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Abstract

Taylor’s law (TL) is an empirical rule that describes an approximate relationship between the
variance and mean of population density: logio(variance) = logio(a) + b % logio(mean).
Population synchrony is another prevailing feature observed in empirical populations. This
study investigated the effects of environmental synchrony and density-dependent dispersal on
the temporal (b7) and spatial (bs) slopes of TL, using an empirical dataset of grey-sided vole
populations and simulation analyses based on the second-order autoregressive (AR) model.
Eighty-five empirical populations satisfied the temporal and spatial TLs with br=1.943 (+
SE 0.143) and bs = 1.579 (= SE 0.136). The pairwise synchrony of population was 0.377 £
0.199 (mean + SD). Most simulated populations that obeyed the AR model satisfied the form
of the temporal and spatial TLs without being affected by the environmental synchrony and
density-dependent dispersal; however, those simulated slopes were too steep. The
incorporation of environmental synchrony resulted in reduced simulated slopes, but those
slopes, too, were still unrealistically steep. By incorporating density-dependent dispersal,
simulated slopes decreased and fell within a realistic range. However, the simulated
populations without environmental synchrony did not exhibit an adequate degree of density
synchrony. In simulations that included both environmental synchrony and density-dependent
dispersal, 92.7% of the simulated datasets provided realistic values for br, bs, and population
synchrony. Because the two slopes were more sensitive to the variation of density-dependent
dispersal than that of environmental synchrony, density-dependent dispersal may be the key

to the determination of b7 and bs.
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1 | INTRODUCTION

Taylor’s law (TL, Taylor 1961) is an empirical rule describing the approximate relationship

between the variance and mean of population densities, in which the variance is given by a

power-law function of the mean: variance = a X (mean)”, a > 0. It is usually expressed as:
logio(variance) = logio(a) + b x logio(mean). (Eq. 1)

The mean and variance of population densities can be calculated based on variations through

both time and space. In the temporal TL, the mean and variance are calculated through

observations of population densities at different times in a given location, while in the spatial

TL, they are calculated through observations of population densities at different locations

over a given time.

The temporal and spatial TLs are described by the same equation given above (Eq. 1),
and both TLs have been widely verified in various ecological systems (Taylor, 1986) and
other research fields (Eisler, Bartos, & Kertész, 2008; Tippett & Cohen, 2016). Another well-
known feature of TLs is the range of slopes; most of the observed slopes (b) fall between 1
and 2 for both TLs (Downing, 1986; Kendal, 2004; Taylor, 1961). However, the underlying
mechanism of the temporal and spatial TLs still remains unclear, and a very few studies have
considered both of these TLs (Taylor & Woiwod, 1982; Zhao, Sheppard, & Reid, 2019). Are
the temporal and spatial TLs govern by the same factors? By examining the similarities and
dissimilarities in the features of the temporal and spatial TLs, a deeper insight into the
mechanism of the TL formation can be gained.

A model simulation is an approach for checking the plausibility of a chosen
mechanistic explanation in a complex system. Saitoh and Cohen (2018) showed that
sustainable populations could obey the temporal TL even in the absence of synchrony and
density-dependent movement among populations and identified the conditions that produced

slopes 1 < br < 2 by intensive simulation analyses for population densities of the grey-sided



vole, Myodes rufocanus (Sundevall, 1846), in Hokkaido (see also Cohen & Saitoh, 2016).
However, dispersal has been recognized as being capable of producing both spatial stability
and synchrony of population density (Abbott 2011), and density-dependent movement of
individuals among populations may affect the slope of TL (Perry, 1988; Taylor & Taylor,
1977). In addition, most field populations are typically subjected to correlated environmental
influences (i.e., the Moran effect: Moran, 1953) (Allstadt et al., 2015). Although Saitoh and
Cohen (2018) demonstrated that synchrony and density-dependent movement among
populations are not sufficient conditions for the temporal TL, those effects were not
examined for the spatial TL. Field populations inhabit areas with varying quality, and
density-dependent movement from a higher- to a lower-density population could reduce the
mean of population densities in higher-quality habitats while enhancing the mean in lower-
quality habitats. Consequently, density-dependent movements could lower the variance of
population densities and reduce the slope of TL, as Taylor and Taylor (1977) and Perry
(1988) suggested. Population synchrony could also reduce the slopes of TL (Reuman et al.,
2017). The temporal and spatial TLs may be related to each other, and environmental
synchrony and density-dependent movement may influence these TLs by synchronizing
population dynamics or leveling population densities. Therefore, to gain a more
comprehensive understanding of the two TLs and a deeper insight into the formation of TL, it
would be useful to analyze the relationship between these three population features (the
temporal TL, and the spatial TL, and the population synchrony), and environmental
synchrony and density-dependent movement should be taken into consideration because they
may help establish this relationship.

This study reports on the temporal and spatial TLs for the empirical populations of the
grey-sided vole and on simulation analyses to explore determinants of TL slopes using the

Gompertz model with extensive combinations of model parameters. First, this study reveals



that most sustainable populations conform to both the temporal and spatial TLs in the
absence of population synchrony and density-dependent movement among populations. Next,
it identifies the combinations of model parameters that are likely to produce the prevailing
slopes 1 < b < 2 for the temporal and spatial TLs and shows how the observed coefficients of
the Gompertz model satisfy those identified combinations for the temporal TL, but not for the
spatial TL. To solve this discrepancy, the effects of environmental synchrony and density-
dependent movement are incorporated into a simulation model. Finally, the relative
contribution of environmental synchrony and density-dependent movement in generating the

observed features of the temporal and spatial TLs and population synchrony is discussed.

2 | MATERIALS AND METHODS

2.1 | Study design and data
Hokkaido is the northernmost island of Japan (78,073 km?). The grey-sided vole, Myodes
rufocanus (Sundevall, 1846), is the most common species of small rodents on this island
(Kaneko et al., 1998). A systematic survey of rodent populations has been carried out in
Hokkaido by the Forestry Agency of the Japanese Government. The geography of Hokkaido
and the procedure of data collection were described previously (Saitoh, Stenseth, &
Bjernstad, 1997, 1998; Stenseth et al., 2003). This study analyzed the same dataset of the
grey-sided vole as Cohen and Saitoh (2016) and Saitoh and Cohen (2018) did: N = 85
populations in different locations covering 7= 31 years (1962—-1992). Population density was
defined as the number of voles per 150 trap-nights, because 50 snap-traps for three
consecutive nights on a 0.5 ha survey plot was chosen as a standard unit for the rodent
survey.

