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Assessing the use 
of a drought‑tolerant variety 
as adaptation strategy for maize 
production under climate change 
in the savannas of Nigeria
Abdullahi I. Tofa1*, Alpha Y. Kamara1, Bashir A. Babaji2, Folorunso M. Akinseye4,5 & 
Jenneh F. Bebeley1,3

The Decision Support System for Agricultural Technology Transfer (DSSAT) was used to quantify the 
impact of climate change on maize yield and the potential benefits of the use of drought-tolerant 
maize variety over non-drought tolerant variety in savanna ecological zones of Nigeria. Projections 
of maize yields were estimated for three locations representing different agro-climatic zones and 
soil conditions, in the mid-century (2040–2069) and end-century (2070–2099) under representative 
concentration pathways scenarios (RCP 4.5 and 8.5) against the baseline period (1980–2009). Relative 
to the baseline period, the ensemble Global Circulation Models (GCMs) predicted significant increase 
in minimum and maximum temperatures and seasonal rainfall across the sites. In the mid-century, 
ensemble GCMs predicted temperatures increase between 1.7–2.4 °C for RCP4.5 and 2.2–2.9 °C for 
RCP8.5. By end-century, the temperature increases between 2.2–3.0 °C under RCP4.5 and 3.9–5.0 °C 
under RCP8.5. Predicted seasonal rainfall increase between 1.2–7% for RCP4.5 and 0.03–10.6% for 
RCP8.5 in the mid-century. By end of century, rainfall is expected to increase between 2–6.7% for 
RCP4.5 and 3.3–20.1% for RCP8.5. The DSSAT model predictions indicated a negative impact on maize 
yield in all the selected sites, but the degree of the impact varies with variety and location. In the mid-
century, the results showed that the yield of the non–drought tolerant maize variety, SAMMAZ-16 will 
decline by 13–19% under RCP4.5 and 19–28% under RCP8.5. The projection by end-century indicates a 
decline in yield by 18–26% under RCP4.5 and 38–47% under RCP8.5. The yield of the drought-tolerant 
variety is projected to decline by 9–18% for RCP4.5 and 14–25% for RCP8.5 in the mid-century and 
13–23% under RCP4.5 and 32–43% under RCP8.5 by the end-century. The higher temperatures by 
both emission scenarios (RCP 4.5 and 8.5) were primarily shown to cause more yield losses for non-
drought-tolerant variety than that of the drought-tolerant variety. There will be 1–6% less reduction in 
yield when drought-tolerant variety is used. However, the higher yield reductions in the range of − 13 
to − 43% predicted for the drought-tolerant variety by the end of the century across the study areas 
highlighted the need to modify the maize breeding scheme to combine both tolerances to drought 
and heat stresses in the agro-ecological zones of northern Nigeria.

Maize (Zea mays L.) production in Nigeria has been increasing rapidly both in terms of hectarage and produc-
tion. This is evident from the annual production of above 10 million tons on area of 4.9 million hectares in 20181. 
According to Ezeaku et al.2, Nigeria required an estimated 50% increase in maize production to meet the increas-
ing demands over the coming decades. Despite increase in current production, Nigeria’s average maize yield of 
2 t ha–1 is among the lowest of the top 10 maize producers in Africa1. The bulk of the maize is produced in the 
Northern region where the savannas have favourable conditions required for maize growth3,4. Major constraints 
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to maize production in the Nigeria savannas are poor soil fertility5,6, Striga hermonthica parasitism7,8, drought 
and unsuitable temperatures9. Frequent drought and high temperatures resulting from climate variability and 
change negatively impact maize production in the Nigeria savannas.

Generally, crops have an optimal temperature for performance, beyond which yields rapidly decline10,11. 
According to Liu et al.12 the optimum maize‐growing temperature in Sub-Saharan Africa (SSA) is 25 °C. 
Although maize is usually considered as a warm season crop it is actually more sensitive to high temperature 
stress as compared to other crops13. For every degree of an increase in global mean temperature, average maize 
yields are projected to decrease by 7.4%14,15. Maize is particularly vulnerable to heat stress during the reproduc-
tive stage16–18. Findings from Bita and Gerats19, indicated that heat stress during flowering and grain filling stages 
resulted in decreased grain number and weight, leading to low crop yield and quality. There is already undeniable 
evidence that Nigeria has witnessed increasing trends in the annual temperatures20–24. Climate projections for 
the coming decades in Nigeria predicted there will be a temperature increase of between 2 and 2.5 °C across the 
country by 205025, with a rise of up to 3.2 °C under a high-resolution global climate change scenario within the 
same century10. Likewise, the regional temperature variations are also expected, with the highest increase (4.5 °C) 
projected in the northeast by 210011. Shiru et al.26 revealed an increase in rainfall in the south-south, southwest, 
and parts of the northwest with a decrease in the southeast, northeast, and parts of central Nigeria. They projected 
annual rainfall change in the range of − 7.5% to + 27% by end-century, thereby, projecting for future drought and 
flooding in the country. Drought is a major abiotic stress limiting maize production and productivity in SSA, 
contributing between 44 to 58% grain yield reduction in West and Central Africa27,28. Many places in the Guinea 
savannas of Nigeria now experience yearly drought that often coincides with flowering period of maize crops 
and consequently leads to poor grain yield or total crop failure29. It is being speculated that the frequency and 
intensity of drought would intensify in the years ahead in response to climate change30. Such extreme conditions 
of high temperature and drought will have negative impact on agriculture and food security in Nigeria which 
largely dependent on rain-fed food production systems31.

