

HOKKAIDO UNIVERSITY

Title	Integrative taxonomy of Pseudolepeophtheirus longicauda (Crustacea: Copepoda: Caligidae) parasitic on Platichthys stellatus (Actinopterygii: Pleuronectidae)
Author(s)	Homma, Riko; Uyeno, Daisuke; Kakui, Keiichi
Citation	Parasitology International, 78, 102135 https://doi.org/10.1016/j.parint.2020.102135
Issue Date	2020-10
Doc URL	http://hdl.handle.net/2115/82838
Rights	©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by/4.0/
Туре	article (author version)
File Information	Parasitology International_2020.pdf

This is an Accepted Manuscript of an article published by Elsevier in *Parasitology International* on 13 May 2020, available online: https://doi.org/10.1016/j.parint.2020.102135

©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

1	Integrative taxonomy of <i>Pseudolepeophtheirus longicauda</i> (Crustacea: Copepoda: Caligidae)
2	parasitic on Platichthys stellatus (Actinopterygii: Pleuronectidae)
3	
4	
5	Riko Homma ^{a,1} , Daisuke Uyeno ^b , Keiichi Kakui ^{c,*}
6	
7	
8	^a Department of Natural History Sciences, Graduate School of Science, Hokkaido University,
9	N10 W8 Kita-ku, Sapporo 060-0810, Japan
10	^b Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto,
11	Kagoshima 890-0065, Japan
12	^c Department of Biological Sciences, Faculty of Science, Hokkaido University, N10 W8
13	Kita-ku, Sapporo 060-0810, Japan
14	¹ Present address. Graduate School of Agriculture, Hokkaido University, N9 W9 Kita-ku,
15	Sapporo 060-8589, Japan
16	
17	
18	*Corresponding author.
19	E-mail address: keiichikakui@gmail.com (K. Kakui).

21	Based on specimens from the gill cavities of one <i>Platichthys stellatus</i> individual collected in
22	the Sea of Japan, we investigated the taxonomic status of the enigmatic caligid genus
23	Pseudolepeophtheirus and its type species, Pseudolepeophtheirus longicauda. In a maximum
24	likelihood (ML) tree based on 18S rRNA gene sequences, the sequence from our sample was
25	nested in a well-supported Lepeophtheirus clade, along with the type species, confirming that
26	Pseudolepeophtheirus should be considered a junior synonym of Lepeophtheirus; our
27	morphological data support this synonymy. Although a previous study had synonymized
28	Pseudolepeophtheirus longicauda with Lepeophtheirus parvicruris, we found that the former
29	differs morphologically from the latter in having a short leg-4 exopod, with the articulation
30	between the first and second segments not evident (the shape of the posterior striated
31	membrane on the leg-2 intercoxal sclerite also differs between two species), and detected
32	slight differences in 18S rRNA sequences between two taxa. We thus concluded that this
33	synonymy is invalid, and reinstate Lepeophtheirus longicauda as a valid species. A ML
34	analysis of COI sequences from Pl. stellatus (the host fish for both L. longicauda and L.
35	parvicruris) showed the host species to comprise distinct northwestern- and
36	northeastern-Pacific clades. Lepeophtheirus longicauda is distributed in the northwestern
37	Pacific and L. parvicruris in the northeastern Pacific, indicating co-divergence of the two
38	copepod species with the host lineages.

39	
40	Keywords:
41	Siphonostomatoida, sea lice, ectoparasite, phylogeny, COX1, redescription
42	
43	
44	1. Introduction
45	
46	Copepods in the family Caligidae, known as sea lice, are ectoparasites mainly on
47	marine fishes. Using their ventrally concave, discoid cephalothorax as a sucker
48	("cephalothoracic sucker" sensu [1]), they slide smoothly over the surface of the attachment
49	sites (gill filaments, buccal cavity, operculum, skin, etc.) of their host and feed on the host's
50	mucus, epithelial tissues, and sometimes blood by rasping, scraping, and sucking [2]. Severe
51	infections by caligids cause serious damage to farmed fishes [3,4]. With more than 500
52	species, the Caligidae is the most species-rich family in the Siphonostomatoida [5]. Dojiri
53	and Ho [6] recently revised the taxonomy of this family based on morphology, but the
54	taxonomic status of some genera remains unclear.
55	Markevich [7] established the caligid genus Pseudolepeophtheirus for P. longicauda
56	Markevich, 1940, based on the morphology of the specimens collected from the gill cavity of
57	Platichthys stellatus (Pallas, 1788) (Pleuronectidae) collected from the Sea of Japan near

58	Vladivostok [8] (Fig. 1; cf. [6,7,9–11]). The second member of the genus, <i>P. schmidti</i> Gusev,
59	1951, was described from the pleuronectid Limanda punctatissima (Steindachner, 1879)
60	collected from Nakhodka Bay in the Sea of Japan; it differs from <i>P. longicauda</i> in having 1)
61	the abdomen slightly shorter than the genital complex and 2) leg 4 in the form of a small
62	papilla [8]. The third species discovered, P. mediterraneus Paperna, 1964, described from
63	chalimus-stage specimens found on gills of the mugilid Chelon ramada (Risso, 1827)
64	collected in the Mediterranean [13], was later synonymized with Pseudocaligus apodus Brian,
65	1924 (currently accepted as Caligus apodus) [14]. Pseudolepeophtheirus closely resembles
66	the confamilial genus Lepeophtheirus von Nordmann, 1832, but differs in having the exopod
67	of leg 4 so much reduced that it is referred to as "a small two-segmented process" in <i>P</i> .
68	longicauda, and "a small papilla" in P. schmidti (p. 227 in [8]).
69	In the Caligidae, the reduced leg 4 has been used as one of the characters
70	distinguishing among closely similar genera, e.g., Pseudocaligus from Caligus,
71	Pseudolepeophtheirus from Lepeophtheirus [7,15], but Kabata [16] questioned its validity for
72	that purpose and suggested that <i>Pseudocaligus</i> and <i>Pseudolepeophtheirus</i> should be relegated
73	to synonymy with Caligus and Lepeophtheirus, respectively. Dojiri and Ho [6] followed
74	Kabata's [16] suggestion and synonymized both pairs of genera. They also synonymized P.
75	longicauda with Lepeophtheirus parvicruris Fraser, 1920, which was originally described
76	from Pl. stellatus collected around Vancouver Island, northeastern Pacific [10]. As Dojiri and

