, png 0.1-7, prettyunits 1.0.2, progress 1.2.2,
R6 2.4.0, Rcpp 1.0.1, RCurl 1.95-4.12, rlang 0.4.0, rmarkdown 1.12,
RSQLite 2.1.1, stringi 1.4.3, stringr 1.4.0, tcltk 3.6.2, tibble 2.1.1,
tools 3.6.2, vctrs 0.2.0, xfun 0.6, XML 3.98-1.20, XVector 0.23.2,
yaml 2.2.0, zeallot 0.1.0, zlibbioc 1.29.0
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d.3 additional file 3: gilt-head bream study

d.3.1 Introduction

This vignette contains a case study of the effects of environmental con-
tamination on gilt-head bream (Sparus aurata) (Ziarrusta et al., 2018). Fish
were exposed over 14 days to oxybenzone and changes were sought in their
brain, liver and plasma using untargeted metabolomics. Samples were pro-
cessed using Ultra-performance liquid chromatography mass-spectrometry
(UHPLC-qOrbitrap MS) in positive and negative modes with both C18 and
HILIC separation.

The mortality of exposed fish was not altered, as well as the brain-related
metabolites. However, liver and plasma showed perturbations, proving that
adverse effects beyond the well-studied hormonal activity were present.

The enrichment procedure implemented in FELLA (Picart-Armada et al.,
2017) was used in the study for a deeper understanding of the dysregulated
metabolites in both tissues.

Building the database

At the time of publication, the KEGG database (Kanehisa, Furumichi, et
al., 2016) –upon which FELLA is based– did not have pathway annotations
for the Sparus aurata organism. It is common, however, to use the zebrafish
(Danio rerio) pathways as a good approximation. KEGG provides pathway
annotations for it under the organismal code dre, which will be used to build
the FELLA.DATA object.

library(FELLA)

library(igraph)

library(magrittr)

set.seed(1)

# Filter the dre01100 overview pathway, as in the article

graph <- buildGraphFromKEGGREST(

organism = "dre",

filter.path = c("01100"))

tmpdir <- paste0(tempdir(), "/my_database")

# Make sure the database does not exist from a former vignette build

# Otherwise the vignette will rise an error

# because FELLA will not overwrite an existing database

unlink(tmpdir, recursive = TRUE)

buildDataFromGraph(

keggdata.graph = graph,

databaseDir = tmpdir,

internalDir = FALSE,

matrices = "none",
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normality = "diffusion",

niter = 100)

We load the FELLA.DATA object to run both analyses:

fella.data <- loadKEGGdata(

databaseDir = tmpdir,

internalDir = FALSE,

loadMatrix = "none"

)

Given the 11-month temporal gap between the study and this vignette,
small changes to the amount of nodes in each category are expected (see
section 2.4 Data handling and statistical analyses from the study). Please see
the Note on reproducibility to understand why.

fella.data

## General data:

## - KEGG graph:

## * Nodes: 10821

## * Edges: 32013

## * Density: 0.0002734209

## * Categories:

## + pathway [163]

## + module [171]

## + enzyme [1021]

## + reaction [5467]

## + compound [3999]

## * Size: 5.9 Mb

## - KEGG names are ready.

## -----------------------------

## Hypergeometric test:

## - Matrix not loaded.

## -----------------------------

## Heat diffusion:

## - Matrix not loaded.

## - RowSums are ready.

## -----------------------------

## PageRank:

## - Matrix not loaded.

## - RowSums not loaded.

Note on reproducibility

We want to emphasise that each time this vignette is built, FELLA con-
structs its FELLA.DATA object using the most recent version of the KEGG
database. KEGG is frequently updated and therefore small changes can take
place in the knowledge graph between different releases. The discussion on
our findings was written at the date specified in the vignette header and
using the KEGG release in the Reproducibility section.
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d.3.2 Enrichment analysis on liver tissue

Defining the input and running the enrichment

Table 1 from the main body in (Ziarrusta et al., 2018) contains 5 KEGG
identifiers associated to metabolic changes in liver tissue and 12 in plasma.
Our first enrichment analysis with FELLA will be based on the liver-derived
metabolites. Also note that we use the faster approx = "normality" ap-
proach, whereas the original article uses approx = "simulation" with niter

= 15000 This is not only intended to keep the bulding time of this vignette
as low as possible, but also to demonstrate that the findings using both sta-
tistical approaches are consistent.

cpd.liver <- c(

"C12623",

"C01179",

"C05350",

"C05598",

"C01586"

)

analysis.liver <- enrich(

compounds = cpd.liver,

data = fella.data,

method = "diffusion",

approx = "normality")

## No background compounds specified. Default background will be used.

## Running diffusion...

## Computing p-scores through the specified distribution.

## Done.

All the metabolites are successfully mapped:

analysis.liver %>%

getInput %>%

getName(data = fella.data)

## $C12623

## [1] "trans-2,3-Dihydroxycinnamate"

## [2] "(2E)-3-(2,3-Dihydroxyphenyl)prop-2-enoate"

##

## $C01179

## [1] "3-(4-Hydroxyphenyl)pyruvate" "4-Hydroxyphenylpyruvate"

## [3] "p-Hydroxyphenylpyruvic acid"

##

## $C05350
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## [1] "2-Hydroxy-3-(4-hydroxyphenyl)propenoate"

## [2] "4-Hydroxy-enol-phenylpyruvate"

##

## $C05598

## [1] "Phenylacetylglycine"

##

## $C01586

## [1] "Hippurate" "Hippuric acid"

## [3] "N-Benzoylglycine" "Benzoylaminoacetic acid"

Below is a plot of the reported sub-network using the default parameters.
The five metabolites are present and lie within the same connected compo-
nent.

plot(

analysis.liver,

method = "diffusion",

data = fella.data,

nlimit = 250,

plotLegend = FALSE)
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prephenate:NAD+ oxidor...
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(R)−3−(4−hydroxyphenyl...(R)−3−(4−hydroxyphenyl...
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Phenylacetic acid <=> ...
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We will examine the igraph object with the reported sub-network and
some of its reported entities in tabular format:

g.liver <- generateResultsGraph(

object = analysis.liver,

data = fella.data,

method = "diffusion")
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tab.liver <- generateResultsTable(

object = analysis.liver,

data = fella.data,

method = "diffusion")

## Writing diffusion results...

## Done.

The reported sub-network contains around 100 nodes and can be manually
inquired:

g.liver

## IGRAPH 8327330 UNW- 112 181 --

## + attr: organism (g/c), name (v/c), com (v/n), NAME (v/x), entrez

## | (v/x), label (v/c), input (v/l), weight (e/n)

## + edges from 8327330 (vertex names):

## [1] dre00400--M00025 dre00350--M00042 dre00350--M00044

## [4] dre00360--1.13.11.27 M00044 --1.13.11.27 dre00360--1.14.16.1

## [7] dre00400--1.14.16.1 dre00360--1.4.3.2 dre00400--1.4.3.2

## [10] M00044 --1.4.3.2 dre00350--1.4.3.21 dre00360--1.4.3.21

## [13] dre00350--2.6.1.1 dre00360--2.6.1.1 dre00400--2.6.1.1

## [16] M00170 --2.6.1.1 M00171 --2.6.1.1 dre00360--2.6.1.5

## [19] M00025 --2.6.1.5 M00044 --2.6.1.5 dre00360--4.1.1.105

## + ... omitted several edges

Examining the pathways

Figure 2 from the original study frames the five metabolites in the input
around Phenylalanine metabolism. We can verify that FELLA finds such path-
way and two closely related suggestions: Tyrosine metabolism and Phenylala-
nine, tyrosine and tryptophan biosynthesis.

path.fig2 <- "dre00360" # Phenylalanine metabolism

path.fig2 %in% V(g.liver)$name

## [1] TRUE

These are the reported pathways:

tab.liver[tab.liver$Entry.type == "pathway", ]

## KEGG.id Entry.type KEGG.name

## 1 dre00350 pathway Tyrosine metabolism - Danio rerio (zebrafish)

## 2 dre00360 pathway Phenylalanine metabolism - Danio rerio (zebra...

## 3 dre00400 pathway Phenylalanine, tyrosine and tryptophan biosyn...

## p.score

## 1 2.768611e-06

## 2 1.000000e-06

## 3 2.554160e-02
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Examining the metabolites

Figure 2 also gathers two types of metabolites: metabolites in the input
(inside shaded frames) and other contextual metabolites (no frames) that
link the input metabolites.

First of all, we can check that all the input metabolites appear in the sug-
gested sub-network. While it’s expected that most of the input metabolites
appear as relevant, it is an important property of our method, in order to
elaborate a sensible biological justification of the experimental differences.

cpd.liver %in% V(g.liver)$name

## [1] TRUE TRUE TRUE TRUE TRUE

On the other hand, one of the two contextual metabolites is also suggested
by FELLA, proving its usefulness to fill the gaps between the input metabo-
lites.

cpd.fig2 <- c(

"C00079", # Phenylalanine

"C00082" # Tyrosine

)

cpd.fig2 %in% V(g.liver)$name

## [1] FALSE TRUE

d.3.3 Enrichment analysis on plasma

Defining the input and running the enrichment

As shown in section Defining the input and running the enrichment, 12

KEGG identifiers (one ID is repeated) are related to the experimental changes
observed in plasma, which are the starting point of the enrichment:

cpd.plasma <- c(

"C16323",

"C00740",

"C08323",

"C00623",

"C00093",

"C06429",

"C16533",

"C00740",

"C06426",

"C06427",

"C07289",

"C01879"

) %>% unique
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analysis.plasma <- enrich(

compounds = cpd.plasma,

data = fella.data,

method = "diffusion",

approx = "normality")

## No background compounds specified. Default background will be used.

## Running diffusion...

## Computing p-scores through the specified distribution.

## Done.

The totality of the 11 unique metabolites map to the FELLA.DATA object:

analysis.plasma %>%

getInput %>%

getName(data = fella.data)

## $C16323

## [1] "3,6-Nonadienal"

##

## $C00740

## [1] "D-Serine"

##

## $C08323

## [1] "(15Z)-Tetracosenoic acid" "Nervonic acid"

## [3] "(Z)-15-Tetracosenoic acid"

##

## $C00623

## [1] "sn-Glycerol 1-phosphate" "sn-Gro-1-P"

## [3] "L-Glycerol 1-phosphate"

##

## $C00093

## [1] "sn-Glycerol 3-phosphate" "Glycerophosphoric acid"

## [3] "D-Glycerol 1-phosphate"

##

## $C06429

## [1] "(4Z,7Z,10Z,13Z,16Z,19Z)-Docosahexaenoic acid"

## [2] "4,7,10,13,16,19-Docosahexaenoic acid"

## [3] "Docosahexaenoic acid"

## [4] "Docosahexaenoate"

## [5] "4Z,7Z,10Z,13Z,16Z,19Z-Docosahexaenoic acid"

## [6] "(4Z,7Z,10Z,13Z,16Z,19Z)-Docosa-4,7,10,13,16,19-hexaenoic acid"

##

## $C16533

## [1] "(13Z,16Z)-Docosadienoic acid"

## [2] "(13Z,16Z)-Docosa-13,16-dienoic acid"
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## [3] "13Z,16Z-Docosadienoic acid"

##

## $C06426

## [1] "(6Z,9Z,12Z)-Octadecatrienoic acid" "6,9,12-Octadecatrienoic acid"

## [3] "gamma-Linolenic acid" "Gamolenic acid"

##

## $C06427

## [1] "(9Z,12Z,15Z)-Octadecatrienoic acid"

## [2] "alpha-Linolenic acid"

## [3] "9,12,15-Octadecatrienoic acid"

## [4] "Linolenate"

## [5] "alpha-Linolenate"

##

## $C07289

## [1] "Crepenynate" "(9Z)-Octadec-9-en-12-ynoate"

## [3] "(Z)-9-Octadecen-12-ynoic acid" "Crepenynic acid"

##

## $C01879

## [1] "5-Oxoproline" "Pidolic acid"

## [3] "Pyroglutamic acid" "5-Pyrrolidone-2-carboxylic acid"

## [5] "Pyroglutamate" "5-Oxo-L-proline"

## [7] "L-Pyroglutamic acid" "L-5-Pyrrolidone-2-carboxylic acid"

Again, the reported sub-network consists of a large connected component
encompassing most input metabolites:

plot(

analysis.plasma,

method = "diffusion",

data = fella.data,

nlimit = 250,

plotLegend = FALSE)
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We will export the results as a network and as a table:

g.plasma <- generateResultsGraph(

object = analysis.plasma,

data = fella.data,

method = "diffusion")

tab.plasma <- generateResultsTable(

object = analysis.plasma,

data = fella.data,

method = "diffusion")

## Writing diffusion results...

## Done.

The reported sub-network is a bit larger than the one from liver, containing
roughly 120 nodes:

g.plasma

## IGRAPH 6b5f854 UNW- 137 216 --

## + attr: organism (g/c), name (v/c), com (v/n), NAME (v/x), entrez

## | (v/x), label (v/c), input (v/l), weight (e/n)

## + edges from 6b5f854 (vertex names):

## [1] dre00260--M00020 dre00564--M00093 dre00592--M00113

## [4] dre00062--M00415 dre01040--M00415 dre01212--M00415

## [7] dre01040--M00861 dre01212--M00861 dre00564--1.1.1.8

## [10] dre01040--1.14.19.1 dre01212--1.14.19.1 dre00592--1.14.19.3
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## [13] dre01040--1.14.19.3 dre01212--1.14.19.3 dre00564--1.1.5.3

## [16] dre00564--2.3.1.15 dre00564--2.7.8.29 dre00564--2.7.8.5

## [19] dre00564--3.1.1.32 dre00591--3.1.1.32 dre00592--3.1.1.32

## + ... omitted several edges

Examining the pathways

Figure 3 from the original study is a holistic view of the affected metabo-
lites found in plasma, based on literature and on an analysis with FELLA. The
11 metabolites are depicted within their core metabolic pathways. We will
check whether FELLA is able to highlight them, by first showing the reported
metabolic pathways:

tab.plasma[tab.plasma$Entry.type == "pathway", ]

## KEGG.id Entry.type KEGG.name

## 1 dre00062 pathway Fatty acid elongation - Danio rerio (zebrafis...

## 2 dre00260 pathway Glycine, serine and threonine metabolism - Da...

## 3 dre00564 pathway Glycerophospholipid metabolism - Danio rerio ...

## 4 dre00591 pathway Linoleic acid metabolism - Danio rerio (zebra...

## 5 dre00592 pathway alpha-Linolenic acid metabolism - Danio rerio...

## 6 dre01040 pathway Biosynthesis of unsaturated fatty acids - Dan...

## 7 dre01212 pathway Fatty acid metabolism - Danio rerio (zebrafis...

## p.score

## 1 1.000000e-06

## 2 1.934171e-06

## 3 1.080598e-05

## 4 2.639328e-02

## 5 1.000000e-06

## 6 1.000000e-06

## 7 2.448355e-05

And then comparing against the ones in Figure 3:

path.fig3 <- c(

"dre00591", # Linoleic acid metabolism

"dre01040", # Biosynthesis of unsaturated fatty acids

"dre00592", # alpha-Linolenic acid metabolism

"dre00564", # Glycerophospholipid metabolism

"dre00480", # Glutathione metabolism

"dre00260" # Glycine, serine and threonine metabolism

)

path.fig3 %in% V(g.plasma)$name

## [1] TRUE TRUE TRUE TRUE FALSE TRUE

All of them but Glutathione metabolism are recovered, showing how FELLA

can help gaining perspective on the input metabolites.
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Examining the metabolites

As in the analogous section for liver, we will quantify how many input
metabolites, drawn within a shaded frame in Figure 3, are reported in the
sub-network:

cpd.plasma %in% V(g.plasma)$name

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

From the 11 highlighted metabolites, only one is not reported by FELLA:
5-Oxo-L-proline.

Conversely, two out of the three contextual metabolites from the same
figure are reported:

cpd.fig3 <- c(

"C01595", # Linoleic acid

"C00157", # Phosphatidylcholine

"C00037" # Glycine

)

cpd.fig3 %in% V(g.plasma)$name

## [1] TRUE TRUE FALSE

As Figure 3 shows, the addition of linoleic acid and phosphatidylcholine,
backed up by FELLA, helps connecting almost all the metabolites found in
blood.
FELLA misses glycine and, in fact, stays consistent with the pathway (Glu-

tathione metabolism) and the input metabolite (5-Oxo-L-proline) that it left out
from Figure 3. The fact that FELLA does not suggest such pathway seems to
happen at several molecular levels and therefore none of its metabolites are
pinpointed.

Even if the glutathione pathway was not reported, FELLA can greatly ease
the creation of elaborated contextual figures, such as Figure 3, by suggesting
the intermediate metabolites and the metabolic pathways that link the input
compounds.

d.3.4 Conclusions

In this vignette, we apply FELLA to an untargeted metabolic study of gilt-
head bream exposed to an environmental contaminat (oxybenzome). This
study is an example of how FELLA can be useful for (1) organisms not limited
to Homo sapiens, and (2) conditions not limited to a specific disease.

On one hand, FELLA helps creating complex contextual interpretations of
the data, such as the comprehensive Figure 3 from the original article (Ziar-
rusta et al., 2018). This material would be challenging to build through
regular over-representation analysis of the input metabolites. On the other
hand, metabolites and pathways suggested by FELLA were also mentioned in
the literature and supported the main findings in the study. In particular, it
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helped identify key processes such as phenylalanine metabolism, alpha-linoleic
acid metabolism and serine metabolism, which ultimately pointed to alterations
in oxidative stress.

d.3.5 Reproducibility

This is the result of running sessionInfo()

sessionInfo()

## R version 3.6.2 (2019-12-12)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 16.04.6 LTS

##

## Matrix products: default

## BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0

## LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=es_ES.UTF-8 LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=es_ES.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] parallel stats4 stats graphics grDevices utils datasets

## [8] methods base

##

## other attached packages:

## [1] magrittr_1.5 igraph_1.2.4.1 KEGGREST_1.24.1

## [4] org.Mm.eg.db_3.8.2 org.Hs.eg.db_3.8.2 AnnotationDbi_1.46.0

## [7] IRanges_2.17.5 S4Vectors_0.21.24 Biobase_2.44.0

## [10] BiocGenerics_0.29.2 FELLA_1.5.3 knitr_1.22

##

## loaded via a namespace (and not attached):

## [1] progress_1.2.2 xfun_0.6 lattice_0.20-38

## [4] tcltk_3.6.2 vctrs_0.2.0 htmltools_0.3.6

## [7] yaml_2.2.0 blob_1.2.0 XML_3.98-1.20

## [10] rlang_0.4.0 pillar_1.4.0 DBI_1.0.0

## [13] bit64_0.9-7 plyr_1.8.4 stringr_1.4.0

## [16] zlibbioc_1.29.0 Biostrings_2.51.5 GOSemSim_2.10.0

## [19] evaluate_0.13 memoise_1.1.0 biomaRt_2.40.1

## [22] curl_3.3 highr_0.8 Rcpp_1.0.1

## [25] backports_1.1.4 BiocManager_1.30.4 XVector_0.23.2

## [28] bit_1.1-14 BiocStyle_2.12.0 hms_0.5.0

## [31] png_0.1-7 digest_0.6.18 stringi_1.4.3

## [34] grid_3.6.2 tools_3.6.2 bitops_1.0-6
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## [37] RCurl_1.95-4.12 RSQLite_2.1.1 tibble_2.1.1

## [40] GO.db_3.8.2 crayon_1.3.4 pkgconfig_2.0.2

## [43] zeallot_0.1.0 Matrix_1.2-18 prettyunits_1.0.2

## [46] assertthat_0.2.1 rmarkdown_1.12 httr_1.4.0

## [49] R6_2.4.0 compiler_3.6.2

KEGG version:

cat(getInfo(fella.data))

## T01004 Danio rerio (zebrafish) KEGG Genes Database

## dre Release 93.0+/02-23, Feb 20

## Kanehisa Laboratories

## 26,968 entries

##

## linked db pathway

## brite

## module

## ko

## genome

## enzyme

## ncbi-geneid

## ncbi-proteinid

## uniprot

Date of generation:

date()

## [1] "Sun Feb 23 11:01:59 2020"

Image of the workspace (for submission):

tempfile(pattern = "vignette_dre_", fileext = ".RData") %T>%

message("Saving workspace to ", .) %>%

save.image(compress = "xz")

## Saving workspace to /tmp/RtmpAOhDlw/vignette_dre_1493c57be73.RData
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d.4 additional file 4: mouse model

d.4.1 Introduction

This vignette shows the utility of the FELLA package, which is based in
a statistically normalised diffusion process (Picart-Armada et al., 2017), on
non-human organisms. In particular, we will work on a multi-omic Mus
musculus study. The original study (Gogiashvili et al., 2017) presents a mouse
model of the non-alcoholic fatty liver disease (NAFLD). Metabolites in liver
tissue from leptin-deficient ob/ob mice and wild type mice were compared
using Nuclear Magnetic Resonance (NMR). Afterwards, quantitative real-
time polymerase chain reaction (qRT-PCR) helped identify changes at the
gene expression level. Finally, biological mechanisms behind NAFLD were
elucidated by leveraging the data from both omics.

