Title	Integrative tax onomy of Pseudolepeophtheirus Iongicauda (Crustacea: Copepoda: Caligidae) parasitic on Platichthys stellatus (A ctinopterygii: Pleuronectidae)
Author(s)	Homma, Riko; Uyeno, Daisuke; Kakui, Keiichi
Citation	Parasitology International, 78, 102135 https:/doi.org/10.1016 J.parint.2020.102135
Issue Date	2020-10
Doc URL	http:/hdl. .handle.net/2115/82838
Rights	©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/icenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/icenses/by/4.0/
Type	article (author version)
File Information	Parasitology International_2020.pdf

Instructions for use

This is an Accepted Manuscript of an article published by Elsevier in Parasitology International on 13 May 2020, available online: https://doi.org/10.1016/j.parint.2020.102135
©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Integrative taxonomy of Pseudolepeophtheirus longicauda (Crustacea: Copepoda: Caligidae) parasitic on Platichthys stellatus (Actinopterygii: Pleuronectidae)

Riko Homma ${ }^{\text {a,1 }}$, Daisuke Uyeno ${ }^{\text {b }}$, Keiichi Kakui ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Natural History Sciences, Graduate School of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo 060-0810, Japan
${ }^{\mathrm{b}}$ Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
${ }^{\text {c Department of Biological Sciences, Faculty of Science, Hokkaido University, N10 W8 }}$

Kita-ku, Sapporo 060-0810, Japan
${ }^{1}$ Present address. Graduate School of Agriculture, Hokkaido University, N9 W9 Kita-ku, Sapporo 060-8589, Japan

* Corresponding author.

E-mail address: keiichikakui@gmail.com (K. Kakui).

Abstract

Based on specimens from the gill cavities of one Platichthys stellatus individual collected in the Sea of Japan, we investigated the taxonomic status of the enigmatic caligid genus Pseudolepeophtheirus and its type species, Pseudolepeophtheirus longicauda. In a maximum likelihood (ML) tree based on 18S rRNA gene sequences, the sequence from our sample was nested in a well-supported Lepeophtheirus clade, along with the type species, confirming that Pseudolepeophtheirus should be considered a junior synonym of Lepeophtheirus; our morphological data support this synonymy. Although a previous study had synonymized Pseudolepeophtheirus longicauda with Lepeophtheirus parvicruris, we found that the former differs morphologically from the latter in having a short leg-4 exopod, with the articulation between the first and second segments not evident (the shape of the posterior striated membrane on the leg-2 intercoxal sclerite also differs between two species), and detected slight differences in 18 S rRNA sequences between two taxa. We thus concluded that this synonymy is invalid, and reinstate Lepeophtheirus longicauda as a valid species. A ML analysis of COI sequences from Pl. stellatus (the host fish for both L. longicauda and L. parvicruris) showed the host species to comprise distinct northwestern- and northeastern-Pacific clades. Lepeophtheirus longicauda is distributed in the northwestern Pacific and L. parvicruris in the northeastern Pacific, indicating co-divergence of the two copepod species with the host lineages.

Keywords:

Siphonostomatoida, sea lice, ectoparasite, phylogeny, COX1, redescription

1. Introduction

Copepods in the family Caligidae, known as sea lice, are ectoparasites mainly on marine fishes. Using their ventrally concave, discoid cephalothorax as a sucker ("cephalothoracic sucker" sensu [1]), they slide smoothly over the surface of the attachment sites (gill filaments, buccal cavity, operculum, skin, etc.) of their host and feed on the host’s mucus, epithelial tissues, and sometimes blood by rasping, scraping, and sucking [2]. Severe infections by caligids cause serious damage to farmed fishes [3,4]. With more than 500 species, the Caligidae is the most species-rich family in the Siphonostomatoida [5]. Dojiri and Ho [6] recently revised the taxonomy of this family based on morphology, but the taxonomic status of some genera remains unclear.

Markevich [7] established the caligid genus Pseudolepeophtheirus for P. longicauda Markevich, 1940, based on the morphology of the specimens collected from the gill cavity of Platichthys stellatus (Pallas, 1788) (Pleuronectidae) collected from the Sea of Japan near

Vladivostok [8] (Fig. 1; cf. [6,7,9-11]). The second member of the genus, P. schmidti Gusev, 1951, was described from the pleuronectid Limanda punctatissima (Steindachner, 1879) collected from Nakhodka Bay in the Sea of Japan; it differs from P. longicauda in having 1) the abdomen slightly shorter than the genital complex and 2) leg 4 in the form of a small papilla [8]. The third species discovered, P. mediterraneus Paperna, 1964, described from chalimus-stage specimens found on gills of the mugilid Chelon ramada (Risso, 1827) collected in the Mediterranean [13], was later synonymized with Pseudocaligus apodus Brian, 1924 (currently accepted as Caligus apodus) [14]. Pseudolepeophtheirus closely resembles the confamilial genus Lepeophtheirus von Nordmann, 1832, but differs in having the exopod of leg 4 so much reduced that it is referred to as "a small two-segmented process" in P. longicauda, and "a small papilla" in P. schmidti (p. 227 in [8]).

In the Caligidae, the reduced leg 4 has been used as one of the characters distinguishing among closely similar genera, e.g., Pseudocaligus from Caligus, Pseudolepeophtheirus from Lepeophtheirus [7,15], but Kabata [16] questioned its validity for that purpose and suggested that Pseudocaligus and Pseudolepeophtheirus should be relegated to synonymy with Caligus and Lepeophtheirus, respectively. Dojiri and Ho [6] followed Kabata's [16] suggestion and synonymized both pairs of genera. They also synonymized P. longicauda with Lepeophtheirus parvicruris Fraser, 1920, which was originally described from Pl. stellatus collected around Vancouver Island, northeastern Pacific [10]. As Dojiri and

Ho [6] could not find any specimens or illustrations of P. longicauda-Markevich [7] did not illustrate the species, and the type specimens had been lost-this synonymy was based only on the text descriptions by Markevich.