77	Ho [6] could not find any specimens or illustrations of <i>P. longicauda</i> —Markevich [7] did not
78	illustrate the species, and the type specimens had been lost-this synonymy was based only
79	on the text descriptions by Markevich.
80	In a report on caligids attached to coastal fishes from the Sea of Japan and Sea of
81	Okhotsk around Sakhalin Island (Fig. 1), Vinogradov [9] included two Pseudolepeophtheirus
82	species, one of which (collected from Pleuronectes stellatus) he identified as
83	"Pseudolepeophtheirus parvicruris Fraser, 1920" (p. 259 in [9]). An illustration of leg 4 (fig.
84	9M of [9]) shows a short exopod (2.3 times longer than wide), with no articulation evident
85	between first and second exopodal segments. In contrast, the exopod of leg 4 in L. parvicruris
86	reported from the northeastern Pacific is longer (3.6 times or more longer than wide), and the
87	two exopodal segments are articulated [6,9,10]. This morphological difference, along with the
88	locality and host fish, suggest that Vinogradov's [9] P. parvicruris was actually P. longicauda.
89	The other Pseudolepeophtheirus species that Vinogradov [9] reported was P. schmidti
90	(collected from Limanda punctatissima), with leg 4 in the form of a one-segmented
91	appendage (fig. 9E of [9]).
92	The synonymy [6] of <i>P. longicauda</i> with <i>L. parvicruris</i> lacked adequate
93	morphological data for the former species and has not been tested molecularly. Furthermore,
94	the morphology of <i>P. parvicruris</i> sensu [9] suggests that <i>P. longicauda</i> and <i>L. parvicruris</i>
95	may not be conspecific. Our study deals with copepod specimens recently obtained from <i>Pl</i> .

96	stellatus, collected from the Sea of Japan off the northwestern coast of Hokkaido, which
97	seemed to be conspecific to P. parvicruris sensu [9], i.e., P. longicauda. Through
98	morphological observations and a molecular phylogeny, we elucidate the taxonomic status of
99	Pseudolepeophtheirus and P. longicauda.
100	
101	2. Materials and methods
102	
103	2.1. Sampling and morphological observation
104	
105	A fresh individual of <i>Platichthys stellatus</i> (total length, 32.1 cm), collected in the Sea
106	of Japan and landed at Asari, Hokkaido, northern Japan (43°10'37.5"N 141°03'55.6"E; Fig. 1),
107	was obtained on 23 May 2017. Ten female caligids (hereafter referred to as "Caligid sp. A")
108	were collected from the inner surface of the left and right opercula of the fish and were fixed
109	and preserved in 70% ethanol. The methods used in dissection, specimen preparation, light
110	microscopy, scanning electron microscopy (SEM), and drawing were as described in [17].
111	The following caligid measurements were taken from digital images by using ImageJ [18]:
112	total body length (TL: length from the anterior margin of the frontal plate to the posterior
113	margin of the caudal ramus); cephalothorax length (CL) and width (CW); genital-complex
114	length (GL) and width (GW); abdomen length (AL) and width (AW); caudal-ramus length

115	(CrL) and width (CrW). In some specimens, measurements were not made when the relevant
116	structures were strongly deformed by fixation or dissection. The length of the exopod on leg
117	4 corresponds to the combined length of first and second segments; its width was measured at
118	the widest part of the second segment. Specimens studied were deposited in the Invertebrate
119	Collection of the Hokkaido University Museum (ICHUM), Sapporo, Japan.
120	
121	2.2. DNA extraction and sequence determination
122	
123	Total DNA was extracted from the egg-sac of three copepod specimens and a piece of
124	host muscle by using a NucleoSpin Tissue XS Kit (TaKaRa Bio, Japan). Table 1 lists the
125	primers used in this study (cf. [19–22]). PCR amplification conditions for part of the

126 cytochrome c oxidase subunit I (COI) gene with TaKaRa Ex taq DNA polymerase (TaKaRa

127 Bio) were 94°C for 1 min; 35 cycles of 98°C for 10 s, 50°C (copepods) or 64°C (fish) for 30

128 s, and 72°C for 50 s; and 72°C for 2 min. Conditions for amplification of the nearly complete

129 18S rRNA (18S) gene from copepods with KOD FX Neo polymerase (Toyobo, Japan) were

 $130 \quad 94^{\circ}C \text{ for } 2 \text{ min}; 45 \text{ cycles of } 98^{\circ}C \text{ for } 10 \text{ s}, 65^{\circ}C \text{ for } 30 \text{ s}, \text{ and } 68^{\circ}C \text{ for } 1 \text{ min}; \text{ and } 68^{\circ}C \text{ for } 2$

131 min. Nucleotide sequences were determined by direct sequencing with a BigDye Terminator

132 Kit ver. 3.1 and a 3130 or 3730 Genetic Analyzer (Life Technologies, California, USA), and

133 fragments were concatenated by using MEGA7 [23]. The sequences we obtained were

134	deposited in the International Nucleotide Sequence Database (INSD) through the DNA Data
135	Bank of Japan (DDBJ), under accession numbers LC512439–512441 (copepod COI),
136	LC512442–512444 (copepod 18S), and LC515810 (fish COI).
137	
138	2.3. Phylogenetic analyses
139	
140	A copepod 18S dataset comprising 28 terminal copepod taxa, including Caligid sp. A,
141	other caligids, and three outgroup taxa from Dissonidae and Pandaridae (Table 2: cf. [12,24–
142	28]), was aligned by using MAFFT ver. 7 [29] with the "Q-INS-i" strategy [30]; the aligned
143	sequences were trimmed in MEGA7 to the shortest length among the sequences (1675 nt).
144	The optimal substitution model was GTR + I + G, determined under the corrected Akaike
145	information criterion (AIC) with PartitionFinder 2.1.1 [31]. A maximum likelihood (ML)

analysis was conducted in RAxML ver. 8.1.5 [32], and nodal support values were obtained

through ML analyses of 1000 bootstrap pseudoreplicates [33]. A fish COI dataset comprising

17 Pl. stellatus sequences (including one from our host fish; Table 3; cf. [34–36]) and one Pl.

flesus (Linnaeus, 1758) sequence was aligned by using MAFFT ver. 7 with the "Auto"

strategy ("L-INS-i" selected; [37]); the aligned sequences were trimmed in MEGA7 to the

shortest length among the sequences (558 nt). The optimal substitution models for different

partitions determined under the corrected AIC with PartitionFinder 2.1.1 were F81 for the

deposited in the International Nucleotide Sequence Database (INSD) through the DNA Data

146

147

148

149

150

151

152

153	first and second codons, and TrN for the third codon. A partitioned ML analysis was
154	conducted in IQ-TREE ver. 1.6.8 [38,39], with nodal support values obtained by ultrafast
155	bootstrap analysis of 1000 pseudoreplicates [40].
156	The 18S sequences from Caligid sp. A and two closely related taxa indicated by our
157	ML analysis were realigned by eye according to the secondary structure of the honeybee 18S
158	sequence [41]; the secondary structure of the "variable area" [42] with indels was predicted
159	with CentroidFold [43] to check the indels' position in the area.
160	Kimura [44] 2-parameter (K2P) distances among copepod sequences were calculated
161	with MEGA7.
162	
163	3. Results
164	
165	3.1. Morphological description
166	
167	Order Siphonostomatoida
168	Family Caligidae
169	Caligid sp. A (Figs. 2–5)
170	
171	Host: Platichthys stellatus (Actinopterygii: Pleuronectidae).

