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Abstract 

As the population increases, demand for food increases too, which has led to large-scale land conversion 

to improve livestock production in Colombia. Fulfilling these criteria of increasing demand in a 

sustainable way is a challenge and remote sensing data provides an accurate method to support this task. 

In this study, Planet Scope multispectral satellite datasets and coincident field measurements acquired 

over test fields in the study area (Patía) of September 2018 was used. Fresh and dry weight biomass 

was calculated and forage quality analyses, crude protein (CP), in vitro dry matter digestibility 

(IVDMD), Ash and standing biomass dry weight (DM) was carried out in the forage nutritional quality 

laboratory of International Centre for Tropical Agriculture (CIAT). Field data was related to the remote 

sensing data using the random forest regression algorithm. R was required for the statistical analysis, to 

figure out the model performance for IVDMD, CP, Ash and DM. This project also investigated the 

spatial distribution of livestock which is affected by quality and area of potential forage zones. The R2 

values of the regression models were 0.74 for IVDMD, 0.69 for CP, 0.38 for Ash and 0.49 for DM 

using a predictor combination of vegetation indices, simple ratios and bands. 
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1. Introduction  

Grasslands occupy ∼40% of the world’s land area, excluding Antarctica and Greenland (Suttie et al., 

2005) and can be defined as land devoted to forage production for harvesting through grazing / 

browsing, cutting, or both, and used for certain agricultural purposes such as the production of 

renewable energy (Peeters et al., 2014). In their study Murray and Rohweder (2000) characterised 

grasslands as terrestrial habitats dominated by grass and shrub vegetation and sustained by burning, 

grazing, drought and/or freezing temperatures. From an agricultural point of view, grasslands are the 

cheapest feed supply for livestock (Suttie et al., 2005). Therefore, grassland management such as 

clearing trees and bushes and grazing or is necessary to maintain semi-natural grasslands rich in species 

(Tälle, 2018). Forage grasslands are used to provide food for livestock and are estimated to account for 

26 % of the land area and 70 % of the agricultural area worldwide (Capstaff & Miller, 2018; FAO, 

2010). Threats like agricultural intensification and urbanisation (Hooftman & Bullock, 2012; Kemp & 

Michalk, 2007) lead to land abandonment (Isselstein et al., 2005; Valkó et al., 2018) and climate change 

(Dangal et al., 2016; Lamarque et al., 2014; Waldén, 2018) which calls for the conservation of semi 

natural grasslands.  

Herbivores influence the environment by grazing, which in turn influences the distribution of plant 

species (Palmer et al., 2005). Their activities are affected by the accessibility and quality of potential 

forage (Merkle et al., 2016; Palmer et al., 2005; Raab et al., 2020; Raynor et al., 2016) which means 

that it is necessary to get spatially detailed information about forage quantity and quality for the 

successful management of grasslands.  As a lot of components work together to influence herbivore 

grazing, it is suggested that both forage quantity and quality should be investigated (Felton et al., 2018). 

Forage quality can be defined as the capacity of forage to fulfil the nutrient requirements of animals 

and it is determined by chemical and physical biomass characteristics (Collins et al., n.d.; Guo et al., 

2010) or it can refer to how much animals consume a forage and how easily nutrients are processed into 

animal products in the forage (Fulgueira et al., 2007). Some useful parameters are dry matter 

(everything contained in a feed sample except water; this includes protein, fibre, fat, minerals, etc.), 

crude protein (the crude protein content of a feed sample represents the total nitrogen (N) in the diet), 

in vitro dry matter digestibility (IVDMD) method (extensively used to evaluate the nutritional value of 

ruminant feeds) and Ash (the total mineral content of a forage or diet) (Forage Quality Parameters 

Explained Agronomy Fact Sheet Series, 2016). 

Traditional methods for measuring forage biomass depend on time-consuming hand cutting and drying 

of randomly selected samples across the area (Liu et al., 2019). Remote sensing approaches have 

considerable potential to track grassland and forage habitat characteristics, such as biomass, forage 

quality, and species identification and diversity (Wachendorf, 2018). Remotely sensed satellite imagery 

provides timely and repeatable spatial explicit information as compared to collecting field data 
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manually (Ali et al. 2016). Ali et al., (2017); Boschetti et al., (2006); Zha et al., (2003) have 

demonstrated the feasibility of the grassland yield estimation using satellite remote sensing data using 

various statistical analysis methods. Researchers have developed and explored different regression 

models (e.g., linear, power, logarithmic, multiple linear) for grassland biomass estimation (Belgiu & 

Drăgu, 2016) as well as machine learning techniques like Random Forest (RF) (Ali et al., 2014), 

Artificial Neural Networks (ANN) (Ali et al., 2017) or Support Vector Machines (SVM) (Liakos et al., 

2018). The classification and regression tree (CART) model, first introduced by (Breiman, 2001; Lima 

et al., 2015) is the most used decision tree. It uses a randomly selected subset of available predictors at 

each decision branch (bagging approach), each tree is grown over a bootstrap sample from the training 

dataset and the RF model 's output is the average output for all trees (Breiman, 2001; Lima et al., 2015). 

Random forests on the other hand is an ensemble learning technique, which has proved to be efficient 

for regression techniques as compared to ANN and SVM as it is not prone to overfitting, works well 

with missing data values and has low bias (Chan et al., 2012; Parente et al., 2019).  

Using remote sensing to estimate the biophysical parameters of grasslands through vegetation indices 

and individual bands is shown in several studies (Loozen et al., 2019; Tong & He, 2017a). Both linear 

and nonlinear based machine learning approaches like lasso and ridge regression between predictor and 

biophysical variables have shown promising results (Mutanga et al., 2004; Zandler et al., 2015). The 

correlation between a predictor variable and the corresponding biophysical variable may change its 

slope, based on the phenological process, when time series data is applied; in such cases the RF 

regression algorithm can be superior to linear regression techniques (Beckschäfer et al., 2014; Raab et 

al., 2020; Strobl et al., 2007).  

Hyperspectral sensors provide accurate spectral information. However, due to the expense and 

complexity of hyperspectral data, the reduction of the spectral data range and the recognition of the best 

spectral characteristics of hyperspectral information are still the most critical objectives which will 

promote easy field applications (Li et al., 2014; Reddersen et al., 2014). Spectral reflection 

measurements have been commonly used to classify grassland biomass obtained from handheld 

hyperspectral radiometers (Kawamura et al., 2011; Mutanga et al., 2004; Vescovo et al., 2012), but can 

contain significant quantities of redundant material (Reddersen et al., 2014; Wachendorf, 2018).  

