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ABSTRACT

Biotechnological solutions will be a key aspect in our immediate future society where

optimized enzymatic processes through enzyme engineering might be an important solution

for waste transformation, clean energy production, biodegradable materials, and green

chemistry, for example. Here we advocate the importance of structural-based bioinformatics

and molecular modeling tools in such developments. We summarize our recent experiences

indicating a great prediction/success ratio, and suggest that an early in silico phase should be

performed in enzyme engineering studies. Moreover, we demonstrate the potential of a new

technique combining Rosetta and PELE which could provide a faster and more automated

procedure, an essential aspect for a broader use.
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Our society is facing extraordinary challenges that urge us to find (bio)technological

solutions. While we observe a nascent societal turn toward a more responsible consumption,

it is clear that such a change is being implanted at a very slow rate. Moreover, sustainability,

and the hypothetical green deal, will still require such technologies capable of, for example,

waste transformation, cleaner energy production, biodegradable materials, green chemistry,

etc. Part of these developments will take place in the form of industrial enzymatic processes,

involving a significant effort in two key aspects: enzyme bioprospecting1,2 and engineering3,4.

The first one aims at identifying novel enzymes with optimal or improved properties toward

some goal, such as substrate specificity/promiscuity, thermal stability, increased activity, etc,

while the second one seeks to produce new variants, after introducing mutations, with a

similar objective but from an already characterized enzyme. In both cases, the explosion of

data coupled with the extraordinary development of hardware and software tools offers

encouraging perspectives.

In the past few years, we have witnessed a significant number of proof of concept studies

where computer simulations make a difference in selecting and delivering improved

enzymatic variants5–11. The potential of running massive parallel computational experiments

together with the improvement of the simulation’s quality, has provided some of the finest

examples in recent enzyme engineering. Furthermore, current developments in sequence

annotation and automated biochemical characterization will soon provide enough big data to

develop the next wave of enzyme optimization tools based on machine learning. Nonetheless,

while significant efforts have been reported in the area, it is still in its early stages12. We want

to discuss here, however, more traditional structural-based bioinformatics and molecular

modeling techniques and, in particular, those developed in our laboratory. We want to

convince you that today, an enzyme engineering campaign should start with a thorough
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modeling effort, in a similar way that pharmaceutical companies carry on any drug

development project. Thus, we aim at demonstrating the maturity of structural-based

modeling techniques in enzymatic biotechnology, at the level of both bioinformatics and

molecular mechanics.

RESULTS AND DISCUSSION

It is all about the structure. Protein engineering has successfully incorporated

structural-based computational selection and design techniques thanks to its fast and low-cost

implementation. Accordingly, we find multiple laboratories devoted to methods development

and applications; software pieces such as Rosetta13,14 ORBIT15,16, OSPREY17, 3DM18, and

FoldX19 have become widespread techniques nowadays. In our group, we typically combine

biochemical and biophysical molecular modeling techniques into protocols that allow

describing the substrate binding events and (if necessary) electronic properties that take place

in the catalytic process20. While each application might require different protocols, a typical

procedure (Figure 1) includes the following steps:

(1) Global enzyme and substrate binding search. We use our PELE (Protein Energy

Landscape Exploration) software21,22, a Monte Carlo (MC) sampling method that includes

protein structure prediction techniques, to carry out an unconstrained ligand exploration. This

is intended mostly when searching for potential active/binding sites or probing the substrate’s

possibilities for entering buried ones (study of migration pathways). In this step, we measure

different metrics such as potential catalytic distances, the substrate solvent accessible surface

area, or the enzyme-substrate interaction energy profile, where the lowest energy minima

correspond with the main binding modes. While we might already enter some specific

mutations in this initial exploration, this is typically reserved for step 2.
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(2) In silico mutagenesis and local exploration. Once the active or binding sites of interest

have been identified, or different binding modes found within a given active site, we proceed

with a higher resolution local search coupled with variant generation. At this point, we follow

different metrics describing the protein-substrate interactions: catalytic distances, interaction

energies, time (MC steps) of residence, solvent accessibility, etc.

