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EXECUTIVE SUMMARY 
 

Faced with myriad options, Sub-Saharan Africa policy makers 

struggle to prioritize actions. Commonly used modeling approaches 

perform poorly in data scare conditions or focus intently on tools at 

hand. Policies, by consequence, report ‘wish lists’, making them a 

challenge to implement given resource constraints. Here, we 

evaluate the potential of using an alternative approach, Bayesian 

Networks (BNs), to prioritize agricultural policy actions, specifically 

modeling seven ‘Investment Areas’ listed in Tanzania’s Agriculture 

Sector Development Programme II.  

 

Our probabilistic model generates information that can help 

prioritize agricultural policy actions in the face of multiple risks. To 

begin with, it calculates standard performance measures including 

return on investment (ROI) and net present value (NPV) based on the 

benefits accrued to smallholders. In our case study, all seven 

modeled investment areas are predicted to have positive ROIs on 

average. However, the shape of the ROI distributions across model 

runs differs among investments and no investment has zero 

probability of a negative outcome providing information on the 

likelihood of outcomes and downside risk, respectively. The analysis 

also delivers information on the investments’ resilience by 

calculating performance metrics under no risk, only climate risk, and 

climate and social risk scenarios. We found that five of seven 

investments see an increased ROI under the climate risk scenario 

compared to the scenario with no risks. Measures of the relative 

performance under various scenarios helps policy makers prioritize 

according to their appetite for risk. Such results that evaluate 

investment performance amongst diverse investment types and 

assumption of future conditions, indicate BNs are a suitable tool for 

policy prioritization. 

 

User perceptions were our primary measure of success provided our 

design objective. Fifteen representative stakeholders verified the 

results’ utility and expressed appreciation for inclusion of oft-ignored 

concerns such as political risks, though feedback from some was 

more tempered. Potential users suggested future model iterations 

should include market shocks, the ability to disaggregate 

beneficiaries, and non-economic outcomes. Our own reflections 

mirrored these responses and we identified six additional lessons 

such as defining a default, but adaptable, model structure and 

parameter values to lower the bar for use. These reflections 

together lay out a roadmap to ready this approach to scale broadly 

in support of policy prioritization. 
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NEW APPROACHES TO POLICY PRIORITIZATION   
 

 

Agriculture is the backbone of the economy 

and the main livelihood activity in most 

developing countries. In Sub-Saharan Africa, 

agriculture contributes an average of 20% of 

the gross domestic product (GDP) and 

employs more than 50% of the population, 

often as smallholder farmers (World Bank 

2019a). Women comprise 25-60% of the 

agricultural labor force (Palacios-Lopez et al. 

2017) but women-headed households tend to 

have small farm sizes and own fewer livestock 

than male-headed households (Tavenner et al. 

2019). Agricultural production is also 

susceptible to climate change, with yields of 

the majority of agricultural crops in the tropics 

projected to decrease by 8% to nearly 30% by 

2050 (Wheeler and von Braun 2013), even as 

demand for food will increase by 2050 (Lobell 

et al. 2008). Thus, agriculture is a key lever for 

achieving diverse development goals, such as 

food and nutritional security, decent 

livelihoods, gender equity, and adaptation.  

 

Many options exist for catalyzing inclusive 

agricultural transformation. Decision makers 

could, for example, choose to prioritize: 

• Building infrastructure such as irrigation 

schemes, road networks, or electrification. 

• Bolstering the availability of information to 

farmers through improved extension 

systems and digital tools.  

• Reducing the impact of shocks on 

livelihoods through services such as social 

safety nets, agricultural insurance, 

microloans, and early warning systems.   

• Increasing yields and reducing emissions 

intensity in the face of climate change by 

developing and incentivizing adoption of 

adaptive on-farm management practices. 

The diversity of options and the complexity of 

intervention-to-outcome pathways makes 

prioritizing agricultural policy development 

and implementation difficult. Decision makers 

often include all possible priorities in policies, 

ultimately resulting in unwieldy strategies that 

cannot be effectively implemented given the 

limited financial and human resources 

available. Policy makers need to prioritize. 

Many modeling frameworks are available to 

help, but agricultural policymakers in Sub-

Saharan Africa rarely utilize them because 

data are scarce, assumptions are non-

transparent, and most models require specific 

technical capacity (Table 1, Annex A).  

 

The Bill & Melinda Gates Foundation Grand 

Challenge New Approaches for Strategic 

Prioritization of Agricultural Development 

Policies aims to address these difficulties by 

developing new methods to assist policy 

makers and implementers in analyzing their 

options and choosing the most promising 

approaches to achieving development 

objectives. In response to this challenge, we 

propose testing the utility of BNs for 

agricultural policy prioritization using a 

participatory, evidence-based, and risk-explicit 

model. We hypothesize that (i) BNs will allow 

users to compare various policy options or 

development interventions, (ii) the 

incorporation of risk and uncertainty in the 

modeling will result in more realistic and 

useful results information to inform decision 

making shape prioritization, and (iii) the 

participatory process will increase make 

stakeholders feel personal investment ed and 

engagement in this approach. To undertake 

this test, we focus on the case of agricultural 

policy for climate change resilience in the 

United Republic of Tanzania (hereafter 

‘Tanzania’).

1 
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Table 1 | Summary comparison of select modeling frameworks. Modeling frameworks differ 

across important attributes that affect their relevance and likelihood of use for policy prioritization. 

A more in-depth discussion of the pros and cons of these approaches can be found in Annex A. The 

REAP project - reported on here - develops and evaluates the use of Bayesian Networks specifically. 

 

Approach 

 Scale of 

analysis 

Appropriate 

level of 

intervention 

Model 

structure  Data needs 

Non-economic 

outcomes 

Risk and 

uncertainty 

Bayesian 

Networks 

Complex 

systems with 

many actors 

or 

characteristics 

A wide range, 

from projects 

for households 

and individuals 

to national 

policy 

One-way or 

non-

recursive, no 

feedbacks 

unless in 

multiple 

timesteps 

Qualitative data 

and expert 

opinion can be 

exclusively used; 

more complex 

models require 

quantitative data; 

Users can help 

define model 

structure 

Easy to include 

and model, 

often as 

unobserved or 

latent variables 

Included as 

probability 

distributions 

Fuzzy 

Cognitive 

Maps 

Complex 

systems with 

many actors 

or 

characteristics 

A wide range, 

from projects 

for households 

and individuals 

to national 

policy 

Feedback 

loops 

allowed; 

dynamic and 

recursive 

Only qualitative 

data can be used; 

users assign 

values and define 

model structure 

Easy to include 

and model 

Yes, but 

uncommon  

Agent-based 

models 

Simulated at 

the agency 

level to 

understand 

system as a 

whole 

A wide range, 

from projects 

for households 

and individuals 

to national 

policy 

Dynamic and 

recursive; 

provides 

dynamic 

results 

Data resource-

intensive; Users 

define the agents 

Yes, but not 

standard  

Yes, but not 

standard 

Household 

agricultural 

models 

Individuals 

and 

households 

Projects for 

households 

and individuals  

No 

feedbacks; 

unidirectional 

relationships 

Require extensive 

empirical data 

Can be 

included; good 

for gender-

disaggregated 

analysis 

Error terms 

are 

potentially 

large with 

scant data 

Computable 

generalizable 

equilibrium 

Markets 

within 

regional or 

national 

economies  

Regional, 

national, or 

international 

policy change 

or market 

shocks  

Static results; 

no solid 

econometric 

foundation 

Entail significant 

data demand are 

technical 

modeling-centric 

Not usually 

included 

Sensitivity 

analyses 

Multi-criteria 

analysis 

Complex 

systems with 

many actors 

or 

characteristics 

A wide range, 

from projects 

for households 

and individuals 

to national 

policy 

No 

feedbacks; 

unidirectional 

relationships 

Data and expert 

knowledge can be 

used in 

combination, 

though data are 

not required 

Easy to include   Included as 

probability 

distributions
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THE TANZANIA CONTEXT 
 

 

Tanzania’s agriculture and climate change 

context is indicative of countries across the 

continent. The economy depends heavily on 

agriculture: in 2020, agriculture contributed 

28% of Tanzania’s GDP and employed 65% of 

its workforce (Chuwa 2020). Approximately 7.8 

million households are directly engaged in 

agriculture, the majority of which are 

smallholder farmers producing crops or 

livestock. Smallholder farms account for 90% of 

the cultivated lands in Tanzania and their use 

of inputs remains low; inorganic fertilizers are 

applied to only 8% of the nation’s cropped 

area, and improved seeds are grown on about 

21%. Fully irrigated areas are virtually non-

existent among smallholders and comprise 

less than 0.7% of total national agricultural 

land (FAO 2016). As such, the Tanzanian 

national economy and the livelihoods of the 

majority of its population are directly reliant on 

the natural resource base, which are threatened 

by climate change. 