The Bayesian method was applied to the estimation of population density for each

year and location based on a state-space model on WinBUGS version 1.4.3 (Spiegelhalter et
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al., 2003; http://www.mrc-bsu.cam.ac.uk/software/bugs/). Population density was estimated
assuming that the increase in the number of voles caught was proportional to the trapping
effort, taking effective traps into consideration (see Saitoh & Cohen, 2018 for details).
Although the natural logarithm of the number of individual voles trapped per unit of trapping
effort (one trap-night) was used, the estimates were reverted to the original scale of

measurement, the vole density per 150 trap-nights, for the following analyses of TL.

2.2 | Temporal and spatial Taylor’s laws
The mean and the variance were calculated across the density estimates in a given location at
different times (years in this study), and one data point [logio(temporal mean), logio(temporal
variance)] was plotted for each location (n = 85). The mean and variance were calculated
across the density estimates in a given year at different locations, and one data point
[logio(spatial mean), logio(spatial variance)] was plotted for each year (n = 31). The ordinary
least-squares regression (OLS) was used to test the temporal TL by fitting the following
equation (Eq. 1):
logio(temporal variance) = logio(ar) + br % logio(temporal mean).
Similarly, OLS was used for testing of the spatial TL:
logio(spatial variance) = logio(as) + bs * logio(spatial mean).

Pairwise cross-correlation coefficient between population growth rates (7., Pearson’s
correlation coefficient between population growth rates) was used as the index of population

synchrony (Bjernstad, Ims, & Lambin, 1999).

2.3 | Gompertz model
The second-order autoregressive model (the Gompertz model; Eq. 2) was used for describing

population dynamics of the grey-sided vole. In this model, for each populationj = 1,..., 85,



x:; 1s the natural logarithm of the Bayesian estimate of an observed density (V) in periods of
time £ = 1962,...,1992; X, is the temporal mean of x;; in population j, and x; ; — X, is the
centered time-series on the logarithmic scale of population j. The Gompertz model assumes
that

xij— X =L+ ai)oe— X))+ azjlxiaj— X))+ ey, (Eq. 2)
where a1, and ay; are the coefficients of density dependence for a one-year lag and for a two-
year lag for population j, respectively. The error term, e;;, represents the density-independent
effects (environmental variability) modeled as random numbers from a normal distribution
with mean = 0 and variance = SD/. Fitting the Gompertz model (Eq. 2) to the centered time
series, x; j — X, yielded the Bayesian estimates of a1, a2, and SD; (see Saitoh & Cohen

2018 for details).

2.4 | Simulations
The following five simulations were carried out and referred to here as “fundamental
simulation”, “parameter combination simulation”, “environmental synchrony simulation”,
“density-dependent dispersal simulation”, and “combined simulation of environmental
synchrony and density-dependent dispersal”. To distinguish simulated densities from a
density estimate of an observed population x;; in Eq. (2), the following equation of y;; was
used:

yij =1+ ar)e1—X%) + az (e — %) + X + e (Eq. 3)
The initial two observed densities, x1; and x»; were used as the first two densities (y1,; = x1,

and y»; = x2,/) of each simulated population. The state variable in all the simulations was the

centered log-transformed population density, y; ; - X;.

2.4.1. Fundamental simulation



In the fundamental simulation, the population-specific estimates of a1, a2, and SD; for the
85 observed populations were used, and a mean of the observed densities (X;) was used as the
equilibrium density. The environmental variability, e;;, between any two different years (¢)
and among populations was assumed to be uncorrelated. For each population j, e;; was drawn

from independent random values that were normally distributed over mean = 0 and variance

= SD?, [Nt/(0, SD/?)] (see Saitoh & Cohen 2018 for details).

2.4.2. Parameter combination simulation

To examine the effects of the model parameters on the temporal (b7) and spatial (bs) slopes,
the fundamental simulation was modified using comprehensive combinations of the model
parameters. In the parameter combination simulation, a specific set of the parameters (a1, a2,
and SD) was fed to each dataset of the 85 time series spanning 31 years (yy): [1 + a1] ranging
from —1.95 to 1.95, in 0.05 increments, a> ranging from —0.975 to 0.975, in 0.05 increments,
and SD ranging from 0.05 to 1.0, in 0.05increments. The combinations of [1 + a1] and a2
were restricted to the range in which the time series were sustainable, i.e., 1,600
combinations (see Saitoh and Cohen 2018 for details). As the simulations were carried out
with 20 different SDs for each combination of [1 + a1] and a2, 32,000 datasets of 31 x 85 y;
were generated. The rest of the simulation procedures was the same as those of the
fundamental simulation. The generated values were then transformed back by exponentiating
to the original scale of population density, and the temporal and spatial TLs were tested for

each dataset.

2.4.3. Environmental synchrony simulation
To synchronize the time series, the 85 correlated density-independent error terms e;;, each of

which consisted of 31 random numbers that were taken from a normally distributed values



with mean = 0 and variance = 1, were generated by using the “mvrnorm” function from the
MASS package of R. The degree of the correlation between e;; was given as a value (p)
ranging from 0 to 1 in 0.001 increments, and p was used as an index of environmental
synchrony. For each population j, the standard deviation of e;; was adjusted to the observed
one (SD)). Estimates from the observed populations were used for other necessary values
(equilibrium density, [1 + a1], and a2) for the simulation.

The rest of the simulation procedures was the same as those of the fundamental
simulation. One-thousand datasets (1,000 ps) of the 85 time series were generated, and the

temporal and spatial TLs were tested for each dataset.

