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Khao Dawk Mali 105 (KDML105) is a premium fragrant rice variety and is widely grown in )ung Kula Rong Hai (TKR),
northeast )ailand. In the present study, the influence of organic and conventional rice farming (ORF and CRF, respectively) in
TKR farmers’ paddy fields on soil properties and their relationship with 2-acetyl-1-pyrroline (2AP) in KDML105 rice grains were
investigated. )e results indicated that the ORF system had a strong positive effect on major soil quality indicators and the 2AP
content in the rice grains. )e soil organic matter (SOM) was approximately twice as much in the ORF than in the CRF system,
thus leading tomuch higher total nitrogen (TN), humic acid (HA), andmicrobial populations in the ORF system.)e higher SOM
in the ORF system not only enhanced the soil quality indicators but also contributed to approximately 3.5 times higher 2AP than
in the CRF system. Principle component analysis indicated a close correlation among SOM, TN, HA, and microbial population
under the ORF system; these variables exhibited strong correlations with the 2AP contents in KDML105 rice grains.

1. Introduction

)ai aromatic rice, especially the Khao Dawk Mali 105
(KDML105) cultivar, is the most popular rice type globally,
owing to its high cooking quality and unique aroma. )e
KDML105 variety was declared the world’s best rice at the
World Rice Conference held in Macau in 2017. )e price of
KDML105 in the international rice market is almost double
that of other rice cultivars.)e volatile aromatic compounds of
KDML105 have been studied extensively by many researchers.

)e 2-acetyl-1-pyrroline (2AP) aroma compound was first
determined in 1983; since then, it has been considered as the
most significant aroma compound in rice [1], including in the
KDML105 variety. )ere are many factors that affect the
strength of rice aroma, such as soil properties, genetic con-
ditions, light intensity, and climatic conditions [2–4]. Different
fragrant rice varieties grown around the world have different
aroma levels. Among these varieties, the KDML105 (Jasmine
rice), Italian, and Basmati rice varieties contain quite high 2AP
levels. In addition to the rice genotype, certain growing
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environment characteristics such as soil salinity, soil nutrients,
drought conditions, storage time and temperature, planting
density, and harvesting time exert considerable effects on
aroma strength and quality [4, 5]. Low density and early
harvesting have been shown to improve the aroma content and
other seed qualities [6, 7].

Although the KDML105 rice variety is widely grown
throughout )ailand, at present, the most premium quality
of the variety in terms of unique aroma and 2AP quantity is
produced in the )ung Kula Rong Hai (TKR) area. TKR is
located in the centre of northeast)ailand and covers a wide
plain area of 2.1 million rai that extends across five prov-
inces, namely, Roi Et, Maha Sarakham, Surin, Yasothon, and
Srisaket. Approximately 46% of the area belongs to Roi Et
Province. )e TKR region is underlain with tremendous
rock salt layers of the Maha Sarakham formation (mainly
halite (NaCl)), which cause major problems for agricultural
activities. In addition, the soils are sandy, acidic, and infertile
[8]. Soil quality improvement has been carried out in TKR by
the Land Development Department since 1981. Currently,
the KDML105 rice variety produced in the TKR region is
well known for its premium quality, unique taste, and
distinct smell. A number of studies have been undertaken for
more than a decade to understand the factors that affect the
unique taste and aroma of the KDML105 rice variety;
however, to date, scientists have not yet reached a definitive
conclusion. It has been assumed that the KDML105 rice
quality is highly influenced by the photoperiod, wet and dry
conditions, climate, and soil nutrients of TKR. )e com-
bination of stress during rice cultivation in TKR may
stimulate the rice to respond by producing proline sub-
stances, which are the precursors of the aromatic substance
(2AP) of KDML105. In addition, the concentration of 2AP is
influenced by interactions between the rice genotype and
environmental factors, such as soil fertility and abiotic stress.
Under high soil salinity, KDML105 cells accumulate Na+,
leading to proline and 2AP increases in the rice grains.
Osmoprotectant proline has been found to be the precursor
and the nitrogen (N) source of 2AP in KDML105 [9]. High
total soil N increases the 2AP content in grains [10]. Some
micronutrients such as Mn, Si, and Zn also appear to be
related to 2AP levels in aromatic rice [11].

