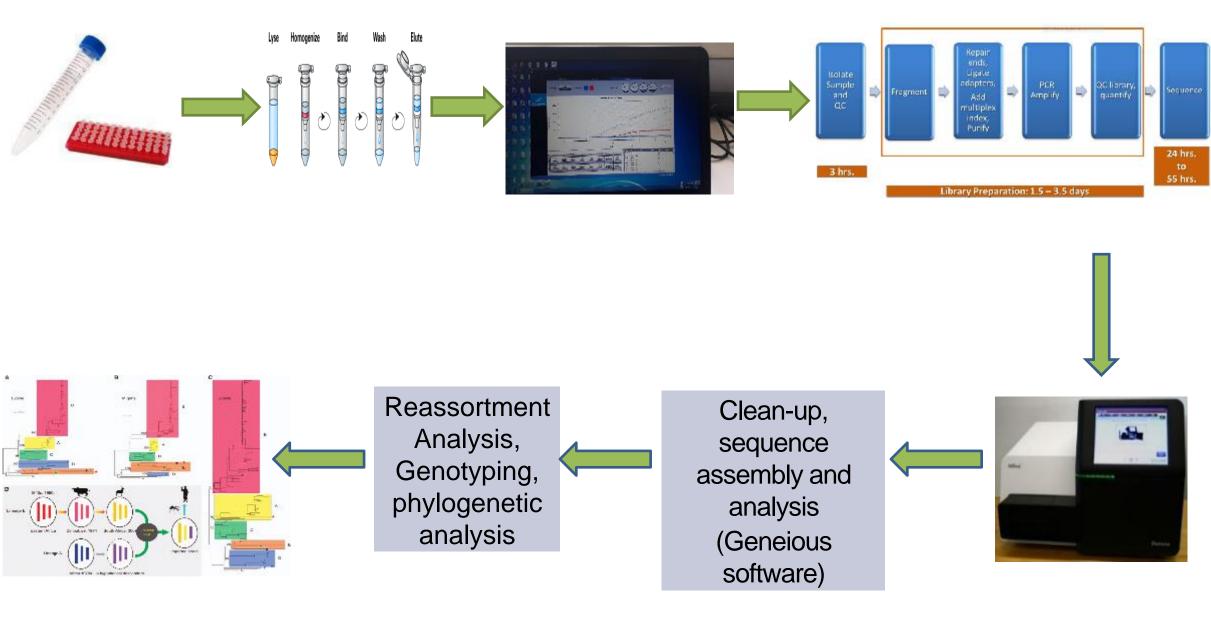

Background

Human Rift Valley Fever (RVF) infections in Kenya and in the East African region at large are being detected more frequently over wide geographical areas.

Areas of concern:

- Occurrence in new areas and at times not necessarily associated with heavy rains.
- \succ Human infections on the increase in the last decade.
- What virus lineage/lineages are responsible?



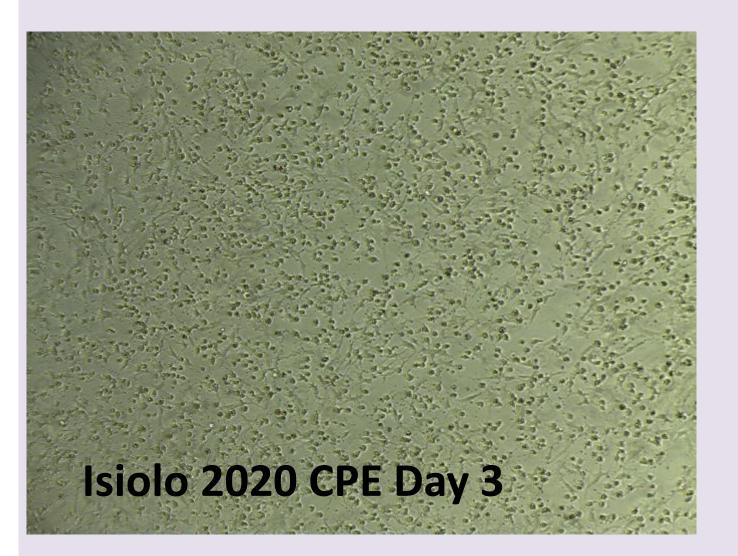
No. of RVF Outbreaks 1912-2010, M Baba et al., 2016

Virus monitoring is critical

- Limited Genetic diversity data epidemic and inter epidemic.
- Most studies/scientific outputs associated with outbreak periods.
- RVF activity shown to occur during IEP in endemic countries (Sumaye et al., 2013).
- Concern that virus activity and evolution can occur below the threshold of detection methods by public health or animal health authorities during inter epidemic periods (Bird et al., 2008).
- Virus may go undetected due to minimum surveillance in hosts and vectors.