In a report on caligids attached to coastal fishes from the Sea of Japan and Sea of Okhotsk around Sakhalin Island (Fig. 1), Vinogradov [9] included two Pseudolepeophtheirus species, one of which (collected from Pleuronectes stellatus) he identified as "Pseudolepeophtheirus parvicruris Fraser, 1920" (p. 259 in [9]). An illustration of leg 4 (fig. 9M of [9]) shows a short exopod (2.3 times longer than wide), with no articulation evident between first and second exopodal segments. In contrast, the exopod of leg 4 in L. parvicruris reported from the northeastern Pacific is longer (3.6 times or more longer than wide), and the two exopodal segments are articulated [6,9,10]. This morphological difference, along with the locality and host fish, suggest that Vinogradov’s [9] P. parvicruris was actually P. longicauda. The other Pseudolepeophtheirus species that Vinogradov [9] reported was P. schmidti (collected from Limanda punctatissima), with leg 4 in the form of a one-segmented appendage (fig. 9E of [9]).

The synonymy [6] of P. longicauda with L. parvicruris lacked adequate morphological data for the former species and has not been tested molecularly. Furthermore, the morphology of P. parvicruris sensu [9] suggests that P. longicauda and L. parvicruris may not be conspecific. Our study deals with copepod specimens recently obtained from Pl.

stellatus, collected from the Sea of Japan off the northwestern coast of Hokkaido, which seemed to be conspecific to P. parvicruris sensu [9], i.e., P. longicauda. Through morphological observations and a molecular phylogeny, we elucidate the taxonomic status of Pseudolepeophtheirus and P. longicauda.

2. Materials and methods

2.1. Sampling and morphological observation

A fresh individual of Platichthys stellatus (total length, 32.1 cm), collected in the Sea of Japan and landed at Asari, Hokkaido, northern Japan (43¹0'37.5"N 141º03'55.6"E; Fig. 1), was obtained on 23 May 2017. Ten female caligids (hereafter referred to as "Caligid sp. A") were collected from the inner surface of the left and right opercula of the fish and were fixed and preserved in 70\% ethanol. The methods used in dissection, specimen preparation, light microscopy, scanning electron microscopy (SEM), and drawing were as described in [17]. The following caligid measurements were taken from digital images by using ImageJ [18]: total body length (TL: length from the anterior margin of the frontal plate to the posterior margin of the caudal ramus); cephalothorax length (CL) and width (CW); genital-complex length (GL) and width (GW); abdomen length (AL) and width (AW); caudal-ramus length
(CrL) and width (CrW). In some specimens, measurements were not made when the relevant structures were strongly deformed by fixation or dissection. The length of the exopod on leg 4 corresponds to the combined length of first and second segments; its width was measured at the widest part of the second segment. Specimens studied were deposited in the Invertebrate Collection of the Hokkaido University Museum (ICHUM), Sapporo, Japan.

2.2. DNA extraction and sequence determination

Total DNA was extracted from the egg-sac of three copepod specimens and a piece of host muscle by using a NucleoSpin Tissue XS Kit (TaKaRa Bio, Japan). Table 1 lists the primers used in this study (cf. [19-22]). PCR amplification conditions for part of the cytochrome c oxidase subunit I (COI) gene with TaKaRa Ex taq DNA polymerase (TaKaRa Bio) were $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min} ; 35$ cycles of $98^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 50^{\circ} \mathrm{C}$ (copepods) or $64^{\circ} \mathrm{C}$ (fish) for 30 s , and $72^{\circ} \mathrm{C}$ for 50 s ; and $72^{\circ} \mathrm{C}$ for 2 min . Conditions for amplification of the nearly complete 18 S rRNA (18S) gene from copepods with KOD FX Neo polymerase (Toyobo, Japan) were $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min} ; 45$ cycles of $98^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 65^{\circ} \mathrm{C}$ for 30 s , and $68^{\circ} \mathrm{C}$ for 1 min ; and $68^{\circ} \mathrm{C}$ for 2 min. Nucleotide sequences were determined by direct sequencing with a BigDye Terminator Kit ver. 3.1 and a 3130 or 3730 Genetic Analyzer (Life Technologies, California, USA), and fragments were concatenated by using MEGA7 [23]. The sequences we obtained were
deposited in the International Nucleotide Sequence Database (INSD) through the DNA Data Bank of Japan (DDBJ), under accession numbers LC512439-512441 (copepod COI), LC512442-512444 (copepod 18S), and LC515810 (fish COI).

2.3. Phylogenetic analyses

A copepod 18S dataset comprising 28 terminal copepod taxa, including Caligid sp. A, other caligids, and three outgroup taxa from Dissonidae and Pandaridae (Table 2: cf. [12,2428]), was aligned by using MAFFT ver. 7 [29] with the "Q-INS-i" strategy [30]; the aligned sequences were trimmed in MEGA7 to the shortest length among the sequences (1675 nt). The optimal substitution model was GTR $+\mathrm{I}+\mathrm{G}$, determined under the corrected Akaike information criterion (AIC) with PartitionFinder 2.1.1 [31]. A maximum likelihood (ML) analysis was conducted in RAxML ver. 8.1.5 [32], and nodal support values were obtained through ML analyses of 1000 bootstrap pseudoreplicates [33]. A fish COI dataset comprising 17 Pl. stellatus sequences (including one from our host fish; Table 3; cf. [34-36]) and one Pl. flesus (Linnaeus, 1758) sequence was aligned by using MAFFT ver. 7 with the "Auto" strategy ("L-INS-i" selected; [37]); the aligned sequences were trimmed in MEGA7 to the shortest length among the sequences (558 nt). The optimal substitution models for different partitions determined under the corrected AIC with PartitionFinder 2.1.1 were F81 for the
first and second codons, and TrN for the third codon. A partitioned ML analysis was conducted in IQ-TREE ver. 1.6.8 [38,39], with nodal support values obtained by ultrafast bootstrap analysis of 1000 pseudoreplicates [40].

The 18S sequences from Caligid sp. A and two closely related taxa indicated by our ML analysis were realigned by eye according to the secondary structure of the honeybee 18 S sequence [41]; the secondary structure of the "variable area" [42] with indels was predicted with CentroidFold [43] to check the indels’ position in the area.