2.4.4. Density-dependent dispersal simulation

Based on the concept of Perry (1988) and Ripa (2000), dispersal was assumed to occur when
a population density exceeded an equilibrium density. The number of “surplus” individuals of
a population, which were potential emigrants, was given by the subtraction of the equilibrium
density from the simulated population density before the occurrence of the dispersal events
(yt'i — fl) A part of the “surplus” individuals, d(y“- - 9?1), may emigrate from their native
population, but not all emigrants may survive until reaching the new colony, and, then, a
population may accept some immigrants from emigrants of other populations. The population
density after the occurrence of the density-dependent dispersal (z;;) can be given by the

following equation:
Zei = YVei — d(yt,i - 971) + iZ?:l d()’t,i - )?1)7 (Eq. 4)
when (yt'l- - 9?1) <0, (yt'l- - 9?1) was replaced with zero.
In Eq. 4, y.; and X, are defined in Eq. 3, d is the dispersal rate (a ratio of emigrants in

“surplus” individuals), which was assumed to be a different value ranging from zero to one in

0.001 increments for each simulation, s is the success rate of dispersers colonization, which
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was assumed to be 0.5 in this simulation, and each population was assumed to have accepted
an equal number of immigrants, which was obtained by dividing the total number of
successful dispersers by the number of populations (i.e., » = 85 in this case). As the number
of dispersers should be zero or positive, when (yt,i — 3?1) <0, (yt,i — 3?1) was replaced with
zero. This simulation did not include any effect of environmental synchrony.

The rest of the simulation procedures was the same as those of the fundamental
simulation. One-thousand datasets (1,000 ds) of the 85 time series were generated, and the

temporal and spatial TLs were tested for each dataset.

2. 4. 5. Combined simulation including environmental synchrony and density-dependent
dispersal

Since the assumptions about environmental synchrony and density-dependent dispersal were
not mutually exclusive, the effects of both the phenomena were included in the combined
simulation, using comprehensive combinations of the environmental synchrony (p) and
dispersal rate (d); p and d were independently increased from 0.001 to 1.0 in 0.001
increments. Estimates from the observed populations were used for other necessary values
(equilibrium density, [1 + a1], a2, and SD) for the simulation. One-million datasets (1,000 ps
x 1,000 ds) of the 85 time series were produced, and the temporal and spatial TLs were tested

for each dataset.

2. 5. Factors that influence the slopes

Simulated time series have been defined by three model parameters (a1, a2, and SD) in the

parameter combination simulation. The relationship between the variance and mean of the

population densities and model parameters was analyzed by a multiple regression analysis,

with the slope (br or bs) as a response variable and with the model parameters as the
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explanatory variables. All underlying regressions were computed using function “Im” in R

version 3.6.0.

3| RESULTS

3.1 | Empirical Taylor’s laws

Both the temporal and spatial TLs were satisfied in the 85 empirical populations of the grey-
sided vole (Fig. 1). The logio(temporal variance) of the population densities was
approximated by a linear function of logio(temporal mean) of population densities (Fig. 1a):
logio(temporal variance) = 0.063 (= SE 0.133) + 1.943 (£ SE 0.143) x logio(temporal mean)
(t=13.576, P <2.0 x 10°'®, adjusted R*> = 0.686), and the lower and upper limits of the 95%
confidence interval (95%CI) of the estimate of the temporal slope (br) were 1.659 and 2.228,
respectively. The logio(spatial variance) was also approximated by a linear function of
logio(spatial mean) (Fig. 1b): logio(spatial variance) = 0.376 (= SE 0.125) + 1.579 (£ SE
0.136) x logio(spatial mean) (z=11.573, P <2.0 x 1072, adjusted R* = 0.816), and the lower
and upper limits of 95%CI of the estimate of the spatial slope (bs) were 1.300 and 1.858,
respectively. The linearity of TLs was tested by quadratic regression analyses. These analyses
did not reveal any statistically significant evidence of nonlinearity for the temporal or spatial
relationship.

The index of population synchrony, pairwise cross-correlation coefficients of
population growth rates (7.) ranged from —0.390 to 0.935 (Fig. 1c). The mean of 7. values
was 0.377 (SD = 0.199), and its lower and the upper quartile was 0.236 and 0.519,
respectively. More than half of the pairs of populations (n = 1960, 54.9%) exhibited a
significantly positive correlation (. > 0.361, P < 0.05). A significantly negative correlation

was observed in two of 3,570 pairs, whose 7. values were —0.390 and —0.363, respectively.
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3.2 | Simulated Taylor’s law

3.2.1 Model parameters for slopes 1 < b <2

To examine the effects of the model parameters on the temporal (br) or spatial (bs) slopes,
various combinations of the model parameters (n = 32,000) beyond the observed ones were
input to the Gompertz model (Eq. 3) under the absence of correlations and density-dependent
dispersal. All simulated datasets cleared the test of the temporal TL (Fig. 2a). A part (21.9%)
of temporal slopes (br) (7,022/32,000) fell in the prevailing range (1 < br < 2). In other
words, sustainable populations obeyed the temporal TL in the absence of environmental
synchrony and density-dependent dispersal among populations, but only a limited proportion
of those populations exhibited b7 that fell in the prevailing range.

Not all simulated datasets cleared the test of the spatial TL (Fig. 2b), but 84.7% of the
simulated datasets (27,111/32,000) exhibited significantly positive spatial slopes (bs). In
simpler terms, most if not all sustainable populations obeyed the spatial TL under the
conditions that excluded environmental synchrony and density-dependent dispersal. A
quarter (25.6%) of bs (8,199/32,000) fell in the prevailing range (1 < bs <2).

The percentage of datasets in which the two slopes simultaneously fell in the prevailing
range (1 <br<2and 1 <bs<2) was 8.2%.

The variance of bs (0.841) was much higher than that of b7 (0.083, F-test, F' = 0.099, P
<2 x 107!% Fig. 2¢). As a result, although a significant correlation was observed between by
and br (Pearson’s product-moment correlation coefficeint, 7, = 0.623, P <2 x 107'%), one-on-
one interaction between bs and br was not clear (Fig. 2¢). Even when datasets exhibiting
significantly positive slopes were focused upon, the correlation between bs and br could not
be improved. These results imply that there may be some differences in the determinants

and/or a mechanism of the TL formation between the temporal and spatial TLs.
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A multiple regression analysis was performed on the temporal and spatial TLs, in
which the slope br or bs was considered as a response variable, while density dependence
coefficients ([1 + a1] and a2), environmental variability (SD), and their pairwise products
were used as explanatory variables (Table 1). These explanatory variables and their products
contributed significantly to the explanation of variation of the slopes, and the full model
exhibited a moderate goodness of fit (R?> = 0.477 for the temporal TL and R? = 0.699 for the
spatial TL). To summarize these results, the slopes became steeper with the increase of SD
and with the decrease of a1 and a,. This pattern was found to be common between the
temporal and spatial TLs. However, the absolute values of partial regression coefficients
were found to be higher for the spatial TL than for the temporal TL, because the variance of
bs was much higher than that of br.