Methods

This document is licensed for use under a Creative Commons Attribution 4.0 International Licence. October 2021

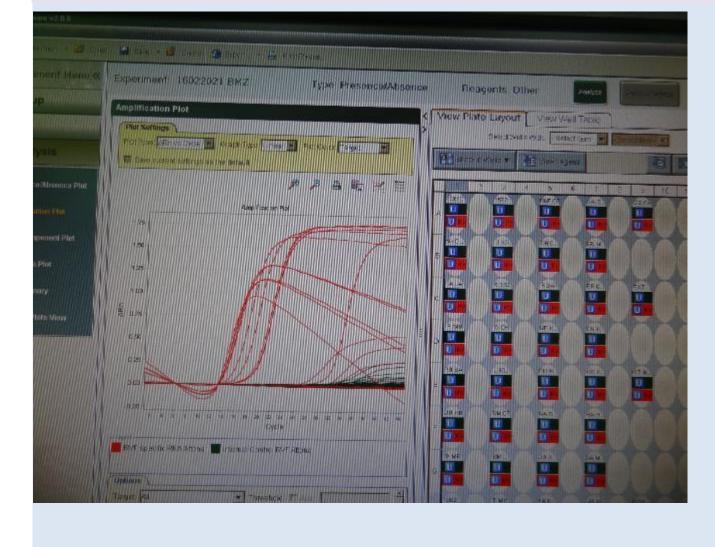

Genomic characterization of Rift Valley Fever Virus and cocirculating zoonotic pathogens from human samples from selected sites in Kenya

Konongoi Limbaso^{1,2}, John Juma¹, Rosemary Sang², Bernard Bett¹, Samuel Oyola¹.

- International Livestock Research Institute (ILRI), Nairobi, Kenya.
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.

Approach

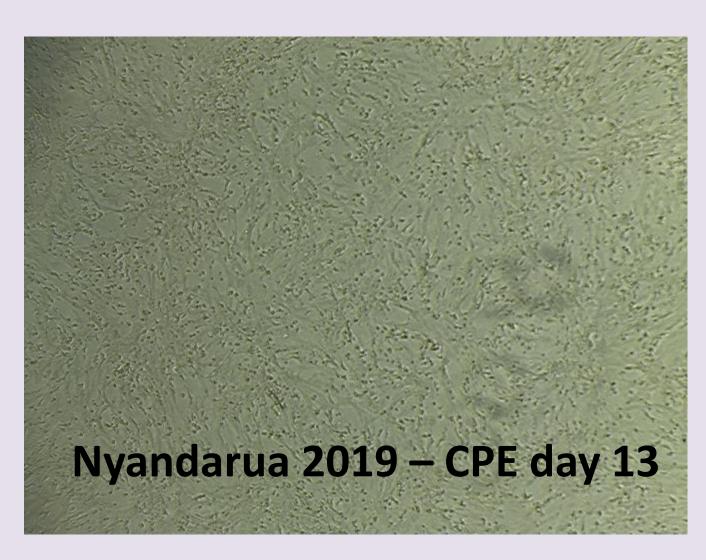
Year	No. of Archived	Central	Rift Valley	Coast	Eastern	
	Human samples					
1997/98	800	0	414	0	386	
2006/07	856	83	122	525	126	
2014	2	1	0	1	0	
2019	112	112	0	0	0	
2020	10	0	0	0	10	
2121	7	0	0	0	7	
Total	1,787	196	536	526	529	


Preliminary Findings

Diverse CPE types observed

Real Time PCR

- 70 CPE positive potential isolates harvested
- RNA extracted (Qiagen)
- RVF real time PCR performed using the altona RVF kits
- > 25 RVF positive isolates detected.