Kimura [44] 2-parameter (K2P) distances among copepod sequences were calculated with MEGA7.

3. Results

3.1. Morphological description

Order Siphonostomatoida

Family Caligidae

Caligid sp. A (Figs. 2-5)

Host: Platichthys stellatus (Actinopterygii: Pleuronectidae).

Sampling locality: Sea of Japan off Asari, Hokkaido, Japan; depth unknown; GPS data not available.

Attachment site: inner surface of left and right opercula.

Material examined (10 females): ICHUM6041, dissected, 1 vial and 6 slides;

ICHUM6042, dissected, 1 vial and 4 slides; ICHUM6043, dissected, 1 vial and 2 slides;

ICHUM6044, dissected, 1 vial and 2 slides; ICHUM6045, dissected, 1 vial and 1 slide, INSD accession numbers LC512439 (COI) and LC512442 (18S); ICHUM6046, dissected, 1 vial and 1 slide, LC512440 (COI) and LC512443 (18S); ICHUM6047, intact, 1 vial, LC512441 (COI) and LC512444 (18S); ICHUM6048, dissected, 1 vial and 1 slide; ICHUM6049, dissected, 1 vial and 2 slides; ICHUM6050, dissected, 1 vial, 2 slides, and 3 SEM stubs.

Measurements: see Table 4.

3.1.1. Description of adult females

Body (Figs. 2, 3A) TL 6.6-8.3 mm (mean $7.7 \mathrm{~mm} ; n=10$). Dorsal cephalothoracic shield subcircular (CL/CW, 0.94-1.18; mean CL/CW, 1.08; $n=9$), comprising about 30% of TL. Free posterior margin of dorsal thoracic zone of shield slightly extending beyond posterior end of lateral zones. Frontal plates without lunules. Genital complex fused with fourth pedigerous somite, longer than wide (GL/GW, 1.06-1.22; mean GL/GW, 1.12; $n=6$), comprising about 30% of TL, with short posterolateral protrusion. Copulatory pores located
near base of leg 5. Abdomen 1-segmented (constriction in subposterior region found), longer than wide (AL/AW, 3.75-4.61; mean AL/AW, 4.27; $n=6$), longer than genital complex (AL/GL, 1.15-1.65; mean AL/GL, 1.31; $n=10$), comprising about 40% of TL, with terminal anal slit. Caudal rami with parallel sides, about 1.4 times longer than wide (CrL/CrW, 1.381.45; mean $\mathrm{CrL} / \mathrm{CrW}, 1.41 ; n=10$). Each ramus with six plumose setae and ornamented with fine setules.

Antennule (Fig. 3C) 2-segmented; proximal segment with 26 or 27 plumose setae and small distal protrusion (Fig. 3C, arrow); distal segment bearing 12 distal elements and subdistal seta (possibly 1 distal element lost during dissection). Antenna (Fig. 3D) 3-segmented; proximal segment with spatulate, posteriorly-directed process; middle segment subrectangular, with small corrugated pad ventrally; distal segment forming recurved, tapering claw with proximal seta at base and longer middle seta. Post-antennal process (Fig. 3D) robust, weakly curved, carrying 2 basal papillae each with 3 sensillae; similar, adjacent papilla with 2 sensillae located on ventral surface of cephalothorax. Small, rounded cuticular swelling (Fig. 3D) present between antenna and post-antennal process.

Mandible (Fig. 3E) stylet-like, with 12 marginal teeth. Maxillule (Fig. 3F) comprising anterior papilla bearing 3 unequal setae and bifid posterior process with subspherical knob on base. Maxilla (Fig. 3G) 2-segmented, brachiform; proximal segment (lacertus) robust and unarmed; distal segment (brachium) slender, bearing large flabellum on mid-inner margin
plus bilaterally-serrate short canna and long calamus distally. Maxilliped subchelate (Fig. 3H, I); proximal segment robust with smooth myxal margin and 2 dorsal patches of scale-like processes; distal subchela sharply pointed, with long claw indistinctly fused to short shaft and proximal seta at base of claw. Sternal furca (Fig. 3J) with short, broad divergent tines bearing lamellar flange and bluntly rounded tip.

Leg 1 (Figs. 3K, 4A) biramous, with 2-segmented exopod and vestigial endopod. Intercoxal sclerite elongate, unarmed. Protopod with 1 outer and 1 posterior plumose setae. First exopodal segment with outer distal naked spine and posterior row of setules. Second exopod segment with 3 inner long plumose setae, subdistal short plumose seta, and 3 distal spines; spines except outermost one with accessory process (Fig. 4A). Endopod with bifurcate tip.

Leg 2 (Figs. 3L, 5A) biramous, with 3-segmented rami. Intercoxal sclerite rectangular, wider than long, with extensive striated membrane along posteriormargin; membrane strongly expanded in mid-line and as long as or longer than sclerite (Fig. 5A). First protopodal segment with posterior plumose seta and ventral spinule-bearing papilla. Second protopodal segment with outer distal plumose seta, posterior setule-bearing papilla, and outer and posterior striated membranes. First exopodal segment with inner distal plumose seta, outer distal bilaterally-serrate spine, outer distal and inner rows of setules, and outer striated membrane. Second exopodal segment with inner distal plumose seta, outer distal
bilaterally-serrate spine, and inner row of setules. Third exopodal segment with 5 plumose setae and 3 outer spines; proximal spine bilaterally-serrate, middle spine fringed with hyaline membrane, and distal spine with outer hyaline membrane and inner row of setules. First endopodal segment with inner plumose seta and outer row of setules. Second endopodal segment with 2 inner plumose setae and outer and inner rows of setules. Third endopodal segment with 6 plumose setae and outer and inner rows of setules.

Leg 3 (Figs. 3M, 4B, 5B) biramous, with 3-segmented exopod and 2-segmented endopod. Intercoxal sclerite trapezoid, with subrectangular striated membrane along posterior margin; membrane shorter than sclerite (Fig. 5B). Protopod large, modified to apron, with 1 posterio-inner and 1 outer plumose setae, 5 ventral setule-bearing papillae, outer and posterior striated membranes, and outer antero-dorsal corrugated pad. First exopodal segment with inner plumose seta and exopod spine fringed with hyaline membrane. Second exopodal segment with inner plumose seta, outer distal naked spine (absent in illustrated leg; but see Fig. 4B), and outer row of setules. Third exopodal segment with 4 plumose setae, 3 distal naked spines, and outer row of setules. First endopodal segment with inner plumose seta and outer row of setules. Second endopodal segment with 6 plumose setae and outer and inner rows of setules.