Recently, the aroma quality in the KDML105 and other
scented rice varieties has undergone a gradual degradation.)e
progressive reduction in the 2AP levels of KDML105 may be
due to soil quality degradation caused by high agrochemical
applications in conventional farming. For these reasons, the
objectives of the present study was (1) to determine the soil
properties of the farmers’ paddy field in the TKR areas
influenced by organic rice farming (ORF) and conventional
rice farming (CRF), (2) to analyse the 2AP content in KDML
rice grains collected fromORF and CRF, and (3) to analyse the
interrelationship between farming practice, soil property, and
the 2AP content in KDML 105 rice grains.

2. Materials and Methods

2.1. Soil andRiceGrain Sampling. Eighteen farmers’ rain-fed
paddy fields (nine organic and nine conventional KDML105

rice fields) in TKR and neighbouring areas of Surin and
Yasothon provinces, well-known rice growing areas, were
selected for soil and rice grain sampling. )e ORF paddy
fields have been registered as organic for around 5 years.)e
rice in CRF paddy fields has been cultivated for 15 years.)e
ORF was maintained under the )ai Organic Agricultural
Standard (TAS 9000–2009) with the application of com-
posted manure (625 kg ha−1) and green manures. )e CRF
was practiced under the )ai Agricultural Standard (TAS
4400–2009) with the application of chemical fertilizers: 46-0-
0 (93.8 kg ha−1) and 16-16-8 (156.2 kg ha−1).

)e samples used in this study were collected from the
farmers’ field during the dry season before the rice harvest
(November 2018). Rhizosphere soil samples were randomly
collected (0–15 cm deep), in 10 spots per composite soil
sample. Each sample was divided into two parts. One part
was preserved in field-moist condition and was used for
microbial analysis, and the other was air-dried for physi-
cochemical analysis. Rice grain samples were also collected
from the same 18 sites. )e 18 sites extended over five
provinces (Roi Et, Maha Sarakham, Surin, Yasothon, and
Srisaket) (Figure 1).

2.2. Soil PropertyAnalysis. )e soil texture, pH, and EC were
analysed by the standard method [12, 13]. )e cation-ex-
change capacity (CEC) was determined using the leaching
method [14, 15]. Humic acids (HA) were determined using
the method of Ahmed et al. [16] and Palanivell et al. [17].)e
soil organic matter (SOM) was determined using the
Walkley–Black method [18]. )e total N (TN) content of the
soils was determined using the modified micro-Kjeldahl
digestion method [17]. Phosphorus (P) and sulphate (S)
were extracted by Bray II and Ca(H2PO4)2 in 2N HOAc,
respectively, and determined by using a spectrophotometer
[19, 20].)e exchangeable bases, i.e., potassium (K), calcium
(Ca), and magnesium (Mg), were extracted with 1N am-
monium acetate (NH4OAc) and determined by atomic
absorption spectrophotometry [21].

2.3. Determination of the Microbial Population. Exactly 10 g
of each soil sample was mixed into 95mL of sterile distilled
water and shaken (120 rpm) for 30min. Serial dilutions were
prepared, and 0.1mL aliquots (103–105) were spread on agar
media plates. Egg albumin and rose bengal agar medium
[22] plates were used to measure the total bacterial and
actinomycetal populations and fungal populations, respec-
tively. )e total counts were determined after 3–5 days of
incubation.