Building the database

The first step is to build the FELLA.DATA object for the mmu organism from
the KEGG database (Kanehisa, Furumichi, et al., 2016).

library(FELLA)

library(org.Mm.eg.db)

library(KEGGREST)

library(igraph)

library(magrittr)

set.seed(1)

# Filter overview pathways

graph <- buildGraphFromKEGGREST(

organism = "mmu",

filter.path = c("01100", "01200", "01210", "01212", "01230"))

tmpdir <- paste0(tempdir(), "/my_database")

# Mke sure the database does not exist from a former vignette build

# Otherwise the vignette will rise an error

# because FELLA will not overwrite an existing database

unlink(tmpdir, recursive = TRUE)

buildDataFromGraph(

keggdata.graph = graph,

databaseDir = tmpdir,

internalDir = FALSE,

matrices = "none",

normality = "diffusion",

niter = 100)

We load the FELLA.DATA object and two mappings (from gene symbol to
entrez identifiers, and from enzyme EC numbers to their annotated entrez
genes).
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alias2entrez <- as.list(org.Mm.eg.db::org.Mm.egSYMBOL2EG)

entrez2ec <- KEGGREST::keggLink("enzyme", "mmu")

entrez2path <- KEGGREST::keggLink("pathway", "mmu")

fella.data <- loadKEGGdata(

databaseDir = tmpdir,

internalDir = FALSE,

loadMatrix = "none"

)

Summary of the database:

fella.data

## General data:

## - KEGG graph:

## * Nodes: 11099

## * Edges: 34562

## * Density: 0.0002805888

## * Categories:

## + pathway [323]

## + module [173]

## + enzyme [1137]

## + reaction [5467]

## + compound [3999]

## * Size: 6.2 Mb

## - KEGG names are ready.

## -----------------------------

## Hypergeometric test:

## - Matrix not loaded.

## -----------------------------

## Heat diffusion:

## - Matrix not loaded.

## - RowSums are ready.

## -----------------------------

## PageRank:

## - Matrix not loaded.

## - RowSums not loaded.

In addition, we will store the ids of all the metabolites, reactions and
enzymes in the database:

id.cpd <- getCom(fella.data, level = 5, format = "id") %>% names

id.rx <- getCom(fella.data, level = 4, format = "id") %>% names

id.ec <- getCom(fella.data, level = 3, format = "id") %>% names

Note on reproducibility

We want to emphasise that FELLA builds its FELLA.DATA object using the
most recent version of the KEGG database. KEGG is frequently updated
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and therefore small changes can take place in the knowledge graph between
different releases. The discussion on our findings was written at the date
specified in the vignette header and using the KEGG release in the Repro-
ducibility section.

d.4.2 Enrichment analysis

Defining the input and running the enrichment

Table 2 from the main body in (Gogiashvili et al., 2017) contains six metabo-
lites that show significant changes between the experimental classes by a
univariate test followed by multiple test correction. These are the start of
our enrichment analysis:

cpd.nafld <- c(

"C00020", # AMP

"C00719", # Betaine

"C00114", # Choline

"C00037", # Glycine

"C00160", # Glycolate

"C01104" # Trimethylamine-N-oxide

)

analysis.nafld <- enrich(

compounds = cpd.nafld,

data = fella.data,

method = "diffusion",

approx = "normality")

## No background compounds specified. Default background will be used.

## Running diffusion...

## Computing p-scores through the specified distribution.

## Done.

Five compounds are successfully mapped to the graph object:

analysis.nafld %>%

getInput %>%

getName(data = fella.data)

## $C00020

## [1] "AMP" "Adenosine 5’-monophosphate"

## [3] "Adenylic acid" "Adenylate"

## [5] "5’-AMP" "5’-Adenylic acid"

## [7] "5’-Adenosine monophosphate" "Adenosine 5’-phosphate"

##

## $C00719
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## [1] "Betaine" "Trimethylaminoacetate"

## [3] "Glycine betaine" "N,N,N-Trimethylglycine"

## [5] "Trimethylammonioacetate"

##

## $C00114

## [1] "Choline" "Bilineurine"

##

## $C00037

## [1] "Glycine" "Aminoacetic acid" "Gly"

##

## $C00160

## [1] "Glycolate" "Glycolic acid" "Hydroxyacetic acid"

##

## $C01104

## [1] "Trimethylamine N-oxide" "(CH3)3NO"

Likewise, one compound does not map:

getExcluded(analysis.nafld)

## character(0)

The highlighted subgraph with the default parameters has the following
appeareance, with large connected components that involve the metabolites
in the input:

plot(

analysis.nafld,

method = "diffusion",

data = fella.data,

nlimit = 250,

plotLegend = FALSE)
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We will also extract all the p-scores and the suggested sub-network for
further analysis:

g.nafld <- generateResultsGraph(

object = analysis.nafld,

data = fella.data,

method = "diffusion")

pscores.nafld <- getPscores(

object = analysis.nafld,

method = "diffusion")

Examining the metabolites

from table 2 The authors find 5 extra metabolites in Table 2 that are sig-
nificant at p < 0.05 but do not appear after thresholding the false discovery
rate at 5%. Such metabolites, highlighted in italics but without an asterisk,
are also relevant and play a role in their discussion. We will examine how
FELLA prioritises such metabolites:

cpd.nafld.suggestive <- c(

"C00008", # ADP

"C00791", # Creatinine

"C00025", # Glutamate

"C01026", # N,N-dimethylglycine

"C00079", # Phenylalanine

"C00299" # Uridine

)

getName(cpd.nafld.suggestive, data = fella.data)
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## $C00008

## [1] "ADP" "Adenosine 5’-diphosphate"

##

## $C00791

## [1] "Creatinine" "1-Methylglycocyamidine"

##

## $C00025

## [1] "L-Glutamate" "L-Glutamic acid" "L-Glutaminic acid"

## [4] "Glutamate"

##

## $C01026

## [1] "N,N-Dimethylglycine" "Dimethylglycine"

##

## $C00079

## [1] "L-Phenylalanine"

## [2] "(S)-alpha-Amino-beta-phenylpropionic acid"

##

## $C00299

## [1] "Uridine"

When checking if any of these metabolites are found in the reported sub-
network, we find that C01026 is already reported:

V(g.nafld)$name %>%

intersect(cpd.nafld.suggestive) %>%

getName(data = fella.data)

## $C01026

## [1] "N,N-Dimethylglycine" "Dimethylglycine"

Abbreviated as DMG in their study, N,N-Dimethylglycine is a cornerstone
of their findings. It is reported in Figure 6a as part of the folate-independent
remethylation to explain the metabolic changes observed in the ob/ob mice.
DMG is also mentioned in the conclusions as part of one of the most promi-
nent alterations found in the study: a reduced conversion of betaine to
DMG.

from figure 6a Figure 6a contains the metabolic context of the observed
alterations, with processes such as transsulfuration and folate-dependent
remethylation. These were identified with the help of gene expression anal-
ysis. We will now check for coincidences between the metabolites in Figure
6a, excluding choline and betaine for being in the input and DMG since it
was already discussed.

cpd.new.fig6 <- c(

"C00101", # THF

"C00440", # 5-CH3-THF

"C00143", # 5,10-CH3-THF

"C00073", # Methionine
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"C00019", # SAM

"C00021", # SAH

"C00155", # Homocysteine

"C02291", # Cystathione

"C00097" # Cysteine

)

getName(cpd.new.fig6, data = fella.data)

## $C00101

## [1] "Tetrahydrofolate" "5,6,7,8-Tetrahydrofolate"

## [3] "Tetrahydrofolic acid" "THF"

## [5] "(6S)-Tetrahydrofolate" "(6S)-Tetrahydrofolic acid"

## [7] "(6S)-THFA"

##

## $C00440

## [1] "5-Methyltetrahydrofolate"

##

## $C00143

## [1] "5,10-Methylenetetrahydrofolate"

## [2] "(6R)-5,10-Methylenetetrahydrofolate"

## [3] "5,10-Methylene-THF"

##

## $C00073

## [1] "L-Methionine" "Methionine"

## [3] "L-2-Amino-4methylthiobutyric acid"

##

## $C00019

## [1] "S-Adenosyl-L-methionine" "S-Adenosylmethionine"

## [3] "AdoMet" "SAM"

##

## $C00021

## [1] "S-Adenosyl-L-homocysteine" "S-Adenosylhomocysteine"

##

## $C00155

## [1] "L-Homocysteine" "L-2-Amino-4-mercaptobutyric acid"

## [3] "Homocysteine"

##

## $C02291

## [1] "L-Cystathionine"

##

## $C00097

## [1] "L-Cysteine"

## [2] "L-2-Amino-3-mercaptopropionic acid"

This time, there are no coincidences with the reported sub-network:

cpd.new.fig6 %in% V(g.nafld)$name

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
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However, we can further inquire whether the p-scores of such metabolites
tend to be low among all the metabolites in the whole network from the
fella.data object.

wilcox.test(

x = pscores.nafld[cpd.new.fig6], # metabolites from fig6

y = pscores.nafld[setdiff(id.cpd, cpd.new.fig6)], # rest of metabolites

alternative = "less")

##

## Wilcoxon rank sum test with continuity correction

##

## data: pscores.nafld[cpd.new.fig6] and pscores.nafld[setdiff(id.cpd, cpd.new.fig6)]

## W = 1292, p-value = 7.321e-07

## alternative hypothesis: true location shift is less than 0

The test is indeed significant – despite FELLA does not directly report such
metabolites, its metabolite ranking supports the claims by the authors.

Examining the genes

cbs The authors complement the metabolomic profilings with a differen-
tial gene expression study. One of the main findings is a change of Cbs
expression levels. To link Cbs to the enrichment from FELLA, we will first
map it to its EC number, 4.2.1.22 at the time of writing:

ec.cbs <- entrez2ec[[paste0("mmu:", alias2entrez[["Cbs"]])]] %>%

gsub(pattern = "ec:", replacement = "")

getName(fella.data, ec.cbs)

## $‘4.2.1.22‘

## [1] "cystathionine beta-synthase"

## [2] "serine sulfhydrase"

## [3] "beta-thionase"

## [4] "methylcysteine synthase"

## [5] "cysteine synthase (incorrect)"

## [6] "serine sulfhydrylase"

## [7] "L-serine hydro-lyase (adding homocysteine)"

In Figure 6a, the reaction linked to Cbs and catalysed by the enzyme
4.2.1.22 has the KEGG identifier R01290.

rx.cbs <- "R01290"

getName(fella.data, rx.cbs)

## $R01290

## [1] "L-serine hydro-lyase (adding homocysteine"

## [2] "L-cystathionine-forming)"

## [3] "L-Serine + L-Homocysteine <=> L-Cystathionine + H2O"
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As shown in Figure 6a, Cbs is not directly linked to the metabolites found
through NMR, and nor the reaction neither the enzyme are suggested by
FELLA:

c(rx.cbs, ec.cbs) %in% V(g.nafld)$name

## [1] FALSE FALSE

However, both of them have a relatively low p-score in their respective
categories. This can be seen through the proportion of enzymes (resp. reac-
tions) that show a p-score as low or lower than 4.2.1.22 (resp. R01290)

# enzyme

pscores.nafld[ec.cbs]

## 4.2.1.22

## 0.4299332

mean(pscores.nafld[id.ec] <= pscores.nafld[ec.cbs])

## [1] 0.2040457

# reaction

pscores.nafld[rx.cbs]

## R01290

## 0.2774493

mean(pscores.nafld[id.rx] <= pscores.nafld[rx.cbs])

## [1] 0.03347357

It’s not surprising that none of them is directly reported, because none of
the metabolites participating in the reaction is found in the input. The main
evidence for finding Cbs is gene expression, and our approach gives indirect
hints of this connection.

bhmt The alteration of Bhmt activity is related to the downregulation of
Cbs. Despite not finding evidence of change in Bhmt expression, the authors
argue that its inhibition would explain the increased betaine-to-DMG ratio
in ob/ob mice. Such claim is also backed up by prior studies. To find out the
role of Cbs in our analysis, we will again map it to its EC number, 2.1.1.5:

ec.bhmt <- entrez2ec[[paste0("mmu:", alias2entrez[["Bhmt"]])]] %>%

gsub(pattern = "ec:", replacement = "")

getName(fella.data, ec.bhmt)
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## $‘2.1.1.5‘

## [1] "betaine---homocysteine S-methyltransferase"

## [2] "betaine-homocysteine methyltransferase"

## [3] "betaine-homocysteine transmethylase"

This time, FELLA not only reports it, but also its associated reaction R02821
(represented by an arrow in Figure 6a) and both of its metabolites. While
betaine was already an input metabolite, DMG was a novel finding as dis-
cussed earlier

ec.bhmt %in% V(g.nafld)$name

## [1] TRUE

"R02821" %in% V(g.nafld)$name

## [1] TRUE

This illustrates how FELLA can translate knowledge from dysregulated
metabolites to other molecular levels, such as reactions and enzymes.

slc22a5 The decrease of Bhmt activity is later connected to the upregula-
tion of Slc22a5, also proved within the original study. However, Slc22a5 does
not map to any EC number and therefore it cannot be found through FELLA:

entrez.slc22a5 <- alias2entrez[["Slc22a5"]]

entrez.slc22a5 %in% names(entrez2ec)

## [1] FALSE

As a matter of fact, the only connection that can be found from KEGG is
the role of Slc22a5 in the Choline metabolism in cancer pathway.

path.slc22a5 <- entrez2path[paste0("mmu:", entrez.slc22a5)] %>%

gsub(pattern = "path:", replacement = "")

getName(fella.data, path.slc22a5)

## $mmu05231

## [1] "Choline metabolism in cancer - Mus musculus (mouse)"

Coincidentally, this pathway is reported in the sub-graph:

path.slc22a5 %in% V(g.nafld)$name

## [1] TRUE
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genes from figure 3 We also examined if genes from Table 3 were reach-
able in our analysis. These five literature-derived genes were experimentally
confirmed to show gene expression changes, in order to prove that RNA
extracted after the metabolomic profiling was still reliable for further tran-
scriptomic analyses. However, only Scd2 maps to an enzymatic family:

symbol.fig3 <- c(

"Cd36",

"Scd2",

"Apoa4",

"Lcn2",

"Apom")

entrez.fig3 <- alias2entrez[symbol.fig3] %>% unlist %>% unique

ec.fig3 <- entrez2ec[paste0("mmu:", entrez.fig3)] %T>%

print %>%

unlist %>%

unique %>%

na.omit %>%

gsub(pattern = "ec:", replacement = "")

## <NA> mmu:20250 <NA> <NA> <NA>

## NA "ec:1.14.19.1" NA NA NA

getName(fella.data, ec.fig3)

## $‘1.14.19.1‘

## [1] "stearoyl-CoA 9-desaturase"

## [2] "Delta9-desaturase"

## [3] "acyl-CoA desaturase"

## [4] "fatty acid desaturase"

## [5] "stearoyl-CoA, hydrogen-donor:oxygen oxidoreductase"

Such family is not reported in our sub-graph

ec.fig3 %in% V(g.nafld)$name

## [1] FALSE

In addition, its p-score is high compared to other enzymes

pscores.nafld[ec.fig3]

## 1.14.19.1

## 0.5816303

mean(pscores.nafld[id.ec] <= pscores.nafld[ec.fig3])

## [1] 0.7985928
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The fact that only one gene mapped to an EC number hinders the po-
tential findings using FELLA, and is probably the main reason why FELLA

missed Scd2. In addition, FELLA defines a knowledge model that offers sim-
plicity and interpretability, at the cost of introducing limitations on how
sophisticated its findings can be.

genes from table s2 In parallel with the original study, and cited
within its main body, gene array expression data was collected (Godoy et al.,
2016) and its hits are included in the supplementary Table S2 from (Gogiashvili
et al., 2017). These genes include the already discussed Cbs. We will at-
tempt to link the genes marked as significantly changed to our reported
sub-network. In contrast with Figure 3, all the genes map to an EC number:

symbol.tableS2 <- c(

"Mat1a",

"Ahcyl2",

"Cbs",

"Mat2b",

"Mtr")

entrez.tableS2 <- alias2entrez[symbol.tableS2] %>% unlist %>% unique

ec.tableS2 <- entrez2ec[paste0("mmu:", entrez.tableS2)] %T>%

print %>%

unlist %>%

unique %>%

na.omit %>%

gsub(pattern = "ec:", replacement = "")

## mmu:11720 mmu:74340 mmu:12411 mmu:108645 mmu:238505

## "ec:2.5.1.6" "ec:3.3.1.1" "ec:4.2.1.22" "ec:2.5.1.6" "ec:2.1.1.13"

None of these EC families are reported in the sub-graph:

ec.tableS2 %in% V(g.nafld)$name

## [1] FALSE FALSE FALSE FALSE

But in this case, their scores tend to be lower than the rest of enzymes:

wilcox.test(

x = pscores.nafld[ec.tableS2], # enzymes from table S2

y = pscores.nafld[setdiff(id.ec, ec.tableS2)], # rest of enzymes

alternative = "less")

##

## Wilcoxon rank sum test with continuity correction

##

## data: pscores.nafld[ec.tableS2] and pscores.nafld[setdiff(id.ec, ec.tableS2)]

## W = 1203, p-value = 0.05254

## alternative hypothesis: true location shift is less than 0
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These findings suggest that if the annotation database is complete enough,
FELLA can provide a meaningful priorisisation of the enzymes surrounding
the affected metabolites.

d.4.3 Conclusions

FELLA has been used to give a biological meaning to a list of 6 metabolites
extracted from a multi-omic study of a mouse model of NAFLD. It has been
able to reproduce some findings at the metabolite and gene expression levels,
whereas most of the times missed entities would still present a low ranking
compared to their background in the database.
The bottom line from our analysis in the present vignette is that FELLA not
only works on human studies, but also generalises to animal models.

d.4.4 Reproducibility

This is the result of running sessionInfo()

sessionInfo()

## R version 3.6.2 (2019-12-12)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 16.04.6 LTS

##

## Matrix products: default

## BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0

## LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=es_ES.UTF-8 LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=es_ES.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] parallel stats4 stats graphics grDevices utils datasets

## [8] methods base

##

## other attached packages:

## [1] magrittr_1.5 igraph_1.2.4.1 KEGGREST_1.24.1

## [4] org.Mm.eg.db_3.8.2 org.Hs.eg.db_3.8.2 AnnotationDbi_1.46.0

## [7] IRanges_2.17.5 S4Vectors_0.21.24 Biobase_2.44.0

## [10] BiocGenerics_0.29.2 FELLA_1.5.3 knitr_1.22

##

## loaded via a namespace (and not attached):

## [1] progress_1.2.2 xfun_0.6 lattice_0.20-38

## [4] tcltk_3.6.2 vctrs_0.2.0 htmltools_0.3.6
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## [7] yaml_2.2.0 blob_1.2.0 XML_3.98-1.20

## [10] rlang_0.4.0 pillar_1.4.0 DBI_1.0.0

## [13] bit64_0.9-7 plyr_1.8.4 stringr_1.4.0

## [16] zlibbioc_1.29.0 Biostrings_2.51.5 GOSemSim_2.10.0

## [19] evaluate_0.13 memoise_1.1.0 biomaRt_2.40.1

## [22] curl_3.3 highr_0.8 Rcpp_1.0.1

## [25] backports_1.1.4 BiocManager_1.30.4 XVector_0.23.2

## [28] bit_1.1-14 BiocStyle_2.12.0 hms_0.5.0

## [31] png_0.1-7 digest_0.6.18 stringi_1.4.3

## [34] grid_3.6.2 tools_3.6.2 bitops_1.0-6

## [37] RCurl_1.95-4.12 RSQLite_2.1.1 tibble_2.1.1

## [40] GO.db_3.8.2 crayon_1.3.4 pkgconfig_2.0.2

## [43] zeallot_0.1.0 Matrix_1.2-18 prettyunits_1.0.2

## [46] assertthat_0.2.1 rmarkdown_1.12 httr_1.4.0

## [49] R6_2.4.0 compiler_3.6.2

KEGG version:

cat(getInfo(fella.data))

## T01002 Mus musculus (mouse) KEGG Genes Database

## mmu Release 93.0+/02-23, Feb 20

## Kanehisa Laboratories

## 25,849 entries

##

## linked db pathway

## brite

## module

## ko

## genome

## mgi

## enzyme

## ncbi-geneid

## ncbi-proteinid

## uniprot

Date of generation:

date()

## [1] "Sun Feb 23 10:40:29 2020"

Image of the workspace (for submission):

tempfile(pattern = "vignette_mmu_", fileext = ".RData") %T>%

message("Saving workspace to ", .) %>%

save.image(compress = "xz")

## Saving workspace to /tmp/RtmpAOhDlw/vignette_mmu_149468fbae3.RData
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E D I S E A S E G E N E I D E N T I F I C AT I O N

appendix: benchmarking network propagation
methods for disease gene identification

e.1 descriptive statistics

e.1.1 OpenTargets data streams

File 17.06_association_data.json with gene-disease associations from
June 2017 was downloaded from the Open Targets data download page. The
original table consists of 187,246 rows and 7 data streams, encompassing
associations between 90 diseases and genes with evidence on one or more
streams. We selected those diseases that had at least 50 drug-associated and
genetically-associated genes, resulting in a final list of 22 common diseases
as shown in the main body.