 

Climate change impacts in Tanzania will largely 

be felt in changing rainfall patterns across the 

country. Although changes in mean annual 

rainfall are likely to be relatively modest 

(Luhunga et al. 2018), variability in the timing 

and intensity of rainfall will increase 

(Chamberlin et al. 2009). Increased variability in 

rainfall impacts the livelihood of Tanzania’s 

smallholder farmers, fishers and pastoralists 

through uncertainty in planting dates and failed 

harvests, changing lake levels, and difficulty in 

managing traditional grazing regimes (Conway 

et al. 2005). Climate change is also increasing 

the frequency and severity of extreme events in 

the region, including both droughts and heavy  

rainfall (Wainwright et al. 2020), as well as 

climate-related pest outbreaks such as the  

 

 

 

2020 locust plague (Meynard et al. 2020). 

Adapting to and planning for climate change 

impacts is thus of critical importance for 

Tanzania’s agricultural sector.    
 

The importance of agriculture to Tanzania is 

evident in its policy. Tanzania’s Vision 2025 

(1995) identifies agriculture as a key 

development priority. The Ministry of 

Agriculture (MoA) created the Agricultural 

Sectoral Development Strategy (ASDS - 2001) 

and the Agricultural Sector Development 

Programme (ASDP - 2006) to guide growth in 

line with Vision 2025  (Figure 1). Furthermore, 

Tanzania became a signatory to the 

international Comprehensive African 

Agricultural Development Programme (CAADP) 

compact in 2010, which sets out targets for 

agriculture sector spending and development 

on the continent.

Photo: C. Schubert (CCAFS) 

2 
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Figure 1 | Tanzanian policies and strategies relating to climate change (blue) and agriculture 

(green) across scales. Arrows indicate where policies explicitly support implementation of a higher-

level policy or program.  

 

Climate change is becoming increasingly 

prominent in Tanzania’s governance. Climate 

change issues in Tanzania are the responsibility 

of the Division of Environment (DoE) within the 

Vice President’s Office. Tanzania does not yet 

have an explicit national climate change policy, 

but several overarching strategies have been 

established. The 2012 National Climate Change 

Strategy (NCCS) aims to support the national 

Vision 2025 objectives via climate change 

adaptation and mitigation action, as well as 

support Tanzania’s commitments to the 

UNFCCC. The NCCS outlines broad adaptation 

options for each vulnerable sector in the 

country. Within the agricultural sector, the NCCS 

promotes resilience to climate change through 

adaptive crop varieties and agricultural 

practices.  
 

In response to the NCCS, the MoA put forth the 

2014 Agricultural Climate Resilience Plan (ACRP) 

to provide a roadmap for meeting the objectives 

of the NCCS, the ASDS, and Vision 2025. The 

ACRP prioritizes four action areas:  
 

Action Area 1: Improving agricultural land and 

water management 

Action Area 2: Accelerating the uptake of 

climate-smart agriculture (CSA) 

Action Area 3: Reducing the impact of climate-

related shocks 

Action Area 4: Strengthening knowledge 

systems 

 

Several sub-sectoral documents were 

subsequently developed under the auspices of 

the ACRP to guide implementation of these 

action areas, particularly Action Area 2. In 2017, 

the National Climate-Smart Agricultural (CSA) 

Programme and Climate-Smart Agriculture 

Guidelines were issued to support the 

implementation of CSA in the country. The ACRP 

also greatly influenced the development of the 

2015 Agriculture Sector Development Strategy II 

and the Agricultural Sector Development 

Programme Phase II (2018-2028); several of the 

ACRP Action Areas became strategic investment 

areas within the ASDP II (Table 2). 
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Table 2 | Key agricultural climate resilience topics in Tanzanian policy development.  

Dark green indicates a main strategic area, light green indicates one or more mentions of the 

topic, and gray indicates unmentioned topics.  

 

 

Title 

 

Year 

 

Dom

ain 

Agricultural climate resilience topics 

Land & soil 

manage- 

ment 

Irrigation & 

water 

harvesting 

Climate- 

smart 

agriculture 

Improved 

varieties 

Climate 

information 

services 

Climate risk 

reduction 

ASDS 2001 MoA 

      

NCCA 2012 DoE 

      

ACRP 2014 MoA 

   
 

  

ASDP II 2018 MoA 

      

 

 

 

At the close of the ACRP in 2019, stakeholders 

convened to determine the need for a second 

phase of the ACRP to continue addressing 

climate change in the agricultural sector. The 

ability of the ACRP to set priorities and channel 

donor interest was a standout achievement of 

the policy, particularly evidenced by the growth 

of CSA projects in the country (MoA 2021). The 

ACRP successfully influenced the development 

of the Phase II ASDP, which included nearly all of 

the climate-resilient topics identified in the 

ACRP. In light of this, stakeholders opted to 

conduct an analysis of the ASDP II policy to 

determine whether it alone was sufficient to 

address climate change adaptation and 

resilience in the agricultural sector. 

 

The ASDP II identifies 23 Priority Investment 

Areas for agricultural development in Tanzania. 

Seven of these priority areas align with 

opportunities promoted for climate resilience in 

Sub-Saharan African agriculture (Table 3). The 

presence of these seven widely promoted 

opportunities implies that the analysis results 

are likely generalizable to African geographies 

and policies outside of Tanzania. Therefore, the 

model developed here while specific for ASDP II 

and Tanzania is likely widely relevant to 

additional geographies and agricultural policies. 
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Table 3 | ASDP II Priority Investment Areas relevant to climate change.  

 

Priority Investment 

Area 

Technologies or interventions discussed Target value 

chains or 

regions 

Five-year 

budget 

(millions)  

1.1 Land and water 

management 

Conservation agriculture, reduced tillage, fertilizers, 

afforestation, agroforestry, fodder trees, mixed crop-

livestock systems, early warning systems 

None specified TSh 196,725 

USD 87 

1.2 Irrigation 

development 

Irrigation, water harvesting, conservation agriculture, 

enhanced soil cover, run-off management, reduced 

tillage, organic mulching 

Crops TSh 976,703 

USD 434 

1.4 Water for livestock 

and fisheries 

Charco dams, aquaculture ponds and cages, pasture 

improvement, seaweed cultivation 

Livestock, 

fisheries 

TSh 788,782 

USD 351 

1.5 CSA Climate-smart 

agriculture 

Improved seeds and breeds, early warning systems, 

conservation agriculture, weather forecasting, Good 

Agricultural Practices (GAPs), capacity building 

None specified TSh 52,331 

USD 23 

2.1 Agricultural 

extension system 

Conservation agriculture, Good Agricultural 

PracticeGAPs, integrated pest management, improved 

seeds, fertilizers, improved feeds, vaccines 

All TSh 4,734,493 

USD 2,104 

4.9 Agricultural 

information services 

Mobile agricultural advisory services, call numbers, early 

warning systems, capacity building 

None specified TSh 6,373 

USD 2.8 

4.10 Microfinance Access to microcredit, microfinance, farmer 

cooperatives, warehouse receipt systems 

None specified TSh 7,067 

USD 3.1 
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DEVELOPING A BAYESIAN NETWORK  
 

A BN is a probabilistic modeling framework 

commonly used in financial and risk analysis, 

computer science, and natural resource 

management because of their flexibility to 

represent the world, their ability to formally 

integrate qualitative expert opinion and 

quantitative data, and their handling of 

uncertainty (McCann et al. 2006). Essentially, 

Bayesian networks are directed acyclic graphs 

(DAGs) that represent the relationships among 

variables as conditional probabilities. The 

graphical model defines the model’s structure 

and our assumptions about how the variables 

(i.e., nodes) in the model relate to each other. 

The arrows between the nodes represent a 

direct influence of one node on another. Each 

node is parameterized based on the 

probabilities of events given the variable(s) 

that influence it (i.e., its parents) and 

distributions of the outcomes.  

 

For a BN to be used for policy prioritization, it 

must represent the causal relationship 

between policy options and desired outcomes. 

The primary goal of the ASDP II is “increased 

and sustainable productivity of agricultural 

commodities to improve Tanzanian 

livelihoods,” while the goal of the ACRP is to 

mitigate climate risks in the agricultural sector. 

Both policies target the activities of 

smallholder farmers through both on-farm 

practices and service provisions to achieve 

these outcomes. The basic policy-outcome 

pathway we modeled is through changes in 

smallholder farmer incomes, resilience and 

greenhouse gas emissions from adoption of 

technologies and/or services promoted by 

policy options.  

 

The ASDP II policy options are presented as 

Priority Investment Areas. Therefore, we used 

an existing probabilistic investment model, 

which predicts project benefits (e.g., return on 

investment) according to implementing risks 

as our starting point (Yet et al. 2016). The 

model’s structure is based on financial project 

evaluation methods that describe causal 

relationships among project activities and 

monetized benefits (e.g. increased yield for 

farmers, desired externalities). The model also 

includes realities of project implementation in 

its estimate of project value, including risks of 

budget overruns or project mismanagement. 

We extended this model to deal specifically 

with the climate hazards targeted by the ACRP 

(e.g., droughts, floods, and pests and diseases) 

as well as including valuation of climate 

change mitigation benefits (Yet et al. 2020). 