(3) Quantum Mechanics/Molecular Mechanics (QM/MM) evaluation. In some particular

cases, as when aiming at increasing oxidation rates, QM/MM calculations are performed on

selected snapshots. These might provide additional valuable metrics, such as the estimation of

the spin densities on the substrate23–25.

(4) Mutant selection and experimental validation. Mutants are selected based on the different

computational metrics combined with a sequence conservation study, which we typically

perform using HotSpot Wizard26. Selected variants are proposed for in vitro validation, the

outcome of which drives typically a second round of in silico screening where we aim at

combining multiple experimentally proved mutations.

These different steps, along with additional implementations shown below, have been

developed in a modular fashion and implemented in a modeling platform. Current efforts, in

addition, are focusing on porting these modular packages into the BioExcel building blocks

and biocontainers formats.

Next, some specific applications will be revised. The potential of performing a global

enzyme-substrate search is illustrated in the rational design of a highly stable manganese

peroxidase (MnP6)27, which we activated (zero initial activity) toward

2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) oxidation after the introduction

of two nonconserved surface mutations far away from the active site28. In this particular case,
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simulations allowed the characterization of a substrate binding site that challenged the

established one. QM/MM spin density calculations, which included the heme compound I

prosthetic group, further indicated the presence of a strong radical character in the substrate,

indicative of its oxidation. After experimental validation of the in silico proposed double

mutant, we obtained a comparable specificity constant to that of active peroxidases.

Obviously, in most cases, a global search is not necessary and we can proceed to a local

exploration of enzyme-substrate molecular interactions in the active site, coupled with variant

generation. Using such a procedure, for example, we successfully engineered a double mutant

high-redox-potential laccase with enhanced aniline oxidation and stability in an acidic

medium29. One of the mutations was a negatively charged residue which improved the

chemical environment of the active site, modifying the redox potential of aniline and

stabilizing the oxidized form. Finally, after experimental validation, the double mutant

laccase increased its catalytic activity with a 2-fold increase in the turnover number.

A local analysis with PELE was also used to engineer a Marasmius rotula unspecific

peroxidase (MroUPO) for substrate modulation. In this particular case, substrate (active site)

entrance simulations were performed to generate variants along the entrance pathway that

significantly affected the substrate specificity profile30.

The potential of quickly and accurately probing variants was exploited in implementing the

first in silico atomistic directed evolution protocol. A fungal laccase was engineered for

activity increase, obtaining a redox potential boost from 740 to 790 mV, with a concomitant

improvement in thermal and acidic pH stability31. Interestingly, parallels in silico and in vitro

directed evolution studies were attempted, achieving analogous results leading to the first

single mutant. Molecular modeling, however, allowed a second round of saturated
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mutagenesis on selected positions, leading to the final double mutant. Importantly, a round of

in silico directed evolution, mapping all possible single mutants on ~40-50 amino acids

surrounding the active site, was accomplished in only 2 days of modest supercomputing

resources (~64-128 computing cores). These examples (see also Table 1), along with many

others performed recently for enzyme characterization32, indicate the maturity of atomistic

molecular modeling.

Structural-based active site analysis has also been recently used in our laboratory for

bioprospecting, a key aspect when building an enzyme-driven biotechnological process.

When aiming for substrate promiscuity, for example, enzyme-substrate active site diffusion

simulations can accurately determine and quantify experimental substrates33. These

simulations, however, are still too demanding when aiming at screening large (sequence)

data. Thus, we developed a structural bioinformatics descriptor, the effective volume, capable

of predicting esterases with a promiscuity substrate profile. This property normalizes the

volume of the active site by the solvent accessible surface area of the catalytic triad: while

increasing the size might increase promiscuity, a too exposed active site will quickly reduce

the number of esters hydrolyzed. The full calculation requires about ~20 min per protein in a

single computing core, thus being able to quickly analyze on the order of thousands of

sequences. To address genome or metagenome data, however, predictions should be

performed much faster, probably at the sequence space level; here machine learning

techniques could come in handy. For this purpose, an ensemble classifier was developed by

combining 3 classical machine learning algorithms: KNN (k-nearest neighbors), SVM

(support vector machines), and a linear model, specifically the RidgeClassifier

implementation in scikit-learn. This ensemble approach can identify promiscuous esterases,

those with activity toward more than 20 substrates (from a 96 substrates set), with an MCC
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(Matthew correlation coefficient) score of 0.76 in the test set compared to the mean score of

0.67 ± 0,09 if we take into account individually the models34. Thus, better and more robust

predictions can be produced by combining multiple learners.