Future evidence of climate change impact highlights the need to explore adaptation strategies that can reduce 
the negative impacts. Some studies suggested improved crop management practices like the deployment of 
drought-tolerant varieties32,33 could improve yields, and reduce loses due to potential climate change effects34,35. 
The use of drought-tolerant varieties have been reported to reduce maize yield loss due to climate change. Cairns 
et al.36 reported that drought-tolerant maize varieties are resilient to the effects of high temperature in SSA. A 
study by Tesfaye et al.33 showed significant yield reductions of local maize varieties by 21, 33 and 50% when tem-
perature increased by 1, 2 and 4 °C, respectively under hotter and drier climate change scenarios in South Africa. 
In comparison to the local maize varieties, the yield advantage of either drought, heat or combined drought and 
heat tolerant varieties were increased under both baseline and future climate scenarios.

The use of crop models to assess climate change impact and adaptation measures remain limited in West 
Africa35. The combined use of Global Climate Models (GCMs), crop simulation models and statistical downscal-
ing techniques are the primary tools available to assess climate change impact on maize growth and yield37,38. 
Several studies have shown the impact of climate change on maize using different climate change scenarios and 
crop simulation models in SSA38–41. In Nigeria, some studies have examined impacts of climate change on maize 
production and productivity resulting in several adaption strategies being promoted to reduce the negative effects 
of climate change2,42–45. Although several drought-tolerant maize varieties have been released for cultivation in 
the Nigerian savannas, no study has compared the impact of climate change on these varieties relative to the 
non-drought-tolerant ones. The objective of the study was to assess the impacts of climate change on the yield 
of drought-tolerant maize variety as compared to a non-drought-tolerant variety in the Nigerian savannas using 
the CERES-Maize (DSSAT) model.

Materials and methods
Description of the study area.  The study was carried out in three representative sites of the southern 
Guinea, northern Guinea and Sudan savannas of northern Nigeria (Fig. 1), which largely covers the maize culti-
vation area of Nigeria3,4. Kano represents the Sudan savanna (SS) zone and lies 484 m above sea level (a.s.l.). The 
SS is characterized by single long dry season followed by a rainy season that extends from May to October. The 
long-term (1980–2009) average seasonal rainfall at Kano was 753 ± 171 mm year−1. The average number of rainy 
days was 57 ± 9, with average maximum and minimum temperatures of 33.7 and 20.0  °C, respectively. Zaria 
represents the northern Guinea savanna (NGS) maize production zone which is characterized by a mono-modal 
rainfall pattern46. The long-term seasonal rainfall was 998 ± 133 mm with average number of rainy days of 63 ± 9, 
and the mean maximum and minimum temperatures were 31.6 and 19.2 °C, respectively. Abuja representing the 
southern Guinea savanna (SGS) production zone had unimodal rainfall pattern with longer rainy days (average 
of 108 ± 18) which extends from April- October. The long-term average seasonal rainfall is 1541 ± 270 mm year−1 
with an average maximum and minimum temperatures of 32.4 and 21.1 °C, respectively.

Soil properties of the study area.  Soils in Kano in the SS of Nigeria are highly weathered and fragile with 
low clay content47. The dominant soil class of the site is Alfisol according to the USDA soil taxonomy48. In Zaria 
in the NGS, the soils are classified as leached ferruginous tropical soils with a high clay content and overlying 
drift materials49. This soil type is classified as Typic Haplustalf according to USDA soil taxonomy50. The domi-
nant soils in Abuja in the SGS are generally shallow and sandy in nature51 and categorized as Ferric Luvisols52. 
The characteristics of the soils used for model calibration was earlier reported by Tofa et al.53.

Baseline and future climate scenarios.  The baseline climate parameters including daily rainfall, maxi-
mum and minimum temperatures, and solar radiation for 31 years (1980–2010) were obtained from the Nige-
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rian Meteorological agency (NIMET) archives for the three studied sites. The protocols developed by the global 
Agricultural Model Intercomparison and Improvement Project (AgMIP) team54 was used to generate the future 
climate scenarios (RCP4.5 and RCP8.5) for mid-century (2040–2069) and end-century (2070–2099) using the 
delta-based method. The future climate scenarios under RCP4.5 and RCP8.5, assume elevated CO2 concentra-
tion of 499 and 571 ppm, respectively, compared with the current 380 ppm. The future daily rainfall, minimum 
and maximum temperatures were generated by perturbing the daily baseline data using delta factor method55,56. 
For the study, we used four contrasting, bias corrected GCMs from Fifth Coupled Model Inter-comparison 
Project (CMIP5) including CESM1-CAM5 (National Centre for Atmospheric Research, USA), CSIRO-MK3.6.0 
(Commonwealth Scientific and Industrial Research Organization, Australia), HadGEM2-ES (Met Office Dadley 
Centre, UK-Exeter), and MRI-CGCM3 (Meteorological Research Institute Coupled Ocean–Atmosphere Gen-
eral Circulation Model 3) in our analysis. The four GCMs were selected according to their higher resolution and 
established ability to replicate historical rainfall and temperature over the entire country compared to the other 
GCMs of CMIP526. Changes in rainfall and temperature in mid- and end-century relative to the baseline were 
estimated based on GCM outputs. The adjusted formula for modified daily precipitation and temperature were 
expressed in Eqs. (1) and (2), respectively41,57.

where Padj.fur,d is the adjusted daily rainfall for the future years, Pobs,d is the observed daily rainfall for the base 
years, P . GCM.fur,m is the monthly mean rainfall of the GCM outputs for the future years, P . GCM.ref.m is the monthly 
mean rainfall of the GCM outputs for the base years, Pi is the weight of each grid cell, and k is the number of 
the grid cells.

