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Abstract 

Taylor’s law (TL) is an empirical rule that describes an approximate relationship between the 

variance and mean of population density: log10(variance) ≈ log10(a) + b × log10(mean). 

Population synchrony is another prevailing feature observed in empirical populations. This 

study investigated the effects of environmental synchrony and density-dependent dispersal on 

the temporal (bT) and spatial (bS) slopes of TL, using an empirical dataset of grey-sided vole 

populations and simulation analyses based on the second-order autoregressive (AR) model. 

Eighty-five empirical populations satisfied the temporal and spatial TLs with bT = 1.943 (± 

SE 0.143) and bS = 1.579 (± SE 0.136). The pairwise synchrony of population was 0.377 ± 

0.199 (mean ± SD). Most simulated populations that obeyed the AR model satisfied the form 

of the temporal and spatial TLs without being affected by the environmental synchrony and 

density-dependent dispersal; however, those simulated slopes were too steep. The 

incorporation of environmental synchrony resulted in reduced simulated slopes, but those 

slopes, too, were still unrealistically steep. By incorporating density-dependent dispersal, 

simulated slopes decreased and fell within a realistic range. However, the simulated 

populations without environmental synchrony did not exhibit an adequate degree of density 

synchrony. In simulations that included both environmental synchrony and density-dependent 

dispersal, 92.7% of the simulated datasets provided realistic values for bT, bS, and population 

synchrony. Because the two slopes were more sensitive to the variation of density-dependent 

dispersal than that of environmental synchrony, density-dependent dispersal may be the key 

to the determination of bT and bS.  

 

KEY WORDS: 

autoregressive time series, density dependence, environmental variability, rodents, slope, 

Taylor’s law  
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1 | INTRODUCTION 

Taylor’s law (TL, Taylor 1961) is an empirical rule describing the approximate relationship 

between the variance and mean of population densities, in which the variance is given by a 

power-law function of the mean: variance ≈ a × (mean)b, a > 0. It is usually expressed as: 

 log10(variance) ≈ log10(a) + b × log10(mean). (Eq. 1) 

The mean and variance of population densities can be calculated based on variations through 

both time and space. In the temporal TL, the mean and variance are calculated through 

observations of population densities at different times in a given location, while in the spatial 

TL, they are calculated through observations of population densities at different locations 

over a given time. 

The temporal and spatial TLs are described by the same equation given above (Eq. 1), 

and both TLs have been widely verified in various ecological systems (Taylor, 1986) and 

other research fields (Eisler, Bartos, & Kertész, 2008; Tippett & Cohen, 2016). Another well-

known feature of TLs is the range of slopes; most of the observed slopes (b) fall between 1 

and 2 for both TLs (Downing, 1986; Kendal, 2004; Taylor, 1961). However, the underlying 

mechanism of the temporal and spatial TLs still remains unclear, and a very few studies have 

considered both of these TLs (Taylor & Woiwod, 1982; Zhao, Sheppard, & Reid, 2019). Are 

the temporal and spatial TLs govern by the same factors? By examining the similarities and 

dissimilarities in the features of the temporal and spatial TLs, a deeper insight into the 

mechanism of the TL formation can be gained. 

A model simulation is an approach for checking the plausibility of a chosen 

mechanistic explanation in a complex system. Saitoh and Cohen (2018) showed that 

sustainable populations could obey the temporal TL even in the absence of synchrony and 

density-dependent movement among populations and identified the conditions that produced 

slopes 1 < bT < 2 by intensive simulation analyses for population densities of the grey-sided 
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vole, Myodes rufocanus (Sundevall, 1846), in Hokkaido (see also Cohen & Saitoh, 2016). 

However, dispersal has been recognized as being capable of producing both spatial stability 

and synchrony of population density (Abbott 2011), and density-dependent movement of 

individuals among populations may affect the slope of TL (Perry, 1988; Taylor & Taylor, 

1977). In addition, most field populations are typically subjected to correlated environmental 

influences (i.e., the Moran effect: Moran, 1953) (Allstadt et al., 2015). Although Saitoh and 

Cohen (2018) demonstrated that synchrony and density-dependent movement among 

populations are not sufficient conditions for the temporal TL, those effects were not 

examined for the spatial TL. Field populations inhabit areas with varying quality, and 

density-dependent movement from a higher- to a lower-density population could reduce the 

mean of population densities in higher-quality habitats while enhancing the mean in lower-

quality habitats. Consequently, density-dependent movements could lower the variance of 

population densities and reduce the slope of TL, as Taylor and Taylor (1977) and Perry 

(1988) suggested. Population synchrony could also reduce the slopes of TL (Reuman et al., 

2017). The temporal and spatial TLs may be related to each other, and environmental 

synchrony and density-dependent movement may influence these TLs by synchronizing 

population dynamics or leveling population densities. Therefore, to gain a more 

comprehensive understanding of the two TLs and a deeper insight into the formation of TL, it 

would be useful to analyze the relationship between these three population features (the 

temporal TL, and the spatial TL, and the population synchrony), and environmental 

synchrony and density-dependent movement should be taken into consideration because they 

may help establish this relationship.  

This study reports on the temporal and spatial TLs for the empirical populations of the 

grey-sided vole and on simulation analyses to explore determinants of TL slopes using the 

Gompertz model with extensive combinations of model parameters. First, this study reveals 
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that most sustainable populations conform to both the temporal and spatial TLs in the 

absence of population synchrony and density-dependent movement among populations. Next, 

it identifies the combinations of model parameters that are likely to produce the prevailing 

slopes 1 < b < 2 for the temporal and spatial TLs and shows how the observed coefficients of 

the Gompertz model satisfy those identified combinations for the temporal TL, but not for the 

spatial TL. To solve this discrepancy, the effects of environmental synchrony and density-

dependent movement are incorporated into a simulation model. Finally, the relative 

contribution of environmental synchrony and density-dependent movement in generating the 

observed features of the temporal and spatial TLs and population synchrony is discussed.  

 

2 | MATERIALS AND METHODS 

2.1 | Study design and data 

Hokkaido is the northernmost island of Japan (78,073 km2). The grey-sided vole, Myodes 

rufocanus (Sundevall, 1846), is the most common species of small rodents on this island 

(Kaneko et al., 1998). A systematic survey of rodent populations has been carried out in 

Hokkaido by the Forestry Agency of the Japanese Government. The geography of Hokkaido 

and the procedure of data collection were described previously (Saitoh, Stenseth, & 

Bjørnstad, 1997, 1998; Stenseth et al., 2003). This study analyzed the same dataset of the 

grey-sided vole as Cohen and Saitoh (2016) and Saitoh and Cohen (2018) did: N = 85 

populations in different locations covering T = 31 years (1962–1992). Population density was 

defined as the number of voles per 150 trap-nights, because 50 snap-traps for three 

consecutive nights on a 0.5 ha survey plot was chosen as a standard unit for the rodent 

survey.  