2.4. Determination of 2AP Content in KDML 105 Rice Grains.
)e rice grain samples were dried in an oven at 60°C for 3
days until the moisture content was reduced to 14%.)e rice
grain samples were, then, dehusked by hand to yield un-
cooked brown rice seeds before being sent to the Chemistry
Laboratory, Faculty of Science, Chiang Mai University,
)ailand, for the determination of the 2AP content by the
method of Wongpornchai et al. [23].
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2.5. StatisticalAnalysis. )e data were compared statistically
by analysis of variance (ANOVA) with Duncan’s multiple
range test at the 0.05 probability level in Statistix 8.0.
Arithmetic means were calculated for each of the three
replicates separately. )e obtained data were analysed sta-
tistically (correlation) using the SPSS Statistics forMac OS X,
version 20 (SPSS Inc., Chicago, IL, USA). Principal com-
ponent analysis (PCA) was performed to evaluate the re-
lationships among the different cultivation systems, soil
properties, and the 2AP content. Soil parameters including
pH, EC, SOM, HA, CEC, TN, P, K, Ca, Mg, and S and the
microbial population, as well as the sand, silt, and clay
percentages, were introduced as variables in the PCA using R
1.2.1335 [24].

3. Results and Discussion

Jasmine rice var. KDML105 is officially one of the best
aromatic rice varieties because of its unique fragrance. We
hypothesized that farming practices and soil properties
might affect the aromatic quality of rice grains. )erefore, in
the present study, the influence of farming practices in TKR
paddy fields on soil properties and their intercorrelation
with 2AP were investigated.

3.1. Soil Properties Affected by Farming Practice. Sandy soils
are widespread in the TKR region. Some areas have sand-
stone-derived soils, while in other, soils are severely affected
by salt [25]. In the present study, most of the soils in the
study area (72%) had a sandy texture (loamy sand/sandy
loam) (Figure 2). )e soil texture of the rest of the locations
ranged from loam to silt loam. )e sand, silt, and clay

percentages under the same soil texture were similar in the
two farming practices (ORF and CRF) (Figure 2). In general,
soil texture is a fixed characteristic and cannot be changed
unless a significant volume of these components is added or
subtracted. )e results of this study confirmed that the
different farming practices did not change the soil texture.
However, soil aggregates bearing on other soil properties
may be highly affected by the farming practices.

On the average, a slight difference in the pH of paddy
soils was observed between the ORF (4.87) and CRF (5.37)
systems (Figures 3(a) and 3(b); Table 1). Several studies
have shown that soil pH is slightly but not significantly
lower in organic systems compared to conventional
systems (on similar soils) [26]. In general, flooding in
acidic paddy soils leads to strongly reducing conditions in
the topsoil and pH increase to near neutrality [27];
however, the soil pH decreases after draining [28]. In the
present study, the rhizosphere soils were collected at
harvest time when they were almost dry, and then, they
were air-dried before analysis. )erefore, the soil pH of
ORF and CRF under this study was influenced by farming
practice rather than submerged conditions.

Most of the EC values of the ORF system (0.54–2.54 dS
m−1) were significantly higher than those of the CRF system
(0.18–1.54 dS m−1) (Figures 3(c) and 3(d)). )e average EC
value of the ORF system (1.25 dS m−1) was much higher than
that of the CRF system (0.53 dS m−1) (Table 1). In the present
study, the higher EC found in theORF than in the CRF system
might be affected by organic inputs in the ORF system. Our
findings are in good agreement with previous works in that
organic practices including the addition of green manures,
organic matter, and compost to soils markedly increased the
EC values [29–32].
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Figure 1: Eighteen sampling sites in the Tung Kula Rong Hai region and neighbouring areas of Surin and Yasothon provinces.
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)e amount of SOM in the soil samples was very low to
quite high, ranging from 0.30% to 2.41%, and the average of
ORF-SOM (1.41%) was higher than the average of CRF-
SOM (0.66%) (Figure 4(a) and 4(b); Table 1). )e SOM of
rain-fed sandy loam in the TRK region is naturally quite low

(1.05%) [33]. )e SOM content is influenced by various
factors such as soil texture and farming practices [34, 35].
)e SOM of clay loam and sandy loam in the TKR region is
approximately 1.04% and 0.62%, respectively [36], indi-
cating the influence of soil texture on SOM. However, with
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Table 1: Statistical summary of the physicochemical properties and microbial population of the soil for organic and conventional rice
farming systems.

