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A B S T R A C T   

Harmonizing the supply of climate information with the type of information needed by next-users is crucial for 
effective weather and climate services (CS). Understanding of information demand could help reshape supply- 
side based CS that have dominated the field over the last few decades. Most CS have been developed using a 
‘loading dock’ model, whereby products are designed by information suppliers with little input from or 
consultation with users of climate services. Notably, a focus on climate modelling and prediction has largely 
resulted in a lack of consideration of the demand-side when producing climate services. Here, we contribute to 
understanding of CS demand by presenting a global meta-analysis – a ‘decision matrix’ - of farmers’ climate- 
influenced decisions. We identify 41 studies that encompass 186 decisions, three forecast timescales (weather, 
dekadal, seasonal), and five forecast variables (precipitation, temperature, wind, soil moisture and soil tem-
perature). Several insights were offered by this literature review into the value of climate services and the way 
forward in considering users’ needs. We find that the seasonal precipitation is the most frequently used forecast 
variable for decision-making, particularly of crop sowing date. Forecasts such as temperature, soil moisture and 
soil temperature appeared to be less used by farmers, according to the decision matrix. It is apparent that more 
investigation is necessary into how farmers use climate information in their decision-making to better establish 
the value of CS. We suggest that different sectors should make their respective decision matrices to explore 
decision spaces and engage with users of climate information in various sectors.   

Practical implications  

This meta-analysis examines the available literature and system-
atizes how climate services support decision-making related to 
farm management and agricultural livelihoods. A principle finding 
of this work is the need for more evaluations that aim to establish 
the impact of forecast use on farmers’ livelihoods. We find a wide 
and varied range of climate forecasts that are relevant to farmers’ 
decisions, depending on crop, location and timescale. This implies 
the need for further investigation of the role of decision context, 
with implications related to the ongoing development of climate 
services for agriculture. 

One challenge in the existing body of literature is that many pa-
pers on climate services in agriculture do not fully describe how 
forecasts influence decision-making. The literature generally rec-
ognizes that farmers use climate forecasts to support decisions 
regarding crop choice, sowing date, and insurance purchases 
(amongst others), but the specific information chain, context, and 
mitigating factors between climate information and farming de-
cisions is not sufficiently explored. By systematically character-
izing the decision space in which farmers may use climate 
information, this work offers both new insights into the potential 
use of climate information in agriculture decision making, as well 
as an understanding of how different demands for climate services 
may affect the design thereof. 

Building the structured approach of the “decision matrix” pre-
sented here, this work offers a systematic basis for cataloguing 
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climate services in other sectors. The results of this study, when 
combined with similar reviews in other sectors will support 
increased opportunities for leveraging shared resources and 
aligning sector goals to optimize climate services value and use, in 
line with the objectives associated with the Global Framework for 
Climate Services. 

One last implication is the nature of how we define the success of 
climate services interventions. Farmers may choose to diversify 
their income with non-agricultural activities for a season or 
several if forecasts are unfavourable for crop production. The 
choice to invest in alternative livelihoods should be recognized as 
a valid response to climate risk and should be understood as a 
possible way to measure the ‘success’ of CS interventions. 
Unfavourable climate conditions can result in severe losses but 
climate information may prove useful in avoiding losses. Farmers 
can choose to move in and out of agriculture as investments tend 
to dip and rise for a season or longer. The role of CS in such de-
cisions should be identified as an impact on farmer decision- 
making.   

Introduction 

This paper aims to address a persistent opportunity associated with 
efforts for better understanding the demand for climate services (CS) in 
an agricultural context. While there is abundant literature on specific CS 
implementations (for example: Falloon et al., 2018; Miles et al., 2006; 
Mudombi and Nhamo, 2014) and a similar abundance related to the 
broader conceptual issues associated with weather and climate services 
(see: Brooks, 2013; Vaughan et al., 2016), there is less work synthetizing 
specific CS related decision making at the sectoral level (see: Clements 
et al., 2013; Soares et al., 2018). We thus see an opportunity in terms of 
the general characterization and comparison of the decision space in 
which CS are applied, and specifically, need for CS related decision 
making in agriculture. Here we delve into understanding how agricul-
tural users may leverage climate information for agricultural decision 
making by constructing a ‘decision matrix’ that systematically charac-
terizes the decision space that CS literature currently addresses. In 
evaluating the demand side of climate services, we outline several 
important concepts underpinning the use of climate and weather in-
formation in agriculture. We detail how the climate services field has 
evolved over the decades and explore the effects of a pervasive supply 
side bias. Through better understanding of users’ needs and the demand 
side perspective, we then offer a decision matrix to contribute to the 
understanding of the patterns of forecast use for the support of 
continued development of more demand driven and user-oriented ap-
proaches. For the purposes of clarity in this paper, both agro-climatic 
services and climate services as well as weather services fall under the 
umbrella of “climate services (CS)”. 

Climate services to address risk in agriculture 

Climate services involve the provision of scientific information for 
informed decision-making. These services support climate-sensitive 
decision-making in environments where not having this type of infor-
mation could have an adverse impact on livelihoods, although the value 
of information is subject to debate, depending on context (Vaughan 
et al., 2018a). CS encompass the (co)production, translation, transfer 
and use of climate information to enable and inform decision-making 
(Vaughan et al., 2016; Vaughan and Dessai, 2014). Weather services 
provide weather forecasts on the timescale of hours to days while 

climate services aim to enable decisions typically 3–6 months in advance 
in agriculture, or longer timescales in other sectors. Seasonal forecasts 
typically associated with CS are a climate risk management (CRM) tool 
used in several sectors known to be sensitive to climate variability and 
change (White et al., 2017). CRM strategies in agriculture are intended 
to aid in preparing for climate events that may damage crops and live-
lihoods as well as capitalizing on opportunities that might otherwise be 
forfeited in climatically favourable years (Hansen, 2007). CS have the 
potential to be particularly valuable in agriculture as climate variability 
is an inherent challenge for farmers, who frequently make agricultural 
decisions in advance of the growing season (Roudier et al., 2012) with 
the assumption that certain climatic conditions will occur (Eakin, 2000). 
The risk of climate variability often results in farmers making decisions 
that protect against loss rather than taking advantage of opportunity and 
can result in avoidance of employing new technologies or assets (Han-
sen, 2007). 