The Bayesian method was applied to the estimation of population density for each 

year and location based on a state-space model on WinBUGS version 1.4.3 (Spiegelhalter et 
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al., 2003; http://www.mrc-bsu.cam.ac.uk/software/bugs/). Population density was estimated 

assuming that the increase in the number of voles caught was proportional to the trapping 

effort, taking effective traps into consideration (see Saitoh & Cohen, 2018 for details). 

Although the natural logarithm of the number of individual voles trapped per unit of trapping 

effort (one trap-night) was used, the estimates were reverted to the original scale of 

measurement, the vole density per 150 trap-nights, for the following analyses of TL. 

 

2.2 | Temporal and spatial Taylor’s laws 

The mean and the variance were calculated across the density estimates in a given location at 

different times (years in this study), and one data point [log10(temporal mean), log10(temporal 

variance)] was plotted for each location (n = 85). The mean and variance were calculated 

across the density estimates in a given year at different locations, and one data point 

[log10(spatial mean), log10(spatial variance)] was plotted for each year (n = 31). The ordinary 

least-squares regression (OLS) was used to test the temporal TL by fitting the following 

equation (Eq. 1): 

log10(temporal variance) = log10(aT) + bT × log10(temporal mean). 

Similarly, OLS was used for testing of the spatial TL: 

log10(spatial variance) = log10(aS) + bS × log10(spatial mean). 

Pairwise cross-correlation coefficient between population growth rates (rc, Pearson’s 

correlation coefficient between population growth rates) was used as the index of population 

synchrony (Bjørnstad, Ims, & Lambin, 1999).  

 

2.3 | Gompertz model 

The second-order autoregressive model (the Gompertz model; Eq. 2) was used for describing 

population dynamics of the grey-sided vole. In this model, for each population j = 1,…, 85, 
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xt,j is the natural logarithm of the Bayesian estimate of an observed density (Nt,j) in periods of 

time t = 1962,…,1992; 𝑥!"  is the temporal mean of xt,j in population j, and 𝑥",$ − 𝑥!"  is the 

centered time-series on the logarithmic scale of population j. The Gompertz model assumes 

that 

xt,j –  𝑥!"  = (1 + a1,j)(xt–1,j –  𝑥!" ) + a2,j(xt–2,j –  𝑥!" ) + et,j , (Eq. 2) 

where a1,j and a2,j are the coefficients of density dependence for a one-year lag and for a two-

year lag for population j, respectively. The error term, et,j, represents the density-independent 

effects (environmental variability) modeled as random numbers from a normal distribution 

with mean = 0 and variance = SDj2. Fitting the Gompertz model (Eq. 2) to the centered time 

series, 𝑥",$ − 𝑥!" , yielded the Bayesian estimates of a1,j, a2,j, and SDj (see Saitoh & Cohen 

2018 for details). 

 

2.4 | Simulations 

The following five simulations were carried out and referred to here as “fundamental 

simulation”, “parameter combination simulation”, “environmental synchrony simulation”, 

“density-dependent dispersal simulation”, and “combined simulation of environmental 

synchrony and density-dependent dispersal”. To distinguish simulated densities from a 

density estimate of an observed population xt,j in Eq. (2), the following equation of yt,j was 

used: 

yt,j = (1 + a1,j)(yt–1,j – 𝑥!" ) + a2,j(yt–2,j – 𝑥!" ) + 𝑥!"  + et,j. (Eq. 3) 

The initial two observed densities, x1,j and x2,j were used as the first two densities (y1,j = x1,j 

and y2,j = x2,j) of each simulated population. The state variable in all the simulations was the 

centered log-transformed population density, 𝑦",$ 	– 𝑥!" . 

 

2.4.1. Fundamental simulation 
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In the fundamental simulation, the population-specific estimates of a1,j, a2,j, and SDj for the 

85 observed populations were used, and a mean of the observed densities (𝑥!" ) was used as the 

equilibrium density. The environmental variability, et,j, between any two different years (t) 

and among populations was assumed to be uncorrelated. For each population j, et,j was drawn 

from independent random values that were normally distributed over mean = 0 and variance 

= SDj2, [𝒩t,j(0, SDj2)] (see Saitoh & Cohen 2018 for details).  

 

2.4.2. Parameter combination simulation 

To examine the effects of the model parameters on the temporal (bT) and spatial (bS) slopes, 

the fundamental simulation was modified using comprehensive combinations of the model 

parameters. In the parameter combination simulation, a specific set of the parameters (a1, a2, 

and SD) was fed to each dataset of the 85 time series spanning 31 years (yt,j): [1 + a1] ranging 

from –1.95 to 1.95, in 0.05 increments, a2 ranging from –0.975 to 0.975, in 0.05 increments, 

and SD ranging from 0.05 to 1.0, in 0.05increments. The combinations of [1 + a1] and a2 

were restricted to the range in which the time series were sustainable, i.e., 1,600 

combinations (see Saitoh and Cohen 2018 for details). As the simulations were carried out 

with 20 different SDs for each combination of [1 + a1] and a2, 32,000 datasets of 31 ´ 85 yt,j 

were generated. The rest of the simulation procedures was the same as those of the 

fundamental simulation. The generated values were then transformed back by exponentiating 

to the original scale of population density, and the temporal and spatial TLs were tested for 

each dataset. 

 

2.4.3. Environmental synchrony simulation 

To synchronize the time series, the 85 correlated density-independent error terms et,i, each of 

which consisted of 31 random numbers that were taken from a normally distributed values 
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with mean = 0 and variance = 1, were generated by using the “mvrnorm” function from the 

MASS package of R. The degree of the correlation between et,i was given as a value (ρ) 

ranging from 0 to 1 in 0.001 increments, and ρ was used as an index of environmental 

synchrony. For each population j, the standard deviation of et,j was adjusted to the observed 

one (SDj). Estimates from the observed populations were used for other necessary values 

(equilibrium density, [1 + a1], and a2) for the simulation.  

The rest of the simulation procedures was the same as those of the fundamental 

simulation. One-thousand datasets (1,000 ρs) of the 85 time series were generated, and the 

temporal and spatial TLs were tested for each dataset. 

 

2.4.4. Density-dependent dispersal simulation 

Based on the concept of Perry (1988) and Ripa (2000), dispersal was assumed to occur when 

a population density exceeded an equilibrium density. The number of “surplus” individuals of 

a population, which were potential emigrants, was given by the subtraction of the equilibrium 

density from the simulated population density before the occurrence of the dispersal events 

(𝑦",% − 𝑥&"). A part of the “surplus” individuals, 𝑑(𝑦",% − 𝑥&"), may emigrate from their native 

population, but not all emigrants may survive until reaching the new colony, and, then, a 

population may accept some immigrants from emigrants of other populations. The population 

density after the occurrence of the density-dependent dispersal (zt,i) can be given by the 

following equation: 

𝑧",% =	𝑦",% − 𝑑(𝑦",% − 𝑥&") +
'
(
∑ 𝑑(𝑦",% − 𝑥&")(
%)* , (Eq. 4) 

when (𝑦",% − 𝑥&") < 0, (𝑦",% − 𝑥&") was replaced with zero. 

