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General Synthesis of Trialkyl‐ and Dialkylarylsilylboranes: Versatile Sili‐
con Nucleophiles in Organic Synthesis 

Ryosuke Shishido,† Minami Uesugi,† Rikuro Takahashi, Tsuyoshi Mita,‡ Tatsuo Ishiyama,† Koji Ku-
bota*, †, ‡ and Hajime Ito*, †, ‡ 

†Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan 
‡Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, 
Japan  

ABSTRACT: Compared to carbon-based nucleophiles, the number of silicon-based nucleophiles that is currently available remains 
limited, which significantly hampers the structural diversity of synthetically accessible silicon-based molecules. Given the high syn-
thetic utility and ease of handling of carbon-based boron nucleophiles, silicon-based boron nucleophiles, i.e., silylboranes, have re-
ceived considerable interest in recent years as nucleophilic silylation reagents that are activated by transition-metal catalysts or bases. 
However, the range of practically accessible silylboranes remains limited. In particular, the preparation of sterically hindered and 
functionalized silylboranes remains a significant challenge. Here, we report the use of rhodium and platinum catalysts for the direct 
borylation of hydrosilanes with bis(pinacolato)diboron, which allows the synthesis of new trialkylsilylboranes that bear bulky alkyl 
groups and functional groups as well as new dialkylarylsilylboranes that are difficult to synthesize via conventional methods using 
alkali metals. We further demonstrate that these compounds can be used as silicon nucleophiles in organic transformations, which 
significantly expands the scope of synthetically accessible organosilicon compounds compared to previously reported methods. Thus, 
the present study can be expected to inspire the development of efficient methods for novel silicon-containing bioactive molecules 
and organic materials with desirable properties. We also report the first 11B{1H} and 29Si{1H} NMR spectroscopic evidence for the 
formation of i-Pr3SiLi generated by the reaction of i-Pr3Si–B(pin) with MeLi.  

INTRODUCTION 

Historically, organic synthesis has focused mainly on the 
construction of carbon-based organic molecules. Although both 
carbon and silicon are group-14 elements, exhibit a valency of 
4, and form tetrahedral compounds, reported methods for syn-
thesizing silicon-based compounds have remained relatively 
limited.1 One of the reasons for this limitation could be the dif-
ficulties associated with obtaining synthetically useful silicon 
nucleophiles.1 Various types of carbon nucleophiles have been 
developed and applied in organic synthesis. Among these, car-
bon-based boron nucleophiles have become indispensable syn-
thetic reagents for the construction of carbon–carbon-bond-
forming transformations, such as Suzuki-Miyaura cross-cou-
pling reactions (Scheme 1).2 In contrast, the number of silicon-
based nucleophiles currently available remains unfortunately 
limited, which significantly hampers the structural diversity of 
the synthetically accessible silicon-based molecular frame-
works.1 Given the high synthetic utility and ease of handling of 
carbon-based boron nucleophiles,2,3 we envisioned that the de-
velopment of general methods for the preparation of silicon-
based boron nucleophiles, i.e., silylboranes, could expand the 
scope of synthetically accessible silicon-based compounds, thus 
unlocking novel areas of chemical space for the discovery of 
silicon-containing pharmaceuticals and light-emitting materials 
(Scheme 1).4,5 

In 1960, Seyferth and Ryschkewitsch reported the first com-
pounds that contain a silicon–boron (Si–B) bond.6 Early re-
search focused mainly on the investigation of the physical prop-
erties of these compounds, while more recently, they have been 

applied in organic synthesis.1 Since the pioneering study of 
Suginome and Ito in 2000, silylboranes have been widely em-
ployed as useful reagents for the transition-metal- or base-cata-
lyzed nucleophilic introduction of silyl groups into organic mol-
ecules.7–9 Whereas the benefits of these developed reactions are 
well-established, the value of nucleophilic silylation processes 
would most likely become even more apparent when various 
types of silicon-based boron nucleophiles are easily available.  

Scheme 1. Carbon- and Silicon-based Boron Nucleophiles in 
Organic Synthesis. 