The model parameters that produced the prevailing range of slopes, 1 <b <2, were
distributed over a limited range both for the temporal and spatial TLs (Fig. 3a, b). Density
dependence coefficients ([1 + a1] and a2) exhibited a roughly similar pattern for the
probabilities for 1 < br < 2. A peak was found in the middle of the range for both coefficients
(Figs. 3al and 3a2). The highest probability (0.409) was observed at [1 + a1] = 0.15, while it
was 0.380 when a2 was 0.075. In contrast to this trend in the temporal TL, density
dependence coefficients ([1 + ai] and a2) showed a different pattern for the probabilities for 1
< bs < 2 in the spatial TL. Although a clear peak of the probability (0.455) was observed for
[1 + ai] when it was —0.4 as in the temporal TL (Fig. 3bl), the probabilities for 1 < bs <2 did
not exhibit a clear pattern for a> (Fig. 3b2). The highest probability (0.336) was observed at
a>=0.175.

The simulated time series with a low SD exhibited higher probabilities for 1 < br <2
and for 1 < bs <2. In the temporal TL, the highest probability for 1 < br<2 (0.523) was

observed at SD = 0.05; the probabilities remained high values at low SD (0.05 to 0.20) and

-13-



plummeted thereafter (Fig. 3a3). The spatial slopes (bs) responded to SD in a slightly
different manner than the temporal slopes; the probabilities for 1 < bs < 2 fluctuated around
0.4 in 0.05 < SD < 0.4 and declined thereafter (Fig. 3b3).

Differences in the effects of the model parameters between the temporal and spatial
slopes are illustrated in Figure 4, where the probability for | <br<2or 1 <bs<2is
represented for each combination of [1 + a1] and a>. Each cell of the combinations has 20
values of br and bs, which were obtained from 20 different SD values. The number of 1 < br
<2or 1 < bs<2 was counted for each cell, and the probabilities were calculated by dividing
this counted number by the 20.

Cells with higher probabilities for 1 < br <2 were distributed on the center of the
triangle and their distribution range was extended toward the upper-right cells. When plotting
observed 85 populations on this panel based on their observed values of [1 + a1] and a2, the
observed populations fell in the distribution ranges of the higher probabilities (Fig. 4a). This
suggests that the model parameters (a1 and a2) can predict the occurrence of the observed br.

Differing from the temporal TL, cells with higher probabilities for 1 < bs <2 were
widely scattered in an L-shaped pattern (Fig. 4b). The matching of the distribution ranges
between the cells with higher probabilities and the observed populations was not well-
defined. Many observed populations were plotted on the side of the lower probability areas,
even though the observed bs was 1.579. This discrepancy suggests that the explanatory power
of the model parameters (a1 and a») was limited for the observed bs, and that the observed bs

may be influenced more by factors other than a1 and a..

3.2.2. Fundamental effects of model parameters
The effects of the observed parameters of the Gompertz model were examined by the

fundamental simulation without the consideration of the effect of environmental synchrony
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and density-dependent dispersal using the population-specific estimates of a1, a2, and SD;
for the 85 observed populations. In the 10,000 simulated datasets, 30.2% of the simulated brs
were included in the 95%CI of the observed br (Fig. 5al); whereas, all simulated bss and
indices of density synchrony () diverged from the observed ones (Figs. 5a2, a3). There were
no simulated datasets in which br and bs were simultaneously included in the 95%CI of the
observed br and bs.

The validity of the fundamental simulation was tested by comparing the temporal
means and variances between observed and simulated values. Simulated means and variances
were higher than observed ones, in general. In one example, although logio(observed means)
showed a significant linear function of logio(simulated means), its slope was lower than 1;
logio(observed mean) = 0.083 (= SE 0.067) + 0.847 (£ SE 0.068) x logio(simulated mean) (¢
=12.515, P<2.0 x 107!%, adjusted R*> = 0.650, Appendix Fig. Aa). A similar relationship was
observed for variances; logio(observed variance) = 0.871 (= SE 0.186) + 0.444 (+ SE 0.084)
x logio(simulated variance) (1= 5.302, P < 9.3 x 1077, adjusted R?> = 0.244, Appendix Fig.
Ab). The rate of the differences between observed and simulated values was higher in
variances than in means. The simulated variances were 1.22 times as high as the observed
variance on average, while the simulated means were 1.08 times as high as the observed
means on average. The parameters of the Gompertz model (a1 and a2) did not show any effect
on the differences between the observed and simulated values for both means and variances

(Appendix Fig. Ae-h).

3.2.3. Environmental synchrony
Since a considerable proportion of population pairs (54.9%) exhibited significantly positive
cross-correlations of population growth rates, the effects of environmental synchrony were

added into the fundamental simulation. One-thousand datasets consisting of 85 time series
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with different degrees of environmental synchrony (p, ranging from zero to one) were
generated by the environmental synchrony simulation. Simulated temporal slopes (b7s)
decreased with the increase of p and were described as a quadratic function of p (Fig. 6al): br
=2.287 (£ SE 0.013) + 0.094 (+ SE 0.059) x p —0.231 (+ SE 0.057) x p>. However, because
of the low decrease rate, the simulated brs did not decrease enough to be included in the
95%CI of the observed br.

Simulated spatial slopes (bss) were described as a cubic function of p with a high
predictability (Fig. 6a-2): bs=2.320 (= SE 0.012) — 2.687 (£ SE 0.104) x p + 4.959 (+ SE
0.242) x p> —2.930 (+ SE 0.159) x p*. The simulated bss greatly decreased with the increase
of p between 0 and 0.3, and a considerable number of them were included in the 95%CI of
the observed bs, when p was greater than 0.4. However, the overlap between the simulated
bss and the 95%CI of the observed bs was still limited.

The relationship between the index of population synchrony (7.) and p was as clear as
predicted from the theory. The degree of population synchrony was described as a linear
function of p with a very high predictability (Fig. 6a3): r. = 0.010 (£ SE 0.003) + 0.866 (= SE
0.005) x p. Majority of r.s fell in the interquartile range of the observed r., when p was
between 0.3 and 0.5.