Variable Unit
Organic rice farming Conventional rice farming

Minimum Maximum Mean S.D. Minimum Maximum Mean S.D.
pH 4.36 5.32 4.87 0.31 4.88 5.96 5.41 0.39
EC dS m−1 0.54 2.54 1.25 0.67 0.18 1.54 0.54 0.40
SOM % 0.84 2.41 1.41 0.55 0.30 1.03 0.66 0.23
Humic acid % 1.05 1.78 1.29 0.25 0.24 1.47 0.74 0.40
CEC cmolc kg−1 1.98 7.66 4.22 2.25 1.19 5.15 3.01 1.36
Total N % 0.04 0.12 0.07 0.03 0.02 0.05 0.03 0.01
Avail. P mg kg−1 2.44 37.53 13.68 13.92 2.38 139.16 30.12 45.53
Exch. K mg kg−1 34.08 131.91 73.70 35.57 9.01 159.49 67.28 49.25
Exch. Ca mg kg−1 101.72 1307.35 377.50 376.49 59.00 651.96 262.57 194.36
Exch. Mg mg kg−1 9.46 197.46 42.51 59.53 2.66 31.16 17.79 11.13
Extr. S mg kg−1 9.10 222.99 38.96 69.41 2.53 24.78 10.40 6.11
Sand % 34.90 83.20 64.88 17.86 25.00 80.80 53.49 20.91
Silt % 12.70 53.60 25.68 13.46 15.10 58.30 38.64 17.32
Clay % 4.10 18.20 9.44 5.68 3.20 19.00 7.87 4.93
Bacteria (×105) cfu g−1 80.51 620.60 277.12 186.99 10.12 50.72 22.61 15.78
Actinomycetes (×105) cfu g−1 2.08 23.70 12.98 8.84 0.02 1.56 0.91 0.54
Fungi (×105) cfu g−1 0.42 1.78 1.00 0.37 0.11 0.29 0.22 0.06
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the organic fertilizer application in the ORF system in this
study, the SOM value in sandy loam and loamy sand under
this system could be as high as 1.9% and 2.41%, respectively
(Figures 2 and 4(a)). )e results demonstrated the higher
impact of organic practices on SOM than the soil texture.
Under submerged conditions in acidic soils, the pH increase
is faster in soils with high SOM than in those with low SOM
[27]; thus, organic practice would benefit in terms of en-
hancing soil buffering capacity in the paddy field.

)e application of various organic matter types into soils
increased the amount of humic acid (HA) [37]. HA derived
from SOM decomposition is an important fraction in the
formation and stability of water-stable aggregates, thus
improving the movement of water and air in the soil. In the
present study, the application of organic matter in the ORF
system appeared to increase the SOM and HA content
irrespective of the soil texture (Figures 2 and 4). )e average
HA values in the soils of the ORF system (1.29%) were much
higher than those of the CRF system (0.74%) (Table 1). HA
enhances enzyme activities involved in photosynthetic
metabolism in maize leaves [38] and improves rice yields by
10–20% [39]. In this study, therefore, the high HA in the
ORF system had a high potential to increase the physico-
chemical and biological properties of the soil of TKR paddy
fields, thus also increasing rice yields.

)e cation-exchange capacity (CEC) of soils is mainly
due to SOM and clay minerals. )e TKR soil is sandy in
nature (low SOM and clay contents); therefore, the CEC
value of natural TKR soil is quite low (2.31 to
7.51 cmolc kg−1) [33, 40]. )e CEC values of the TKR soils in
this study are in good agreement with earlier reports with
values ranging from 1.19 to 7.66 cmolc kg−1 (Figures 4(e) and
4(f)). )e average CEC values were 4.22 and 3.01
(cmolc kg−1) for the ORF and CRF systems, respectively
(Table 1). On average, the CEC of the ORF system under all
soil textural classes was higher than that of the CRF system,
particularly under the loam and silt loam class. )e results
indicated that the CEC of soils in this study was mainly due
to SOM and, to a lesser extent, clay mineral (Figure 5).
Studies have indicated that the contribution of organic
matter to the total CEC of a soil is usually substantial and is
often considerably greater than that of clay minerals [41].

