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ABSTRACT 15 
Fucoxanthin (Fx), a major carotenoid found in brown seaweed, is known to show a 16 
unique and wide variety of biological activities. Upon absorption, Fx is metabolized to 17 
fucoxanthinol and amarouciaxanthin, and these metabolites mainly accumulate in 18 
visceral white adipose tissue (WAT). As seen in other carotenoids, Fx can quench 19 
singlet oxygen and scavenge a wide range of free radicals. The antioxidant activity is 20 
related to the neuroprotective, photoprotective, and hepatoprotective effects of Fx. Fx is 21 
also reported to show anti-cancer activity through the regulation of several biomolecules 22 
and signaling pathways that are involved in either cell cycle arrest, apoptosis, or 23 
metastasis suppression. Among the biological activities of Fx, anti-obesity is the most 24 
well-studied and most promising effect. This effect is primarily based on the 25 
upregulation of thermogenesis by uncoupling protein 1 expression and the increase in 26 
the metabolic rate induced by mitochondrial activation. In addition, Fx shows 27 
anti-diabetic effects by improving insulin resistance and promoting glucose utilization 28 
in skeletal muscle. 29 
 30 
Keywords: Brown seaweeds, Fucoxanthin, Anti-obesity, Anti-diabetes, Anti-cancer 31 
 32 
1. Introduction 33 
 34 

Seaweeds (marine macroalgae) are photosynthesizing plants that form the basic 35 
biomass in the intertidal zone. They are a varied group, with sizes ranging from a few 36 
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centimeters to 100 m in length. According to their color, they are divided into three 37 
main classes: green (chlorophytes), red (rhodophytes), and brown (phaeophytes). Brown 38 
seaweeds are the most consumed species, followed by red and green seaweeds [1]. As 39 
seaweeds lack many of the distinct organs (roots, stems, leaves) found in terrestrial 40 
plants, whole parts can be used as a source of food, cosmetics, and other products. They 41 
have high nutritional value, in both fresh and dried forms, and act as ingredients in a 42 
wide variety of prepared foods.  43 

The unique and phenomenal biodiversity of the marine environment provides a large 44 
pool of novel and bioactive nutrients for marine organisms. Seaweed is one of the 45 
potential sources of these marine bioactive compounds. Seaweed has been consumed in 46 
East Asian countries for centuries, and lately, knowledge of the health benefits of 47 
dietary seaweed has gained attention in Western cultures [2,3]. According to the 48 
Seafood Source report, new products containing seaweed in the European market have 49 
increased yearly [2]. Seaweed is rich in non-starch polysaccharides, mainly dietary 50 
fibers, and essential minerals such as potassium and calcium [4,5]. The quality of 51 
seaweed protein is comparable to other vegetables, mainly due to its high content of 52 
essential amino acids. The lipid content of seaweed is generally low, but seaweeds 53 
contain high levels of functional omega-3 eicosapentaenoic acid and omega-6 54 
arachidonic acid [5]. Additionally, the value of edible seaweed in human nutrition is 55 
strongly recognized for its richness in several phycochemicals. Consequently, seaweed 56 
is currently considered a “superfood”, which is a market term recognizing health 57 
benefits including superior nutritional profile and richness in bioactive phytochemicals 58 
[6].  59 

Primary metabolites of seaweed, such as polysaccharides, proteins, and lipids, are 60 
directly involved in their physiological functions under normal growth conditions, while 61 
the exposure to different stress conditions, (e.g., ultraviolet radiation, changes in 62 
temperature and salinity, or environmental pollutants) stimulates them to produce a 63 
wide range of secondary metabolites [6,7]. Among these secondary metabolites, much 64 
interest has been paid to seaweed antioxidants [2,6,8-13]. Compared to its terrestrial 65 
counterparts, seaweed is potentially a good source of antioxidants and has an advantage 66 
over many other organisms in that it can appropriately produce a large amount of 67 
desirable and specific bioactive compounds.  68 

Alcoholic extracts from seaweed have been reported to show antioxidant activity 69 
due to the presence of polyphenols in the extracts. Red and green seaweeds contain 70 
bromophenols, phenolic acids, and flavonoids as the major polyphenols, while 71 
phlorotannins are only dominant in brown seaweed [8,14]. Phlorotannins are a group of 72 
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complex polymers of phloroglucinol (1,3,5-trihydroxybenzene). Based on the type of 73 
structural linkage between the phloroglucinol sub-units, they can be systematically 74 
classified into eckols, fucols, fuhalols, ishofuhalols, phloroethols, or fucophloroethols 75 
[2]. Many studies have shown that phenolic extracts from seaweeds have several kinds 76 
of biological activities [2,6,7,9,15-17]. Although these effects may be due to their 77 
ability to modulate oxidative stress and inflammatory cascades, the detailed mechanism 78 
remains unclear, mainly due to their complex chemical structure and the difficulty of 79 
identifying metabolites and active compounds after absorption. 80 