With p = 0.45, 10,000 datasets were generate based on the environmental synchrony
simulation. While 98.0% of simulated 7.s were included in the interquartile range of the
observed r., the proportion of the datasets in which b7 or bs were included in the 95%CI of
the observed slope was limited; 33.0% for b7s and 38.4% for bss (Fig. 5b). The proportion of
the datasets in which b7 and bs were simultaneously included in the 95%CI of the observed

slope was 14.7%.

3.2.4. Density-dependent dispersal
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Since density-dependent dispersal could reduce the temporal and spatial variations of
population densities (Abbott, 2011; Hastings, 1982), the effects of density-dependent
dispersal were added into the fundamental simulation. One-thousand datasets consisting of 85
time series were generated by the density-dependent dispersal simulation. The temporal
slopes were well described as a quadratic function of the dispersal rate (d = ratio of emigrants
in “surplus” individuals, Fig. 6b1): b7=2.330 (+ SE 0.011) — 0.193 (+ SE 0.052) x d —0.139
(£ SE 0.051) x d?. The simulated b7s decreased with the increase of d, and most of the
simulated brs were included in the 95%CI of the observed b7, when d became higher than
0.6.

The spatial slopes were also described as a quadratic function of d (Fig. 6b2): bs =
2.623 (+ SE 0.013) — 0.020 (+ SE 0.061) x d —2.707 (+ SE 0.058) x d?. The simulated bss
greatly decreased with the increase of d. Most of the simulated bss were included in the
95%ClI of the observed bs, when 0.5 <d < 0.7.

Population synchrony (r.) did not strongly respond to the change in d (Fig. 6b3).
Although r. was described as a quadratic function of d (, = 0.021 (= SE 0.001) + 0.033 (=
SE 0.006) x d +0.119 (+ SE 0.006) x d?, the regression coefficients were small. Although r.
increased with the increase of d, most r.s did not reach the lower quartile value of the
observed .

With d = 0.65, 10,000 datasets were generated based on the density-dependent dispersal
simulation. Most (80.4%) of the simulated b7s and 93.7% of the simulated bss were included
in the 95%CI of the observed br and bs, respectively (Fig. Scl, 5¢2). Three-quarters (75.0%)
of the datasets had realistic b7 and bs values, both of which were included in the 95%CI of
the observed value. However, all simulated r.s were lower than the lower interquartile value

of the observed r. (Fig. 5¢3).
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3.2.5. Combined effects of synchrony and dispersal

The environmental synchrony simulation and the density-dependent dispersal simulations
could not generate realistic datasets of which bz, bs, and 7. values could simultaneously
satisty the observed values. The proportion of the datasets that satisfied those conditions was
14.7% in the environmental synchrony simulation, while no datasets satisfied the same
conditions in the density-dependent dispersal simulation. When just one of the effects
(environmental synchrony or density-dependent dispersal) was considered, simulations based
on the AR model were unable to generate a realistic set of time series for the observed
populations. Hence, a combined simulation including both effects was carried out.

One-million datasets (1,000 ps x 1,000 ds), each of which consisted of 85 time series,
were organized into 10,000 cells (100 ps x 100 ds in 0.01 increments for each parameter),
each of which had 100 sets of three values (br, bs, and 7). The number of datasets which
satisfied 1.659 (the lower limit of 95%CI) < br < 2.228 (the upper limit of 95%CI), 1.300 (the
lower limit of 95%CI) < bs < 1.858 (the upper limit of 95%CI), and 0.236 (the lower quartile)
<r.<0.519 (the upper quartile) was counted for each cell, and the probabilities were
calculated by dividing the counted number by 100. The highest probability (1.00) was
observed in one cell with p = 0.241-0.250 and d = 0.521-0.530 (Appendix Fig. B).

With p = 0.245 and d = 0.525, 10,000 datasets were generated. Most (95.4%) of the
simulated b7s and 98.3% of the simulated bss were included in the 95%CI of the observed br
and by, respectively (Fig. 5d). In addition, 98.8% of the simulated r.s were included in the
interquartile range of the observed r.. On a whole, majority (92.7%) of the datasets satisfied
all the three conditions simultaneously.

The observed density dependence coefficients (a1 and a>) were used for the above
simulation analysis. To clarify the effects of density dependence coefficients on b7 and bs,

another combined simulation was carried out. In this simulation, 10,000 datasets were
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generated, with p = 0.245 and d = 0.525, and using the hypothetical combinations of a1 and a>
that produced, with the lowest probability, the prevailing TL slopes. The coefficient a1 and a>
were randomly selected, not allowing replacement, from the combinations with the lowest
probability producing 1 < br<2 and 1 < bs < 2. In the parameter combination simulation,
those combinations were represented as black cells in Figures 4a and 4b; 228 cells illustrate
the lowest probability (zero) for both br and bs.

Although the majority of simulated r.s (86.3%) were included in the interquartile range
of the observed r., the proportion of simulated datasets of which b7 and bs were included in
the 95%CI of the observed values was lowered (Appendix Fig. C); it was 46.5% and 22.4%
for br and bs, respectively. The proportion of datasets simultaneously satisfying the three

conditions was very small (4.4%).

4 | DISCUSSION

4.1 | Temporal and spatial Taylor’s laws and population synchrony

The studied 85 populations of the grey-sided vole obeyed both the temporal and spatial TLs
(Fig. 1ab). The temporal and spatial slope (95%CI) was estimated at 1.943 (1.65 —2.228) and
1.579 (1.300 — 1.858), respectively. A considerable proportion of the observed populations
(54.9%) exhibited a significantly positive cross-correlation of population growth rates (Fig.
I¢). Taylor, Woiwod, and Perry (1980) provided datasets on the temporal and spatial TLs for
populations of bird species. The mean temporal slope (range) was 1.13 (0.08 — 1.97, n = 104),
while the mean spatial slope (range) was 1.71 (0.98 — 3.38, n = 119). Additionally, Linnerud
et al. (2013) reported the temporal slopes for 30 populations of bird species; the mean slope
(range) was 1.49 (0.69 — 2.24). Mellin, Huchery, and Caley (2010) reported spatial slopes for

18 fish species ranging between 1.16 and 1.84, while Kuo et al. (2016) reported that the mean
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spatial slope (range) was 1.78 (1.41 —2.11) in 29 fish species. The slopes for vertebrate
populations appear to be lower than those for insect populations. The mean temporal slope
(range) of aphids and moths are 1.86 (1.06 — 2.51, n =97) and 1.50 (1.08 — 1.98, n =263),
respectively. The mean spatial slopes (range) for aphids and moths are 1.97 (1.29 —2.95, n =
97) and 2.06 (0.08 — 3.32, n = 263), respectively (Taylor, Woiwod, & Perry 1980). Another
report on 20 aphid species showed that temporal slopes ranged between 1.86 and 2.97, while
spatial slopes between 1.89 and 2.67 (Zhao, Sheppard, & Reid, 2019). Both the observed
slopes of the grey-sided vole fell in the prevailing range (1 < b < 2) and were consistent with

the reported slopes for vertebrates.