A key challenge in agricultural settings is that the decision-making 
landscape is highly heterogonous and complex, and farmers need to 
account for numerous livelihood objectives while balancing different 
risk factors in addition to climate (Wallace and Moss, 2002). CS thus 
supports more informed decision-making by providing relevant and 
salient information to farmers. Tall et al. (2014a) define salient infor-
mation as tailored content that considers format and lead time in the 
context of farm-level decision-making. CS in the agricultural sector 
typically aim to promote specific recommendations for the growing 
season such as the choice of planting dates, cultivars, or irrigation and 
fertilization schedules (Capa-Morocho et al., 2016)). Although not the 
primary focus of CS, longer scale forecasts are useful for longer-term 
decisions such as those based on land purchase, investment in infra-
structure and breeding of cultivars. 

Evolution of climate services 

Supply-side advances are an essential factor supporting the produc-
tion of weather and climate services that are more accurate and reliable. 
Climate data collection, resolution, and prediction have improved over 
the years because of improved inputs, model skill, and understanding of 
climate processes and teleconnections (Sivakumar and Hansen, 2007). 
Vaughan et al. (2019) surveyed experts in the field of CS to find that 
continuous development and maintenance of the climate observational 
network is critical supply-side element supporting climate research. 
Accurate atmospheric observations are also critical for the production of 
skilful short-term climate forecasts (Collins, 2002). Advances on the 
supply-side of climate services should be continually pursued along with 
investment in approaches to engage with end-users to address their 
needs. 

Climate services were characterized for many years by a supply-side 
bias (Feldman and Ingram, 2009; Lourenço et al., 2016) based on the 
available forecasting science that resulted in a “loading dock” approach 
(Cash et al., 2006). This caused some degree of neglect of the demand 
side of CS, where users’ needs did not feature as strongly in endeavours 
to produce climate information (Dutton, 2002). Such a supply-side 
emphasis resulted in an improvement loop that produced more of the 
same information, with limited relevance to end-users (Dilling and 
Lemos, 2011; Lourenço et al., 2016). Users’ needs and perspectives have 
been recognised as integral for salient, accessible and legitimate climate 
services (Tall et al., 2014a). Efforts to better integrate the demand side 
through coproduction of climate services have been ongoing for many 
years (Cash et al., 2006; McNie, 2007), although the focus of literature 
tends to be on the models that would most effectively implement 
coproduction as an approach (Palutikof et al., 2019), rather than 
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empirical evidence from research in the field. The “uneven progress” 
towards coproduction (Vaughan et al., 2018a) reflects the current state 
of climate services and the difficulty of scaling demand-centred ap-
proaches. A contributing factor in the continued persistence of the 
supply-side is the increasing availability and accessibility of climate data 
and forecasts, particularly as the private sector has become more 
involved in the CS production process (Singh et al., 2018). The infor-
mation age has opened up many sources of data, often at little to no cost, 
and has encouraged the production and supply of forecasts from many 
varied sources, with little guarantee of relevance, legitimacy or salience 
(Cash et al., 2006). The plethora of available data and forecasts of un-
known validity in some regions highlights a persistent negligence of 
users’ needs and a necessity to more meaningfully engage with end- 
users of climate services (Vogel and O’Brien, 2006; Vogel et al., 2017). 

Why demand-centred approaches? unpacking the demand for climate 
services 

The focus of CS in recent years has shifted to better include users in 
production and promote active partnerships across stakeholders in the 
information value chain. CS have experienced limited effectiveness 
overall as seen by the somewhat limited uptake of CS endeavours (Haigh 
et al., 2015; Lourenço et al., 2016; Singh et al., 2018). This may have 
contributed towards the paradigm shift from viewing CS as a matter of 
supplying climatic information to a process involving the end-users in 
design and production. This shift is clear in the study conducted by 
Vaughan et al. (2016) where the international CS community identified 
the improvement of the connection of climate information to users as a 
research priority in the field. There are several methods to achieve this 
end, including the approach called coproduction, which has gained 
recognition over the past few decades (Vaughan et al., 2018b; Meadow 
et al., 2015; Prokopy et al., 2017). The advantages of demand-driven 
approaches are numerous, including that user-centred approaches 
could help to develop end-users’ capacity to use and effectively demand 
climate information (Hansen et al., 2011a). Additionally, incorporating 
users’ needs from early priority setting and design stages would likely 
increase the effectiveness of CS and their uptake (Hewitt et al., 2017). 
Salient, relevant climate information is more likely to be used for 
making future decisions. In a study on drought planning, Lemos et al. 
(2012) state that an improved understanding of how climate informa-
tion is used would increase its usability. Centring end-users’ needs in 
climate services has gained recognition as a vital factor for impact to be 
achieved, although there remains a legacy of supply-side bias that per-
vades due to a lag in scaling user-centred approaches. This is a similar 
challenge in scaling subscription-based models for digital extension in 
an agricultural context (Fabregas et al., 2019). 

Coproduction, translation and communication of CS 

The translation of climate information into actionable knowledge 
requires CS to link to real-world decision and contexts. In agriculture, 
climate services must be co-produced in a manner that is user-orientated 
(Meinke et al., 2006), and assures agricultural relevance and potential 
for impact (Takle et al., 2014). Coproduction is one amongst several 
approaches in the creation of CS that strives to improve collaboration 
between experts and non-experts (Crane et al., 2010). Co-production 
takes a demand-led approach and uses co-design and co-learning to 
engage scientists and decision-makers in collaborative knowledge cre-
ation (Meadow et al., 2015). The approach has gained recognition as an 
effective strategy to produce CS that is useful and provides value for end- 
users. 