Carotenoids are also major seaweed antioxidants. They are generally localized in 81 
photosynthetic organisms and play an important role in photochemical events [18]. 82 
β-Carotene, α-carotene, zeaxanthin, lutein, violaxanthin, neoxanthin, and fucoxanthin 83 
(Fx) has been reported in several kinds of seaweed [19]. Among these carotenoids, Fx is 84 
a specific carotenoid only found in algae but not terrestrial plants. Fx is photosynthetic 85 
pigment mainly found in brown seaweed and Bacillariophyta (diatoms). These algae are 86 
widely distributed in cold and temperate ecosystems throughout the world; therefore, Fx 87 
is regarded as one of the most abundant carotenoids in nature [20]. In addition to the 88 
important role of Fx in the photosynthesis and photoprotection of algae, Fx also has 89 
health benefits [21].  90 

This article focuses on the current scientific literature regarding the bioactive 91 
significance of Fx, including metabolic, anti-oxidant, anti-obese, anti-diabetic, and 92 
anti-cancer activities,. 93 
 94 
2. Structure and safety 95 
 96 

Fx has a distinctive structure with an allenic bond, a 5,6-monoepoxide, and nine 97 
conjugated double bonds (Fig. 1). The conjugated double bond system in the Fx 98 
molecule can quench singlet oxygen (1O2) and the electron-rich status of Fx makes it 99 
more suitable to react with free radicals [21]. Therefore, Fx can protect cells, tissues and 100 
other structures against oxidative damage; however, it would be difficult to explain all 101 
of its beneficial health effects only by its antioxidant activity [22]. Much attention has 102 
been paid to the interaction between Fx or its metabolite and biological key molecules 103 
such as receptors and co-activators, where the specific chemical structure of a 104 
carotenoid may be essential for binding. To better understand the physiological effect of 105 
Fx, more efforts are needed to clarify the ability of Fx or its metabolites in modulating 106 
the expression of specific genes and proteins involved in biological systems (Fig. 2).  107 
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Fx-rich brown seaweed has been used in Southeast Asian countries as a traditional 108 
food. In addition to its use as a food source, the safety of Fx has been demonstrated 109 
through animal experiments. A single dose study indicated no mortality and no 110 
abnormalities in male and female ICR mice fed 1000 and 2000 mg/kg purified Fx. In a 111 
repeated dose study, no adverse effect of purified Fx was observed in mice given 500 and 112 
1000 mg/kg Fx for 30 days [23] and in rats given 200 mg/kg Fx as Fx-containing oil for 113 
13 weeks [24]. Additional animal studies [25-27] and a human study [28] confirmed that 114 
Fx caused no toxicities. On the basis of remarkable biological properties and safety, Fx 115 
can be considered a nutraceutical ingredient and can be utilized in the food industry and 116 
other fields to design new and improved nutraceuticals.  117 
 118 
3. Absorption and metabolism 119 
 120 

An In vitro study showed the hydrolysis of Fx to fucoxanthinol (FxOH) during 121 
absorption by Caco-2 cells [29] and the transformation of FxOH into amarouciaxanthin 122 
A in human hepatoma HepG2 cells [30] (Fig. 2). An animal study also revealed that 123 
dietary Fx is rapidly hydrolyzed to FxOH in the gastrointestinal tract by digestive 124 
enzymes, such as lipase and cholesterol esterase within 2 h of administration [30,31]. 125 
FxOH was further converted into amarouciaxanthin A through 126 
dehydrogenation/isomerization in mice liver microsomes and in HepG2 cells [30,32]. 127 
Although FxOH and amarouciaxanthin A have been detected in plasma and all tissues of 128 
mice given Fx [30,32-34], most Fx metabolites preferentially accumulate as 129 
amarouciaxanthin A in the visceral WAT [33,35]. Yonekura et al. [36] have also reported 130 
the preferential accumulation of Fx metabolites in visceral WAT, while these researchers 131 
observed that lutein and its metabolites mostly accumulated in the liver. On the other 132 
hand, some researchers have demonstrated the absorption of Fx without conversion to 133 
any metabolites [33,37].  134 
Several studies have discussed the bioavailability of Fx in cellular, animal, and human 135 
models. The absorption rate of Fx in Caco-2 cells was reported to be the lowest out of 136 
11 carotenoids tested [38]; however, the study only analyzed intact Fx but not its 137 
metabolites. Based on animal studies showed the ratio of absorbed Fx to the dose 138 
calculated using metabolite analysis, FxOH and amarouciaxanthin A exhibited higher 139 
levels than astaxanthin [33]. Other animal studies showed that Fx is absorbed in a 140 
similar fashion to β-carotene or lutein [30,39,40]. Furthermore, those authors concluded 141 
that Fx is more efficiently absorbed than lutein esters. In contrast, Hashimoto et al. [41] 142 
demonstrated from a human pharmacokinetics study that the bioaccessibility of Fx 143 
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seems to be lower than that of other carotenoids such as β-carotene, lutein or 144 
astaxanthin, while they demonstrated that the bioavailability of Fx was higher in human 145 
subjects than in mice. To increase bioaccessibility and stability of Fx, many challenges 146 
have been done [2]. They include encapsulation of Fx into nanoemulsions, nanoparticles, 147 
and other spray-dried powders. 148 