(1)Padj,fur,d = Pobs,d ×

k
∑

i=1

Pi

(

PGCM.fur,m

PGCM.ref ,m

)

,

(2)Tadj,fur,d = Tobs,d ×

k
∑

i=1

Pi
(

TGCM.fur,m − TGCM.ref ,m

)

,

Figure 1.   Map of the study area. This map was created using ArcGIS [GIS software] version 10.4.1. Redlands, 
CA: Environmental Systems Research Institute, Inc., (Copyright ESRI, 2015). ESRI. (2015). Copyright 2015. 
ArcGIS 10.4.1 Computer software. Redlands, CA: ESRI.
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where Tadj.fur,d is the adjusted daily temperature (maximum and minimum temperatures) for the future years, 
Tobs,d is the observed daily temperature for the base years, TGCM.fur,m is the monthly mean temperature of the GCM 
outputs for the future years, T . GCM,ref.m is the monthly mean temperature of the GCM outputs for the baseline, 
Pi is the weight of each grid cell, and k is the number of the grid cells.

Description of the crop simulation model.  Decision Support Systems for Agrotechnology Transfer 
(DSSAT) version 4.758 model was used to simulate maize grain yield using the baseline and future climate sce-
narios. In this study, the CERES-Maize model39 which is embedded within the DSSAT was used to simulate 
the phenology and yield of maize varieties, in response to climate and management factors. CERES-Maize is a 
process-based, management-oriented model that utilizes water, carbon, nitrogen (N) and energy balance prin-
ciples to simulate the growth and development of maize. For each cultivar, the model runs with a daily time step 
and simulates crop growth, development and yield based on the effects of weather, soil characteristics and crop 
management practices59. A detailed description of the original CERES-Maize model can be found in Jones and 
Kiniry60 and Ritchie et al.61.

Model inputs data.  The DSSAT model requires field level input data including daily weather (minimum 
and maximum temperature, rainfall, and solar radiation), soil physical and chemical characteristics, crop variety 
parameters, and details of the crop management58,62. For this study, data on maize crop management (including 
planting date, plant density, fertilization and crop data) were obtained from the field trials conducted for the 
respective sites. Soil profile data of experimental stations were obtained from field measurements, the generic 
horizons of the profiles and soil types were classified using the FAO guidelines63. Daily rainfall, maximum and 
minimum temperature and solar radiation data of the experimental sites were obtained from an automated 
WatchDog weather station device (2000 Series, Spectrum Technologies, Aurora, IL, USA) located adjacent to the 
experimental sites. Maize varieties that are widely grown in all the study areas were used. The two maize varieties 
are SAMMAZ-16 (TZLComp1SynW–1) and SAMMAZ-26 (DTSTR WC1). These are improved and intermedi-
ate varieties developed by International Institute of Tropical Agriculture (IITA) in partnership with the Institute 
for Agricultural Research (IAR), Zaria, Nigeria, and have a combination of desired traits such as high grain yield 
and resistance to Striga hermonthica, in addition to these qualities, SAMMAZ-26 is considered as highly tolerant 
to drought64. The model calibration based on the crop management, soil physical, chemical, and hydrological 
properties had earlier been reported by Tofa et al.53.

Model evaluation with an independent dataset.  The comparison of simulated with observed yields 
allow the assessment of the model capacity to represent local cropping systems41. The independent data used for 
model evaluation included days to anthesis, days to physiological maturity, final grain yield and above ground 
biomass ha−1. These were collected from N response trials established at Iburu in SGS and Zaria in the NGS. 
Four field experiments were conducted during the rainy seasons of 2015 and 2016 each at Iburu and Zaria. 
Detailed climatic conditions of the two seasons were published in Tofa et al.53. The experiments were set up as 
a split plot design in randomized complete blocks with four N rates (0, 60, 120 and 180 kg ha−1) set as the main 
plot and the maize varieties were assigned to the sub-plots with three replications. The sub-plots contained four 
rows spaced 75 cm apart and 500 cm in length with intra-row spacing of 25 cm between stands which gave a 
plant density of 53,333 plants ha−1. Phosphorus (P) and potassium (K) were applied at the rate of 60 kg ha−1 
each. Triple super phosphate (TSP) and muriate of potash (MOP) were used to supply the P and K fertilizers, 
respectively. Urea (46% N) was used as source for the four nitrogen (N) treatments. Half of the N and full rate of 
P and K were properly mixed and applied 10 days after sowing (DAS). The balance N was applied 45 DAS. The 
detailed climate, field observations, soil, and crop management practices used for model evaluation were pub-
lished previously53. The response of the model was evaluated using three different statistical indicators, including 
root mean square error (RMSE), model estimation efficiency (EF) and index of agreement (d)5,53.

Simulation protocol and analysis.  The calibrated CERES-Maize model was used to access the impact of 
climate change on grain the yield of the two different maize varieties in the three agro-ecological zones of Nige-
ria. The effects of climate change on yield of each variety was simulated for 30-year baseline (1980–2009) weather 
data with the default atmospheric CO2 concentration of 380 ppm, while the future (2040–2069 and 2070–2099) 
climate scenarios were both simulated at 499 ppm CO2 (RCP4.5) and 571 ppm CO2 (RCP8.5). Other variables 
such as soil, cultivar and crop management practices are held constant. The seasonal analysis program in DSSAT 
was used to generate 30-year simulations and examine the variation in maize yield relative to the baseline. Two 
maize varieties, SAMMAZ-26 and SAMMAZ-16, were used which represents the drought-tolerant and non-
drought-tolerant varieties, respectively.