The term forage is defined as herbaceous plants or plant parts fed to domestic animals and it is divided 

into two major groups: grasses and legumes (Franklin & Martin, 1993). Hundreds of grasses are 

produced in tropical pastures and constitute a massive and economically substantial resource for tropics. 

Brachiaria grasses are the most widely cultivated forages in tropical South America, covering more than 

80 million hectares (Boddey et al., 2004). The balanced mix of Brachiaria hybrids used in this study 

like Mulato II, Cayman yield superior results to those obtained with other Brachiaria genus grasses 

(Franklin & Martin, 1993). It provides excellent quality forage production capacity, with the best 
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concentration of protein and high digestibility in Brachiaria genus pastures. It has easier management 

of high animal loads which significantly increases the production of meat and milk per hectare as well 

as increased drought tolerance and adaptation to acidic soils (Varieties - Tropical Seeds, 2020). 

Brachiaria decumbens and Brachiaria humidicola is an effective forage used in permanent pastures. It 

is high-yielding and forms low-leafy stands which function well on infertile soils (Signal Grass 

(Brachiaria Decumbens) | Feedipedia, 2020). This is palatable to all animal groups and can tolerate 

intense grazing (Loch, 1977). The grass species Megathyrsus maximus cv. Mombasa has one of the 

greatest known dry matter (DM) production potential in subtropical and tropical environments and can 

yield approximately 33 t/ha-1 annual dry matter production (Galindo et al., 2018). Dichanthium 

aristatum cv. Angleton is well eaten by all classes of stock when leafy, grows on poorly drained and 

seasonally flooded soils, withstands heavy grazing and suppresses invasive weeds such as Phyla 

canescens (Fact Sheet - Dichanthium Aristatum, 2020). The difference in the areas does not affect the 

cattle-rearing systems which are based on the direct grazing of forage resources with additional feeding, 

such as: grains, crop by-products, and stored forages such as hay or silage (Fulgueira et al., 2007). Cattle 

ranching is a major industry in Colombia that occupies about 38% of the land, employs 28% of the rural 

population and generates 3.5% of the country's GDP (Department of Energy & Climate Change, 2020). 

82% of cattle farms in Colombia are owned by small-scale farmers, most of whom live in rural poverty 

and the prevalent method of grazing cattle on open pasture is environmentally harmful and 

economically unsustainable, providing many small farmers with low livelihoods. There is a need for 

sustainable and cheap precision agriculture techniques in Colombia which would help the rural farmers 

and lessen the burden on the climate and the pastureland.  

This study explores the possible advantages of using Planet Scope data to predict forage biomass, dry 

matter digestibility, ash and crude protein concentrations. The study site is in Patía, Cauca department, 

Colombia which contains Brachiaria brizantha cv. Toledo, cv. Marandú, Brachiaria hybrid cv. Caymán, 

Mulato II and Megathyrsus maximus cv. Mombasa forage types. The aim of this project is to develop 

an approach for satellite-based monitoring and prediction of pasture quality and productivity, using the 

Planet Scope satellite datasets and machine learning algorithms. This study has two objectives: 

 Analyse the image and field collected forage quantity relationships and develop a predictive 

model using the Random Forest algorithm.  

 Demonstrate the use of remote sensing measurements and the derived predictive models to 

estimate forage characteristics across large areas. 
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2.   Literature Review  

2.1 Remote sensing techniques in Precision Agriculture  

To use a familiar phrase, ‘if you cannot measure it you cannot manage it’, this is immensely relevant in 

the case of precision agriculture as the prime source is measurement data (Cox, 2002). Based on an 

evaluation of previous work, satellite driven grassland biomass estimation methodologies can be 

characterised into three sets: 1) using vegetation indices (VIs), 2) biophysical simulation models, and 

3) machine learning algorithms (Ali et al., 2017). The use of machine learning has increased in the past 

decade as the results achieved were of superior quality than the traditional methods. 

Remote sensing depends on the spatial and temporal resolution of the sensor used to relate between 

samples collected in the field and remotely sensed reflectance data like Sentinel-2 at 10-60m or Landsat 

Thematic Mapper, Enhanced Thematic Mapper+, Operational Land Imager at 30m spatial resolution 

(Raab et al., 2020; Zha et al., 2003b). Semi natural grasslands have a varied phenology that changes 

with seasons which require sensors with higher spatial resolution. TerraSAR-X (~3 m in strip map 

mode) has shown to be a significant data source to observe swath events for grassland areas (Schuster 

et al., 2011) and Worldview 2 data (saves multispectral data at 1.8 m spatial resolution) (Ramoelo, Cho, 

Mathieu, Madonsela, et al., 2015) has proven beneficial in estimating biochemical properties of 

grassland. The only constraint of these sensors is financial as they are operated by commercial 

companies which would be expensive in the long run. Landsat 8 Operational Land Imager (OLI) sensors 

offer free imagery with a spatial resolution of 30m (medium resolution) with 11 spectral bands and a 

temporal resolution once every 16 days (Landsat 8 « Landsat Science, 2020). Data from the Copernicus 

Sentinel-2 satellite missions is already used extensively for a range of agricultural applications. It offers 

high (10 m pixel size) to medium (20 and 60 m pixel size) spatial resolution data, combined with a 

higher spectral (13 bands) and temporal resolution (5 days) (Raab et al., 2020; Sentinel-2 - Missions - 

Sentinel Online, 2020). To estimate chlorophyll content the red-edge region in the electromagnetic 

spectrum is highly significant. The red edge variables are significantly correlated to nitrogen 

concentrations even at canopy level hence, the red-edge reflectance can therefore be related to the 

concentration of plant proteins (Adelabu et al., 2014; Clevers & Gitelson, 2012; Hoa, 2017; Mutanga 

& Skidmore, 2007; Tian et al., 2011). The use of red-edge bands improved the predictive ability to 

estimate biophysical parameters although Clevers et al., (2017) has shown that the Leaf Area Index 

(LAI) and chlorophyll concentration can be assessed using Sentinel-2 images without red-edge 

information. Planet Scope data does not have a red-edge band, but it is still feasible to get an accurate 

result. According to the study by Punalekar et al., (2018) the omission of red-edge bands, while creating 