In Eq. 4, yt,i and 𝑥&"  are defined in Eq. 3, d is the dispersal rate (a ratio of emigrants in 

“surplus” individuals), which was assumed to be a different value ranging from zero to one in 

0.001 increments for each simulation, s is the success rate of dispersers colonization, which 
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was assumed to be 0.5 in this simulation, and each population was assumed to have accepted 

an equal number of immigrants, which was obtained by dividing the total number of 

successful dispersers by the number of populations (i.e., n = 85 in this case). As the number 

of dispersers should be zero or positive, when (𝑦",% − 𝑥&") < 0, (𝑦",% − 𝑥&") was replaced with 

zero. This simulation did not include any effect of environmental synchrony. 

The rest of the simulation procedures was the same as those of the fundamental 

simulation. One-thousand datasets (1,000 ds) of the 85 time series were generated, and the 

temporal and spatial TLs were tested for each dataset. 

 

2. 4. 5. Combined simulation including environmental synchrony and density-dependent 

dispersal 

Since the assumptions about environmental synchrony and density-dependent dispersal were 

not mutually exclusive, the effects of both the phenomena were included in the combined 

simulation, using comprehensive combinations of the environmental synchrony (ρ) and 

dispersal rate (d); ρ and d were independently increased from 0.001 to 1.0 in 0.001 

increments. Estimates from the observed populations were used for other necessary values 

(equilibrium density, [1 + a1], a2, and SD) for the simulation. One-million datasets (1,000 ρs 

´ 1,000 ds) of the 85 time series were produced, and the temporal and spatial TLs were tested 

for each dataset.  

 

2. 5. Factors that influence the slopes 

Simulated time series have been defined by three model parameters (a1, a2, and SD) in the 

parameter combination simulation. The relationship between the variance and mean of the 

population densities and model parameters was analyzed by a multiple regression analysis, 

with the slope (bT or bS) as a response variable and with the model parameters as the 
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explanatory variables. All underlying regressions were computed using function “lm” in R 

version 3.6.0. 

 

3 | RESULTS 

3.1 | Empirical Taylor’s laws 

Both the temporal and spatial TLs were satisfied in the 85 empirical populations of the grey-

sided vole (Fig. 1). The log10(temporal variance) of the population densities was 

approximated by a linear function of log10(temporal mean) of population densities (Fig. 1a): 

log10(temporal variance) = 0.063 (± SE 0.133) + 1.943 (± SE 0.143) × log10(temporal mean) 

(t = 13.576, P < 2.0 × 10-16, adjusted R2 = 0.686), and the lower and upper limits of the 95% 

confidence interval (95%CI) of the estimate of the temporal slope (bT) were 1.659 and 2.228, 

respectively. The log10(spatial variance) was also approximated by a linear function of 

log10(spatial mean) (Fig. 1b): log10(spatial variance) = 0.376 (± SE 0.125) + 1.579 (± SE 

0.136) × log10(spatial mean) (t = 11.573, P < 2.0 × 10–12, adjusted R2 = 0.816), and the lower 

and upper limits of 95%CI of the estimate of the spatial slope (bS) were 1.300 and 1.858, 

respectively. The linearity of TLs was tested by quadratic regression analyses. These analyses 

did not reveal any statistically significant evidence of nonlinearity for the temporal or spatial 

relationship. 

 The index of population synchrony, pairwise cross-correlation coefficients of 

population growth rates (rc) ranged from –0.390 to 0.935 (Fig. 1c). The mean of rc values 

was 0.377 (SD = 0.199), and its lower and the upper quartile was 0.236 and 0.519, 

respectively. More than half of the pairs of populations (n = 1960, 54.9%) exhibited a 

significantly positive correlation (rc ³ 0.361, P < 0.05). A significantly negative correlation 

was observed in two of 3,570 pairs, whose rc values were –0.390 and –0.363, respectively. 
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3.2 | Simulated Taylor’s law 

3.2.1 Model parameters for slopes 1 < b < 2 

To examine the effects of the model parameters on the temporal (bT) or spatial (bS) slopes, 

various combinations of the model parameters (n = 32,000) beyond the observed ones were 

input to the Gompertz model (Eq. 3) under the absence of correlations and density-dependent 

dispersal. All simulated datasets cleared the test of the temporal TL (Fig. 2a). A part (21.9%) 

of temporal slopes (bT) (7,022/32,000) fell in the prevailing range (1 < bT < 2). In other 

words, sustainable populations obeyed the temporal TL in the absence of environmental 

synchrony and density-dependent dispersal among populations, but only a limited proportion 

of those populations exhibited bT that fell in the prevailing range. 

Not all simulated datasets cleared the test of the spatial TL (Fig. 2b), but 84.7% of the 

simulated datasets (27,111/32,000) exhibited significantly positive spatial slopes (bS). In 

simpler terms, most if not all sustainable populations obeyed the spatial TL under the 

conditions that excluded environmental synchrony and density-dependent dispersal. A 

quarter (25.6%) of bS (8,199/32,000) fell in the prevailing range (1 < bS < 2). 

The percentage of datasets in which the two slopes simultaneously fell in the prevailing 

range (1 < bT < 2 and 1 < bS < 2) was 8.2%. 

The variance of bS (0.841) was much higher than that of bT (0.083, F-test, F = 0.099, P 

< 2 × 10–16, Fig. 2c). As a result, although a significant correlation was observed between bS 

and bT (Pearson’s product-moment correlation coefficeint, rp = 0.623, P < 2 ´ 10–16), one-on-

one interaction between bS and bT was not clear (Fig. 2c). Even when datasets exhibiting 

significantly positive slopes were focused upon, the correlation between bS and bT could not 

be improved. These results imply that there may be some differences in the determinants 

and/or a mechanism of the TL formation between the temporal and spatial TLs. 
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A multiple regression analysis was performed on the temporal and spatial TLs, in 

which the slope bT or bS was considered as a response variable, while density dependence 

coefficients ([1 + a1] and a2), environmental variability (SD), and their pairwise products 

were used as explanatory variables (Table 1). These explanatory variables and their products 

contributed significantly to the explanation of variation of the slopes, and the full model 

exhibited a moderate goodness of fit (R2 = 0.477 for the temporal TL and R2 = 0.699 for the 

spatial TL). To summarize these results, the slopes became steeper with the increase of SD 

and with the decrease of a1 and a2. This pattern was found to be common between the 

temporal and spatial TLs. However, the absolute values of partial regression coefficients 

were found to be higher for the spatial TL than for the temporal TL, because the variance of 

bS was much higher than that of bT. 