The long-term simulations were done on an Alfisol soil from Kano representing the SS, a Typic Haplustalf 
from Zaria representing the NGS and a Ferric Luvisols from Abuja to represent the SGS. Nitrogen, soil water 
content, and organic matter content was allowed to be carried over between seasons, thereby not necessitating the 
need for re-initialization. The planting date was set at June 20 in the SS and June 30 for both NGS and SGS as rec-
ommended by Tofa et al.53. Plant population was set according to the national recommendation of 5.3 plants m–2. 
A constant inter row spacing of 75 cm and planting depth of 5 cm were maintained. For all simulated scenarios, 
the model was set up to supply the recommended rate of 120 kg N ha−1 using split application method. Half of 
N was set to apply at 10 days after sowing, and the other half at 45 days after sowing. Phosphorus and potassium 
were assumed to be non-limiting, so P and K sub-models were switched-off. A simple mathematical averaging 
was performed using excel to access the climate model ensemble mean. The impact of climate scenarios on maize 
yield was compiled and relative yield deviation from the baseline was computed according Faye et al.65 in Eq. (3):



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8983  | https://doi.org/10.1038/s41598-021-88277-6

www.nature.com/scientificreports/

where ΔYield is the yield change due to climate change, YieldScenario and Yieldbaseline are yields obtained under 
scenario and baseline weather conditions respectively.

Comparison was made for future water and N stress relative to baseline at each growing stage including 
emergence, end of juvenile, beginning of flowering, 75% silking, beginning of grain feeling, end of grain feeling 
and maturity. Values of the ensemble four GCMs were compared to the present for both varieties within each 
location to determine any difference in the actual water and N stresses in the model during the mid- and end-
of-century using DSSAT output. The stress was measured on a scale of between 0 (minimum) and 1 (maximum) 
in the model each for water and N.

Results and discussions
Model calibration.  Table 1 shows the values for genetic coefficients used in this study. The generated culti-
var coefficients are within the range of DSSATv4.7 cultivar database. There was variation between the varieties 
in all the coefficients generated using Generalized Likelihood Uncertainty Estimation (GLUE). SAMMAZ-26 
had higher potential kernel number (780 plant–1) than that of SAMMAZ-16 (743 plant–1). SAMMAZ-26 also 
recorded high thermal time from emergence to the end of juvenile phase (302 °C days) and from silking to physi-
ological maturity (806 °C days) and high optimum kernel filling rate (6.5 mg day–1) and thermal time between 
successive leaf tip appearances (40 °C days). However, the delay in development for each hour that day-length 
is above 12.5 h was slightly higher (0.424 days) for SAMMAZ-16. The parameterized CERES‐Maize model was 
used to assess the accuracy of cultivar coefficients by simulating days to anthesis, days to physiological maturity, 
grain yield kg ha–1, and above ground biomass kg ha–1 for the two maize varieties (Table 2). There was high pre-
diction accuracy for all the tested parameters as indicated by low RMSE and high d-index values for the two vari-
eties. Excellent statistics were achieved for calibration of the phenological parameters (anthesis and maturity) 
with RMSE below 3 days and d-index above 0.92 for of both varieties. For SAMMAZ-16, the RMSE between 
the observed and simulated values of grain yield and above ground biomass, were 245 kg ha–1 and 1152 kg ha–1, 
respectively, with corresponding d-index of 0.91 and 0.80. For variety SAMMAZ-26, the RMSE for grain yield 
was 157.7 kg ha–1 with d-index 0.61 while for above ground biomass the RMSE was 784 kg ha–1 with d-index 
0.88. This result suggests accurate predictions of all parameters for model application. 

Model evaluation.  The model evaluation results using an independent dataset showed that the model 
accurately predicted days to anthesis and maturity with low RMSE values of < 2 days for both parameters with 

(3)�Yield =

Yieldscenario − Yieldbaseline

Yieldbaseline
× 100%,

Table 1.   Genetic coefficients for SAMMAZ-16 and SAMMAZ-26 maize varieties used in the study 
(coefficients for SAMMAZ-16 were adapted from Tofa et al.55).

Code Description SAMMAZ-16 SAMMAZ-26

P1 Thermal time from emergence to the end of juvenile phase (degree days) 253.3 302.0

P2 Delay in development for each hour that day-length is above 12.5 h (days) 0.424 0.400

P5 Thermal time from silking to physiological maturity (degree days) 794.9 805.9

G2 Maximum possible number of kernels per plant 743.3 780.0

G3 Kernel optimum filling rate during the linear grain filling stage optimum conditions (mg/day) 6.25 6.50

PHINT (Phylochron interval): thermal time between successive leaf tip appearances (degree days) 38.90 40.00

Table 2.   Simulated and observed mean values for anthesis, physiological maturity, grain yield, and 
above ground biomass with their respective statistical indices for the calibrated maize varieties (values for 
SAMMAZ-16 Adapted from Tofa et al.55).