Table 28: Descriptive statistics on the seven OpenTargets data streams and the over-
all score. Included are the binarised scores (genetic and drugs) used for
the benchmark.

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

association_score.overall 187,246 0.079 0.160 0.0004 0.016 0.032 0.064 1.000

association_score.datatypes.genetic_association 187,246 0.015 0.082 0.000 0.000 0.000 0.000 1.000

association_score.datatypes.somatic_mutation 187,246 0.0004 0.015 0.000 0.000 0.000 0.000 1.000

association_score.datatypes.known_drug 187,246 0.023 0.140 0.000 0.000 0.000 0.000 1.000

association_score.datatypes.affected_pathway 187,246 0.0003 0.017 0 0 0 0 1

association_score.datatypes.rna_expression 187,246 0.015 0.037 0.000 0.000 0.000 0.015 0.651

association_score.datatypes.literature 187,246 0.021 0.030 0.000 0.000 0.014 0.030 0.321

association_score.datatypes.animal_model 187,246 0.008 0.036 0.000 0.000 0.000 0.000 0.313

known_drug_binary 187,246 0.035 0.184 0 0 0 0 1

known_gene_binary 187,246 0.032 0.176 0 0 0 0 1

e.1.2 Networks from the STRING database

STRING data: version 10, species 9606, score threshold 400. STRING
uses the ENSEMBL protein identifiers (Zerbino et al., 2018), so the OpenTar-
gets associations were mapped from ENSEMBL gene to ENSEMBL protein
through the map() function from the STRINGdb package (Szklarczyk et al.,
2014). No collisions (i.e. two genes mapping to the same protein) were
encountered.

This appendix reproduces the supplementary data (S1 Appendix) of: Picart-Armada, Sergio,
Steven J. Barrett, David R. Willé, Alexandre Perera-Lluna, Alex Gutteridge, and Benoit H.
Dessailly. “Benchmarking network propagation methods for disease gene identification”.
PLoS computational biology 15, no. 9 (2019): e1007276.
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Figure 94: Histogram of genetic associations. The proposed threshold of 0.16 sepa-
rates lower and higher quality genetic associations and is therefore used
to binarise this data stream.

We choose Net4 as our main network, as it provides a good balance be-
tween mapping and coverage. The edge weights were obtained by rescaling
the STRING combined score to lie in [0, 1]. For the MashUp network-based
feature generation, the experimental and the database STRING-based net-
works before combined through their algorithm, instead of using the com-
bined weight provided by STRING.

The (unweighted) shortest path distribution of the final STRING network
is depicted in figure 95:

e.1.3 The OmniPath network

The original OmniPath file contained a total of 8,951 nodes and 50,247

edges. Removing duplicated edges and keeping the largest component left
a network with 8,580 nodes and 42,145 edges. The proteins are represented
by their UniProt identifier (TheUniProtConsortium, 2017) and later mapped
to ENSEMBL protein (Zerbino et al., 2018). After mapping, 62 genes mapped
to a non-unique protein. For these proteins with multiple gene annotations,
we chose:

1. The gene with a known drug target

2. In case of tie(s), the gene with a known genetic association

3. In case of tie(s), the gene with the highest overall association score

4. In case of tie(s), pick a random gene
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Table 29: Summary of the STRING networks with several filtering options; edges
that meet the filtering condition are dropped. Described are the number
of nodes, edges, rows from the disease table whose protein maps to the
network (originally, 187,246 rows) and coverage of the binarised drugs
and genetic scores. Numbers referring to the largest connected compo-
nent are outside the parentheses, while the original amount is detailed
inside them. The filters apply only to the edges, therefore all the net-
works have the same order (18884), mapped rows and mapped genes
before taking the largest connected component.

network filter nodes edges coverage_allrows coverage_drug coverage_genetic
Net1 combined_score < 400 | experiments < 1 13307(18884) 103607(103648) 153747(178622) 5687(6395) 4593(5751)
Net2 experiments < 600 8854(18884) 37084(37288) 109535(178622) 3791(6395) 3115(5751)
Net3 experiments < 400 & database < 400 14149(18884) 284759(284786) 159554(178622) 6190(6395) 4750(5751)
Net4 combined_score < 700 | (experiments < 1 & database < 1) 11748(18884) 236963(237049) 144920(178622) 6121(6395) 4170(5751)
Net5 combined_score < 700 | (experiments < 1 & database < 1 & textmining < 900) 12022(18884) 240082(240193) 147635(178622) 6160(6395) 4266(5751)
Net6 database < 400 7564(18884) 205866(206177) 110293(178622) 5711(6395) 2881(5751)
All combined_score < 0 18884(18884) 740950(740950) 178622(178622) 6395(6395) 5751(5751)
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Figure 95: Distance distribution in the STRING network, computed for every pair
of nodes. Most of the nodes lie within a distance of 5 or less, suggesting
the presence of biological hubs.

From the original 187,246 rows in the disease table, 125,007 mapped to the
OmniPath network, encompassing a total of 5,084 drugs-related genes and
3,442 genetics-related genes.

e.1.4 Descriptive disease statistics in the STRING network

After mapping the (drugs-related) disease genes to the main STRING net-
work, we observe that every pair of diseases shows overlap. This can range
from a modest amount (less than 10 genes) to more than 100 genes. Exam-
ples of the latter include type II diabetes, coronary heart disease, obesity,
hypertension and bipolar disorder, all of which share a notable background.

In turn, this suggests that some genes might participate in multiple dis-
eases, which is confirmed in figure 97. Several genes participate in 10 or
more diseases (out of 22), thus creating an overlap between any pair of them.
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Figure 96: Disease overlap after mapping the genes to the STRING network. There
are no disjoint diseases.

The fact that all diseases share at least one gene implies that their distance
within the network is always 0. However, we can examine the mean distance
between two diseases, defined as the mean of the distance of every pair of
genes (gi,gj) with gi belonging to the first disease and gj to the second. If
we group the rows and columns using the UPGMA algorithm (Gronau and
Moran, 2007), taking into account that, at the starting point, every disease is
in practice equivalent to a cluster of genes.

Each disease, in turn, tends to form a module within the network. To show
this, we have computed the modularity of each disease, as implemented in
the modularity function from the igraph R package (Csardi and Nepusz,
2006). A modularity greater than zero indicates that the number of connec-
tions within the disease genes is greater than that of a randomly rewired
network. Figure 99 shows how all diseases deviate from their randomised
gene sets, which is something expected. Diseases with higher modularity
can be easier to predict: an example is cardiac arrhythmia, very modular
and well predicted, see the additive models on drugs data.

Another way to examine how close disease genes lie is by representing
the mean distance to the disease genes, starting either (1) from the disease
genes or (2) from the rest of genes (i.e. non-disease genes for this particular
disease). Figure 100 shows how drugs-related genes from a given disease
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Figure 97: Histogram of the number of diseases genes participate in. The majority
of genes belong to a single disease, but a small part of genes are found
in 10 or more diseases, unveiling a common core in drug targets.

have a shorter mean distance to themselves than the rest of genes in the
network.

Finally, we observe that drugs-related disease genes have larger centrality
measures than the rest of nodes in the network (figure 101). This supports
the hypothesis that the centrality itself has predictive power, hereby exam-
ined by including the PageRank centrality measure as a baseline method.



352 disease gene identification

2.6

2.8

2.8

2.5

3.0

3.1

2.9

3.0

2.9

2.9

2.9

3.0

3.0

2.7

2.7

2.9

3.0

2.9

2.9

3.0

2.5

2.8

2.8

2.8

2.9

2.8

3.1

3.1

3.0

3.0

2.9

3.0

2.9

3.0

3.0

2.8

2.9

2.9

3.0

3.0

3.0

3.0

2.7

2.9

2.8

2.9

2.8

2.7

3.0

3.0

3.0

3.0

3.0

3.0

2.9

3.0

3.0

2.8

2.8

2.9

3.0

2.9

3.0

3.0

2.7

2.9

2.5

2.8

2.7

2.5

3.0

3.0

2.9

2.9

2.9

2.9

2.8

2.9

2.9

2.7

2.7

2.8

2.9

2.9

2.9

2.9

2.4

2.7

3.0

3.1

3.0

3.0

3.0

3.0

2.9

3.0

3.1

3.0

3.0

3.0

3.1

3.0

3.0

2.9

3.2

2.8

2.9

3.0

2.9

3.1

3.1

3.1

3.0

3.0

3.0

2.9

3.0

3.0

3.2

3.0

2.9

3.0

3.0

3.0

3.0

2.9

3.1

2.9

2.9

3.0

2.9

3.1

2.9

3.0

3.0

2.9

2.9

3.0

2.7

2.9

3.1

2.9

3.0

3.0

3.2

2.9

2.9

2.8

3.2

2.7

2.7

2.9

2.7

3.0

3.0

3.0

3.0

2.9

3.0

3.0

2.9

2.9

3.1

2.9

3.0

3.0

3.1

3.0

3.0

2.9

3.1

2.8

2.8

2.9

2.8

3.0

2.9

2.9

3.0

2.9

3.1

3.2

3.1

3.1

3.0

3.1

3.0

3.1

3.0

3.0

3.0

3.0

3.1

3.1

3.1

3.1

2.8

2.9

2.9

3.0

3.0

2.9

3.0

3.0

2.9

2.9

3.1

2.9

3.0

3.0

3.1

2.9

2.9

2.9

3.2

2.8

2.8

3.0

2.8

3.0

2.9

2.9

2.9

2.8

3.0

2.9

3.0

3.0

3.0

3.0

2.7

3.0

2.9

2.9

2.8

2.9

2.9

2.9

3.0

3.0

2.7

2.9

3.0

3.0

3.0

2.9

3.0

3.0

3.0

3.0

3.1

3.0

3.0

3.0

3.1

3.0

3.0

2.9

3.2

2.9

2.9

3.0

2.9

3.0

3.0

3.0

3.0

2.9

3.1

3.0

3.2

3.1

3.0

3.1

2.9

3.1

2.9

3.0

3.0

3.0

3.0

3.1

3.1

3.1

2.9

2.9

2.7

2.8

2.8

2.7

3.0

3.0

2.9

3.0

3.0

2.9

2.9

3.0

3.0

2.7

2.8

2.9

3.0

2.9

2.9

3.0

2.5

2.8

2.7

2.9

2.8

2.7

3.0

3.0

2.9

3.0

3.0

2.9

2.8

3.0

3.0

2.8

2.7

2.9

3.0

2.9

2.9

3.0

2.5

2.9

2.9

2.9

2.9

2.8

2.9

2.9

2.8

2.9

3.0

2.9

2.9

2.9

3.0

2.9

2.9

2.7

3.1

2.7

2.7

2.9

2.7

2.9

3.0

3.0

3.0

2.9

3.2

3.1

3.2

3.1

3.1

3.2

2.9

3.2

3.0

3.0

3.0

3.1

2.9

3.1

3.2

3.2

2.8

3.0

2.9

3.0

2.9

2.9

2.8

2.9

2.7

2.8

3.1

2.8

2.9

2.9

3.1

2.9

2.9

2.7

3.1

2.5

2.5

2.8

2.7

3.0

2.9

3.0

3.0

2.9

2.9

2.9

2.7

2.8

3.1

2.8

3.0

2.9

3.1

2.9

2.9

2.7

3.2

2.5

2.6

2.8

2.7

3.0

3.0

3.0

3.0

2.9

3.0

3.0

2.9

2.9

3.1

3.0

3.0

3.0

3.1

3.0

3.0

2.9

3.2

2.8

2.8

2.9

2.9

3.1

2.5

2.7

2.7

2.4

2.9

2.9

2.7

2.8

2.8

2.8

2.7

2.9

2.9

2.5

2.5

2.7

2.8

2.7

2.7

2.9

2.2

2.7

2.8

2.9

2.9

2.7

3.1

3.1

3.0

3.0

2.9

3.0

2.9

3.0

2.9

2.8

2.9

2.9

3.0

3.0

3.0

3.1

2.7

2.8

cardiac arrhythmia

obesity

bipolar disorder

type II diabetes

hypertension

coronary heart disease

schizophrenia

COPD

lupus

type I diabetes

stroke

drug dependence

unipolar depression

Alzheimers disease

arthritis

psoriasis

rheumatoid arthritis

allergy

asthma

ulcerative colitis

multiple sclerosis

Parkinson's disease

ca
rd

ia
c 
ar

rh
yt
hm

ia

ob
es

ity

bi
po

la
r d

is
or

de
r

ty
pe

 II
 d

ia
be

te
s

hy
pe

rte
ns

io
n

co
ro

na
ry

 h
ea

rt 
di
se

as
e

sc
hi
zo

ph
re

ni
a

C
O
P
D
lu
pu

s

ty
pe

 I 
di
ab

et
es

st
ro

ke

dr
ug

 d
ep

en
de

nc
e

un
ip
ol
ar

 d
ep

re
ss

io
n

A
lz
he

im
er

s 
di
se

as
e

ar
th

rit
is

ps
or

ia
si
s

rh
eu

m
at

oi
d 

ar
th

rit
is

al
le
rg

y

as
th

m
a

ul
ce

ra
tiv

e 
co

lit
is

m
ul
tip

le
 s
cl
er

os
is

P
ar

ki
ns

on
's
 d

is
ea

se

2.25

2.50

2.75

3.00

mean distance

Inter-disease mean distance

Figure 98: Mean distance between diseases on the STRING network, grouping rows
and columns by UPGMA. The lower-left block is coincident with the
diseases having a high overlap, as shown in figure 96.
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Figure 99: Modularity by disease, compared to randomised trials of the same num-
ber of genes. First, we have computed the modularity of the drugs-
related disease genes for a given disease, represented through a red dot.
Then, we have sampled the same number of genes uniformly from the
network, a total of 100 times per disease, and computed their modular-
ity (blue triangles). Random trials lie close to 0, due to the definition of
modularity itself, and actual diseases show positive values.
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work: the node degree, the PageRank (as implemented in page.rank,
with uniform prior and default damping factor d = 0.85) in the R pack-
age igraph (Csardi and Nepusz, 2006), and the node betweenness, also
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input. For each disease, all the genes have been separated into drugs-
related disease genes (blue) and non-disease (red). We can appreciate
how, consistently along the three metrics, drugs-related genes tend to
have higher centralities.
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e.1.5 Complex data

Chembl complex data was retrieved from https://www.ebi.ac.uk/chembl/

downloads, specifically release 23 (doi 10.6019/CHEMBL.database.23). The
original data comprises 214 complexes with a mean of 9.29 proteins in each
and a standard error of 14.08. Having mapped the complexes to the STRING
network, 207 non-empty complexes remain, with a mean of 3.251 ENSEMBL
ids in each and a standard error of 4.728.

Table 30: Summary statistics of the size (in proteins per complex) of the 214 com-
plexes before and after mapping to the STRING network. Complexes that
fail to map have been dropped, hence the differences in their total number
N.

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

original 214 9.290 14.080 2 4 6 9 120

mapped to STRING 207 3.251 4.728 1 2 2 3 47

mapped to OmniPath 206 2.981 3.828 1 2 2 3 37

e.1.6 Cross validation splits

Table 31: Number of folds computed for the cross validation in the STRING net-
work. Block cross validation contains slightly less folds because invalid
folds have been discarded.

cv_scheme count

classic 1650

block 1647

representative 1650

https://www.ebi.ac.uk/chembl/downloads
https://www.ebi.ac.uk/chembl/downloads
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Table 32: Summary statistics on the cross validation folds on drugs input. Specifi-
cally, on (1) the number of positives in the training fold, (2) positives in
the validation fold and (3) number of split complexes. The mean values
are outside the parentheses, which contain its standard deviation. We
can observe how classic cross validation splits complexes, but none of the
complex-aware strategies do. Also, block cross validation can lead to data
imbalance, contrary to classic and representative schemes.

train_pos validation_pos split_complexes

disease classic block representative classic block representative classic block representative

allergy 38.0(0.00) 38.0(1.42) 32.0(0.00) 19.0(0.00) 19.0(1.42) 16.0(0.00) 5.2(1.73) 0.0(0.00) 0.0(0.00)
Alzheimers disease 68.7(0.47) 68.7(4.79) 48.0(0.00) 34.3(0.47) 34.3(4.79) 24.0(0.00) 19.0(3.79) 0.0(0.00) 0.0(0.00)
arthritis 125.3(0.47) 125.3(4.91) 81.3(0.47) 62.7(0.47) 62.7(4.91) 40.7(0.47) 20.5(4.05) 0.0(0.00) 0.0(0.00)
asthma 53.3(0.47) 53.3(1.22) 48.7(0.47) 26.7(0.47) 26.7(1.22) 24.3(0.47) 6.3(3.23) 0.0(0.00) 0.0(0.00)
bipolar disorder 98.7(0.47) 98.7(20.02) 50.0(0.00) 49.3(0.47) 49.3(20.02) 25.0(0.00) 16.8(3.34) 0.0(0.00) 0.0(0.00)

cardiac arrhythmia 118.0(0.00) 118.0(22.54) 59.3(0.47) 59.0(0.00) 59.0(22.54) 29.7(0.47) 17.6(3.68) 0.0(0.00) 0.0(0.00)
COPD 77.3(0.47) 77.3(21.00) 44.7(0.47) 38.7(0.47) 38.7(21.00) 22.3(0.47) 6.9(3.34) 0.0(0.00) 0.0(0.00)
coronary heart disease 114.0(0.00) 114.0(19.94) 57.3(0.47) 57.0(0.00) 57.0(19.94) 28.7(0.47) 19.8(3.35) 0.0(0.00) 0.0(0.00)
drug dependence 95.3(0.47) 95.3(10.61) 58.7(0.47) 47.7(0.47) 47.7(10.61) 29.3(0.47) 24.8(4.46) 0.0(0.00) 0.0(0.00)
hypertension 125.3(0.47) 125.3(18.51) 70.7(0.47) 62.7(0.47) 62.7(18.51) 35.3(0.47) 24.7(4.82) 0.0(0.00) 0.0(0.00)

multiple sclerosis 111.3(0.47) 111.3(9.62) 74.0(0.00) 55.7(0.47) 55.7(9.62) 37.0(0.00) 11.5(2.00) 0.0(0.00) 0.0(0.00)
obesity 129.3(0.47) 129.3(16.64) 69.3(0.47) 64.7(0.47) 64.7(16.64) 34.7(0.47) 20.3(3.80) 0.0(0.00) 0.0(0.00)
Parkinson’s disease 96.7(0.47) 96.7(3.73) 77.3(0.47) 48.3(0.47) 48.3(3.73) 38.7(0.47) 17.3(3.91) 0.0(0.00) 0.0(0.00)
psoriasis 70.0(0.00) 70.0(3.18) 53.3(0.47) 35.0(0.00) 35.0(3.18) 26.7(0.47) 17.6(3.87) 0.0(0.00) 0.0(0.00)
rheumatoid arthritis 63.3(0.47) 63.3(2.30) 51.3(0.47) 31.7(0.47) 31.7(2.30) 25.7(0.47) 7.3(2.29) 0.0(0.00) 0.0(0.00)

schizophrenia 108.7(0.47) 108.7(20.06) 46.7(0.47) 54.3(0.47) 54.3(20.06) 23.3(0.47) 9.1(1.94) 0.0(0.00) 0.0(0.00)
stroke 104.0(0.00) 104.0(8.53) 66.0(0.00) 52.0(0.00) 52.0(8.53) 33.0(0.00) 18.1(3.23) 0.0(0.00) 0.0(0.00)
lupus 72.7(0.47) 71.7(22.34) 30.7(0.47) 36.3(0.47) 37.3(22.34) 15.3(0.47) 5.8(1.71) 0.0(0.00) 0.0(0.00)
type I diabetes mellitus 70.7(0.47) 70.2(22.46) 32.7(0.47) 35.3(0.47) 35.8(22.46) 16.3(0.47) 5.7(1.78) 0.0(0.00) 0.0(0.00)
type II diabetes mellitus 102.7(0.47) 102.7(17.99) 54.7(0.47) 51.3(0.47) 51.3(17.99) 27.3(0.47) 15.6(3.43) 0.0(0.00) 0.0(0.00)

ulcerative colitis 34.0(0.00) 34.0(1.68) 27.3(0.47) 17.0(0.00) 17.0(1.68) 13.7(0.47) 5.1(1.70) 0.0(0.00) 0.0(0.00)
unipolar depression 80.7(0.47) 80.7(3.49) 59.3(0.47) 40.3(0.47) 40.3(3.49) 29.7(0.47) 22.9(4.20) 0.0(0.00) 0.0(0.00)
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Figure 102: Data balance by cross-validation strategy. Each boxplot summarises the
folds for a particular disease and cross-validation strategy, whilst the
vertical grey line corresponds to the theoretical balanced proportion.
Due to their definition, the classic and representative strategies keep
the dataset balanced: one third of the drugs-related genes are used
to validate and two thirds are used as seed genes. Inevitably, small
deviations arise if the total number of disease genes is not a multiple of
3. Note, however, how the block scheme sometimes keeps the balance
(diseases such as asthma and Parkinson’s disease), but can lead to data
imbalance if large complexes are involved, like in COPD and type I
diabetes.
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e.2 raw metrics plots

e.2.1 By method
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Figure 103: Performance by method using drugs input and the STRING network.
Methods pr, randomraw and random have no fill colour to represent their
“null model” role.
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Figure 104: Performance by method using drugs input and the OmniPath network.
Methods pr, randomraw and random have no fill colour to represent their
“null model” role.
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e.2.2 By disease
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Figure 105: Performance by disease using drugs input and the STRING network.
Baseline methods pr, randomraw, random and EGAD are left out for visual
clarity.
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clarity.
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e.2.3 Overall performance by disease
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Figure 107: Pairs plot involving disease-level performance (top 20 hits), number of
known drug targets and disease modularity (in STRING). The three
magnitudes correlate positively, implying that in general diseases with
(i) more drugs-related genes and (ii) higher modularity in the network
used by the prioritisers will exhibit better performance. Likewise, dis-
eases with larger gene lists tend to be more modular.
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e.3 network-based methods

e.3.1 Method details

All tests and batch runs were set-up and conducted using the R statisti-
cal programming language (R Core Team, 2016). When no R package was
available, the methodology was re-implemented, building upon existing R
packages whenever possible. Standard R machine learning libraries were
used to train the support vector machine and random forest classifiers. Only
the MashUp algorithm (Cho et al., 2016) required feature generation outside
of the R environment, using the Matlab code from their publication. The
versions of the R packages can be found in table 47.