The resulting model is therefore able to 

address the goals of productivity, resilience, 

and climate change mitigation of ASDP II 

investment areas. 

 

The REAP model elaborates the policy-impact 

pathway with five main components: impacts, 

adoption, costs and budget, risks, and 

outcomes (Figure 2 and more detailed Figure 

B1). Each model component and its data 

requirements are described in detail below, 

and data sources are listed in Table 4.  

 

Impact 

Each Priority Investment Area in the ASDP II 

specifies a portfolio of interventions meant to 

increase agricultural productivity and climate 

change resilience in Tanzania (Table 2). The 

monetized productivity impact is calculated as 

the changes in farming household income due 

to adopting these interventions multiplied by 

the number of adopting households over time. 

Potential changes in yields for targeted 

households were estimated using the Evidence 

for Resilience Agriculture (ERA) database, 

which collates data from more than 2,000 
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peer-reviewed research papers that assess the 

impact of climate-resilient agricultural 

practices on productivity, resilience, and 

mitigation outcomes at the farm level in Africa. 

For each targeted farming system, such as 

livestock, semi-arid, maize, or a combination of 

systems, the mean and variance of the change 

in yields were computed according to best 

practices for meta-analysis (Rosenstock et al. 

2015). This distribution of outcomes was then 

used to assess how income changed for 

adopters as well as the level of uncertainty 

around that change, assuming that in 

smallholder farming households, the majority 

of income is derived from on-farm activities. 

 

 

 
 

Figure 2 | A simplified Bayesian network model of impacts on the Agricultural Sector 

Development Programme Phase II Priority Investments 

 

 

In addition to changes in agricultural 

productivity due to the implementation of 

policy options, we also estimated climate 

impacts in the form of carbon dioxide 

equivalents and monetary benefits. We 

determined changes in the greenhouse gas 

balance at the farm level for the technologies 

and targeted systems identified for each 

priority investment area in the ASDP II using 

the Ex-Ante Carbon-balance Tool (FAO 2019). 

Resulting changes in carbon emissions were 

then monetized using a distribution of 

possible values per ton of carbon dioxide to 

account for the social costs of carbon and 

uncertainty in the future carbon markets 

(World Bank Group 2017).  

 

Adoption 

The number of adopting households over the 

lifetime of the ASDP II investment was 

modeled using the Bass model (Yet et al. 2020, 

Bass 1969). The Bass model estimates the 

diffusion of innovations in a society and 

approximates the adopters at each time step, 

Target 
Beneficiaries 

Adoption 
Rate 

Beneficiaries 
Reached 

Productivity 
Impact 

Total 
Impact 

Carbon 
Impact 

Social 
Risks 

Climate 
Risks Project 

Costs 

Project 
Budget 

Risk of 
Overspend 

Discounted 
Impact 

Financial 
Risk 

NPV 

ROI 

Discount 
Rate 

Costs & Budget 

Impact 
Outcome
s 

Adoption 
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which in this case is a year. The model includes 

three key parameters: the saturated number 

of adopters, a coefficient of innovation (P), and 

a coefficient of imitation (Q). The saturated 

number of adopters counts the target 

beneficiaries. To calculate the potential 

number of target beneficiaries, we divided the 

total budget of the investment in the ASDP II 

by an estimated cost-per-beneficiary in US$ 

per household based on similar agricultural 

development projects (World Bank 2019b).   

The coefficients of innovation and imitation 

were assigned according to a typology of 

anticipated functional responses of adoption 

(Annex C). For example, projects that can 

quickly and directly reach numerous target 

beneficiaries will have a high coefficient of 

innovation, whereas those that take longer to 

start like infrastructure projects will have a 

lower coefficient of innovation. Technologies 

or practices that can be transmitted 

horizontally between potential beneficiaries 

receive a high coefficient of imitation. 

Technologies such as agricultural insurance, 

digital extension, improved seeds, and other 

‘single change’ options are thought to have a 

high likelihood of indirect adoption, whereas 

those that involve many changes, such as 

conservation agriculture or a system of rice 

intensification, have lower coefficients of 

imitation. Varying these parameters affects the 

adoption curve, the number of beneficiaries 

each year, and hence the policy’s overall 

impact. 
 

Costs and budget 

Two main financial factors affect an 

investment’s impact: budget and costs. The 

project’s budget is the amount of money to be 

spent per year as stated in the ASDP II. For 

simplicity, we assumed that annual spending 

was the same across the five-year duration of 

each investment, although more complex 

budgeting cycles could be accommodated. 

Annual costs were modeled as having the 

same mean as the project budget, but a higher 

variance to account for fluctuating spending 

across project years. If costs exceed the 

project budget, the monetized benefits are 

reduced by this amount.  
 

Risks 

The model integrates three major risk types: 

climate, social, and financial risks. Climate risks 

included droughts, floods or heavy rainfall, 

and outbreaks of pests and disease, which are 

the main climate shocks that impact 

agricultural systems. For each climate risk, the 

frequency, or likelihood of occurrence, was 

estimated using the historic frequency of 

shocks that were significant enough to impact 

agricultural productivity on a national scale. In 

Tanzania, significant droughts occur about 

once every five years, meaning that the 

likelihood of occurrence in any year is 

approximately 20% (Arce & Caballero 2015). 

Pest outbreaks, including novel pests such as 

the Fall Army Worm, befall Tanzania with a 

similar frequency, while heavy rain events that 

cause large-scale disruption tend to be less 

frequent, happening about once in 20 years.  
 

If a climate shock occurs, smallholder farmers 

will be affected. The risk impact was modeled 

differentially for adopters and non-adopters of 

the policy’s key interventions, with a uniform 

distribution of potential agricultural losses 

between 0%, or no loss, and 100%, or total 

loss. If the technologies or interventions 

strengthened resilience to the climate shock, 

the impact was lessened; for instance, the 

adoption of drought-tolerant crop varieties 

should reduce the impact of a drought on 

yields. If not, the risk impact was the same 

between adopters and non-adopters; for 

example, participation in an irrigation scheme 

would not directly decrease vulnerability to a 

pest outbreak. Risk impacts were assigned to 

each policy option according to a typology 

based on the magnitude of impact and the 

certainty around that impact (Annex D). 
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Social risks can also reduce the impact of 

policy or investment options. We included 

three main types of social risk in our model: 

political instability, social conflict, and poor 

project governance. Political instability, such as 

post-election violence, and social conflict, such 

as violent extremism or tensions between 

farmers and pastoralists, were modeled as 

slowing the rate of adoption of policy or 

project interventions due to displacement or 

uncertainty about the future. Poor project 

governance, for example because of 

corruption, was modeled as diminishing the 

total number of beneficiaries that could be 

reached within the investment’s budget. We 

arrived at the frequency of these risks using 

data on political instability and social conflict in 

Tanzania as well as the relative performance 

of Tanzania on scores for Rule of Law and 

Control of Corruption in the Worldwide 

Governance Indicators (Kaufmann et al. 2010).  
 

Finally, we modeled financial risk that might 

constrict the project’s overall budget, such as 

altered donor objectives, donor responses to 

political circumstances, or changing national 

political priorities. For example, in 2021, the 

United Kingdom dramatically curtailed official 

development assistance (Sample 2021), 

disrupting funding for new and ongoing 

projects, and in 2016, because of the disputed 

Zanzibar election results, the United States 

government reduced development assistance 

to Tanzania (BBC 2016). The risk of budget cuts 

was modeled as a normal distribution with a 

mean of X. If a budget cut happens, the 

project’s budget drops by an amount also 

modeled with a normal distribution to account 

for uncertainty in potential budget cuts. 

Project costs were not automatically reduced, 

increasing the risk of overspending.   
 

 

Outcomes 

The REAP Model evaluates policy options in 

terms of net present value (NPV) and return on 

investment (ROI). In each year of the policy 

implementation cycle, accrued monetized 

impact is reduced by any project overspend. 

Net returns (R) is calculated as current year’s 

net impact (impact - costs in that year) 

discounted using a distribution of possible 

discount rates (d). 
 

𝑅𝑡 =  
(𝐼𝑚𝑝𝑎𝑐𝑡𝑡 −  𝑂𝑣𝑒𝑟𝑠𝑝𝑒𝑛𝑑𝑡)

(1 + 𝑑)𝑡  

 

At the end of the policy implementation cycle 

(t= 5 years), NPV is calculated as cumulative 

discounted net returns and the ROI is 

calculated as the ratio of the cumulative 

discounted benefits (NPV) to the cumulative 

costs.  

𝑁𝑃𝑉 =  ∑ 𝑅𝑡

5

𝑡=1

 

 

𝑅𝑂𝐼 =  
𝑁𝑃𝑉

∑ 𝐶𝑜𝑠𝑡𝑠𝑡
5
𝑡=1

 

 

The percent chance of producing a positive 

NPV or ROI for each scenario is also 

calculated.   
 

Model implementation 

The model was developed and implemented 

using AgenaRisk software (AgenaRisk 2020). 