Parameter Number of experiments Simulated Observed RMSE d-Index

SAMMAZ-15

Number of days to anthesis 14 55.4 56.4 1.9 0.93

Number of days to maturity 14 100.2 100.4 2.0 0.97

Grain yield at harvest (kg ha–1) 14 5253 5272 245 0.91

Above ground biomass (kg ha–1) 14 15,606 14,990 1152 0.80

SAMMAZ-26

Number of days to anthesis 9 60 60 2.1 0.93

Number of days to maturity 9 105 106 2.0 0.97

Grain yield at harvest (kg ha–1) 9 5231 5223 157.7 0.61

Above ground biomass (kg ha–1) 9 16,123 15,525 784.4 0.88
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high d-index and prediction deviations (PDs) below 2% for both varieties (Table 3). Similarly, grain yield was 
adequately simulated with low RMSE of 730 kg ha−1 for SAMMAZ-16 and 725 kg ha−1 for SAMMAZ-26 with 
PDs below 6%. The comparison of predicted and observed above ground biomass for both varieties indicted 
good performance. However, the variety SAMMAZ-26 had the least statistical errors with RMSE 1990 kg ha−1 
and d-index value of 0.95. Higher model efficiency (EF) values were estimated with variety SAMMAZ-26 for all 
parameters compared to SAMMAZ-16 variety (Table 3). We found the model’s performance satisfactory based 
on the closeness of fit between observed and simulated parameters evaluated, thereby suggesting that the model 
is robust and near accurate to make wider assessments across different environments under study. These results 
are in agreement with previous findings from the same agro-ecologies of Nigeria5,53,66,67.

Projected trends in minimum and maximum temperatures.  The thirty-year temperature projec-
tion under the medium (RCP 4.5) and a high (RCP 8.5) emission scenarios for the future climates (mid- and 
end-century) in the three locations indicated significant increases in temperatures, compared to baseline (Figs. 2, 

Table 3.   Comparisons of simulated and observed mean values on days to anthesis, days to maturity, grain 
yield, and above ground biomass for model evaluation with their respective statistical indices for the calibrated 
maize varieties.

Parameter Number of experiments Simulated Observed Prediction deviation (%) RMSE d-index EF

SAMMAZ-16

Number of days to 
anthesis 4 59 58 1.7 1.03 0.67 − 0.10

Number of days to 
maturity 4 104 104 0.0 1.39 0.90 0.56

Grain yield at harvest 
(kg ha–1) 4 3414 3278 4.1 750 0.95 0.79

Above ground biomass 
(kg ha–1) 4 10,471 8977 16.6 2535 0.91 0.45

SAMMAZ-26

Number of days to 
anthesis 4 62 62 0.0 1.94 0.83 0.30

Number of days to 
maturity 4 108 109 − 0.9 1.28 0.97 0.89

Grain yield at harvest 
(kg ha–1) 4 3538 3752 − 5.7 725 0.96 0.83

Above ground biomass 
(kg ha–1) 4 10,244 10,058 1.8 1990 0.95 0.70

Figure 2.   Thirty years seasonal maximum temperature for baseline (1980–2009) and ensemble mid–century 
(2040–2069) and end of century (2070–2099) periods under RCP4.5 (left) and RCP8.5 (right) in SGS, NGS 
and SS. Extremes on whiskers (two lines outside the box) encompass the range between lowest and highest 
values, the box spans the interquartile range, extremes of the box encompass the range between the 25 and 75% 
quartiles, and the horizontal line within each box section shows the median. Circles located outside the whiskers 
referred to as outliers.
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Figure 3.   Thirty years seasonal minimum temperature for baseline (1980–2009) and ensemble mid–century 
(2040–2069) and end of century (2070–2099) periods under RCP4.5 (left) and RCP8.5 (right) in SGS, NGS 
and SS. Extremes on whiskers (two lines outside the box) encompass the range between lowest and highest 
values, the box spans the interquartile range, extremes of the box encompass the range between the 25 and 75% 
quartiles, and the horizontal line within each box section shows the median. Circles located outside the whiskers 
referred to as outliers.
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Figure 4.   Minimum (a) and maximum (b) temperature change from the baseline period for four GCMs under 
RCP4.5 and RCP8.5 at Abuja, Zaria and Kano in Nigeria for mid-century period.
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3). All GCMs show increases as indicated by the maximum and minimum temperatures for all the four GCMs 
(Figs. 4, 5). Multi-model GCM ensemble projections have been recommended for climate change impact studies 
to take care of uncertainties embedded within GCMs68. Based on the GCM ensemble outputs (Table 4), both the 
minimum and maximum temperatures increase gradually in time from the mid-century period to the end of the 
century in all locations. However, the RCP8.5 scenario projected the highest increase in temperature compared 
to RCP4.5 within each period for all locations.
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Figure 5.   Minimum (a) and maximum (b) temperature change from the baseline period for four GCMs under 
RCP4.5 and RCP8.5 at Abuja, Zaria and Kano in Nigeria for end-of-century period.

Table 4.   Baseline and simulated ensemble annual climatic changes for rainfall, minimum and maximum 
temperatures for mid-century and end-of-century under RCP4.5 and RCP8.5 relative to the baseline data in 
SGS, NGS and SS of Nigeria.

Abuja in SGS Zaria in NGS Kano in SS

Rainfall tmin
°C

tmax
°C

Rainfall tmin
°C

tmax
°C

Rainfall tmin
°C

tmax
°C(mm) % (mm) % (mm) %

Baseline

1540.8 – 21.1 32.4 998.1 – 19.2 31.6 752.8 – 20.0 33.7

Mid-century

RCP4.5 18.68 1.23 1.80 1.68 18.38 1.85 2.40 2.20 52.33 6.95 2.05 2.00

RCP8.5 0.15 0.03 2.45 2.15 29.78 3.00 3.15 2.75 80.15 10.63 2.88 2.65

End-of-century

RCP4.5 31.10 2.00 2.33 2.23 21.28 2.13 2.95 2.80 49.95 6.65 2.58 2.55

RCP8.5 50.13 3.28 4.48 3.85 66.08 6.63 4.95 4.48 151.38 20.10 4.75 4.35
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In Abuja in the SGS, the minimum temperature is projected to increase by 1.8 °C in the mid-century and 
2.3 °C by the end-century under RCP4.5, meanwhile under RCP8.5 minimum temperature will rise by 2.5 °C in 
the mid-century and 4.5 °C by the end-century compared to baseline. The maximum temperature was projected 
to increase by 1.7 and 2.23 °C in the mid- and end-century, respectively, compared to the baseline period under 
the RCP4.5 scenario. Under the RCP8.5 scenario, the maximum temperature was expected to increase by 2.2 
and 3.9 °C in the mid- and end-century periods, respectively.