EGAD (Extending “Guilt by Association” by Degree (Ballouz et al., 2017))
was used here as a baseline comparator. EGAD performs a naïve diffusion
approach via near-neighbours voting since EGAD’s neighbor_voting function
uses the adjacency matrix of the network and no additional parameters.

PageRank is a standard web ranking technology based upon the original
work of Page et al. (Page et al., 1999). The igraph R package implementation
of PageRank (here ppr) was used with default damping factor, d = 0.85.
The latter implements what is commonly referred to as personalised PageR-
ank, because of the custom prior distribution. This prior gives a probability
of 1/ninput to each input gene and 0 otherwise, and forces random walks to
start from the input genes. PageRank has been employed to diffuse disease
seeding information across a two-layered network comprising PPI and GO
hierarchy information (Jiang et al., 2017). Two approaches were developed:
BirgRank (applying traditional PageRank with fixed decay parameters) and
AptRank (with an adaptive diffusion mechanism). Here we considered only
fixed decay parameter PageRank diffusion on the regular, weighted PPI net-
work.

The diffuStats Bioconductor package (Picart-Armada, Thompson, et al.,
2017) implements a variety of diffusion kernels and scoring schemes. Here
we employed the regularised Laplacian kernel with the following diffusion
propagation scores, as summarised in (Picart-Armada, Thompson, et al.,
2017): raw, gm (Genemania-based weighting for positives, negatives and un-
labelled nodes), mc and z. raw comes from (Vandin et al., 2011), while gm

uses the weighting scheme from (Mostafavi et al., 2008). mc was inspired
in (Bersanelli et al., 2016) and z is an exact version of (Erten et al., 2011)
without controlling for degree; both have been used for the enrichment of
metabolomics data (Picart-Armada, Fernández-Albert, et al., 2017). The reg-
ularised Laplacian kernel had the following (default) parameters: sigma2 =

1, add_diag = 1, normalized = FALSE. The weights from the network are
scaled to lie in [0, 1].

RANKS (RAnking of Nodes with Kernelized Score functions (Valentini,
Armano, et al., 2016)) employs kernelised score functions in semi-supervised
learning (here knn and wsld), and has been assessed for disease gene iden-
tification (Valentini, Paccanaro, et al., 2014). Default package settings were
used in all cases (number of neighbours, k = 3 for k-nn and coefficient of
linear decay, d = 2 for wsld). We used the kernel computed with diffuStats.



364 disease gene identification

The bagging SVM method (here bagsvm) is an implementation of ProDiGe1

(Mordelet and Vert, 2011). It approximates a form of PU-learning (Elkan and
Noto, 2008; Yang et al., 2012) by iteratively choosing random subsets from
the unlabelled genes (i.e. those genes that are not known to be associated
with the disease) when training classifiers. This method was directly applied
to the regularised Laplacian kernel computed with diffuStats.

The svm (Support Vector Machine; kernlab R package) and rf (random-
Forest R package) methods apply classical machine learning approaches
on network-based features. Network-based features were generated using
MashUp with default parameters for the human network (800-dimensional,
as recommended by the authors) (Cho et al., 2016). We used the caret (Kunn,
2008) and mlr (Bischl et al., 2016) R packages to define the classification tasks,
grid-search the parameters and make predictions for these two methods.

The SVM method used here is a nu-SVM with RBF kernel. In training,
the negative class examples were randomly under-sampled to match the
number of positive class examples. Parameters were determined via inner
cross-validation with parameter ranges of (0.1, 0.9) for nu and (10−6, 102) for
sigma, with search space linear on nu and logarithmic on sigma. A grid of
resolution 5 in each direction was explored to choose the best parameters,
with an internal loop of 3 repetitions of 3-fold CV.

Random forest parameters were set to default values (see mlr documenta-
tion on classif.randomForest) apart from those tuned via inner cross validation.
These were ranges of (10, 500) for ntree and (1, 5) for nodesize, with linear
search space in both. A grid of resolution 3 in each direction was explored to
choose optimal parameters with an internal loop of 3 repetitions of standard
3-fold CV.

COSNet (COst Sensitive neural Network (Bertoni et al., 2011; Frasca et al.,
2013)) consists of a parametric Hopfield recurrent neural network classifier,
employed within a semi-supervised, cost-sensitive learning context to deal
with networks seeded with highly unbalanced labellings. The cost (regulari-
sation) parameter in the COSNet R package was set to 0.0001 following the
documentation guidelines.

Finally, we included the following three naive baseline methods, for com-
parison purposes: (1) pr, a classic problem naïve ‘non-personalised’ PageR-
ank implementation where input scores on the genes are ignored; (2) randomraw,
which applies the raw diffusion approach from diffuStats (Picart-Armada,
Thompson, et al., 2017) to randomly permuted input scores on the genes;
and (3) random, a uniform re-ranking of input genes without any network
propagation (using sample(n) in R, with n = number of genes in the test
fold).
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e.3.2 Comparing methods

Comparing methods using their predictions on seed and novel genes can
give insights on similarities and differences among the various methods fam-
ilies. The main body contains a comparison using the drugs genes as seeds
and excluding the seeds for the comparison, while here we also include the
seeds (figure 108) and an analogous analysis on the genetically associated
genes (figure 109). Classical MDS plots for specific diseases can be found in
the supplementary file mds_plots.zip and are qualitatively consistent with
their multiview counterparts.

Figure 108: Multi-view MDS plot displaying the preserved Spearman’s footrule
distances representing the differential ranking behaviours of methods
across all 22 diseases when individual sets of drugs seeds were input.
Each plot is for a different combination of input network (columns) and
the predicted gene set that was ranked (rows). Note how COSNet is
excluded from seeds prediction, as by its definition it does not order
the seeds.

In figure 108, two groups of diffusion-based methods consistently clus-
tered together: (i) raw, gm, bagsvm, and (ii) knn and wsld. As a consequence,
the supervised, bagged SVM based in the regularised Laplacian kernel be-
haved like usual diffusion scores (raw) that use the same kernel. Despite
their common background, groups (i) and (ii) appeared together in Omni-
Path but not in STRING, implying that even small methodological differ-
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ences can have a noticeable overall impact. A third group (iii) was formed
by ppr, z and mc, although the latter did not cluster as clearly in some cases.
These methods are also diffusion-based, but mc and z have statistical differ-
ences with raw (Picart-Armada, Thompson, et al., 2017) and this is reflected
in the MDS plot. The supervised methods (iv) rf and svm also tended to
agree, since they were trained on the same network-based features. Finally,
(v) EGAD and COSNet closes the method grouping, suggesting that the artifi-
cial neural network from COSNet resembled neighbour voting approaches.

In figure 109, groups (i) and (ii) stick together in all the scenarios and
become one single family. Group (iii) is only obvious in STRING and non-
seed genes, becoming diluted in the rest.

The tight five method group (raw, gm, bagsvm, knn and wsld), seen only
for OmniPath with input drug seeds in the main body, is apparent with
both networks. Group (iv) and (v) still behaves as so, further justifying this
classification. Despite some differences, these groupings do agree to those
seen for the corresponding networks under drug seed input in figure 108.

Figure 109: Multi-view MDS plot displaying the preserved Spearman’s footrule
distances representing the differential ranking behaviours of methods
across all 22 diseases when individual sets of genetic seeds were input.
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e.3.3 Methods ranking using all the metrics

In the main text we show the method prioritisations using the main met-
rics. Figure 110 contains the same data for all the metrics hereby analysed.
The metrics have been arranged from farthest (top 20 hits) to closest to AU-
ROC. Two conclusions can be drawn from figure 110. First, AUROC behaves
differently from the other five metrics, which in turn behave alike. This is
expected as AUPRC, pAUROC and top k hits emphasise on the performance
at the top ranked entities. Second, as the parameter of pAUROC and top k
hits grows, both metrics rank closer to AUROC, which is also natural.

The fact that top 20 hits, top 100 hits and AUPRC behave so similarly
suggests that the ranking under top k hits is robust for small values of k
(k 6 100) and that AUPRC is indeed a meaningful performance metric for
real scenarios in drug development.
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Figure 110: Ranking of all the methods, using the predictions of the main and the
reduced models on the drugs input, STRING network, block cross val-
idation and averaging over diseases. A column-wise z-score on the
predicted mean is depicted, in order to illustrate the magnitude of the
difference.
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e.4 model summaries and confidence intervals

e.4.1 Model description

Table 33: Summary of all the complete models fitted in this study. Models are ad-
justed separately by input type, not to mix notably different patterns. The
model formulae are R-like, where the left hand side contains the response
and the right hand side describes the independent variables. In all these
models, the reference levels are the pr method, STRING network, clas-
sic cross-validation scheme and allergy. Statistical significance on each
coefficient is computed by comparing the full model with the model that
lacks such regressor.

Model Input type Model type Family Formula
DA1 Drugs Additive Quasibinomial AUROC ∼ method + cv_scheme + network + disease
DA2 Drugs Additive Quasibinomial AUPRC ∼ method + cv_scheme + network + disease
DA3 Drugs Additive Quasipoisson Top20 ∼ method + cv_scheme + network + disease
DA4 Drugs Additive Quasibinomial pAUROC0.1∼ method + cv_scheme + network + disease
DA5 Drugs Additive Quasibinomial pAUROC0.05 ∼ method + cv_scheme + network + disease
DA6 Drugs Additive Quasipoisson Top100 ∼ method + cv_scheme + network + disease
GA1 Genetic Additive Quasibinomial AUROC ∼ method + cv_scheme + network + disease
GA2 Genetic Additive Quasibinomial AUPRC ∼ method + cv_scheme + network + disease
GA3 Genetic Additive Quasipoisson Top20 ∼ method + cv_scheme + network + disease
GA4 Genetic Additive Quasibinomial pAUROC0.1∼ method + cv_scheme + network + disease
GA5 Genetic Additive Quasibinomial pAUROC0.05 ∼ method + cv_scheme + network + disease
GA6 Genetic Additive Quasipoisson Top100 ∼ method + cv_scheme + network + disease
SA1 Stream Additive Quasibinomial AUROC ∼ method + cv_scheme + network + disease
SA2 Stream Additive Quasibinomial AUPRC ∼ method + cv_scheme + network + disease
SA3 Stream Additive Quasipoisson Top20 ∼ method + cv_scheme + network + disease
SA4 Stream Additive Quasibinomial pAUROC0.1∼ method + cv_scheme + network + disease
SA5 Stream Additive Quasibinomial pAUROC0.05 ∼ method + cv_scheme + network + disease
SA6 Stream Additive Quasipoisson Top100 ∼ method + cv_scheme + network + disease

Table 34: Summary of all the reduced models. These additive models have been
fitted to the most relevant scenario: drugs input, STRING network and
block cross-validation strategy. In all these models, the reference levels
are the pr method and allergy.

Model Input type Model type Family Formula
DA1r Drugs Additive Quasibinomial AUROC ∼ method + disease
DA2r Drugs Additive Quasibinomial AUPRC ∼ method + disease
DA3r Drugs Additive Quasipoisson Top20 ∼ method + disease
DA4r Drugs Additive Quasibinomial pAUROC0.1∼ method + disease
DA5r Drugs Additive Quasibinomial pAUROC0.05 ∼ method + disease
DA6r Drugs Additive Quasipoisson Top100 ∼ method + disease
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e.4.2 Drugs input

Additive models

Table 35: Models for the metrics auroc, auprc, top_20_hits using the drugs input
(model names DA1, DA2 and DA3)

auroc auprc top_20_hits

Constant 1.264
∗∗∗ (1.243, 1.285) −4.286

∗∗∗ (−4.346, −4.227) −1.462
∗∗∗ (−1.539, −1.385)

methodrandomraw −0.328
∗∗∗ (−0.345, −0.312) −0.308

∗∗∗ (−0.372, −0.244) −1.223
∗∗∗ (−1.334, −1.112)

methodrandom −0.773
∗∗∗ (−0.790, −0.757) −0.685

∗∗∗ (−0.756, −0.613) −0.994
∗∗∗ (−1.096, −0.892)

methodEGAD 0.122
∗∗∗ (0.105, 0.139) 1.358

∗∗∗ (1.310, 1.406) 1.662
∗∗∗ (1.604, 1.720)

methodppr 0.861
∗∗∗ (0.842, 0.880) 1.964

∗∗∗ (1.917, 2.010) 2.022
∗∗∗ (1.965, 2.078)

methodraw 0.990
∗∗∗ (0.970, 1.009) 2.352

∗∗∗ (2.306, 2.397) 2.299
∗∗∗ (2.244, 2.355)

methodgm −0.652
∗∗∗ (−0.668, −0.636) 1.681

∗∗∗ (1.634, 1.728) 2.126
∗∗∗ (2.070, 2.182)

methodmc 1.044
∗∗∗ (1.024, 1.064) 1.488

∗∗∗ (1.440, 1.536) 1.376
∗∗∗ (1.317, 1.436)

methodz 1.005
∗∗∗ (0.986, 1.025) 2.286

∗∗∗ (2.241, 2.332) 2.253
∗∗∗ (2.197, 2.308)

methodknn 0.981
∗∗∗ (0.962, 1.001) 2.060

∗∗∗ (2.014, 2.106) 2.162
∗∗∗ (2.106, 2.217)

methodwsld 0.976
∗∗∗ (0.956, 0.995) 2.028

∗∗∗ (1.982, 2.074) 2.148
∗∗∗ (2.092, 2.204)

methodCOSNet −0.511
∗∗∗ (−0.527, −0.494) 1.615

∗∗∗ (1.568, 1.662) 1.962
∗∗∗ (1.906, 2.019)

methodbagsvm 1.028
∗∗∗ (1.008, 1.048) 2.337

∗∗∗ (2.292, 2.383) 2.299
∗∗∗ (2.243, 2.354)

methodrf 0.782
∗∗∗ (0.763, 0.801) 2.569

∗∗∗ (2.524, 2.615) 2.454
∗∗∗ (2.399, 2.509)

methodsvm 0.462
∗∗∗ (0.445, 0.480) 2.233

∗∗∗ (2.187, 2.279) 2.246
∗∗∗ (2.190, 2.302)

cv_schemeblock −0.441
∗∗∗ (−0.450, −0.433) −1.243

∗∗∗ (−1.256, −1.230) −0.984
∗∗∗ (−0.997, −0.970)

cv_schemerepresentative −0.218
∗∗∗ (−0.227, −0.210) −1.182

∗∗∗ (−1.195, −1.169) −1.003
∗∗∗ (−1.017, −0.990)

networkomnipath −0.392
∗∗∗ (−0.399, −0.385) −0.517

∗∗∗ (−0.528, −0.506) −0.357
∗∗∗ (−0.367, −0.346)

diseaseAlzheimers disease −0.001 (−0.024, 0.022) 1.081
∗∗∗ (1.032, 1.131) 1.439

∗∗∗ (1.377, 1.500)
diseasearthritis −0.192

∗∗∗ (−0.214, −0.169) 0.846
∗∗∗ (0.795, 0.897) 1.279

∗∗∗ (1.216, 1.341)
diseaseasthma 0.012 (−0.011, 0.035) 0.671

∗∗∗ (0.618, 0.723) 0.792
∗∗∗ (0.725, 0.859)

diseasebipolar disorder −0.211
∗∗∗ (−0.234, −0.188) 1.652

∗∗∗ (1.604, 1.699) 1.864
∗∗∗ (1.805, 1.924)

diseasecardiac arrhythmia 0.007 (−0.016, 0.030) 2.291
∗∗∗ (2.245, 2.337) 2.264

∗∗∗ (2.206, 2.322)
diseaseCOPD −0.188

∗∗∗ (−0.210, −0.165) 1.301
∗∗∗ (1.252, 1.350) 1.519

∗∗∗ (1.457, 1.580)
diseasecoronary heart disease −0.299

∗∗∗ (−0.321, −0.276) 1.299
∗∗∗ (1.250, 1.348) 1.596

∗∗∗ (1.535, 1.656)
diseasedrug dependence −0.018 (−0.041, 0.005) 1.356

∗∗∗ (1.308, 1.405) 1.620
∗∗∗ (1.559, 1.681)

diseasehypertension −0.207
∗∗∗ (−0.230, −0.185) 1.372

∗∗∗ (1.324, 1.421) 1.739
∗∗∗ (1.679, 1.799)

diseasemultiple sclerosis −0.071
∗∗∗ (−0.094, −0.048) 1.970

∗∗∗ (1.923, 2.017) 2.225
∗∗∗ (2.167, 2.283)

diseaseobesity −0.164
∗∗∗ (−0.186, −0.141) 1.506

∗∗∗ (1.458, 1.554) 1.819
∗∗∗ (1.759, 1.878)

diseaseParkinson’s disease 0.207
∗∗∗ (0.184, 0.231) 2.080

∗∗∗ (2.034, 2.127) 2.205
∗∗∗ (2.147, 2.263)

diseasepsoriasis 0.083
∗∗∗ (0.059, 0.106) 0.856

∗∗∗ (0.804, 0.907) 1.076
∗∗∗ (1.012, 1.140)

diseaserheumatoid arthritis −0.163
∗∗∗ (−0.185, −0.140) 0.355

∗∗∗ (0.300, 0.410) 0.539
∗∗∗ (0.469, 0.609)

diseaseschizophrenia −0.083
∗∗∗ (−0.106, −0.060) 1.603

∗∗∗ (1.555, 1.651) 1.752
∗∗∗ (1.692, 1.812)

diseasestroke 0.085
∗∗∗ (0.062, 0.109) 2.057

∗∗∗ (2.011, 2.104) 2.190
∗∗∗ (2.132, 2.249)

diseaselupus −0.248
∗∗∗ (−0.270, −0.225) 1.396

∗∗∗ (1.347, 1.444) 1.526
∗∗∗ (1.465, 1.587)

diseasetype I diabetes −0.174
∗∗∗ (−0.196, −0.151) 1.364

∗∗∗ (1.316, 1.413) 1.506
∗∗∗ (1.445, 1.568)

diseasetype II diabetes −0.252
∗∗∗ (−0.274, −0.229) 1.373

∗∗∗ (1.324, 1.421) 1.590
∗∗∗ (1.530, 1.651)

diseaseulcerative colitis 0.132
∗∗∗ (0.108, 0.155) 0.251

∗∗∗ (0.195, 0.308) 0.431
∗∗∗ (0.360, 0.502)

diseaseunipolar depression 0.022
∗ (−0.002, 0.045) 1.113

∗∗∗ (1.064, 1.163) 1.462
∗∗∗ (1.400, 1.523)

Observations 49,500 49,500 49,500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 36: Predictions of the models DA1, DA2, DA3 (95% confidence intervals after
averaging over disease).