While the call for CS development strategies that emphasize iterative 
feedback between producers and users of climate information is being 
well received and could increase the usefulness of climate services, ev-
idence is somewhat sparse. There have been few studies which have 
established the value of coproduction for CS (Carr et al., 2020) due to the 
challenging nature of implementation (Carr et al., 2017), relative nov-
elty of the approach and potential cost of conducting post hoc evalua-
tions beyond the project timeline. The USAID Learning Agenda (Carr 
et al., 2017) was created to better understand how to identify users of 
climate information and their needs. In this assessment, co-production is 
found to be necessary but in need of further research that discovers the 
barriers and opportunities of the approach. Beyond the need for evi-
dence on coproduction of CS, there are also several barriers to its use. It 
is a process that is continuous and time-intensive to conduct (Carr et al., 
2017). There are obstacles on both the demand and supply sides that 
could compromise the efficacy of participatory processes or make them 
difficult to predict when addressing farmers’ needs (Carr et al., 2020). 
Nonetheless, as in the field of climate adaptation, it is essential to engage 
with stakeholders in climate services beyond consultation to include 
explicit attempts to understand stakeholders’ knowledge, political in-
terests and values (Eriksen et al., 2021). Given these challenges, Oliver 
et al. (2019) suggest that researchers should stipulate specific motiva-
tions for implementing coproduction approaches to research, and eval-
uate whether outcomes were achieved to track usefulness. Taken 
together, these issues highlight some of the key challenges with 
assuming coproduction is appropriate and scalable in all contexts. 

A central facet of coproduction is co-exploration by producers and 
users of the decision space. Vincent et al. (2018) highlight the impor-
tance of understanding which decisions can be addressed by which 
climate services when identifying the potential need for CS. The iden-
tification of the decision space is partially addressed by the analysis that 
we have conducted, which explores how forecasts are used in agricul-
tural decision-making. This compendium of forecast-influenced de-
cisions allows for a more nuanced understanding of the decision context 
and highlights potential gaps between information supply and demand 
in the CS landscape. The decision matrix is a meta-analysis of the 
available literature that describes how climate information is used to 
make agricultural and livelihood decisions. 

GFCS and the CS value chain 

The WMO’s Global Framework for Climate Services (GFCS) is a 

Table 1 
Key words used to source literature for constructing the decision matrix.  

Dimension Search terms Dimension Search terms 

Climate 
services 

Weather and 
climate forecast 

Agricultural/pastoral 
management 

Farmer decision- 
making 

Decision support 
tool 

Agricultural 
adaptation 

Climate 
information 

Start of the season 

Soil moisture Planting date 
Soil temperature Decision calendar 
Rainfall forecast Climate risk 

management 
10-day forecast Pastoral decision- 

making 
Seasonal forecast  
Forecast skill  
Climate risk 
management  
Climate prediction   
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global partnership designed to mainstream climate services into primary 
sectors for the “better management of the risks and opportunities of 
climate variability and change in climate-sensitive productive sectors” 
(WMO, 2018). The GFCS focuses on integrating five pillars for devel-
oping climate services value chains across the sectors; observations and 
monitoring; climate services information system; research, modelling 
and prediction; user interface platform; and capacity development. The 
GFCS is established in-country through the National Framework for 
Climate Services (NFCS), which is a co-ordinating mechanism for 
enabling the development and delivery of climate services. Co- 
production and co-design are key facets of the NFCS for the co- 
ordination and collaboration of institutions along the CS value chain 
(WMO, 2018), which encompasses the networks of stakeholders that 
perform data generation, translation, delivery and use of climate infor-
mation. This structured approach to ensuring that users are at the centre 
of CS endeavours requires exploring the context of usable climate in-
formation. The NFCS intends for climate services to be co-designed, co- 
produced, delivered and used by other climate-sensitive socioeconomic 
sectors, including agriculture (WMO, 2018). Conducting our analysis in 
these socioeconomic sectors may contribute to this goal by improving 
coordination between institutions and understanding end-users’ deci-
sion-making. 

Materials and methods 

This paper aims to establish the potential value of climate services to 
farmers and patterns of climate information use in an agricultural 
context. We do so by systematically characterizing the farmer decision 
space in which weather and climate services are used. We recount the 
steps involved in creating a reproducible methodology for a thorough 
account of the literature as far as possible. Every effort was made to 
include all relevant literature but due to the time intense and laborious 
process of examining articles for specific pieces of information, there are 
likely numerous relevant papers that have not been included. With this 
in mind, the total number of articles amounted to comparatively few in 
the arena of meta-analyses. 

The first step is to identify the relevant literature for inclusion in the 
meta-analysis. Our sources for literature searches included Google, 
Google Scholar, CG Space and Web of Science using keywords listed in 
Table 1. The CG Space allowed for material from the CGIAR’s Climate 
Change, Agriculture and Food Security (CCAFS) research around climate 
services use in partner countries. Papers were relevant if they met the 
following criteria for inclusion into the analysis:  

1) A specific type of weather or climate information is used or could be 
used by a stakeholder in agriculture or pastoralism  

2) A specific agriculture-related decision is or could be altered by the 
use of the aforementioned climate information  