4.2 | Similarity and dissimilarity between temporal and spatial TLs

Saitoh and Cohen (2018) demonstrated that some combinations of the model parameters of
the Gompertz model (a1, a2, and SD) had the potential to explain the nature of the observed
temporal TL using the same datasets analyzed in this study. However, in addition to the
temporal TL, the spatial TL and population synchrony should be examined simultaneously to
gain an overall understanding of the TLs governing empirical populations, because those
three features may be related.

The parameter combination simulation showed that sustainable populations could obey
both temporal and spatial TLs in the absence of population synchrony and density-dependent
movements among populations (Fig. 2ab). However, the proportions of slopes that fell in the
prevailing range (1 < b < 2) were limited to 21.9% for br and 25.6% for bs, and the
proportion of datasets in which both slopes simultaneously fell in the prevailing range was
small (8.2%). The slopes became steeper with the increase of SD and with the decrease of ai
and a; in both temporal and spatial TLs (Table 1). However, because of the higher variance

of bs, the absolute partial regression coefficients were much higher for the spatial TL than for
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the temporal TL (Table 1, Fig. 2c). These results suggest that the power of the parameter
combination simulation was limited to explaining the empirical range of TL slopes, and that
the degree of factors influencing the TL formation may differ between the temporal and
spatial TLs.

Differences between the temporal and spatial TLs in terms of the effects of model
parameters on the slopes are illustrated in Figure 4, where the probability for 1 <br<2or 1<
bs <2 is represented for each combination of [1 + a1] and a2. The majority of the observed
populations coincided with the cells with higher probabilities for 1 < br <2, while the
distribution range of the cells with higher probabilities for 1 < bs <2 did not closely match
that of the observed populations. Some observed populations were plotted on the lower
probability cells for 1 < bs < 2, even though the observed bs was 1.579. This discrepancy

suggests that the observed bs may be influenced more by factors other than a; and a.

4.3 | Environmental synchrony and density-dependent dispersal

Population synchrony should be examined on priority because a considerable proportion of
the observed populations exhibited a significantly positive cross-correlation of population
growth rates, and because the negative effects of the density correlation on the spatial TL
slopes were reported in populations of aphid and plankton species (Reuman et al., 2017).
Population synchrony represents the spatial synchrony of the abundance and may arise from
three primary mechanisms (Liebhold, Koenig, & Bjernstad, 2004): (1) dispersal among
populations, (2) synchronous exogenous density-independent factor known as the Moran
effect (Moran 1953), and (3) trophic interaction with other species. In this study, the effects
of environmental synchrony and density-dependent dispersal were explicitly examined
through the environmental synchrony and the density-dependent dispersal simulations,

respectively. Although the effects of the trophic interaction were not directly specified or
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explored in this study, the effects involved in the density-dependent dispersal simulation
could arise from density-dependent predation (see below).

In majority of the cases, the environmental synchrony and density-dependent dispersal
simulations could not generate datasets for which br, bs, and r. simultaneously satisfied the
observed values by its assumed mechanism alone (Fig. Sbc). The proportion of datasets that
satisfied those conditions in the environmental synchrony simulation was 14.7%, when the
degree of environmental synchrony (p) was set to the most possible value (0.45), while no
dispersal rate (d) was found to satisfy those conditions in the density-dependent dispersal
simulation.

When only one of the effects (environmental synchrony or density-dependent dispersal)
was considered, simulations based on the Gompertz model could not generate a realistic set
of time series for the observed populations. Both the effects were required to generate
datasets that satisfied those conditions. In the 10,000 datasets generated by the combined
simulation with p = 0.245 and d = 0.525, majority of the datasets (92.7%) satisfied the three
conditions. The Gompertz model considered in this study consisted of two types of density
effects (a1 and az) and the density-independent effect (e;, Eq. 2). The synchrony of population
density was simulated by synchronizing e; within the Gompertz model of this study. The
effects of a1 and a» are derived from the densities in the one-year (x~1) and two-year lags (x.
2), respectively. Although the effects in the current year were considered as the density-
independent term (e;), the density effect from the current year (x;) was not considered. The
effects of density-dependent dispersal are derived from x; and were needed to generate
datasets that satisfied the required conditions.

In the model of this study, dispersal was assumed to occur when a population density in
the current year exceeded the equilibrium population density, and 52.5% of “surplus”

individuals (d = 0.525) emigrated from the native population in the combined simulation.
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Although the loss due to dispersal was partly compensated by the immigrants, the main effect
of dispersal in this simulation was the density-dependent loss. Therefore, the combined
simulation consisted of three types of density effects from three different time phases (the
current year, the one-year lag, and the two-year lag). Among those effects, the two slopes (br
and bs) were more sensitive to density-dependent dispersal (Fig. 6), and, thus, the density
effects in the current year (density-dependent dispersal) may be the key to the determination
of br and bs.

In the density-dependent dispersal simulation, a part of “surplus” individuals emigrated
from their home population, half of the emigrants were assumed to expire before reaching a
new colony, and each population accepted an equal number of immigrants. A theoretical
study shows that positive density dependent-dispersal is favored in temporally variable
environments with high dispersal cost, whereas negative density-dependent dispersal benefits
in stable environments with low dispersal cost (Rodrigues & Johnstone, 2014). Since the
studied dataset includes highly fluctuating populations (Saitoh et al. 1997, 1998), the positive
density-dependent dispersal (emigration) assumed in this study could be justified
theoretically. However, many empirical researches suggest negatively density-dependent
dispersal, although some convincing evidence of positive density-dependent dispersal does
exist (Le Galliard et al. 2012). For the grey-sided vole, Ehrich, Yoccoz, and Ims (2009)
showed that populations with multi-annual density fluctuations exhibited high genetic
diversity even on the low density phase and suggested negatively density-dependent
immigration, whereas the best model explaining the variation of genetic diversity suggested
the positive effect of population growth rate and density in the common vole (Microtus
arvalis, Gauffre et al. 2014). These contradictory observations may be attributed to the
elusive nature of dispersal that may change conditionally (Matthysen, 2005). De Bona et al.