Input: drugs data STRING OmniPath

metric method classic block representative classic block representative

pr (0.764, 0.768) (0.675, 0.681) (0.722, 0.727) (0.686, 0.691) (0.584, 0.590) (0.637, 0.643)
randomraw (0.699, 0.705) (0.599, 0.606) (0.652, 0.657) (0.611, 0.617) (0.503, 0.509) (0.558, 0.565)
random (0.599, 0.605) (0.490, 0.496) (0.545, 0.552) (0.502, 0.508) (0.393, 0.399) (0.448, 0.454)
EGAD (0.785, 0.789) (0.701, 0.707) (0.746, 0.751) (0.711, 0.717) (0.613, 0.620) (0.665, 0.671)
ppr (0.884, 0.887) (0.831, 0.835) (0.860, 0.864) (0.837, 0.842) (0.768, 0.774) (0.805, 0.810)
raw (0.896, 0.900) (0.848, 0.852) (0.874, 0.878) (0.854, 0.858) (0.790, 0.795) (0.825, 0.829)
gm (0.627, 0.633) (0.520, 0.526) (0.575, 0.581) (0.532, 0.538) (0.423, 0.429) (0.478, 0.484)
mc (0.901, 0.904) (0.855, 0.859) (0.880, 0.884) (0.861, 0.865) (0.799, 0.804) (0.832, 0.837)
z (0.898, 0.901) (0.850, 0.854) (0.876, 0.880) (0.856, 0.860) (0.793, 0.798) (0.827, 0.832)
knn (0.896, 0.899) (0.847, 0.851) (0.873, 0.877) (0.853, 0.857) (0.789, 0.794) (0.823, 0.828)
wsld (0.895, 0.898) (0.846, 0.850) (0.873, 0.877) (0.852, 0.856) (0.788, 0.793) (0.823, 0.827)
COSNet (0.660, 0.666) (0.555, 0.561) (0.609, 0.615) (0.567, 0.573) (0.457, 0.464) (0.513, 0.519)
bagsvm (0.900, 0.903) (0.853, 0.857) (0.879, 0.882) (0.859, 0.863) (0.796, 0.802) (0.830, 0.835)
rf (0.876, 0.879) (0.819, 0.824) (0.850, 0.854) (0.826, 0.831) (0.754, 0.760) (0.793, 0.798)

auroc

svm (0.837, 0.841) (0.767, 0.772) (0.805, 0.809) (0.776, 0.781) (0.690, 0.696) (0.736, 0.741)

pr (0.045, 0.048) (0.013, 0.014) (0.014, 0.015) (0.027, 0.029) (0.008, 0.009) (0.008, 0.009)
randomraw (0.033, 0.036) (0.010, 0.011) (0.010, 0.011) (0.020, 0.022) (0.006, 0.006) (0.006, 0.007)
random (0.023, 0.025) (0.007, 0.007) (0.007, 0.008) (0.014, 0.015) (0.004, 0.004) (0.004, 0.005)
EGAD (0.156, 0.162) (0.051, 0.053) (0.054, 0.056) (0.099, 0.104) (0.031, 0.032) (0.033, 0.034)
ppr (0.254, 0.261) (0.089, 0.093) (0.094, 0.098) (0.168, 0.174) (0.055, 0.057) (0.058, 0.061)
raw (0.334, 0.343) (0.126, 0.131) (0.133, 0.138) (0.230, 0.237) (0.079, 0.082) (0.084, 0.087)
gm (0.204, 0.211) (0.069, 0.072) (0.073, 0.076) (0.132, 0.137) (0.042, 0.044) (0.045, 0.047)
mc (0.174, 0.181) (0.057, 0.060) (0.061, 0.063) (0.111, 0.116) (0.035, 0.037) (0.037, 0.039)
z (0.320, 0.328) (0.119, 0.124) (0.126, 0.130) (0.219, 0.225) (0.075, 0.078) (0.079, 0.082)
knn (0.272, 0.280) (0.097, 0.101) (0.103, 0.107) (0.182, 0.189) (0.060, 0.063) (0.064, 0.067)
wsld (0.266, 0.274) (0.095, 0.098) (0.100, 0.104) (0.178, 0.184) (0.059, 0.061) (0.062, 0.065)
COSNet (0.193, 0.200) (0.064, 0.067) (0.068, 0.071) (0.125, 0.130) (0.039, 0.041) (0.042, 0.044)
bagsvm (0.331, 0.339) (0.125, 0.129) (0.131, 0.136) (0.228, 0.234) (0.078, 0.081) (0.083, 0.086)
rf (0.384, 0.393) (0.152, 0.158) (0.160, 0.166) (0.271, 0.278) (0.097, 0.100) (0.102, 0.106)

auprc

svm (0.308, 0.316) (0.114, 0.118) (0.120, 0.124) (0.210, 0.216) (0.071, 0.074) (0.075, 0.078)

pr ( 0.96, 1.07) ( 0.36, 0.40) ( 0.35, 0.39) ( 0.67, 0.75) ( 0.25, 0.28) ( 0.25, 0.27)
randomraw ( 0.27, 0.33) ( 0.10, 0.12) ( 0.10, 0.12) ( 0.19, 0.23) ( 0.07, 0.09) ( 0.07, 0.08)
random ( 0.34, 0.41) ( 0.13, 0.15) ( 0.13, 0.15) ( 0.24, 0.29) ( 0.09, 0.11) ( 0.09, 0.11)
EGAD ( 5.21, 5.46) ( 1.94, 2.05) ( 1.91, 2.01) ( 3.64, 3.83) ( 1.36, 1.43) ( 1.33, 1.41)
ppr ( 7.49, 7.80) ( 2.80, 2.92) ( 2.74, 2.87) ( 5.24, 5.47) ( 1.96, 2.05) ( 1.92, 2.01)
raw ( 9.91, 10.28) ( 3.70, 3.85) ( 3.63, 3.78) ( 6.93, 7.20) ( 2.59, 2.70) ( 2.54, 2.64)
gm ( 8.32, 8.65) ( 3.10, 3.24) ( 3.04, 3.18) ( 5.82, 6.06) ( 2.17, 2.27) ( 2.13, 2.23)
mc ( 3.90, 4.12) ( 1.46, 1.54) ( 1.43, 1.51) ( 2.73, 2.89) ( 1.02, 1.08) ( 1.00, 1.06)
z ( 9.45, 9.81) ( 3.53, 3.68) ( 3.46, 3.60) ( 6.61, 6.87) ( 2.47, 2.57) ( 2.42, 2.52)
knn ( 8.62, 8.96) ( 3.22, 3.36) ( 3.16, 3.29) ( 6.03, 6.28) ( 2.25, 2.35) ( 2.21, 2.31)
wsld ( 8.51, 8.84) ( 3.17, 3.31) ( 3.11, 3.25) ( 5.95, 6.19) ( 2.22, 2.32) ( 2.18, 2.28)
COSNet ( 7.05, 7.36) ( 2.63, 2.76) ( 2.58, 2.70) ( 4.93, 5.15) ( 1.84, 1.93) ( 1.81, 1.89)
bagsvm ( 9.90, 10.27) ( 3.69, 3.85) ( 3.62, 3.77) ( 6.93, 7.19) ( 2.58, 2.69) ( 2.53, 2.64)
rf (11.58, 11.98) ( 4.32, 4.49) ( 4.24, 4.40) ( 8.10, 8.39) ( 3.02, 3.14) ( 2.96, 3.08)

top_20_hits

svm ( 9.39, 9.74) ( 3.50, 3.65) ( 3.44, 3.58) ( 6.57, 6.83) ( 2.45, 2.56) ( 2.40, 2.51)
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The DA3 model was used in the main body to statistically compare method
performances. We explored its diagnostic plots (figure 111) to ensure we
drew sound conclusions from it. The first panel in figure 111 contains the
deviance residuals against the predicted values. The lack of tendencies in
it, reflected by the flat red line, supports that the residuals are healthy and
that the poisson is a suitable distribution to describe the data (Zuur, Alain
F and Ieno, Elena N and Walker, Neil J and Saveliev, Anatoly A and Smith,
Graham M, 2009). The fourth panel from figure 111 shows that there are no
influential observations using Cook’s distance statistic.

Figure 111: Diagnostics plots for the top 20 hits quasipoisson model DA3.
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Table 37: Models for the metrics partial_auroc_0.10, partial_auroc_0.05,
top_100_hits using the drugs input (model names DA4, DA5 and
DA6)

partial_auroc_0.10 partial_auroc_0.05 top_100_hits

Constant −1.544
∗∗∗ (−1.575, −1.514) −2.334

∗∗∗ (−2.372, −2.297) 0.533
∗∗∗ (0.496, 0.570)

methodrandomraw −0.574
∗∗∗ (−0.610, −0.537) −0.778

∗∗∗ (−0.828, −0.727) −0.550
∗∗∗ (−0.593, −0.506)

methodrandom −0.869
∗∗∗ (−0.908, −0.829) −0.992

∗∗∗ (−1.046, −0.938) −0.782
∗∗∗ (−0.829, −0.735)

methodEGAD 1.265
∗∗∗ (1.238, 1.293) 1.287

∗∗∗ (1.253, 1.322) 1.236
∗∗∗ (1.206, 1.266)

methodppr 1.838
∗∗∗ (1.811, 1.865) 1.907

∗∗∗ (1.874, 1.941) 1.606
∗∗∗ (1.577, 1.635)

methodraw 2.061
∗∗∗ (2.034, 2.088) 2.116

∗∗∗ (2.083, 2.149) 1.736
∗∗∗ (1.708, 1.765)

methodgm 0.549
∗∗∗ (0.519, 0.578) 1.005

∗∗∗ (0.970, 1.040) 1.079
∗∗∗ (1.048, 1.110)

methodmc 1.791
∗∗∗ (1.764, 1.819) 1.712

∗∗∗ (1.679, 1.745) 1.472
∗∗∗ (1.442, 1.501)

methodz 1.956
∗∗∗ (1.929, 1.983) 2.034

∗∗∗ (2.001, 2.067) 1.697
∗∗∗ (1.668, 1.726)

methodknn 1.862
∗∗∗ (1.835, 1.889) 1.955

∗∗∗ (1.922, 1.988) 1.683
∗∗∗ (1.654, 1.711)

methodwsld 1.851
∗∗∗ (1.824, 1.878) 1.936

∗∗∗ (1.903, 1.969) 1.674
∗∗∗ (1.645, 1.703)

methodCOSNet 0.792
∗∗∗ (0.764, 0.821) 1.140

∗∗∗ (1.105, 1.174) 1.121
∗∗∗ (1.091, 1.152)

methodbagsvm 2.011
∗∗∗ (1.985, 2.038) 2.089

∗∗∗ (2.056, 2.122) 1.724
∗∗∗ (1.695, 1.753)

methodrf 2.000
∗∗∗ (1.973, 2.027) 2.245

∗∗∗ (2.212, 2.278) 1.837
∗∗∗ (1.809, 1.866)

methodsvm 1.752
∗∗∗ (1.725, 1.780) 2.001

∗∗∗ (1.968, 2.034) 1.711
∗∗∗ (1.682, 1.739)

cv_schemeblock −0.830
∗∗∗ (−0.841, −0.820) −0.958

∗∗∗ (−0.969, −0.946) −0.672
∗∗∗ (−0.680, −0.663)

cv_schemerepresentative −0.530
∗∗∗ (−0.541, −0.520) −0.636

∗∗∗ (−0.647, −0.625) −0.833
∗∗∗ (−0.842, −0.824)

networkomnipath −0.474
∗∗∗ (−0.483, −0.466) −0.432

∗∗∗ (−0.441, −0.423) −0.309
∗∗∗ (−0.316, −0.302)

diseaseAlzheimers disease 0.083
∗∗∗ (0.055, 0.110) 0.304

∗∗∗ (0.272, 0.335) 0.693
∗∗∗ (0.662, 0.723)

diseasearthritis −0.430
∗∗∗ (−0.459, −0.401) −0.297

∗∗∗ (−0.330, −0.263) 0.832
∗∗∗ (0.802, 0.862)

diseaseasthma 0.120
∗∗∗ (0.092, 0.148) 0.216

∗∗∗ (0.185, 0.248) 0.509
∗∗∗ (0.477, 0.540)

diseasebipolar disorder 0.156
∗∗∗ (0.128, 0.183) 0.511

∗∗∗ (0.480, 0.542) 1.024
∗∗∗ (0.995, 1.053)

diseasecardiac arrhythmia 0.548
∗∗∗ (0.521, 0.575) 0.952

∗∗∗ (0.922, 0.982) 1.429
∗∗∗ (1.401, 1.457)

diseaseCOPD −0.080
∗∗∗ (−0.108, −0.051) 0.143

∗∗∗ (0.112, 0.175) 0.644
∗∗∗ (0.613, 0.675)

diseasecoronary heart disease −0.169
∗∗∗ (−0.198, −0.141) 0.076

∗∗∗ (0.044, 0.108) 0.923
∗∗∗ (0.893, 0.953)

diseasedrug dependence 0.264
∗∗∗ (0.236, 0.292) 0.492

∗∗∗ (0.461, 0.523) 1.075
∗∗∗ (1.046, 1.104)

diseasehypertension −0.165
∗∗∗ (−0.194, −0.137) 0.101

∗∗∗ (0.069, 0.133) 1.074
∗∗∗ (1.045, 1.103)

diseasemultiple sclerosis 0.211
∗∗∗ (0.183, 0.239) 0.580

∗∗∗ (0.550, 0.611) 1.288
∗∗∗ (1.260, 1.316)

diseaseobesity 0.042
∗∗∗ (0.015, 0.070) 0.301

∗∗∗ (0.270, 0.333) 1.186
∗∗∗ (1.157, 1.214)

diseaseParkinson’s disease 0.581
∗∗∗ (0.553, 0.608) 0.842

∗∗∗ (0.812, 0.872) 1.322
∗∗∗ (1.294, 1.350)

diseasepsoriasis −0.102
∗∗∗ (−0.130, −0.073) −0.041

∗∗ (−0.073, −0.008) 0.500
∗∗∗ (0.469, 0.532)

diseaserheumatoid arthritis −0.353
∗∗∗ (−0.382, −0.324) −0.236

∗∗∗ (−0.269, −0.203) 0.276
∗∗∗ (0.242, 0.309)

diseaseschizophrenia 0.238
∗∗∗ (0.211, 0.266) 0.506

∗∗∗ (0.476, 0.537) 1.141
∗∗∗ (1.112, 1.170)

diseasestroke 0.463
∗∗∗ (0.436, 0.491) 0.765

∗∗∗ (0.735, 0.795) 1.281
∗∗∗ (1.253, 1.309)

diseaselupus −0.084
∗∗∗ (−0.112, −0.056) 0.205

∗∗∗ (0.173, 0.236) 0.601
∗∗∗ (0.570, 0.632)

diseasetype I diabetes −0.103
∗∗∗ (−0.131, −0.075) 0.145

∗∗∗ (0.113, 0.177) 0.536
∗∗∗ (0.504, 0.567)

diseasetype II diabetes −0.125
∗∗∗ (−0.153, −0.097) 0.138

∗∗∗ (0.106, 0.170) 0.827
∗∗∗ (0.797, 0.857)

diseaseulcerative colitis 0.088
∗∗∗ (0.060, 0.116) 0.173

∗∗∗ (0.141, 0.205) 0.030
∗ (−0.006, 0.065)

diseaseunipolar depression 0.145
∗∗∗ (0.117, 0.173) 0.323

∗∗∗ (0.291, 0.354) 0.890
∗∗∗ (0.860, 0.920)

Observations 49,500 49,500 49,500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 38: Predictions of the models DA4, DA5, DA6 (95% confidence intervals after
averaging over disease).

Input: drugs data STRING OmniPath

metric method classic block representative classic block representative

pr (0.181, 0.188) (0.088, 0.092) (0.115, 0.120) (0.121, 0.126) (0.057, 0.059) (0.075, 0.078)
randomraw (0.110, 0.116) (0.051, 0.054) (0.068, 0.072) (0.072, 0.076) (0.033, 0.034) (0.043, 0.046)
random (0.084, 0.090) (0.039, 0.041) (0.051, 0.055) (0.054, 0.058) (0.024, 0.026) (0.033, 0.035)
EGAD (0.441, 0.450) (0.256, 0.263) (0.317, 0.325) (0.330, 0.337) (0.176, 0.182) (0.224, 0.230)
ppr (0.584, 0.592) (0.379, 0.387) (0.452, 0.460) (0.466, 0.474) (0.276, 0.282) (0.339, 0.347)
raw (0.637, 0.644) (0.433, 0.441) (0.508, 0.516) (0.522, 0.530) (0.322, 0.329) (0.391, 0.399)
gm (0.278, 0.286) (0.144, 0.149) (0.185, 0.191) (0.193, 0.199) (0.094, 0.098) (0.123, 0.128)
mc (0.572, 0.580) (0.368, 0.376) (0.440, 0.449) (0.454, 0.462) (0.266, 0.273) (0.329, 0.336)
z (0.612, 0.620) (0.407, 0.415) (0.481, 0.490) (0.495, 0.504) (0.300, 0.307) (0.366, 0.374)
knn (0.590, 0.597) (0.385, 0.393) (0.458, 0.466) (0.472, 0.480) (0.280, 0.287) (0.345, 0.352)
wsld (0.587, 0.595) (0.382, 0.390) (0.455, 0.463) (0.469, 0.477) (0.278, 0.285) (0.342, 0.349)
COSNet (0.329, 0.338) (0.176, 0.182) (0.224, 0.231) (0.234, 0.241) (0.118, 0.122) (0.152, 0.157)
bagsvm (0.625, 0.633) (0.421, 0.429) (0.495, 0.503) (0.509, 0.517) (0.311, 0.319) (0.379, 0.387)
rf (0.622, 0.630) (0.418, 0.426) (0.492, 0.500) (0.506, 0.514) (0.309, 0.316) (0.376, 0.384)

partial_auroc_0.10

svm (0.563, 0.571) (0.359, 0.367) (0.431, 0.439) (0.445, 0.453) (0.259, 0.265) (0.320, 0.328)

pr (0.111, 0.117) (0.046, 0.048) (0.062, 0.065) (0.075, 0.079) (0.030, 0.032) (0.041, 0.043)
randomraw (0.054, 0.058) (0.021, 0.023) (0.029, 0.032) (0.035, 0.038) (0.014, 0.015) (0.019, 0.021)
random (0.044, 0.047) (0.017, 0.019) (0.024, 0.026) (0.029, 0.031) (0.011, 0.012) (0.015, 0.017)
EGAD (0.313, 0.322) (0.149, 0.154) (0.194, 0.201) (0.228, 0.235) (0.102, 0.106) (0.135, 0.140)
ppr (0.459, 0.468) (0.246, 0.253) (0.310, 0.318) (0.356, 0.364) (0.175, 0.180) (0.226, 0.232)
raw (0.512, 0.520) (0.287, 0.294) (0.357, 0.365) (0.405, 0.413) (0.207, 0.213) (0.265, 0.271)
gm (0.256, 0.264) (0.116, 0.121) (0.154, 0.159) (0.182, 0.189) (0.079, 0.082) (0.105, 0.110)
mc (0.411, 0.420) (0.211, 0.218) (0.270, 0.277) (0.312, 0.320) (0.148, 0.153) (0.194, 0.199)
z (0.491, 0.500) (0.270, 0.277) (0.338, 0.346) (0.385, 0.393) (0.194, 0.199) (0.249, 0.255)
knn (0.471, 0.480) (0.255, 0.262) (0.320, 0.328) (0.366, 0.375) (0.182, 0.187) (0.234, 0.241)
wsld (0.466, 0.475) (0.251, 0.258) (0.316, 0.324) (0.362, 0.370) (0.179, 0.184) (0.231, 0.237)
COSNet (0.282, 0.291) (0.131, 0.136) (0.172, 0.178) (0.203, 0.210) (0.089, 0.093) (0.119, 0.123)
bagsvm (0.505, 0.513) (0.281, 0.288) (0.350, 0.358) (0.398, 0.406) (0.202, 0.208) (0.259, 0.266)
rf (0.544, 0.552) (0.314, 0.321) (0.387, 0.395) (0.436, 0.445) (0.229, 0.235) (0.290, 0.298)

partial_auroc_0.05

svm (0.483, 0.492) (0.264, 0.271) (0.331, 0.338) (0.377, 0.386) (0.189, 0.194) (0.243, 0.249)

pr ( 3.77, 3.98) ( 1.93, 2.04) ( 1.64, 1.73) ( 2.77, 2.92) ( 1.42, 1.49) ( 1.20, 1.27)
randomraw ( 2.16, 2.32) ( 1.10, 1.18) ( 0.94, 1.01) ( 1.59, 1.70) ( 0.81, 0.87) ( 0.69, 0.74)
random ( 1.70, 1.84) ( 0.87, 0.94) ( 0.74, 0.80) ( 1.25, 1.35) ( 0.64, 0.69) ( 0.54, 0.59)
EGAD (13.14, 13.54) ( 6.71, 6.93) ( 5.71, 5.89) ( 9.65, 9.95) ( 4.93, 5.09) ( 4.19, 4.33)
ppr (19.06, 19.55) ( 9.73, 10.00) ( 8.28, 8.51) (14.00, 14.36) ( 7.14, 7.35) ( 6.08, 6.25)
raw (21.74, 22.27) (11.10, 11.39) ( 9.44, 9.69) (15.96, 16.36) ( 8.15, 8.37) ( 6.93, 7.12)
gm (11.22, 11.59) ( 5.73, 5.92) ( 4.87, 5.04) ( 8.24, 8.51) ( 4.21, 4.35) ( 3.58, 3.70)
mc (16.66, 17.11) ( 8.50, 8.75) ( 7.23, 7.45) (12.23, 12.57) ( 6.24, 6.43) ( 5.31, 5.47)
z (20.89, 21.41) (10.67, 10.95) ( 9.07, 9.32) (15.34, 15.73) ( 7.83, 8.04) ( 6.66, 6.85)
knn (20.59, 21.11) (10.51, 10.79) ( 8.94, 9.19) (15.12, 15.51) ( 7.72, 7.93) ( 6.57, 6.75)
wsld (20.42, 20.94) (10.43, 10.71) ( 8.87, 9.11) (15.00, 15.38) ( 7.66, 7.86) ( 6.51, 6.69)
COSNet (11.71, 12.08) ( 5.98, 6.18) ( 5.09, 5.26) ( 8.60, 8.88) ( 4.39, 4.54) ( 3.73, 3.86)
bagsvm (21.47, 22.00) (10.96, 11.25) ( 9.32, 9.58) (15.77, 16.16) ( 8.05, 8.27) ( 6.85, 7.03)
rf (24.06, 24.62) (12.28, 12.59) (10.45, 10.72) (17.66, 18.09) ( 9.02, 9.25) ( 7.67, 7.87)

top_100_hits

svm (21.18, 21.71) (10.81, 11.10) ( 9.20, 9.45) (15.55, 15.95) ( 7.94, 8.15) ( 6.75, 6.94)
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Reduced models