3) A benefit of some sort is expected from the use or potential use 

The specificity of the criteria results in many papers being excluded 
by default, as oftentimes a paper will describe a general impact of 
forecasts on decision-making with no specific decision mentioned. For 
example, stating that seasonal forecasts affect crop choice does not fulfil 
the criteria as a specific crop choice is not described. While analysing 
papers for meeting the criteria, citations for further papers are investi-
gated as well. This snowball method results in hundreds of papers being 
identified, which ultimately narrowed down to 41 articles that fulfil the 
criteria. We analyse the articles for the decisions described in each study 
according to the type of weather or climate information influencing 

decisions, the region, the crop or livestock pertaining to the decision, the 
expected or experienced benefit of the decision, and if applicable, the 
forecast skill. These descriptive data of each forecast-influenced decision 
allows for an in-depth analysis of the types of studies in this paper and 
various other trends such as emphasis on particular countries or crops. 
We use these data to construct our compendium, or ‘decision matrix’, 
which has two axes corresponding to agricultural decisions (x axis) and 
forecasts (y axis). We describe a decision as a specific agricultural or 
pastoral action described in relation to the use of specific forecast in-
formation. These categories were chosen because their specificity allows 
for the identification of studies that are based on evidence, such as de-
cision models, farmer surveys or consultations with experts. Such in-
formation offers the opportunity to gain insight, into patterns of climate 
information use and the role of context. 

Results 

The studies in this meta-analysis are based on quantitative simula-
tions, qualitative surveys, or a combination of both. There are no studies 
that systematically followed farmers’ or pastoralists’ decision-making 
from receiving forecasts until the end of the growing season to estab-
lish how real-world forecast-informed decisions. In this sense, results 
from the matrix may not be true reflections of on-the-ground forecast 
use. Nevertheless, due to the wide geographies, farming systems, and 
end-users of CS in this analysis, it is intended as an indication of the 
potential value of climate information and the need for more systematic 
evaluations of CS. 

The meta-analysis yielded 41 articles that identified 186 decisions 
supported by weather and climate information, covering 32 crops in 15 
countries. The literature sourced in this analysis came from several 
different fields of study, some not focusing on climate services them-
selves but rather on farming calendars or household adaptation strate-
gies. As such, climate-informed decisions are rarely described beyond 
the type of forecast and agricultural decision. We found two types of 
studies, or some combination of both; the first being qualitative and 
based on presenting farmers with a hypothetical forecast and asked how 
they would change their management practices; the second being 
quantitative and using climate and agronomic data in simulations to 

Table 2 
Types of agriculture-based actions taken with weather or climate information.  

Action type Sub-category Number of decisions (%) 

Sowing Sowing date 24 (13%) 
Sowing density 7 (3.8%) 
Sowing depth 1 (0.5%) 
Staggering 3 (1.6%) 

Planting regime Cover crop 2 (1.1%) 
Crop choice 42 (22.5%) 
Fallow land 3 (1.6%) 
Land preparation 29 (15.6%) 

Crop inputs Fertilizer and manure use 23 (12.4%) 
Herbicide and insecticide use 6 (3.2%) 

Agricultural practices Weeding method 2 (1.1%) 
Marketing strategy 4 (2.2%) 
Conservation agriculture 1 (0.5%) 
Tillage 2 (1.1%) 
Water conservation techniques 11 (5.9%) 
Harvest date 8 (4.3%) 
Labour 3 (1.6%) 
Asset purchase 2 (1.1%) 

Livelihood actions Livelihood strategy 7 (3.8%) 
Livestock Livestock management 6 (3.2%) 
Total decisions 186  
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show how management decisions could be optimized. It was uncommon 
for a paper to study how a climate services end-users responded to a real- 
world weather or climate forecast 

Crop type and country are frequently undescribed in papers, which 
we have classified as “unspecified”. Repetitions are evident in the matrix 
as several articles may mention the same application of forecasts to 
decision-making. For example, when a ‘wet’ season was forecast, one of 
the decision applications was to apply more fertilizer than a ‘normal’ 
season, which was mentioned in three articles. The frequency of de-
cisions in the decision matrix is described in parentheses after the 
description of the decision. The matrix itself is an enormous represen-
tation of specific data that cannot be easily simplified or reduced. As 
such, it has not been included in the article, and is instead uploaded onto 
dataverse, with some graphics relating to smaller sections of the matrix 
being presented in this analysis. Seasonal precipitation forecasts (Fig. 2) 
and 10-day forecasts (Fig. 3) encompass the majority of the data in the 
matrix. 

In the studies documented in the matrix, there were numerous 
different ways in which authors measured qualitative activities; house-
hold surveys, focus group discussions, simulation modelling, individual 
interviews, workshops, expert interviews, and role-play exercises and 
model simulations. Studies found concentrate in Africa (21 out of 41 
papers) and the United States (7 out of 41). Results in Asia came from 
India (2 papers), Australia (6), and South America (2 from Argentina). 
Two papers did not specify in which country were the forecast-based 
decisions relevant. 

Table 2 shows the type of agricultural decisions in the studies ana-
lysed which can be further divided into several sub-categories that cover 
almost all farm management decisions from planting to harvesting. 
Other decisions include livelihood alternatives and livestock actions. 
Out of a total of 186 decisions reported, the most frequent were crop 
choice (22%), followed by land preparation (17%), sowing date (13%) 
and fertilizer and manure use (12%). The decisions that appeared to be 
least affected by forecast, or were least documented in the literature, 
were conservation agriculture techniques, asset purchase, and sowing 
depth. It could be that conservation agriculture and asset purchase are 
long-term decisions that require the consideration of many other factors 
beyond weather and climate forecasts, while sowing depth could be a 
decision that tends not to be the focus of simulation studies, nor in-
terviews with farmers perhaps due to the high-tech nature of considering 
this decision on a farm. 