Having studied the rules for esterase substrate promiscuity, we further converted a

low-promiscuous serine ester hydrolase into a high-promiscuous one, while maintaining high

catalytic efficiency35. Our goal, and that of most modeling campaigns, was to provide a rather

small set of mutants for experimental validation with a high success rate. Using our PELE

pipeline, we provided 11 mutants, 4 of which increased the substrate promiscuity, two of

them with lowered catalytic efficiencies, and the other two acquired prominent promiscuity

and high activity levels (kcat up to ca. 152.124 min-1 in the WT compared to kcat up to ca.

216.103 min-1 and 119.348 min-1 in the successful mutants). In the end, we were able to

computationally convert a low-promiscuous esterase (16 hydrolyzed esters out of 96 tested)

into a prominent one (63 out of 96) while maintaining high efficiency.

How long does it take to perform such designs? The average time for a first round of

computational design takes approximately 2-4 weeks, where the first 1-2 days are employed

in learning about the system and in the molecular model preparation, followed by a

comprehensive mutational analysis using all or part of the protocols above described. From

this first round, we usually select the 5-10 mutants to be experimentally tested where we

typically see an approximated success rate of 30-40%. Depending on the experimental

validation results, we might perform an additional round of design refinement, which usually

lasts another 2 weeks.

How accurate is this modeling? Are we talking about only success cases? This is a recurrent

question we always get when presenting these results. The straight answer is that it is over
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80% of success, based on the 9 successful engineering projects from the last ~5 years,

summarized in Table 1, and the two only projects whose mutants did not add any significant

improvement and were not published. Clearly, we need a good structure to work with, but

other than that our modeling techniques provide a fast and reliable prediction in almost all

systems we attempted.

Additional structural modeling methods and studies by other groups. Clearly,

structural-based engineering through modeling has been studied by many other laboratories.

While we do not aim here for an exhaustive review, we want to underline some

state-of-the-art studies, highlighting the differences with our methods. One of the best known

examples, and a pioneer in many aspects, is the work by professor David Baker. In Baker's

lab, they have improved the properties of many enzymes36–41 through engineering and, in

particular, have centered on designing de novo enzymes to catalyze non-natural reactions7,8,42

by developing and applying the Rosetta13,14,43 software. In fact, catalytically active natural

enzymes have been found after their computational designs44,45. Thus, they have clearly

shown the potential of structural-based modeling to design artificial active sites, enabling the

smart exploration of the sequence space in proteins. The Rosetta software uses a complex

combination of MC and molecular dynamics (MD) techniques, based on intercalation of

structural know protein segments, such as trimers and ninemers. The overall procedure,

however, has not been optimized for substrate placement. Furthermore, in Fleishman's lab,

they have expanded the potential of Rosetta’s structural calculations with evolution-guided

design46–51, based on the phylogenetic information encoded in the protein family (which they

named FuncLib46). An example includes reshaping the substrate and cofactor specificity of

two natural enzymes (acetyl-CoA synthetase, propionyl-CoA reductase) to enhance the

https://paperpile.com/c/oWLdPQ/s67n+OXz8+C45b+K5cK+Mlmm+mR6f
https://paperpile.com/c/oWLdPQ/9fv8+VKla+5XVe
https://paperpile.com/c/oWLdPQ/lOyZ+TzHZ+sGmz
https://paperpile.com/c/oWLdPQ/c3he+xGu3
https://paperpile.com/c/oWLdPQ/ynk0+27K8+mlYa+LjIF+e6xD+4qwk
https://paperpile.com/c/oWLdPQ/ynk0


bypass of CO2 fixation with glycolate (which does not exist in nature), avoiding

carbon-releasing photorespiration49.