The model parameters that produced the prevailing range of slopes, 1 < b < 2, were 

distributed over a limited range both for the temporal and spatial TLs (Fig. 3a, b). Density 

dependence coefficients ([1 + a1] and a2) exhibited a roughly similar pattern for the 

probabilities for 1 < bT < 2. A peak was found in the middle of the range for both coefficients 

(Figs. 3a1 and 3a2). The highest probability (0.409) was observed at [1 + a1] = 0.15, while it 

was 0.380 when a2 was 0.075. In contrast to this trend in the temporal TL, density 

dependence coefficients ([1 + a1] and a2) showed a different pattern for the probabilities for 1 

< bS < 2 in the spatial TL. Although a clear peak of the probability (0.455) was observed for 

[1 + a1] when it was –0.4 as in the temporal TL (Fig. 3b1), the probabilities for 1 < bS < 2 did 

not exhibit a clear pattern for a2 (Fig. 3b2). The highest probability (0.336) was observed at 

a2 = 0.175. 

The simulated time series with a low SD exhibited higher probabilities for 1 < bT < 2 

and for 1 < bS < 2. In the temporal TL, the highest probability for 1 < bT < 2 (0.523) was 

observed at SD = 0.05; the probabilities remained high values at low SD (0.05 to 0.20) and 
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plummeted thereafter (Fig. 3a3). The spatial slopes (bS) responded to SD in a slightly 

different manner than the temporal slopes; the probabilities for 1 < bS < 2 fluctuated around 

0.4 in 0.05 £ SD £ 0.4 and declined thereafter (Fig. 3b3). 

Differences in the effects of the model parameters between the temporal and spatial 

slopes are illustrated in Figure 4, where the probability for 1 < bT < 2 or 1 < bS < 2 is 

represented for each combination of [1 + a1] and a2. Each cell of the combinations has 20 

values of bT and bS, which were obtained from 20 different SD values. The number of 1 < bT 

< 2 or 1 < bS < 2 was counted for each cell, and the probabilities were calculated by dividing 

this counted number by the 20. 

Cells with higher probabilities for 1 < bT < 2 were distributed on the center of the 

triangle and their distribution range was extended toward the upper-right cells. When plotting 

observed 85 populations on this panel based on their observed values of [1 + a1] and a2, the 

observed populations fell in the distribution ranges of the higher probabilities (Fig. 4a). This 

suggests that the model parameters (a1 and a2) can predict the occurrence of the observed bT. 

Differing from the temporal TL, cells with higher probabilities for 1 < bS < 2 were 

widely scattered in an L-shaped pattern (Fig. 4b). The matching of the distribution ranges 

between the cells with higher probabilities and the observed populations was not well-

defined. Many observed populations were plotted on the side of the lower probability areas, 

even though the observed bS was 1.579. This discrepancy suggests that the explanatory power 

of the model parameters (a1 and a2) was limited for the observed bS, and that the observed bS 

may be influenced more by factors other than a1 and a2. 

 

3.2.2. Fundamental effects of model parameters 

The effects of the observed parameters of the Gompertz model were examined by the 

fundamental simulation without the consideration of the effect of environmental synchrony 
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and density-dependent dispersal using the population-specific estimates of a1,j, a2,j, and SDj 

for the 85 observed populations. In the 10,000 simulated datasets, 30.2% of the simulated bTs 

were included in the 95%CI of the observed bT (Fig. 5a1); whereas, all simulated bSs and 

indices of density synchrony (rc) diverged from the observed ones (Figs. 5a2, a3). There were 

no simulated datasets in which bT and bS were simultaneously included in the 95%CI of the 

observed bT and bS. 

 The validity of the fundamental simulation was tested by comparing the temporal 

means and variances between observed and simulated values. Simulated means and variances 

were higher than observed ones, in general. In one example, although log10(observed means) 

showed a significant linear function of log10(simulated means), its slope was lower than 1; 

log10(observed mean) = 0.083 (± SE 0.067) + 0.847 (± SE 0.068) × log10(simulated mean) (t 

= 12.515, P < 2.0 × 10–16, adjusted R2 = 0.650, Appendix Fig. Aa). A similar relationship was 

observed for variances; log10(observed variance) = 0.871 (± SE 0.186) + 0.444 (± SE 0.084) 

× log10(simulated variance) (t = 5.302, P < 9.3 × 10–7, adjusted R2 = 0.244, Appendix Fig. 

Ab). The rate of the differences between observed and simulated values was higher in 

variances than in means. The simulated variances were 1.22 times as high as the observed 

variance on average, while the simulated means were 1.08 times as high as the observed 

means on average. The parameters of the Gompertz model (a1 and a2) did not show any effect 

on the differences between the observed and simulated values for both means and variances 

(Appendix Fig. Ae–h). 

 

3.2.3. Environmental synchrony 

Since a considerable proportion of population pairs (54.9%) exhibited significantly positive 

cross-correlations of population growth rates, the effects of environmental synchrony were 

added into the fundamental simulation. One-thousand datasets consisting of 85 time series 
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with different degrees of environmental synchrony (ρ, ranging from zero to one) were 

generated by the environmental synchrony simulation. Simulated temporal slopes (bTs) 

decreased with the increase of ρ and were described as a quadratic function of ρ (Fig. 6a1): bT 

= 2.287 (± SE 0.013) + 0.094 (± SE 0.059) × ρ – 0.231 (± SE 0.057) × ρ2. However, because 

of the low decrease rate, the simulated bTs did not decrease enough to be included in the 

95%CI of the observed bT. 

Simulated spatial slopes (bSs) were described as a cubic function of ρ with a high 

predictability (Fig. 6a-2): bS = 2.320 (± SE 0.012) – 2.687 (± SE 0.104) × ρ + 4.959 (± SE 

0.242) × ρ2 – 2.930 (± SE 0.159) × ρ3. The simulated bSs greatly decreased with the increase 

of ρ between 0 and 0.3, and a considerable number of them were included in the 95%CI of 

the observed bS, when ρ was greater than 0.4. However, the overlap between the simulated 

bSs and the 95%CI of the observed bS was still limited. 

The relationship between the index of population synchrony (rc) and ρ was as clear as 

predicted from the theory. The degree of population synchrony was described as a linear 

function of ρ with a very high predictability (Fig. 6a3): rc = 0.010 (± SE 0.003) + 0.866 (± SE 

0.005) × ρ. Majority of rcs fell in the interquartile range of the observed rc, when ρ was 

between 0.3 and 0.5. 

With ρ = 0.45, 10,000 datasets were generate based on the environmental synchrony 

simulation. While 98.0% of simulated rcs were included in the interquartile range of the 

observed rc, the proportion of the datasets in which bT or bS were included in the 95%CI of 

the observed slope was limited; 33.0% for bTs and 38.4% for bSs (Fig. 5b). The proportion of 

the datasets in which bT and bS were simultaneously included in the 95%CI of the observed 

slope was 14.7%. 