In Zaria in the NGS, the minimum and maximum temperatures will increase by 2.4 and 2.2 °C in the mid-
century, and 3.0 and 2.8 °C at the end-century under RCP4.5 compared to baseline period. Under high emission 
scenario (RCP8.5), the minimum and maximum temperatures were projected to increase by 3.2 and 2.8 °C in 
the mid-century, and increase by 5.0 and 4.5 °C by the end of century compared to baseline period.

In Kano in the SS, the projections under RCP 4.5 indicates minimum and maximum temperatures will 
increase by 2.1 and 2.0 °C in the mid-century and by 2.9 and 2.6 °C by end-century, respectively. Under RCP 
8.5, the minimum and maximum temperatures will increase by 2.9 and 2.7 °C, respectively in the mid-century 
while projected increase by end-century will be 4.8 and 4.4 °C for minimum and maximum temperatures, respec-
tively. These results agree with previous reports that indicated future warming of the air in the different parts 
of Nigeria20,21,25,31. The temperature increases in our study fall within the ranges reported by Niang et al.69, who 
projected temperature increase to exceed 2 °C by 2050 across much of Africa and to reach between 3 and 6 °C by 
the end of the century. Our results showed that the temperature changes vary spatially and increase from the SGS 
to the SS. This temperature distribution is consistent with those predicted for Nigeria by Abiodun et al.70. They 
reported increase in temperature in all the ecological zones, with the higher value between 1 and 4 °C in the SS.

In all the study areas, the minimum temperature increases faster than that of the maximum temperature under 
both RCPs. Our findings agreed with Dike et al.71 who found that the magnitude of the increasing trend of mini-
mum temperature is higher when compared with the increasing trend in maximum temperature over Nigeria. 
They stated that, minimum temperature increased at a rate of 0.51 °C per decade during 1971–2013, which by far 
exceeds the 0.17 °C per decade increase in maximum temperature. Analysis by Meehl et al.72 revealed that daily 
minimum temperatures will increase more rapidly than daily maximum temperatures leading to the increase 
in the daily mean temperatures and a greater likelihood of extreme events and these changes could have detri-
mental effects on grain yield. High night temperature (minimum temperature in the range of 22–25 °C) could 
contribute to the lower yield of maize crops grown in the humid tropics because of higher rate of respiration73. 
Nightly weight losses by whole plant averaged 40% of daily weight gain73. According to Hatfield74, maize grain 
yields decreased from 84 to 100% because of exposure to high night time temperatures and disruption of the pol-
lination process as evidenced by the large reduction in kernels per ear. During the grain-filling period, however, 
exposure to higher night temperatures shortened the grain-filling period by increasing the rate of senescence74.

Projected changes in seasonal rainfall.  Figure 6 presents the seasonal changes in rainfall computed 
from baseline to future climates for each GCM under both RCP4.5 and 8.5 scenarios. Based on the ensemble 
GCMs (Table 4), the seasonal rainfall is expected to increase in all study areas, for both RCPs, with the higher 
increases in the SS. The change in rainfall, increases in time from mid- to end-of-century in all the locations 
under RCP8.5. However, under the RCP4.5 scenario, the rainfall increase is limited with the slight decrease 
(0.3%) for SS from mid-century to the end of century. With the ensemble GCM, the largest projected mean rain-
fall increases of 10.6% in the mid-century and 20.1% in the end of century were expected in the SS zone under 
RCP8.5. Under both RCP4.5 and RCP8.5 an increase in rainfall is consistently projected to be lower for SGS dur-
ing both the mid- and end-century periods. In this agro-ecology, the increase in rainfall ranged between 0.03% 
in the mid-century and 3.28% in the end-century, both under RCP8.5. The study by Shiru et al.75 also reported 
a significant increase in seasonal rainfall in the range of 0–20% in most parts of the northern Nigeria. Adhikari 
et al.76 observed that large uncertainty exists in projecting precipitation, and changes would range from − 15 
to + 27% by 2060s in Africa. This projected increase in rainfall in the Guinea and Sudan savanna may pose a risk 
for annual flooding which may affect crop performance.