10 m LAI maps, did not affect the retrieval accuracy of pasture canopies, and the physically based 

approach exceeded the empiric NDVI approach.  
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Optical sensor-based approaches like Sentinel 2 are dependent on factors like illumination and cloud 

cover and rely on the sun’s radiation hence, during rainy days there would be data gaps due to presence 

of clouds. Synthetic-aperture radar (SAR) sensors, provide many benefits for detecting change, 

provided that the longer wavelengths used by microwave sensors are not influenced by fog and haze 

(McNairn et al., 2014). TerraSAR-X and RADARSAT-2 was used to demonstrate that SAR can support 

the early estimates of production of corn and soybean, one of the two high value crops in Canada 

(McNairn et al., 2014). Breunig et al., (2020) delineated management zones in agricultural fields from 

south Brazil using Planet Scope data. This study confirmed the hypothesis that the cover-crop Above 

Ground Biomass (forage turnip, white oats, and rye) is linked with the cash-crop yield (soybean and 

maize) and can be assessed with the help of VIs. In a study by Ramoelo et al., (2012) using RapidEye 

imagery, vegetation indices gave poor results in estimating biomass, particularly during a time of peak 

productivity, due to known saturation problems. It gave the information that integrating vegetation 

index (SR54) and ancillary/environmental data is beneficial for model development in biomass 

variation estimation. Previous studies focused on the development of vegetation indices, but limited 

research on modelling algorithms existed, hence Random Forest regression algorithm was tested in this 

study.  

According to the studies presented above, airborne imaging spectroscopy has been used to map the 

quality of the forage in grassland but carrying out manned airborne mission requires thorough 

preparation in advance. By comparison, an unmanned aerial vehicle ( UAV) allows low-altitude images 

to be taken over wide areas with less effort and relatively low costs (Capolupo et al., 2015; Wijesingha 

et al., 2020). The development and miniaturisation of hyperspectral sensors helped in achieving more 

improvements in the study of grasslands (C. Zhang & Kovacs, 2012) which is why, the combination of 

UAVs and hyperspectral sensors has been applied in grassland mapping and monitoring and has 

reported its great capability to detect water stress and to estimate biophysical characteristics of grassland 

(Darvishzadeh et al., 2008; O. Mutanga et al., 2005; Schlerf et al., 2005). 

2.2 Ensemble classifiers  

The fundamental concept of ensemble learning is an understanding that every model will have 

limitations or weaknesses, and the goal of studying the ensemble is to control its strengths and 

weaknesses, contributing to the best possible overall decision-making (Brown, 2010). Ensemble 

methods constitute a large class of algorithms; this study focuses on using Random Forest regression 

model for the forage quality and quantity analysis. (Belgiu & Drăgu, 2016; Saini & Ghosh, 

2017) explained the vital concept of ensemble classifiers, reviewing the different ensemble techniques 

(Boosting, Bagging, and Random Forest) particularly advantageous for remote sensing. According to 

Auret & Aldrich, (2012) two required and appropriate criteria must be met for an ensemble to be more 

accurate than its member: the members of the ensemble must have greater individual accuracies than 
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random guessing, and the members of the ensemble must be diverse. Models are called diverse if they 

are uncorrelated to the errors they produce on unseen data. Machine Learning (ML) methodologies 

include a learning process with the goal of learning from training data to do a task. ML model success 

in a task is measured by a prediction model, which is enhanced over time with practice.  

The study by (Yadav et al., 2019) demonstrated a comparative evaluation of the random forest 

regression (RFR), support vector regression (SVR) and artificial neural network regression (ANNR) 

algorithms used by Landsat-8 satellite data to assess LAI for crops. The high R2 and low RMSE values 

between observed and predicted LAI indicated a high strength of the predictive regression algorithms. 

The maximum sensitivity of the normalised differential vegetation index (NDVI) with LAI was 

observed with RFR. SVM (Support Vector Machines), one of the prevalent machine learning 

algorithms, is widely used and has been explored in the remote sensing community for reasons of 

managing the problem of high dimensionality in a small range of training data and attaining high 

classification accuracy (Foody et al., 2006; Melgani & Bruzzone, 2004; Ustuner et al., 2016). Wei et 

al., (2017) demonstrated that the RF model yielded more reliable results than the ANN and SVM models 

when attempting to recover several growth stages of soybean Leaf Area Index. The brilliant 

performance of the RF model could be owing to its principle of 'majority vote,' which lessens the 

adverse effects of outliers. Moreover, structuring each decision tree on a subset of (mtry) bands is 

innately resilient to the overfitting issue (L. Wang et al., 2018). The RF method 's superiority to other 

methods has been consistent with recent studies (L. Wang et al., 2018; Wei et al., 2017; Yuan et al., 

2017) 

There are different approaches used to predict forage quality of grasslands: regression modelling is one 

of the most used non-parametric approaches/algorithms in research related to remote sensing. 

Numerous studies suggest that crop classification and mapping use the combination of machine learning 

methods and satellite imagery more frequently (Gislason et al., 2006; Ham et al., 2005; Rodriguez-

Galiano et al., 2012). The RF algorithm is a non-parametric statistical procedure that can create 

regression or classification functions based on distinct or continuous datasets (Berhane et al., 2018). RF 

also has an ability to deal with complex relationships between predictors due to the noise and large 

amounts of data (Lu et al., 2019). 

Many investigations reviewed by Belgiu & Drăgu (2016) have inspected the sensitivity of the RF 

classifier to sampling design and imbalanced training samples. It has been shown that the RF classifier 

is ideal for classifying hyperspectral data, where the dimensionality and strongly correlated data pose 

problems to other available classification procedures (Abdel-Rahman et al., 2013; Ismail & Mutanga, 

2010; Onisimo Mutanga et al., 2012). It helped in getting a clear picture of the use of training samples 

in proportion to the area or getting an equal number of samples to each class. It also talked about the 

limitations when dealing with multi-modal input datasets (Breiman, 2001) because these classifiers 
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assume a normal data distribution, which is rarely the case for remotely sensed data. According to Raab 

et al., (2020) random forest regression algorithm was used to relate field and the satellite data at a study 

site in Germany. The findings suggested that Sentinel 2 data was more efficient than Sentinel 1, and 

Sentinel 1 and 2 combined respectively, in accurately predicting the forage quality and quantity. The 

study also talked about the possible things to keep in mind for future studies e.g., in order to reduce the 

geolocation error effect, careful selection of the plot size is important. Overall, the optimized subset of 

the predictor dataset increased the random forest regression model performance and the value of the 

red-edge region (Abdel-Rahman et al., 2013; Hunt et al., 2019; Ramoelo et al., 2015) to predict 

biophysical parameters was confirmed.  