Sequencing

sample_name	before_trim	after_trim	mapped	pct_mapped	pct_N_bases	pct covered bases	longest_no_N_run	qc_pass
sample_name	belore_trini		mappeu	per_mapped	pct_lv_bases	per_covered_bases	longest_no_N_run	yc_pass
KEM-BR	1495184	474814	20357	4.29	0.37	99.63	6381	TRUE
KEM-ND	598576	177778	13521	7.61	0.37	99.63	6381	TRUE
250618	618832	192024	26340	13.72	0.30	99.70	6386	TRUE
500618	2179348	559776	9870	1.76	0.31	99.69	6385	TRUE
HA-HAR	13341438	3839408	1429	0.04	8.53	91.47	1060	TRUE
KEM-JC	495888	150560	7043	4.68	0.50	99.50	6373	TRUE
К2	4284186	1295680	90222	6.96	0.28	99.72	6387	TRUE
sample_name	before_trim	after_trim	mapped	pct_mapped	pct_N_bases	pct_covered_bases	longest_no_N_run	qc_pass
KEM-JC	495888	150560	1730	1.15	1.21	98.79	3839	TRUE
500618	2179348	559776	7174	1.28	0.57	99.43	3864	TRUE
KEM-BR	1495184	474812	6790	1.43	0.62	99.38	3862	TRUE
250618	618832	192024	26674	13.89	0.26	99.74	3875	TRUE
К2	4284186	1295680	62675	4.84	0.28	99.72	3874	TRUE
KEM-ND	598576	177778	7457	4.19	0.77	99.23	3856	TRUE
sample_name	before_trim	after_trim	mapped	pct_mapped	pct_N_bases	pct_covered_bases	longest_no_N_run	qc_pass
KEM-BR	1495184	474812	9507	2.0	4.32	95.68	838	TRUE
250618	618832	192024	12545	6.53	2.37	97.63	847	TRUE
KEM-JC	495888	150560	3628	2.41	4.97	95.03	832	TRUE
500618	2179348	559780	10055	1.8	4.32	95.68	836	TRUE
KEM-ND	598576	177778	4601	2.59	3.31	96.69	829	TRUE
HA-HAR	13341438	3839402	1094	0.03	8.93	91.07	819	TRUE
K2	4284186	1295678	124590	9.62	3.08	96.92	848	TRUE

>95% genome recovery from 7 human isolates

Sample ID	Year of collection	Location/Reg ion	Lineage	Length	Aligned length	Segment	Product	Percent ID
500618	2018	Marsabit/N.E astern	С	3885	3591	Μ	Glycoprotein	99.0
250618	2018	Wajir/N.East ern	С	3885	3591	Μ	Glycoprotein	99.4
KEM JC	2007	Baringo/R. Valley	С	3885	3582	Μ	Glycoprotein	99.4
KEM ND	2007	Baringo/R. Valley	С	3885	3591	Μ	Glycoprotein	98.8
KEM BR	2007	Kilifi/Coast	С	3885	3591	М	Glycoprotein	99.0
К2	2007	Kilifi/Coast	С	3885	3591	М	Glycoprotein	99.4

- 1,787 human serum samples identified in repository 1997-2021 with accompanying clinical information
- 200 inoculations performed in KEMRI BSL3

Lineages identified

be pivotal in Outputs from this study will understanding RVF epidemiology, evolution, and pathogen co-circulation in the country and region. Identification of co-circulating pathogens is a step towards better understanding and response and update any existing baselines of zoonotic pathogen activity in a region.

Bird BH, Githinji JW, Macharia JM, Kasiiti JL, Muriithi RM, Gacheru SG, et al. Multiple virus lineages sharing common recent ancestry were associated with a large Rift Valley fever outbreak among livestock in Kenya during 2006–2007. J Virol. 2008; 82:11152–66. doi:10.1128/JVI.01519-08

Future activities

- Generate libraries and full genome sequences of all the PCR RVF positive isolates.
- Attempt to characterize the non RVF positive isolates using a metagenomics approach.
- Continue with pathogen isolation attempts in cell culture.

Anticipated results and conclusion

References

R. D. Sumaye, E. Geubbels, E. Mbeyela, and D. Berkvens, "Interepidemic transmission of rift valley fever in livestock in the Kilombero river valley, Tanzania: a cross-sectional survey," PLoS Neglected Tropical Diseases, vol. 7, no. 8, Article ID e2356, 2013.

Contact

S.konongoi@cgiar.org Box 30709 Nairobi, Kenya