 

The conventional method for accessing Si–B fragments de-
veloped by Suginome and Ito involves a stoichiometric reaction 
between a silyl anion and a boron electrophile to form the cor-
responding silylboranes (e.g., 1a–c in Scheme 2a).7 Although a 
variety of protocols to synthesize silyl anions has been reported, 
the most widely used method is the reaction of a chlorosilane 



 

with an alkali metal (K, Na, or Li). However, this method is 
limited to the preparation of aromatic-group-functionalized si-
lyl anions, Ar3-nRnSi–M (n = 0–2; M = K, Na, or Li). Given the 
low reduction potentials of trialkyl chlorosilanes and disilane 
intermediates for the anion precursor, trialkylsilyl anions are 
much more difficult to prepare than aryl-substituted silyl anions, 
which limits access to trialkylsilylboranes such as 1d via this 
route (Scheme 2a).10–12 In addition, the synthesis of functional-
ized silyl anions suffers from low functional-group compatibil-
ity due to the harsh reduction conditions when using alkali met-
als. Therefore, only a limited range of silylboranes can be pre-
pared by this approach. 

Scheme 2. Synthetic Routes to Silylboranes. 

 

In 2008, the group of Hartwig developed an alternative irid-
ium-catalyzed method for the direct borylation of trialkylhy-
drosilanes with bis(pinacolato)diboron [B2(pin)2] to prepare tri-
alkylsilylboranes such as 1d and 1e (Scheme 2b).13 Although 
this approach is useful, sterically hindered silylboranes such as 
1f cannot be prepared. In addition, aromatic-group-functional-
ized trialkylsilylboranes such as 1g are inaccessible using this 
procedure due to the competing undesired aromatic CH 
borylation reactions promoted by the iridium catalyst.14 Thus, 
the development of a more general synthetic route to trialkylsi-
lylboranes is highly desirable. 

Herein, we report the development of general synthetic routes 
to silylboranes via rhodium- or platinum-catalyzed hydrosilane 
borylation reactions (Scheme 2c). Compared to the methodol-
ogy developed by Hartwig, the present systems show substan-
tially broader substrate scopes and allow access to seventeen 
new silylboranes that could either not be prepared using previ-
ous methods, or only with substantial difficulty. Furthermore, 

we investigated the preliminary application of these new silyl-
boranes in organic transformations and demonstrated that they 
can be used as silicon nucleophiles, which are either inaccessi-
ble via previously reported methods, or accessible only with 
substantial difficulty. The present study provides various sili-
con-based nucleophiles applicable to organic synthesis, and 
would thus significantly expand the scope of synthesizable or-
ganosilicon compounds with distinct properties. 

Specifically, we found that the Rh-based catalytic system is 
particularly useful for the borylation of sterically hindered tri-
alkylsilanes, which provided for the first time an extremely 
bulky i-Pr3Si– type silylborane. Such bulky silyl groups can po-
tentially tune the lipophilicity of drug molecules4 and also pro-
vide steric protection that may be able to suppress undesirable 
intermolecular interactions (e.g., π–π interactions), which could 
enable the design of new solid-state light-emitting materials.5 
Furthermore, the bulky silyl groups are crucial for controlling 
the conformational effect on the photophysical properties of 
acyclic oligosilanes-based organic materials.15 As such, the 
newly synthesized bulky trialkylsilylboranes can be expected to 
become important building blocks for introducing bulky silyl 
groups into valuable synthetic targets. 

 We also discovered that the Pt-based catalyst shows unprec-
edentedly high chemoselectivity that allows the synthesis of 
benzyl-substituted silylboranes, which can be changed to hy-
droxy groups by oxidation, and various functional-group-con-
taining trialkylsilylboranes and dialkylarylsilylboranes in good 
yield. The newly synthesized functional-group-containing silyl-
boranes can be expected to provide rapid and efficient synthetic 
routes to novel silicon-based compounds with interesting bio-
logical activity4 or photophysical properties5,15 that are unavail-
able via the conventional electrophilic silylation approach.1 