Using RF in combination with recursive feature elimination, Meyer et al., (2017) tested whether 

complete hyperspectral data is required, or whether multispectral (QuickBird, RapidEye and 

WorldView-2 in this case) information is enough to correctly estimate proxies for pasture degradation 

in Qinghai-Tibet Plateau (QTP). It also emphasized the issue of scale differences between the locally 

taken samples and the spatial resolution of the images and found that hyperspectral data had no benefit 

over multispectral vegetation cover and AGB modelling data. The sensitivity of RF to highly correlated 

variables was also verified by Zhen-wang et al., (2017) to examine its stability. The results exhibited 

that mtry, a vital RF parameter, has a minor consequence on the performance of RF. Two approaches 

were used to reduce the predicted variables; one was based on the Variable Importance Value, and the 

other was based on the Principal component analysis (PCA). It was recommended to use the Variable 

Importance Value method rather than the PCA method; even if the variable reduction hardly improved 

the RF performance, it showed better potential for predictions with multiple inputs and enormous data.  

Shimizu et al., (2020) also confirmed the previous studies where the ability of Sentinel-2 short-wave 

infrared and red-edge bands for structural forest mapping had been proved (Astola et al., 2019; Mauya 

et al., 2019). One of the reasons why Sentinel-2 is more accurate than PlanetScope, which only has four 

spectral bands was confirmed by the high variable importance of variables linked to short-wave infrared 

in Sentinel-2. Although the Planet Scope data 's original spatial resolution is higher than that of Sentinel-

2, the RF models were more accurate with Sentinel-2. Seeing the minor differences between the 

prediction accuracies of Sentinel-2 and PlanetScope, use of Planet Scope data was encouraged for near-

real-time monitoring of forest traits. In the study by Lu et al., (2019), the PLS and RFR models were 

implemented as models of regression for estimating chlorophyll content from multispectral and 

hyperspectral imagery. Using RF regression produced better results because many regression trees are 

constructed independently in the model using training data sub-sets, and thus it is not prone to data 

noise. Moreover, all predictor variables are considered for growth of trees at each node and thus model 

output is optimised in the case of RF regression. Like other studies (Koppe & li, 2010; Meyer et al., 

2017; Tong & He, 2017b) it was also found that the hyperspectral image with 325 bands did not perform 
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better than the red-edge image with five bands because its spectral bands are mostly correlated, it does 

not have any more predictive capacity to estimate chlorophyll content.  

This study is one of its kind in demonstrating the potential of Planet Scope data used to monitor forage 

characteristics to enhance livestock management at low costs. The past studies have used Planet Scope 

satellite data in a combination with Unmanned Aerial System (sUAS) (Liu et al., 2019) or comparison 

with different satellites like Landsat, MODIS and Sentinel (Gašparović et al., 2018; Houborg & 

McCabe, 2018; Shimizu et al., 2020); studies just using Planet Scope dataset were about determining 

aboveground biomass (AGB) (Breunig et al., 2020; dos Reis et al., 2020; Miller et al., 2019), estimating 

vegetation phenology (Cheng, 2019), comparison of various spectral indices (Hoa, 2017) or evaluating 

the relationship between stem water potential and vegetation indices (Helman et al., 2018).  
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3. Methodology 

3.1 Study area  

Cauca is a Department of Colombia, located in the southwestern part of the country, facing the Pacific 

Ocean to the west, the Valle del Cauca Department to the north, Tolima Department to the northeast, 

Huila Department to the east, and Nariño Department to the south (Departamento de Valle Del Cauca 

(Colombia) - EcuRed, 2020) (Figure 3.1).  

The study area, Patía is a Colombian municipality located in the southern province of Cauca department 

with an administrative centre known as El Bordo. Patía is located on the Panamerican road, about 82 

km south of Popayán, capital of Cauca department. It has an elevation of 990m and a population of 

37,781. The territory of the municipality is crossed by the river Patía. The municipality borders to the 

east by La Sierra and Bolvar, to the west by Argelia and Balboa, to the north by El Tambo and La 

Sierra, and to the south by Sucre and Mercaderes. Its geographical coordinates are 2.117° N and 

76.983° W. The average temperature is 23°C with an average annual precipitation of 2,171 mm. 

 

Figure 3.1. Location of the study site Patía. The location of the study site in Cauca, Colombia is highlighted with 

hatched shading (top right corner). The five sampling locations are marked with yellow crosses and labelled as per 

their locations. The base imagery is a mosaic of the three passes dated 18-09-2018 of the Planet Scope satellite. 
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Figure 3.2. Three sampling locations out of the five marked in yellow namely Pinar del Rio, California and Atoca 

(left to right) 

 

3.2 Field Data 

Ground truth data collection occurred across three dates (17 – 19th Sept 2018) in the study area and 

was carried out by a team of researchers from the University of Glasgow and the International Centre 

for Tropical Agriculture (CIAT). Forage samples were collected using a 0.5 x 0.5 m quadrat and 

analysed for fresh and dry weight biomass, crude protein, ash percentage, and in-vitro dry matter 

digestibility. Prior to removal, the average forage height was measured using a ruler and the NDVI at 1 

m height above the quadrat using a GreenSeeker™ handheld optical sensor unit. The location of each 

quadrat was recorded using a South G1 differential GPS receiver. The sampling locations and number 

of samples are presented in table 3.1; and figure 3.4 gives a summary of the forage quantity and quality 

parameters provided by the field dataset. 

 

         

Figure 3.3. Photographs from one of the sampling sites called Atoca in Figure 3.1 and Figure 3.2. Photographs 

show the species (A) Angleton, (B) Mulato II and (C) Toledo.   

 

 

 

(A) (B) (C) 
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Table 3.1. Sampling dates of the field dataset and corresponding satellite data acquisitions used in this study 

Field Sampling Date Location Number of samples PlanetScope Acquisition Date 

18-09-2018 El Eden 5  

18-09-2018 California 15  

18-09-2018 Villa Paola 10 18-09-2018 

19-09-2018 Atoca 20  

19-09-2018 Pinar del Rio 15  

 

 

Figure 3.4. Grassland forage quantity and quality data used in this study. The respective sampling dates are shown 

in Table 3.1.  

3.3 Satellite data and pre-processing  

Planet operates with more than 175 Planet Scope satellites and collects multispectral (MS) imagery in 

4 bands with a spatial resolution of ~3 m and a collection capacity of 300 million square km per day. 