Table 39: Models for the metrics auroc, auprc, top_20_hits using the drugs in-
put, the STRING network and the block cross-validation strategy (model
names rDA1, rDA2 and rDA3)

auroc auprc top_20_hits

Constant 1.166
∗∗∗ (1.120, 1.212) −5.030

∗∗∗ (−5.132, −4.928) −2.853
∗∗∗ (−3.043, −2.664)

methodrandomraw −0.451
∗∗∗ (−0.489, −0.414) −0.282

∗∗∗ (−0.385, −0.180) −1.452
∗∗∗ (−1.732, −1.172)

methodrandom −0.986
∗∗∗ (−1.023, −0.949) −0.720

∗∗∗ (−0.837, −0.604) −0.676
∗∗∗ (−0.887, −0.466)

methodEGAD 0.191
∗∗∗ (0.151, 0.231) 1.112

∗∗∗ (1.032, 1.191) 1.697
∗∗∗ (1.564, 1.830)

methodppr 0.850
∗∗∗ (0.805, 0.895) 1.664

∗∗∗ (1.588, 1.740) 2.064
∗∗∗ (1.935, 2.194)

methodraw 0.821
∗∗∗ (0.776, 0.866) 1.856

∗∗∗ (1.781, 1.931) 2.249
∗∗∗ (2.121, 2.377)

methodgm −0.938
∗∗∗ (−0.975, −0.901) 0.877

∗∗∗ (0.795, 0.958) 1.878
∗∗∗ (1.747, 2.009)

methodmc 0.674
∗∗∗ (0.631, 0.718) 1.046

∗∗∗ (0.966, 1.126) 1.083
∗∗∗ (0.942, 1.224)

methodz 0.682
∗∗∗ (0.638, 0.726) 1.712

∗∗∗ (1.636, 1.787) 2.136
∗∗∗ (2.007, 2.265)

methodknn 0.869
∗∗∗ (0.824, 0.915) 1.935

∗∗∗ (1.861, 2.010) 2.421
∗∗∗ (2.294, 2.549)

methodwsld 0.879
∗∗∗ (0.833, 0.924) 1.954

∗∗∗ (1.880, 2.029) 2.431
∗∗∗ (2.304, 2.558)

methodCOSNet −1.351
∗∗∗ (−1.389, −1.314) 1.050

∗∗∗ (0.969, 1.130) 2.070
∗∗∗ (1.941, 2.200)

methodbagsvm 0.739
∗∗∗ (0.695, 0.783) 1.862

∗∗∗ (1.787, 1.937) 2.258
∗∗∗ (2.130, 2.387)

methodrf 0.613
∗∗∗ (0.570, 0.656) 2.229

∗∗∗ (2.156, 2.303) 2.740
∗∗∗ (2.614, 2.866)

methodsvm 0.251
∗∗∗ (0.210, 0.291) 1.941

∗∗∗ (1.867, 2.016) 2.538
∗∗∗ (2.412, 2.665)

diseaseAlzheimers disease −0.080
∗∗∗ (−0.133, −0.027) 1.252

∗∗∗ (1.163, 1.341) 1.961
∗∗∗ (1.805, 2.117)

diseasearthritis −0.350
∗∗∗ (−0.402, −0.299) 0.885

∗∗∗ (0.792, 0.977) 1.561
∗∗∗ (1.401, 1.722)

diseaseasthma −0.037 (−0.090, 0.016) 0.638
∗∗∗ (0.542, 0.734) 0.885

∗∗∗ (0.712, 1.059)
diseasebipolar disorder −0.253

∗∗∗ (−0.305, −0.201) 1.308
∗∗∗ (1.220, 1.397) 1.797

∗∗∗ (1.639, 1.954)
diseasecardiac arrhythmia −0.143

∗∗∗ (−0.195, −0.090) 2.135
∗∗∗ (2.051, 2.218) 2.889

∗∗∗ (2.739, 3.039)
diseaseCOPD −0.327

∗∗∗ (−0.379, −0.275) 0.656
∗∗∗ (0.560, 0.752) 0.866

∗∗∗ (0.692, 1.040)
diseasecoronary heart disease −0.526

∗∗∗ (−0.577, −0.475) 0.905
∗∗∗ (0.813, 0.998) 1.501

∗∗∗ (1.339, 1.662)
diseasedrug dependence −0.088

∗∗∗ (−0.141, −0.035) 1.391
∗∗∗ (1.304, 1.479) 2.056

∗∗∗ (1.901, 2.211)
diseasehypertension −0.461

∗∗∗ (−0.513, −0.410) 0.868
∗∗∗ (0.775, 0.961) 1.526

∗∗∗ (1.365, 1.687)
diseasemultiple sclerosis −0.159

∗∗∗ (−0.211, −0.106) 2.190
∗∗∗ (2.107, 2.274) 3.041

∗∗∗ (2.892, 3.190)
diseaseobesity −0.411

∗∗∗ (−0.463, −0.360) 1.088
∗∗∗ (0.998, 1.179) 1.671

∗∗∗ (1.512, 1.830)
diseaseParkinson’s disease 0.267

∗∗∗ (0.212, 0.322) 2.594
∗∗∗ (2.511, 2.676) 3.130

∗∗∗ (2.981, 3.279)
diseasepsoriasis −0.042 (−0.095, 0.011) 1.205

∗∗∗ (1.115, 1.294) 1.841
∗∗∗ (1.684, 1.998)

diseaserheumatoid arthritis −0.202
∗∗∗ (−0.254, −0.150) 0.630

∗∗∗ (0.534, 0.726) 1.120
∗∗∗ (0.952, 1.288)

diseaseschizophrenia −0.245
∗∗∗ (−0.297, −0.192) 1.057

∗∗∗ (0.966, 1.148) 1.379
∗∗∗ (1.216, 1.542)

diseasestroke 0.136
∗∗∗ (0.082, 0.190) 2.395

∗∗∗ (2.312, 2.478) 3.064
∗∗∗ (2.915, 3.213)

diseaselupus −0.488
∗∗∗ (−0.539, −0.437) 0.648

∗∗∗ (0.552, 0.744) 0.464
∗∗∗ (0.278, 0.650)

diseasetype I diabetes −0.369
∗∗∗ (−0.420, −0.317) 0.602

∗∗∗ (0.505, 0.698) 0.641
∗∗∗ (0.461, 0.821)

diseasetype II diabetes −0.353
∗∗∗ (−0.404, −0.301) 0.947

∗∗∗ (0.855, 1.039) 1.395
∗∗∗ (1.232, 1.558)

diseaseulcerative colitis 0.192
∗∗∗ (0.137, 0.247) 0.485

∗∗∗ (0.387, 0.584) 0.809
∗∗∗ (0.634, 0.985)

diseaseunipolar depression −0.030 (−0.083, 0.023) 1.148
∗∗∗ (1.058, 1.238) 1.772

∗∗∗ (1.614, 1.929)

Observations 8,250 8,250 8,250

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 40: Models for the metrics partial_auroc_0.10, partial_auroc_0.05,
top_100_hits using the drugs input, the STRING network and the
block cross-validation strategy (model names rDA4, rDA5 and rDA6)

partial_auroc_0.10 partial_auroc_0.05 top_100_hits

Constant −2.106
∗∗∗ (−2.172, −2.039) −3.168

∗∗∗ (−3.253, −3.084) −0.339
∗∗∗ (−0.438, −0.241)

methodrandomraw −0.663
∗∗∗ (−0.748, −0.579) −0.791

∗∗∗ (−0.908, −0.673) −0.640
∗∗∗ (−0.759, −0.521)

methodrandom −0.812
∗∗∗ (−0.900, −0.724) −0.832

∗∗∗ (−0.951, −0.713) −0.623
∗∗∗ (−0.741, −0.505)

methodEGAD 1.369
∗∗∗ (1.307, 1.431) 1.291

∗∗∗ (1.212, 1.370) 1.243
∗∗∗ (1.163, 1.322)

methodppr 1.837
∗∗∗ (1.777, 1.898) 1.866

∗∗∗ (1.790, 1.942) 1.626
∗∗∗ (1.550, 1.703)

methodraw 1.868
∗∗∗ (1.807, 1.928) 1.919

∗∗∗ (1.843, 1.995) 1.730
∗∗∗ (1.654, 1.806)

methodgm −0.332
∗∗∗ (−0.410, −0.254) 0.289

∗∗∗ (0.199, 0.379) 0.556
∗∗∗ (0.469, 0.644)

methodmc 1.590
∗∗∗ (1.529, 1.651) 1.527

∗∗∗ (1.450, 1.605) 1.387
∗∗∗ (1.309, 1.465)

methodz 1.769
∗∗∗ (1.708, 1.829) 1.844

∗∗∗ (1.768, 1.920) 1.653
∗∗∗ (1.577, 1.730)

methodknn 1.923
∗∗∗ (1.862, 1.984) 2.062

∗∗∗ (1.987, 2.138) 1.913
∗∗∗ (1.838, 1.988)

methodwsld 1.936
∗∗∗ (1.875, 1.996) 2.082

∗∗∗ (2.007, 2.158) 1.962
∗∗∗ (1.888, 2.037)

methodCOSNet 0.192
∗∗∗ (0.121, 0.262) 0.700

∗∗∗ (0.616, 0.784) 0.836
∗∗∗ (0.752, 0.920)

methodbagsvm 1.852
∗∗∗ (1.792, 1.913) 1.914

∗∗∗ (1.839, 1.990) 1.724
∗∗∗ (1.649, 1.800)

methodrf 1.991
∗∗∗ (1.931, 2.052) 2.324

∗∗∗ (2.249, 2.399) 2.016
∗∗∗ (1.942, 2.090)

methodsvm 1.705
∗∗∗ (1.645, 1.766) 2.060

∗∗∗ (1.985, 2.136) 1.874
∗∗∗ (1.799, 1.949)

diseaseAlzheimers disease 0.066
∗∗ (0.005, 0.128) 0.482

∗∗∗ (0.412, 0.551) 0.999
∗∗∗ (0.917, 1.081)

diseasearthritis −0.627
∗∗∗ (−0.693, −0.562) −0.353

∗∗∗ (−0.431, −0.275) 0.949
∗∗∗ (0.866, 1.031)

diseaseasthma 0.158
∗∗∗ (0.096, 0.219) 0.312

∗∗∗ (0.242, 0.383) 0.598
∗∗∗ (0.510, 0.685)

diseasebipolar disorder −0.040 (−0.101, 0.022) 0.365
∗∗∗ (0.295, 0.436) 1.193

∗∗∗ (1.113, 1.273)
diseasecardiac arrhythmia 0.245

∗∗∗ (0.184, 0.306) 0.869
∗∗∗ (0.802, 0.937) 1.705

∗∗∗ (1.628, 1.781)
diseaseCOPD −0.388

∗∗∗ (−0.452, −0.325) −0.189
∗∗∗ (−0.264, −0.113) 0.552

∗∗∗ (0.464, 0.640)
diseasecoronary heart disease −0.532

∗∗∗ (−0.597, −0.467) −0.162
∗∗∗ (−0.238, −0.087) 0.900

∗∗∗ (0.817, 0.983)
diseasedrug dependence 0.205

∗∗∗ (0.144, 0.266) 0.553
∗∗∗ (0.484, 0.622) 1.347

∗∗∗ (1.268, 1.426)
diseasehypertension −0.655

∗∗∗ (−0.721, −0.589) −0.273
∗∗∗ (−0.350, −0.196) 0.964

∗∗∗ (0.882, 1.047)
diseasemultiple sclerosis 0.099

∗∗∗ (0.038, 0.160) 0.689
∗∗∗ (0.621, 0.757) 1.561

∗∗∗ (1.483, 1.638)
diseaseobesity −0.385

∗∗∗ (−0.449, −0.321) −0.062 (−0.136, 0.012) 1.125
∗∗∗ (1.045, 1.206)

diseaseParkinson’s disease 0.832
∗∗∗ (0.772, 0.893) 1.302

∗∗∗ (1.236, 1.368) 1.785
∗∗∗ (1.709, 1.861)

diseasepsoriasis −0.002 (−0.064, 0.060) 0.281
∗∗∗ (0.210, 0.352) 0.841

∗∗∗ (0.757, 0.925)
diseaserheumatoid arthritis −0.255

∗∗∗ (−0.318, −0.192) 0.097
∗∗∗ (0.025, 0.170) 0.652

∗∗∗ (0.566, 0.739)
diseaseschizophrenia −0.205

∗∗∗ (−0.267, −0.142) 0.102
∗∗∗ (0.030, 0.175) 1.146

∗∗∗ (1.065, 1.226)
diseasestroke 0.519

∗∗∗ (0.458, 0.579) 0.966
∗∗∗ (0.899, 1.033) 1.661

∗∗∗ (1.584, 1.737)
diseaselupus −0.619

∗∗∗ (−0.684, −0.553) −0.348
∗∗∗ (−0.426, −0.270) 0.378

∗∗∗ (0.287, 0.469)
diseasetype I diabetes −0.640

∗∗∗ (−0.706, −0.574) −0.457
∗∗∗ (−0.537, −0.377) 0.405

∗∗∗ (0.315, 0.496)
diseasetype II diabetes −0.442

∗∗∗ (−0.506, −0.377) −0.122
∗∗∗ (−0.197, −0.047) 0.854

∗∗∗ (0.770, 0.937)
diseaseulcerative colitis 0.371

∗∗∗ (0.310, 0.432) 0.616
∗∗∗ (0.547, 0.685) 0.432

∗∗∗ (0.342, 0.523)
diseaseunipolar depression 0.079

∗∗ (0.018, 0.141) 0.385
∗∗∗ (0.315, 0.456) 1.060

∗∗∗ (0.978, 1.141)

Observations 8,250 8,250 8,250

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 41: Predictions of the models rDA1, rDA2, rDA3, rDA4, rDA5, rDA6 (95%
confidence intervals after averaging over disease). These models are ad-
justed on the drugs data, STRING network and block cross-validation, so
the only independent variables are the method and the disease.

method auroc partial_auroc_0.10 partial_auroc_0.05 auprc top_20_hits top_100_hits

pr (0.723, 0.734) (0.095, 0.104) (0.047, 0.054) (0.019, 0.021) (0.25, 0.33) ( 1.73, 1.99)
randomraw (0.624, 0.636) (0.050, 0.057) (0.021, 0.026) (0.014, 0.016) (0.05, 0.09) ( 0.89, 1.08)
random (0.494, 0.506) (0.044, 0.050) (0.020, 0.025) (0.009, 0.011) (0.12, 0.17) ( 0.91, 1.10)
EGAD (0.759, 0.770) (0.295, 0.309) (0.156, 0.167) (0.056, 0.061) (1.49, 1.66) ( 6.20, 6.69)
ppr (0.858, 0.867) (0.401, 0.417) (0.248, 0.262) (0.094, 0.100) (2.17, 2.37) ( 9.16, 9.75)

raw (0.855, 0.863) (0.408, 0.424) (0.258, 0.272) (0.112, 0.119) (2.62, 2.84) (10.18, 10.80)
gm (0.506, 0.518) (0.069, 0.077) (0.062, 0.070) (0.045, 0.049) (1.79, 1.98) ( 3.07, 3.42)
mc (0.836, 0.845) (0.343, 0.358) (0.190, 0.202) (0.053, 0.057) (0.79, 0.91) ( 7.18, 7.70)
z (0.837, 0.846) (0.385, 0.400) (0.244, 0.258) (0.098, 0.105) (2.33, 2.54) ( 9.42, 10.02)
knn (0.860, 0.869) (0.422, 0.438) (0.287, 0.301) (0.120, 0.127) (3.12, 3.37) (12.25, 12.94)

wsld (0.862, 0.870) (0.425, 0.441) (0.291, 0.305) (0.122, 0.129) (3.15, 3.40) (12.88, 13.58)
COSNet (0.404, 0.416) (0.113, 0.123) (0.092, 0.101) (0.053, 0.057) (2.18, 2.39) ( 4.10, 4.49)
bagsvm (0.844, 0.853) (0.405, 0.420) (0.257, 0.271) (0.113, 0.119) (2.64, 2.87) (10.12, 10.74)
rf (0.827, 0.836) (0.439, 0.454) (0.344, 0.359) (0.156, 0.163) (4.31, 4.61) (13.60, 14.32)
svm (0.770, 0.780) (0.370, 0.385) (0.287, 0.301) (0.121, 0.128) (3.51, 3.78) (11.78, 12.45)
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e.4.3 Genetic input

Table 42: Models for the metrics auroc, auprc, top_20_hits using the genetic input
(model names GA1, GA2 and GA3)

auroc auprc top_20_hits

Constant 0.793
∗∗∗ (0.776, 0.811) −4.383

∗∗∗ (−4.423, −4.344) −1.676
∗∗∗ (−1.776, −1.576)

methodrandomraw −0.337
∗∗∗ (−0.352, −0.322) −0.305

∗∗∗ (−0.333, −0.277) −1.069
∗∗∗ (−1.145, −0.993)

methodrandom −0.759
∗∗∗ (−0.774, −0.744) −0.676

∗∗∗ (−0.707, −0.645) −0.981
∗∗∗ (−1.055, −0.908)

methodEGAD −0.392
∗∗∗ (−0.407, −0.377) −0.264

∗∗∗ (−0.292, −0.236) −0.860
∗∗∗ (−0.931, −0.789)

methodppr −0.001 (−0.016, 0.015) 0.196
∗∗∗ (0.171, 0.221) 0.393

∗∗∗ (0.343, 0.443)
methodraw −0.129

∗∗∗ (−0.145, −0.114) 0.102
∗∗∗ (0.077, 0.128) 0.135

∗∗∗ (0.082, 0.187)
methodgm −1.249

∗∗∗ (−1.265, −1.234) −0.479
∗∗∗ (−0.509, −0.449) −0.355

∗∗∗ (−0.415, −0.295)
methodmc −0.310

∗∗∗ (−0.325, −0.295) 0.005 (−0.021, 0.031) 0.403
∗∗∗ (0.353, 0.453)

methodz −0.330
∗∗∗ (−0.345, −0.314) 0.042

∗∗∗ (0.017, 0.068) −0.071
∗∗ (−0.127, −0.016)

methodknn −0.242
∗∗∗ (−0.257, −0.227) −0.019 (−0.045, 0.007) 0.103

∗∗∗ (0.050, 0.156)
methodwsld −0.243

∗∗∗ (−0.258, −0.228) −0.060
∗∗∗ (−0.087, −0.034) −0.055

∗ (−0.110, 0.0003)
methodCOSNet −0.692

∗∗∗ (−0.707, −0.677) −0.067
∗∗∗ (−0.094, −0.041) −0.052

∗ (−0.108, 0.003)
methodbagsvm −0.356

∗∗∗ (−0.371, −0.341) −0.013 (−0.039, 0.013) 0.106
∗∗∗ (0.053, 0.159)

methodrf −0.497
∗∗∗ (−0.512, −0.482) −0.455

∗∗∗ (−0.484, −0.425) −0.624
∗∗∗ (−0.689, −0.559)

methodsvm −0.629
∗∗∗ (−0.644, −0.614) −0.420

∗∗∗ (−0.449, −0.391) −0.565
∗∗∗ (−0.629, −0.501)

cv_schemeblock 0.045
∗∗∗ (0.038, 0.051) 0.018

∗∗∗ (0.006, 0.030) −0.172
∗∗∗ (−0.196, −0.147)

cv_schemerepresentative 0.118
∗∗∗ (0.111, 0.125) −0.328

∗∗∗ (−0.341, −0.315) −0.473
∗∗∗ (−0.500, −0.446)

diseaseAlzheimers disease 0.082
∗∗∗ (0.064, 0.101) 0.686

∗∗∗ (0.644, 0.729) 1.262
∗∗∗ (1.158, 1.366)

diseasearthritis 0.051
∗∗∗ (0.033, 0.070) 0.938

∗∗∗ (0.898, 0.979) 1.161
∗∗∗ (1.056, 1.266)

diseaseasthma 0.248
∗∗∗ (0.230, 0.267) 0.619

∗∗∗ (0.576, 0.662) 0.516
∗∗∗ (0.401, 0.632)

diseasebipolar disorder −0.082
∗∗∗ (−0.100, −0.064) 0.587

∗∗∗ (0.544, 0.630) 0.424
∗∗∗ (0.306, 0.542)

diseasecardiac arrhythmia −0.075
∗∗∗ (−0.093, −0.057) 1.625

∗∗∗ (1.587, 1.662) 2.476
∗∗∗ (2.381, 2.571)

diseaseCOPD −0.111
∗∗∗ (−0.129, −0.093) 0.584

∗∗∗ (0.541, 0.627) 1.255
∗∗∗ (1.152, 1.359)

diseasecoronary heart disease −0.243
∗∗∗ (−0.262, −0.225) 0.663

∗∗∗ (0.620, 0.705) 1.261
∗∗∗ (1.158, 1.365)

diseasedrug dependence −0.036
∗∗∗ (−0.054, −0.018) 0.835

∗∗∗ (0.793, 0.876) 1.597
∗∗∗ (1.497, 1.698)

diseasehypertension −0.083
∗∗∗ (−0.101, −0.065) 0.995

∗∗∗ (0.955, 1.035) 1.789
∗∗∗ (1.690, 1.888)

diseasemultiple sclerosis 0.041
∗∗∗ (0.023, 0.059) 0.952

∗∗∗ (0.912, 0.993) 1.080
∗∗∗ (0.974, 1.186)

diseaseobesity −0.070
∗∗∗ (−0.088, −0.052) 0.937

∗∗∗ (0.897, 0.978) 1.147
∗∗∗ (1.042, 1.252)

diseaseParkinson’s disease −0.222
∗∗∗ (−0.240, −0.204) 0.418

∗∗∗ (0.374, 0.462) 0.213
∗∗∗ (0.090, 0.337)

diseasepsoriasis 0.154
∗∗∗ (0.136, 0.173) 0.831

∗∗∗ (0.790, 0.872) 1.494
∗∗∗ (1.393, 1.596)

diseaserheumatoid arthritis 0.183
∗∗∗ (0.165, 0.202) 0.643

∗∗∗ (0.601, 0.686) 1.140
∗∗∗ (1.035, 1.245)

diseaseschizophrenia 0.028
∗∗∗ (0.010, 0.046) 0.748

∗∗∗ (0.706, 0.790) 0.613
∗∗∗ (0.499, 0.727)

diseasestroke −0.295
∗∗∗ (−0.314, −0.277) 0.427

∗∗∗ (0.383, 0.471) 0.443
∗∗∗ (0.325, 0.560)

diseaselupus −0.144
∗∗∗ (−0.162, −0.126) 0.416

∗∗∗ (0.372, 0.460) 1.084
∗∗∗ (0.978, 1.190)

diseasetype I diabetes mellitus −0.023
∗∗ (−0.041, −0.005) 0.516

∗∗∗ (0.473, 0.559) 1.072
∗∗∗ (0.966, 1.179)

diseasetype II diabetes mellitus −0.176
∗∗∗ (−0.194, −0.158) 0.494

∗∗∗ (0.450, 0.537) 0.448
∗∗∗ (0.330, 0.565)

diseaseulcerative colitis 0.620
∗∗∗ (0.601, 0.639) 0.829

∗∗∗ (0.788, 0.870) 1.311
∗∗∗ (1.208, 1.414)

diseaseunipolar depression 0.125
∗∗∗ (0.107, 0.143) 0.851

∗∗∗ (0.810, 0.892) 1.382
∗∗∗ (1.280, 1.485)

networkomnipath −0.167
∗∗∗ (−0.172, −0.161) −0.052

∗∗∗ (−0.062, −0.041) 0.202
∗∗∗ (0.181, 0.224)

Observations 49,500 49,500 49,500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 43: Predictions of the models GA1, GA2, GA3 (95% confidence intervals after
averaging over disease).