Models were parameterized for each of the 

identified ASDP II climate-relevant Priority 

Investment areas using a combination of 

external data sources and expert opinion 

(Table 4). The models were run for a five-year 

investment cycle as described in the ASDP II 

(Figure B2).  
 

Each policy option was evaluated in four 

different risk scenarios. The first scenario 

lacked any risks so we could compare the risk-

explicit policy evaluation with conventional 

analyses that do not consider risks. We also 

evaluated each ASDP II option in scenarios 

considering climate risks only, social and 

financial risks only, and finally, with all risks.  
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Stakeholder Engagement   

In order to assess the utility of both the 

modelling approach and the REAP outputs for 

prioritizing agricultural policy options, we 

engaged stakeholders directly involved in the 

process of formulating the Phase II Agricultural 

Climate Resilience Plan in Tanzania. These 

stakeholders participated in the December 

2019 ACRP II workshop in Dar es Salaam, and 

then were engaged via survey instruments 

upon model completion (Annex E). We 

requested detailed feedback from 15 

stakeholders, representing the government, 

development, research, and the private sector. 

Stakeholders were asked about the 

usefulness, adequacy, and usability of the 

model and its results, as well as about any 

conceptual or informational gaps. Of the 

respondents, 50% were men and 50% women. 

Half of respondents were involved in 

agriculture and climate change research, 20% 

were government officials, and 30% acted as 

donors or implementors in the development 

sector. All feedback was transcribed and coded 

for analysis of key themes related to the 

usefulness, adequacy, and usability of REAP.  

 

 

 

Photo: S. Kilungu (CCAFS) 
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Table 4 | Parameters and data sources for the REAP Model 
 

Model Parameter Data type Data Source 

Costs and budget 

   Project total budget Fixed integer ASDP II 

   Project yearly budget Truncated normal distribution ASDP II 

   Cost per beneficiary Truncated normal distribution World Bank CSAIPs (World Bank 2019b) 

   Evaluation period Fixed integer ASDP II 

   Yearly cost Truncated normal distribution ASDP II 

   Discount rate Truncated normal distribution World Bank CSAIPs (World Bank 2019b) 

Adoption 

   Total targeted beneficiaries Truncated normal distribution Calculated 

   Coefficient of innovation Truncated normal distribution Project typologies (Annex B) 

   Coefficient of imitation Truncated normal distribution Project typologies (Annex B) 

Impact 

   Baseline income Truncated normal distribution 
Economic Lives of Smallholder Farmers (Rapsomanikis 

2015).  

   Relative impact Normal distribution ERA 

   Greenhouse gas balance Normal distribution ExACT and literature  

   Carbon price Truncated normal distribution Social Cost of Carbon (World Bank Group 2017). 

Risks 

   Risk of drought Truncated normal distribution Acre & Caballero 2015 

   Impact of drought Uniform distribution Risk typologies (Annex C) 

   Risk of floods or heavy rainfall Truncated normal distribution Acre & Caballero 2015 

   Impact of floods or heavy rain Uniform distribution Risk typologies (Annex C) 

   Risk of pests or diseases Truncated normal distribution Acre & Caballero 2015 

   Impact of pests or diseases Uniform distribution Risk typologies (Annex C) 

   Risk of budget cuts Truncated normal distribution Expert opinion 

   Risk of poor governance Truncated normal distribution Worldwide Governance Indicators 

   Risk of conflict Truncated normal distribution Worldwide Governance Indicators 

   Risk of political instability Truncated normal distribution Worldwide Governance Indicators 

 



 

PAGE 17 

PERFORMANCE OF THE ASDP II PRIORITY INVESTMENTS 

 

 

 

The model predicts all ASDP II priority 

investment areas will have positive mean ROIs 

across all risk scenarios. Given their total 

budgets, estimated number of beneficiaries, 

and estimated impact per beneficiary, all 

investments are projected to increase 

agricultural productivity for smallholder farmers 

in Tanzania on average. However, the 

investments differ significantly in the 

distribution of the potential ROIs (Figure 3). 

Investments with a low cost per beneficiary and 

a relatively small impact per beneficiary such as 

agricultural information services or increasing 

access to credit and microfinancing have wide 

distributions in their ROIs, whereas the ROIs of 

costly projects with more robust benefits for 

farmers such as irrigation development or 

enhancing the water resources for livestock 

have much narrower distributions. However, no 

investment has zero probability of a negative 

outcome (ROI < 0), and the investment that is 

least likely to yield a negative result is 

sustainable land and water management  

(Table 5).  

 

 

 

 
Figure 3. | Distribution of return on investment outcomes from ASDP II investments under 

scenarios with and without climate risks  
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Table 5 | ASDP II Investment performance with and without climate risk 

 

Investment Budget 

(M USDs) 

Target 

benefici-

aries 

Cost per 

beneficiary 

(USD) 

Change in 

beneficiary 

income (%) 

ROI,  

no 

risks 

(%) 

ROI, with 

climate 

risks 

(%) 

Chance of 

a positive 

NPV 

(%) 

1.1 Land & water 

management 

87 320,000 275 40 9.9 9.5 95.0 

1.2 Irrigation 

development 

434 868,000 500 45 4.3 4.8 96.6 

1.4 Water for 

livestock & fisheries 

351 609,000 575 55 4.0 3.7 89.0 

1.5 CSA 23 115,000 200 30 10.5 11.1 91.5 

2.1 Agricultural 

extension systems 

2,104 5,000,000 421 20 4.0 5.0 85.5 

4.9 Agricultural 

information services 

2.8 47,000 60 15 18.5 30.1 82.5 

4.10 Microfinance 

services 

3.1 27,000 115 20 16.8 20.5 88.8 

 

 

We assessed the performance of investments 

for agricultural climate resilience by comparing 

the ROI with and without considering climate 

risks. Of the seven investments modeled, five 

see an increased ROI under the climate risk 

scenario compared to the scenario with no 

risks. Investment in agricultural information 

services shows the largest jump in its ROI with 

climate risks. In the absence of climate risks, the 

use of weather or planting date information is 

unlikely to boost the performance of 

smallholder farmers significantly. However, if 

agricultural information systems can accurately 

inform farmers of seasonal rainfall amounts, 

likely planting dates, or impending pest 

outbreaks, the benefits of using such systems 

can be dramatic. The ROIs of other investments, 

including the development of irrigation 

infrastructure, CSA, improved agricultural 

extension systems, and broader access to credit 

and microfinance services, also rise under the 

climate risk scenario.  

 

All of the modeled options are likely to have 

positive returns. The chances of a positive NPV 

exceed 80% in all cases. These results contrast 

with investments modeled in a similar approach 

for Mali and Cote d’Ivoire, where multiple 

investments have chances of NPV below 50% 

(World Bank 2019c, World Bank 2019d). The 

results found here can be explained by the 

favorable assumptions used to run the 

simulations in Tanzania. For example, the cost 

per beneficiary for an agricultural information 

service project is only 60 USD and has the 

potential to change incomes by 15% on average. 

This would be a highly efficient and effective 

program by any standard. Also, the Mali and 

Cote d’Ivoire investment plans were much more 

specific about how many beneficiaries were to 

be targeted, in what regions and for which value 

chains. The lack of specificity in Tanzania’s ASDP 

II required many more assumptions to be made 

by the modeling team, potentially resulting in 

more favorable assumptions. The leverage 

assumptions have on the results highlights the 

importance of credible and quality input data.  
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STAKEHOLDER FEEDBACK  
 

 

Stakeholder perceptions of the modeling 

approach and results were the primary 

measuring stick, given our design objective was 

to create a useful and relevant model that 

informs and prioritizes policy. Overall, the 15 

stakeholders who provided feedback on the 

modeling process and results found the outputs 

of the REAP model valuable for prioritizing ASDP 

II policy options. All stakeholders stated that 

they felt the results were useful for policy 

prioritization, although 25% of respondents 

qualified their statements by saying, for 

instance, “yes and no” or “possibly yes”. 

Stakeholders stated that the model was  

 

 

generally comprehensive and allowed for the 

comparison of diverse options related to 

agriculture and climate change adaptation. The 

key advantage of the REAP model according to 

stakeholders is the inclusion of risks, particularly 

social and political risks to policy and project 

implementation. Indeed, one development 

practitioner responded as follows: 

 

“Political and policy instability [are main 

components] because these two ‘big fish’ do 

significantly affect any investment, especially 

demoralizing donors and/or implementing project 

partners and often the beneficiaries, the farmers, 

too.” 

Photo: C. Schubert (CCAFS) 
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This stakeholder was referring to the impact of 

political instability both within Tanzania and 

within donor countries on the flow of funding 

for agricultural development. The stakeholder 

pointed out that Tanzania is no longer 

considered a priority country for the United 

States Government’s Feed the Future Initiative. 

In addition, several stakeholders stressed the 

importance of macroeconomic risks, such as 

price shocks or a lack of access to export 

markets, and suggested that these could be 

included in future versions of the model. 
 