Sampling locality: Sea of Japan off Asari, Hokkaido, Japan; depth unknown; GPS data not available.

- 174 Attachment site: inner surface of left and right opercula.
- 175 Material examined (10 females): ICHUM6041, dissected, 1 vial and 6 slides;
- 176 ICHUM6042, dissected, 1 vial and 4 slides; ICHUM6043, dissected, 1 vial and 2 slides;
- 177 ICHUM6044, dissected, 1 vial and 2 slides; ICHUM6045, dissected, 1 vial and 1 slide, INSD
- accession numbers LC512439 (COI) and LC512442 (18S); ICHUM6046, dissected, 1 vial
- and 1 slide, LC512440 (COI) and LC512443 (18S); ICHUM6047, intact, 1 vial, LC512441
- 180 (COI) and LC512444 (18S); ICHUM6048, dissected, 1 vial and 1 slide; ICHUM6049,
- dissected, 1 vial and 2 slides; ICHUM6050, dissected, 1 vial, 2 slides, and 3 SEM stubs.
- 182 Measurements: see Table 4.
- 183
- 184 *3.1.1. Description of adult females*

Body (Figs. 2, 3A) TL 6.6–8.3 mm (mean 7.7 mm; n = 10). Dorsal cephalothoracic shield subcircular (CL/CW, 0.94–1.18; mean CL/CW, 1.08; n = 9), comprising about 30% of TL. Free posterior margin of dorsal thoracic zone of shield slightly extending beyond posterior end of lateral zones. Frontal plates without lunules. Genital complex fused with fourth pedigerous somite, longer than wide (GL/GW, 1.06–1.22; mean GL/GW, 1.12; n = 6), comprising about 30% of TL, with short posterolateral protrusion. Copulatory pores located

192	than wide (AL/AW, 3.75–4.61; mean AL/AW, 4.27; $n = 6$), longer than genital complex
193	(AL/GL, 1.15–1.65; mean AL/GL, 1.31; $n = 10$), comprising about 40% of TL, with terminal
194	anal slit. Caudal rami with parallel sides, about 1.4 times longer than wide (CrL/CrW, 1.38-
195	1.45; mean CrL/CrW, 1.41; $n = 10$). Each ramus with six plumose setae and ornamented with
196	fine setules.
197	Antennule (Fig. 3C) 2-segmented; proximal segment with 26 or 27 plumose setae and
198	small distal protrusion (Fig. 3C, arrow); distal segment bearing 12 distal elements and
199	subdistal seta (possibly 1 distal element lost during dissection). Antenna (Fig. 3D)
200	3-segmented; proximal segment with spatulate, posteriorly-directed process; middle segment
201	subrectangular, with small corrugated pad ventrally; distal segment forming recurved,
202	tapering claw with proximal seta at base and longer middle seta. Post-antennal process (Fig.
203	3D) robust, weakly curved, carrying 2 basal papillae each with 3 sensillae; similar, adjacent
204	papilla with 2 sensillae located on ventral surface of cephalothorax. Small, rounded cuticular
205	swelling (Fig. 3D) present between antenna and post-antennal process.
206	Mandible (Fig. 3E) stylet-like, with 12 marginal teeth. Maxillule (Fig. 3F) comprising
207	anterior papilla bearing 3 unequal setae and bifid posterior process with subspherical knob on
208	base. Maxilla (Fig. 3G) 2-segmented, brachiform; proximal segment (lacertus) robust and
209	unarmed; distal segment (brachium) slender, bearing large flabellum on mid-inner margin

near base of leg 5. Abdomen 1-segmented (constriction in subposterior region found), longer

210plus bilaterally-serrate short canna and long calamus distally. Maxilliped subchelate (Fig. 3H, I); proximal segment robust with smooth myxal margin and 2 dorsal patches of scale-like 211processes; distal subchela sharply pointed, with long claw indistinctly fused to short shaft and 212proximal seta at base of claw. Sternal furca (Fig. 3J) with short, broad divergent tines bearing 213lamellar flange and bluntly rounded tip. 214215Leg 1 (Figs. 3K, 4A) biramous, with 2-segmented exopod and vestigial endopod. Intercoxal sclerite elongate, unarmed. Protopod with 1 outer and 1 posterior plumose setae. 216First exopodal segment with outer distal naked spine and posterior row of setules. Second 217exopod segment with 3 inner long plumose setae, subdistal short plumose seta, and 3 distal 218spines; spines except outermost one with accessory process (Fig. 4A). Endopod with 219220bifurcate tip. Leg 2 (Figs. 3L, 5A) biramous, with 3-segmented rami. Intercoxal sclerite rectangular, 221wider than long, with extensive striated membrane along posteriormargin; membrane 222strongly expanded in mid-line and as long as or longer than sclerite (Fig. 5A). First 223protopodal segment with posterior plumose seta and ventral spinule-bearing papilla. Second 224225protopodal segment with outer distal plumose seta, posterior setule-bearing papilla, and outer and posterior striated membranes. First exopodal segment with inner distal plumose seta, 226outer distal bilaterally-serrate spine, outer distal and inner rows of setules, and outer striated 227

228 membrane. Second exopodal segment with inner distal plumose seta, outer distal

229	bilaterally-serrate spine, and inner row of setules. Third exopodal segment with 5 plumose
230	setae and 3 outer spines; proximal spine bilaterally-serrate, middle spine fringed with hyaline
231	membrane, and distal spine with outer hyaline membrane and inner row of setules. First
232	endopodal segment with inner plumose seta and outer row of setules. Second endopodal
233	segment with 2 inner plumose setae and outer and inner rows of setules. Third endopodal
234	segment with 6 plumose setae and outer and inner rows of setules.
235	Leg 3 (Figs. 3M, 4B, 5B) biramous, with 3-segmented exopod and 2-segmented
236	endopod. Intercoxal sclerite trapezoid, with subrectangular striated membrane along posterior
237	margin; membrane shorter than sclerite (Fig. 5B). Protopod large, modified to apron, with 1
238	posterio-inner and 1 outer plumose setae, 5 ventral setule-bearing papillae, outer and
239	posterior striated membranes, and outer antero-dorsal corrugated pad. First exopodal segment
240	with inner plumose seta and exopod spine fringed with hyaline membrane. Second exopodal
241	segment with inner plumose seta, outer distal naked spine (absent in illustrated leg; but see
242	Fig. 4B), and outer row of setules. Third exopodal segment with 4 plumose setae, 3 distal
243	naked spines, and outer row of setules. First endopodal segment with inner plumose seta and
244	outer row of setules. Second endopodal segment with 6 plumose setae and outer and inner
245	rows of setules.
246	Leg 4 (Figs. 3N, 4C-E) uniramous, with 2-segmented exopod with articulation