(2019) showed in wild guppies that local density-dependent dispersal varied between positive
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and negative, responding to landscape density. Further empirical studies on the effects of
density on dispersal are encouraged to detail the effects of dispersal on TLs.

Positive density-dependent dispersal could have the effects to reduce the temporal and
spatial variations of population densities (Abbott 2011; Hastings, 1982) and could potentially
reduce the slopes br and bs. In fact, the density-dependent dispersal simulation of this study
showed the significantly negative effect of dispersal rate on both the slopes (Fig. 6bl, 6b2).
In contrast to this finding, Engen, Lande, and Saether (2008) theoretically showed that
increasing dispersal made the transition from slope 1 to 2. They examined the effects of
sampling scale on TL considering individual dispersal and attributed their result to increasing
scale in the spatial covariance function for population density with increasing dispersal.
Although the 85 populations analyzed in this study had the spatial structure (see the map in
Saitoh et al. 1997), the dispersal of individual voles among specific populations is unknown.
Therefore, this study analyzed the overall effects of dispersal on TLs. The present findings
should be carefully compared to those of Engen et al. (2008).

In the density-dependent dispersal simulation, a key process affecting the slopes was
the partial loss of “surplus” individuals. Although the density-dependent dispersal simulation
and the combined simulation attribute the density-dependent loss to dispersal, another
mechanism can also explain the partial loss of “surplus” individuals. Mobile predators that
travel long distance may assemble in high-density populations and take some parts of
“surplus” individuals (e.g., Ims & Andressen, 2000). This is listed as a primary mechanism of
the spatial synchrony of the abundance (trophic interaction) (Liebhold, Koenig, & Bjernstad,
2004).

Although dispersal has been credited with inducing synchrony of population density
(Abbott 2011), such an effect was miniscule in the present conditions of the simulations (Fig.

6b3). Local density-dependent dispersal may result in lower synchrony than comparable
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amounts of density-independent dispersal (Abbott, 2011), which is the case of this study.
Empirically, the dispersal ability of the grey-sided vole is too small (most natal dispersals of
individuals are recorded within several hundred meters; Ishibashi & Saitoh 2008) to directly
link with the studied populations, which were separated by an average distance of 8.4 km.
The source of synchrony in the studied populations may be a large-scale climate variation or
effects of nomadic predators (Bjernstad, Stenseth, & Saitoh, 1999). In general, dispersal is
not an essential driver of synchrony, because the population synchrony is often observed
among isolated habitats between which dispersal is strictly limited (e.g., Grenfell et al., 1998;
Rusak, Yan, & Somers, 2008). In addition, the Moran effect dominates over the effects of
dispersal in spatial synchrony in forest insect populations (Peltonen et al., 2002), and Haynes
et al. (2013) and Allstadt et al. (2015) claim the importance of weather effects as a driver of
population synchrony.

The degree of density-dependent loss may vary among populations inhabiting various
habitats. Effects of density-dependent loss may not be strong for populations in varying
habitats because of vast environmental effects. For instance, insect populations, which inhabit
agricultural ecosystems, may suffer high environmental variability, as they experience
repeated extinction and colonization events between cultivation and non-cultivation seasons.
Therefore, they may exhibit steeper slopes. In contrast, populations in stable habitats, such as
vertebrate populations, may show greater density-dependent loss, because biological
regulation likely works in those habitats, and, thus, their slopes may become more gradual. In
fact, Park, Tayler, and Grewal (2013) observed steeper TL slopes in nematode in r-strategist
populations. The temporal and spatial TL slopes may reflect life history variation (Linnerud
et al., 2013; Park, Tayler, & Grewal, 2013; Samaniego, Sérandour, & Milne, 2012).

Therefore, studies on the relationship of TL slopes to life history must be conducted to
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elucidate the process of determining br and bs, and they may also contribute to providing

deeper insights into the biological interpretation of the slopes.

4.4 | Temporal and spatial variance

The variance of the spatial slopes (bs) was greater than that of the temporal slopes (b7). This
difference was observed in the parameter combination simulation (Fig. 2), the environmental
synchrony simulation (Fig. 6a), and the density-dependent dispersal simulation (Fig. 6b).
These differences indicate that population densities are more strongly bound for the temporal
TL than for the spatial TL within the conditions of this study.

The temporal variance of population densities is determined by the interplay between
density dependence and environmental variability (Saitoh and Cohen 2018). The temporal
slopes increased with the increase of environmental variability and decreased with the
increase of density dependence coefficients (Table 1).

The spatial variation of population densities primarily depends on the variation of
mean densities of the observed populations. The spatial variation was also affected by the
temporal variation of population densities because a population temporally fluctuates around
the equilibrium density (the mean observed density in this study). The primal spatial variation
may be enhanced in highly fluctuating populations by the temporal divergence of population
densities from the equilibrium density, but not so in less fluctuating populations. Therefore,
the variance of bs may be greater than the variance of br. This pattern was demonstrated by
the fundamental simulation (Fig. 5al,5a2).

The generality of this discussion can be tested by comparing temporal slopes with
spatial slopes after taking the variation of life history into consideration. In empirical studies,
variances are higher for the spatial slopes (bs) than for the temporal slopes (b7); bs: 0.092 vs

br: 0.073 for aphids; bs: 0.142 vs br: 0.023 for moths; bs: 0.129 vs b7: 0.080 for Birds
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(Taylor, Woiwod, & Perry,1980), while Zhao, Sheppard, and Reid (2019) reported
inconsistent patterns in the variances of TL slopes among aphid species, plankton groups, and
chlorophyll concentrations. Further comparative studies on temporal and spatial slopes in
populations with various life histories may contribute to identifying the origin of the variation

of population densities and will provide a deeper insight into the formation of TLs.
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TABLE 1 Summary of the results of multiple regression analyses of the effects of
environmental variability (SD) and density dependence ([1 + a1] and a2) on the temporal
slope b7 (A) and the spatial slope bs (B) of Taylor’s law using datasets generated by the
parameter combination simulation (see the main text). A response variable was the slope (br
or bs), and explanatory variables were [1 + a1], a2, and SD. The primary model consisted of
the three explanatory variables and all their multiplicative products. The primary model was
selected as the best model by stepAIC. PRC = partial regression coefficient, SE = standard

error of estimate.