Stakeholders were split as to whether the REAP 

model is adequate to assess the climate 

resilience benefits of the ASDP II policy options. 

Approximately 25% of respondents felt the 

model was adequate, 25% felt it is not, and the 

remaining 50% felt the model falls somewhere 

in between. Some stakeholders felt that the 

model sufficiently addresses climate resilience 

because the policy options modeled strengthen 

climate resilience and show changes in NPV and 

ROI with and without climate risks. Others felt 

that the model lacks a “clear definition of 

resilience” and a “link between policy and 

enhanced resilience”. While our approach to 

resilience focused on how policy options change 

economic outcomes in the face of shocks, some 

stakeholders pointed out that gradual changes 

in climate parameters are also important to 

model. 
 

When asked how the model could be improved 

for prioritizing climate change and agricultural 

policies, several distinct directions emerged 

(Table 5). One is to model markets by including 

elements such as market availability, labor, value 

chains, farm gate pricing, economic shocks, and 

macroeconomic policy. A second emergent 

direction involves increasing the model’s social 

complexity by disaggregating beneficiaries by 

gender or other social dimensions, adding 

context specificity in outcomes, and including 

more complicated adoption models that also 

allowed for disadoption of interventions. The final 

suggestion that emerged from stakeholder 

feedback is to include non-economic outcomes, 

particularly those with strong relevance to 

climate change resilience. A food systems 

researcher shared the following advice: 
 

“ Financial impacts alone may not necessarily be 

helpful in understanding smallholder subsistence 

farming systems. There are other impacts that are 

non-monetary, linked to livelihoods that promote 

resilience.” 
 

Suggested outcomes included impacts on 

ecosystem health and services, natural resource 

bases, and the adaptive capacity of 

beneficiaries.

  

Table 6 | Perception of model parameters by stakeholders. In other words, what should be 

retained, expanded or removed from the model.   

 

 
 

Included Not included 

 S
ta

k
e

h
o

ld
e

r 
p

e
rc

e
p

ti
o

n
 

Retain or 

add 

Risk assessment, uncertainty, 

economic outcomes, change in NPV and ROI, 

mitigation, political instability, benefits to 

farmers, yield 

Non-economic outcomes, trade-offs, 

disadoption, gender, economic shocks, national 

budget cycles, market availability, capacity 

building, gradual changes, value chains, labor, 

ecosystem services and natural resources.  

Remove Mitigation, carbon costs, greenhouse gas 

emissions 
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The number of parameters, complexity of 

relationships between policy and impact, use 

of quantitative distributions for model 

parameters, and presentation of outputs 

across multiple scenarios including uncertainty 

led some stakeholders to feel that model was 

difficult to understand. For example, a 

program officer at a donor organization 

shared the following reflection: 
 

“I certainly think the model is useful and could be 

useful in the work of my office. However, it is not 

intuitive to me as someone who is not a 

researcher or policy maker.” 

For the model to be useful for policy 

prioritization, it may be important to increase 

the usability of either the model interface 

itself, or the way that stakeholders interact 

with the model outputs. Finally, several 

stakeholders had concerns about the data 

sources used to parameterize the model. 

Although most felt the data choices were 

adequate, there was a call to harmonize data 

inputs with data collected by national data 

collection systems in Tanzania to increase the 

usefulness of the model, particularly for future 

policy prioritization exercises.

 

 

Photo: C. Schubert (CCAFS) Photo: C. Schubert (CCAFS) 
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RESEARCHER REFLECTIONS  

REAP provided an opportunity to adapt and field 

test a BN-based approach to policy 

prioritization. The application to an existing 

policy in collaboration with stakeholders heavily 

vested in the policy processes generated new 

insights into its relevance and how to improve.  

Six reflections emerged. 
 

MIND THE RISK. Including risks in the REAP 

model alters modeling outcomes and hence 

could affect prioritization. The estimated NPV 

and ROI of all investments changed for each risk 

scenario, although the relative ranking of the 

investments by mean ROI did not significantly 

differ between risk scenarios. We believe this 

result is largely due to the lack of specificity in 

the description of the ASDP II investments, 

which overlapped significantly in terms of 

technologies mentioned and agroecosystems 

targeted, so the largest differences among the 

investments were their overall budgets and 

costs per beneficiary. Regardless of cause, the 

leverage that including risks has on the results 

and the prioritization highlights an existential 

crisis for policy makers and investors. Risks in 

general, not to mention climate risks, are rarely 

if ever considered in agricultural policy 

prioritization.  

 

 

Lesson 1: REAP results suggest that careful 

consideration of the risks needs to become 

commonplace going forward, irrespective of the 

prioritization framework used. 
 

 

APPLES TO APPLES. Our model allows a 

decision maker to compare diverse common 

agricultural and climate change policy options 

by assuming economic benefits accrue to 

smallholder farmers. This approach works well 

for policy options that directly target farm-level 

changes. Key assumptions about the number of 

beneficiaries, scale of impact and rate of 

adoption are more difficult to reasonably 

constrain for options with high costs and diffuse 

benefits, such as large-scale infrastructure 

projects or resource management schemes, 

amongst other challenges to ensure plausible 

comparability.  

 

 

Lesson 2: Bayesian Networks may not be 

appropriate to model the entire gamut of policy 

options affecting inclusive agriculture 

transformation. 
 

 

EXPERT ELICITATION. Expert elicitation of the 

model structure and the parameter values is 

central to using BNs, especially in data-scarce 

environments. Workshops lend credibility to the 

process and buy-in to the modeling effort in 

addition to providing expert judgments. In order 

to provide reasonable approximations of 

parameter distributions, experts must be 

“calibrated” to mitigate the known bias that 

arise from this practice such as overconfidence, 

bandwagoning, available heuristic, and more. 

Under COVID-19 restrictions, discussions 

typically held in person were moved online. This 

presented challenges under remote 

participation scenarios because of internet 

connections, lack of participation, and 

distraction. Unfortunately tools such as online 

training and surveys were relatively ineffective 

in calibrating stakeholders.  

 

 

Lesson 3: Unguided expert elicitation is unlikely to 

result in usable estimates of model parameters. 
 

 

GARBAGE IN, GARBAGE OUT. The model 

provided reasonable estimates of impact, such 

as ROIs between 4% and 30% across a diverse 

array of policy options. Variation among the 

investments was driven by assumptions and 
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data availability pertaining to impacts, adoption, 

and risks. For example, investments that reach a 

large number of beneficiaries such as climate 

information tend to have the highest ROIs. 

There are often multiple data sources to select 

from; in some cases the globally accepted data 

are not the nationally expected data. 

Furthermore, experts may also have dissenting 

opinions. Bayesian Networks illustrate data and 

processes transparently helping to mitigate 

concerns over which data were used. However, 

discrepancies do arise, sometimes after 

modeling and seeing the results.  

  

 

Lesson 4: Assumptions and data need to be 

developed in collaboration with policy makers to 

ensure the credibility of the results.  
 

 

USABILITY IS KEY. Though typically conducted 

using participatory methods, our approach 

requires significant time investments by 

technical and domain experts to develop, 

parameterize, run, and refine models. Models 

require a software platform that may not be 

available to all users. More complex models 

demand large amounts of memory and 

computing resources, limiting the ability to run 

scenarios in real-time with stakeholders. This 

means that the BN approach, in its current 

format, may be challenging to practically 

implement at scale with many iterations. 

However, the REAP experience when added to 

previous work further lends evidence that the 

core structure of the policy-impact pathways is 

fairly consistent across contexts. Stakeholders 

want to adapt or change relatively small 

components of the model for their liking such as 

the risks that are modeled, the distribution of 

impacts, or the inclusion of carbon benefits. 

Non-structural changes can be accommodated 

more readily.  

 

 

Lesson 5: The bar for entry needs to be lowered to 

increase use, which suggests the opportunity to 

develop a Web-based tool where the model could 

be adapted based on drag and dropped selections 

and default primary data could be loaded based 

on selected geographies (i.e., from the Adaptation 

Atlas) but modifiable to users inputs.   
 

 

MULTIPLE USE CASES. In REAP, we used BN to 

assess existing policy options for a specific 

outcome - increased climate change resilience 

of the agricultural sector. Through our 

engagement with decision-makers in Tanzania, 

several use cases of policy prioritization models 

and BNs in particular emerged. In addition to 

policy assessment, funding prioritization and 

policy formulation are two other key needs. The 

outcomes modeled or weighting across multiple 

outcomes, as well as the scale of analysis can 

change in each specific use case. However, if the 

core impact pathway remains the same (in this 

case, impact is accrued through changes in 

smallholder farmer behavior), the model can be 

adapted to different use cases.  

  

 

Lesson 6: Multiple use cases demand a flexible 

modeling framework, but can be accomodated if 

the core impact pathway remains the same. 
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CONCLUSIONS 

At the outset of the Grand Challenge, we 

hypothesized that using BNs would improve 

policy prioritization by (i) allowing stakeholders 

to compare diverse policy options despite data 

scarcity, (ii) increase the utility of prioritization 

results by incorporating stochastic social and 

climate risks into the model and (iii) increase 

acceptance of model results through the 

utilization of participatory modeling processes. 