Table 3 illustrates the frequency of agricultural decisions and related 

forecast type in the analysis. Precipitation forecasts appear to be the 
most frequently studied forecast, according to the literature in the ma-
trix. Precipitation forecasts of all timescales account for 145 of the 175 
total decisions. Specifically, seasonal precipitation forecasts are those 
that are most frequently associated with farmers’ decision-making 
across the globe, according to the analysis. These forecasts are applied 
across many of the decision sub-categories listed in Table 3 (17 out of 20 
sub-categories). Dekadal, or 10-day, precipitation forecasts, and sea-
sonal temperature and precipitation forecasts are the next most 
frequently studied, accounting for 16 decisions each in the decision 
matrix. By contrast, several forecasts apply to very few categories of 
agricultural decisions. A forecast of precipitation, temperature and wind 
together is documented once in the analysis, with reference to a “hot, 
dry and windy summer”. Soil moisture forecasts are also documented 
twice, once each on dekadal and seasonal timescales, influencing har-
vest date and land preparation respectively. 

There are instances in the matrix where climate forecasts appear to 
be solely applied to one agricultural decision, one of which is the 
application of soil temperature forecasts to fertilizer application de-
cisions. Furthermore, forecasts description in studies varied from gen-
eral statements (‘a dry season is forecast’) to specific descriptions, for 
example, on hit and false alarm rates of forecasts. 

The decision space in which farmers operate is complex and the role 
of climate information is difficult to establish. The matrix is a simplified 
representation on a global level of how farmers may make decisions, 
according to the literature described (Fig. 1; also see Appendix 1 for an 
extract). The visualization of the matrix in Fig. 2 shows the timescale of 
forecast types, which decisions they may influence and at which time in 
the season the forecasts might be useful. The colours depict the different 
types of forecast (e.g. soil, precipitation or temperature forecast). The 
numbers in each coloured cell describe how many decisions relate to the 
forecasts that are described in the decision matrix (the relative fre-
quency of papers mentioning the forecast-influenced decision). We 
found that certain forecasts are most useful before the growing season 
has begun, for what we call “step decisions” that often cannot be 
reversed such as leaving land fallow or divesting from agriculture. Other 
forecasts appear to be more useful during the season for “continually 
adjusted decisions” such as harvest date and use of inputs. 

The decision matrix and its visualizations offer valuable insights into 
which climate information may be useful in which agricultural or live-
lihood circumstance. Most obvious at first glance is that forecasts appear 
to be most applicable before, rather than during, the season. Further-
more, decisions seem to be concentrated around particular forecast 
timescales and variables, indicating that specific forecasts may be more 
broadly applied to various different decisions than others. To some 
extent, this may also reflect levels of data and knowledge availability for 
particular forecast variables. For instance, seasonal precipitation fore-
casts are the most populated in the matrix, indicating their applicability 
to virtually all of the step and continually adjusted decisions identified. 
The high frequency of precipitation forecasts in the matrix is likely a 
result of the fact that roughly half (54%) of the studies focus on Africa, 
where agriculture is primarily rainfed, but also of forecast and obser-
vation data availability. Soil moisture forecasts, on the other hand, were 
only described in the literature with reference to harvest times. 

The complexities and nuances of decision-making are, however, 
under-represented in Fig. 2. All decisions examined in this review relate 
to the use of short-term climate information and mostly focus on annual 
crops in monoculture systems (with no representation of highly diver-
sified, silvo-pastoral or agro-forestry systems). In the below subsections, 
we first present a general overview of how forecasts may influence 
decision-making, and then expand on the types of forecasts, or forecast 
simulations, found in the literature, namely, seasonal precipitation 

Table 3 
Forecasts described in the decision matrix and the number of decisions influ-
enced by each forecast.  

Forecast influencing decision in the 
Decision Matrix 

Timescale of 
forecast 

Number of decisions 
influenced 

Precipitation forecast Daily 6 
Dekadal 
(10 day) 

19 

Seasonal 129 
Temperature and precipitation 

forecast 
Seasonal 16 

Temperature forecast Seasonal 5 
Soil moisture and precipitation 

forecast 
Dekadal (10- 
day) 

6 

Precipitation, temperature and wind 
forecast 

Daily 1 

Soil temperature forecast Seasonal 2 
Soil moisture Dekadal (10- 

day) 
1 

Seasonal 1 
Total  186  
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forecasts, dekadal precipitation, and seasonal temperature forecasts. 
Dekadal forecasts refer to those that are 10 days long. 

Can forecasts influence decision-making? 

The decision matrix shows that many different forecasts and com-
binations of forecasts can influence decision making on different time-
scales. This is partly because farmers make spontaneous decisions based 
on their embodied knowledge (Crane et al., 2011), not simply rational 
expertise, and this creates a complex decision space. Consistent with 
this, the decision matrix shows that one forecast may influence several 
different agricultural or livelihood decisions and vice versa (Fig. 2). 
Different meteorological variables may influence decisions according to 
timescale and nature of the decision (relating to crop growth, household 
goals, policy landscape, external environment etc.). One decision type 
that is typically impacted by several different forecast types is fertilizer 
application (see Fig. 2). The choice to apply fertilizer is heavily depen-
dent on rainfall. From the matrix, we can see that several different types 
of precipitation forecast affect fertilizer application at different stages in 
the season. Above normal rainfall forecast at planting may lead farmers 
to apply more than their usual amount of fertilizer at planting to capi-
talize on ‘good’ conditions (Ingram et al., 2002). If rainfall is forecast to 

increase during the season, farmers may apply more nitrogenous fer-
tilizer (Hochman et al., 2009). By contrast, if dry conditions are forecast 
for the season, farmers may choose to use more slow-release nitrogen 
than usual (Fraisse et al., 2006). 