Projected impact of climate change on maize yield.  Tables 5 and 6 shows the simulated maize yield 
with the baseline (1980–2009) and relative yield change in the mid-century (2040–2069) and end-century 
(2070–2099) under RCP4.5 and RCP8.5 scenarios. Irrespective of variety, the simulated ensemble of four GCMs 
showed a consistent decline in maize yield for both future climates relative to the baseline period in all locations. 
The two maize varieties performed differently in each agro-ecological zone. In SGS, relative to the baseline, the 
grain yield of SAMMAZ-26 is expected to decrease by 14 and 16% under RCP4.5 and RCP8.5, respectively, in 
the mid-century. The declines are 17% (RCP4.5) and 37% (RCP8.5) by the end of century. The grain yield of 
SAMMAZ-16 will decrease by 15% under RCP4.5 and 19% under RCP8.5 in the mid-century. Yield decrease of 
21% (RCP4.5) and 42% (RCP8.5) are projected for the end of century. Future maize grain yields simulated for 
the NGS also shows consistent differences between the two varieties. Grain yield of SAMMAZ-26 will decrease 
by 9% under RCP4.5 and 14% under RCP8.5 during the mid-century. The decrease will be 13% under RCP4.5 
and 32% under RCP8.5 by the end of the century period. For variety SAMMAZ-16, the yields are expected to 
decrease by 13 and 19%, under RCP4.5 and RCP8.5, respectively, in the mid-century. By the end of century yield 
will decrease by 18% under RCP4.5 and 38% under RCP8.5. In SS, the results shows that future yields of maize 
also differ strongly between the two varieties. Relative to the baseline climate, grain yield of SAMMAZ-26 will 
reduce by 18% under RCP4.5 and 25% under RCP8.5 in the mid-century. For end-of-century yield will reduce 
by 23% and 43% under RCP4.5 and RCP8.5, respectively. For SAMMAZ16, the yield is expected to decrease 
by 19% for RCP4.5 and 28% for RCP8.5 in mid-century. The estimated yield reduction of SAMMAZ-16 is 26% 
under RCP4.5 and more than 46% for RCP8.5 by the end of century. 
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Figure 6.   Rainfall change in percentage from the baseline period for four general circulation models under 
RCP4.5 and RCP8.5 at Abuja, Zaria and Kano in Nigeria for mid-century (a) and end-of-century (b) periods.

Table 5.   Baseline and simulated grain yield (kg ha–1) of different maize varieties and the relative yield change 
(%) at mid-century in three agro-ecologies of Nigeria.

Baseline 
(1980–2009)

RCP4.5 RCP8.5

GCMs ensemble Relative yield change GCMs ensemble Relative yield change

Location Variety kg ha–1 (%) kg ha–1 (%)

Abuja in SGS
SAMMAZ-16 4242 3592 − 15 3406 − 20

SAMMAZ-26 4593 4050 − 14 3837 − 16

Zaria in NGS
SAMMAZ-16 4791 4159 − 13 3890 − 19

SAMMAZ-26 4859 4417 − 9 4172 − 14

Kano in SS
SAMMAZ-16 4606 3724 − 19 3323 − 28

SAMMAZ-26 4383 3612 − 18 3287 − 25

Table 6.   Baseline and simulated grain yield (kg ha–1) of different maize varieties and the relative yield change 
(%) at end-century in three agro-ecologies of Nigeria.

Baseline 
(1980–2009)

RCP4.5 RCP8.5

GCMs ensemble Relative yield change GCMs ensemble Relative yield change

Location Variety kg ha–1 (%) kg ha–1 (%)

Abuja in SGS
SAMMAZ-16 4242 3351 − 21 2479 − 42

SAMMAZ-26 4593 3806 − 17 2896 − 37

Zaria in NGS
SAMMAZ-16 4791 3955 − 18 2995 − 38

SAMMAZ-26 4859 4245 − 13 3291 − 32

Kano in SS
SAMMAZ-16 4606 3434 − 26 2444 − 47

SAMMAZ-26 4383 3392 − 23 2519 − 42
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Higher percentage reduction in maize yield was predicted by the end of century compared to the middle 
future climate. Ensemble grain yield decline was between 9 and 19% under RCP4.5 and between 14 and 28% 
under RCP8.5 in the mid–century. In the end of century, yield reductions were between 13 and 26% under 
RCP4.5 and 32–47% under RCP8.5. Thus, ensemble grain yield change of between − 9 and − 47% in our study 
falls within the wide ranges (− 98 to + 16%) of climate change impact reported for SSA77. Roudier et al.78 found 
that the response of crop yield to climate change in West Africa can vary from − 50 to + 90% in a selection of 16 
publications. This range is even wider in the review made by Müller et al.79 which showed that projected impacts 
relative to current African production levels range from − 100 to + 168%.

Based on the comparative study of water and N stress under current and future climate change scenarios 
(Figs. 7, 8), the effects of future water and N stress on the crop were determined to be less throughout the grow-
ing season. This could be due to the increase in rainfall predicted in this study (Tables 5, 6) which is anticipated 
to significantly reduce water stress and enhance N uptake on maize production in both future climates. The 
larger reduction in grain yield in the late future production system could be from the intensified heat stress due 
to increases in maximum temperature (ranged 3.85–4.48 °C) and minimum temperature (ranged 4.48–4.95 °C) 
across the locations. This agrees with previous reports that indicated the greatest reduction in maize yield is due 
to increase in temperature than a decrease in rainfall33,40,68,80–82. A study by Tesfaye et al.33 under hotter and drier 
climate change scenarios in South Africa showed significant yield reductions of local maize varieties by 21, 33 
and 50% when temperature increased by 1, 2 and 4 °C, respectively. Similarly, Lobell and Burke80 showed that an 
increase in temperature by 2 °C would result in a greater reduction in maize yields than a decrease in precipitation 
by 20%. Traore et al.40 also estimated maize grain yield reductions of between 51 and 57% under current farmers’ 
practices for southern Mali. In Nigeria, Abiodun et al.70, stated that the warming increases with latitudes, with the 
lowest warming over the southern region and the highest at the northern region. The southern regions receive 
lower warming than the interior because the cooling effect from the Atlantic Ocean reduces the warming near 
the coast. Hence, the northern stations are expected to be warmer than southern stations, therefore, more yield 
reduction in the Sudan savanna. 