REAP was largely able to achieve these goals. 

The REAP model allowed stakeholders to 

directly compare aggregated agricultural 

productivity, resilience, and mitigation impacts 

of ASDP II options ranging from promoting 

climate-smart agriculture, to developing 

irrigation infrastructure, to improving 

agricultural information services and access to 

microfinance for smallholder farmers. 

Stakeholders generally felt that the model was 

adequate for this task, but some wanted to see 

non-economic impacts, results stratified by 

social groupings, or inclusion of more social 

policy options. 
 

The inclusion of risk into policy prioritization 

was seen as a key advantage of the REAP 

approach, allowing stakeholders to get a more 

realistic sense of potential policy impacts. 

Including social and financial risks always 

lowered the ROI of ASDP II investments, but 

climate risks could sometimes increase the ROI 

if the investment increased resilience to that 

particular shock. Stakeholders especially 

appreciated the inclusion of political risks as  

many felt this was important in the Tanzanian  

context. However, some stakeholders felt that 

examining change in ROI with climate shocks 

was inadequate for assessing resilience 

benefits, and others wanted to see inclusion of 

market and economic shocks suggesting a need 

to increase the number (currently capped at six) 

and change the portfolio of shocks modeled in 

future iterations 

 

Acceptance and use of outputs for policy 

prioritization remains a key challenge for all 

modeling approaches. For REAP, many of the 

participatory model design, parameter 

elicitation, and output validation processes 

were severely limited due to COVID19 safety 

precautions and internal political reasons in 

Tanzania. In the absence of face-to-face 

workshops, overcoming the inherent biases in 

human estimation of parameters is difficult. 

Many stakeholders felt that the model and 

results were highly technical and thus difficult to 

use in a policy prioritization process.  
 

In conclusion, BNs provided a robust and 

flexible modeling approach for prioritizing 

agricultural policies. Further development of the 

model to include non-economic impacts of 

agricultural policies would expand its 

application to prioritization contexts, 

particularly when multiple development goals 

are desired. Creating an accessible web-based 

interface for stakeholders to design, 

parameterize, and analyze their results could 

also increase the usability and prime this 

approach to go to scale.  

  

Photo: CCAFS 
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Annex A. A review of select  policy prioritization approaches 
 

A plethora of modeling approaches are 

currently used for policy prioritization in 

agriculture and other sectors. These models 

attempt to predict, ex-ante, the impacts of 

various policy options on key outcomes that are 

nearly always quantitative and often economic. 

These modeling approaches are seen as a way 

to integrate impacts on various system 

elements into a “common currency” for easy 

comparison, and they vary in their scales of 

analysis from the household to the 

macroeconomic levels, in their data 

requirements, and in the difficulty of 

implementation. Below we review some of the 

most frequently used modeling approaches for 

policy prioritization, in order of increasing scale 

of analysis. Table 1 of the main report 

summarizes the review. 

 

Household models 

Agricultural household models, sometimes 

described as models with non-separability 

(DeJanvry et al. 1991) or models of peasant or 

semi-commercial households, are a specific 

microeconomic approach to understanding 

decision-making in agricultural households in 

developing-country contexts. The specification 

of these models arose out of observations in 

the mid-20th century that agricultural 

households in many parts of the world did not 

make decisions in ways that met the profit- or 

utility-maximizing expectations of classical 

economic theory. Rather than analyzing farming 

household behavior either from the point of 

view of their role as producers of economic 

goods or as consumers of goods, services, and 

leisure, agricultural household models are 

premised on the observation that semi-

commercial agricultural households make 

integrated decisions as both producers and 

consumers (Singh et al. 1986). The relationship 

between production and consumption decisions 

can be simultaneous or recursive, which means 

that “production decisions are made with 

reference to market prices but are independent 

of other decisions, whereas consumption and 

labor supply decisions depend crucially on the 

income derived from the household’s 

production” (Singh et al. 1986: 151). Many of the 

foundational assumptions and analytical 

outcomes of agricultural household models are 

now used as starting points for parameterizing 

simulation models, which will be discussed 

below. 

 

Analytically, agricultural household models are 

specified and applied to empirical “real-world” 

data, and rely on standard multivariate 

regression techniques to assess the strength 

and direction of relationships and uncertainty in 

those estimates. This means that household 

models require large amounts of data to 

generate estimates with relatively small errors, 

which can be costly and often unrealistic in 

terms of time and effort. The assumptions that 

underlie agricultural household models include 

the fact that there are “missing markets” for 

either agricultural commodities or household 

labor, or both, in many developing-country 

contexts (DeJanvry et al. 1991). In addition, 

because agricultural households produce goods 

that may be consumed by the households 

themselves, the profit effect plays a less linear 

role in understanding consumption patterns, 

since an increase in profits from agricultural 

production does not necessarily decrease the 

household’s own consumption. These 

assumptions generate models of household 

decision making that focus on estimating the 

elasticities of the consumption of agricultural 

production and other purchased goods, of 

household labor supply, and of marketed 

agricultural goods, with changes in the prices of 

agricultural goods (Singh et al. 1986). This 

emphasis on the price elasticity of agricultural 

goods reflects the dominant approach to 
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agricultural policy throughout the 1970s and 

1980s, when these models were being explored 

and refined, which foregrounded national 

efforts to manage the prices of agricultural 

goods with an eye toward both the well-being of 

rural households and the macroeconomic 

balance of accounts. 

 

The main strength of the agricultural household 

model is that its structure and assumptions 

reflect the real-world conditions of many 

agricultural households in lower- and middle-

income countries. These households are semi-

commercial in that they both sell and consume 

their outputs, and they both purchase and 

provide their inputs, including labor. Expressing 

this reality in models allows for more accurate 

estimations of decision-making and well-being 

outcomes at the individual, household, and 

community levels, given policy changes. 

Agricultural household models have been used 

to assess the relationship between the labor 

supply and agricultural production and 

consumption, and to better understand the 

impacts of technologies that might free up labor 

previously used in household agricultural 

production (Singh et al. 1986; Davalos et al. 

2020). Recent applications have continued to 

focus on the impacts of new technologies, such 

as the willingness of farmers to pay for new 

crop varietal traits (Dalton 2004) and the role 

that modern varieties play in overall household 

decision making and crop diversity (Benin et al. 

2004). Another strength of the agricultural 

household model and its assumptions is that it 

can be extended to focus on the distributional 

and differentiated effects of changes in 

agricultural policies by “distinguishing 

structurally distinct types of households” 

(Brooks et al. 2008). On the other hand, one of 

the weaknesses of the original agricultural 

household model approach was its assumption 

of a “unitary” household with decision making 

and utility functions consistent across 

members. More recent extensions have focused 

on gender and age-disaggregated analyses to 

highlight intrahousehold differences (Doss and 

Quisumbing 2019). 

 

Agent-based models 

Agent-based models (ABMs) are another 

bottom-up or microscale approach, simulating 

autonomous individuals (“agents”) with 

heterogeneous rather than “unitary” behavior to 

understand how their decisions shape systems 

as a whole. ABMs use agent-to-agent and agent-

to-environment interactions to generate a 

dynamic representation of a system. The data 

requirements for ABMs are model-dependent – 

some can entail copious  amounts of data, while 

others may be more abstract and 

parameterized using expert opinions 

(Auchincloss & Garcia 2015).  

 

ABMs are frequently used in agricultural 

research to evaluate policy interventions. The 

models define individual farm households or 

farmers as agents. Some papers utilize ABMs to 

understand the effects of policies on crop 

choices, such as to explore which policies would 

be most effective in reducing poppy crop 

production and encouraging farmers to 

cultivate other crops in Afghanistan (Widener et 

al. 2013). In the quest to develop an agricultural 

system that evolves alongside climate change, 

ABMs have been implemented to analyze the 

effects of farmer subsidies on the production of 

crops that can handle climate variability (Berger 

et al. 2017). This literature also focuses 

intensively on policies that affect how 

individuals choose to farm, such as how a 

particular innovation changes the use of water 

and affects income for different types of 

farmers (Berger et al. 2001) or how the ability to 

acquire a loan affects the adoption rate of 

greenhouse agriculture, which enables better 

water usage and leads to greater incomes 

(Schreinemachers et al. 2009).  

 



 

PAGE 31 

ABMs are advantageous because of their 

dynamic nature, which allows individuals to 

adapt and learn over time. It also provides the 

opportunity to observe the state of a system 

throughout the time period and out-of-

equilibrium, rather than delivering only static 

outcomes (Auchincloss & Garcia 2015). ABMs 

have been leveraged to analyze empirical 

historical data, for example, to understand the 

drivers of land-use change in agricultural 

systems and its impacts on household well-

being (Evans et al. 2011). Spatial structure is 

another strength of ABMs that is not always 

integrated into other analytical approaches. 

Spatial analysis can help  account for how 

agents interact with the environment directly 

around them, which is especially relevant to 

agriculture given differing soil qualities or other 

land characteristics. 