Fx supplementation in a mouse model of obesity effectively decreased excess fat 149 
accumulation in abdominal white adipose tissue (WAT). This activity has been reported 150 
with at least 60 mg Fx intake/kg mouse/day [35]. On the other hand, a human study 151 
demonstrated a significant reduction in the abdominal WAT of obese female volunteers 152 
with an intake of Fx less than 0.024 mg/kg/day (2.4 mg intake/day for volunteers with 153 
100 kg average weight) [42]. This difference in the effectiveness between rodents and 154 
humans may be due to different absorption rates and/or different sensitivities to Fx. 155 
Overall, Fx may be effective even at low levels. 156 
 157 
4. Biological activities 158 
 159 
4.1. Antioxidant activity 160 
 161 

As seen in other carotenoids, Fx can quench singlet oxygen through a physical 162 
interaction, where the excess energy of singlet oxygen is transferred to the conjugated 163 
polyene structure of Fx [43-45] (Fig. 1). Fx with added energy is excited to a triplet 164 
state upon losing energy as heat relaxes to a singlet state without structural changes. The 165 
singlet oxygen quenching activity of a carotenoid is generally influenced by the number 166 
of conjugated double bonds [45,46]. In addition, the activity is also affected by other 167 
factors such as the chain structure and functional groups of carotenoids, solvent 168 
viscosity, and substrate dispersion system [47-50]. Sachindra et al. [51] reported that Fx 169 
has 9 conjugated double bonds and has a lower quenching ability of singlet oxygen than 170 
β-carotene (11 conjugated double bonds), while Hirayama et al. [48] reported little 171 
difference in quenching ability between Fx and β-carotene. Further, more effective 172 
prevention of lipid hydroperoxide formation by Fx was found in singlet 173 
oxygen-mediated plasma lipid oxidation than by β-carotene and α-tocopherol [52].  174 

Another role of Fx as an antioxidant is attributed to the scavenging of a wide range 175 
of free radicals (Fig. 1). Fx has a unique chemical structure including an allenic bond, 176 
epoxide group, and hydroxyl group. The electron-rich status of Fx makes it more 177 
suitable for reactions with the free radicals [21]. Several studies have reported an 178 
effective radical scavenging ability of Fx [53]. Although a detailed mechanism has not 179 
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yet been determined, Fx can quench different kinds of free radicals such as 180 
1,1-diphenyl-2-picrylhydrazyl (DPPH) [51,54-57], 2,2′-azinobis-3-ethylbenzo 181 
thizoline-6-sulphonate (ABTS) [51,57], hydroxyl [51,57], superoxide [51,57], and 182 
peroxy [58] radicals.  183 

On the basis of the potential antioxidant properties of Fx, researchers examined the 184 
preventive effect of Fx on oxidative damage in biological systems. Murakami et al. [59] 185 
screened 19 natural carotenoids for their structure-function relationship with respect to 186 
radical scavenging activity. They found that the presence of an allenic bond, as seen in 187 
Fx and halocynthiaxanthin, increases the ability to inhibit the formation of superoxide in 188 
human promyelocytic HL-60 cells and of nitric oxide in mouse macrophage RAW 189 
264.7 cells. Fx significantly reduced ROS production and the viability of oxidatively 190 
damaged monkey kidney fibroblast cells [60], human HaCaT keratinocytes [61], human 191 
hematoma HepG2 cells [62], and normal human hepatic L02 cells [63]. The antioxidant 192 
activity of Fx has also been reported in vivo. When oxidative stress was induced by 193 
retinol deficiency in rats, Fx significantly reduced lipid hydroperoxide levels of plasma, 194 
liver, and liver microsomes [64]. In another animal experiment [65], Fx 195 
supplementation significantly increased the total antioxidant capacity in plasma. The 196 
antioxidant activity of Fx is not only based on its singlet oxygen and free radical 197 
scavenging activities but also strongly related to its upregulation of antioxidant enzymes 198 
such as catalase [64] and gluthathione peroxidase [65]. In the upregulation pathway, 199 
several studies have demonstrated the involvement of the activation of Akt/nuclear 200 
factor-erythroid 2-related (Nrf2) by Fx [63,65,66]. 201 
 202 
4.2. Anti-obesity effect 203 
 204 

Many reviews have been published on the protective effects of Fx against various 205 
diseases [7,21,53,67-76] (Fig. 2). Of all characteristics of Fx, anti-obesity is certainly 206 
the most well-studied and promising [21,67,68,70,72,76].   207 