Responses to forecasts assessed through farmer interviews may also 
seem conflicting. For example, a forecast of above normal rain around 
the time of planting can lead farmers to sow either earlier or later, 
depending on their motivation. An earlier planting would allow for 
crops to establish themselves and withstand heavy rains (Ingram et al., 
2002) while a later planting could avoid early loss of crops (O’Brien 
et al., 2000). In our analysis, two vastly different decisions are docu-
mented as a response to a forecast of flooding for the season. Rasmussen 
et al. (2014) found from surveying farmers that a flooding forecast may 
result in the decision to increase cultivated area because some fields will 
be lost to flooding. On the contrary, O’Brien et al. (2000) surveyed 
farmers to find that a viable decision for flooding is to stop farming and 
go into commercial business. This serves to illustrate how farmers must 
consider numerous possible outcomes in their decision-making and that 
establishing a single meteorological variable as a sole influencer of de-
cisions is difficult. 

The decision matrix also shows that end-users can use climate in-
formation to make livelihood decisions that involve divesting from 

Fig. 1. Number of studies that mention each country from the articles documented in the decision matrix. 8 papers in North America, 21 in Africa, 2 in South 
America, 2 in Asia, 6 in Australia and 3 papers with unspecified locations for climate influenced decisions adds up to a total of 41 papers. The USA has been split into 
states in this map to illustrate which areas of the country are the focus of climate services articles relevant to the decision matrix. The legend goes from 0 to 7, 
omitting 5 as there are no countries with 5 papers in the matrix. 
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agriculture. The papers in the matrix outlining responses related to 
alternative livelihoods activities (other than farming) are based on 
survey methods that document farmers’ responses to seasonal forecasts. 
Responses generally involve some level of divestment without 
completely abandoning agricultural practices. The livelihood security of 
farmers may depend to differing degrees on small-scale mining, trade, 
crafts, or seasonal migration work (Roncoli et al., 2009; Ingram et al., 
2002) in addition to continued agricultural practices. For example, 
farming households in the Central Plateau of Burkina Faso use labour 
migration to Côte d’Ivoire as a livelihood strategy (Ingram et al., 2002). 
Seasonal climate information appears to be the forecast type that would 
be most pertinent to broader livelihood decisions. (Crane et al., 2010; 
Ingram et al., 2002; Nyamwanza et al., 2017; O’Brien et al., 2000; 
Thomas et al., 2007). For many, full or partial divestment from agri-
culture is a risky decision and a seasonal forecast offers some indication 
as to whether or not an alternative crop or an alternative livelihood 
strategy is a better decision. 

While our understanding of the role and value of CS is developing 
quickly, there remain several steps to improving how we judge CS to be 
successful and how this will aid in evaluating CS (Vaughan and Dessai, 
2014). We have examined why it is difficult to identify the specific 
benefits of climate services in agriculture however, a closer look needs to 

be taken at evaluation criteria for CS. Determining what defines suc-
cessful climate services requires a value judgement and associated 
criteria. For example, the number of next- and end-users that access a 
particular climate service is a metric often used to measure success. 
While this gives an indication of reach, there is no indication of whether 
farming decisions are altered in response to climate information. Other 
metrics could be considered for a broader assessment of the value of 
climate services, such as end-users’ choice to divest. Impact assessments 
and monitoring and evaluation could further improve our understand-
ing of the value of climate information, although these are seldom 
implemented as they require activities beyond a project’s lifetime. 

The value of weather and climate information 

Of the matrix papers that employ simulations in their analyses all use 
yield as a metric of the potential value of climate information. Simula-
tions typically use crop models to establish how yield would likely 
respond to management decisions based on climatic conditions. While 
such studies are not intended to provide exact recommendations to 
farmers, they do provide an indication of how climate information may 
alter decisions and impact yield. These studies are still valuable to the 
analysis due to the context specificity and expert input that is involved in 

Fig. 2. Step and continually adjusted decisions that farmers may encounter during the growing season, categorized according to the timescale of the forecasts that 
influence decisions. Symbols show which type of forecast while numbers indicate how often the decision is described in the decision matrix. 
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simulations. Studies that tracked farmers’ forecast use throughout the 
growing season were uncommon, possibly due to limited resources 
availability. This serves to highlight the dearth of evaluations and as-
sessments aimed at establishing how farmers may value climate infor-
mation in their decision-making. Although there are no studies in the 
matrix that describe a realized yield benefit for farmers using climate 
services, Tarchiani et al. (2018) conducted a study over two growing 
seasons that quantified how yield changed with forecast use. They found 
that average sorghum yields from 2015 and 2016 increased by 64% in 
Mauritania with the use of agrometeorological services. The paper did 
not fulfil the criteria to be included in the matrix, as decision de-
scriptions were more general than specific. Quantitative studies on the 
impact of CS use on crop yield are key to furthering understanding of 
forecast value. New methods need to be developed for understanding 
how seasonal climate forecasts are useful for farmers’ decision-making, 
as concluded in a study assessing farmers’ use of 3-month outlooks on 
climate (Falloon et al., 2018). 

Seasonal precipitation forecasts 

The decision matrix reveals patterns in the literature regarding 
climate-informed decision-making that infers how climate information 
may affect on-farm decisions. The high frequency of seasonal precipi-
tation forecasts in the matrix reflects the large number of climate- 

sensitive agricultural decisions that are made before the growing sea-
son begins (Roudier et al., 2012). Seasonal precipitation forecasts are 
the tool most often used to plan the upcoming season, with most de-
cisions revolving around crop choice, land preparation, conservation 
agriculture techniques, water conservation strategies, tillage, sowing 
date and alternative livelihood choices. Seasonal precipitation forecasts 
have typically been the focus of climate information for agriculture, 
with sub-seasonal forecasts (2–3 week lead time) receiving less attention 
than longer (seasonal) or shorter (10-day and daily) forecasts (Kolachian 
and Saghafian, 2019; Vitart, 2014). The origin of this lack of attention 
can be partially attributed to a supply-side problem, where the sub- 
seasonal timescale is less predictable than seasonal or daily timescales, 
although has recently gained recognition as forecasting techniques have 
evolved (Kolachian and Saghafian, 2019). 