247 between first and second exopodal segments not evident (Fig. 4C–E). Protopod with outer

248	distal plumose seta. Exopod 2.2–2.9 (mean 2.47; $n = 7$) times longer than wide; first segment
249	with outer distal naked spine; second segment with 2 or 3 distal bilaterally-serrate spines
250	(spine-length decreasing from inner to outer; innermost spine 2 times or more longer than
251	other(s)).
252	Leg 5 (Fig. 3O) composed of trifid process located near egg-sac attachment area of
253	genital complex, with 3 plumose setae; papilla bearing plumose seta present on adjacent
254	ventral surface of genital complex.
255	Variation. Among six leg-3 samples we observed (left and right of ICHUM6041, 6043,
256	and 6050), one lacked any spines (right of ICHUM6041; cf. Fig. 3M) but the others had one
257	outer distal naked spine (cf. Fig. 4B); the former may be an abnormal state. Among seven
258	leg-4 samples we observed (left and right of ICHUM6044 and 6050; right of ICHUM6042,
259	6043, and 6046), three have 3 distal spines (cf. Fig. 3N) and the others have 2 distal spines (cf.
260	Fig. 4C).
261	
262	3.2. Molecular phylogenetic analysis of the caligid copepods
263	
264	We obtained partial COI and nearly complete 18S sequences from three specimens of
265	Caligid sp. A (ICHUM6045, 6046, 6047). The three COI sequences (LC512439–512441)
266	were 658 nt long, translating to 219 amino acids. The maximum K2P distance among these

was 0.61%, representing four nucleotide substitutions. The sequence in the INSD most

268	similar to our COI sequences, as determined by BLAST searches [45], was from
269	Lepeophtheirus hospitalis Fraser, 1920 (accession number HM582235; identity score 84.32%,
270	query cover 99%; [46]); the K2P distances between our sequences and the L. hospitalis
271	sequence were 18.1–18.9%. To date, no COI sequences from <i>L. parvicruris</i> have been
272	deposited in public databases [47].
273	The three 18S sequences (LC512442–512444) were identical and 1760 nt long. The
274	18S sequence includes one site in the V7 variable area (Fig. 6A) that was dimorphic (Y, i.e.,
275	C or T) in all three sequences we determined. In the ML tree (1675 nt; Fig. 7), all
276	Lepeophtheirus sequences except L. natalensis Kensley and Grindley, 1973 formed a clade
277	with 98% bootstrap support (BS). The clade included a sequence from L. pectoralis (O.F.
278	Müller, 1776), the type species of Lepeophtheirus, and Caligid sp. A. Caligid sp. A forms a
279	moderately supported (BS 74%) clade with L. parvicruris and L. thompsoni Baird, 1850.
280	Aligned 18S sequences from Caligid sp. A, L. parvicruris, and L. thompsoni showed one
281	indel and one incongruent site (Y vs. T) in the V7 variable area among the three taxa (Fig.
282	6B–D).
283	

284 3.3. Phylogenetic relationships within the host fish, Platichthys stellatus

285

286	We obtained a partial COI sequence (619 nt; LC515810) from the host fish of our
287	caligid specimens. In the ML tree (558 nt; Fig. 8), 17 Pl. stellatus sequences were divided
288	into two clades. One clade included sequences from northeastern Pacific specimens with 62%
289	ultrafast bootstrap support (uBS). The other comprised northwestern Pacific sequences,
290	including our fish sequence, with 90% uBS. K2P distances between two clades were 0.7-
291	1.3%; those among sequences within the northeastern and northwestern Pacific clades were
292	0.0–0.4% and 0.0–0.5%, respectively.
293	
294	4. Discussion
295	
296	Based on its locality (Sea of Japan), host fish (Pl. stellatus), and morphological
297	features (e.g., body shape, and leg 4 bearing a short exopod, ca 2.5 times longer than wide),
298	we concluded that Caligid sp. A is conspecific with Pseudolepeophtheirus parvicruris sensu
299	[9] and Pseudolepeophtheirus longicauda. Here we have presented the first information on
300	the armature of most appendages and the segmentation of the abdomen.
301	In the 18S ML tree, Caligid sp. A (= <i>P. longicauda</i>) formed a moderately supported
302	(BS 74%) clade with L. parvicruris and L. thompsoni, which was nested in the clade
303	containing all Lepeophtheirus except for L. natalensis (Fig. 7). The Lepeophtheirus clade
304	included a sequence from L. pectoralis, the type species of Lepeophtheirus. Our results thus

305	molecularly confirm the synonymy of <i>Pseudolepeophtheirus</i> with <i>Lepeophtheirus</i> [6].
306	Although Dojiri and Ho [6] synonymized Pseudolepeophtheirus longicauda (now
307	Lepeophtheirus longicauda) with Lepeophtheirus parvicruris, we concluded these are
308	different species. Among 126 valid species and two recognized subspecies in Lepeophtheirus,
309	including two species formerly placed in <i>Pseudolepeophtheirus</i> ([4,48,49], this study), L.
310	longicauda shares the following combination of characters with L. parvicruris and three other
311	species (L. longiventralis Yü & Wu, 1932; L. marcepes C.B. Wilson, 1944; and L. schmidti
312	(formerly Pseudolepeophtheirus schmidti)): 1) the abdomen is about as long as, or longer
313	than, the genital complex (Kabata's [11] "long abdomen"); 2) CL is far shorter than GL+AL,
314	with CL/(GL+AL) around 0.5; and 3) the number of exopodal segments in leg 4 is 2 or less
315	[6,8,9,11,50,51]. Lepeophtheirus longicauda strongly resembles L. parvicruris, but differs in
316	having a shorter leg-4 exopod, with the length ca. 2.5 times the width (more than 3.6 times
317	the width in <i>L. parvicruris</i> [6,10,11]), and a leg-4 exopod with the articulation between the
318	first and second segments not evident (present in L. parvicruris [6,10,11]) (Table 5); these
319	characters are consistent among specimens collected from distant localities in each species
320	(from off Sakhalin to off Hokkaido in <i>L. longicauda</i> ; from off Alaska to off Vancouver in <i>L</i> .
321	parvicruris; Fig. 1). Additionally, although available data are limited for each species, the
322	shape of a posterior striated membrane on the leg-2 intercoxal sclerite of L. longicauda
323	differs from that of <i>L. parvicruris</i> illustrated by [6]: it strongly expands in mid-line and is as