Anti-obesity properties of Fx were first discovered in rats and mice given brown 208 
seaweed lipids containing Fx [77]. This effect has been confirmed using various animal 209 
models [78-84]. In addition, a comparative study indicated that Fx attenuates excess fat 210 
accumulation in the abdominal WAT of the obese KK-Ay mice [79] and of C57BL/6J 211 
mice fed a high-fat diet [83], while no effect was found in the C57BL/6J mice fed a 212 
normal-fat diet [79]. These results suggest the suppressive effect of Fx on WAT weight 213 
gain is specific for adiposity in the development of obesity in mice. This specificity will 214 
be important for the safe application of Fx in human therapies for obesity. In a human 215 
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clinical trial, 2.4 mg Fx daily for volunteers (average weight 100 kg) resulted in a 216 
significant decrease in body fat, body weight, liver fat content, and serum triglyceride 217 
levels, which was accompanied by improvement in liver function tests [42]. The clinical 218 
trial also demonstrated an increase in the resting energy expenditure after >2.4 mg Fx 219 
intake. Hitoe and Shimoda [28] also examined the effect of Fx on mildly obese Japanese 220 
volunteers and reported a significant reduction of relative body weight, body mass index, 221 
and visceral fat area after 3 mg daily Fx intake for 4 weeks. Relative values of total fat 222 
mass, subcutaneous fat area, waist circumference, and right thigh circumference were 223 
also significantly lower after 1 mg Fx intake compared to the placebo group. Another 224 
study reported the induction of BAT expression by Fx intake in obese human subjects 225 
assessed by 18F-fluorodeoxyglucose-positron emission tomography [85].  226 

Obesity is defined as a condition of excess body fat induced by increased energy 227 
intake and/or reduced energy expenditure. Obesity is associated with a large number of 228 
metabolic disorders that induce cardiovascular and various other non-communicable 229 
diseases. Lifestyle interventions, such as a change in dietary habits and increased 230 
physical activity, are fundamentally important to obesity therapy [86]. In addition to 231 
these essential interventions, much attention has been paid to nutritional and dietary 232 
factors, especially metabolically active food compounds. Major molecular mechanisms 233 
for controlling obesity with nutrition include reducing food intake through the control of 234 
signals from the gut and adipose tissue; inhibiting nutrient absorption; increasing 235 
thermogenesis to dissipate food energy as heat; and modulating fat synthesis/lipolysis or 236 
adipose differentiation/apoptosis [87,88]. Many functional food components have been 237 
shown to alter energy metabolism by influencing fat absorption, substrate utilization 238 
rate, and thermogenesis.  239 

Upregulation of sympathetically mediated thermogenesis is the most targeted 240 
component when developing functional foods for obesity therapy. Uncoupling protein 1 241 
(UCP1) expression is a major factor in this thermogenic process. UCP1 can be induced 242 
in brown adipose tissue (BAT) [89-91] and in beige adipocytes of WAT [92-94]. 243 
Although several mechanisms have been proposed for the anti-obesity effects of Fx, 244 
adaptive thermogenesis via UCP1 induction in adipose tissue is the major target of Fx 245 
[21,22,53,68,72,73,95] (Fig. 3). Activated UCP1, short circuits the electrochemical 246 
gradient normally used to drive adenosine triphosphate (ATP) synthesis. This can occur 247 
with the re-entry of protons into the mitochondrial matrix, bypassing ATP synthase. The 248 
uncoupling of oxidative phosphorylation releases excess energy intake as heat. Feeding 249 
Fx to mice increased BAT weight and induced UCP1 mRNA and protein expressions in 250 
abdominal WAT [77,81,82], suggesting that the anti-obesity effect of Fx is derived from 251 
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an increase in the adaptive thermogenesis through UCP1 expression. In addition, Fx 252 
supplementation in animal models increased the mRNA and protein expression of 253 
several biomolecules, such as β3-adorenarine receptor (β3Ad) and peroxisome 254 
proliferator-activated receptor gamma co-activator 1 (PGC-1), in WAT [83,96]. The 255 
upregulation of β3Ad and PGC-1 are known to positively regulate UCP-1 expression 256 
[21]. Furthermore, PGC-1 upregulation can also induce mitochondrial biogenesis. 257 
Therefore, the anti-obesity effect of Fx would also be related to the increase in 258 
metabolic rate induced by mitochondrial activation [97] (Fig. 3).  259 

Several studies have also shown that Fx ameliorates obesity through its effects on 260 
lipid metabolism. Woo et al. [98] reported an increase in the content of non-digested 261 
fecal lipids and a decrease in hepatic lipid and plasma triacylglycerol levels by Fx 262 
supplementation to C57BL/6N mice fed a high-fat diet. The effect of Fx could be 263 
explained by reduced activity of hepatic lipogenesis and enhanced activity of fatty acid 264 
β-oxidation [98,99]. In another study using obese mice fed a high fat diet [84], the 265 
mRNA expression and activity of lipogenic enzymes were significantly downregulated 266 
in a dose-dependent manner in epididymal adipose tissue, with simultaneous 267 
upregulation of fatty acid β-oxidation. In addition, Fx increased the activities of key 268 
enzymes in lipid metabolism, such as AMP-activated protein kinase and its downstream 269 
target acetyl-CoA carboxylase in epididymal adipose tissue of diet-induced obese mice 270 
[80]. Moreover, Fx and FxOH have been demonstrated to inhibit pancreatic lipase 271 
activity and suppress triacylglycerol absorption after oral infusion with oil [31]. 272 
Improvement of hepatic lipid metabolism by Fx intake would be related to risk 273 
reduction in non-alcoholic fatty liver disease (NAFLD) [100]. Potential protective 274 
functions of Fx against the development of NAFLD have also been recognized in a 275 
human study [42]. Consumption of an Fx supplement containing 2.4 mg of pure Fx for 276 
16 weeks decreased liver fat content and serum concentrations of TAG and C-reactive 277 
protein in obese premenopausal women with NAFLD. 278 