Grain yield reduction due to climate change vary spatially over the three study areas. Under both RCPs, 
the effect was more pronounced in the SS in both mid- and end-centuries, while the least decline in yield was 
observed in the NGS where the predicted increase in temperature was higher under both RCPs in two centuries. 
This is probably due to the better soil condition in the NGS that could reduce the adverse effect of the higher 
temperatures. Similarly, Sowunmi and Akintola83, concluded that Guinea savannah zone is suitable for maize 
production regarding good soil and temperature. In contrary, another study in Nigeria indicated that yield 
reduction increases from the southern Guinea savanna to the Sudan savanna. They projected that an increase in 
temperature by 4 °C reduced maize yields by 11.7%, 19.7% and 21.6% in the SGS, NGS and Semi-Arid, respec-
tively, at 330 ppm CO2 concentration2.

Under both RCPs, the results shows that, the predicted temperature increase is likely to have the biggest 
adverse effect on yields of both varieties at the end of the century in all the three study sites. However, the simu-
lated reduction in grain yield would be lower using SAMMAZ-26 in both climate change scenarios compared 
to the SAMMAZ-16. This suggests that the drought-tolerant variety would perform better at both future climate 
periods compared to non-drought-tolerant variety. Our results are consistent with findings of Cairns et al.36 
who reported that drought tolerant varieties are more resilient to the effects of high temperature due to climate 
change in SSA.

The high yield reductions in the range of − 13 to − 23% under RCP4.5 and − 32 to − 42% under RCP8.5 
observed for the drought-tolerant variety by the end of the century across the study areas highlighted the need 
to breed maize varieties and hybrids that combine tolerance to drought and heat stress. This is because drought 
and heat stress occur simultaneously in farmers’ fields. The breeding strategies in maize that had been adopted 
so far have focused on improvement of each stress separately28. Cairns et al.36 suggested that the genetic control 
of drought, heat, and combined drought and heat tolerance are largely independent of each other. Preliminary 
results of maize evaluated under the Drought Tolerant Maize for Africa (DTMA) project revealed that tolerance 
to drought stress does not necessarily confer tolerance to heat stress or combine drought and heat stress, which 
have implications to breed for adaptation to climate change in maize production systems in SSA36. This is because 
higher temperatures are often associated with increases in evapotranspiration and a reduction in soil moisture 
levels which hasten the onset and severity of drought stress, especially in rainfed drylands33,84. This study suggests 
that breeding maize for combine drought and heat stress could be an effective adaptation strategy in dealing with 
the adverse effects of high temperature in the future climate change.

Conclusion
This study evaluated the impacts of climate change on maize production in northern Nigeria in two future time 
periods (mid- and end-centuries) compared to a baseline period (1980–2009), under RCPs 4.5 and 8.5 climate 
change emission scenarios. The climate projections for major maize growing zones in Nigeria showed rise in 
temperatures. Our climate modelling results suggest that with ensemble GCM, both the minimum and maximum 
temperatures will increase from the mid-century period to the end of the century in all locations. The annual 
mean temperature under RCP8.5 scenario was the highest compared with RCP4.5 within each century period 
for all locations. Rainfall is expected to increase at all the study areas, for both RCPs, with the higher increases 
of 10.6% in the mid-century and 20.1% in the end of century in the SS. As projected by the ensemble GCMs in 
combination with 2 RCPs and DSSAT model, climate change will result in reduction of yield of between 9 and 
28% for the mid-century (2040–2069) and between 13 and 47% for end of the century (2070–2099), depending 
on the environment and variety, with farmers in the Sudan savanna environment having more negative impact. 
Results shows that the use of improved and drought-tolerant variety as adaptation strategy can reduce the 
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negative impact of climate change. On average, the yield difference between SAMMAZ-26 and SAMMAZ-16 is 
2% under RCP4.5 and up to 4% under RCP8.5 during the mid–century, while in the end of century, the average 
yield difference between the two varieties is 4% and 5% under RCP4.5 and RCP8.5, respectively, across the three 
study areas. Though the yield reduction due to climate change was less for the drought-tolerant variety com-
pared to the non-drought tolerant variety, the high yield reduction of the drought-tolerant variety suggests that 
breeders should develop varieties that combine tolerance to drought with that of heat to withstand the impacts 
of increased temperatures in the agro-ecological zones of northern Nigeria.
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Figure 7.   Comparison of baseline and future model water stress at each growing stage: Abuja in the SGS (a), 
Zaria in the NGS (b) and Kano in the SS (c) using DSSAT output. (For mid-and -end-centuries, the stresses 
were from four GCMs within each location). EME emergence, EJU end of juvenile, BOF beginning of flowering, 
SIL 75% silking, BGF beginning of grain feeling, EGF end of grain feeling and MAT maturity.



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8983  | https://doi.org/10.1038/s41598-021-88277-6

www.nature.com/scientificreports/

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

EME EJU BOF SIL BGF EGF MAT

N
itr

og
en

 st
re

ss

Growing stages

(a)
Mid-Century
End-Century
Baseline

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

EME EJU BOF SIL BGF EGF MAT

N
itr

og
en

 st
re

ss

Growing stages

(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

EME EJU BOF SIL BGF EGF MAT

N
itr

og
en

 st
re

ss

Growing stages

(c)

Figure 8.   Comparison of baseline and future model nitrogen stress at each growing stage: Abuja in the SGS 
(a), Zaria in the NGS (b) and Kano in the SS (c) using DSSAT output. (For mid-and -end-centuries, the stresses 
were from four GCMs within each location). EME emergence, EJU end of juvenile, BOF beginning of flowering, 
SIL 75% silking, BGF beginning of grain feeling, EGF end of grain feeling and MAT maturity.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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