324	long as or longer than the sclerite-length in the former; curved rectangle and shorter than half
325	length of sclerite in <i>L. parvicruris</i> (this study, [6]). To say whether the condition of this
326	character is consistent within a speices, data from more specimens from more sampling
327	localities are necessary. Lepeophtheirus longicauda differs from L. longiventralis in having 1)
328	short posterolateral protrusions on the genital complex and 2) a trifid leg 5; from L. marcepes
329	in having 1) the second exopodal segment of leg 1 with three spines and four setae and 2) the
330	leg-4 protopod with one outer seta; and from L. schmidti in having leg 4 with an exopod
331	(Table 5).
332	Among sequences deposited in INSD, the 18S sequence from L. longicauda was most
333	similar to those from L. parvicruris and L. thompsoni; it was one nucleotide shorter than the
334	latter two (i.e., one indel was observed), and differed at one nucleotide position (Fig. 6B). No
335	sequences from L. longiventralis, L. marcepes, or L schmidti were found in the public
336	database [47]. Unfortunately, no COI sequences from any of these five other species have yet
337	been deposited in public databases [47].
338	Our host-fish sequence data also support the conclusion that L. longicauda is distinct
339	from L. parvicruris. Both species utilize the same flatfish, Pl. stellatus. This nominal species
340	has a wide distribution from the northwestern to the northeastern Pacific (from Korea to
341	California) at depths shallower than 300 m [52], but Vinnikov et al. [34] suggested that it may
342	harbor cryptic species. Our COI tree corroborates the multilocus phylogenic analyses by [34]

343	that showed Pl. stellatus sequences grouping into separate northwestern and northeastern
344	Pacific clades (Fig. 8). Lepeophtheirus longicauda and L. parvicruris were originally
345	described from the Sea of Japan and the northeastern Pacific (Vancouver Island vicinity),
346	respectively. Although we have no information on Pl. stellatus or the two copepod species
347	from the Bering Sea, Pl. stellatus may actually comprise divergent northwestern and
348	northeastern Pacific populations (or species), each acting as host to a co-divergent copepod
349	species.
350	
351	Acknowledgments
352	
353	We thank Naohiro Hasegawa for help in sampling; Hiroko Uyeno for help in
354	observation; and Matthew H. Dick for reviewing the manuscript and editing our English.
355	
356	References
357	[1] Z. Kabata, Copepoda (Crustacea) parasitic on fishes: problems and perspectives, Adv.
358	Parasitol. 19 (1982) 1-71, https://doi.org/10.1016/S0065-308X(08)60265-1
359	[2] CL. Lin, JS. Ho, SN. Chen, Two species of Caligidae (Copepoda) parasitic on
360	cultured rabbit fish (Siganus fuscescens) in Taiwan, Fish Pathol. 31 (1996) 129–139.
361	[3] S.C. Johnson, J.W. Treasurer, S. Bravo, K. Nagasawa, Z. Kabata, A review of the impact

- 362 of parasitic copepods on marine aquaculture, Zool. Stud. 43 (2004) 229–243.
- 363 [4] G. Boxshall, The sea lice (Copepoda: Caligidae) of Moreton Bay (Queensland, Australia),
- with descriptions of thirteen new species, Zootaxa 4398 (2018) 1–172.
- 365 https://doi.org/10.11646/zootaxa.4398.1.1.
- 366 [5] A.A. Özak, Y. Sakarya, G.A. Boxshall, *Caligus adanensis* sp. nov. (Copepoda: Caligidae
- Burmeister, 1835) parasitic on garfish, *Belone belone* (Linnaeus, 1760), from the eastern
- 368 Mediterranean Sea, off the Turkish coast, Mar. Biodivers. 49 (2019) 1877–1890.
- 369 [6] M. Dojiri, J.-S. Ho, Systematics of the Caligidae, Copepods Parasitic on Marine Fishes,
- 370 Brill, Leiden, 2013.
- 371 [7] A.P. Markevich, Novi vidi parazitichnykh Copepoda, Depovidi Akademiyi Nauk USSR
- 372 11 (1940) 11–21.
- [8] A.P. Markevich, Parasitic Copepodes on the Fishes of the USSR, Indian National
- 374 Scientific Documentation Centre, New Delhi, 1976 (Translated from Russian).
- 375 [9] S.A. Vinogradov, Parasitic copepods of family Caligidae from fishes of coastal waters at
- 376 Sakhalin, Izvestia TINRO 168 (2012) 243–261.
- [10] C.M. Fraser, Copepods parasitic on fish from the Vancouver Island region, Proc. Trans.
- 378 Roy. Soc. Can. Ser 3 13 (1920) 45–67 + 8 pls.
- [11] Z. Kabata, The species of *Lepeophtheirus* (Copepoda: Caligidae) from fishes of British
- 380 Colombia, J. Fish. Res. Board Can. 30 (1973) 729–759.

- 382 *Lepeophtheirus salmonis* and *Caligus clemensi* (Copepoda: Caligidae) on three-spine
- 383 stickleback *Gasterosteus aculeatus* in coastal British Columbia, J. Parasitol. 92 (2006)
- **473–480**.

- [13] I. Paperna, Parasitic Crustacea (Copepoda and Branchiura) from inland water fishes of
 Israel, Israel J. Zool. 13 (1964) 58–68.
- [14] I. Paperna, M. Lahav, Mortality among gray mullets in a seawater pond due to caligiid
- parasitic copepod epizootic, Bamidgeh: Bull. Fish Cult. Israel 26 (1974) 12–15.
- [15] A. Scott, Some additions to the fauna of Liverpool Bay, Proc. Trans. Liverpool Biol. Soc.
 15 (1901) 342–353.
- 391 [16] Z. Kabata, Copepoda parasitic on Australian fishes. III. Genera Dentigryps,
- Heniochophilus and Pseudanuretes (Caligidae), Ann. Mag. Nat. Hist., Ser. 13 (1965) 19–
 393 31.
- 394 [17] K. Kakui, S. Angsupanich, *Birdotanais songkhlaensis*, a new genus and species of
- Nototanaidae (Crustacea: Tanaidacea) from Thailand, Raffles Bull. Zool. 60 (2012) 421–
 432.
- 397 [18] W.S. Rasband, ImageJ. https://imagej.nih.gov/ij/, 2019 (accessed 2 July 2019).
- 398 [19] O. Folmer, M. Black, W. Hoeh, R. Lutz, R. Vrijenhoek, DNA primers for amplification
- 399 of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates,