The regulatory effect of Fx and Fx metabolites on adipocyte differentiation may be 279 
involved in its anti-obesity effects [21,73]. These compounds suppressed murine 280 
pre-adipocyte differentiation to mature adipocytes by inhibiting intracellular lipid 281 
accumulation and decreasing glycerol-3-phosphate dehydrogenase activity [101,102]. 282 
When the suppressive effect of Fx and Fx metabolites on the differentiation of 3T3-L1 283 
preadipocytes to adipocytes was compared [101,102], amarouciaxanthin A showed the 284 
strongest effect, followed by FxOH and Fx. Fx and FxOH downregulated adipogenic 285 
genes, such as peroxisome proliferator-activated receptor γ (PPARγ) and 286 
CCAAT/enhancer binding protein α (C/EBPRα), in a dose-dependent manner. On the 287 
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other hand, Kang et al. [103] has demonstrated that the effect of Fx on adipocytes 288 
depends on its differentiation stage, early (days 0-2), intermediate (days 2-4), and late 289 
stage (days 4-7). Fx paradoxically promoted adipocyte differentiation during the first 290 
two days by increasing the expression of PPARγ, C/EBPRα, sterol regulatory 291 
element-binding protein 1c, and adipocyte fatty acid-binding protein, while it inhibited 292 
differentiation at later stages by reducing these protein expression levels.  293 

Okada et al. [104] compared the suppressive effect of 13 naturally occurring 294 
carotenoids on the differentiation of 3T3-L1 adipose cells. Among these carotenoids, 295 
neoxanthin did show suppressive effects on lipid accumulation, glycerol-3-phosphate 296 
dehydrogenase (GPDH) activity and adipocyte protein 2 expression in the 3T3-L1 297 
differentiation. However, treatment with (rac)-α-carotene, carotenoids with keto group 298 
(citranaxanthin, rhodoxanthin, canthaxanthin) and an epoxy group (β-carotene 299 
5,6-epoxide) did not result in apparent changes in the level of GPDH activity. The same 300 
was true for hydroxyl carotenoid (β-cryptxanthin, lutein), epoxy-hydroxy carotenoids 301 
(violaxanthin, antheraxanthin, lutein epoxide), and keto-hydroxy cerotenoids 302 
(capsorubin). Interestingly, neoxanthin contain allenic bond, a 5,6-monoepoxide, and 303 
three hydroxyl groups and this structure is very similar in structure to FxOH and 304 
amarousiaxanthin A, major metabolites of Fx. These findings provide further evidence 305 
for the theory that suppressive effect on adipocyte differentiation in carotenoids are 306 
related to structural properties, where allenic bond is essential for the expression of the 307 
activity. 308 
 309 
4.3. Anti-diabetic effect 310 
 311 

Obesity has been recognized as a driver of type 2 diabetes [105]. Indeed, the 312 
majority of patients with type 2 diabetes are obese [106], and the increased incidence of 313 
type 2 diabetes has paralleled that of obesity. Excess fat accumulation in abdominal 314 
WAT in obese individuals increases the secretion of biologically active mediators, 315 
termed adipokines/chemokines, from adipocytes, as part of the endocrine system [21]. 316 
Development of obesity leads to an increase in pro-inflammatory adipokines such as 317 
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant 318 
protein-1. These pro-inflammatory adipokines induce macrophage infiltration into the 319 
abdominal WAT, leading to chronic low-grade inflammation. Furthermore, saturated 320 
fatty acid and TNF-α derived from adipocytes and macrophages, respectively, initiate a 321 
paracrine loop that leads to inflammation in the adipose tissue and upregulation of 322 
pro-inflammatory adipokine secretions. These adipokines are reported to increase 323 
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insulin sensitivity [107]. On the other hand, Fx supplementation significantly inhibited 324 
macrophage infiltration and downregulated pro-inflammatory adipokine expression and 325 
secretion in the abdominal WAT of obese/diabetes KK-Ay mice, resulting in the 326 
improvement of insulin resistance and subsequent blood glucose levels [79,82]. 327 
Normalization of blood glucose levels by Fx intake has also been observed in C57BL/6J 328 
mice fed a high fat diet [83,98,99], while Fx did not affect the blood glucose levels in 329 
C57BL/6J mice fed a normal diet [79], suggesting the specificity of the lowering effect 330 
of Fx on diabetes. 331 