Planet, an aerospace corporation, develops and manages the largest constellation of small imaging 

satellites, Planet Scope (PS), also known as Cubesat or Dove (Asner et al., 2017). The data was received 

as level 3B product (Planet Scope Analytic Ortho Scene product is orthorectified, 4-band B-G-R-NIR 

Imagery with geometric, radiometric and atmospheric correction) suitable for analytic and visual 

application. The scenes were provided already orthorectified to <10 m RMSE positional accuracy and 

projected to UTM/WGS84 cartographic projection (Mudereri et al., 2019). Three scenes from the same 

date (18/09/2018) were mosaicked to cover the whole study area. 
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Table 3.2. Spectral and spatial specifications of the Planet Scope constellation 

Band Band Name Central Wavelength (nm) Spatial Resolution (m) Bandwidth (nm) 

1 Blue 485  3 60 

2 Green 545 3 90 

3 Red 630 3 80 

4 Near Infrared 820 3 80 

 

3.4 Vegetation Indices 

Information on the quality of food used to be collected by biomass sampling for decades; biomass 

sampling helped inform the vegetation communities about the effects of herbivores (Borowik et al., 

2013). Most VIs are easy to measure and can minimise variability due to site-specific settings, such as 

bare soil, angle of illumination, or atmosphere (Raab et al., 2020). In total, 30 predictor variables were 

available for the grassland forage quantity and quality random forest regression models, including 4 

multispectral bands, 16 vegetation indices and 10 Simple Ratios as seen in Table 3.3. The indices were 

computed, using the freely available R statistical programming environment and ArcGIS Pro 10.5 was 

used to cross check the values.  

Table 3.3. Summary of vegetation index expression (Broadband Greenness, 2020) 

Vegetation Index Equation References 

Normalized 

Difference 

Vegetation Index 

(NDVI) 

NDVI =
(NIR − Red)

(NIR + Red)
 

                               

(Rouse et al., 1974) 

Soil Adjusted 

Vegetation Index 

(SAVI) 

SAVI =
1.5 ∗  (NIR − Red)

(NIR + Red + 0.5)
 

 

(A. R. Huete, 1988) 

Modified Soil 

Adjusted 

Vegetation Index 

2 (MSAVI2) 

MSAVI2 =
2 ∗ NIR + 1 − √(2 ∗ NIR + 1)2 − 8(NIR − Red)

2
 

 

(Qi et al., 1994) 

Green Optimized 

Soil Adjusted 

Vegetation Index 

(GOSAVI) 

GOSAVI =
NIR − Green

NIR + Green + 0.16
  

(Ravi Prakash 

Sripada, 2005) 

Ratio Vegetation 

Index (RVI) 

 

RVI =
Red

NIR
 

 

(Xue & Su, 2017) 
 

Infrared 

Percentage 

Vegetation Index 

(IPVI) 

IPVI =
NIR

NIR + Red
 

(Crippen, 1990) 

Difference 

Vegetation Index 

(DVI) 

DVI = NIR − Red (Tucker, 1979) 
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Simple Ratio (SR) 
SR =

NIR

Red
 

(Birth & McVey, 

1968) 

Green Ratio 

Vegetation Index 

(GRVI) 

GRVI =
NIR

Green
 

(Ravi P. Sripada et 

al., 2006a) 

Enhanced 

Vegetation Index 

(EVI) 

EVI = 2.5 ∗
(NIR − Red)

(NIR + 6 ∗ Red − 7.5 ∗ Blue + 1)
 

(A. Huete et al., 

2002) 

Leaf Area Index 

(LAI) 
LAI = 3.618 ∗ EVI − 0.118 (Boegh et al., 2002) 

Green Ratio 

Vegetation Index 

(GRVI) 

GRVI =
NIR

Green
 

(Ravi P. Sripada et 

al., 2006b) 

Green Leaf Index 

(GLI) GLI =
(Green − Red) + (Green − Blue)

(2 ∗ Green) + Red + Blue
 

 

(Louhaichi et al., 

2001) 

Modified Simple 

Ratio (MSR) MSR =
(

NIR
Red) − 1 

(√NIR
Red) + 1

 

(Chen, 1996) 

Non-Linear Index 

(NLI) NLI =
NIR2 − Red

NIR2 + Red
 

 

(Goel & Qin, 

1994) 

Visible 

Atmospherically 

Resistant Index 

(VARI) 

VARI =
Green − Red

Green + Red − Blue
 

(Gitelson1 et al., 

2002) 

Renormalized 

Difference 

Vegetation Index 

(RDVI) 

RDVI =
NIR − Red

√(NIR + Red)
 

(Roujean & Breon, 

1995) 

Green Normalized 

Difference 

Vegetation Index 

(GNDVI) 

 

GNDVI =
(NIR − Green)

(NIR + Green)
 

(Gitelson & 

Merzlyak, 1998) 

 

3.5 Statistical analysis  

3.5.1 Prediction Assessment  

The random forest regression algorithm was used to evaluate the relationship between grassland forage 

quantity and quality and remote sensing resultant datasets. The root mean squared error (RMSE), mean 

absolute error (MAE) and coefficient of determination (R2) between measured and predicted values 

were used to assess the model performance. RMSE and MAE were calculated as follows: 
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RMSE = √∑ (Yi−Ŷi)
2n

n=1

n
                                    (1) 

 

 MAE =
∑ |Yi−Yî|n

i=1

n
                                             (2) 

  

where Yi is the measured value, Ŷi the predicted value of cases i and n equals the number of 

observations. Relevant variables were first defined using the random forest variable importance feature. 

In random forest model, a variable is considered important if omitting it from the predictor variable list 

increases the OOB error (Liaw & Wiener, 2002). The most widely used variable importance metric for 

random forest regression is permutation based MSE (Mean Square Error) reduction (Strobl et al., 2008), 

called permutation importance. Permutation importance is constructed as follows from the random 

forest MSE: Out-bag observations, i.e. observations not used to build the tree, can be used in each tree 

to determine the MSE from that tree. The overall development of the forest can be obtained from the 

individual trees by an adequate combination of the MSE estimates. A variable’s contribution is 

calculated by randomly permutating the observations for that variable and measuring the difference 

between the prediction performance with the real and the permuted variable values (Grömping, 2015; 

Prasad et al., 2006). 