Leg 4 (Figs. 3N, 4C-E) uniramous, with 2-segmented exopod with articulation between first and second exopodal segments not evident (Fig. 4C-E). Protopod with outer
distal plumose seta. Exopod 2.2-2.9 (mean 2.47; $n=7$) times longer than wide; first segment with outer distal naked spine; second segment with 2 or 3 distal bilaterally-serrate spines (spine-length decreasing from inner to outer; innermost spine 2 times or more longer than other(s)).

Leg 5 (Fig. 3O) composed of trifid process located near egg-sac attachment area of genital complex, with 3 plumose setae; papilla bearing plumose seta present on adjacent ventral surface of genital complex.

Variation. Among six leg-3 samples we observed (left and right of ICHUM6041, 6043, and 6050), one lacked any spines (right of ICHUM6041; cf. Fig. 3M) but the others had one outer distal naked spine (cf. Fig. 4B); the former may be an abnormal state. Among seven leg-4 samples we observed (left and right of ICHUM6044 and 6050; right of ICHUM6042, 6043, and 6046), three have 3 distal spines (cf. Fig. 3N) and the others have 2 distal spines (cf. Fig. 4C).

3.2. Molecular phylogenetic analysis of the caligid copepods

We obtained partial COI and nearly complete 18 S sequences from three specimens of Caligid sp. A (ICHUM6045, 6046, 6047). The three COI sequences (LC512439-512441) were 658 nt long, translating to 219 amino acids. The maximum K2P distance among these
was 0.61%, representing four nucleotide substitutions. The sequence in the INSD most similar to our COI sequences, as determined by BLAST searches [45], was from Lepeophtheirus hospitalis Fraser, 1920 (accession number HM582235; identity score 84.32\%, query cover 99\%; [46]); the K2P distances between our sequences and the L. hospitalis sequence were 18.1-18.9\%. To date, no COI sequences from L. parvicruris have been deposited in public databases [47].

The three 18S sequences (LC512442-512444) were identical and 1760 nt long. The 18S sequence includes one site in the V7 variable area (Fig. 6A) that was dimorphic (Y, i.e., C or T) in all three sequences we determined. In the ML tree (1675 nt; Fig. 7), all Lepeophtheirus sequences except L. natalensis Kensley and Grindley, 1973 formed a clade with 98% bootstrap support (BS). The clade included a sequence from L. pectoralis (O.F. Müller, 1776), the type species of Lepeophtheirus, and Caligid sp. A. Caligid sp. A forms a moderately supported (BS 74\%) clade with L. parvicruris and L. thompsoni Baird, 1850. Aligned 18S sequences from Caligid sp. A, L. parvicruris, and L. thompsoni showed one indel and one incongruent site (Y vs. T) in the V7 variable area among the three taxa (Fig. 6B-D).
3.3. Phylogenetic relationships within the host fish, Platichthys stellatus

We obtained a partial COI sequence (619 nt; LC515810) from the host fish of our caligid specimens. In the ML tree (558 nt; Fig. 8), 17 Pl. stellatus sequences were divided into two clades. One clade included sequences from northeastern Pacific specimens with 62% ultrafast bootstrap support (uBS). The other comprised northwestern Pacific sequences, including our fish sequence, with 90% uBS. K2P distances between two clades were $0.7-$ 1.3\%; those among sequences within the northeastern and northwestern Pacific clades were $0.0-0.4 \%$ and $0.0-0.5 \%$, respectively.

4. Discussion

Based on its locality (Sea of Japan), host fish (Pl. stellatus), and morphological features (e.g., body shape, and leg 4 bearing a short exopod, ca 2.5 times longer than wide), we concluded that Caligid sp. A is conspecific with Pseudolepeophtheirus parvicruris sensu [9] and Pseudolepeophtheirus longicauda. Here we have presented the first information on the armature of most appendages and the segmentation of the abdomen.

In the 18S ML tree, Caligid sp. A (= P. longicauda) formed a moderately supported (BS 74\%) clade with L. parvicruris and L. thompsoni, which was nested in the clade containing all Lepeophtheirus except for L. natalensis (Fig. 7). The Lepeophtheirus clade included a sequence from L. pectoralis, the type species of Lepeophtheirus. Our results thus
molecularly confirm the synonymy of Pseudolepeophtheirus with Lepeophtheirus [6].

Although Dojiri and Ho [6] synonymized Pseudolepeophtheirus longicauda (now Lepeophtheirus longicauda) with Lepeophtheirus parvicruris, we concluded these are different species. Among 126 valid species and two recognized subspecies in Lepeophtheirus, including two species formerly placed in Pseudolepeophtheirus ([4,48,49], this study), L. longicauda shares the following combination of characters with L. parvicruris and three other species (L. longiventralis Yü \& Wu, 1932; L. marcepes C.B. Wilson, 1944; and L. schmidti (formerly Pseudolepeophtheirus schmidti)): 1) the abdomen is about as long as, or longer than, the genital complex (Kabata's [11] "long abdomen"); 2) CL is far shorter than GL+AL, with $\mathrm{CL} /(\mathrm{GL}+\mathrm{AL})$ around 0.5 ; and 3$)$ the number of exopodal segments in leg 4 is 2 or less [6,8,9,11,50,51]. Lepeophtheirus longicauda strongly resembles L. parvicruris, but differs in having a shorter leg-4 exopod, with the length ca. 2.5 times the width (more than 3.6 times the width in L. parvicruris [6,10,11]), and a leg-4 exopod with the articulation between the first and second segments not evident (present in L. parvicruris [6,10,11]) (Table 5); these characters are consistent among specimens collected from distant localities in each species (from off Sakhalin to off Hokkaido in L. longicauda; from off Alaska to off Vancouver in L. parvicruris; Fig. 1). Additionally, although available data are limited for each species, the shape of a posterior striated membrane on the leg-2 intercoxal sclerite of L. longicauda differs from that of L. parvicruris illustrated by [6]: it strongly expands in mid-line and is as
long as or longer than the sclerite-length in the former; curved rectangle and shorter than half length of sclerite in L. parvicruris (this study, [6]). To say whether the condition of this character is consistent within a speices, data from more specimens from more sampling localities are necessary. Lepeophtheirus longicauda differs from L. longiventralis in having 1) short posterolateral protrusions on the genital complex and 2) a trifid leg 5; from L. marcepes in having 1) the second exopodal segment of leg 1 with three spines and four setae and 2) the leg-4 protopod with one outer seta; and from L. schmidti in having leg 4 with an exopod (Table 5).