Another possible mechanism for the anti-diabetic effect of Fx is the regulation of 332 
glucose transporter 4 (GLUT4) [83,96]. GLUT4 protein is the predominant isoform of 333 
the glucose transporters expressed abundantly in skeletal muscle and adipose tissue. 334 
With insulin and other stimuli, GLUT4 expression is upregulated, quickly moves to the 335 
plasma membrane from an intracellular location, and promotes glucose uptake [108]. 336 
However, in type 2 diabetes mellitus, insulin signaling is impaired and GLUT4 337 
expression and its translocation is attenuated [109]. When mice were fed high fat (HF) 338 
or normal fat (NF) diets, the HF group experienced hyperglycemia, hyperinsulinemia 339 
and hyperleptinemia with a significant decrease in GLUT4 mRNA levels in skeletal 340 
muscle compared to the NF group [83]. These disorders were completely normalized by 341 
the addition of Fx to the HF diet, and GLUT4 mRNA levels in the HF group with Fx 342 
were restored to levels observed in the NF group. These anti-diabetic effects of Fx were 343 
recapitulated in obese/diabetes KK-Ay mice [96]. A significant increase in GLUT4 344 
levels was found in the extensor digitorum longus muscle of the obese/diabetes mouse 345 
model together with an upregulation of PGC-1α expression [96]. PGC-1α is an 346 
important co-activator that has been implicated in the regulation of mitochondrial 347 
biogenesis and the activation of GLUT4 [110,111]. In addition, Fx supplementation 348 
significantly increased GLUT4 translocation to plasma membranes from the cytosol in 349 
the soleus muscle of KK-Ay mice.  350 

 351 
4.4. Anticancer activity 352 
 353 
   Compared with other carotinoids, Fx is known to exhibit stronger anti-proliferative 354 
effects on several cancer cell types [69,112]. Fx strongly decreased the viability of 355 
many cancer cell types such as human neuroblastoma GOTT [113], leukemia (HD-60) 356 
[114], epithelial colorectal adenocarcinoma (Caco-2, DLD-1 and HT-29) [115], human 357 
prostate cancer (PC-3) [116], mouse melanoma (B16) and human colorectal carcinoma 358 
(HCT116) [117], while it did not affect the normal cell viability [117]. Kotake-Nara et 359 
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al. [118] compared the effect of 15 kinds of carotenoids (phytoene, phytofluene, 360 
ξ-carotene, lycopene, α-carotene, β-carotene, β-cryptoxanthin, canthaxanthin, 361 
astaxanthin, capsanthin, lutein, zeaxanthin, vioaxanthin, neoxanthin, and fucoxanthin) 362 
present in foodstuffs on the growth of human prostate cancer cell lines (PC-3, DU 145 363 
and LNCap). Among the carotenoids evaluated, allenic carotenoids, neoxanthin and Fx, 364 
showed the higher activity in the growth reduction of these prostate cancer cells as 365 
compared with other kinds of carotenoids without allenic bond, suggesting the 366 
importance of allenic bond in the anti-proliferative ability of carotenoids. 367 

Fx intake also suppressed the number and growth of tumors in animal models 368 
[119-122]. In addition, brown seaweed extract (containing Fx showed chemopreventive 369 
activity against the formation of aberrant crypt foci, a preneoplastic marker for colon 370 
cancer, in rats [123,124]. To investigate the underlying mechanisms of the anti-cancer 371 
potential of Fx, many studies have focused on several biomolecules and signaling 372 
pathways involved in either cell cycle arrest, apoptosis, or metastasis suppression 373 
[37,67,69,71,112]. These studies suggest that Fx could arrest the cell cycle of tumor 374 
cells in the G0/G1 and/or G2/M phase by altering the expression of various genes 375 
including upregulating GADD45, p21 and p27 and downregulating cyclin D1, cyclin 376 
D2, CDK4, and survivin [37,67,69,71,75,112,125]. The apoptotic effect of Fx is 377 
well-studied because apoptosis of cancer cells is a promising method to control and treat 378 
cancer. Fx induces apoptosis by targeting different molecular pathways including Bcl-2, 379 
caspase, mitogen-activated protein kinase, nuclear factor kappa B families, and others 380 
[69,71,75]. 381 

Recently, efforts have focused on the chemopreventive effect of Fx in colorectal 382 
cancer. Takahashi et al. [126] found that FxOH showed higher anti-proliferative activity 383 
than Fx on different kinds of colorectal cancer cell lines including DLD-1, HCT116, 384 
SW620, Caco-2, Colo205, and WiDr. The anti-proliferative capacity of FxOH was also 385 
effective in colorectal cancer stem cells (CD44high and EpCAMhigh cells) [127]. These 386 
cells initiate colorectal carcinogenesis and play a central role in tumor development, 387 
exhibiting several biological properties including self-renewal, multipotential, 388 
drug-resistance, sphere formation, and tumor formation in xenograft models. FxOH 389 
significantly inhibited the growth of the colorectal cancer stem cells [127]. Fx also 390 
suppressed sphere-forming activity, migration and invasion of colorectal cancer stem 391 
cells in a dose-dependent manner [128] and downregulated several biomolecules related 392 
to cell proliferation, cell cycle, metastasis, and extracellular adhesion [127]. In addition, 393 
Fx induced anchorage-dependent apoptosis in human colorectal cancer (CRC) cells 394 
through the suppression of integrin signals [129,130]. In animal models, Fx 395 
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administration significantly suppressed tumor development in a xenograft model of 396 
colorectal cancer [127,131], decreased the number of colorectal polyps, and decreased 397 
colonic lesions compared to untreated control mice [132]. In addition, Fx administration 398 
resulted in significantly lower numbers of colorectal cancer stem cell-like cells, 399 
cancer-associated fibroblast-like, tumor-associated macrophage-like and dendritic 400 
cell-like cells in colonic mucosa compared to untreated control mice [132].  401 
 402 
4.5. Other activities 403 
 404 