- Mol. Mar. Biol. Biotechnol. 3 (1994) 294–299.
- 401 [20] T. Nakayama, S. Watanabe, K. Mitsui, H. Uchida, I. Inoue, The phylogenetic
- 402 relationship between the Chlamydomonadales and Chlorococcales inferred from
- 403 18SrDNA data, Phycol. Res. 44 (1996) 47–55.
- 404 [21] T. Puitika, Y. Kasahara, N. Miyoshi, Y. Sato, S. Shimano, A taxon-specific
- 405 oligonucleotide primer set for PCR-based detection of soil ciliate, Microbes Environment.
- 406 22 (2007) 78–81.
- 407 [22] M. Maraun, G. Erdmann, G. Schulz, R.A. Norton, S. Scheu, K. Domes, Multiple
- 408 convergent evolution of arboreal life in oribatid mites indicates the primacy of ecology,
- 409 Proc. Roy. Soc. B 276 (2009) 3219–3227.
- 410 [23] S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular evolutionary genetics analysis
- 411 version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.
- 412 [24] Ø. Øines, T. Schram, Intra- or inter-specific difference in genotypes of *Caligus elongatus*
- 413 Nordmann 1832?, Acta Parasitol. 53 (2008) 93–105.
- 414 [25] R. Huys, J. Llewellyn-Hughes, P.D. Olson, K. Nagasawa, Small subunit rDNA and
- 415 Bayesian inference reveal *Pectenophilus ornatus* (Copepoda *incertae sedis*) as highly
- 416 transformed Mytilicolidae, and support assignment of Chondracanthidae and Xarifiidae to
- 417 Lichomolgoidea (Cyclopoida), Biol. J. Linn. Soc. 87 (2006) 403–425.
- 418 [26] M.A. Freeman, H. Anshary, K. Ogawa, Multiple gene analyses of caligid copepods

- 419 indicate that the reduction of a thoracic appendage in *Pseudocaligus* represents
- 420 convergent evolution, Parasite Vector 6 (2013) 336.
- 421 https://doi.org/10.1186/1756-3305-6-336.
- 422 [27] R. Huys, J. Llewellyn-Hughes, S. Conroy-Dalton, P.D. Olson, J.N. Spinks, D.A.
- 423 Johnston, Extraordinary host switching in siphonostomatoid copepods and the demise of
- 424 the Monstrilloida: integrating molecular data, ontogeny and antennulary morphology, Mol.
- 425 Phylogenet. Evol. 43 (2007) 368–378.
- 426 [28] S.M. Dippenaar, Estimated molecular phylogenetic relationships of six
- 427 siphonostomatoid families (Copepoda) symbiotic on elasmobranchs, Crustaceana 82
- 428 (2009) 1547–1567.
- 429 [29] K. Katoh, D.M. Standley, MAFFT multiple sequence alignment software version 7:
- 430 improvements in performance and usability, Mol. Biol. Evol. 30 (2013) 772–780.
- 431 [30] K. Katoh, H. Toh, Recent developments in the MAFFT multiple sequence alignment
- 432 program, Brief. Bioinform. 9 (2008) 286–298.
- 433 [31] R. Lanfear, P.B. Frandsen, A.M. Wright, T. Senfeld, B. Calcott, PartitionFinder 2: new
- 434 methods for selecting partitioned models of evolution for molecular and morphological
- 435 phylogenetic analyses, Mol. Biol. Evol. 34 (2016) 772–773.
- 436 [32] A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of
- 437 large phylogenies, Bioinformatics 30 (2014) 1312–1313.

- [33] J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap,
- 439 Evolution 39 (1985) 783–791.
- 440 [34] K.A. Vinnikov, R.C. Thomson, T.A. Munroe, Revised classification of the righteye
- flounders (Teleostei: Pleuronectidae) based on multilocus phylogeny with complete taxon
- 442 sampling, Mol. Phylogenet. Evol. 125 (2018) 147–162.
- 443 [35] D. Steinke, T.S. Zemlak, J.A. Boutillier, P.D.N. Hebert, DNA barcoding of Pacific
- 444 Canada's fishes, Mar. Biol. 156 (2009) 2641–2647.
- 445 [36] Y.P. Kartavtsev, S.N. Sharina, K. Saitoh, J.M. Imoto, N. Nanzawa, A.D. Redin,
- 446 Phylogenetic relationships of Russian far eastern flatfish (Pleuronectiformes,
- 447 Pleuronectidae) based on two mitochondrial gene sequences, *Co-1* and *Cyt-b*, with
- 448 inferences in order phylogeny using complete mitogenome data, Mitochondr. DNA Pt. A
- 449 27 (2016) 667–678.
- 450 [37] K. Katoh, K. Kuma, H. Toh, T. Miyata, MAFFT version 5: improvement in accuracy of
- 451 multiple sequence alignment, Nucleic Acids Res. 33 (2005) 511–518.
- 452 [38] L.-T. Nguyen, H.A. Schmidt, A. von Haeseler, B.Q. Minh, IQ-TREE: a fast and effective
- 453 stochastic algorithm for estimating maximum likelihood phylogenies, Mol. Biol. Evol. 32
- 454 (2015) 268–274.
- 455 [39] O. Chernomor, A. von Haeseler, B.Q. Minh, Terrace aware data structure for
- 456 phylogenomic inference from supermatrices, Syst. Biol. 65 (2016) 997–1008.

- 457 [40] D.T. Hoang, O. Chernomor, A. von Haeseler, B.Q. Minh, L.S. Vinh, UFBoot2:
- 458 improving the ultrafast bootstrap approximation, Mol. Biol. Evol. 35 (2018) 518–522.
- 459 [41] J.J. Gillespie, J.S. Johnston, J.J. Cannone, R.R. Gutell, Characteristics of the nuclear
- 460 (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera
- 461 (Insecta: Hymenoptera): structure, organization, and retrotransposable elements, Insect
- 462 Mol. Biol. 15 (2006) 657–686.
- 463 [42] J.-M. Neefs, Y. van de Peer, L. Hendriks, R. de Wachter, Compilation of small ribosomal
- subunit RNA sequences, Nucleic Acids Res. 18 (Suppl) (1991) 2237–2317.
- 465 [43] K. Sato, M. Hamada, K. Asai, T. Mituyama, CentroidFold: a web server for RNA
- secondary structure prediction. Nucleic Acids Res. 37 (2009) W277–W280.
- 467 [44] M. Kimura, A simple method for estimating evolutionary rates of base substitutions
- through comparative studies of nucleotide sequences, J. Mol. Evol. 16 (1980) 111–120.
- 469 [45] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment
- 470 search tool, J. Mol. Biol. 215 (1990) 403–410.
- 471 [46] S.R.M. Jones, G. Prosperi-Porta, The diversity of sea lice (Copepoda: Caligidae)
- 472 parasitic on threespine stickleback (*Gasterosteus aculeatus*) in coastal British Columbia, J.
- 473 Parasitol. 97 (2011) 399–405.
- 474 [47] DDBJ, DNA Data Bank of Japan. https://www.ddbj.nig.ac.jp/index-j.html, 2019
- 475 (accessed 2 July 2019).