 

Although ABMs are useful in examining 

hypothetical interventions or changes in the 

environment, these models are not useful for 

predictions, and results are not precise 

estimates (Auchincloss & Garcia 2015). Instead, 

they are best interpreted qualitatively instead of 

quantitatively (Auchincloss & Garcia 2015), using 

outcomes to generate guidelines based on 

strong patterns within a system.  Because ABMs 

are best used to identify such patterns, they are 

often implemented in research as a 

complement to other models (Berger and 

Troost 2013).  

 

Computable General Equilibrium Models 

Computable general equilibrium (CGE) models 

integrate the microeconomic theory of 

generalized equilibrium, which holds that when 

they are interconnected, markets are in 

equilibrium. CGE models utilize economic data 

to arrive at realistic prices and levels of supply 

and demand (Wing 2004). Unlike the previous 

two approaches, this type of model exemplifies 

a top-down approach in that it is analyzing a 

system as a whole. CGE models are useful in 

simulating a policy change or a shock in a 

particular market to observe effects within the 

economy as a whole, although they offer a static 

representation of a system rather than a 

dynamic one.  

 

CGE models are used often in the literature to 

evaluate the impacts of agricultural policy 

changes at an economic level. For instance, a 

CGE model has been utilized to evaluate the 

impacts of banning the export of maize in 

Tanzania (Diao and Kennedy 2016). Results 

indicate that  when exports are banned, maize 

producer prices decrease, which is 

advantageous for urban households in Tanzania 

but hurtful for producers. The wage rate for 

low-skilled labor declines, while wages for 

skilled workers rise, which widens the wealth 

gap and affects many different markets in 

Tanzania. CGE models also enabled analysis of 

the effects of planned adaptation to expected 

climate change impacts on agricultural 

productivity in Ethiopia (Yalew et al. 2019). 

Evaluating outcomes such as urban household 

welfare, income for skilled and unskilled 

workers, government saving, and 

manufacturing output enabled the simulation of 

trade-offs entailed in the policy change. 

 

The primary strength of CGE models is that 

unlike some other models, they conduct an 

economy-wide analysis (Yalew et al. 2019). For 

example, if a particular policy change pertains 

to agriculture, a CGE model can analyze its 

effects on other markets, exposing trade-offs 

across the economy (Palatnik & Roson 2012). 

This feature gives CGE models an advantage 

over other models that focus only on the 

industry or people that the policy directly 

affects.   

 

One pitfall of CGE models is that they cannot 

incorporate non-economic parameters. In 

agricultural applications, for example, non-

economic characteristics of land, such as its 
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biophysical features, may be important in policy 

simulation. Another weakness of CGE models is 

that because they typically involve numerous 

parameters and a complex structure, they also 

require many assumptions. If the assumptions 

are questionable and not transparent, they 

could drive the results and lead to invalid 

conclusions (Wing 2004). These models also 

typically require ample data. Finally, CGE 

models are underpinned by the tenets of 

neoclassical economic theory, specifically that 

production and consumption functions operate 

separately for the economically active 

population. However, as noted in the 

agricultural household models section, these 

tenets are often inappropriate at the household 

or agricultural economy scale in developing 

countries, where producers are also consumers 

of their own goods in semi-commercial or 

peasant households and systems. 

 

Monte Carlo simulation models 

Monte Carlo (MC) simulation models have been 

a popular approach for computing probabilistic 

risk assessments primarily due to their ease of 

implementation. Available for over 60 years, MC 

approaches have also more recently been used 

to evaluate agricultural development 

investments. MC models have been 

implemented to evaluate investment options in 

honey value chains in Kenya (Wafula et al. 

2018). This approach has also been utilized to 

prioritize reservoir protection investments in 

Burkina Faso (Lanzanova et al. 2019). MC 

simulations repeatedly generate samples for 

random variables in the model and produce a 

statistical analysis of those samples. Difficulty in 

understanding the assumptions underlying 

large MC simulation models is a barrier to their 

use. Although their modeling assumptions are 

encoded transparently, often in spreadsheets, 

clarifying the relations between 

different  parameters may be infeasible.  

 

 

Fuzzy Cognitive Maps 

Fuzzy cognitive maps (FCMs) are similar to BNs 

in that the model can be represented with 

nodes and directed arcs or edges to depict the 

relationships between different variables. 

Unlike BNs, however, FCMs are not acyclic, 

meaning there can be feedback loops or cycles. 

Each edge is assigned a value between -1 and 1 

to represent the causal strength of one variable 

on the other, where a negative value represents 

a negative association, a zero indicates no 

association, and a positive value shows a 

positive association. Conversely, BNs utilize 

probability distributions at each node.  

 

In the literature, FCMs have been implemented 

similarly to BNs. They have been used to predict 

the yield of crops such as coconuts and cotton 

on the basis of climate variability, weather, and 

soil composition (Jayashree et al. 2015, 

Papageorgiou et al. 2011). One study stresses 

the potential for FCMs as a tool for crop 

management (Papageorgiou et al. 2011). FCMs 

can also be helpful in evaluating policy and 

regulation, and several studies focus on the 

environmental impacts of agricultural policy. 

FCMs have also been key in analyzing how 

environmental regulation impacts farmers and 

their decisions in Scotland by enabling an 

evaluation of whether the policies under 

consideration are producing the intended 

results (Christen et al. 2015). FCMs facilitate 

identification of  where a policy is breaking 

down, causing farmers to not comply with the 

regulations (Christen et al. 2015). Other studies 

built around FCMs evaluate the effects of 

programs designed to promote environmentally 

friendly agricultural practices in rural areas, 

generating results that show what types of 

policies may be most effective in specific 

communities (Satama and Iglesias 2020; Targetti 

et al. 2019). Scholars have also developed a tool 

that combines multi-agent systems and FCMs to 

help improve decision making at the farm level 

by optimizing water and fertilizer use and 
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farmer income while also taking into account 

the environment and consumers in the market.  

 

FCMs have a few major advantages over BNs: 

they integrate feedback loops, are more user-

friendly and easily understood, and can easily 

be expanded to include more variables. The 

ability of FCMs to entertain feedback loops 

improves the accuracy of the model by enabling 

it to incorporate variables that produce a cycle 

(Osoba & Kosko 2019). FCMs generally require 

fewer details than BNs and are more abstract in 

terms of the strength and quality of 

relationships (Wee et al. 2019). In addition, new 

variables can be easily integrated into FCMs, 

and whereas with the introduction of a new 

variable, the complexity of a BNs would increase 

exponentially, that of an FCM grows linearly 

because in FCMs, only the new relationship 

needs to be defined. For BNs, however, adding a 

new variable will require redefining the existing 

conditional probability distributions because all 

the causal relationships in the network are 

affected.  

 

However, the simplicity of FCMs comes with a 

trade-off. The values associated with the edges 

in an FCM are abstract and do not represent a 

physical quantity, whereas BNs use the more 

concrete concept of probabilities (Wee et al., 

2019). This lack of formality in FCMs leads to 

pattern predictions rather than the precise 

results possible with BNs. Because of this, FCMs 

cannot be used to perform diagnostic analyses 

or to evaluate risks and uncertainty in the same 

capacity or with the same level of precision. 

Another aspect of FCMs that diminishes their 

precision is that they do not assign a probability 

to the initial variables. Bayesian Networks, on 

the other hand, provide a probability to the 

starting variables, or the variables that have no 

parents, which enhance the precision of the 

model in estimating the probability of the 

outcomes (Wee et al. 2019).  

 

Bayesian Networks 

Bayesian Networks, or probabilistic causal 

models, use graphical network analysis in 

tandem with Bayesian statistics to measure 

uncertainty. The model is represented in a 

directed acyclic graph, with no closed loops or 

cycles, that  relies on nodes to convey random 

variables and on edges to communicate the 

relationship between the nodes. “Parent” 

nodes  have an edge that leads to another 

node,  called a “child” node. Each node is 

assigned a probability of being in a particular 

state. Conditional probabilities are used for 

each child node because its state depends on its 

parent or parents. These models can 

incorporate two knowledge sources -- domain 

experts and empirical data (Jensen 2009, 

Uusitalo 2007) -- which adds flexibility in model 

specification. Domain experts help build the 

structure of the network, including the states of 

each variable and the relationships between 

variables, and define the conditional 

probabilities of each variable. Estimates of the 

directionality of relationships and probability 

distributions can be extracted from different 

sources, such as directly from empirical data or 

from other simulation models. 