Another laboratory that leverages the advantages of structure-based computational modeling

is the Kamerlin’s group, which has a special focus on the study of atomistic protein dynamics,

using MD, to enhance enzymes or create new ones52–58. In a recent study, they showed the

importance of conformational flexibility by studying a loop of a tyrosine phosphatase, which

contains a residue that acts as an acid/base catalyst. Mutation of a noncatalytic residue

involved in the dynamics of this loop changed the pH-rate profile of the enzyme57. In Janssen

& Wijma’s lab, they also use structural-based MD modeling to improve the thermal stability

of enzymes (and proteins) with their own computational workflow39,59–63 (FRESCO59). They

aim to reduce the library of variants to be experimentally tested, but assuring an enhanced

stability of the protein. To present an example, they increased the thermostability of the

haloalkane dehalogenase LinB by 23ºC (increase in apparent melting temperature) based on

energy calculations, designing disulfide bonds, MD simulations, and rational inspection61.

Also, the enzyme had increased solvent tolerance, showing their hypothesis that the

improvement of enzyme stability will lead to the improvement of other properties of the

catalyst. While these examples show the potential of a dynamical conformational sampling,

modeling hundreds of variants through MD is a significantly expensive effort, particularly

when aiming at coupling the dynamics with a robust enzyme-substrate exploration. It is here

where PELE offers a competitive advantage, providing an atomistic and flexible exploration

that quickly maps the enzyme-substrate energy landscape32.
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Figure 1. General approach for structural-based rational design of proteins. The structure

used as a visual example corresponds with PDB code 5JD4.

Table 1. Collection of all our recent cases of enzyme engineering based on structural-based

modeling in our laboratory.



Enzyme/Year PDB code Mutations Approach Improved property

Lake Arreo
Esterase 5 (LAE5)

2021
5JD3 I16V/I92A/W96G

SiteMap & Glide
& Local

explorations with
PELE & MD

Increased substrate
promiscuity (4-fold

increase)35

Marasmius rotula
unspecific

peroxygenase
(MroUPO)

2020

5FUJ I153F/S156F
MD & Glide &

Local explorations
with PELE

Increased activity,
regioselectivity, and
enantioselectivity
toward ɑ-linolenic

acid
(polyunsaturated
fatty acids)30,64

Pleurotus eryngii
aryl alcohol

oxidase (PerAAO)
2019

3FIM F501W/I500M
Local explorations

with PELE

Enhanced oxidation
of chiral benzyl

alcohols with high
enantioselectivity

(160-fold increase in
activity)65,66

Lake Arreo
Esterase 6 (LAE6)

2020/2018
5JD4 L214H/E25D/(R23G)

Global and local
explorations with

PELE & MD

Added an extra
hydrolase site5,67

Fungal
high-redox-potenti
al laccase (HRPL)

2019

2HRG A162V/A458L
Glide & Local

explorations with
PELE & MD

Improved redox
potential, acid, and

thermal stability
(7.5-fold increase in
catalytic efficiency,
18-fold increase in
tolerance at pH=2,

~2.5-fold increase in
thermostability)31

Basidiomycete
PM1 HRPL

2016
5ANH N207S/N263D

Local explorations
with PELE &
QM/MM spin

density
calculations

Improved aniline
oxidation to enhance

polyaniline
production (2-fold

kcat increase)29

Highly stable
manganese

peroxidase (MnP6)
2016

4CZN G139H/N218H

Local explorations
with PELE &
QM/MM spin

density
calculations

Enabled ABTS
oxidation with

comparable
specificity compared

to active
peroxidases28
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Toluene
4-monooxygenase

(T4MO)
2014

3DHG F269W
Migration

pathway study
with PELE

Changes in
regiospecificity and

activity due to
increased radius of
one of the channels
(2.1-fold increase in

activity)68

Pleurotus eryngii
aryl alcohol

oxidase (PerAAO)
2012

3FIM F501A
Local explorations

with PELE &
QM/MM

calculations

Higher
stereoselectivity

toward secondary
aromatic alcohols

(~3-fold increase in
S/R ratio)69

Plurizymes, a new way of thinking catalysis. Let us now turn our review into one of our

most significant enzyme engineering successes, the development of plurizymes.