Dekadal precipitation forecasts 

The dekadal (10-day) precipitation forecast was rarely mentioned in 
reference to planting regime decisions, with only one entry; staggering 
planting of crops when dry spells are forecasting during the season. 
Other planting regime decisions such as crop area and choice, crop 
rotation, land use and land preparation appear to be more frequently 
mentioned in the matrix in reference to seasonal forecasts. Dekadal 
precipitation forecasts are more often mentioned for step decisions 

Fig. 3. A visualisation of the decision matrix showing how dekadal (10-day) forecasts may influence agricultural decision before, during and after the 
growing season. 
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taken during the season such as fertilizer application, sowing date and 
harvest date (Fig. 3). Dekadal temperature forecasts were absent in the 
matrix. 

Seasonal temperature forecasts 

Seasonal temperature forecasts were mentioned twice in the matrix; 
a forecast of a hot summer may lead farmers to plant tomatoes as a 
marginal crop (Klemm and McPherson, 2017); and a warm seasonal 
forecast could result in farmers planning to harvest their crops earlier 
(Mavi and Tupper, 2004). However, neither paper specifies to which 
country or crop system it is pertinent Such farming decisions are natu-
rally specific to certain region and crop systems. We can thus gain some 
insight into how temperature may influence decisions, rather than 
specific, universally applicable farming decisions. Seasonal precipita-
tion forecasts appear to be more pertinent to decision-making than 
seasonal temperature forecasts which seems counter-intuitive consid-
ering how important both meteorological variables are to crop growth. 
However, as stated earlier, this is likely because roughly half of the 
studies identified here are from Africa, where variability at inter-annual 
timescales is generally greater for precipitation than for temperature, 
and where precipitation is the more limiting factor compared to 
temperature. 

Soil moisture and soil temperature forecasts 

Both soil moisture and soil temperature are infrequently mentioned 
in the decision matrix, covering 2 and 4 decisions respectively. The 
specificity of soil moisture forecasts compared to seasonal precipitation 
forecasts may offer some guidance on where to invest in climate ser-
vices. It is possible that seasonal precipitation forecasts apply to more 
decisions, however, it could be that there is a gap in supply of other types 
of forecasts, resulting in apparent differences in usefulness. Potentially a 
barrier to using soil moisture forecasts is the difficulty in collecting such 
data at scale due to the expense associated with sensors and laboratory 
tests to calibrate sensors (Dubois et al., 2021). Nevertheless, soil mois-
ture is an important indicator of drought and is often used to determine 
planting dates at the beginning of the season. 

Daily precipitation forecasts 

Decisions related to fertilizer use and sowing date are the most 
frequently mentioned in relation to daily precipitation forecasts. The 
accuracy of weather forecasts compared to seasonal forecasts allows for 
more precise decisions on shorter timescales which typically include 
crop inputs, sowing dates and harvesting dates. Weather forecasts for 
other meteorological variables seem to be absent from the decision 
matrix. This may be representative of a general bias towards particular 
forecast types such as seasonal precipitation forecasts, which permeates 
into the literature centred on yield simulations and climate information. 

Discussion 

We discovered several patterns in forecast use from the decision 
matrix that may prove useful in CS initiatives. The apparent usefulness 
of seasonal precipitation forecasts may present a starting point for 
implementing CS in a given context. Seasonal precipitation forecasts 
give a probabilistic outlook of temperature and precipitation several 
months in advance in tercile categories; above normal, normal and 
below normal, based on the previous 30 or so years of precipitation data. 
This shows how probable it is that the upcoming season will be 

climatologically different (Singh et al., 2018) which potentially offers 
direction for farmers in their decision-making. Dekadal, or 10-day, 
precipitation forecasts are most suitable for step decisions due to the 
changeable nature of these decisions and their short time horizon. 
Temperature forecasts were rarely found to be useful for end-users, ac-
cording to the literature reviewed. Weather forecasts, on the other hand, 
are less uncertain as they perform better due to the shorter timescale of 
less than two weeks (Takle et al., 2014). Weather forecasts are useful for 
continually adjusted decisions that are resolved in the next few days 
such as when to apply inputs to crops or when to weed. Step decisions 
are better addressed by seasonal climate forecasts, although the uncer-
tainty associated with a probabilistic forecast has been cited as a barrier 
by users of climate information in several studies (Haigh et al., 2015; 
Sivakumar and Hansen, 2007; Soares et al., 2018). 

Furthermore, the trends in potential forecast use identified here may 
prove useful in establishing what farmers consider their objectives when 
using climate information to make decisions. Typically, it is with the 
intent of achieving a resource allocation that maximizes the utility of 
labour, capital and land (Wallace and Moss, 2002). CS tend to be tailored 
for maximizing yield as the primary way to achieve maximum utility. 
However, farmers may pursue different livelihood objectives to the ex-
pected yield improvement. McConnell and Dillon (1997) highlight that 
farmers may pursue objectives such as economic return, yield stability, 
crop diversity, flexibility of practices, labour productivity or environ-
mental sustainability. These objectives, or some combination thereof, 
could better align with household resources than solely yield improve-
ment. Farmers may also pursue objectives on different timescales to 
climate forecasts, adding further uncertainty to decision-making (Kni-
veton et al., 2014). It is thus imperative to consider different objectives 
and timescales of farmers’ decision-making when tailoring climate ser-
vices. “Successful” climate services should include efforts towards 
increasing population resilience (Carr et al., 2017) and prioritizing 
livelihood pursuits such as household resource allocation (Tall et al., 
2014) or potentially migrating to the city instead of farming for the 
season (Ingram et al., 2002). 