Among sequences deposited in INSD, the 18 s sequence from L. longicauda was most similar to those from L. parvicruris and L. thompsoni; it was one nucleotide shorter than the latter two (i.e., one indel was observed), and differed at one nucleotide position (Fig. 6B). No sequences from L. longiventralis, L. marcepes, or L schmidti were found in the public database [47]. Unfortunately, no COI sequences from any of these five other species have yet been deposited in public databases [47].

Our host-fish sequence data also support the conclusion that L. longicauda is distinct from L. parvicruris. Both species utilize the same flatfish, Pl. stellatus. This nominal species has a wide distribution from the northwestern to the northeastern Pacific (from Korea to California) at depths shallower than 300 m [52], but Vinnikov et al. [34] suggested that it may harbor cryptic species. Our COI tree corroborates the multilocus phylogenic analyses by [34]
that showed Pl. stellatus sequences grouping into separate northwestern and northeastern Pacific clades (Fig. 8). Lepeophtheirus longicauda and L. parvicruris were originally described from the Sea of Japan and the northeastern Pacific (Vancouver Island vicinity), respectively. Although we have no information on Pl. stellatus or the two copepod species from the Bering Sea, Pl. stellatus may actually comprise divergent northwestern and northeastern Pacific populations (or species), each acting as host to a co-divergent copepod species.

Acknowledgments

We thank Naohiro Hasegawa for help in sampling; Hiroko Uyeno for help in observation; and Matthew H. Dick for reviewing the manuscript and editing our English.

References

[1] Z. Kabata, Copepoda (Crustacea) parasitic on fishes: problems and perspectives, Adv. Parasitol. 19 (1982) 1-71, https://doi.org/10.1016/S0065-308X(08)60265-1
[2] C.-L. Lin, J.-S. Ho, S.-N. Chen, Two species of Caligidae (Copepoda) parasitic on cultured rabbit fish (Siganus fuscescens) in Taiwan, Fish Pathol. 31 (1996) 129-139.
[3] S.C. Johnson, J.W. Treasurer, S. Bravo, K. Nagasawa, Z. Kabata, A review of the impact
of parasitic copepods on marine aquaculture, Zool. Stud. 43 (2004) 229-243.
[4] G. Boxshall, The sea lice (Copepoda: Caligidae) of Moreton Bay (Queensland, Australia), with descriptions of thirteen new species, Zootaxa 4398 (2018) 1-172. https://doi.org/10.11646/zootaxa.4398.1.1.
[5] A.A. Özak, Y. Sakarya, G.A. Boxshall, Caligus adanensis sp. nov. (Copepoda: Caligidae Burmeister, 1835) parasitic on garfish, Belone belone (Linnaeus, 1760), from the eastern Mediterranean Sea, off the Turkish coast, Mar. Biodivers. 49 (2019) 1877-1890.
[6] M. Dojiri, J.-S. Ho, Systematics of the Caligidae, Copepods Parasitic on Marine Fishes, Brill, Leiden, 2013.
[7] A.P. Markevich, Novi vidi parazitichnykh Copepoda, Depovidi Akademiyi Nauk USSR 11 (1940) 11-21.
[8] A.P. Markevich, Parasitic Copepodes on the Fishes of the USSR, Indian National Scientific Documentation Centre, New Delhi, 1976 (Translated from Russian).
[9] S.A. Vinogradov, Parasitic copepods of family Caligidae from fishes of coastal waters at Sakhalin, Izvestia TINRO 168 (2012) 243-261.
[10] C.M. Fraser, Copepods parasitic on fish from the Vancouver Island region, Proc. Trans. Roy. Soc. Can. Ser 313 (1920) 45-67 + 8 pls.
[11] Z. Kabata, The species of Lepeophtheirus (Copepoda: Caligidae) from fishes of British Colombia, J. Fish. Res. Board Can. 30 (1973) 729-759.
[12] S.R. Jones, G. Prosperi-Porta, E. Kim, P. Callow, B. Hargreaves, The occurrence of Lepeophtheirus salmonis and Caligus clemensi (Copepoda: Caligidae) on three-spine stickleback Gasterosteus aculeatus in coastal British Columbia, J. Parasitol. 92 (2006) 473-480.
[13] I. Paperna, Parasitic Crustacea (Copepoda and Branchiura) from inland water fishes of Israel, Israel J. Zool. 13 (1964) 58-68.
[14] I. Paperna, M. Lahav, Mortality among gray mullets in a seawater pond due to caligiid parasitic copepod epizootic, Bamidgeh: Bull. Fish Cult. Israel 26 (1974) 12-15.
[15] A. Scott, Some additions to the fauna of Liverpool Bay, Proc. Trans. Liverpool Biol. Soc. 15 (1901) 342-353.
[16] Z. Kabata, Copepoda parasitic on Australian fishes. III. Genera Dentigryps, Heniochophilus and Pseudanuretes (Caligidae), Ann. Mag. Nat. Hist., Ser. 13 (1965) 1931.
[17] K. Kakui, S. Angsupanich, Birdotanais songkhlaensis, a new genus and species of Nototanaidae (Crustacea: Tanaidacea) from Thailand, Raffles Bull. Zool. 60 (2012) 421432.
[18] W.S. Rasband, ImageJ. https://imagej.nih.gov/ij/, 2019 (accessed 2 July 2019).
[19] O. Folmer, M. Black, W. Hoeh, R. Lutz, R. Vrijenhoek, DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates,