RESULTS AND DISCUSSION 

We initially investigated the reactivity of various transition-
metal catalysts in the Si–H borylation of trialkylsilanes with 
B2(pin)2.16,17 We discovered that Rh- and Pt-based catalysts ef-
fectively promote the borylation of the Si–H bond in trial-
kylsilanes. Further optimization of the reaction conditions re-
vealed that [Rh(OMe)(cod)]2/ICy (ICy: 1,3-dicyclohexylimid-
azol-2-ylidene) and Pt/C (5 wt% of Pt on activated carbon) 
show high catalytic activity (Scheme 3; Table S1–S5).18 The 
Rh-based catalyst is especially effective for the borylation of 
sterically hindered trialkylsilanes such as triisopropylsilane (i-
Pr3Si–H; 2f), while Hartwig’s catalyst system 
[Ir(OMe)(cod)]2/dtbpy did not promote the reaction (Scheme 3, 
top). The Pt-based catalyst enables the unprecedented chemose-
lective Si–H borylation of benzyldimethylsilane (2g) without 
the formation of any aromatic C–H borylation products. Con-
versely, [Ir(OMe)(cod)]2/dtbpy furnishes C–H borylation by-
products, while the desired silylborane is not observed (Scheme 
3, bottom). We also tested the Rh- and Pt-based catalysts under 
Hartwig's stoichiometry (silane: 4.0 equiv.; B2(pin)2: 1.0 
equiv.)13 and found that both our catalysts exhibit superior per-
formance to those in Hartwig's study (Scheme S1). Notably, si-
lylboranes 1f and 1g show high stability toward air and moisture 
and can be isolated by flash column chromatography on silica 
gel. 

Scheme 3. Discovery of Rh- and Pt-based Catalytic Systems 
for the Si–H Borylation of Trialkylsilanes.a-c 



 

 

To explore the scope of the present Rh- and Pt-catalyzed Si–
H borylations, a variety of hydrosilanes were tested (Table 1). 
The corresponding Ir-catalyzed borylations were also explored 
to compare the reactivity of the Ir-, Rh-, and Pt-based cata-
lysts.19 Initially, we examined the borylation of sterically hin-
dered trialkylsilanes (Table 1, top row). The reaction of 2f using 
the Rh-based catalyst proceeded smoothly to give the desired 
silylborane 1f in 58% yield. Furthermore, we confirmed that the 
reaction of 2f on the 5 mmol scale also produced 1f in good 
yield.20 The use of Pt/C resulted in a lower yield of 1f (20%), 
while the Ir-based catalyst did not transform 2f. The sterically 
less hindered t-BuMe2Si–H (2h) is effectively borylated using 
the Rh- and Pt-based catalysts to furnish the corresponding 
products in high yield, while the Ir-based catalyst furnishes only 
a trace amount of the product (Rh: 87%; Pt: 78%; Ir: 7%) under 
these conditions. These results demonstrate that 
[Rh(OMe)(cod)]2/ICy is especially effective for the borylation 
of sterically hindered trialkylsilanes. The reaction of tricyclo-
hexylsilane (2i) with the Rh-based catalyst also produced 1i 
(30%). The molecular structure of 1i was confirmed unambig-
uously by a single-crystal x-ray diffraction analysis (Figure 1, 
right side). The thus developed Rh-catalysis conditions were 
also applied to trialkylsilanes bearing β-branched alkyl groups 
(2j–2m) or a methoxy group (2n) (1j: 73%; 1k: 75%; 1l: 20%; 
1m: 52%; 1n: 50%). The twofold Si–H borylation of 2o pro-
vided the corresponding product (1o) in excellent yield (86%). 
Additionally, we confirmed that the bulky trialkylsilylboranes 
1i–1m and 1o cannot be synthesized using the Ir-based catalyst.  

 

Table 1. Substrate Scope of SiH Borylations using the Rh- 
and Pt-based Catalysts. 