- 477 parasitic on three kelpfish species (Clinidae) from the southern California coast, Bull. S.
- 478 Calif. Acad. Sci. 116 (2017) 1–16.
- 479 [49] A.A. Özak, A.M.V. Rodrigues, N.S.S. Vieira, R.M.G. Rosa, A. Yanar, E. Koyuncu, G.A.
- 480 Boxshall, *Lepeophtheirus azoricus* n. sp. (Copepoda: Caligidae) parasitic on dusky
- 481 grouper, *Epinephelus marginatus*, from Atlantic waters off the Azores, Portugal, Mar.
- 482 Biodiv. 48 (2018) 1045–1055.
- 483 [50] J.-S. Ho, S. Gómez, K. Ogawa, M. Aritaki, Two species of parasitic copepods
- 484 (Caligidae) new to Japan, Syst. Parasitol. 57 (2004) 19–34.
- 485 [51] C.B. Wilson, Parasitic copepods in the United States National Museum, Proc. U. S. Natl.
- 486 Mus. 94 (1944) 529–582 + pls. 21–34.
- 487 [52] A.J. Allen, G.B. Smith, Atlas and zoogeography of common fishes in the Bering Sea and
- 488 northeastern Pacific, NOAA Tech. Rep. NMFS 66 (1988) 1–151.

490	Figure legends
491	Fig. 1. Map showing collection localities for caligid specimens relevant to this study. Circles,
492	Pseudolepeophtheirus longicauda of [7], P. parvicruris of [9], and Caligid sp. A (this study);
493	triangles, Lepeophtheirus parvicruris of [6,10–12].
494	
495	Fig. 2. Caligid sp. A, female (ICHUM6045), fixed specimen, dorsal view. Scale bar = 1 mm.
496	
497	Fig. 3. Caligid sp. A, female, ICHUM6041 (A, B, D, G–M), ICHUM6045 (C); ICHUM6042
498	(E, F, N, O). A, Habitus, dorsal; B, caudal rami; C, antennule, ventral (arrow, small
499	protrusion); D, antenna, post-antennal process, and round process, ventral; E, mandible; F,
500	maxillule; G, maxilla (arrow, partly broken portion); H, I, maxilliped, ventral (H), dorsal (I); J,
501	sternal furca, ventral; K–O, legs 1–5, ventral, with most of posterior striated membranes on
502	intercoxal sclerite and protopod of leg 3 omitted. Scale bars: 1 mm (A), 0.1 mm (others).
503	
504	Fig. 4. SEM images of Caligid sp. A, female, ICHUM6050. A, Distal region of second
505	exopodal segment of right leg 1, ventral; B, exopod spine on first exopodal segment of left
506	leg 3, ventral; C, left leg 4, ventral; D, E, exopod of left leg 4, ventral (D) and dorsal (E).
507	Abbreviations: ap, accessory process; sp, spine on outer distal corner of second exopodal
508	segment of left leg 3. Scale bars: 25 µm.
509	
510	Fig. 5. Intercoxal sclerite and posterior striated membrane of leg 2 (A, ICHUM6041) and leg
511	3 (B, ICHUM6043) in Caligid sp. A, female. Intercoxal sclerite of leg 3 partly broken.
512	Abbreviations: is, intercoxal sclerite; sm, striated membrane. Scale bar: 0.1 mm.
513	
514	Fig. 6. Comparison of part of 18S sequence from Caligid sp. A, L. parvicruris, and L.
515	thompsoni. A, Chromatogram showing the dimorphic site in the 18S sequence of Caligid sp.
516	A (Y indicates that both T and C peaks were detected); B, part of aligned 18S sequences from
517	the three species; C, D, secondary structure of the V7 variable area in 18S from L. parvicruris
518	and L. thompsoni (C) and Caligid sp. A (D), predicted with CentroidFold, inference engine =
519	"McCaskill(BL)", weight of base pairs = "2^2" (black arrow, dimorphic site; white arrow,
520	non-dimorphic site; arrowheads, nucleotide present in L. parvicruris and L. thompsoni (black),
521	lacking in Caligid sp. A (white).
522	

- Fig. 7. ML tree for copepod 18S sequences (1675 nt). Numbers near nodes are bootstrap
 values in percent; values less than 70 are not shown. The scale indicates branch length in
 number of substitutions per site.
- 526
- 527 **Fig. 8.** ML tree for COI sequences (558 nt) from 17 *Platichthys stellatus* and an outgroup
- 528 taxon, *Platichthys flesus*. Numbers near nodes are ultrafast bootstrap values in percent. The
- 529 scale indicates branch length in number of substitutions per site.
- 530

532 List of PCR and cycle sequencing (CS) primers used in this study.

Marker	Primer	Primer sequence	Reaction	Source
COI (copopod)	LCO1490	GGTCAACAAATCATAAAGATATTGG	PCR & CS	[19]
	HCO2198	TAAACTTCAGGGTGACCAAAAAATCA	PCR & CS	[19]
COI (fish)	COI_ff_F	CAAAGACATCGGCACCCTCT	PCR & CS	This study
	COI_ff_R	GGTAGAGGATGGGGTCACCT	PCR & CS	This study
18S	SR1	TACCTGGTTGATCCTGCCAG	PCR	[20]
	SR8	GGATTGACAGATTGAGAGCT	CS	[20]
	SR9	AACTAAGAACGGCCATGCAC	CS	[20]
	SR10	AGGTCTGTGATGCCCTTAGA	CS	[20]
	SR12	CCTTCCGCAGGTTCACCTAC	PCR & CS	[20]
	EU929R	TTGGCAAATGCTTTCGC	CS	[21]
	18S554f	AAGTCTGGTGCCAGCAGCGCG	CS	[22]
	18S614r	TCCAACTACGAGCTTTTTAACC	CS	[22]