Input: genetic data STRING OmniPath

metric method classic block representative classic block representative

pr (0.686, 0.691) (0.695, 0.700) (0.710, 0.715) (0.649, 0.654) (0.659, 0.664) (0.675, 0.680)
randomraw (0.609, 0.615) (0.620, 0.625) (0.637, 0.642) (0.569, 0.574) (0.580, 0.585) (0.597, 0.603)
random (0.505, 0.511) (0.517, 0.522) (0.535, 0.541) (0.464, 0.469) (0.475, 0.481) (0.493, 0.499)
EGAD (0.596, 0.601) (0.607, 0.612) (0.624, 0.629) (0.555, 0.561) (0.566, 0.572) (0.584, 0.590)
ppr (0.685, 0.691) (0.695, 0.700) (0.710, 0.715) (0.648, 0.654) (0.659, 0.664) (0.675, 0.680)
raw (0.657, 0.662) (0.667, 0.672) (0.683, 0.688) (0.619, 0.624) (0.629, 0.635) (0.646, 0.651)
gm (0.385, 0.390) (0.395, 0.401) (0.413, 0.419) (0.346, 0.351) (0.356, 0.362) (0.373, 0.379)
mc (0.615, 0.621) (0.626, 0.631) (0.643, 0.648) (0.575, 0.581) (0.586, 0.592) (0.604, 0.609)
z (0.611, 0.616) (0.621, 0.627) (0.638, 0.644) (0.570, 0.576) (0.581, 0.587) (0.599, 0.605)
knn (0.631, 0.637) (0.642, 0.647) (0.658, 0.664) (0.592, 0.597) (0.602, 0.608) (0.620, 0.625)
wsld (0.631, 0.637) (0.641, 0.647) (0.658, 0.663) (0.591, 0.597) (0.602, 0.608) (0.620, 0.625)
COSNet (0.522, 0.528) (0.533, 0.539) (0.551, 0.557) (0.480, 0.486) (0.492, 0.497) (0.510, 0.516)
bagsvm (0.605, 0.610) (0.615, 0.621) (0.632, 0.638) (0.564, 0.570) (0.575, 0.581) (0.593, 0.598)
rf (0.570, 0.576) (0.581, 0.587) (0.599, 0.605) (0.529, 0.535) (0.540, 0.546) (0.558, 0.564)

auroc

svm (0.538, 0.544) (0.549, 0.555) (0.567, 0.573) (0.496, 0.502) (0.507, 0.513) (0.526, 0.531)

pr (0.024, 0.025) (0.025, 0.026) (0.018, 0.018) (0.023, 0.024) (0.023, 0.024) (0.017, 0.017)
randomraw (0.018, 0.019) (0.018, 0.019) (0.013, 0.014) (0.017, 0.018) (0.017, 0.018) (0.012, 0.013)
random (0.012, 0.013) (0.013, 0.013) (0.009, 0.009) (0.012, 0.012) (0.012, 0.013) (0.009, 0.009)
EGAD (0.019, 0.020) (0.019, 0.020) (0.014, 0.014) (0.018, 0.019) (0.018, 0.019) (0.013, 0.013)
ppr (0.029, 0.030) (0.030, 0.031) (0.021, 0.022) (0.028, 0.029) (0.028, 0.030) (0.020, 0.021)
raw (0.027, 0.028) (0.027, 0.028) (0.019, 0.020) (0.026, 0.026) (0.026, 0.027) (0.018, 0.019)
gm (0.015, 0.016) (0.015, 0.016) (0.011, 0.011) (0.014, 0.015) (0.015, 0.015) (0.010, 0.011)
mc (0.024, 0.025) (0.025, 0.026) (0.018, 0.018) (0.023, 0.024) (0.024, 0.025) (0.017, 0.017)
z (0.025, 0.026) (0.026, 0.027) (0.018, 0.019) (0.024, 0.025) (0.024, 0.025) (0.017, 0.018)
knn (0.024, 0.025) (0.024, 0.025) (0.017, 0.018) (0.023, 0.024) (0.023, 0.024) (0.016, 0.017)
wsld (0.023, 0.024) (0.023, 0.024) (0.017, 0.017) (0.022, 0.023) (0.022, 0.023) (0.016, 0.016)
COSNet (0.023, 0.024) (0.023, 0.024) (0.016, 0.017) (0.022, 0.022) (0.022, 0.023) (0.016, 0.016)
bagsvm (0.024, 0.025) (0.024, 0.025) (0.017, 0.018) (0.023, 0.024) (0.023, 0.024) (0.016, 0.017)
rf (0.015, 0.016) (0.016, 0.017) (0.011, 0.012) (0.015, 0.015) (0.015, 0.016) (0.011, 0.011)

auprc

svm (0.016, 0.017) (0.016, 0.017) (0.012, 0.012) (0.015, 0.016) (0.015, 0.016) (0.011, 0.012)

pr (0.51, 0.56) (0.43, 0.47) (0.32, 0.35) (0.63, 0.68) (0.53, 0.58) (0.39, 0.43)
randomraw (0.17, 0.20) (0.14, 0.17) (0.11, 0.12) (0.21, 0.24) (0.18, 0.20) (0.13, 0.15)
random (0.19, 0.21) (0.16, 0.18) (0.12, 0.13) (0.23, 0.26) (0.19, 0.22) (0.14, 0.16)
EGAD (0.21, 0.24) (0.18, 0.20) (0.13, 0.15) (0.26, 0.30) (0.22, 0.25) (0.16, 0.18)
ppr (0.77, 0.82) (0.64, 0.69) (0.48, 0.51) (0.94, 1.01) (0.79, 0.85) (0.58, 0.63)
raw (0.59, 0.64) (0.50, 0.54) (0.37, 0.40) (0.72, 0.78) (0.61, 0.66) (0.45, 0.49)
gm (0.36, 0.40) (0.30, 0.33) (0.22, 0.25) (0.44, 0.48) (0.37, 0.41) (0.27, 0.30)
mc (0.77, 0.83) (0.65, 0.70) (0.48, 0.52) (0.95, 1.02) (0.80, 0.86) (0.59, 0.64)
z (0.48, 0.52) (0.40, 0.44) (0.30, 0.33) (0.59, 0.64) (0.49, 0.54) (0.36, 0.40)
knn (0.57, 0.62) (0.48, 0.52) (0.35, 0.39) (0.70, 0.76) (0.59, 0.64) (0.43, 0.47)
wsld (0.49, 0.53) (0.41, 0.45) (0.30, 0.33) (0.60, 0.65) (0.50, 0.55) (0.37, 0.40)
COSNet (0.49, 0.53) (0.41, 0.45) (0.30, 0.33) (0.60, 0.65) (0.50, 0.55) (0.37, 0.41)
bagsvm (0.57, 0.62) (0.48, 0.52) (0.36, 0.39) (0.70, 0.76) (0.59, 0.64) (0.44, 0.47)
rf (0.27, 0.30) (0.23, 0.26) (0.17, 0.19) (0.33, 0.37) (0.28, 0.31) (0.21, 0.23)

top_20_hits

svm (0.29, 0.32) (0.24, 0.27) (0.18, 0.20) (0.35, 0.39) (0.30, 0.33) (0.22, 0.25)
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Table 44: Models for the metrics partial_auroc_0.10, partial_auroc_0.05,
top_100_hits using the genetic input (model names GA4, GA5 and
GA6)

partial_auroc_0.10 partial_auroc_0.05 top_100_hits

Constant −2.173
∗∗∗ (−2.207, −2.138) −2.758

∗∗∗ (−2.801, −2.715) 0.249
∗∗∗ (0.195, 0.302)

methodrandomraw −0.622
∗∗∗ (−0.654, −0.589) −0.782

∗∗∗ (−0.824, −0.740) −0.514
∗∗∗ (−0.555, −0.473)

methodrandom −0.871
∗∗∗ (−0.905, −0.836) −0.999

∗∗∗ (−1.044, −0.954) −0.784
∗∗∗ (−0.828, −0.739)

methodEGAD −0.040
∗∗∗ (−0.069, −0.012) −0.349

∗∗∗ (−0.386, −0.312) −0.267
∗∗∗ (−0.305, −0.229)

methodppr 0.395
∗∗∗ (0.369, 0.421) 0.398

∗∗∗ (0.366, 0.430) 0.377
∗∗∗ (0.345, 0.409)

methodraw 0.170
∗∗∗ (0.143, 0.197) 0.030

∗ (−0.004, 0.065) 0.085
∗∗∗ (0.051, 0.120)

methodgm −1.096
∗∗∗ (−1.133, −1.059) −0.931

∗∗∗ (−0.976, −0.887) −0.553
∗∗∗ (−0.595, −0.512)

methodmc 0.127
∗∗∗ (0.099, 0.154) 0.163

∗∗∗ (0.130, 0.197) 0.196
∗∗∗ (0.162, 0.230)

methodz 0.141
∗∗∗ (0.114, 0.169) 0.112

∗∗∗ (0.078, 0.145) 0.162
∗∗∗ (0.128, 0.196)

methodknn −0.188
∗∗∗ (−0.217, −0.159) −0.244

∗∗∗ (−0.280, −0.207) −0.106
∗∗∗ (−0.142, −0.070)

methodwsld −0.233
∗∗∗ (−0.263, −0.204) −0.271

∗∗∗ (−0.308, −0.234) −0.122
∗∗∗ (−0.158, −0.085)

methodCOSNet 0.009 (−0.019, 0.037) 0.090
∗∗∗ (0.056, 0.123) 0.103

∗∗∗ (0.069, 0.138)
methodbagsvm 0.013 (−0.015, 0.041) −0.070

∗∗∗ (−0.105, −0.035) −0.004 (−0.040, 0.031)
methodrf −0.473

∗∗∗ (−0.504, −0.442) −0.630
∗∗∗ (−0.670, −0.590) −0.476

∗∗∗ (−0.516, −0.436)
methodsvm −0.475

∗∗∗ (−0.507, −0.444) −0.569
∗∗∗ (−0.608, −0.529) −0.465

∗∗∗ (−0.505, −0.424)
cv_schemeblock −0.024

∗∗∗ (−0.038, −0.011) −0.043
∗∗∗ (−0.060, −0.026) −0.087

∗∗∗ (−0.103, −0.071)
cv_schemerepresentative 0.005 (−0.008, 0.019) −0.028

∗∗∗ (−0.044, −0.011) −0.433
∗∗∗ (−0.451, −0.416)

diseaseAlzheimers disease 0.174
∗∗∗ (0.137, 0.211) 0.255

∗∗∗ (0.209, 0.301) 0.739
∗∗∗ (0.683, 0.796)

diseasearthritis −0.020 (−0.059, 0.019) −0.102
∗∗∗ (−0.152, −0.052) 0.930

∗∗∗ (0.875, 0.985)
diseaseasthma 0.339

∗∗∗ (0.303, 0.375) 0.073
∗∗∗ (0.025, 0.121) 0.350

∗∗∗ (0.290, 0.411)
diseasebipolar disorder −0.075

∗∗∗ (−0.114, −0.036) −0.307
∗∗∗ (−0.360, −0.254) 0.327

∗∗∗ (0.266, 0.388)
diseasecardiac arrhythmia 0.684

∗∗∗ (0.650, 0.718) 1.035
∗∗∗ (0.994, 1.077) 1.750

∗∗∗ (1.700, 1.801)
diseaseCOPD −0.073

∗∗∗ (−0.112, −0.034) −0.140
∗∗∗ (−0.191, −0.090) 0.382

∗∗∗ (0.322, 0.442)
diseasecoronary heart disease −0.160

∗∗∗ (−0.199, −0.120) −0.134
∗∗∗ (−0.184, −0.084) 0.701

∗∗∗ (0.644, 0.758)
diseasedrug dependence 0.048

∗∗ (0.010, 0.086) 0.070
∗∗∗ (0.022, 0.118) 0.759

∗∗∗ (0.702, 0.815)
diseasehypertension 0.148

∗∗∗ (0.110, 0.185) 0.196
∗∗∗ (0.149, 0.243) 1.104

∗∗∗ (1.051, 1.158)
diseasemultiple sclerosis 0.126

∗∗∗ (0.088, 0.164) −0.039 (−0.089, 0.010) 0.865
∗∗∗ (0.810, 0.921)

diseaseobesity 0.144
∗∗∗ (0.107, 0.182) 0.064

∗∗∗ (0.016, 0.113) 0.988
∗∗∗ (0.934, 1.043)

diseaseParkinson’s disease −0.744
∗∗∗ (−0.791, −0.698) −0.811

∗∗∗ (−0.872, −0.750) 0.057
∗ (−0.008, 0.121)

diseasepsoriasis 0.407
∗∗∗ (0.371, 0.443) 0.435

∗∗∗ (0.391, 0.480) 0.925
∗∗∗ (0.870, 0.980)

diseaserheumatoid arthritis 0.402
∗∗∗ (0.366, 0.438) 0.385

∗∗∗ (0.340, 0.430) 0.772
∗∗∗ (0.716, 0.828)

diseaseschizophrenia −0.022 (−0.061, 0.016) −0.136
∗∗∗ (−0.187, −0.086) 0.700

∗∗∗ (0.643, 0.757)
diseasestroke −0.509

∗∗∗ (−0.552, −0.465) −0.535
∗∗∗ (−0.591, −0.479) 0.334

∗∗∗ (0.273, 0.395)
diseaselupus 0.177

∗∗∗ (0.140, 0.214) 0.261
∗∗∗ (0.215, 0.307) 0.558

∗∗∗ (0.499, 0.616)
diseasetype I diabetes mellitus 0.424

∗∗∗ (0.388, 0.459) 0.423
∗∗∗ (0.378, 0.468) 0.658

∗∗∗ (0.601, 0.715)
diseasetype II diabetes mellitus −0.274

∗∗∗ (−0.315, −0.233) −0.381
∗∗∗ (−0.434, −0.327) 0.314

∗∗∗ (0.252, 0.375)
diseaseulcerative colitis 1.008

∗∗∗ (0.974, 1.041) 0.977
∗∗∗ (0.936, 1.019) 0.744

∗∗∗ (0.687, 0.800)
diseaseunipolar depression 0.334

∗∗∗ (0.298, 0.370) 0.320
∗∗∗ (0.275, 0.366) 0.943

∗∗∗ (0.888, 0.997)
networkomnipath −0.145

∗∗∗ (−0.156, −0.134) −0.105
∗∗∗ (−0.119, −0.091) 0.013

∗ (−0.001, 0.026)

Observations 49,500 49,500 49,500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 45: Predictions of the models GA4, GA5 and GA6 (95% confidence intervals
after averaging over disease).

Input: genetic data STRING OmniPath

metric method classic block representative classic block representative

pr (0.111, 0.116) (0.109, 0.113) (0.112, 0.116) (0.098, 0.102) (0.095, 0.099) (0.098, 0.102)
randomraw (0.063, 0.066) (0.061, 0.064) (0.063, 0.066) (0.055, 0.058) (0.053, 0.056) (0.055, 0.058)
random (0.049, 0.052) (0.048, 0.051) (0.050, 0.053) (0.043, 0.046) (0.042, 0.044) (0.043, 0.046)
EGAD (0.107, 0.112) (0.105, 0.109) (0.108, 0.112) (0.094, 0.098) (0.092, 0.096) (0.095, 0.098)
ppr (0.157, 0.162) (0.154, 0.159) (0.158, 0.163) (0.139, 0.143) (0.136, 0.140) (0.139, 0.144)
raw (0.129, 0.134) (0.126, 0.131) (0.130, 0.135) (0.114, 0.118) (0.111, 0.116) (0.114, 0.119)
gm (0.040, 0.042) (0.039, 0.041) (0.040, 0.042) (0.035, 0.037) (0.034, 0.036) (0.035, 0.037)
mc (0.124, 0.129) (0.122, 0.126) (0.125, 0.130) (0.109, 0.114) (0.107, 0.111) (0.110, 0.114)
z (0.126, 0.131) (0.123, 0.128) (0.127, 0.131) (0.111, 0.115) (0.108, 0.113) (0.111, 0.116)
knn (0.094, 0.098) (0.092, 0.096) (0.094, 0.098) (0.082, 0.086) (0.080, 0.084) (0.083, 0.086)
wsld (0.090, 0.094) (0.088, 0.092) (0.090, 0.094) (0.079, 0.082) (0.077, 0.080) (0.079, 0.083)
COSNet (0.112, 0.116) (0.110, 0.114) (0.113, 0.117) (0.098, 0.102) (0.096, 0.100) (0.099, 0.103)
bagsvm (0.112, 0.117) (0.110, 0.114) (0.113, 0.117) (0.099, 0.103) (0.097, 0.101) (0.099, 0.103)
rf (0.072, 0.076) (0.070, 0.074) (0.072, 0.076) (0.063, 0.066) (0.061, 0.065) (0.063, 0.066)

partial_auroc_0.10

svm (0.072, 0.075) (0.070, 0.074) (0.072, 0.076) (0.063, 0.066) (0.061, 0.064) (0.063, 0.066)

pr (0.063, 0.066) (0.061, 0.064) (0.061, 0.065) (0.057, 0.060) (0.055, 0.058) (0.056, 0.059)
randomraw (0.030, 0.032) (0.028, 0.030) (0.029, 0.031) (0.027, 0.029) (0.026, 0.028) (0.026, 0.028)
random (0.024, 0.026) (0.023, 0.025) (0.023, 0.025) (0.022, 0.023) (0.021, 0.022) (0.021, 0.023)
EGAD (0.045, 0.048) (0.043, 0.046) (0.044, 0.047) (0.041, 0.043) (0.039, 0.042) (0.040, 0.042)
ppr (0.091, 0.095) (0.088, 0.092) (0.089, 0.093) (0.083, 0.087) (0.080, 0.083) (0.081, 0.085)
raw (0.065, 0.068) (0.062, 0.066) (0.063, 0.067) (0.059, 0.062) (0.056, 0.059) (0.057, 0.060)
gm (0.026, 0.028) (0.024, 0.026) (0.025, 0.027) (0.023, 0.025) (0.022, 0.024) (0.022, 0.024)
mc (0.074, 0.077) (0.071, 0.074) (0.072, 0.075) (0.067, 0.070) (0.064, 0.067) (0.065, 0.068)
z (0.070, 0.074) (0.067, 0.071) (0.068, 0.072) (0.064, 0.067) (0.061, 0.064) (0.062, 0.065)
knn (0.050, 0.053) (0.048, 0.051) (0.049, 0.052) (0.045, 0.048) (0.043, 0.046) (0.044, 0.047)
wsld (0.049, 0.052) (0.047, 0.049) (0.047, 0.050) (0.044, 0.047) (0.042, 0.045) (0.043, 0.045)
COSNet (0.069, 0.072) (0.066, 0.069) (0.067, 0.070) (0.062, 0.065) (0.060, 0.063) (0.061, 0.064)
bagsvm (0.059, 0.062) (0.057, 0.060) (0.057, 0.061) (0.053, 0.056) (0.051, 0.054) (0.052, 0.055)
rf (0.034, 0.037) (0.033, 0.035) (0.033, 0.036) (0.031, 0.033) (0.030, 0.032) (0.030, 0.032)

partial_auroc_0.05

svm (0.036, 0.039) (0.035, 0.037) (0.036, 0.038) (0.033, 0.035) (0.032, 0.034) (0.032, 0.034)

pr (2.46, 2.59) (2.25, 2.38) (1.59, 1.68) (2.49, 2.63) (2.28, 2.41) (1.61, 1.71)
randomraw (1.46, 1.56) (1.34, 1.43) (0.95, 1.01) (1.48, 1.58) (1.35, 1.45) (0.96, 1.03)
random (1.11, 1.20) (1.02, 1.10) (0.72, 0.78) (1.12, 1.21) (1.03, 1.11) (0.73, 0.79)
EGAD (1.87, 1.99) (1.72, 1.83) (1.21, 1.29) (1.90, 2.02) (1.74, 1.85) (1.23, 1.31)
ppr (3.59, 3.77) (3.29, 3.45) (2.33, 2.45) (3.64, 3.81) (3.34, 3.50) (2.36, 2.48)
raw (2.68, 2.82) (2.45, 2.59) (1.73, 1.83) (2.71, 2.86) (2.48, 2.62) (1.76, 1.86)
gm (1.40, 1.50) (1.28, 1.38) (0.91, 0.98) (1.42, 1.52) (1.30, 1.40) (0.92, 0.99)
mc (2.99, 3.15) (2.74, 2.89) (1.94, 2.04) (3.03, 3.19) (2.78, 2.92) (1.96, 2.07)
z (2.89, 3.04) (2.65, 2.79) (1.87, 1.98) (2.93, 3.08) (2.68, 2.83) (1.90, 2.00)
knn (2.21, 2.34) (2.02, 2.14) (1.43, 1.52) (2.23, 2.36) (2.05, 2.17) (1.45, 1.54)
wsld (2.17, 2.30) (1.99, 2.11) (1.41, 1.49) (2.20, 2.33) (2.02, 2.14) (1.42, 1.51)
COSNet (2.73, 2.87) (2.50, 2.63) (1.77, 1.87) (2.76, 2.91) (2.53, 2.67) (1.79, 1.89)
bagsvm (2.45, 2.58) (2.24, 2.37) (1.58, 1.68) (2.48, 2.62) (2.27, 2.40) (1.60, 1.70)
rf (1.52, 1.62) (1.39, 1.49) (0.98, 1.05) (1.54, 1.64) (1.41, 1.51) (0.99, 1.07)

top_100_hits

svm (1.53, 1.64) (1.41, 1.50) (0.99, 1.06) (1.55, 1.66) (1.42, 1.52) (1.01, 1.08)
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e.4.4 Reference streams