The decision matrix contributes to the literature highlighting the 
need for more numerous and detailed evaluations of real-world appli-
cations of climate forecasts. The importance of user-centred approaches 
has long-since been established in the field of climate services and 
progress towards scaling is ongoing. However, the supply-side legacy 
remains partially intact while initiatives and endeavours are being 
scaled. One such initiative is the Local Technical Agroclimatic Com-
mittees (LTACs) that are currently being scaled in Latin America through 
the CGIAR’s CCAFS research programme. The LTACs create dialogue 
between farmers and researchers to provide farmers with relevant 
choices responding to climate variability (Loboguerrero et al., 2018). 
Since the inception of two LTACs in Colombia, the approach has scaled 
to 23 LTACs across Latin America, with more in the pipeline. Another 
user-centric initiative that is scaling is the Participatory Integrated 
Climate Services for Agriculture (PICSA) approach. PICSA places 
particular emphasis on engaging with end-user communities and un-
derstanding their context prior to establishing which risk management 
practices are most appropriate for their livelihoods (Dayamba et al., 
2018). PICSA embodies the notion put forward by Hansen et al. (2011b), 
that agricultural extension services should incorporate climate infor-
mation where possible. Farmers have affirmed that PICSA has encour-
aged them to consider and implement agricultural innovations suitable 
to their contexts (Dayamba et al., 2018) which is integral to effective 
CRM. The matrix offers insight into forecasts of different scales and their 
potential to contribute to choices of climate risk management strategies. 
In seasons that forecasts suggest might be favourable, farmers may be 
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willing to invest in new technologies or assets previously considered to 
be too risky. For example, one entry in the matrix states that farmers 
may plan to make large purchases when rainfall is forecast to be evenly 
spread throughout the season (Mavi and Tupper, 2004). Another entry 
states that farmers might build dams for water storage in seasons where 
above normal rainfall is forecast (Ndiaye, 2011). Additionally, the ma-
trix offers researchers and practitioners the opportunity to efficiently 
identify relevant factors pertaining to the impact of their climate ser-
vices initiatives. 

Agriculture is one amongst several sectors that depends directly on 
the climate. Weather and climate services are useful to sectors that 
experience vulnerability due to climate variability or extreme events 
(Alexander and Dessai, 2019; WMO, 2017). The GFCS aims to main-
stream climate information into decision-making in several primary 
sectors of countries and is currently being implemented in 41 countries. 
We suggest that the construction of a decision matrix in each sector may 
offer an opportunity to better understand the decision space where end- 
users are using CS. This would be a step towards supporting the GFCS to 
identify entry points, information needs and synergies across sectors for 
the scaling of CS. Additionally, opportunities to leverage shared re-
sources and maximize knowledge sharing could be realized by con-
structing decision compendiums. Access to climate and weather 
forecasts is a measure that could increase the resilience of the agricul-
tural sector (Robinson et al., 2013) and could be used to increase 
resilience in other sectors as well. There is promise that the integration 
of climate forecasting into different sectors could reduce the cost of 
adapting to climate variability (Feldman and Ingram, 2009). 

Conclusions 

The decision matrix of forecast-influenced agricultural decisions of-
fers a counter to the supply side approach that has previously dominated 
the CS perspective. The analysis is somewhat limited by the nature of the 
relevant literature which focuses largely on simulating decisions 
through models or surveys with farmers. As such, the patterns in the 
value of forecasts offered by the decision matrix are interpreted through 
a lens of potentiality and context-setting. Seasonal precipitation fore-
casts appear to have inherent utility based on the frequency of matrix 
entries, while other forecasts appear to be less valued. Potentially 
underutilized or undervalued forecasts for agricultural decision-making 
include temperature, soil moisture, soil temperature and wind forecasts. 
As complex as farmer decision-making for climate risk management 
might be, understanding the decision space allows for the identification 
of potentially useful information and potential gaps in information 
provision. This helps CS practitioners in the future to move strategically 
to develop climate services for impact. 

The matrix also provides a starting point by exploring the decision 
space in which climate forecasts are used in agriculture. This encourages 
dialogue that could bring together climate and agriculture expertise, and 
expedite the process of two-way communication in CS production. 
Linking the supply and demand sides early in climate services produc-
tion may help in establishing opportunities and gaps in the CS landscape 
(Hoogenboom et al., 2007). Evaluating the CS value chain also offers the 
opportunity to gauge the socio-technical capacity of different stake-
holders, institutions and end-users of climate services. It is a process that 
can offer value to all players involved in CS production, and may prove 
valuable to CS practitioners. 

Further identified by this analysis is the need for impact studies 
focusing on climate services to establish tangible benefits that are 
replicable. Coproduction should continue to be evaluated as well in this 
vein. Recent work suggests that there is a dearth of impact assessments 

or evaluations that determine whether coproduction in CS has increased 
outcomes and impacts (Vogel et al., 2017). While the barriers to 
coproduction are well-established, evidence of the approach improving 
the usability of CS is scant (Hansen et al., 2019), as is evidence of its 
scalability (Vaughan et al., 2019). There is a need for more monitoring 
and evaluations efforts to establish how climate services are used by 
stakeholders in agriculture and pastoralism. 

The benefits of the decision matrix that have been highlighted may 
be applied to other climate-sensitive sectors with the construction of 
their own sector-specific matrices. Sectors that may benefit include 
health and safety, water and sanitation, urban planning, rural devel-
opment, telecommunications, tourism and trade. It is possible that 
constructing decision matrices for these sectors could allow for better 
alignment of weather and climate services initiatives at both national 
and regional scales, in line with the GFCS. Capacity development is one 
of five pillars of focus of the NFCS and is an all-encompassing endeavour 
as capacity of all stakeholders involved is important for useful, valuable 
climate services. Establishing decision matrices in each sector may also 
help the process of co-production in sectors as stakeholder and institu-
tion mapping can be shared. 
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Table A1 
Extract from the decision matrix.  

Full decision matrix available at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:https://doi.org//10.7910/DVN/UDDTXE 
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