 

3.2.4. Density-dependent dispersal 
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Since density-dependent dispersal could reduce the temporal and spatial variations of 

population densities (Abbott, 2011; Hastings, 1982), the effects of density-dependent 

dispersal were added into the fundamental simulation. One-thousand datasets consisting of 85 

time series were generated by the density-dependent dispersal simulation. The temporal 

slopes were well described as a quadratic function of the dispersal rate (d = ratio of emigrants 

in “surplus” individuals, Fig. 6b1): bT = 2.330 (± SE 0.011) – 0.193 (± SE 0.052) × d – 0.139 

(± SE 0.051) × d2. The simulated bTs decreased with the increase of d, and most of the 

simulated bTs were included in the 95%CI of the observed bT, when d became higher than 

0.6. 

The spatial slopes were also described as a quadratic function of d (Fig. 6b2): bS = 

2.623 (± SE 0.013) – 0.020 (± SE 0.061) × d – 2.707 (± SE 0.058) × d2. The simulated bSs 

greatly decreased with the increase of d. Most of the simulated bSs were included in the 

95%CI of the observed bS, when 0.5 < d < 0.7.  

Population synchrony (rc) did not strongly respond to the change in d (Fig. 6b3). 

Although rc was described as a quadratic function of d (rp = 0.021 (± SE 0.001) + 0.033 (± 

SE 0.006) × d + 0.119 (± SE 0.006) × d2, the regression coefficients were small. Although rc 

increased with the increase of d, most rcs did not reach the lower quartile value of the 

observed rc. 

With d = 0.65, 10,000 datasets were generated based on the density-dependent dispersal 

simulation. Most (80.4%) of the simulated bTs and 93.7% of the simulated bSs were included 

in the 95%CI of the observed bT and bS, respectively (Fig. 5c1, 5c2). Three-quarters (75.0%) 

of the datasets had realistic bT and bS values, both of which were included in the 95%CI of 

the observed value. However, all simulated rcs were lower than the lower interquartile value 

of the observed rc (Fig. 5c3). 
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3.2.5. Combined effects of synchrony and dispersal 

The environmental synchrony simulation and the density-dependent dispersal simulations 

could not generate realistic datasets of which bT, bS, and rc values could simultaneously 

satisfy the observed values. The proportion of the datasets that satisfied those conditions was 

14.7% in the environmental synchrony simulation, while no datasets satisfied the same 

conditions in the density-dependent dispersal simulation. When just one of the effects 

(environmental synchrony or density-dependent dispersal) was considered, simulations based 

on the AR model were unable to generate a realistic set of time series for the observed 

populations. Hence, a combined simulation including both effects was carried out. 

One-million datasets (1,000 ρs ´ 1,000 ds), each of which consisted of 85 time series, 

were organized into 10,000 cells (100 ρs ´ 100 ds in 0.01 increments for each parameter), 

each of which had 100 sets of three values (bT, bS, and rc). The number of datasets which 

satisfied 1.659 (the lower limit of 95%CI) < bT < 2.228 (the upper limit of 95%CI), 1.300 (the 

lower limit of 95%CI) < bS < 1.858 (the upper limit of 95%CI), and 0.236 (the lower quartile) 

< rc < 0.519 (the upper quartile) was counted for each cell, and the probabilities were 

calculated by dividing the counted number by 100. The highest probability (1.00) was 

observed in one cell with ρ = 0.241–0.250 and d = 0.521–0.530 (Appendix Fig. B).  

With ρ = 0.245 and d = 0.525, 10,000 datasets were generated. Most (95.4%) of the 

simulated bTs and 98.3% of the simulated bSs were included in the 95%CI of the observed bT 

and bS, respectively (Fig. 5d). In addition, 98.8% of the simulated rcs were included in the 

interquartile range of the observed rc. On a whole, majority (92.7%) of the datasets satisfied 

all the three conditions simultaneously. 

The observed density dependence coefficients (a1 and a2) were used for the above 

simulation analysis. To clarify the effects of density dependence coefficients on bT and bS, 

another combined simulation was carried out. In this simulation, 10,000 datasets were 
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generated, with ρ = 0.245 and d = 0.525, and using the hypothetical combinations of a1 and a2 

that produced, with the lowest probability, the prevailing TL slopes. The coefficient a1 and a2 

were randomly selected, not allowing replacement, from the combinations with the lowest 

probability producing 1 < bT < 2 and 1 < bS < 2. In the parameter combination simulation, 

those combinations were represented as black cells in Figures 4a and 4b; 228 cells illustrate 

the lowest probability (zero) for both bT and bS.  

Although the majority of simulated rcs (86.3%) were included in the interquartile range 

of the observed rc, the proportion of simulated datasets of which bT and bS were included in 

the 95%CI of the observed values was lowered (Appendix Fig. C); it was 46.5% and 22.4% 

for bT and bS, respectively. The proportion of datasets simultaneously satisfying the three 

conditions was very small (4.4%). 

 

 
4 | DISCUSSION 

4.1 | Temporal and spatial Taylor’s laws and population synchrony 

The studied 85 populations of the grey-sided vole obeyed both the temporal and spatial TLs 

(Fig. 1ab). The temporal and spatial slope (95%CI) was estimated at 1.943 (1.65 – 2.228) and 

1.579 (1.300 – 1.858), respectively. A considerable proportion of the observed populations 

(54.9%) exhibited a significantly positive cross-correlation of population growth rates (Fig. 

1c). Taylor, Woiwod, and Perry (1980) provided datasets on the temporal and spatial TLs for 

populations of bird species. The mean temporal slope (range) was 1.13 (0.08 – 1.97, n = 104), 

while the mean spatial slope (range) was 1.71 (0.98 – 3.38, n = 119). Additionally, Linnerud 

et al. (2013) reported the temporal slopes for 30 populations of bird species; the mean slope 

(range) was 1.49 (0.69 – 2.24). Mellin, Huchery, and Caley (2010) reported spatial slopes for 

18 fish species ranging between 1.16 and 1.84, while Kuo et al. (2016) reported that the mean 



 -20- 

spatial slope (range) was 1.78 (1.41 – 2.11) in 29 fish species. The slopes for vertebrate 

populations appear to be lower than those for insect populations. The mean temporal slope 

(range) of aphids and moths are 1.86 (1.06 – 2.51, n = 97) and 1.50 (1.08 – 1.98, n = 263), 

respectively. The mean spatial slopes (range) for aphids and moths are 1.97 (1.29 – 2.95, n = 

97) and 2.06 (0.08 – 3.32, n = 263), respectively (Taylor, Woiwod, & Perry 1980). Another 

report on 20 aphid species showed that temporal slopes ranged between 1.86 and 2.97, while 

spatial slopes between 1.89 and 2.67 (Zhao, Sheppard, & Reid, 2019). Both the observed 

slopes of the grey-sided vole fell in the prevailing range (1 < b < 2) and were consistent with 

the reported slopes for vertebrates. 