 
aConditions for the Rh-based catalytic system: 2 (0.5 mmol), 3 

(1.25 mmol), [Rh(OMe)(cod)]2 (0.005 mmol), and ICyꞏHCl/K(O-



 

t-Bu) (0.02 mmol) in DMF (0.5 mL) at 80 °C; conditions for the 
Pt-based catalytic system: 2 (0.5 mmol), 3 (1.25 mmol), and Pt/C 
(5 wt% Pt, 0.01 mmol) in cyclohexane (0.5 mL) at 80 °C; condi-
tions for the Ir-based catalytic system: 2 (0.5 mmol), 3 (1.25 mmol), 
[Ir(OMe)(cod)]2 (0.005 mmol), and dtbpy (0.01 mmol) in cyclo-
hexane (0.5 mL) at 80 °C. Isolated yields are given. GC yields are 
shown in parentheses. bThe reaction was carried out using 
[Rh(OMe)(cod)]2 (2 mol %) and ICyꞏHCl/KOtBu (8 mo l%). cThe 
reaction was carried out using [Ir(OMe)(cod)]2 (2 mol %) and 
dtbpy (4 mol %). dThe reaction was carried out using 20 mol % of 
Pt/C (5 wt% Pt). eThe borylation was performed using 2 (1.5 mmol, 
3.0 equiv) and 3 (0.5 mmol, 1.0 equiv). fThe borylation was per-
formed at the 1.0 mmol scale. 

 

Figure 1. Molecular structures of 1g and 1i with thermal ellipsoids 
at 50% probability. Hydrogen atoms are omitted for clarity; color 
code: gray = carbon; green = boron; blue = silicon; red = oxygen. 

We then investigated the synthesis of functional-group-con-
taining trialkylsilylboranes (Table 1, middle row). Using Pt/C, 
the aromatic-functionalized benzyldimethylsilane 2g was effi-
ciently converted into the desired silylborane (1g) without any 
side reactions (63%). In contrast, [Ir(OMe)(cod)]2/dtbpy led to 
C–H borylation of the phenyl group, while 
[Rh(OMe)(cod)]2/ICy furnished a mixture of the Si–H and C–
H borylation products.13,21 The molecular structure of 1g was 
determined by single-crystal x-ray diffraction analysis (Figure 
1, left). We also confirmed that the reaction of 2g on the 5 mmol 
scale produced 1g in good yield.20 These Pt-catalyzed condi-
tions were also applicable to trialkylsilanes containing phenyl 
(2g′), chloro (2p, 2p′), and ester groups (2q), which furnished 
the corresponding products in good yield (1g′: 60%; 1p: 89%; 
1p′: 68%; 1q: 62%). Simple, small trialkylsilanes provided the 
corresponding products in high yield using the Ir-, Rh-, and Pt-
based catalysts (Table 1, lower row), whereby linear- or cyclic-
alkyl-group-substituted hydrosilanes 2d, 2e, 2r, and 2s effec-
tively underwent the borylation. It should be noted here that the 
silylboranes (1d–1s) shown in Table 1 can be isolated by flash 
column chromatography on silica gel. 

Furthermore, we found that the Pt-catalyzed reactions of di-
methylarylsilanes that bear phenyl (2t), 4-MeOC6H4 (2u), and 
4-ClC6H4 (2v) groups proceeded smoothly to give the desired 
dimethylarylsilylboranes (1t–1v) in moderate yield (1t: 46%; 
1u: 41%; 1v: 38%). The lower yields of these dialkylarylsilyl-
boranes than the yields of trialkylsilylboranes are mainly due to 
their instability in the isolation process. The Ir-based catalyst 
did not provide the desired product (1t) due to competing unde-
sired aromatic CH borylation reactions.14 Notably, these are 
the first examples of dialkylarylsilylboranes that bear methoxy- 
(1u) or chloro groups (1v); such compounds cannot be directly 
prepared via the conventional method using an alkali metal. As 

the 4-MeO-C6H4Me2Si group is more reactive than the PhMe2Si 
group in Tamao-Flemming oxidations,22 silylborane 1u will 
most likely find widespread applications in organic synthesis.  

Based on previous studies of Rh-catalyzed C–H borylations, 
we propose a plausible reaction mechanism for the present Rh-
catalyzed Si–H borylation (Scheme 4A).14 The ICy-Rh(I)(OR) 
complex generated in situ could react initially with B2(pin)2 to 
produce borylrhodium(I) complex A as the catalytically active 
species. Subsequent Si–H bond cleavage with A would proceed 
to afford complex B, which would then produce complex C via 
-bond metathesis. Finally, the reductive elimination of silyl-
borane 1 would regenerate borylrhodium(I) complex A. On the 
basis of previous studies on Pt-catalyzed silylation reactions us-
ing hydrosilanes, we propose a feasible Pt-catalyzed cycle 
(Scheme 4A’).16 The oxidative addition of Pt on a metal cluster 
in Pt/C to the Si–H bond in 2 would initially produce silylhy-
dridoplatinum(II) intermediate B′, which would subsequently 
react with B2(pin)2 to form complex C′. Finally, the reductive 
elimination of silylborane 1 would lead to the regeneration of 
the active Pt(0) species. 