3.5.2 Random Forests 

Unlike bagging trees, RF grows its trees with a randomly selected subset of the number of predictors at 

each splitting node (mtry), and the tree can grow fully without pruning. Each tree in the RF is 

independently grown to its maximum size based on the repeated cross-validation (ten-fold, 100 repeats) 

procedure from the training dataset (approximately two-thirds), and the remaining one-third of the 

samples are randomly left out; these are called the out of-bag (OOB) samples, which are used to 

compute an unbiased OOB error rate and variable importance (measured by calculating the percent 

increase in the mean square error when the OOB data for each variable are permuted) (Breiman, 2001; 

Prasad et al., 2006). At each binary split, the predictor that produces the best split is chosen from a 

random subset (mtry) of the complete predictor set (p), and mtry is recognised as the key tuning 

parameter of RF and should therefore be optimized (Zhen-wang et al., 2017). Using the out-of-bag 

samples, the prediction error (OOB error) for each individual tree is obtained using the following 

equation: 

 

ERROR OOB =
1

n
∑ (Yi − Yî)

2n
i=1                               (3) 
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where, Ŷi  is the predicted output of an OOB sample, Yi is the actual output and n is the total number 

of OOB samples. All machine learning approaches have configuration parameters called tune 

parameters or hyperparameters to enhance predictive modelling algorithms efficiency (Raschka, 2018). 

For random forest regression model, two tune parameters need to be determined: mtry, which is the 

number of randomly selected variables and ntree, which represents the number of trees to grow. For 

this study the number of trees parameter was set  to vary from 500 to 1000 in the RF model and the 

mtry parameter value was tuned using the repeated cross-validation (ten-fold, 100 repeats) technique. 

The mtry parameter value was set between 1 and 8 and the optimum mtry parameter for each model 

was recognised with the help of the smallest RMSE value.  

Finally, the spatial distribution of IVDMD, CP, Ash and DM was predicted using the best variable 

combination. All final maps were averaged over 30 predictions (VI+ SR+ Bands). All analyses were 

carried out within the R statistical programming environment (The R Core Team, 2020) using the 

packages ranger for RF regression (Wright & Ziegler, 2017), caret (Kuhn, 2020) for cross-validation 

and permutation, and raster (Hijmans, 2019) for the spatial predictions. 
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4. Results 

4.1 Selection of predictor dataset and validation 

RF models were built using different combinations of the predictor variables, including the seven types 

of predictors, the bands and vegetation indices (Bands+ VI), bands and Simple Ratios (Bands+ SR), the 

vegetation indices and simple ratios (VI+ SR), the bands, vegetation indices and simple ratios (Bands+ 

VI+ SR), the bands, the simple ratios (SR) and the vegetation indices (VI) individually. The lowest 

RMSE at the optimum mtry values for the combination (Bands+ VI+ SR) dataset is illustrated in Figure 

4.1. The high R2 values indicated a good match between observed and predicted IVDMD 

concentrations. This was assisted by relatively low RMSE values in comparison to the range of IVDMD 

concentrations measured in the field (Table 4.1). The small R2 and RMSE sd values after 100 repetitions 

further maintained good model performances. For Ash and DM, lower R2 values were achieved 

compared to IVDMD and CP. The estimated RMSE values were moderately higher for DM, bearing in 

mind the respective observed range of the data. For both CP and DM, the optimum number of randomly 

selected variables (mtry) parameter remained one, which was selected based on smallest RMSE value. 

 

Figure 4.1. The optimum mtry parameter for each model identified with the help of the smallest RMSE value 

from the Planet Scope predictor dataset (VI+ SR+ Bands). 
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Table 4.1. Performance of the predictor dataset (VI+ SR+ Bands) estimated using random forest 

regression. Predictors were iteratively removed based on variable importance. The values are means 

of 100 repetitions of a 10-fold cross-validation (Abbreviations: CP, crude protein concentration; 

IVDMD, in vitro dry matter digestibility; DM, standing biomass dry matter weight). 

 ASH (%) CP (%) DM (g/m²) IVDMD (%) 

Max observed 19.80 19.89 851.14 74.61 

Min observed 6.44 1.86 12.61 33.54 

mtry 8 1 1 2 

ntree 500 500 1000 1000 

RMSE 2.41 2.73 131.74 6.2 

RMSE sd 0.95 1.17 73.59 1.78  

MAE      1.88 2.13 104.80 5.34 

MAE sd 0.75 0.85 44.62 1.51 

R2  0.38 0.69 0.49 0.74 

R2 sd 0.30 0.27 0.33 0.19 

% Var explained 10.99 49.69 23.06 64.82 

 

 

    

     

Figure 4.2. RF parameter optimization of the out-of-bag (OOB) error variation altering with the number of trees 

(ntree). 
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Before implementing the algorithm using the predictors, two important user-defined parameters of RF, 

ntree and mtry, were optimized to minimize the generalization error. Figure 4.2 shows the OOB error 

in response to the number of trees from 1 to 1000 using the tuned mtry (1 to 8) set during customisation 

of RF. When the trees grew from 1 to 100, the OOB error decreased rapidly and reached a minimal 

value at the point between 100 and 200 trees, but a fluctuation and increase in the OOB error was 

observed until approximately 500 trees. The OOB error remained consistent and did not indicate 

obviously better performance after that, so ntree=500 was chosen for Ash and CP in the study. The ntree 

values for DM became stable around 250 trees with minor fluctuations and the same type of result was 

seen for IVDMD where optimum ntree was 1000.  

4.2 Variable importance 

Permutation-based variable importance for the combination (VI+ SR+ Bands) was used to find 

important predictor variables for Ash, CP, IVDMD and DM (Figure 4.2). The key parameter mtry for 

RF was determined by a random search with a repeated (100 times) 10-fold cross validation procedure 

on the calibration dataset. For IVDMD and CP, the most important variable was NLI. The R2 values for 

IVDMD were the lowest for the combination of VI+ SR and just SR; SR combination also had the 

highest RMSE. The highest R2 and lowest RMSE was recorded when VI+ Bands combination was used 

for IVDMD and the most important variable was DVI. The index MSR contributed to the model 

performance of DM when VI+ SR+ Bands was used. The lowest RMSE (130.28) and highest R2 (0.50) 

was found for the Bands+ VI combination; the most important variable was SAVI. The highest RMSE 

(139.51) was calculated for the SR combination and the lowest R2 (0.43) was found for Bands. VI+ 

SR+ Bands and VI+ SR combinations had MSR as the most important variable.  