 

4.2 | Similarity and dissimilarity between temporal and spatial TLs 

Saitoh and Cohen (2018) demonstrated that some combinations of the model parameters of 

the Gompertz model (a1, a2, and SD) had the potential to explain the nature of the observed 

temporal TL using the same datasets analyzed in this study. However, in addition to the 

temporal TL, the spatial TL and population synchrony should be examined simultaneously to 

gain an overall understanding of the TLs governing empirical populations, because those 

three features may be related.  

The parameter combination simulation showed that sustainable populations could obey 

both temporal and spatial TLs in the absence of population synchrony and density-dependent 

movements among populations (Fig. 2ab). However, the proportions of slopes that fell in the 

prevailing range (1 < b < 2) were limited to 21.9% for bT and 25.6% for bS, and the 

proportion of datasets in which both slopes simultaneously fell in the prevailing range was 

small (8.2%). The slopes became steeper with the increase of SD and with the decrease of a1 

and a2 in both temporal and spatial TLs (Table 1). However, because of the higher variance 

of bS, the absolute partial regression coefficients were much higher for the spatial TL than for 
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the temporal TL (Table 1, Fig. 2c). These results suggest that the power of the parameter 

combination simulation was limited to explaining the empirical range of TL slopes, and that 

the degree of factors influencing the TL formation may differ between the temporal and 

spatial TLs. 

Differences between the temporal and spatial TLs in terms of the effects of model 

parameters on the slopes are illustrated in Figure 4, where the probability for 1 < bT < 2 or 1 < 

bS < 2 is represented for each combination of [1 + a1] and a2. The majority of the observed 

populations coincided with the cells with higher probabilities for 1 < bT < 2, while the 

distribution range of the cells with higher probabilities for 1 < bS < 2 did not closely match 

that of the observed populations. Some observed populations were plotted on the lower 

probability cells for 1 < bS < 2, even though the observed bS was 1.579. This discrepancy 

suggests that the observed bS may be influenced more by factors other than a1 and a2. 

 

4.3 | Environmental synchrony and density-dependent dispersal 

Population synchrony should be examined on priority because a considerable proportion of 

the observed populations exhibited a significantly positive cross-correlation of population 

growth rates, and because the negative effects of the density correlation on the spatial TL 

slopes were reported in populations of aphid and plankton species (Reuman et al., 2017). 

Population synchrony represents the spatial synchrony of the abundance and may arise from 

three primary mechanisms (Liebhold, Koenig, & Bjørnstad, 2004): (1) dispersal among 

populations, (2) synchronous exogenous density-independent factor known as the Moran 

effect (Moran 1953), and (3) trophic interaction with other species. In this study, the effects 

of environmental synchrony and density-dependent dispersal were explicitly examined 

through the environmental synchrony and the density-dependent dispersal simulations, 

respectively. Although the effects of the trophic interaction were not directly specified or 
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explored in this study, the effects involved in the density-dependent dispersal simulation 

could arise from density-dependent predation (see below). 

In majority of the cases, the environmental synchrony and density-dependent dispersal 

simulations could not generate datasets for which bT, bS, and rc simultaneously satisfied the 

observed values by its assumed mechanism alone (Fig. 5bc). The proportion of datasets that 

satisfied those conditions in the environmental synchrony simulation was 14.7%, when the 

degree of environmental synchrony (ρ) was set to the most possible value (0.45), while no 

dispersal rate (d) was found to satisfy those conditions in the density-dependent dispersal 

simulation.  

When only one of the effects (environmental synchrony or density-dependent dispersal) 

was considered, simulations based on the Gompertz model could not generate a realistic set 

of time series for the observed populations. Both the effects were required to generate 

datasets that satisfied those conditions. In the 10,000 datasets generated by the combined 

simulation with ρ = 0.245 and d = 0.525, majority of the datasets (92.7%) satisfied the three 

conditions. The Gompertz model considered in this study consisted of two types of density 

effects (a1 and a2) and the density-independent effect (et, Eq. 2). The synchrony of population 

density was simulated by synchronizing et within the Gompertz model of this study. The 

effects of a1 and a2 are derived from the densities in the one-year (xt–1) and two-year lags (xt–

2), respectively. Although the effects in the current year were considered as the density-

independent term (et), the density effect from the current year (xt) was not considered. The 

effects of density-dependent dispersal are derived from xt and were needed to generate 

datasets that satisfied the required conditions.  

In the model of this study, dispersal was assumed to occur when a population density in 

the current year exceeded the equilibrium population density, and 52.5% of “surplus” 

individuals (d = 0.525) emigrated from the native population in the combined simulation. 
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Although the loss due to dispersal was partly compensated by the immigrants, the main effect 

of dispersal in this simulation was the density-dependent loss. Therefore, the combined 

simulation consisted of three types of density effects from three different time phases (the 

current year, the one-year lag, and the two-year lag). Among those effects, the two slopes (bT 

and bS) were more sensitive to density-dependent dispersal (Fig. 6), and, thus, the density 

effects in the current year (density-dependent dispersal) may be the key to the determination 

of bT and bS. 

In the density-dependent dispersal simulation, a part of “surplus” individuals emigrated 

from their home population, half of the emigrants were assumed to expire before reaching a 

new colony, and each population accepted an equal number of immigrants. A theoretical 

study shows that positive density dependent-dispersal is favored in temporally variable 

environments with high dispersal cost, whereas negative density-dependent dispersal benefits 

in stable environments with low dispersal cost (Rodrigues & Johnstone, 2014). Since the 

studied dataset includes highly fluctuating populations (Saitoh et al. 1997, 1998), the positive 

density-dependent dispersal (emigration) assumed in this study could be justified 

theoretically. However, many empirical researches suggest negatively density-dependent 

dispersal, although some convincing evidence of positive density-dependent dispersal does 

exist (Le Galliard et al. 2012). For the grey-sided vole, Ehrich, Yoccoz, and Ims (2009) 

showed that populations with multi-annual density fluctuations exhibited high genetic 

diversity even on the low density phase and suggested negatively density-dependent 

immigration, whereas the best model explaining the variation of genetic diversity suggested 

the positive effect of population growth rate and density in the common vole (Microtus 

arvalis, Gauffre et al. 2014). These contradictory observations may be attributed to the 

elusive nature of dispersal that may change conditionally (Matthysen, 2005). De Bona et al. 

(2019) showed in wild guppies that local density-dependent dispersal varied between positive 
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and negative, responding to landscape density. Further empirical studies on the effects of 

density on dispersal are encouraged to detail the effects of dispersal on TLs. 

Positive density-dependent dispersal could have the effects to reduce the temporal and 

spatial variations of population densities (Abbott 2011; Hastings, 1982) and could potentially 

reduce the slopes bT and bS. In fact, the density-dependent dispersal simulation of this study 

showed the significantly negative effect of dispersal rate on both the slopes (Fig. 6b1, 6b2). 