Mol. Mar. Biol. Biotechnol. 3 (1994) 294-299.
[20] T. Nakayama, S. Watanabe, K. Mitsui, H. Uchida, I. Inoue, The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18SrDNA data, Phycol. Res. 44 (1996) 47-55.
[21] T. Puitika, Y. Kasahara, N. Miyoshi, Y. Sato, S. Shimano, A taxon-specific oligonucleotide primer set for PCR-based detection of soil ciliate, Microbes Environment. 22 (2007) 78-81.
[22] M. Maraun, G. Erdmann, G. Schulz, R.A. Norton, S. Scheu, K. Domes, Multiple convergent evolution of arboreal life in oribatid mites indicates the primacy of ecology, Proc. Roy. Soc. B 276 (2009) 3219-3227.
[23] S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870-1874.
[24] Ø. Øines, T. Schram, Intra- or inter-specific difference in genotypes of Caligus elongatus Nordmann 1832?, Acta Parasitol. 53 (2008) 93-105.
[25] R. Huys, J. Llewellyn-Hughes, P.D. Olson, K. Nagasawa, Small subunit rDNA and Bayesian inference reveal Pectenophilus ornatus (Copepoda incertae sedis) as highly transformed Mytilicolidae, and support assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida), Biol. J. Linn. Soc. 87 (2006) 403-425.
[26] M.A. Freeman, H. Anshary, K. Ogawa, Multiple gene analyses of caligid copepods
indicate that the reduction of a thoracic appendage in Pseudocaligus represents convergent evolution, Parasite Vector 6 (2013) 336.
https://doi.org/10.1186/1756-3305-6-336.
[27] R. Huys, J. Llewellyn-Hughes, S. Conroy-Dalton, P.D. Olson, J.N. Spinks, D.A. Johnston, Extraordinary host switching in siphonostomatoid copepods and the demise of the Monstrilloida: integrating molecular data, ontogeny and antennulary morphology, Mol. Phylogenet. Evol. 43 (2007) 368-378.
[28] S.M. Dippenaar, Estimated molecular phylogenetic relationships of six siphonostomatoid families (Copepoda) symbiotic on elasmobranchs, Crustaceana 82 (2009) 1547-1567.
[29] K. Katoh, D.M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol. 30 (2013) 772-780.
[30] K. Katoh, H. Toh, Recent developments in the MAFFT multiple sequence alignment program, Brief. Bioinform. 9 (2008) 286-298.
[31] R. Lanfear, P.B. Frandsen, A.M. Wright, T. Senfeld, B. Calcott, PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses, Mol. Biol. Evol. 34 (2016) 772-773.
[32] A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics 30 (2014) 1312-1313.
[33] J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap, Evolution 39 (1985) 783-791.
[34] K.A. Vinnikov, R.C. Thomson, T.A. Munroe, Revised classification of the righteye flounders (Teleostei: Pleuronectidae) based on multilocus phylogeny with complete taxon sampling, Mol. Phylogenet. Evol. 125 (2018) 147-162.
[35] D. Steinke, T.S. Zemlak, J.A. Boutillier, P.D.N. Hebert, DNA barcoding of Pacific Canada's fishes, Mar. Biol. 156 (2009) 2641-2647.
[36] Y.P. Kartavtsev, S.N. Sharina, K. Saitoh, J.M. Imoto, N. Nanzawa, A.D. Redin, Phylogenetic relationships of Russian far eastern flatfish (Pleuronectiformes, Pleuronectidae) based on two mitochondrial gene sequences, Co-1 and Cyt-b, with inferences in order phylogeny using complete mitogenome data, Mitochondr. DNA Pt. A 27 (2016) 667-678.
[37] K. Katoh, K. Kuma, H. Toh, T. Miyata, MAFFT version 5: improvement in accuracy of multiple sequence alignment, Nucleic Acids Res. 33 (2005) 511-518.
[38] L.-T. Nguyen, H.A. Schmidt, A. von Haeseler, B.Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies, Mol. Biol. Evol. 32 (2015) 268-274.
[39] O. Chernomor, A. von Haeseler, B.Q. Minh, Terrace aware data structure for phylogenomic inference from supermatrices, Syst. Biol. 65 (2016) 997-1008.
[40] D.T. Hoang, O. Chernomor, A. von Haeseler, B.Q. Minh, L.S. Vinh, UFBoot2: improving the ultrafast bootstrap approximation, Mol. Biol. Evol. 35 (2018) 518-522.
[41] J.J. Gillespie, J.S. Johnston, J.J. Cannone, R.R. Gutell, Characteristics of the nuclear (18S, $5.8 \mathrm{~S}, 28 \mathrm{~S}$ and 5 S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements, Insect Mol. Biol. 15 (2006) 657-686.
[42] J.-M. Neefs, Y. van de Peer, L. Hendriks, R. de Wachter, Compilation of small ribosomal subunit RNA sequences, Nucleic Acids Res. 18 (Suppl) (1991) 2237-2317.
[43] K. Sato, M. Hamada, K. Asai, T. Mituyama, CentroidFold: a web server for RNA secondary structure prediction. Nucleic Acids Res. 37 (2009) W277-W280.
[44] M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16 (1980) 111-120.
[45] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215 (1990) 403-410.
[46] S.R.M. Jones, G. Prosperi-Porta, The diversity of sea lice (Copepoda: Caligidae) parasitic on threespine stickleback (Gasterosteus aculeatus) in coastal British Columbia, J. Parasitol. 97 (2011) 399-405.
[47] DDBJ, DNA Data Bank of Japan. https://www.ddbj.nig.ac.jp/index-j.html, 2019 (accessed 2 July 2019).
[48] J.K. Passarelli, D. Tang, A new species of Lepeophtheirus (Copepoda; Caligidae) parasitic on three kelpfish species (Clinidae) from the southern California coast, Bull. S. Calif. Acad. Sci. 116 (2017) 1-16.
[49] A.A. Özak, A.M.V. Rodrigues, N.S.S. Vieira, R.M.G. Rosa, A. Yanar, E. Koyuncu, G.A. Boxshall, Lepeophtheirus azoricus n. sp. (Copepoda: Caligidae) parasitic on dusky grouper, Epinephelus marginatus, from Atlantic waters off the Azores, Portugal, Mar. Biodiv. 48 (2018) 1045-1055.
[50] J.-S. Ho, S. Gómez, K. Ogawa, M. Aritaki, Two species of parasitic copepods (Caligidae) new to Japan, Syst. Parasitol. 57 (2004) 19-34.
[51] C.B. Wilson, Parasitic copepods in the United States National Museum, Proc. U. S. Natl. Mus. 94 (1944) 529-582 + pls. 21-34.
[52] A.J. Allen, G.B. Smith, Atlas and zoogeography of common fishes in the Bering Sea and northeastern Pacific, NOAA Tech. Rep. NMFS 66 (1988) 1-151.