For Ash, the Red band was found to be the most appropriate variable for VI+ SR+ Bands, Bands+ VI 

and Bands. The lowest RMSE (2.41) was observed for Bands+ VI and the highest R2 (0.37) was found 

for multiple combinations as seen in Table 4.2. Simple ratios and red band seem to be dominating as 

most important variable for all Ash combinations. Vegetation indices and the NIR band was the most 

important variable for CP. For IVDMD and DM, vegetation indices were more vital than for CP and 

Ash. The general contribution of Planet Scope blue and green bands was low compared to simple ratios 

or vegetation indices. The red and NIR bands were among the top ten important predictor variables in 

Ash, CP and IVDMD but no band was among the top 10 in the case of DM. The highest R2 value among 

all the combinations was for Bands+ VI for IVDMD. Overall, the combination of Bands+ VI produced 

the best results in terms of RMSE and R2 values. In the study by Guo et al., (2010), region of visible 

wavelength was considered important and the red region (600–700 nm) was associated with protein and 

ash. They also noticed no significant link between chemical content and spectral characteristics beyond 

the near infrared energy spectrum. This finding approved with (Tucker, 1977) suggesting that the most 

important for biophysical characterisation of grassland is the visible wavelength region. 
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Table 4.2. RF models built using different combinations of the predictor variables. 

  Ash CP IVDMD DM 

VI+ SR+ Bands RMSE 

R2 

Most Important Variable  

2.41 

0.34 

Red 

2.73 

0.69 

NLI 

6.19 

0.73 

NLI 

131.74 

0.49 

MSR 

Bands+ SR RMSE 

R2 

Most Important Variable 

2.42 

0.37 

G / R 

2.74 

0.70 

NIR 

6.07 

0.74 

NIR 

133.79 

0.47 

B/ NIR 

Bands+ VI RMSE 

R2 

Most Important Variable 

2.41 

0.37 

Red 

2.73 

0.69 

RDVI 

5.99 

0.75 

DVI 

130.28 

0.50 

SAVI 

VI+ SR RMSE 

R2 

Most Important Variable 

2.44 

0.37 

R/ G 

2.77 

0.68 

GNDVI 

6.62 

0.69 

NLI 

135.25 

0.47 

MSR 

Bands RMSE 

R2 

Most Important Variable 

2.53 

0.34 

Red 

2.83 

0.68 

NIR 

6.03 

0.74 

NIR 

135.61 

0.43 

Blue 

VI RMSE 

R2 

Most Important Variable 

2.44 

0.37 

VARI 

2.77 

0.68 

RDVI 

6.39 

0.72 

DVI 

136.37 

0.46 

EVI 

SR RMSE 

R2 

Most Important Variable 

2.45 

0.36 

R/ G 

2.85 

0.66 

B/ NIR 

7.34  

0.62 

NIR/  B 

139.51 

0.44 

B/ NIR 
 

 

Figure 4.3. Variable importance for VI+ SR+ Bands calculated in terms of Mean Decrease Accuracy (%IncMSE) 

created by permuting the values of each variable of the test set, recording the prediction and comparing it with the 

unpermuted test set prediction of the variable (Top 10 variables shown). 
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4.3 Spatial prediction 

Figure 4.4 shows the spatial predictions for Ash, CP, IVDMD, and DM derived from the optimised 

predictor variables (VI+ SR+ Bands) by implementing the respective RF model. This prediction was 

done using Red band for Ash, NLI for CP and IVDMD, and MSR for DM (check table 3.3 for 

abbreviations of VIs) due to low RMSE values (Table 4.2). For illustration purposes, the figures and 

subsequent descriptions are provided for the area neighbouring the sample location Atoca (marked in 

red). The results for September 2018 are presented. Areas with Ash concentration less than 8 % were 

clearly evident on the map and there is little distinction between areas as most values lie between 10% 

- 12%; high Ash concentrations show that the forage might be contaminated (White, 2018). The area 

surrounding Atoca has a mixed concentration of Ash (~10 %-14%. The mean predicted Ash 

concentration was about 11.34 %  which matches with the values of the plot shown in Figure 3.4. As in 

the case of CP, the mean concentration was 6.54 %. A distinct differentiation in areas was seen with CP 

concentration. Similar to the predictions of CP, IVDMD showed a spatial variation, where the map 

seems divided into values above and below 55 %. The mean predicted IVDMD concentration was 50. 

8%. A similar distinction was made for the DM predictions, which had a mean value of 187.28 g/ m2. 

For DM, the areas surrounding Atoca mostly show values below 300 g/ m2. 

In summary, more pronounced differentiation was observed for CP, IVDMD and DM whereas Ash 

showed a relatively even distribution. Areas with low Ash concentration and low DM values were 

related to high CP and IVDMD concentration and vice versa. 
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Figure 4.4 . Spatial predictions of Ash, CP, IVDMD and DM for September 2018 using random forest regression, 

averaged over 100 repetitions. The illustrations are shown for the area neighbouring the sampling location Atoca 

(marked in red) of Figure 3.1. 
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5. Discussion 

This study used the RF model to assess the value of different predictors and estimate the forage quality 

and quantity parameters, and it attained good results both in terms of model accuracy and spatial 

patterns. It also shows that forage quality indicators can be mapped with high accuracy for some 

parameters, as R2 values of the regression model (VI+ SR+ Bands) was 0.74 (sd = 0.19) for IVDMD 

and 0.69 (sd = 0.27) for CP but 0.38 (sd = 0.30) for Ash. For the grassland forage quantity indicators 

(DM), lower R2 values were obtained R2 = 0.49, sd = 0.33.  

5.1 Planet Scope data for grassland forage quantity and quality prediction 

Planet’s nano-satellite constellation of CubeSats provides an unparalleled ability to track vegetation 

dynamics more regularly than ever before with enhanced spatial accuracy (Helman et al., 2018; Miller 

et al., 2019). The temporal and spatial resolution of commonly used remotely sensed optical data , in 

particular medium and large-scale remotely sensed imagery, has been a barrier to beneficial fine-scale 

pasture monitoring in intensively managed fields (Otgonbayar et al., 2019; J. Wang et al., 2019; B. 

Zhang et al., 2015). The images usually have a moderate cloud coverage during this time (mid-

September), and it might be concluded that the high temporal resolution of the Planet Scope data was 

critical to achieve maximum coverage and thus a cloud-free mosaic. Even though the quantity of 

research concerned with the assessment of biophysical parameters using only Planet Scope data for 

forage is limited, the methodology to estimate the random forest regression was similar.  