Scheme 4. Proposed Reaction Mechanisms for the Rh- and 
Pt-Catalyzed Si–H Borylation Reactions. 
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Subsequently, we turned our attention to the preliminary in-
vestigation on application of the obtained trialkylsilylboranes as 
silicon nucleophiles to demonstrate their utility in organic syn-
thesis (Scheme 5). Initially, we investigated several transition-
metal-catalyzed silylation reactions using the newly synthe-
sized trialkylsilylboranes (Scheme 5a5d).  

A copper(I)-catalyzed conjugate addition of a silyl group to 
2-cyclohexen-1-one (4), which was first reported by Hoveyda 
using PhMe2Si–B(pin) (1a), proceeded effectively with bulky 
trialkylsilylboranes to afford the respective silylation products 
in high yield (Scheme 5a; 5a: 89%; 5b: 82%).23 The newly syn-
thesized functionalized trialkylsilylboranes 1g and 1p could 
also be used as silylation reagents to produce the corresponding 
products in high yield (5c: 82%; 5d: 90%). In this reaction, the 
new trialkylsilylboranes showed high reactivity comparable to 
that of 1a.  

Then, we investigated the copper (I)-catalyzed radical silyla-
tion of alkyl iodides, which has been reported by Oestreich for 
1a and Et3Si–B(pin) (1d).24 We examined the applicability of 
our new functionalized and bulky trialkylsilylboranes in this re-
action (Scheme 5b). Iodocyclohexane 6 underwent silylation 
with trialkylsilylboranes 1g or 1p to give the corresponding si-
lylation products in moderate yield (7a: 54%; 7b: 51%). How-
ever, bulky trialkylsilylborane 1f could not be applied to this 
reaction (Table S7). 

 

 



 

 

Scheme 5. Use of Trialkylsilylboranes as Silicon Nucleophiles in Organic Synthesis.a 

 
aIsolated yields are given. For details of the reaction conditions, see the Supporting Information. 

Sterically hindered trialkylsilylboranes 1f and 1k were suc-
cessfully applied to the Ni-catalyzed silylation of aryl methyl 
ethers, which has been reported by Martin using less bulky 1d 
(Scheme 5c).8b The reaction of 2-methoxynaphthalene (8) with 
1f or 1k furnished the corresponding silylation products in mod-
erate yield (9a: 52%; 9b: 53%); these yields are lower than that 
achieved using 1d due to steric hindrance. The use of benzyl-
functionalized 1g resulted in a complex product mixture (Table 
S8). 

The Pd-catalyzed cross-coupling of aryl bromide 10 with 1g 
proceeded effectively to give the corresponding product in good 
yield (Scheme 5d; 11: 85%).25 However, bulky trialkylsilyl-
boranes 1f and 1k did not provide any product in this reaction 
(Table S9). The BnMe2Si group in 11 can be converted into a 

hydroxy group by a Tamao-Fleming oxidation, which quantita-
tively affords the phenol derivative 12 (94%).26 

The newly synthesized trialkylsilylboranes can also be ap-
plied in base-mediated silylation reactions. NHC-catalyzed silyl 
conjugate addition to 2-cyclohexen-1-one 4, which was re-
ported by Hoveyda and co-workers using 1a, proceeded effec-
tively with trialkylsilylborane 1g to produce the corresponding 
product (5c) in good yield (57%; Scheme 5e).27 

We then investigated the synthesis of multi-functionalized 
organosilicon compounds that have been difficult to access us-
ing previously reported procedures. Ester-functionalized trial-
kylsilylborane 1q successfully afforded silylation product 5e in 
moderate yield (46%; Scheme 5f). Subsequently, further trans-
formation of the chloro group in 5d, which was obtained via 