Figure legends

Fig. 1. Map showing collection localities for caligid specimens relevant to this study. Circles, Pseudolepeophtheirus longicauda of [7], P. parvicruris of [9], and Caligid sp. A (this study); triangles, Lepeophtheirus parvicruris of [6,10-12].

Fig. 2. Caligid sp. A, female (ICHUM6045), fixed specimen, dorsal view. Scale bar $=1 \mathrm{~mm}$.

Fig. 3. Caligid sp. A, female, ICHUM6041 (A, B, D, G-M), ICHUM6045 (C); ICHUM6042 (E, F, N, O). A, Habitus, dorsal; B, caudal rami; C, antennule, ventral (arrow, small protrusion); D, antenna, post-antennal process, and round process, ventral; E, mandible; F, maxillule; G, maxilla (arrow, partly broken portion); H, I, maxilliped, ventral (H), dorsal (I); J, sternal furca, ventral; K-O, legs $1-5$, ventral, with most of posterior striated membranes on intercoxal sclerite and protopod of leg 3 omitted. Scale bars: $1 \mathrm{~mm}(\mathrm{~A}), 0.1 \mathrm{~mm}$ (others).

Fig. 4. SEM images of Caligid sp. A, female, ICHUM6050. A, Distal region of second exopodal segment of right leg 1, ventral; B, exopod spine on first exopodal segment of left leg 3, ventral; C, left leg 4, ventral; D, E, exopod of left leg 4, ventral (D) and dorsal (E). Abbreviations: ap, accessory process; $s p$, spine on outer distal corner of second exopodal segment of left leg 3 . Scale bars: $25 \mu \mathrm{~m}$.

Fig. 5. Intercoxal sclerite and posterior striated membrane of leg 2 (A, ICHUM6041) and leg 3 (B, ICHUM6043) in Caligid sp. A, female. Intercoxal sclerite of leg 3 partly broken. Abbreviations: is, intercoxal sclerite; sm, striated membrane. Scale bar: 0.1 mm .

Fig. 6. Comparison of part of 18 S sequence from Caligid sp. A, L. parvicruris, and L. thompsoni. A, Chromatogram showing the dimorphic site in the 18 S sequence of Caligid sp. A (Y indicates that both T and C peaks were detected); B, part of aligned 18 S sequences from the three species; C, D, secondary structure of the V7 variable area in 18S from L. parvicruris and L. thompsoni (C) and Caligid sp. A (D), predicted with CentroidFold, inference engine = "McCaskill(BL)", weight of base pairs = " $2 \wedge 2$ " (black arrow, dimorphic site; white arrow, non-dimorphic site; arrowheads, nucleotide present in L. parvicruris and L. thompsoni (black), lacking in Caligid sp. A (white).

Fig. 7. ML tree for copepod 18 S sequences (1675 nt). Numbers near nodes are bootstrap values in percent; values less than 70 are not shown. The scale indicates branch length in number of substitutions per site.

Fig. 8. ML tree for COI sequences (558 nt) from 17 Platichthys stellatus and an outgroup taxon, Platichthys flesus. Numbers near nodes are ultrafast bootstrap values in percent. The scale indicates branch length in number of substitutions per site.

18 S
Table 1

List of PCR and cycle sequencing (CS) primers used in this study.

Marker	Primer	Primer sequence	Reaction	Source
COI	LCO1490	GGTCAACAAATCATAAAGATATTGG	PCR \& CS	$[19]$
(copopod)				
	HCO2198	TAAACTTCAGGGTGACCAAAAAATCA	PCR \& CS	$[19]$
COI (fish)	COI_ff_F	CAAAGACATCGGCACCCTCT	PCR \& CS	This study
	COI_ff_R	GGTAGAGGATGGGGTCACCT	PCR \& CS	This study
	SR1	TACCTGGTTGATCCTGCCAG	PCR	$[20]$
	SR8	GGATTGACAGATTGAGAGCT	CS	$[20]$
	SR9	AACTAAGAACGGCCATGCAC	CS	$[20]$
	SR10	AGGTCTGTGATGCCCTTAGA	CS	$[20]$
	SR12	CCTTCCGCAGGTTCACCTAC	PCR \& CS	$[20]$
	EU929R	TTGGCAAATGCTTTCGC	CS	$[21]$
	$18 S 554 f$	AAGTCTGGTGCCAGCAGCGCG	CS	$[22]$
	$18 S 614 r$	TCCAACTACGAGCTTTTTAACC	CS	$[22]$

Table 2
Copepod species included in the 18 S analysis in this study.