Althoughmore than 80% of the TKR soil is considered as
poorly fertile soil [40], our results showed that the ORF
practice could improve several nutrients level, particularly
the total N (TN), as compared to the CRF practice
(Figure 6(a). )e organic fertilizer application in the ORF
system increased the TN amount (0.037%) by approximately
twice as much as that of the CRF system (0.017%)
(Figure 6(a)). An earlier report also indicated that the ap-
plication of compost in a maize-wheat cropping system
increased the initial TN value up to 78–93% [42]. Beside TN,
the average values of exchangeable K, Ca, and Mg were
higher in the ORF system (73.7mg kg−1, 377.5mg kg−1, and
42.51mg kg−1, respectively) than in the CRF system
(67.3mg kg−1, 262.6.5mg kg−1, and 17.8mg kg−1, respec-
tively) (Table 1; Figures 6(c)–6(e)). In contrast, the p values
of the CRF systemwere higher than those of the ORF system,
with mean values of 30.12mg kg−1 and 13.68mg kg−1,

respectively (Table 1). In the present study, it appeared that
the ORF practice had a positive impact on the Ca, Mg, and S
amounts, but not on the K amount. )e same trend was
found with extractable S, with the average value of S in the
ORF system (38.96mg kg−1) being obviously higher than
that of the CRF system (10.4mg kg−1) (Figure 6(f)).

Soil microbes and their functions, particularly SOM
decomposition, humification, and nutrient transformation,
are key factors for the sustainability of soil quality, agri-
cultural systems, and ecosystem services. )e results of the
present study showed that the SOM, HA, and TN values
were obviously higher in the ORF system (Figures 4 and 6).
As a result of high SOM, the bacterial, actinomycetal, and
fungal populations in the rhizosphere soils examined in this
study were much higher in the ORF than in the CRF system
(Figure 7). High bacterial numbers were detected in the ORF
system, with values ranging from 8.51 to 62.6 (×106 cfu g−1).
Much lower bacterial numbers were detected in the CRF
system, with values ranging from 1.17 to 5.72 (×106 cfu g−1)
(Figure 7(a)). )e actinomycetal population ranged from
2.08 to 23.7 (×105 cfu g−1) and 0.02 to 1.56 (×105 cfu g−1) in
the ORF and CRF systems, respectively (Figure 7(b)). A
similar trend was observed in the fungal populations; these
ranged from 4.19 to 17.8 (×104 cfu g−1) and 1.12 to 2.88
(×104 cfu g−1) in ORF and CRF, respectively (Figure 7(c)).
)e results were in good agreement with an earlier study that
higher microbial population and activity were recorded in
soils under the ORF than under the CRF system [43].

Microbes in the rhizosphere can enhance plant growth
and immunity by providing secondary metabolites (SMs).
Under stress conditions in rice-growing areas of TKR, high
rhizosphere microorganisms in the ORF system might
stimulate the production of SMs, particularly 2AP in rice,
leading to higher stress tolerance and aroma level in the
grains.

3.2. Correlation between Soil Properties and 2AP in Rice
Grains. 2AP has proven to be a potent N-containing aroma
compound in fragrant rice varieties. 2AP is a volatile alkaloid
substance in rice that normally accumulates in response to
environmental stress [44]. In the TKR region, the unique
and high 2AP aroma of KDML105 may be due to various
stress such as the natural low fertility of sandy soil, the high
salt content, and the water shortage during the rain-fed rice
season [40]. )erefore, in this study, we determined the 2AP
concentration in mature rice grains and analysed the rela-
tionship between 2AP and the soil properties of the ORF and
CRF systems.

3.2.1. 2AP Affected by Farming Practice. Several studies have
shown that organic inputs not only improve rice soil but also
enhance rice quality including 2AP compared to chemical
fertilizer applications [45, 46]. )e 2AP level in rice grains is
widely used as one of the high-quality indicators of aromatic
rice. In the present study, the 2AP levels of all ORF sites were
higher than those of the CRF sites (Figure 8(a)). )e 2AP
contents of TKR rice grains obtained from the ORF system
(5.52–13.69mg kg−1) were significantly (p< 0.05) higher
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than those obtained from the CRF system
(0.49–5.60mg kg−1) (Figures 8(a) and 8(b)). Poomipan et al.
[47] reported that the 2AP in rice grains obtained after
organic fertilizer application (1.77mg kg−1) was higher than
that obtained after chemical fertilizer application
(1.46mg kg−1). )e results obtained in this study confirm
that the ORF system provided much higher 2AP in the rice
grains over the CRF system.