5.2 Optimization of the predictor dataset and important variables 

As stated in the study by (Breiman, 2001; Grömping, 2015; Prasad et al., 2006) RF has two procedures 

of variable importance. The first is based on a mean squared error (MSE) and relates to the predictive 

accuracy of the data's out-of-bag component after each predictor variable has been permutated. The 

difference between the two MSEs is then averaged across all trees and normalised by standard error. 

The second calculation is the same as for bagging trees, which is measured based on the data used to 

grow trees. Consequently, the assumption is based on overfitted models. One to one relationship 

between actual and predicted biomass using RF regression models is shown in Figure 5.1. For each 

model, R2, Intercept, Slope and P value were reported. The use of random forest and SR provided poor 

prediction for biomass compared to VI+ Bands which show R2 values 0.88 and 0.57 for training and 

testing data respectively.  For the VI+ Bands combination, the R2 values for CP, IVDMD and Ash using 

the testing data were 0.40, 0.42 and 0.31 respectively. It can be easily noted that the R2 testing values 

of Ash were the lowest among DM, IVDMD and CP. The results are promising as they show high R2 

values for the training dataset; the values are more scattered when using the testing values because of 

the small amount of sample numbers used as compared to the training dataset. 
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Studies by (Duro et al., 2012; Immitzer et al., 2012; Liaw & Wiener, 2002; H. K. Zhang & Roy, 2017) 

have shown that adequate efficiency is achieved with the default parameters. Liaw & Wiener (2002) 

stated in their paper that a large number of trees can provide a consistent outcome of variable 

importance. It was brought into light by Breiman (2001) that having more than required number of trees 

does not affect the model although it may be pointless. The tuning parameters for this study, to find the 

optimal RF regression model, a range of values for both parameters were tested and evaluated: ntree = 

500 and 1000; mtry = 1:8. The process of variable selection in the case of random forest machine 

learning must be seen as a significant and necessary processing step (Gregorutti et al., 2017).  

As the chlorophyll concentration is related to the crude protein concentration (Gáborčík, 2003; Rincón 

Castillo et al., 2019), the high value of VI+ Bands combination was due to the fact that near-infrared 

band and the red band was present in each vegetation indices used. For real world applications, the 

choice of a new VI must be made with caution by comprehensively evaluating and examining the 

advantages and disadvantages of existing VIs, and then integrating them to be implemented in a 

particular setting. This is how the use of VIs can be adapted to particular applications, instruments used 

and  various platforms (Xue & Su, 2017). 
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Figure 5.1. Relationship between actual and predicted Ash, CP, IVDMD and DM for (i) training (n= 48) and (ii) 

testing (n= 17) analyses using random forest regression model. The regression model was developed using A) 

VI+ Bands combination as it gave the optimum results B) only SR as it gave the worst result. 

The variable importance showed handheld NDVI to be highly correlated with the given forage 

parameters hence it was excluded as it could be easily justified. Variables like the grass height, fresh 

and dry weight that could be highly related to the dry matter yields were not used in the predictor  dataset 

as they had strong linear relationship. 

5.3 Limitations 

The test data shows low correlation as compared to the training dataset because of the low number of 

samples i.e. 17; the training data (48 samples) on the other hand shows high correlation with the 

predicted dataset as shown in figure 5.1. The training data performed reasonably well for estimating the 

forage quality and quantity parameters compared to testing data. The variable importance using mlr 

libraries caused irrelevant variables to be the most dominant, like Red band was shown to be the most 

important predictor for DM. Using the library caret gave more sensible important variables as shown in 

Figure 4.3. Random forest was used because it deals with small and large sample sizes with low bias, 

even with a small sample size the results were satisfactory, the training data was cross validated with 

100 repetitions which resulted in an optimised and fairly accurate dataset. 

The forage parameters oADF (acid detergent fibre) and oNDF (neutral detergent fibre) were not used 

in the predictor dataset as they had missing values for five samples. Cutler, (2010) suggested that 

missing data imputation for RF algorithm should be done using proximities although the faster way is 

by using the median of the non-missing values and replacing it with the missing values. This method of 

using proximities was not followed in this study as the parameters were excluded from the dataset, but 

it would be a suggestion for studies to try in the future. 
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6. Conclusion 

A total of seven combinations of predictor variables was tested and VI + Bands was found to be the one 

with lowest RMSE among all which was considered to have the optimum values. Vegetation indices 

containing the only the Red and NIR bands were the most important variables, for example, DVI, SAVI, 

RVI for IVDMD, DM and CP respectively. As stated above, the red region is related with ash and 

protein concentration, hence the most important variable for Ash was the red band. The SR combination 

showed the lowest performance with the highest RMSE for all forage parameters; blue and green bands 

were rated the lowest as they rarely contributed to the validation dataset.  

Using R as the statistical programming language to run the random forest regression algorithm was 

beneficial for the project as it contains in built packages to get an accurate result. Using both mlr and 

caret packages helped in the better understanding of how the code was structured around the dataset, 

although caret was used for cross validation and permutation. A custom RF model was made, with mtry 

and ntree values set manually according to the requirement of the dataset. Due to a smaller number of 

samples present, it was beneficial to set the tuning parameters manually as they were adjusted according 

to the sample data.  

The spatial prediction was done taking the VI+ SR+ Bands combination into consideration. As the most 

important predictor variables for this combination were Red for Ash, NLI for CP and IVDMD and MSR 

for DM, the prediction was done using these particular variables. Although red band was rated the most 

important for Ash, the areas in the spatially predicted map were not distinct, it appeared smoothened 

out. The other three parameters were visualised clearly and showed the range of the important variables 

around the sampling location (Atoca in this case). This is a good practice to follow as it helps in 

assessing the whole area by predicting its values, rather than physically being there and collect the 

sampling points. This is why remote sensing plays a vital part in reducing the cost of sample collection 

and determining the areas which need further management.  

To summarise, the present study has evaluated the possibilities of using Planet Scope data for estimating 

forage quantity and quality. Predictor variables derived from the Planet Scope sensors were enough to 

accurately predict Ash concentration and standing biomass dry weight (DM) from field observations. 

For crude protein and in vitro dry matter digestibility the results were less accurate. A repeated reduction 

of the predictor variable set was implemented, guided by a permutation-based variable importance 

measure. Thus, a subset of important variables was identified. The vegetation indices with NIR and Red 

bands in the combination of VI+ Bands were found to be particularly important. The future studies 

using the Planet Scope satellite dataset will hopefully benefit from this study and utilise this 

information. 
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