Family	Taxon	Accession no.	Source
CALIGIDAE	Caligus clemensi	DQ123833	[12]
	Caligus curtus	EF088407	[24]
	Caligus elongatus	AY627020	[25]
	Caligus fugu	KC569364	[26]
	Caligus gurnardi	EF088410	[24]
	Caligus pelamydis	EF088411	[24]
	Caligus punctatus	KR048777	Unpublished
	Caligus quadratus	EF088412	[24]
	Caligus uniartus	KC569363	[26]
	Caligus brevipedis	EF088416	[24]
	Caligus sp1JYW2010	HM545887	Unpublished
	Gloiopotes watsoni	AY627019	[25]
	Gloiopotes huttoni	KF667350	Unpublished
	Lepeophtheirus goniistii	KR048779	Unpublished
	Lepeophtheirus	DQ538503	[27]
	hippoglossi		
	Lepeophtheirus hospitalis	DQ123831	[12]
	Lepeophtheirus natalensis	FJ447440	[28]
	Lepeophtheirus	DQ123830	[12]
	parvicruris		
	Lepeophtheirus	KR048780	Unpublished
	parviventris		
	Lepeophtheirus pectoralis	EF088413	[24]
	Lepeophtheirus	EF088414	[24]
	pollachius		
	Lepeophtheirus salmonis	DQ123829	[12]
	Lepeophtheirus	EF088415	[24]
	thompsoni		
	Paralebion elongatus	FJ447441	[28]
	Caligid sp. A	LC512442	This study

DISSONIDAE Dissonus manteri		DQ538500	[27]
PANDARIDAE	Dinemoura latifolia	DQ538501	[27]
	Perissopus dentatus	FJ447453	[28]

540 Fish sequences included in the COI analysis in this study.

Species	Accession	Locality	Source
Pl. stellatus	KF930268	NE Pacific (USA: California)	Unpublished
	GU440461	NE Pacific (USA: Washington: Puget Sound)	Unpublished
	GU440462	NE Pacific (USA: Washington: Puget Sound)	Unpublished
	MH032494	NE Pacific (USA: Washington: Puget Sound)	[34]
	FJ165021	NE Pacific (Canada: British Columbia)	[35]
	FJ165020	NE Pacific (Canada: British Columbia)	[35]
	KF930269	NE Pacific (USA: Alaska: Gulf of Alaska)	Unpublished
	MH032495	NE Pacific (USA: Alaska: Gulf of Alaska)	[34]
	MH032493	NW Pacific (Japan: Miyagi)	[34]
	MH032492	NW Pacific (Japan: Miyagi)	[34]
	KF386375	NW Pacific (Russia: Sea of Japan: Vostok Bay)	[36]
	KF386374	NW Pacific (Russia: Sea of Japan: Vostok Bay)	[36]
	LC515810	NW Pacific: Sea of Japan (Japan: Asari)	This study
	KT920091	NW Pacific (China: Yellow Sea: RiZhao)	Unpublished
	KT920090	NW Pacific (China: Yellow Sea: RiZhao)	Unpublished
	KT920044	NW Pacific (China: Yellow Sea: JiangSu)	Unpublished
	KT920043	NW Pacific (China: Yellow Sea: JiangSu)	Unpublished
Pl. flesus	MH032490	Atlantic: Baltic Sea	[34]

Measurements for Caligid sp. A specimens. Values are in millimeters, except for ratios. CL, CrL, GL, AL, length of cephalothorax, caudal ramus, genital complex, and abdomen; CW, CrW, GW, AW, maximum width of cephalothorax, caudal ramus, genital complex, and abdomen; TL, total body length. –, no data

Specimen Number	TL	CL	CW	GL	GW	AL	AW	CrL	CrW	CL/(GL+AL)	CrL/CrW
ICHUM6041	6.99	2.38	2.25	1.93	_	2.43	_	0.11	0.08	0.52	1.45
ICHUM6042	7.47	2.55	2.45	1.80	_	2.75	_	0.12	0.09	0.58	1.40
ICHUM6043	8.09	2.35	2.22	2.09	_	3.44	_	0.12	0.08	0.41	1.41
ICHUM6044	6.62	2.25	2.38	1.69	_	2.46	_	0.11	0.08	0.53	1.39
ICHUM6045	8.28	2.43	2.25	2.31	2.05	3.18	0.69	0.11	0.08	0.40	1.39
ICHUM6046	7.77	2.31	_	2.27	2.09	2.96	0.66	0.10	0.07	0.38	1.38
ICHUM6047	8.11	2.58	2.21	2.44	2.14	2.81	0.75	0.12	0.08	0.46	1.41
ICHUM6048	7.84	2.41	2.04	2.25	2.09	2.88	0.72	0.11	0.08	0.45	1.40
ICHUM6049	7.46	2.31	2.04	2.06	1.69	2.80	0.62	0.11	0.08	0.45	1.40
ICHUM6050	8.34	2.58	2.39	2.29	2.16	3.14	0.74	0.13	0.09	0.44	1.45
Mean	7.70	2.42	2.25	2.11	2.04	2.89	0.70	0.11	0.08	0.46	1.41

Comparison of selected characters for five *Lepeophtheirus* species. L, length; W, width. Arm, armature (number of setae in Arabic numbers; numbers; number of spines in Roman numbers; numbers left to hyphen for outer setae/spines, the others for inner ones); Prp, protopod; Exp, exopod. ^aArticulation between first and second exopodal segments not evident.

Taxon	Leg 1	Leg 4			Genital Leg 5 complex		Host	Type Locality	Source(s)
	Arm of	Arm of Exp L/W of		L/W of	Shana	Posterolateral	-		
	Exp	Prp	segments	Exp	Shape	protrusion			
Caligid sp. A (= L .	I-0;	1-0	2^{a}	ca 2.5	trifid	short	Platichthys	Vladivostok,	[9]; this study
longicauda)	III,1,3						stellatus	Sea of Japan	
L. longiventralis	1-0;	1-0	2	4.3	triangular	long	Verasper	Yen-Dai,	[50]
	III,1,3						variegatus	Yellow Sea	
L. marcepes	0.0.			2.4	nd	short	Pleuronectes	Alitak Bay,	
	0-0;	0-1	2				quadritubercul	Kodiak Island,	[51]
	111,0,3						atus	NE Pacific	
L. parvicruris	1.0	1-0	2	2.6		short	Platichthys stellatus	Vancouver	
	1-0;			3.6 or	trifid			Island, NE	[6,10,11]
	111,1,3			more				Pacific	
L. schmidti	1-0;	1	0	-	nd		Limanda	Nakhodka Bay,	[8,9]
	III,1,3					slight	punctatissimus	Sea of Japan	