In order to evaluate the extent to which using networks for predicting
disease genes is of use compared against not using networks at all, we have
also checked the extent to which the gene scores from other data streams
in Open Targets could be used to recover known drug targets. To that end,
we have computed the metrics between all the remaining streams and the
drug targets stream, reusing the partitions from the cross validation folds
(see main text).

These metrics are therefore not directly comparable to those presented
above for the network-based approaches, as in this case, the concept of cross-
validation does not apply. It is rather a data subsetting strategy to compute
the estimates, to which the additive models also apply (see table 46).

The genes scores from the Open Targets literature data stream result in the
best alignment with the scores from known drug targets.

There may be some circularity explaining this as the literature data stream
uses publications mentioning known drug targets and their relation to dis-
eases, and also as a gene with a lot of literature describing its relationship
to disease may be more likely to be picked as a potential drug target. The
genetic association data stream is second best in terms of correlation with the
known drug target scores, thereby justifying its usage for finding potential
targets a posteriori.

Table 46: Predictions of the models SA1, SA2, SA3, SA4, SA5 and SA6 (95% confi-
dence intervals after averaging over disease).

Input: streams STRING OmniPath

metric method (stream) classic block representative classic block representative

affected_pathway (0.494, 0.496) (0.496, 0.498) (0.505, 0.508) (0.495, 0.498) (0.497, 0.500) (0.506, 0.509)
animal_model (0.503, 0.506) (0.505, 0.508) (0.514, 0.517) (0.505, 0.507) (0.507, 0.509) (0.516, 0.518)
genetic_association (0.516, 0.519) (0.518, 0.521) (0.527, 0.530) (0.517, 0.520) (0.520, 0.522) (0.529, 0.531)
literature (0.692, 0.694) (0.693, 0.696) (0.701, 0.703) (0.693, 0.695) (0.695, 0.697) (0.702, 0.705)
rna_expression (0.511, 0.513) (0.513, 0.515) (0.522, 0.524) (0.512, 0.515) (0.514, 0.517) (0.523, 0.526)

auroc

somatic_mutation (0.493, 0.496) (0.496, 0.498) (0.505, 0.507) (0.495, 0.498) (0.497, 0.500) (0.506, 0.509)

affected_pathway (0.046, 0.047) (0.047, 0.049) (0.054, 0.055) (0.045, 0.047) (0.047, 0.048) (0.053, 0.055)
animal_model (0.062, 0.063) (0.064, 0.066) (0.072, 0.074) (0.061, 0.063) (0.063, 0.065) (0.072, 0.074)
genetic_association (0.081, 0.083) (0.084, 0.086) (0.095, 0.097) (0.080, 0.082) (0.083, 0.085) (0.094, 0.096)
literature (0.275, 0.279) (0.282, 0.286) (0.310, 0.315) (0.273, 0.277) (0.280, 0.284) (0.308, 0.313)
rna_expression (0.066, 0.067) (0.068, 0.070) (0.077, 0.079) (0.065, 0.067) (0.067, 0.069) (0.076, 0.078)

partial_auroc_0.10

somatic_mutation (0.045, 0.047) (0.047, 0.048) (0.053, 0.055) (0.045, 0.046) (0.046, 0.048) (0.053, 0.054)

affected_pathway (0.023, 0.023) (0.023, 0.024) (0.027, 0.028) (0.022, 0.023) (0.023, 0.024) (0.027, 0.028)
animal_model (0.038, 0.039) (0.040, 0.041) (0.046, 0.048) (0.037, 0.038) (0.039, 0.040) (0.045, 0.046)
genetic_association (0.054, 0.056) (0.056, 0.058) (0.065, 0.067) (0.053, 0.054) (0.055, 0.057) (0.064, 0.066)
literature (0.183, 0.186) (0.189, 0.193) (0.214, 0.218) (0.179, 0.182) (0.185, 0.189) (0.210, 0.214)
rna_expression (0.037, 0.038) (0.039, 0.040) (0.045, 0.046) (0.036, 0.037) (0.038, 0.039) (0.044, 0.045)

partial_auroc_0.05

somatic_mutation (0.022, 0.023) (0.023, 0.024) (0.027, 0.028) (0.022, 0.022) (0.022, 0.023) (0.026, 0.027)

affected_pathway (0.010, 0.010) (0.010, 0.011) (0.009, 0.009) (0.012, 0.012) (0.012, 0.012) (0.010, 0.010)
animal_model (0.018, 0.018) (0.018, 0.019) (0.015, 0.016) (0.021, 0.021) (0.021, 0.022) (0.018, 0.018)
genetic_association (0.019, 0.020) (0.020, 0.020) (0.016, 0.017) (0.022, 0.023) (0.023, 0.024) (0.019, 0.020)
literature (0.050, 0.052) (0.052, 0.053) (0.044, 0.045) (0.059, 0.060) (0.060, 0.062) (0.051, 0.052)
rna_expression (0.013, 0.013) (0.013, 0.014) (0.011, 0.011) (0.015, 0.016) (0.016, 0.016) (0.013, 0.013)

auprc

somatic_mutation (0.010, 0.010) (0.010, 0.011) (0.008, 0.009) (0.011, 0.012) (0.012, 0.012) (0.010, 0.010)

affected_pathway (0.21, 0.23) (0.21, 0.23) (0.15, 0.17) (0.20, 0.22) (0.20, 0.22) (0.14, 0.16)
animal_model (0.75, 0.79) (0.74, 0.79) (0.54, 0.58) (0.70, 0.74) (0.69, 0.73) (0.50, 0.54)
genetic_association (1.06, 1.12) (1.05, 1.11) (0.77, 0.81) (0.99, 1.05) (0.98, 1.04) (0.71, 0.76)
literature (1.94, 2.03) (1.92, 2.01) (1.40, 1.47) (1.81, 1.89) (1.79, 1.88) (1.30, 1.37)
rna_expression (0.44, 0.47) (0.43, 0.47) (0.32, 0.34) (0.41, 0.44) (0.40, 0.44) (0.29, 0.32)

top_20_hits

somatic_mutation (0.20, 0.22) (0.20, 0.22) (0.15, 0.16) (0.19, 0.21) (0.19, 0.21) (0.14, 0.15)

affected_pathway (1.46, 1.52) (1.45, 1.51) (1.09, 1.13) (1.84, 1.91) (1.83, 1.90) (1.37, 1.43)
animal_model (1.90, 1.96) (1.89, 1.95) (1.41, 1.46) (2.39, 2.47) (2.38, 2.46) (1.78, 1.85)
genetic_association (2.15, 2.22) (2.14, 2.21) (1.60, 1.65) (2.71, 2.80) (2.70, 2.78) (2.02, 2.09)
literature (6.85, 7.01) (6.82, 6.98) (5.10, 5.23) (8.64, 8.84) (8.61, 8.81) (6.44, 6.60)
rna_expression (1.63, 1.69) (1.62, 1.68) (1.21, 1.26) (2.06, 2.13) (2.05, 2.12) (1.53, 1.59)

top_100_hits

somatic_mutation (1.45, 1.51) (1.45, 1.50) (1.08, 1.12) (1.83, 1.90) (1.82, 1.89) (1.36, 1.42)
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e.4.5 Interaction effects

As mentioned in the main text, an illustrated by the above tables, in ad-
dition to a main effects model, we also considered how model performance
could vary with other parameters such as choice of network and disease.
In particular, we formally asked whether the differences – or interactions –
we observed were in line or greater than those that would be expected by
chance.

Interaction effects were omitted from our main analysis to avoid overfit-
ting the data and a corresponding underestimation of the residual error and
inflation in statistical significance. Given the large number of combinations
possible, this was a risk even where the majority of interactions were not
significant. This scenario was however in contrast to the current exploration
were the sizes of any such effects were of interest per se. On the other
hand, this exploratory analysis shows that the interaction terms that would
improve the model involve poorly performing methods. Given their lack of
interest in the final recommendations, including such terms would make the
formal comparisons cumbersome, without providing any added value.

To simplify our analysis, motivated by standard statistical theory for multi-
factorial statistical screening designs (Montgomery, 2017), high order inter-
actions, such as those between say CV scheme, network and disease, were
omitted from our calculations and assumed to be little different to statistical
noise. In contrast to standard screening methods, however, which typically
address all binary or two level factors, all factor levels where considered
adding to the complexity of the plots. In a further deviation, two-way in-
teractions, say, were considered independently from all lower order terms,
here one way or main effects, which were removed from the signal prior to
analysis. This, done at the cost of over counting by one the total degrees
of freedom in our data, served to improve interpretability since otherwise
we would have one fewer interaction terms than combinations in the looked
for effects. See figure 112 for an example and the html viewer in the supple-
mentary file interaction_html_viewer.zip for other models and interaction
terms.
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Figure 112: Graphical representation of the disease × method interaction. To
investigate the possible effects of disease on individual method per-
formance under the log10(AUROC), the absolute values of the the ob-
served deviations from those predicted by a simple main effects model
combination are plotted against those values that would be expected
by chance alone under an assumption on normally distributed random
noise. Deviations upwards from a straight line trend suggest interac-
tions that are larger than would be expected by chance. Due to the
use of absolute values -signs of interactions are difficult to interpret
and can confuse comparisons- to ‘fold over’ the two distributions this
is typically referred to as a half normal plot. To maintain a one to one
correspondence between observed deviations and the set of two-way
combinations of disease and method which would otherwise be lost by
accounting degrees of freedom, main effect contributions for disease
and method were removed prior to this analysis. As a guide to the un-
derlying variability, the plot also includes 95% confidence intervals for
the distribution of each absolute value normal reference value under
re-sampling.
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e.5 package versions

Table 47: summary of the package versions used in this work and their source of
download

Number Package Version Source

1 acepack 1.4.1 CRAN
2 affy 1.54.0 Bioconductor
3 affyio 1.46.0 Bioconductor
4 affyPLM 1.52.1 Bioconductor
5 annotate 1.54.0 Bioconductor

6 AnnotationDbi 1.38.2 Bioconductor
7 arrayQualityMetrics 3.32.0 Bioconductor
8 assertthat 0.2.0 CRAN
9 backports 1.0.5 CRAN

10 base64 2.0 CRAN

11 base64enc 0.1-3 CRAN
12 BBmisc 1.11 CRAN
13 beadarray 2.26.1 Bioconductor
14 BeadDataPackR 1.28.0 Bioconductor
15 BH 1.65.0-1 CRAN

16 Biobase 2.36.2 Bioconductor
17 BiocGenerics 0.22.1 Bioconductor
18 BiocInstaller 1.26.1 Bioconductor
19 biomaRt 2.32.1 Bioconductor
20 Biostrings 2.44.2 Bioconductor

21 bitops 1.0-6 CRAN
22 broom 0.4.3 CRAN
23 Cairo 1.5-9 CRAN
24 caret 6.0-78 CRAN
25 caTools 1.17.1 CRAN

26 checkmate 1.8.2 CRAN
27 chron 2.3-50 CRAN
28 coda 0.19-1 CRAN
29 colorspace 1.3-2 CRAN
30 corrplot 0.84 CRAN

31 COSNet 1.10.0 Bioconductor
32 crayon 1.3.4 CRAN
33 curl 2.8.1 CRAN
34 CVST 0.2-1 CRAN
35 data.table 1.10.4 CRAN

36 DBI 0.6-1 CRAN
37 ddalpha 1.3.1 CRAN
38 DEoptimR 1.0-8 CRAN
39 devtools 1.13.4 CRAN
40 dichromat 2.0-0 CRAN
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41 diffuStats 0.101.1 github
42 digest 0.6.12 CRAN
43 dimRed 0.1.0 CRAN
44 doMC 1.3.5 CRAN
45 dplyr 0.5.0 CRAN

46 DRR 0.0.2 CRAN
47 e1071 1.6-8 CRAN
48 EGAD 1.4.1 Bioconductor
49 emmeans 1.1.2 CRAN
50 estimability 1.3 CRAN

51 evaluate 0.10 CRAN
52 expm 0.999-2 CRAN
53 foreach 1.4.3 CRAN
54 formatR 1.5 CRAN
55 Formula 1.2-1 CRAN

56 gcrma 2.48.0 Bioconductor
57 gdata 2.17.0 CRAN
58 gdtools 0.1.7 CRAN
59 genefilter 1.58.1 Bioconductor
60 GenomeInfoDb 1.12.3 Bioconductor

61 GenomeInfoDbData 0.99.0 Bioconductor
62 GenomicRanges 1.28.6 Bioconductor
63 GEOquery 2.42.0 Bioconductor
64 GGally 1.4.0 CRAN
65 ggdendro 0.1-20 CRAN

66 ggplot2 2.2.1 CRAN
67 ggsci 2.8 CRAN
68 git2r 0.20.0 CRAN
69 glue 1.2.0 CRAN
70 gower 0.1.2 CRAN

71 gplots 3.0.1 CRAN
72 graph 1.54.0 Bioconductor
73 gridExtra 2.2.1 CRAN
74 gridSVG 1.6-0 CRAN
75 gsubfn 0.6-6 CRAN

76 gtable 0.2.0 CRAN
77 gtools 3.5.0 CRAN
78 hash 2.2.6 CRAN
79 hexbin 1.27.1 CRAN
80 highr 0.6 CRAN

81 Hmisc 4.0-3 CRAN
82 hms 0.4.1 CRAN
83 htmlTable 1.9 CRAN
84 htmltools 0.3.6 CRAN
85 htmlwidgets 0.9 CRAN
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86 httr 1.3.1 CRAN
87 hwriter 1.3.2 CRAN
88 igraph 1.1.2 CRAN
89 illuminaio 0.18.0 Bioconductor
90 impute 1.50.1 Bioconductor

91 ipred 0.9-6 CRAN
92 IRanges 2.10.5 Bioconductor
93 irlba 2.2.1 CRAN
94 irr 0.84 CRAN
95 iterators 1.0.8 CRAN

96 jsonlite 1.5 CRAN
97 kableExtra 0.7.0 CRAN
98 kernlab 0.9-25 CRAN
99 knitr 1.16 CRAN

100 labeling 0.3 CRAN

101 latticeExtra 0.6-28 CRAN
102 lava 1.5.1 CRAN
103 lazyeval 0.2.0 CRAN
104 limma 3.32.10 Bioconductor
105 lpSolve 5.6.13 CRAN

106 lsmeans 2.27-61 CRAN
107 lubridate 1.7.1 CRAN
108 magrittr 1.5 CRAN
109 markdown 0.8 CRAN
110 memoise 1.1.0 CRAN

111 Metrics 0.1.3 CRAN
112 mime 0.5 CRAN
113 MLmetrics 1.1.1 CRAN
114 mlr 2.11 CRAN
115 mnormt 1.5-5 CRAN

116 ModelMetrics 1.1.0 CRAN
117 multcomp 1.4-8 CRAN
118 munsell 0.4.3 CRAN
119 mvtnorm 1.0-6 CRAN
120 NetPreProc 1.1 CRAN

121 numDeriv 2016.8-1 CRAN
122 openssl 0.9.7 CRAN
123 packrat 0.4.8-1 CRAN
124 parallelMap 1.3 CRAN
125 ParamHelpers 1.10 CRAN

126 PerfMeas 1.2.1 CRAN
127 pkgconfig 2.0.1 CRAN
128 plogr 0.1-1 CRAN
129 plotrix 3.7 CRAN
130 plyr 1.8.4 CRAN
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131 png 0.1-7 CRAN
132 precrec 0.9.1 CRAN
133 preprocessCore 1.38.1 Bioconductor
134 prettyunits 1.0.2 CRAN
135 pROC 1.10.0 CRAN

136 prodlim 1.6.1 CRAN
137 progress 1.2.0 CRAN
138 proto 1.0.0 CRAN
139 PRROC 1.3 CRAN
140 psych 1.7.8 CRAN

141 purrr 0.2.4 CRAN
142 R6 2.2.2 CRAN
143 randomForest 4.6-12 CRAN
144 RANKS 1.0 CRAN
145 RBGL 1.52.0 Bioconductor

146 RColorBrewer 1.1-2 CRAN
147 Rcpp 0.12.14 CRAN
148 RcppArmadillo 0.8.300.1.0 CRAN
149 RcppParallel 4.3.20 CRAN
150 RcppRoll 0.2.2 CRAN

151 RCurl 1.95-4.8 CRAN
152 readr 1.1.1 CRAN
153 recipes 0.1.1 CRAN
154 reshape 0.8.7 CRAN
155 reshape2 1.4.2 CRAN

156 rlang 0.1.1 CRAN
157 rmarkdown 1.8 CRAN
158 robustbase 0.92-7 CRAN
159 ROCR 1.0-7 CRAN
160 rprojroot 1.3-1 CRAN

161 RSQLite 1.1-2 CRAN
162 rstudioapi 0.7 CRAN
163 rvest 0.3.2 CRAN
164 S4Vectors 0.14.7 Bioconductor
165 sandwich 2.3-4 CRAN

166 scales 0.4.1 CRAN
167 selectr 0.3-1 CRAN
168 setRNG 2013.9-1 CRAN
169 sfsmisc 1.1-1 CRAN
170 sqldf 0.4-11 CRAN

171 stargazer 5.2.1 CRAN
172 STRINGdb 1.16.0 Bioconductor
173 stringi 1.1.5 CRAN
174 stringr 1.2.0 CRAN
175 SVGAnnotation 0.93-2 github
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176 svglite 1.2.1 CRAN
177 TH.data 1.0-8 CRAN
178 tibble 1.3.1 CRAN
179 tidyr 0.6.3 CRAN
180 tidyselect 0.2.3 CRAN

181 timeDate 3012.100 CRAN
182 TopKLists 1.0.6 CRAN
183 viridis 0.4.0 CRAN
184 viridisLite 0.2.0 CRAN
185 vsn 3.44.0 Bioconductor

186 whisker 0.3-2 CRAN
187 withr 2.1.1 CRAN
188 XML 3.98-1.12 CRAN
189 xml2 1.2.0 CRAN
190 xtable 1.8-2 CRAN

191 XVector 0.16.0 Bioconductor
192 yaml 2.1.14 CRAN
193 zlibbioc 1.22.0 Bioconductor
194 zoo 1.8-0 CRAN
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