The design of active sites into noncatalytic protein scaffolds has been a compelling

idea6,7,11,42,54,70–78. However, designing de novo active sites has proven to be a difficult task,

providing, in most cases, residual activity levels, representing a current challenge for

biochemistry6,42,74,79,80. This includes the more recent efforts in adding artificial additional

active sites, a nascent field of study. The fact that these enzymes might enable one-pot

cascade reactions makes them an eco-friendly potential alternative for inorganic catalysts (as

well as complex enzyme mixtures) in different industrial sectors.

In our lab, we computationally designed an esterase variant with both native and artificial

hydrolase active sites by site-directed mutagenesis of the enzyme’s WT sequence5,67, what we

call a plurizyme (using the Latin root pluri- and -zyme from the word enzyme). The design

was based on a three-step procedure. It started with an initial search for (noncatalytic)

substrate (esters) binding sites using a global exploration of the protein surface with

PELE5,32,67, similar to step 1 defined above. This first step is key: the absence of alternative
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substrate binding sites would cease the design of a plurizyme, or require the engineering of a

new binding site, involving more mutations and complicating the protocol. Once identified,

we introduced different combinations of possible catalytic triads (serine/histidine/aspartate or

glutamate) and evaluated them with a local exploration of the substrate around the new

putative active site with PELE. At this point we aim for the following: (1) that the substrate

remains at the site so the local minimum is preserved, (2) that catalytic poses can be achieved

(ester carbon within 3-4 Å from the serine nucleophilic oxygen and catalytic triad H-bonds

within reasonable distances and angles), and (3) oxyanion hole stabilization. The tracking of

these 3 factors gives us a sense of whether the substrate will bind or not and if the first step of

the hydrolysis reaction could occur. Finally, the best ranked catalytic triads are further

examined through extensive (~0.5-1 𝜇s) MD simulations to check the structural integrity of

the site and the main catalytic distances involved (Figure 2). These MD simulations aid in the

ranking of the different variants designed with PELE, prioritizing those for in vitro validation.



Figure 2. Protocol used in our laboratory to design plurizymes. First, a global exploration of

the protein’s surface with PELE5,32,67 to find (noncatalytic) binding sites is performed. Then,

(selected) found binding sites are functionalized with one possible combination of a

serine/histidine/aspartate (or glutamate) catalytic triad. Finally, the computationally designed

variant is tested with PELE and MD simulations. The PDB code of the silhouette of the

protein surface is 6SBN. The substrate displayed in the figure is 2-hydroxyethyl terephthalate.

Although there have been other publications related to plurizyme-like systems73,81–90, the

approaches and the final obtained catalyst were different, resulting in several strategies to
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tackle a desired cascade process. One of them consisted in the self-assembly of

histidine-tyrosine peptides to mimic catalytic microenvironments73. Another strategy made

use of a noncatalytic protein scaffold (lactococcal multidrug resistance regulator) to add two

abiological catalytic sites that could act synergistically77,87. Another group was looking for

creating plurizymes by coupling small metal nanoparticles with the enzyme, gaining the

catalytic properties of the metal-assisted catalyst88,91–93. Lastly, a recent publication used an

innovative approach to change the native cofactor of an enzyme for a new host that

incorporated both a mimic of NADH and a flavin analog, enabling the direct proton and

electron transfer between cofactors without being consumed either affected by diffusion90.

Therefore, several ways to create plurizymes have been performed with ideas and

methodology from different fields. Still, the vast majority of the explored strategies are not

based on computational predictions to come up with the design. In our lab, we use the power

of molecular modeling to design plurizymes32 and we are currently expanding our approach

on other families of enzymes, besides esterases, and even on noncatalytic proteins94. In fact,

we have one plurizyme being patented, two systems with an added active site experimentally

validated waiting to be published, and four more being currently in experimental

characterization95.