Given that metabolic syndrome and obesity are regarded as major risk factors for the 405 
induction of cardiovascular disease (CVD), much attention has been paid to the 406 
anti-obesity and anti-diabetic effects Fx. In addition, Fx is known to show in vivo 407 
anti-oxidant, anti-inflammatory, and anti-hypertensive activities. These abilities are also 408 
important in the context of CVD. The antioxidant activity of Fx has been well-described, 409 
and several studies have reported anti-inflammatory [7] and anti-hypertensive [53,133] 410 
activities of Fx. Effective downregulation of lipopolysaccharide-induced inflammatory 411 
signaling pathways has been found in cellular models supplemented with Fx [134-136]. 412 
In these models, Fx significantly suppressed the expression and secretion of 413 
inflammatory mediators such as nitric oxide, prostaglandin E2, TNF-α, IL-6, and IL-1β 414 
and inflammatory cytokines such as cyclooxygenase (COX) and inducible nitric oxide 415 
synthase (iNOS) [137]. The levels of inflammatory markers such as IL-1β, TNF-α, 416 
iNOS, and COX-2 were downregulated in an obese mouse model [138]. The protective 417 
effect of fucoxanthin was further described in UV-induced inflammation in cellular 418 
[139] and animal [140] models. Fx has also been reported exhibit anti-hypertensive 419 
properties. Supplementation of brown seaweed containing Fx delayed the incidence of 420 
stroke symptoms and increased the life span of stroke-prone spontaneously hypertensive 421 
rats [141], although there was no significant difference in the blood pressure with Fx 422 
intake. Fx isolated from brown seaweed may also have a preventive effect on ischemic 423 
cultured neuronal cell death. An interesting, extra metabolic effect of Fx is the 424 
promotion of the synthesis of docosahexaenoic acid (DHA) in the liver, resulting in 425 
improvements in the lipid profile [34,142]. DHA is known to positively influence 426 
human nutrition and health including cardioprotection. DHA could inhibit the 427 
development of inflammation in endothelial cells, alter the function and regulation of 428 
vascular biomarkers, and reduce cardiovascular risk [143]. It can also improve 429 
hypertriglyceridemia, which is known to increase cardiovascular risk [144]. Therefore, 430 
the protective effect of Fx on CVD maybe explained by an increase in DHA levels. 431 
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Fucoxanthin protected neuronal cells against oxidative damage induced by H2O2 432 
[145,146] and oligomers of β-amyloid (Aβ) [147,148]. This effect involved the 433 
activation of PI3-K/Akt cascade and inhibition of ERK pathway by Fx [146,148]. Aβ 434 
oligomers are known as major neurotoxins in Alzheimer’s disease (AD). Fx potently 435 
reduced the formation of Aβ oligomers in vitro and in vivo [149]. In the brains of AD 436 
patients, neuronal degeneration is accompanied by markers of microglial activation and 437 
inflammation, as well as oxidant damage. Fx can ameliorate oxidative stress and 438 
inflammation in Aβ42-induced BV2 microglia cells [150]. In addition, Fx plays a 439 
protective role in animal models of traumatic brain injury [151] and middle cerebral 440 
artery occlusion [152]. Although the underlying mechanism of the neuroprotective 441 
effect of Fx has not been fully elucidated, molecular docking studies suggest the 442 
importance of interactions between Fx and key proteins related to brain function [153]. 443 
Paudel et al. [154] have shown that Fx could serve as a potent dopamine D3/D4 agonist 444 
that might be useful in the management of neurodegenerative diseases, especially 445 
Parkinson's disease. On the other hand, β-site amyloid precursor protein cleaving 446 
enzyme 1 (BACE1) levels are known to be elevated in sporadic AD brains at disease 447 
onset. The BACE1 levels are upregulated under stress conditions such as cerebral 448 
ischemia, hypoxia, and oxidative stress. Fx inhibited the BACE1 activity through the 449 
interaction between two hydroxyl groups on the Fx molecule and two additional 450 
BACE1 residues (Gly11 and Ala127) [155]. 451 
 452 
5. Fx source and its extraction 453 
 454 

Although Fx can be synthesized chemically, extraction from brown seaweed is a 455 
more accessible, safe, and economic method [75]. The Fx content in brown seaweed 456 
varies greatly by species, geographical location, season, temperature, salinity, and light 457 
intensity, as well as interactions among these factors [5]. Comparative studies on 15 458 
brown seaweed samples collected near the northern coast of Japan have revealed that 459 
higher levels of Fx were found in Sargassum horneri (Turner) (370 mg/100 g dry 460 
weight) and Cystoseira hakodatensis (Yendo) (240 mg/100 g dry weight) [156]. The 461 
same research group also examined seasonal changes in the lipid components of the two 462 
brown seaweeds, S. horneri and C. hakodatensis [157]. They collected young thalli of 463 
both brown seaweeds cultivated in the northern coast of Japan. The Fx content of both 464 
brown seaweeds increased from October/November, reached a maximum in January, 465 
and decreased thereafter. In January, the Fx content of S. horneri and C. hakodatensis 466 
was 449 mg and 363 mg/100 g dry weight, respectively. Furthermore, by controlling the 467 
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cultivation conditions, such as temperature, light, and depth, a high content of Fx (1080 468 
mg/100 g dry weight) was found in S. horneri cultivated in cold water [158]. 469 