3.2.2. 2AP Affected by Soil Chemical Properties. Several
studies have shown that soil texture may influence the 2AP
level in mature rice grains. An evaluation of 67 soil samples
in the TKR region revealed that the level of 2AP in rice grains
grown in sandy soils is higher than that in those grown in
loamy soils, followed by clayey soils [40]. A higher 2AP
content was found in rice grains grown in sandy soils
(1.90–3.00mg kg−1) than in those grown in clayey soils
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(1.00–1.50mg kg−1) [48]. However, another study showed
that KDML105 rice grains had a slightly higher 2AP content
when grown in clay loam (3.32mg kg−1) than in sandy loam
(2.87mg kg−1) [49]. In the present study, on average, finer
textured soils tended to increase the 2AP content of rice
grains more than coarser textured soils did (Figure 9). It is
interesting to note that the farming practice exerted a
stronger influence on the 2AP content of the rice grains than
on the soil texture. Under the same soil texture, the 2AP level
obtained from the ORF system was much higher than that
obtained from the CRF system (Figure 9).

Owing to the low natural fertility of the TKR soils that
exhibit high spatial variability, attempts have been made to
improve rice crop yield by various soil management
methods. Chemical fertilizer addition in the TKR region has
not been very successful as this practice exerts a negative
effect on the aromatic content of KDML105 [49]. Recently,
much attention has been paid to improving the TKR soil
fertility, rice yield, and quality with organic matter (OM)
application. )e results of the present study indicated that
the organic fertilizer application in the ORF system not only
increased the SOM level but also resulted inmuch higher TN

and 2AP values compared to the values obtained from the
CRF system (Figures 10(a) and 10(b)). )e higher TN in the
ORF system (Figure 10(b)) may be one of the main causal
agents of a much higher 2AP level in this system because
2AP is an N-containing aromatic compound. Yang et al. [10]
concluded that TN in the soil is one of the key factors in the
aroma production of Chinese aromatic rice.

)e higher HA content in the ORF systemmay have also
contributed to higher 2AP content in the rice grains than in
the CRF system (Figure 10(c)). HA derived from organic
matter decomposition contains many types of N com-
pounds, including polyamines. Although proline is known
as the precursor for the biosynthesis of 2AP [50], a study on
the aromatic gene Os2AP in KDML rice seedlings indicated
that 2AP is synthesized via the polyamine pathway [51].
)erefore, we suggested that organic N, including poly-
amines in HA, may also play an important role in 2AP
increments of the ORF system in TKR. Pearson correlation
coefficients were calculated among the 2AP concentrations,
soil properties, and microbial populations (Table 2). A
significantly positive correlation at p< 0.01 was found be-
tween SOM (0.8858∗∗∗), HA (0.6881∗∗∗), and TN
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Figure 7: Bacterial (a), actinomycetal (b), and fungal (c) populations in the rice rhizosphere under different cultivation systems. )e error
bars represent the standard deviation of measurements for nine soil samples. Note: ORF� organic rice farming; CRF� conventional rice
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(0.8857∗∗∗) and the 2AP concentration (Table 2;
Figures 10(d)–10(f )).

3.2.3. 2AP Affected by Soil Microbial Populations. )e or-
ganic inputs in the ORF system in this study not only
increased the SOM, TN, and HA values but also the
microbial population of KDML105. )ese soil factors
showed a high positive correlation with 2AP levels in
KDML105 grains (Figures 10 and 11). A significantly
positive correlation (p< 0.01) was found between the
bacterial (0.7646∗∗∗), actinomycetal (0.8364∗∗∗), and
fungal (0.7509∗∗∗) populations and the 2AP concentration
(Figure 11; Table 2). )ese results indicated the high
impact of rice rhizosphere microorganisms on the 2AP
level in KDML 105 rice grains. It was reported that several
bacterial genera such as Bacillus, Acinetobacter, Pseudo-
monas, and Enterobacter increased the 2AP level of ar-
omatic rice by 1.14–1.42-fold [52]. )erefore, it could be
concluded from this study that the higher microbial
population in the ORF system might be one of the key
factors in enhancing 2AP synthesis in the rice grains.