Family	Taxon	Accession no.	Source
CALIGIDAE	Caligus clemensi	DQ123833	[12]
	Caligus curtus	EF088407	[24]
	Caligus elongatus	AY627020	[25]
	Caligus fugu	KC569364	[26]
	Caligus gurnardi	EF088410	[24]
	Caligus pelamydis	EF088411	[24]
	Caligus punctatus	KR048777	Unpublished
	Caligus quadratus	EF088412	[24]
	Caligus uniartus	KC569363	[26]
	Caligus brevipedis	EF088416	[24]
	Caligus sp1JYW2010	HM545887	Unpublished
	Gloiopotes watsoni	AY627019	[25]
	Gloiopotes huttoni	KF667350	Unpublished
	Lepeophtheirus goniistii	KR048779	Unpublished
	Lepeophtheirus	DQ538503	[27]
	hippoglossi		
	Lepeophtheirus hospitalis	DQ123831	[12]
	Lepeophtheirus natalensis	FJ447440	[28]
	Lepeophtheirus	DQ123830	[12]
	parvicruris		
	Lepeophtheirus	KR048780	Unpublished
	parviventris		
	Lepeophtheirus pectoralis	EF088413	[24]
	Lepeophtheirus	EF088414	[24]
	pollachius		
	Lepeophtheirus salmonis	DQ123829	[12]
	Lepeophtheirus	EF088415	[24]
	thompsoni		
	Paralebion elongatus	FJ447441	[28]
	Caligid sp. A	LC512442	This study

DISSONIDAE	Dissonus manteri	DQ538500	[27]
PANDARIDAE	Dinemoura latifolia	DQ538501	[27]
	Perissopus dentatus	FJ447453	[28]

Table 3
Fish sequences included in the COI analysis in this study.

Species	Accession	Locality	Source
Pl. stellatus	KF930268	NE Pacific (USA: California)	Unpublished
	GU440461	NE Pacific (USA: Washington: Puget Sound)	Unpublished
	GU440462	NE Pacific (USA: Washington: Puget Sound)	Unpublished
	MH032494	NE Pacific (USA: Washington: Puget Sound)	[34]
	FJ165021	NE Pacific (Canada: British Columbia)	[35]
	FJ165020	NE Pacific (Canada: British Columbia)	[35]
	KF930269	NE Pacific (USA: Alaska: Gulf of Alaska)	Unpublished
	MH032495	NE Pacific (USA: Alaska: Gulf of Alaska)	[34]
	KF386375	NW Pacific (Russia: Sea of Japan: Vostok Bay)	[36]
	KF386374	NW Pacific (Russia: Sea of Japan: Vostok Bay)	[36] (Japan: Miyagi)
	NC515810	NW Pacific: Sea of Japan (Japan: Asari)	This study
	KT920091	NW Pacific (China: Yellow Sea: RiZhao)	Unpublished
	KT920090	NW Pacific (China: Yellow Sea: RiZhao)	Unpublished
	KT920044	NW Pacific (China: Yellow Sea: JiangSu)	Unpublished
	KT920043	NW Pacific (China: Yellow Sea: JiangSu)	Unpublished
	MH032490	Atlantic: Baltic Sea	[34]

Table 4

Measurements for Caligid sp. A specimens. Values are in millimeters, except for ratios. CL, CrL, GL, AL, length of cephalothorax, caudal ramus, genital complex, and abdomen; CW, CrW, GW, AW, maximum width of cephalothorax, caudal ramus, genital complex, and abdomen; TL, total body length. -, no data

Specimen Number	TL	CL	CW	GL	GW	AL	AW	CrL	CrW	CL/(GL+AL)	CrL/CrW
ICHUM6041	6.99	2.38	2.25	1.93	-	2.43	-	0.11	0.08	0.52	1.45
ICHUM6042	7.47	2.55	2.45	1.80	-	2.75	-	0.12	0.09	0.58	1.40
ICHUM6043	8.09	2.35	2.22	2.09	-	3.44	-	0.12	0.08	0.41	1.41
ICHUM6044	6.62	2.25	2.38	1.69	-	2.46	-	0.11	0.08	0.53	1.39
ICHUM6045	8.28	2.43	2.25	2.31	2.05	3.18	0.69	0.11	0.08	0.40	1.39
ICHUM6046	7.77	2.31	-	2.27	2.09	2.96	0.66	0.10	0.07	0.38	1.38
ICHUM6047	8.11	2.58	2.21	2.44	2.14	2.81	0.75	0.12	0.08	0.46	1.41
ICHUM6048	7.84	2.41	2.04	2.25	2.09	2.88	0.72	0.11	0.08	0.45	1.40
ICHUM6049	7.46	2.31	2.04	2.06	1.69	2.80	0.62	0.11	0.08	0.45	1.40
ICHUM6050	8.34	2.58	2.39	2.29	2.16	3.14	0.74	0.13	0.09	0.44	1.45
Mean	7.70	2.42	2.25	2.11	2.04	2.89	0.70	0.11	0.08	0.46	1.41

Table 5

Comparison of selected characters for five Lepeophtheirus species. L, length; W, width. Arm, armature (number of setae in Arabic numbers; number of spines in Roman numbers; numbers left to hyphen for outer setae/spines, the others for inner ones); Prp, protopod; Exp, exopod. ${ }^{\text {a }}$ Articulation between first and second exopodal segments not evident.

Taxon	Leg 1	Leg 4			Leg 5	Genital complex	Host	Type Locality	Source(s)
	Arm of Exp	Arm of Prp	Exp segments	L/W of Exp	Shape	Posterolateral protrusion			
Caligid sp. A (= L. longicauda)	$\begin{aligned} & \text { I-0; } \\ & \text { III,1,3 } \end{aligned}$	1-0	$2^{\text {a }}$	ca 2.5	trifid	short	Platichthys stellatus	Vladivostok, Sea of Japan	[9]; this study
L. longiventralis	$\begin{aligned} & \text { 1-0; } \\ & \text { III,1,3 } \end{aligned}$	1-0	2	4.3	triangular	long	Verasper variegatus	Yen-Dai, Yellow Sea	[50]
L. marcepes	$\begin{aligned} & 0-0 ; \\ & \text { III,0,3 } \end{aligned}$	0-1	2	2.4	nd	short	Pleuronectes quadritubercul atus	Alitak Bay, Kodiak Island, NE Pacific	[51]
L. parvicruris	$\begin{aligned} & 1-0 ; \\ & \text { III,1,3 } \end{aligned}$	1-0	2	$3.6 \text { or }$ more	trifid	short	Platichthys stellatus	Vancouver Island, NE Pacific	[6,10,11]
L. schmidti	$\begin{aligned} & 1-0 ; \\ & \text { III,1,3 } \end{aligned}$	1	0	-	nd	slight	Limanda punctatissimus	Nakhodka Bay, Sea of Japan	[8,9]