Ongoing efforts in plurizyme design automation. As stated, we aim at implementing

modular and faster tools, capable of automatic and high throughput enzyme engineering. One

of our current working lines is based on combining Rosetta with PELE, which allows the

placement of an active site in a putative pocket based on a set of geometrical constraints. In

this method, the design process is performed in three steps: design of catalytic residues,

design of noncatalytic residues, and a final refinement/analysis. In the first step, all residues in

the active site are mutated into Ala and an MC simulation is performed to identify the most
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suitable positions for catalytic residues (Ser, His, and Asp in the case of ester hydrolase). In

each MC step, one position is mutated into a catalytic residue and the energy of the system,

including geometrical constraints, is evaluated using a Metropolis criterion. In addition, to

improve the sampling, MC simulations are performed using the adaptive reinforcement

learning algorithm designed in our laboratory96. In this procedure, several rounds of MC

simulations are performed. After each round, the results of MC explorers (from all previous

rounds) are clustered based on some metric (e.g. constraint energies) and the next round of

MC simulations are performed from the top-ranked clusters. This technique also allows the

inclusion of user-defined bias in a simpler manner.

This initial procedure yields a set of possible solutions for the location of catalytic residues

which are then used for the placement of the other noncatalytic residues in the second step.

Here again, an adaptive MC sampling is performed to identify the noncatalytic residues that

are most compatible with the proposed catalytic ones; during this process, the suggested

catalytic residues are kept frozen. The design proposals are then optimized by additional

side-chain MC simulation to find the most stable packing without imposing any constraints.

The overall procedure is performed using the pyrosetta library97 which allows for fast and

efficient implementation of protein engineering algorithms. Finally, the best ranked

plurizymes are analyzed with PELE and MD to identify those having the highest affinity for

the substrate and exhibiting poses with proper catalytic contacts.

To check the potential of this new computational approach, we performed a retrospective

study using the first plurizyme published in our laboratory5,67, developed from the LAE6

alpha/beta hydrolase from the metagenome of Lake Arreo (Spain). 11 residues around the

putative artificial active site, a binding site found in a global PELE exploration, were taken to

be mutated, which includes the 3 residues experimentally validated. The catalytic residues
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were set to be serine, histidine, and aspartate in order to generate the catalytic triad. 47 active

site designs were created for each system. Afterward, the top 10 designs according to their

full energies were used for noncatalytic residues design, i.e. the 8 remaining residues of the

potential active site. Finally, we performed 4 replicas of 500 ns of apo MD simulations (see

Figure 3 caption for details).

In Figure 3, we show the box plot of the main catalytic distances distributions for all 18

variants analyzed (after expanding the top 10 catalytic triad designs with the noncatalytic

residues), where we highlight with a red frame the two different mutants validated in our

previous studies5,67. As it can be seen from Figure 3, the new computational approach

successfully recovers the experimentally validated mutants. In addition, we find new mutants

that exhibit similar catalytic distances. Importantly, the procedure is fully automatic and easy

to implement in a general manner. On the basis of these encouraging results, we aim to

develop further the current method to both improve the accuracy and include the substrate in

the design procedure.

https://paperpile.com/c/oWLdPQ/wpbj+LfL5


Figure 3. Box plot representing the serine-histidine distance ( ) and

aspartate-histidine distance ( ) along the 500 ns of the 4 MD replicas performed

for all the mutants obtained out of the noncatalytic design of the top catalytic designs. The

red frames indicate the experimentally validated mutants published in Nature Catalysis and

Biochemistry. The blue frame indicates the catalytic design that recovered the residues used

in the experimentally validated ones, but with different noncatalytic residues. The figure was

created with the Matplotlib library98. MD simulations were performed with OPENMM99, a

TIP3P100 water box of 8 Å, the AMBER99SB force field101, Andersen thermostat102, and MC

barostat103,104. Production run used an NPT ensemble with a prior NVT equilibration for ~400

ps and a constraint of 10 kcal/(mol·A2) followed by a 1ns NPT equilibration using a milder

constraint of 5 kcal/(mol·A2).
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CONCLUSIONS

With this mini-review article, we aim at demonstrating the potential of our structural-based

bioinformatics and molecular modeling techniques in the field of enzyme engineering. The

recent development of improved algorithms along with the vast computational resources

available nowadays provides an excellent prediction/success ratio. We believe that this

performance should motivate an early in silico phase in most enzyme engineering studies,

similar to what is widely accepted in, for example, drug design. Moreover, we demonstrate

the potential of some new techniques combining Rosetta and PELE which could provide a

faster and more automated procedure, an essential aspect for broader use.
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