3.3. Principal Component Analysis for the 2AP Content
Concentrations and Soil Properties. PCA provides good in-
formation on the relationship among variables. )e rela-
tionship between the farming practices, soil properties, and
rhizosphere microorganisms and the 2AP examined by PCA
allowed us to characterize each horizon type (Figure 12).)e
first two components explained 60.7% of the total variability;
component 1 explained 35.1%, while component 2 explained
25.6%. Organic and conventional farming were identified on
the correlation circle. It appeared that most of the soil
properties showed a positive relationship with the ORF
system. )e results of the PCA clearly indicated that the
SOM, TN, HA, EC, bacterial, actinomycetal, and fungal
values had the strongest correlation with 2AP in the rice
grains. A very close relationship was also found among
SOM, TN, HA, and the microbial population. A very high
correlation between these soil factors and 2AP appeared to
contribute to the ORF practices and was explained by the
fact that high SOM in the ORF soil is a source of N, carbon,
and energy for microorganisms and that HA is synthesized
by their activity (Figure 12). In addition, 2AP is an
N-containing volatile compound, and its synthesis can be
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Figure 10: )e amount of 2-acetyl-1-pyrroline (2AP) content in Khao Dawk Mali 105 (KDML105) rice grains as affected by soil organic
matter (SOM) (a), total nitrogen (TN) (b), and humic acid (HA) (c) and their relationship with 2AP (d e, f ). Note: ORF� organic rice
farming; CRF� conventional rice farming.

Table 2: Pearson’s correlation matrix for the 2-acetyl-1-pyrroline (2AP) concentrations, physicochemical properties, and soil microbial
populations.

p values 2AP pH OM Humic acid EC CEC Total N Bacteria Actinomycetes Fungi
r values
2AP
pH −0.4333
OM 0.8858∗∗∗ −0.2238
Humic acid 0.6881∗∗∗ −0.2612 0.5402∗∗
EC 0.5259∗∗∗ −0.234 0.3568 0.4115
CEC 0.1946 −0.6121 0.0652 0.0936 0.3822
Total N 0.8857∗∗∗ −0.2238 1 0.5402∗∗ 0.3568 0.0652
Bacteria 0.7646∗∗∗ −0.341 0.6269∗∗∗ 0.3964 0.5007∗∗ 0.2447 0.6269∗∗∗
Actinomycetes 0.8364∗∗∗ −0.2159 0.7768∗∗∗ 0.6595∗∗∗ 0.5958∗∗∗ 0.1334 0.7768∗∗∗ 0.4837
Fungi 0.7509∗∗∗ −0.3731 0.793∗∗∗ 0.5179∗∗ 0.5069∗∗∗ 0.0542 0.7930∗∗∗ 0.6334∗∗∗ 0.6518∗∗∗
∗∗, ∗∗∗significant correlational p< 0.05 and 0.01, respectively.
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enhanced by rhizosphere microorganisms. Other variables
appeared to have much less or no correlation with 2AP.

4. Conclusions

Organic rice farming (ORF) is markedly better in enhancing
soil microbial population and major soil properties, par-
ticularly soil organic matter (SOM), than conventional rice
farming (CRF). )e higher soil quality in the ORF had a
strong positive impact on the 2AP content in KDML105 rice
grains. Our results highlighted the key role of SOM in
improving soil quality and its potential to increase the
potential of KDML105 in 2AP synthesis, thereby also in-
creasing its environmental stress tolerance in the TKR re-
gion. )erefore, the ORF system is highly recommended in
the TKR region for the improvement of soil properties and
rice grain quality, particularly in terms of 2AP production.
However, more field research in the TKR region is required
to better characterize the complex interactions among soil
factors and their influences on rice yield and the 2AP content
of KDML105.
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