Fx is generally extracted from brown seaweed with organic solvents [159-166]. 470 
However, recovery remains low due to the presence of various physical and chemical 471 
barriers in the complex matrix. In addition, conventional extraction methods are 472 
time-consuming and require a large amount of organic solvent. To overcome the 473 
disadvantages of conventional solvent extractions, several studies have reported 474 
advanced techniques, such as pressurized liquid extraction [167], enzyme-assisted 475 
extraction [168], and extraction with supercritical CO2 [169-173]. Much interest has 476 
been generated in the development of new, eco-friendly alternatives to petrochemical 477 
organic solvents. These ideal alternative “green” solvents, should be nontoxic, 478 
bio-based, and environmentally friendly. Supercritical CO2 is regarded as a green 479 
solvent. However, this method requires expensive investment and a complex operating 480 
system with high operating costs [174-176]. In addition, the solubility of Fx in 481 
supercritical CO2 is low, requiring the use of cosolvents [172].  482 

Considering the increase in consumer concern regarding organic solvent 483 
contamination in the final food product, the development of new eco-friendly solvents is 484 
still required. The use of edible oils for the extraction of Fx from brown seaweed is 485 
promising. Edible oils are regarded as green alternative solvents with no volatile organic 486 
compounds, low toxicity for humans, and a limited impact on the environment. Due to 487 
their oil solubility, carotenoids can be extracted with edible oils from natural resources. 488 
Products from carotenoid extraction with edible oils can be directly used as food 489 
materials without purification, and the oil protects carotenoids from degrading [177]. 490 
This advantage is not found using other green extraction methods. When the edible oil 491 
used for carotenoid extraction shows any type of nutritional functionality, as seen in 492 
omega-3 oils [178,179], medium-chain triacylglycerol (TAG) (MCT) [180-182], olive 493 
oil [183,184], and others, the extracts are expected to show the combined biological 494 
activities originating from phytochemicals such as carotenoids and from the functional 495 
oils.  496 

Although several studies have highlighted many advantages for extracting 497 
carotenoids with edible oils from shrimp waste [185-188], crawfish waste [189-191], 498 
microalgae, Haematococcus pluvialis [192,193], and fresh carrots [194], little is known 499 
about their application to Fx extraction. Recently, Teramukai et al. [195] reported 500 
effective extraction of Fx from brown seaweed, Sargassum horneri. When the 501 
extraction rate was compared with 12 types of edible oils, more Fx could be extracted 502 
with short-chain (tributylin, C4 and tricapronin, C6) TAG, medium-chain (tricaprylin, 503 
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C8) TAG (MCT), and fish oil compared with other edible oils; e.g., rice bran, rice germ, 504 
rapeseed, sesame, corn, soybean, and linseed [195]. MCT reportedly increases the 505 
anti-obesity effect of Fx [81]. WAT weight gain was markedly lower in diabetic/obese 506 
KK-Ay mice fed a mixture of Fx (0.1%) and MCT (0.9%) than in mice fed Fx (0.1%) 507 
alone. In addition, the expression of UCP1 was also markedly increased by MCT 508 
co-supplementation with Fx. Furthermore, an increase in anti-obesity and anti-diabetic 509 
effects of Fx has been reported with the combination of fish oil rich in EPA and DHA 510 
[82]. These results suggest that Fx extracts from brown seaweed with MCT and fish oil 511 
may show higher biological activities than those with organic solvent. 512 
 513 
6. Conclusion 514 
 515 

Since the discovery of the anti-obesity effect of Fx with UCP1 induction in 516 
abdominal WAT, many studies have been conducted on the nutritional impact of Fx. 517 
Increasing data clearly shows that Fx is effective at reducing the risk of a surprisingly 518 
wide variety of dysfunctions and diseases, including metabolic syndrome, obesity, heart 519 
disease, diabetes, cancer, hypertension, and reactive oxygen species- and 520 
inflammation-associated disorders. To explain the underlying mechanism, studies have 521 
demonstrated the modulation effect of Fx or its metabolites on signaling pathways 522 
related to these dysfunctions and diseases. The biological activities of Fx may be due to 523 
its unique chemical structure and its interaction with important biomolecules such as 524 
receptor proteins. Thus, more research is required to clarify the interactions by 525 
analyzing binding sites of the Fx molecule, the affinity for specific biomolecules, the 526 
molecular docking, etc.  527 

 528 
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Fig. 1. Antioxidant activity of Fx. 1224 
Fig. 2. Major biological impact of Fx. 1225 
Fig. 3. Major possible mechanism for the anti-obesity effect of Fx. 1226 
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