 

copper(I)-catalyzed silyl conjugate addition to 4 with 1p, was 
investigated (Scheme 5f). Compound 5d was easily converted 
into phthalimide 5f in 96% yield by reaction with the 
phthalimide potassium salt. The reaction of 5d with sodium io-
dide produced the corresponding iodination product (5g) in 
71% yield, and 5d underwent azidation with sodium azide to 
quantitatively furnish 5h. Thus, the present procedures provide 
unprecedented access to silyl anion equivalents that bear vari-
ous functionalized groups, including "–SiCH2CH2CH2CO2R", 
"–SiCH2CH2CH2I", "–SiCH2CH2CH2NPhth", and "–

SiCH2CH2CH2N3" (Scheme 5f).  

Oligosilanes have attracted research interest due to their 
unique optical, electronic, and photoreactive properties, which 
originate from their silicon–silicon bonds.15 Thus, we decided 
to focus on silicon–silicon cross-coupling reactions of silyl 
electrophiles using the newly synthesized trialkylsilylboranes in 
the presence of an activating nucleophile (Scheme 6 and Table 
S10).28 Silicon–silicon bonds are generally formed by Wurtz-
type condensations of a halosilane in the presence of an alkali 
metal or the reaction of a silyl anion with a silyl electrophile.29 
However, in these methods, the synthesis of all-alkyl-substi-
tuted unsymmetrical oligosilanes is especially challenging due 
to the limitations in the generation of silyl anions. On the other 
hand, reactions of silylboranes with activating nucleophiles can 
easily produce various silyl anion equivalents. Therefore, we 
envisioned that various asymmetrically substituted oligosilanes 
that are difficult to access using previously reported methods 
could be synthesized using trialkylsilylboranes prepared by Rh- 
or Pt-catalyzed Si–H borylation reactions. Indeed, the reactions 
of bulky trialkylsilylboranes 1f, 1k, and 1h proceeded effec-
tively to afford the corresponding desired disilanes (13a: 73%; 
13b: 92%; 13c: 91%; 13d: 77%) in high yield. Moreover, the 
chloro-functionalized silylborane 1p could be applied to the Si–
Si coupling reaction with i-Pr3Si–OTf to furnish 13e in 78% 
yield. Dichlorosilanes and -disilanes also engaged in this reac-
tion to give the corresponding tri- or tetrasilanes in good yield. 
The unsymmetrical trisilane 13f was obtained in low yield 
(35%) using 1f and 1h. Two i-Pr3Si- or tricyclohexylsilyl-
groups could be introduced into dichlorodisilane or -silane to 
give 13g and 13h in 61% and 55% yield, respectively, when 2.0 
equivalents of 1f or 1i were used. These di-, tri-, and tetrasilanes 
have not been synthesized before, and their controlled synthesis 
via previously reported methods should be very difficult. In ad-
dition, the sterically hindered alkyl substituents are known to be 
important for controlling the conformational effect on the pho-
tophysical properties of acyclic oligosilanes-based organic ma-
terials, which suggests high potential utility of such trialkylsi-
lylboranes with bulky alkyl substituents.5,15 The molecular 
structure of 13h was confirmed by single-crystal x-ray diffrac-
tion analysis. 

Scheme 6. Oligosilane Synthesis by Silicon–Silicon Cross-
Coupling Using Trialkylsilylboranes.a 

  
aConditions: 1 (0.2 mmol), MeLi (1.1 M in Et2O, 0.27 mL), silyl 

electrophile (X = Cl or OTf, 0.4 mmol) in THF (1.0 mL). Percent-
age values refer to isolated yields. bConditions: 1f (0.2 mmol), 1h 
(0.2 mmol), MeLi (1.1 M in Et2O, 0.44 mL), Et2SiCl2 (0.2 mmol) 
in THF (3.0 mL). cConditions: 1 (0.4 mmol), MeLi (1.1 M in Et2O, 
0.41 mL), silyl electrophile (0.2 mmol) in THF (2.0 mL). 