The primary model: b7 (or bs) ~[1 + a1] + a2+ SD + [1 + a1]:a2 + a1:SD + a2:SD + [1 +
ai]:a2:SD

(A) Temporal TL (B) Spatial TL
PRC SE PRC SE
Intercept 1.910 0.003 0.553 0.007
1 +a —0.502 0.006 —1.545 0.015
a —0.516 0.005 —-1.226 0.012
SD 0.433 0.005 2.502 0.012
[1+ai]:a" —0.473 0.009 —-1.132 0.022
[1+a]:SD" 0.525 0.010 1.617 0.025
ax:SD* 0.475 0.009 1.388 0.021
[1+ai]:a2:8D" 0.442 0.015 1.490 0.037

(A) F-statistic: 4162 on 7 and 31992 DF, P-value: <2 x 10°!%, adjusted R?: 0.477

(B) F-statistic: 1.06 x 10* on 7 and 31992 DF, P-value: <2 x 10716, adjusted R?: 0.699

*"” represents a product of variables.
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Figure 1 Temporal and spatial Taylor’s laws of observed populations, and frequency
distribution of pairwise cross-correlation coefficients (r.) between population growth rates.
(a) A scatter plot of logio(temporal variance) as a function of logio(temporal mean) of
observed population densities estimated by a Bayesian method (see the main text) from 31
years (¢ = 1962, ..., 1992) for 85 grey-sided vole populations (n = 85). (b) A scatter-plot of
logio(spatial variance) as a function of logio(spatial mean) of observed population densities
from 85 populations for 31 years (n = 31). The solid lines and the equations are obtained
from the ordinary least-squares linear regression (OLS) of logio(variance) against
logio(mean). The curved dotted line comes from the least-squares quadratic regression. (c)
Frequency distribution of pairwise cross-correlation coefficients (7.) between population
growth rates of observed populations as an index of population synchrony (n = 3,570). The
dark shaded areas indicate the significantly positive cross-correlation coefficients (r. > 0.361,
P <0.05).
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Figure 2 Frequency distributions of simulated TL slopes in the parameter combination
simulation (see the main text for details). Thirty-two-thousand datasets, each of which
consisted of 85 populations over 31 years, were produced. (a) Frequency distribution of the
simulated slope br of the temporal TL (range: 0.493 to 3.508). The dark shaded areas indicate
the frequency of data sets in which a simulated b7 was significantly higher than zero. (b)
Frequency distribution of the simulated slope bs of the spatial TL (range: —3.790 to 5.441).
The dark shaded areas indicate the frequency of data sets in which a simulated bs was
significantly higher than zero. (c) A scatter-plot of the spatial slopes (bs) for the temporal
slopes (br).
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Figure 3

Probability that each of the three model parameters (a1, a2, and SD) of the
Gompertz model produced TL slopes with 1 < b < 2. Thirty-two-thousand data sets, each of
which consisted of 85 populations over 31 years, were produced using various combinations
of the model parameters on the parameter combination simulation (see the main text for
details). (al) The probability for 1 < b7 <2 is represented for 79 values of the density
dependence coefficient with one-year lag (1 + a1). (a2) The probability for 1 <br<2 is
represented for 40 values of the density dependence coefficient with two-year lag (a2). (a3)
The probability for 1 < br < 2 is represented for 20 values of the environmental variability
parameter (SD). (b1) The probability for 1 < bs < 2 is represented for 79 values of the density
dependence coefficient with one-year lag (1 + a1). (b2) The probability for 1 <bs<2 is
represented for 40 values of the density dependence coefficient with two-year lag (a2). (b3)
The probability for 1 < bs <2 is represented for 20 values of the environmental variability
parameter (SD).
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Figure 4 Relationship between TL slopes and density dependent coefficients ([1 + a1]
and a2) in the parameter combination simulation. The shading of each cell indicates the
probability for 1 < b <2 for each combination of density dependent coefficients ([1 + ai] and
a2) in the range of SD between 0.05 and 1. The lighter shaded region indicates higher
probability. Observed populations of the Hokkaido vole are illustrated by yellow circles (n =
85). (a) The probability of a temporal slope for 1 < br <2. The highest probability was 0.85.
(b) The probability of a spatial slope for 1 < bs < 2. The highest probability was 0.70.
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Figure 5 Frequency distributions of simulated TL slopes and the degree of population

synchrony. Ten-thousand datasets, each of which consisted of 85 populations over 31 years,
were produced in the following four simulation analyses: (al—a3) the fundamental
simulation, (b1-b3) the environmental-synchrony simulation, (c1—c3) the density-dependent
dispersal simulation, and (d1—d3) the combined simulation (see the main text for simulation
procedures). The dark shaded areas indicate the frequency of datasets in which the simulated
temporal (br) or spatial (bs) slopes were included in the 95%CI of the observed slope. For
population synchrony which is represented as a pairwise cross-correlation coefficient (7.)
between population growth rates, the frequencies of data sets with a simulated 7. in the
interquartile range of the observed value are illustrated in the dark shaded areas.
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Scatter plots of temporal (b7) and spatial (bs) slopes for an index of

environmental synchrony (p) and density-dependent dispersal rate (d), and the degree of
population synchrony (7.) for p or d. (al) A scatter plot of the temporal slope (b7) for
environmental synchrony. The gray zone indicates the range of 95%CI for the observed br.
(a2) A scatter plot of the spatial slope (bs) for environmental synchrony. The gray zone
indicates the range of 95%CI for the observed bs. (a3) A scatter plot of population synchrony
for environmental synchrony. The gray zone indicates the interquartile range of the observed
res. (bl) A scatter plot of the temporal slope (br) for dispersal rate. The gray zone indicates
the range of 95%CI for the observed br. (b2) A scatter plot of the spatial slope (bs) for
dispersal rate. A gray zone indicates the range of 95%CI for the observed bs. (b3) A scatter
plot of population synchrony for dispersal rate. The gray zone indicates the interquartile

range of the observed 7.s.
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