 

The use of BNs in agricultural research is 

relatively new. Much of the agricultural 

literature implementing BNs utilizes this 

modeling framework to understand or predict 

crop yield given different seasonal climate 

conditions or other uncertain factors (Gandhi et 

al. 2016, Newland and Townley-Smith 2010, 

Cornet et al. 2016). Bayesian Networks have 

also been implemented to analyze farmer 

decisions and behavior, such as changes in land 

use (Peter et al. 2009), the adoption of 

conservation agriculture (Bonzanigo et al. 2016), 

and exiting certain markets within the sector 

(Gambelli and Bruschi 2010). Other papers have 

also expressed the potential of using BNs for 

policy decisions in an agricultural context. For 

example, BNs can be utilized to evaluate risks 
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and uncertainties associated with pest 

management, an evolving issue due to climate 

change (Reardon-Smith et al. 2012).  They may 

also aid in the evaluation of agricultural policy, 

including  in rural areas of Europe; BNs are 

advantageous to analyze the complexity of rural 

agricultural systems and manage the lack of 

data available in these areas (Viaggi et al. 2011)  

 

One primary strength of BNs is that they better 

estimate risk and uncertainty compared to 

other models because of their use of probability 

distributions rather than relying on expected 

values (Uusitalo 2007). This characteristic makes 

BNs relevant for evaluating impacts related to 

policy changes because they not only simulate 

how a policy might change the system, but also 

how likely that outcome is to be true. Through 

the inclusion of probability distributions, 

uncertainty is treated explicitly in conjunction 

with each parameter (Uusitalo 2007). Bayesian 

Networks also allow for ignorance and 

uncertainty of some causes. In developing the 

structure of the network and assigning 

probabilities, “the domain expert in BNs must 

estimate the total strength of a combination of 

multiple causal effects without a need to know 

and specify their individual causal strengths” 

(Wee et al. 2019). This aspect of BNs is 

advantageous because the expert can remain 

uncertain about details that may be required in 

other models, such as Fuzzy Cognitive Maps. 

 

Another main advantage of BNs is that these 

models do not require much data; these 

networks can rely on both expert knowledge 

and data, a valuable capability  when minimal 

data are available (Jensen 2009, Uusitalo 2007). 

Also, the expert knowledge can come from 

different sources, giving the modeler great 

flexibility (Aalders 2008, Uusitalo 2007). Though 

the ability to incorporate knowledge from many 

resources is one of the advantages of BNs, it 

can come with a cost: the quality may vary 

between these sources of knowledge, and 

information may be more or less reliable 

(Aalders 2008). The assumption in using the 

expert knowledge in the model is that the 

information accurately reflects empirical 

phenomena, without the benefit of 

mathematically confirming those estimates.  
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Annex B. Model structure 

 
 

Figure B1 | A Bayesian Network model of impacts on the Agricultural Sector Development 

Programme Phase II Priority Investments. Impact parameters are green, adoption parameters 

are blue, cost and budget parameters are purple, and risk parameters are red. Note that ROI 

stands for “return on investment” and NPV means “net present value.” 
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Figure B2 | Map of overall Risk Explicit Agricultural Policy Prioritization Model structure, 

showing how input parameters on the left are used in each year of the project cycle.   
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Annex C. Bass model and project adoption typologies 

 
The Bass model of diffusion of innovations 

(Bass 1969) can be used to model adoption of 

new technologies by target beneficiaries of 

agricultural policy options. The Bass model 

gives the adoption rate (AR) as a function of 

three parameters: P, the rate of innovation or 

direct uptake of technologies by beneficiaries; 

Q, the rate of imitation or uptake of 

technologies by beneficiaries not directly 

reached by project staff; and t, the time in 

years.  

𝐴𝑅𝑡 =  
1 −  𝑒−(𝑃+𝑄)𝑡

1 + (
𝑄
𝑃) 𝑒−(𝑃+𝑄)𝑡

 

Parameter values used for P and Q determine 

the shape of the adoption curve, the expected 

number of beneficiaries and thus accrued 

benefits. Depending on the values selected, 

the proportion of beneficiaries reached varies 

between 43% and 100% depending on the 

choice of P and Q (Table C1). To assign values 

for P and Q, we developed a typology of policy 

options based on expert opinion of the 

expected shape of the adoption function 

promoted in each policy option (Table C2).  

 

Table C1: Proportion of target beneficiaries reached (AR) after 5 years according to Bass model 

parameters 

 Q - imitation 
P -  innovation 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.1 0.43 0.48 0.53 0.58 0.64 0.69 0.75 
0.2 0.71 0.76 0.81 0.86 0.9 0.94 0.97 
0.3 0.86 0.9 0.93 0.96 0.98 0.99 1 
0.4 0.91 0.94 0.96 0.98 0.99 1 1 
0.5 0.96 0.98 0.99 1 1 1 1 
0.6 0.99 1 1 1 1 1 1 

 

Table C2: Project adoption typologies 

Project Type Description P Q Examples 

High upfront costs Low p, Low q 0.05 0.4 Irrigation, water for livestock 

Long time until investment 

returns 
Moderate p, Low q 0.1 0.4 Agroforestry, landscape 

management 
Farm management Moderate p, Moderate q 0.1 0.5 CSA, extension services  

Information services High p, High q 0.15 0.6 Climate information, 

microfinance 

 

  



 

PAGE 43 

Annex D. Resilience typologies  
 

To model the impact of climate risks on 

beneficiaries and the associated climate 

resilience benefits of policy options, we 

developed a typology of risk impact and certainty 

of that impact on smallholder farmers. Impact 

was modeled as a uniform distribution of 

agricultural yield loss, meaning that any value 

within the bounds of the distribution was equally 

likely. Impact of a risk could either be high, 

medium, or low, modeled as a uniform 

distribution centered on 75% losses, 50% losses 

or 25% losses respectively (Table D1). 

Uncertainty in impact was modeled as the width 

of the uniform distribution. The higher the 

certainty, the narrower the distribution of 

potential losses. All uniform distributions were 

truncated to values between 0-100% losses.  

 

Table D1 | Projected agricultural losses given the impact and the certainty around the impact of 

climate risks. 

 High Impact Medium Impact Low Impact 
High Certainty 75% +/- 25% 50%+/-17% 25% +/- 8% 
Medium Certainty 75% +/- 37.5% 50% +/- 34% 25% +/- 16% 
Low Certainty 75% +/- 75% 50% +/- 50% 25% +/- 25% 

 

 

For each modeled climate risk and ASDP II policy 

option, we assigned a risk impact typology to 

beneficiaries of the technologies in the policy 

option as well as impact to non-beneficiaries in 

the same farming system. For example, for 

maize farmers in semi-arid areas, the impact of a 

drought is likely to be high and our certainty 

around that impact is also high. Risks here are 

considered to be climate shocks on a large 

enough scale to impact national level agricultural 

production. However, if the maize farmer is part 

of a sustainable land and water management 

scheme that promotes agroforestry and 

conservation agriculture, they are also likely to 

be highly impacted by the drought, but with 

much less certainty. If instead that farmer is part 

of an irrigation scheme, we would assign them a 

medium level of impact rather than a high level 

of impact. Expert opinion was used to categorize 

the risk and uncertainty for each combination of 

policy option and climate risk (Table D2). 

 

Table D2 | Characterization of climate risk impact and certainty for ASDP II Investments 

 Drought Impact Flood Impact Pests & Disease 

Policy Option w/o Policy w/ Policy w/o Policy w/ Policy w/o Policy w/ Policy 
Sustainable Land & Water 

Management High/High High/Low High/High High/Low High/High High/Low 

Irrigation High/High Low/Low High/High Med/Med High/High High/High 

Water for Livestock High/High Med/Med High/High High/Low High/High High/Low 

CSA High/High High/Low High/High High/Low High/High High/Low 

Agricultural Extension High/High High/Low High/High High/Low High/High Med/Low 

Climate Information services High/High High/Low High/High High/Low High/High Med/Low 

Microfinance High/High High/Low High/High High/Low High/High High/Low 
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Annex E. Survey Instrument 
 

Introduction 

Thank you for agreeing to take part in this interview. We are researchers from World Agroforestry 

(ICRAF) and we are conducting this research as part of a seed grant from the Bill & Melinda Gates 

Foundation to test methods for prioritizing agricultural policy options.  

 

Today, we are interested in your perspective and experience on prioritizing agricultural policy options 

and your thoughts on the BNs model and outputs that we’ve shared with you. There are no right or 

wrong answers, and we are not taking a particular position on the utility of the model. We’re interested 

in your personal views and how they relate to your professional role. 

 

If you agree to the interview or to submit responses via email, all identifying information (your name, 

your institution, your role) will be removed from your responses and we will only include information on 

your sector (government, research, development) and gender in the final dataset. These anonymized 

interviews will be used for research outputs and will potentially influence future research. 

 

Questions for Open Response 

Are the model outputs useful for evaluating the ability of ASDPII to address climate resilience in 

Tanzania? Why or why not? 

 

Does the model adequately capture how a policy option can impact climate resilience? What is not 

needed? What is missing? 

 

Can you imagine using a model like this in your work? Why or why not? 

 

What information is most needed, in your opinion, for prioritizing policy options to build climate change 

resilience into agricultural development? 

 

Closing 

Thank you for taking the time to answer these questions. Your feedback is incredibly valuable, as the 

overall goal is to make a tool that is useful for decision makers in general, or could be used to support 

the development of an ACRP II specifically. If you have any further questions, please contact us. 
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