Finally, we conducted in situ 11B{1H} and 29Si{1H} NMR ex-
periments to confirm the formation of a trialkylsilyl anion 
equivalent in the reaction of a silylborane with methyl lithium 
(MeLi) (Figure 2). Kawachi and Tamao have reported the for-
mation of Ph3SiLi from the reaction of Ph3Si–B(pin) with 
MeLi,28 whereas our group and that of Shibata have reported 
that the reaction of PhMe2Si–B(pin) (1a) or Et3Si–B(pin) (1b) 
with K(O-t-Bu) produces the corresponding adduct with an sp3-
boronate structure.8a,30 To the best of our knowledge, the gener-
ation of a trialkylsilyllithium via the reaction of a trialkylsilyl-
borane with an alkyl lithium compound has not been reported. 
In the present study, NMR results revealed that i-Pr3SiLi (15) is 
the main product generated in the reaction of 1f with MeLi (Fig-
ure 2A and B). Treatment of 1f with 1.5 equivalents of MeLi in 
THF-d8 led to two new 11B signals: A large signal consistent 
with Me–B(pin) (15,  33.2 ppm), which was assumed to be 
formed via a heterolytic cleavage of the Si–B bond in 1f, and a 
small signal ( 8.2 ppm) that was attributed to the sp3 boron 
atom of 14, which adopts a tetrahedral coordination geometry.8a, 

28-32 Furthermore, a new 29Si signal ( 14.7 ppm), which was 
attributed to silyllithium 15,33 was detected in the 29Si{1H} 
NMR spectrum. The 29Si–7Li coupling of 15 was observed at –
100 °C ( 11.8 ppm, quartet, J [29Si–7Li] = 52 Hz) (Figure 
2B’).12 The 29Si{1H} NMR signal of the i-Pr3Si–B(pin)/MeLi 
ate complex was not observed, probably due to the presence of 
the quadrupolar boron atom.31 This signal is not consistent with 
that of i-Pr3Si–H ( 12.1 ppm), which can be formed by quench-
ing 15 with H2O. These results indicate that 15 is generated in 



 

situ, which is in agreement with Kawachi’s report on the heter-
olytic cleavage and the formation of silyl anion species for 
Ph3SiLi.28 This is the first observation of the generation of the 
i-Pr3SiLi (15), which is not accessible by any other methods. 
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Figure 2. 11B{1H} and 29Si{1H} NMR spectra of the bulky silyl-
lithium compounds obtained from the reaction of trialkylsilyl-
borane 1f with MeLi: (A) 1f; (B) 1f (0.1 mmol) with MeLi (0.15 
mmol) in THF-d8 (0.14 M) after stirring for 30 min at –78 °C. 
11B{1H} and 29Si{1H} NMR analyses were conducted at room tem-
perature. BF3ꞏOEt2 was used as an external standard to calibrate the 
11B{1H} NMR spectra, while Me4Si was used as an external stand-
ard to calibrate the 29Si{1H} NMR spectra. The 29Si{1H} NMR 
spectrum of the mixture of 1f (0.1 mmol) with MeLi (0.15 mmol) 
in THF-d8 (0.14 M) analyzed at –100 °C is shown in inset B’. 

CONCLUSIONS 

In summary, we have developed new methods for the synthe-
sis of trialkylsilylboranes via rhodium- or platinum-catalyzed 
direct borylations of hydrosilanes with bis(pinacolato)diboron. 
The developed conditions provide access to novel classes of tri-
alkylsilylboranes with bulky alkyl or functional groups on the 
silyl group. Notably, we have successfully synthesized seven-
teen new silylboranes that are difficult to prepare using previ-
ously reported methods. In addition, we have demonstrated the 
utility of these silylboranes as silicon nucleophiles in subse-
quent organic transformations. These results demonstrate that 
the developed methodology significantly expands the bounda-
ries of silylborane chemistry and the scope of accessible orga-
nosilicon compounds. Beyond the immediate utility of these 

protocols, the newly synthesized silicon nucleophiles could in-
spire the development of efficient methods for providing new 
silicon-containing bioactive molecules and organic materials 
with distinct properties.4,5,15 Further applications of these silyl-
boranes and investigations directed toward the elucidation of 
the reaction mechanism are in progress and will be reported in 
due course. 
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