In contrast to this finding, Engen, Lande, and Saether (2008) theoretically showed that 

increasing dispersal made the transition from slope 1 to 2. They examined the effects of 

sampling scale on TL considering individual dispersal and attributed their result to increasing 

scale in the spatial covariance function for population density with increasing dispersal. 

Although the 85 populations analyzed in this study had the spatial structure (see the map in 

Saitoh et al. 1997), the dispersal of individual voles among specific populations is unknown. 

Therefore, this study analyzed the overall effects of dispersal on TLs. The present findings 

should be carefully compared to those of Engen et al. (2008). 

In the density-dependent dispersal simulation, a key process affecting the slopes was 

the partial loss of “surplus” individuals. Although the density-dependent dispersal simulation 

and the combined simulation attribute the density-dependent loss to dispersal, another 

mechanism can also explain the partial loss of “surplus” individuals. Mobile predators that 

travel long distance may assemble in high-density populations and take some parts of 

“surplus” individuals (e.g., Ims & Andressen, 2000). This is listed as a primary mechanism of 

the spatial synchrony of the abundance (trophic interaction) (Liebhold, Koenig, & Bjørnstad, 

2004).  

Although dispersal has been credited with inducing synchrony of population density 

(Abbott 2011), such an effect was miniscule in the present conditions of the simulations (Fig. 

6b3). Local density-dependent dispersal may result in lower synchrony than comparable 
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amounts of density-independent dispersal (Abbott, 2011), which is the case of this study. 

Empirically, the dispersal ability of the grey-sided vole is too small (most natal dispersals of 

individuals are recorded within several hundred meters; Ishibashi & Saitoh 2008) to directly 

link with the studied populations, which were separated by an average distance of 8.4 km. 

The source of synchrony in the studied populations may be a large-scale climate variation or 

effects of nomadic predators (Bjørnstad, Stenseth, & Saitoh, 1999). In general, dispersal is 

not an essential driver of synchrony, because the population synchrony is often observed 

among isolated habitats between which dispersal is strictly limited (e.g., Grenfell et al., 1998; 

Rusak, Yan, & Somers, 2008). In addition, the Moran effect dominates over the effects of 

dispersal in spatial synchrony in forest insect populations (Peltonen et al., 2002), and Haynes 

et al. (2013) and Allstadt et al. (2015) claim the importance of weather effects as a driver of 

population synchrony. 

 The degree of density-dependent loss may vary among populations inhabiting various 

habitats. Effects of density-dependent loss may not be strong for populations in varying 

habitats because of vast environmental effects. For instance, insect populations, which inhabit 

agricultural ecosystems, may suffer high environmental variability, as they experience 

repeated extinction and colonization events between cultivation and non-cultivation seasons. 

Therefore, they may exhibit steeper slopes. In contrast, populations in stable habitats, such as 

vertebrate populations, may show greater density-dependent loss, because biological 

regulation likely works in those habitats, and, thus, their slopes may become more gradual. In 

fact, Park, Tayler, and Grewal (2013) observed steeper TL slopes in nematode in r-strategist 

populations. The temporal and spatial TL slopes may reflect life history variation (Linnerud 

et al., 2013; Park, Tayler, & Grewal, 2013; Samaniego, Sérandour, & Milne, 2012). 

Therefore, studies on the relationship of TL slopes to life history must be conducted to 
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elucidate the process of determining bT and bS, and they may also contribute to providing 

deeper insights into the biological interpretation of the slopes. 

 

4.4 | Temporal and spatial variance 

The variance of the spatial slopes (bS) was greater than that of the temporal slopes (bT). This 

difference was observed in the parameter combination simulation (Fig. 2), the environmental 

synchrony simulation (Fig. 6a), and the density-dependent dispersal simulation (Fig. 6b). 

These differences indicate that population densities are more strongly bound for the temporal 

TL than for the spatial TL within the conditions of this study.  

The temporal variance of population densities is determined by the interplay between 

density dependence and environmental variability (Saitoh and Cohen 2018). The temporal 

slopes increased with the increase of environmental variability and decreased with the 

increase of density dependence coefficients (Table 1).  

The spatial variation of population densities primarily depends on the variation of 

mean densities of the observed populations. The spatial variation was also affected by the 

temporal variation of population densities because a population temporally fluctuates around 

the equilibrium density (the mean observed density in this study). The primal spatial variation 

may be enhanced in highly fluctuating populations by the temporal divergence of population 

densities from the equilibrium density, but not so in less fluctuating populations. Therefore, 

the variance of bS may be greater than the variance of bT. This pattern was demonstrated by 

the fundamental simulation (Fig. 5a1,5a2).  

The generality of this discussion can be tested by comparing temporal slopes with 

spatial slopes after taking the variation of life history into consideration. In empirical studies, 

variances are higher for the spatial slopes (bS) than for the temporal slopes (bT); bS: 0.092 vs 

bT: 0.073 for aphids; bS: 0.142 vs bT: 0.023 for moths; bS: 0.129 vs bT: 0.080 for Birds 
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(Taylor, Woiwod, & Perry,1980), while Zhao, Sheppard, and Reid (2019) reported 

inconsistent patterns in the variances of TL slopes among aphid species, plankton groups, and 

chlorophyll concentrations. Further comparative studies on temporal and spatial slopes in 

populations with various life histories may contribute to identifying the origin of the variation 

of population densities and will provide a deeper insight into the formation of TLs. 
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TABLE 1 Summary of the results of multiple regression analyses of the effects of 

environmental variability (SD) and density dependence ([1 + a1] and a2) on the temporal 

slope bT (A) and the spatial slope bS (B) of Taylor’s law using datasets generated by the 

parameter combination simulation (see the main text). A response variable was the slope (bT 

or bS), and explanatory variables were [1 + a1], a2, and SD. The primary model consisted of 

the three explanatory variables and all their multiplicative products. The primary model was 

selected as the best model by stepAIC. PRC = partial regression coefficient, SE = standard 

error of estimate. 

The primary model: bT (or bS) ~ [1 + a1] + a2 + SD + [1 + a1]:a2 + a1:SD + a2:SD + [1 + 

a1]:a2:SD 

 (A) Temporal TL (B) Spatial TL 

 PRC  SE  PRC  SE  

Intercept 1.910 0.003 0.553 0.007 

1 + a1 –0.502  0.006 –1.545  0.015 

a2 –0.516 0.005 –1.226 0.012 

SD 0.433 0.005 2.502 0.012 

[1 + a1]:a2* –0.473 0.009 –1.132 0.022 

[1 + a1]:SD* 0.525 0.010 1.617 0.025 

a2:SD* 0.475 0.009 1.388 0.021 

[1 + a1]:a2:SD* 0.442  0.015 1.490  0.037 

 

(A) F-statistic: 4162 on 7 and 31992 DF, P-value: < 2 ´ 10-16, adjusted R2: 0.477 

(B) F-statistic: 1.06 ´ 104 on 7 and 31992 DF, P-value: < 2 ´ 10-16, adjusted R2: 0.699 

 
* “:” represents a product of variables. 
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Figure 1 Temporal and spatial Taylor’s laws of observed populations, and frequency 
distribution of pairwise cross-correlation coefficients (rc) between population growth rates. 
(a) A scatter plot of log10(temporal variance) as a function of log10(temporal mean) of 
observed population densities estimated by a Bayesian method (see the main text) from 31 
years (t = 1962, …, 1992) for 85 grey-sided vole populations (n = 85). (b) A scatter-plot of 
log10(spatial variance) as a function of log10(spatial mean) of observed population densities 
from 85 populations for 31 years (n = 31). The solid lines and the equations are obtained 
from the ordinary least-squares linear regression (OLS) of log10(variance) against 
log10(mean). The curved dotted line comes from the least-squares quadratic regression. (c) 
Frequency distribution of pairwise cross-correlation coefficients (rc) between population 
growth rates of observed populations as an index of population synchrony (n = 3,570). The 
dark shaded areas indicate the significantly positive cross-correlation coefficients (rc ³ 0.361, 
P < 0.05). 
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Figure 2 Frequency distributions of simulated TL slopes in the parameter combination 
simulation (see the main text for details). Thirty-two-thousand datasets, each of which 
consisted of 85 populations over 31 years, were produced. (a) Frequency distribution of the 
simulated slope bT of the temporal TL (range: 0.493 to 3.508). The dark shaded areas indicate 
the frequency of data sets in which a simulated bT was significantly higher than zero. (b) 
Frequency distribution of the simulated slope bS of the spatial TL (range: –3.790 to 5.441). 
The dark shaded areas indicate the frequency of data sets in which a simulated bS was 
significantly higher than zero. (c) A scatter-plot of the spatial slopes (bS) for the temporal 
slopes (bT).   
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Figure 3 Probability that each of the three model parameters (a1, a2, and SD) of the 
Gompertz model produced TL slopes with 1 < b < 2. Thirty-two-thousand data sets, each of 
which consisted of 85 populations over 31 years, were produced using various combinations 
of the model parameters on the parameter combination simulation (see the main text for 
details). (a1) The probability for 1 < bT < 2 is represented for 79 values of the density 
dependence coefficient with one-year lag (1 + a1). (a2) The probability for 1 < bT < 2 is 
represented for 40 values of the density dependence coefficient with two-year lag (a2). (a3) 
The probability for 1 < bT < 2 is represented for 20 values of the environmental variability 
parameter (SD). (b1) The probability for 1 < bS < 2 is represented for 79 values of the density 
dependence coefficient with one-year lag (1 + a1). (b2) The probability for 1 < bS < 2 is 
represented for 40 values of the density dependence coefficient with two-year lag (a2). (b3) 
The probability for 1 < bS < 2 is represented for 20 values of the environmental variability 
parameter (SD).  
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Figure 4 Relationship between TL slopes and density dependent coefficients ([1 + a1] 
and a2) in the parameter combination simulation. The shading of each cell indicates the 
probability for 1 < b < 2 for each combination of density dependent coefficients ([1 + a1] and 
a2) in the range of SD between 0.05 and 1. The lighter shaded region indicates higher 
probability. Observed populations of the Hokkaido vole are illustrated by yellow circles (n = 
85). (a) The probability of a temporal slope for 1 < bT < 2. The highest probability was 0.85. 
(b) The probability of a spatial slope for 1 < bS < 2. The highest probability was 0.70. 
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Figure 5 Frequency distributions of simulated TL slopes and the degree of population 
synchrony. Ten-thousand datasets, each of which consisted of 85 populations over 31 years, 
were produced in the following four simulation analyses: (a1–a3) the fundamental 
simulation, (b1–b3) the environmental-synchrony simulation, (c1–c3) the density-dependent 
dispersal simulation, and (d1–d3) the combined simulation (see the main text for simulation 
procedures). The dark shaded areas indicate the frequency of datasets in which the simulated 
temporal (bT) or spatial (bS) slopes were included in the 95%CI of the observed slope. For 
population synchrony which is represented as a pairwise cross-correlation coefficient (rc) 
between population growth rates, the frequencies of data sets with a simulated rc in the 
interquartile range of the observed value are illustrated in the dark shaded areas. 

 

Fr
eq

ue
nc

y

800

1.0 2.0 3.0

4000

3000

2000

1000

0

4000

3000

2000

1000

0
1.0 2.0 3.0

Fr
eq

ue
nc

y

1.0 2.0 3.0

4000

3000

2000

1000

0

4000

3000

2000

1000

0
1.0 2.0 3.0

Fr
eq

ue
nc

y

4000

3000

2000

1000

0

4000

3000

2000

1000

0

0

200

400

600

4000

0

1000

2000

3000

800

0

200

400

600
(d1) (d2) (d3)

(b1) (b2) (b3)

(a1) (a2) (a3)

(c1) (c2) (c3)

1.0 2.0 3.0 1.0 2.0 3.0

0.2 0.40.0 0.1 0.3 0.5 0.6

Synchrony (rc)Temporal slope (bT) Spatial slope (bS)

Synchrony (rc)Temporal slope (bT) Spatial slope (bS)

Synchrony (rc)Temporal slope (bT) Spatial slope (bS)

Synchrony (rc)Temporal slope (bT) Spatial slope (bS)

0.2 0.40.0 0.1 0.3 0.5 0.6

Fr
eq

ue
nc

y
4000

1.0 2.0 3.0

4000

3000

2000

1000

0

4000

3000

2000

1000

0
1.0 2.0 3.0 0.2 0.40.0

0

2000

0.1 0.3

8000

6000

0.5

0.2 0.40.0 0.1 0.3 0.5 0.6

0.6



 -38- 

 

Figure 6 Scatter plots of temporal (bT) and spatial (bS) slopes for an index of 
environmental synchrony (ρ) and density-dependent dispersal rate (d), and the degree of 
population synchrony (rc) for ρ or d. (a1) A scatter plot of the temporal slope (bT) for 
environmental synchrony. The gray zone indicates the range of 95%CI for the observed bT. 
(a2) A scatter plot of the spatial slope (bS) for environmental synchrony. The gray zone 
indicates the range of 95%CI for the observed bS. (a3) A scatter plot of population synchrony 
for environmental synchrony. The gray zone indicates the interquartile range of the observed 
rcs. (b1) A scatter plot of the temporal slope (bT) for dispersal rate. The gray zone indicates 
the range of 95%CI for the observed bT. (b2) A scatter plot of the spatial slope (bS) for 
dispersal rate. A gray zone indicates the range of 95%CI for the observed bS. (b3) A scatter 
plot of population synchrony for dispersal rate. The gray zone indicates the interquartile 
range of the observed rcs. 
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